
Imperial College of Science, Technology and Medicine
Department of Computing

Automatic Verification of Teleo-reactive Programs

Using a Model Checker

Author:
Kaho Sato

Supervisor:
Alessio Lomuscio

Abstract

A teleo-reactive program is a formalism to define an autonomous agent. Though it was coined over
two decades ago, the amount of work that has been done in its verification is scarce, and there is no
work done in its automatic verification. This report presents a methodology to automatically verify

a program written in a teleo-reactive programming language, TeleoR, using a model checker
MCMAS. This involves defining a mapping from TeleoR programs to interpreted systems, and

building a compiler which performs this translation.

Acknowledgements

I would like to first thank my supervisor, Prof. Alessio Lomuscio for his technical and mental support

throughout the project.

I would also like to thank my second marker, Dr. Krysia Broda for her enthusiasm, and Peter Robinson

for having kindly assisted me with understanding TeleoR.

I wish to take this opportunity to thank everybody who supported me throughout these four rough

years at Imperial. It is impossible to make a full list of people who encouraged me when I was deprived

of confidence. However my special thanks goes to:

• Dr. David Ham, the best personal tutor one could ever wish for,

• Davide Cultrera, a family away from home,

• Yujun Tan, a miracle who manages to put up with me, and

• my family back in Japan, for their unconditional love.

Contents

Abstract 3

Acknowledgements 5

1 Introduction 2

1.1 Objectives . 3

1.2 Challenges . 3

1.3 Contributions . 4

2 Background 5

2.1 TeleoR . 5

2.1.1 Basic Components in TeleoR . 8

2.1.2 Type Definitions . 12

2.1.3 Qulog Type Declarations . 13

2.1.4 Correctness of a Teleo-reactive Program . 14

2.1.5 Operational Semantics of Standard TeleoR . 14

2.1.6 TeleoR Single Task Evaluation Algorithm . 18

2.2 MCMAS . 22

2.2.1 Model Checking . 22

2.2.2 Kripke Model . 22

7

8 CONTENTS

2.2.3 Interpreted System . 23

2.2.4 Ordered Binary Decision Diagram . 23

2.2.5 Specification Languages . 26

2.2.6 Computational Tree Logic . 27

2.2.7 ISPL Syntax . 28

2.3 Related Works . 32

3 MAS models for Single Bound Programs 33

3.1 Turing Completeness of TeleoR . 34

3.2 Definition of a Single Bound Program . 35

3.3 Single Bound Programs as Transition system P . 37

3.3.1 Functions defining BeliefStore Updates . 37

3.3.2 Modification to Evaluation States . 37

3.3.3 Transition System . 39

3.4 Single Bound Program P as Interpreted System ISP 42

3.4.1 Local States of the Environment Agent . 42

3.4.2 Local States of the Agent . 42

3.4.3 Actions of the Environment Agent . 43

3.4.4 Actions of the Agent . 43

3.4.5 Local Protocol Function of the Environment Agent 43

3.4.6 Local Protocol Function of the Agent . 43

3.4.7 Local Evolution Function of the Environment Agent 43

3.4.8 Local Evolution Function of the Agent . 43

3.4.9 Initial States . 44

3.5 Correctness of the Mapping . 44

CONTENTS 9

3.5.1 Valuation Function . 44

3.5.2 Bisimulation . 46

3.5.3 Proof . 46

3.6 Summary . 48

4 Specifying a Reasonable Environment 49

4.1 What Could We Know About The Environment? . 49

4.1.1 Percept Handlers . 50

4.1.2 Attached Qulog Action . 50

4.2 Environment Configuration . 51

4.2.1 Wish List . 51

4.2.2 Limitation of Specification Languages . 52

4.2.3 Formal Definition of Environment Configuration 53

4.2.4 Semantics of Environment Configuration on ISP 54

4.3 Summary . 57

5 Implementation 58

5.1 Java . 58

5.2 ANTLR . 58

5.3 Other Input Files . 60

5.3.1 Starting Task Information . 60

5.3.2 Environment Configuration . 60

5.4 Collecting the Type Information . 61

5.4.1 Type Definition . 61

5.4.2 Type Declaration . 63

10 CONTENTS

5.5 TeleoR Procedures as Protocol Rules . 63

5.5.1 Notation . 64

5.5.2 Condition to Fire a TeleoR Rule as ISPL . 65

5.5.3 Protocol Generation Algorithm . 69

5.6 Translating Environment Configuration into ISPL . 70

5.6.1 Evolution Rules . 70

5.6.2 Initial States Condition . 73

5.6.3 Fairness Conditions . 73

5.7 TeleoR Program as ISPL . 73

5.7.1 Example TeleoR Program . 74

5.7.2 Action . 74

5.7.3 Local States . 75

5.7.4 Protocol . 76

5.7.5 Environment . 76

5.7.6 Evolution . 77

5.7.7 Evaluation . 78

5.7.8 Initial States . 79

5.7.9 Fairness . 80

6 Evaluation 81

6.1 Object Grabbing Agent . 81

6.1.1 TeleoR program . 82

6.1.2 Compiled ISPL with Non-deterministic Environment 82

6.1.3 Environment Configuration . 86

6.1.4 Compiled ISPL with Configuration . 86

6.2 Bottle Collecting Agent . 89

6.2.1 TeleoR Program . 89

6.2.2 Environment Configuration . 90

6.3 Tower Building Agent . 92

6.3.1 TR Program . 92

6.3.2 Environment Configuration . 93

6.3.3 Debugging the TeleoR program . 94

6.4 Performance . 97

6.5 User Experience . 98

6.6 Summary . 98

7 Conclusion 100

7.1 Summary of Work . 100

7.2 Future Work . 100

Bibliography 101

11

12

List of Figures

2.1 Two tower architecture of TeleoR agent. 7

2.2 TeleoR Single Task Evaluation Algorithm . 19

2.3 BDT for x ∨ y. 24

2.4 BDT for x ∨ y simplified by rule (1). 24

2.5 BDD of (x ∨ y) ∧ z further simplified using rule (2). 25

2.6 BDD of x ∨ y further simplified with rule (3). 25

2.7 An OBDD representing (x1 ∨ x2) ∧ x3 with the ordering [x1, x2, x3]. 26

4.1 Example transition system. 53

5.1 Example declaration. 60

5.2 Example environment configuration. 61

5.3 Example type declaration. 62

5.4 Dependency graph of types in Figure 5.3. 62

5.5 Spinning Agent. 74

5.6 Environment Configuration for Spinning Agent. 74

5.7 Expected output of the concrete implementation of toMCMASProtocol(spin, 1). . . . 76

5.8 Expected evolution of Agent 0 in ISPL for the Spinning Agent without the environment
configuration. 78

1

Chapter 1

Introduction

Autonomous agents are agents that can make decisions on their own, about their action, without
interaction from other systems. Examples can be easily found in science fantasy movies amongst
which, the most famous would be the charming, C-3P0 from Star Wars. Although our technology is
not quite at the stage where such sophisticated robots can be realised, work on autonomous agents
continues to be an active area of research.

A Teleo-reactive program is a formalism which specifies autonomous agents using a set of rules,
first presented by Nils Nilsson[1]. These rules have a form of implication, where a condition on
perceptual inputs and data is at the head, and an action is at the body. For instance, a rule such as
low battery ∼> recharge specifies that the agent should go and charge itself when its battery is low.
To react to the dynamically changing environment, a program continuously reevaluates the triggering
conditions and the rule of the highest priority whose condition is satisfied, gets applied.

In general, it is a keen interest of developers to verify that a program achieves what they intended it
to achieve. Safety-critical systems are more and more ubiquitous in our life, and they are dangerously
more complex. In fact, there have been many unfortunate incidents triggered by a bug in software,
some of which costed human lives[2]. However crucial, it is time-consuming for a human to reason
about or test programs, and as we all know too well, it is almost impossible to be completely thorough
with a complex system.

Teleo-reactive programs greatly benefit from verification for many reasons. For starters, being an
autonomous agent, it might be deployed in an unsupervised and remote environment. It is hard to
thoroughly reason about teleo-reactive programs that are deployed in a dynamic environment where
little can be assumed[1]. Moreover to add to the complexity, agents could be specified so that a
multitude of them collaboratively try to attain a goal[3]. Despite this, there has been almost no work
done in verification of teleo-reactive programs.

We wanted to approach this problem using formal methods, which use symbolic structuring and formal
logic. Formal methods are increasingly popular both in industry and in academia as it is guaranteed to
be correct and complete, if used appropriately. One of the popular formal methods is model checking.
Model checking involves translating a given system into a model and a given property that needs to
be proven on the system, into a formula. Once translated, the next step is to check that that formula
is true when evaluated on the model.

This project presents a novel mechanism to automatically verify teleo-reactive programs. It is a com-
piler, TRTIS, which takes a teleo-reactive program and outputs a model which can be automatically
verified by a model checker. Specifically, we look at programs defined in TeleoR, a teleo-reactive pro-
gramming language developed by Clark and Robinson[3]. For model checking to potentially support

2

1.1. Objectives 3

multi-agent scenarios in the future, we use MCMAS, a model checker that is specialised in verification
of multi-agent systems.

1.1 Objectives

The goal of this project is to develop a mechanism to automatically verify a teleo-reactive program
using a model checker. It demonstrates the versatility of model checking as a means to verify a pro-
gram, especially because teleo-reactive programming is completely different from other programming
paradigms. Our objectives to achieve this goal are the following:

1. Research teleo-reactive programs.
The first objective of this project is to explore teleo-reactive programming and its modern
implementation, TeleoR. We do this to have a context needed to understand what the properties
of interest would be, and consider the potential difficulties in its verification. This was necessary
to formulate a more concrete scope of the project.

2. Formulate the mapping from TeleoR programs to an interpreted system.
To use a model checker to verify a system, we need to represent it as a model that the checker
can run on. As we wanted to use MCMAS, which requires the system to be expressed as an
interpreted system, we had to come up with a mapping from TeleoR program to interpreted
system.

3. Devise a compiler which translates TeleoR programs into ISPL
Our aim is to automatically verify a teleo-reactive program. MCMAS takes an interpreted system
specified in ISPL and automatically verifies a set of given properties. Therefore what we were
left to automate, is the process of describing a TeleoR program in ISPL, thus decided to write
a compiler.

1.2 Challenges

This project was challenging for various reasons:

• Almost no previous work in verification of teleo-reactive programs.
Though teleo-reactive program has been studied by many[4], there has not been much work in
verification of teleo-reactive programs. This meant that there was no resource that we could
directly refer to. This made finding a good starting point incredibly difficult when scoping the
project.

• Not much formal source available.
In order to express a system as a formal model, it is critical to know how exactly the system
behaves. Unfortunately, except for a subset, we did not have a formal description of how TeleoR
programs are executed until the very end of the project, which limited what could be accomlished.

• Young yet complex enough language without many references.
TeleoR was first presented in 2014[5]. It is a very young language with many features to enable
a great expressivity to the developers of robotic agents. Unfortunately, not many examples or
documentations are available, which made it hard to understand even the most basic things,
such as how to launch an agent or how percepts are communicated.

4 Chapter 1. Introduction

• Different temporal semantics.
The action of TeleoR agent is durative, meaning that it lasts over a period of time. This
implies that the temporal semantics of the agent must be continuous and can not be expressed
by an interpreted system, which assumes a discrete state transition. We realised that by only
considering which action is chosen at a given time we can reason about the system with a discrete
state transition. However we did spend much time to make this shift and convince ourselves
that it was the right thing to do.

• Unspecified environment.
In TeleoR program, we know how the agent behaves given what the agent knows about the
environment. However we do not know how the environment changes, therefore we do not know
how the knowledge of the agent changes. Without such information, we doubted whether it is
possible at all to prove an interesting property of the agent. For example, how could we ever
say that the agent reaches to a point A, if the environment could possibly be such that it always
moves the agent back to where it started? This is overcome by allowing the user to input the
assumption of the environment, as described in Chapter 4.

1.3 Contributions

We specified and implemented a compiler which translates TeleoR program into ISPL, which can then
be fed to MCMAS. This is the first work done in automated verification of a teleo-reactive programs
using a model checker, and we produced the following:

• Identifying non-trivial problems in applying model checking to TeleoR programs.
Sometimes identifying the problems is harder than actually solving them. While researching
TeleoR and determining the subset of TeleoR programs to verify, we recognised some non-trivial
problems associated with applying model checking to verify a TeleoR program. We hope that
by stating them, more work may be done in order to overcome them in the future.

• Mapping from a subset of TeleoR programs to an interpreted system.
We describe one verifiable subset of TeleoR programs as an interpreted system. We also present
the transition system which represents a subset of TeleoR program. We then mathematically
prove that the interpreted system is equivalent to this transition system.

• Methodology of automatic verification of a TeleoR program.
This project establishes a methodology of automatically verifying a TeleoR program; which is
to define TeleoR program as a formal model, on which a model checker can be used, and devise
a compiler which can automatically produce the specification of the model.

• Algorithms to translate TeleoR program into an interpreted system.
We came up with an algorithm to translate components of TeleoR program into components of
interpreted system. This may be beneficial to those who want to translate TeleoR programs into
a formal model in general.

• TRTIS - TeleoR To ISPL compiler
We specified and implemented TRTIS, a compiler which takes a TeleoR program and the as-
sumption on the environment, and returns an ISPL file. As we see in Chapter 6, it can be used
not only to verify programs, but also to debug them. Though admittedly the constraint on the
input TeleoR program is fairly strong, we show that it does work with some programs, and that
this is an effective methodology.

Chapter 2

Background

2.1 TeleoR

What are teleo-reactive programs?

The teleo-reactive program is a formalism for specifying the behaviour of autonomous agents. It was
first presented by Nilsson together with TR language for its development in 1994[1]. Prefix “teleo”
originates from a word “end” in Ancient Greek, and used in English as “end, purpose, or goal”.
Together with the word “reactive”, it describes the core property of teleo-reactive program; it is a
goal-directed program that continuously monitors the dynamic environment and reacts to it using its
robotic resources.
The change in the environment is not entirely under the agent’s control. It may be caused by other
entities such as human, and it could be in favour of the agent’s goal or otherwise. The teleo-reactive
agents need to react to such a change quickly, by robustly recovering from the setback and oppor-
tunistically taking advantage of the favourable change by skipping some actions.[3]
Teleo-reactive agents may collaborate together to achieve a shared goal. Let us define agent to be
an entity whose behaviour is specified by a single teleo-reactive program. Agents communicate each
other via messaging and influence each other’s action. These multiple agents may belong to one phys-
ical robot, to multiple robots or both. Conversely, a single agent may work towards multiple goals,
alternating from a task to another. Possible teleo-reactive robots may be:

• A drone, running one agent, that patrols over multiple blocks, one after the another, and reports
any abnormality.

• An automated production process involving several independently usable controllable devices
such as presses and robot arms. Each device is controlled by one agent, and sensor inputs are
independent of the devices. They can collaborate in the means of messaging[6].

• An ambient intelligence consists of multiple nodes, each of them possibly running multiple
agents, communicating with each other. This can be used for monitoring and controlling the
environments[7].

Note that teleo-reactive program concerns how an agent reason about the environment and decides
its next action. It assumes the mechanism of collecting the sensor input and interacting with the
environment.

5

6 Chapter 2. Background

Disambiguation

Note the following differences:

• Teleo-reactive program is a formalisation for specifying an autonomous agent presented by
Nilsson[1].

• TeleoR program is a program written in TeleoR, a teleo-reactive programming language presented
by Clark and Robinson[3].

• TR program is a program written in TR, a teleo-reactive programming language presented by
Nilsson[1].

Overview of TeleoR

TeleoR is a teleo-reactive programming language developed by Clark and Robinson[3]. Note that
TeleoR and TR are two different teleo-reactive programming languages. TeleoR, similarly to TR
language, specifies the decision-making logic of the agent using a set of TeleoR rules. These rules take
the form of:

condition -> action

For instance, if we want to make the agent pick up a block when it sees one. Such a behaviour can be
specified with a TeleoR rule as following:

see(block) -> pick_up

In TeleoR, the condition of the rules are checked against the deductive system called BeliefStore.
BeliefStore contains facts about the environment, and inference rules to reason about more complex
concepts. BeliefStore is defined using a logic programming language called QuLog. These two
languages used to write a TeleoR program is much interwound with each other, for conciseness,
when we discuss “TeleoR” we often mean “TeleoR and Qulog”. In the next subsection we see how
components specified in two languages interact.
Clark et al.[6] lists few ways in which TeleoR extends TR language:

• Concurrent execution of primitive actions.

• The optional attaching of a BeliefStore update, a communication by means of messages, or a
call to a Qulog behavioural program to any action rule.

• While, until and combined while/until rules that change the normal conditions under which
other action rules of a procedure call can be fired, when one of these rules has been fired.

• Timed action sequences allowing cyclic execution of a sequence of time limited durative actions,
including procedure calls.

• Wait/repeat actions allowing the re-starting of the primitive actions of a fired rule a small number
of times at specified intervals when there has not been the expected observable result.

2.1. TeleoR 7

In this project, we specifically look at TeleoR program and not other teleo-reactive programming lan-
guages.

Architecture

Figure 2.1: Two tower architecture of TeleoR agent.

What is described in a TeleoR program can be categorised into two components:

• BeliefStore
BeliefStore represents the knowledge of the agent. It contains inference rules and fixed facts
defined specified in TeleoR program using Qulog. They can be thought as what the agent knows
about the world in general. Dynamic facts on the other hand are facts about the environment
that the agent is situated in, which are frequently updated. Using this knowledge, the agent is
able to reason about the surroundings.

8 Chapter 2. Background

• TeleoR task
TeleoR task specifies the decision-making logic of the agent. The task is defined with TeleoR
rules, which are evaluated against the knowledge of the agent, i.e. BeliefStore, and determines
which action is chosen.

There are three kinds of threads which all together make up of an agent:

• Percepts handler thread
This thread takes incoming percepts delivered from the sensors via Pedro, inter-agent and inter-
process communication server, and atomically updates the dynamic facts in the BeliefStore
accordingly.

• Message handler thread
This thread takes delivered from the sensors via Pedro and atomically updates the dynamic facts
in the BeliefStore accordingly.

• Evaluator thread
This thread computes which action should be taken, by evaluating the TeleoR rules in the
TeleoR task and querying the triggering conditions to the BeliefStore. It runs after each atomic
update of the BeliefStore, so the agent reacts to a change in the environment and is executing
the appropriate action at all times. The precise algorithm of how the thread determines which
TeleoR rules are to fire is described later.

Note that there can be multiple threads of each category per agent. For instance, an agent could be
executing multiple tasks in parallel, each of them having its own evaluator thread.

2.1.1 Basic Components in TeleoR

We had an overview on how a given TeleoR program is run. In this subsection, we introduce how
components in TeleoR program may be defined. First we introduce some terminology often used
in logic programming languages, including Qulog. For each component of TeleoR program, we first
introduce the syntax, and present its semantics through examples.

Glossary of Terms

We introduce some terminologies used to describe TeleoR.

• Anonymous variable
Anonymous variables are never bound to a value, and used to mean “any term”. For instance,
query foo() would succeed as long as foo with any value hold, and not foo() would only
succeed if foo does not hold with any value.

• Ground term
Ground terms are terms without any variable. Similarly, a term is ground if it does not contain
any variable.

• Template term
Template terms are terms which may contain variables[6].

2.1. TeleoR 9

• Binding
Binding is a set of mapping from a variable to a value. In this report, we use θ to denote a
binding.

• Instantiate
One may instantiate a term using a binding by substituting the variable with a value that the
variable is mapped to.

Relations

Relations are used in many things we described so far. For instance, in TeleoR dynamic facts are fully
ground relational term. Inference rules are a relation definition for more complex concepts, in terms
of other relations.
The syntax to define a relation in EBNF grammar is the follows:

relation_def = head "::" cond ("&" cond)* "<=" body ("&" body)*

This represents that, if all cond holds, head holds with values specified in body if not ground.
Relation can be seen as a Boolean function, which returns true if it does not fail infinitely and false
otherwise (negation as failure) if all arguments are ground.
Example would be:

ancestor(Ans, Des) :: ancestor(Ans, X) & ancestor(X, Des) <=
ancestor(Parent, Child) :: parent_of(Parent, Child) <=

According to this definition, ancestor(alice, bob) holds if alice is a parent of bob, or there
is a descendant of alice that is an ancestor of bob. In the context of teleo-reactive program, if
BeliefStore contains the fact that alice is a parent of bob or the fact that a descendant of alice
is an ancestor of bob, then the fact ancestor(alice, bob) is in BeliefStore. Note that in Qulog
variables (Ans, Des...) are capitalised and constants (ancestor, alice...) are not.
If some of the arguments are not ground (i.e. variables are passed instead), relation works almost
as a function returning multiple values; it “returns value” by instantiating the variables with values
specified in Body. For example, a relation doubleTheLarger takes two ground integers and instantiate
the third non-ground variable to be double the larger given integers can be defined as:

doubleTheLarger(X, Y, Double) :: X >= Y <= Double = 2 * X
doubleTheLarger(X, Y, Double) :: X < Y <= Double = 2 * Y

With this declaration, doubleTheLarger(5, 2, X) will be caught by the first rule as 5 is larger
than 2, and X is instantiated by 10.

In order for a relation to be instantiated as an dynamic fact in the BeliefStore, it needs to be declared
as either percept or belief. This can be done as follows:

percept_decl = "percept" name ":" args_type (, name ":" args)*
belief_decl = "belief" name ":" args_type (, name ":" args)*
args_type = "(" type* ")"

The role of percept and belief are very similar in a sense that they are both facts that com-
poses BeliefStore. In fact, a TeleoR developer, Peter Robinson, told us that they decided to remove
distinction between these two, and it is left up to the programmers to treat these dynamic facts.

10 Chapter 2. Background

Functions

The following EBNF grammar defines the syntax of the function definition in Qulog:

function_def = function_name "::" predicate ("&" predicate)* "->" expression

The return value of function is what expression evaluates to, satisfying all predicate. For
example, a function that calculates the absolute value of a function would be:

abs(N) :: N >= 0 -> N
abs(N) :: N <= 0 -> 0 - N

Qulog Actions

The syntax to define a new Qulog action is by the following EBNF grammar:

action_def = head "::" predicate ("&" predicate)* "∼>>" (action_body;)*

The semantics of action definitions is the same as for relation definitions. The difference is that at
least one action body is an action which has a side effect such as sending a message, starting an
agent, forking a new evaluator thread or updating the BeliefStore[8]. For instance, Qulog action can
be used to define how the messages from other agents are handled. The following example that Clark
et al. presented in[6] shows an example of how one may define handle message .

handle_message_(rem(colour(Th,C)),Nm@Host)::thing(Th)&col(C) ∼>>
remember colour(Th,C);
remembered(colour(Th,C)) to Nm@Host

handle_message_(unrem(colour(Th,C)),Nm@Host)::thing(Th)&col(C) ∼>>
forget colour(Th,C);
forgotten(colour(Th,C)) to messages:Nm@Host

handle_message_(_,_) % Ignore all other messages

This agent remembers the colour of an object specified in the message of the format rem(colour(Th,
C)), forgets if the message is in the format unremcolour(Th, C) and ignore all the other mes-
sages. As this behaviour is not default, an action handle message should be defined. Note that
remember/forget are built-in actions for manipulating the BeliefStore, and remembered/forgotten
are user-defined actions to send an acknowledgement to the sender.

TeleoR Actions

TeleoR actions are to be differentiated from Qulog actions. While Qulog are “relations with side
effects”, TeleoR actions are what we most likely associate with actions of robots. Note that in this
report, “action” or “primitive action” typically refers to a TeleoR action, not a Qulog action.
There are two kinds of actions:

• Durative actions
Durative actions are actions that continue until stopped and which may be modifiable whilst
executing[6]. For instance, “turning to a certain direction at certain speed” would be more
appropriate as durative action.

2.1. TeleoR 11

• Discrete actions
Discrete actions are those which can not be stopped before they naturally terminate after a short
time, and all the other actions will be ignored during their execution[6]. For example, “closing
the gripper” might be more appropriate as a discrete action, if the gripper do not terminate
before it is completely closed.

In the program, the signature of each TeleoR action should be listed under either durative or
discrete action, like so:

durative_decl = "durative" name ":" args_type (, name ":" args_type)*
discrete_decl = "discrete" name ":" args_type (, name ":" args_type)*
args_type = "(" type* ")"

TeleoR Rules

TeleoR rules take the form of:

teleor_rule = condition "->" action

The most general form of condition is[8]:

condition = guard "while" while_cond "min" while_duration
"until" until_cond "min" until_duration

guard, while cond and until cond is a conjunction of predicates which gets queried to BeliefStore.
while duration and until duration are an arithmetic term.
Corresponding action takes place if querying guard succeeds, or both of the following holds:

• while cond holds or while duration has not expired.

• until cond holds or until duration has not expired.

Normally once guard is achieved, the agent tries to take TeleoR rules that are listed higher than the
current TeleoR rule. until is used to allow an action to over-achieve the guard by preventing earlier
TeleoR rules to be fired[5]. Dual of while does something opposite by preventing later rules from
firing by executing the action even if the guard does not hold any more[5].

action can be:

• primitive action+
A single or a set of durative or discrete actions, which are executed concurrently.

• A call to a TeleoR procedure (c.f. Section 2.1.1)

• (primitive action "for" duration)+
A sequence of primitive actions, whose durations are specified.

• primitive action "wait" duration ˆ repeats
Repeated action with interval specified as duration as many as repeats times.

These actions may have a Qulog action attached using ++ operator. This action could be, for instance,
sending messages, updating the BeliefStore or forking a thread.

12 Chapter 2. Background

Procedures

Procedures are defined as a sequence of TeleoR rules, whose syntax is:

procedure =
name ":" args_type "∼>"
name "(" vars ")" "{"

teleor_rule+
"}"

args_type = "(" type* ")"
vars = variable*

Rules that are higher up in the procedure take higher precedence. When the evaluator thread deter-
mines on which TeleoR rule is to be applied, it first checks the condition of the TeleoR rule at the top
of the procedure, and only if it does not hold, the condition of the second TeleoR rule gets checked,
and so on.
Procedures can be seen as subtasks of the procedure that calls them. The subtask represented by the
procedure is considered to be “done” if the first rule fires. That is, the goal of a procedure P is often
the partially instantiated guard of its first rule. Otherwise, letting its parent procedure be P ′, the
goal of P could be the partially instantiated guard of the rule before the rule that fired in P ′ which
called P [6].
For instance, a procedure for a robot to clean up the room could be:

cleanUpRoom(room)∼>
cleanUpRoom(Room) {

clean(Room) -> ()
dirty(Room) -> do_cleaning(Room)

}

Clearly, the goal of this procedure is to have the given room to be clean, which is the guard of the
first rule.
Procedures allow a teleo-reactive program to use recursion, as a call to a procedure can be in the
right-hand side of the TeleoR rules. However it is not common and almost always has a small depth
bound[6].

2.1.2 Type Definitions

TeleoR is a typed language; procedure, relation, action, and function need to have its type signature
declared. In this section of the program, a developer can define their own types, on top of the following
built-in types. The syntax for declaring a new type is defined with the following EBNF grammar:

type_def = type_head "::=" type_expression

A type can take a type parameter to represent generic. For instance, a tuple of a value of the same
type can be represented as:

tuple(T) ::= t(T, T)

A type can be recursively defined too, like so:

2.1. TeleoR 13

myNat := zero || succ(myNat)

2.1.3 Qulog Type Declarations

Each relation, action, and function have to have their type declared. This was an important update
from TR, and it is there to guarantee that all TeleoR guard evaluations are generated correctly[6].
The syntax to do so is:

type_decl = name ":" type

The type of the function that returns the absolute function of the number given as an argument
presented in Section 2.1.1 should be declared as:

abs : num -> num

In a type of relations and action, specifying which arguments need to be ground upon calling them is
done using moded types. There are four moded types, which are the following:

• "!" type
When the relation is called the supplied argument must be ground and of type[8].

• "?" type
When the relation is called, the supplied argument must either be ground and of type or will
be ground to a term of type by the call[8].

• type"?"
When the relation is called, the supplied argument must either be ground and of type or, if
ground by the call, will be ground to a term of type[8].

• "??"type
When they relation is called, the supplied argument, if ground, must be of type and the call
will not further instantiate the argument[8].

For instance, relation doubleTheLarger presented in Section 2.1.1 should have its type declared
as:

doubleTheLarger : (!int, !int, ?int) <=

This means that the first two integer arguments should be ground and the third integer can be either
ground or a variable, in which case it will be instantiate. Therefore the valid call for example would
be:

doubleTheLarger(1, 2, 4) % succeeds
doubleTheLarger(1, 2, 3) % fails
doubleTheLarger(1, 2, X) % succeeds and X is instantiated with 4

where as the following would be invalid:

doubleTheLarger(X, 2, 4)
doubleTheLarger(1, X, 3)

14 Chapter 2. Background

Moded types are used similarly in the types of actions. For instance, handle message presented in
Section 2.1.1 is typed to:

handle_message_ : (term?, process_handle) ∼>>

where term is a most general built-in type and process handle is a type for the process from which
the message come from[6].

2.1.4 Correctness of a Teleo-reactive Program

In order for a teleo-reactive program to be partially correct, each procedure should satisfy the regression
property. That is, a rule should be such that its action cause an earlier rule to fire, and the action
of the first rule is so that it does not cause its condition to stop holding. In other words, after firing
of each rule the program is able to make a meaningful progress to the final goal of the procedure,
as the firing of the first rule is the goal of the procedure. This regression property represents the
goal-directedness of teleo-reactive programs.
In addition to the regression property, if all the procedures satisfy the completeness property, the
program is totally correct. A procedure is complete if there is always a rule that fires. This is true if
and only if the disjunction of the guards of all the rules always hold[3].

2.1.5 Operational Semantics of Standard TeleoR

In this subsection, we see the operational semantics of Standard TeleoR, defined by Clark and
Robinson[6]. Standard TeleoR assumes that there is only one evaluator thread, and the TeleoR rules
are without while/until rules. Note that a bold symbol indicates a term which is partially instantiated.

Notation

The following is a notation that is used in the operational semantics.

• BST `f Cθ
This reads as “the ground instance Cθ is inferable from BST , and θ is the first returned binding”.
In TeleoR, it is possible to to define fact ordering[6]. This is to express the preference on a
certain facts over the other, as some change in the BeliefStore may be more important than the
other. Therefore the order of the bindings returned are deterministic given BS and a partially
instantiated C.

• PR
The partially ground Rth rule of a procedure P for a call P .

• Pi,Ri

The partially ground Rith rule of a procedure P for a call Pi.

• eguard(PR)
eK where PR = K ∼> A where the variables that does not appear in A are existentially
quantified.

• ≡
This reads as “is defined to be”.

2.1. TeleoR 15

• ≺
This reads as “immediately precedes” and is a binary relation defined over two successive
BeliefStore states.

• no higher fireable rule(P , R, T)
This reads as “no rule before R in the sequence of rules of call P has an inferable guard at time
T . Formally:

no higher fireable rule(P , R, T) ≡
∀R′[1 ≤ R′ < R→ ¬∃θ′BST ` eguard(PR′)θ′]

• fire(P , R, θ, TF)
This reads as “R th rule of a procedure P for a call P fires at TF ”.
Formally,

fire(P , R, θ, TF) ≡ BSTF `f eKθ ∧ no higher fireable rule(P , R, T)

where PR = K ∼> A.

• continue(P , R, θ, TF , TC)
This reads as “R th rule of a procedure P for a call P has continued to fire from TF to TF ”.
Formally,

continue(P , R, θ, TF , TC) ≡ ∀T [TF ≤ T ≤ TC → fire(P , R, θ, T)]

where PR = K ∼> A.

• refire(P , R, θ, ψ, TF , TRF))
This reads as “R th rule of a procedure P for a call P that has continued from TF until just
before TRF , and it re-fired at TRF with new binding ψ”.
Formally,

refire(P , R, θ, ψ, TF , TRF)) ≡
∀T [TF ≤ T < TRF → fire(P , R, θ, T)] ∧ fire(P , R, ψ, TRF) ∧ θ 6= φ

where PR = K ∼> A.

• rules(P)
This denotes a sequence of partially instantiated rules of P .

• primActs(Acts)
This reads a “Acts is a set of primitive actions.”

• procCall(Acts)
This reads as “Acts is a procedure call.

• dur(a)
This reads as “a is a durative action”.

• dis(a)
This reads as “a is a discrete action”.

• Si
If S is a sequence s1, ..., sn, Si is si.

16 Chapter 2. Background

• Si : j
If S is a sequence s1, ..., sn, Si : j is the sub-sequence si, ..., sj .

• contRI((P , R, θ, TF), TC)
Equivalent to continue(P , R, θ, TF , TC).

• fireRI((P , R, θ, TF), TF)
Equivalent to fire(P , R, θ, TF).

Evaluation State

The evaluation state at time T for a TeleoR procedure call SP , which began at ST ≤ T , is a tuple:

(T,MaxDp,SP , ST, FrdRules, LActs,Acts, CActs)

Informally, each element may be described as following:

• MaxDp
The maximum recursion depth allowed.

• FrdRules
This is a sequence of tuples:

(P1, R1, θ1, T1), ..., (Pn, Rn, θn, Tn)

where (Px, Rx, θx, Tx) represents a rule Pi,Ri fired for the first time at Tx with the binding θx.

• LActs
Acts from the previous evaluation states.

• Acts
The action that is chosen in this evaluation state.
Acts can be either:

– A sequence of primitive actions

– A procedure call.

– md fail
This indicates an error state due to a procedure calls which exceeds the maximum depth.

– nfr fail
This indicates that the agent is in an error state as it does not have a fireable rule.

• CActs
A set of control action that is computed from LActs and Acts.

The evaluation state must satisfy the following conditions, where ∀i : 1 ≤ i ≤ n Pi,Ri
= (Ki ∼> Ai),

2.1. TeleoR 17

∀i : 1 ≤ i ≤ n Aiθi = Pi+1 and P1 = SP .

∀i : 1 ≤ i ≤ n fire(Pi, Ri, θi, Ti)

∀i : 1 ≤ i ≤ n procCall(Pi+1) ∧ Ti ≤ Ti+1 ≤ T

[Acts = Anθn ∧ primActs(Acts) ∧ 0 < n ≤MaxDp]

∨ [Acts = md fail ∧ procCall(Anθn) ∧ n = MaxDp]

∨ [Acts = nfr fail

∧ ∃P [¬∃(R, θ)fire(P , R, θ, T)

∧ [MaxDp > n > 0 ∧ P = Anθn ∧ procCall(P)]

∨ [n = 0 ∧ P = SP]]

The control actions can be characterised by the following conditions.

CActs = update(LActs,Acts)∧
∃ET [[[n > 0 ∧ ET = Tn] ∨ [n = 0 ∧ ET = T]] ∧ execAt(CActs,ET)]

[Acts = nfr fail ∨Acts = md fail]→ update(LActs,Acts) = update(LActs, {})

[Acts 6= nfr fail ∧Acts 6= md fail]→
update(LActs,Acts) =

{stop(a)|dur(a) ∧ a ∈ LActs ∧ ¬∃a′[a′ ∈ Acts ∧mod of(a′, a)]} ∪
{start(a)|dur(a) ∧ a ∈ Acts ∧ ¬∃a′[a′ ∈ LActs ∧mod of(a′, a)]} ∪
{mod(a′, a)|dur(a) ∧ a ∈ Acts ∧ a′ ∈ LActs ∧mod of(a′, a) ∧ a 6= a′} ∪
{do(a)|dis(a) ∧ a ∈ Acts}

Initial Evaluation State

There are three possible initial evaluation states.
If there is a fireable rule for SP using BSST and the procedure calls does not exceed MaxDp, the
initial evaluation state is:

(T,MaxDp,SP , ST, (SP , R1, θ1, ST), ..., (Pns, Rns, θns, ST)), {}, ActsST , update({}, ActsST))

If there is a fireable rule for SP and the procedure calls exceeds MaxDp, the initial evaluation state
is an error state:

(T,MaxDp,SP , ST, (SP , R1, θ1, ST), ..., (PMaxDp, RMaxDp, θMaxDp, ST)), {},md fail, {}))

If there is no fireable rule for SP , the initial evaluation state is an error state:

(T,MaxDp,SP , ST, {}, {}, nfr fail, {}))

18 Chapter 2. Background

State Transition

When the evaluator is notified of a modification to the BeliefStore, it it is not in a non-error state, we
have the transition rule:

BST ≺ BSNT →
(T,MaxDp, SP, ST, FrdRules, LActs,Acts, CActs) 7−→

(NT,MaxDp, SP, ST,NFrdRules,Acts,NActs,NCActs)

∧
n = #NFrdRules ≥ 0

∧
∃j : 0 ≤ j ≤ n
[NFrdRules0: j = FrdRules0: j ∧

(j = n ∨
¬contRI(FrdRulesj+1, NT) ∧
∀ : 0 ≤ i ≤ j, contRI(FrdRulesi, NT) ∧
∀ : j + 1 ≤ i ≤ n, fireRI(NFrdRulesi, NT)]

2.1.6 TeleoR Single Task Evaluation Algorithm

The following diagram shows the algorithm[5] executed by the evaluator thread compute the action
to be taken by the agent. This algorithm works out the chain of procedure calls and list of primitive
action for the agent to be executed, and continues to update them.

2.1. TeleoR 19

Figure 2.2: TeleoR Single Task Evaluation Algorithm

20 Chapter 2. Background

Let us see how the first batch of FrdRules are worked out, given the example following.

obj ::= treasure | rubbish
dir ::= left | right | centre

durative : move, turn(dir)

discrete : release, grab

percept :
% See obj in direction dir in the distance of nat.
see(obj, nat, dir),
% The robot grip is closed.
holding

collect_treasure : () ∼>
collect_treasure {

% The goal of the task is to put the treasure in storage.
in(storage, treasure) ∼> ()

% If the goal is not achieved, get the treasure.
true ∼> get(treasure)

}

get : (obj) ∼>
get (Obj) {

% The goal of this subtask is to have and see it
% in the centre with no distance.
holding & see(Obj, 0, centre) ∼> ()

% If the robot does not have its grip closed,
% but Obj is just there, grab it.
not holding & see(Obj, 0, centre) ∼> grab

% If the grip is open and Obj is not there, reach to it.
not holding ∼> reach(Obj)

% If the grip is closed and Obj is not there, open the grip.
true ∼> release

}

reach : (obj) ∼>
reach (Obj) {

% The goal of this subtask is to have Obj near and in front.
see(Obj, 0, centre) ∼> ()

% If the object is in front, shorten the distance.
see(Obj, _, centre) ∼> move

% If the object is not seen in front, turn to that direction.
see(Obj, _, Dir) ∼> turn(Dir)

2.1. TeleoR 21

% When the object is not in the sight, wonder around.
true ∼> turn(left) for 5 ; move for 5

}

Initialising FrdRules

It starts at state 1, where the fields are initialised. LActs is the list of non-procedure action to be
executed. FrdRules are the chain of rules that get fired as it is the rule of the highest priority in the
called procedure whose guard is inferable. FrdRules consists of quadruples, each of them representing
a chosen rule. The first element is the call depth, the second is the name of the procedure to which
the rule belongs, the third is the index of the rule in the procedure and the forth is the substitution
applied to the guard. Index is the depth of the current procedure calls. Call is the procedure which
the evaluator is currently evaluating. θ represents the substitution applied to the guard of the rule
inspected.

Let TaskCall to be collect treasure and the set of the dynamic fact to be {see(treasure,
5, centre)}. After initialisation, LActs and FrdRules are empty lists, Call is collect treasure
and Index is 1.

Inspecting collect treasure, the second rule is chosen, as in(storage, treasure) is not part
of BeliefStore. As the guard of the second rule does not have a variable to be instantiated, θ is {}.
The current index is 1, therefore we add (1, collect treasure, 2, {}) to FrdRules.

The action of the second rule of collect treasure is a call of a procedure get with treasure
as its argument, therefore we increment Index and set Call to get and θ is {Obj = treasure}.
Going through the rules in get, the third rule of get is taken, as neither holding is not inferable
nor see(treasure, 0, centre). (2, get, 3, {Obj = treasure}) is added to FrdRules. As the
action of the second rule is a call to a procedure, we increment Index.

We repeat a similar computation. The action of the second rule of get is a call of a procedure reach
with the argument Obj = treasure. Therefore we increment Index and set Call to reach. The second
rule of get is chosen as we have see(treasure, 5, centre) holds. θ is still Obj = treasure.
We add (3, reach, 2, {Obj = treasure}) to FrdRules. As the action of the first rule is a primitive
action, we can say that the whole chain is worked out. LActs is instantiated to be {move}.

Updating FrdRules

After the BeliefStore is updated, we need to check whether all the rules in FrdRule continue to fire.
Let us say that the robot got close to the treasure and BeliefStore is updated to{see(treasure,
0, centre)}.
Before blindly going through all the rules, one can see whether the change in the BeliefStore may
falsify the continue condition of any of the rule that is currently fired. This is done by maintaining
a list of dependant predicates. Dependant predicates indicate which predicate and whether addition
or deletion of the predicate may cause a given rule to stop firing. To log that addition of a predicate
may falsify the continue condition, we add ++pred and --pred for deletion to the list. For instance,
FrdRules contain the second rule of collect treasure:

collect_treasure {
in(storage, treasure) ∼> ();
% The goal of the task is to put the treasure in storage.

22 Chapter 2. Background

true ∼> get(treasure);
% If the goal is not achieved, get the treasure.

}

We record ++in as the second rule can be falsified by addition of a predicate in. This list can be
computed while FrdRules are computed and updated. Given the current FrdRules:

{(1, collect treasure, 2, {}), (2, get, 3, {Obj = treasure}), (3, reach, 2, {Obj = treasure})}
the list of dependent predicates would be:

[++in, ++holding, ++see, --see] .
In this case a predicate see was removed and added, therefore we have the necessary condition for
going through FrdRules. For each element, (Depth, Proc, Rule, Subst), we check Proc and see which
rule should be taken and which substitution was applied to its guard. If its index corresponds to Rule
and substitution to Subst, we carry on with the check. Otherwise the rest of FrdRules is discarded,
and the rest is calculated in a similar way as FrdRules was initialised.

Take (1, collect treasure, 2, {}). Looking at collect treasure, the index of the rule taken
is 2 and the substitution is still {}.
Take (2, get, 3, {Obj = treasure}). With the current BeliefStore, {see(treasure, 0, centre)},
the index of the chosen rule is 2. As this does not correspond to 3, the rest of the FrdRules is discarded,
and (2, get, 3, {Obj = treasure}) is updated to (2, get, 2, {Obj = treasure}). As the action
of the second rule is grab, LActs is updated to {grab}.

2.2 MCMAS

2.2.1 Model Checking

The goal of system verification is to prove that a system S satisfies a specification P. Model checking
is a technique to automatically check whether a model satisfies a logical formula. Model checking can
be applied to system verification by:

• Translating S into a model M

• Translating P into a formula ψ

• Applying model checking algorithms to prove M � ψ

Given that M includes all the possible computation in S and ψ faithfully represents P , M � ψ if and
only if M satisfies P . This means that model checking provides an automatic way of verifying that a
system satisfies a specification.

Model checking approaches can characterised by how the model and the specification can be described.
In MCMAS, a user defines the system as an interpreted system, which is an extended Kripke Model.
The interpreted system gets translated into a model called ordered binary decision diagram (OBDD)
and supports a range of temporal and epistemic specification languages. We look at these in the
following sections.

2.2.2 Kripke Model

Definition 2.1 (Kripke Model). A Kripke model is a structure represented by (S,R, V), where:

2.2. MCMAS 23

• S is a finite set of states.

• R ⊆ P(S × S) is a relation that represents the transition.

• V is a function V : AP → P(S), where AP is a set of propositional atoms.

2.2.3 Interpreted System

An interpreted system is an extension of Kripke model, used to reason about multi-agent system[9].

Definition 2.2 (Interpreted System). Let A = 1, ...n be a set of agents, E an environment agent,
Agt = {E} is the set of all possible agents and AP a set of propositional atoms. Then an interpreted
system is a tuple 〈(Li, Acti, Pi, ti)i∈Agt, I, V 〉 where

• Li is a set of all possible private local states, where Li × LE is a set of all possible local states.
Global state is defined as a tuple of the local states of all agents and the environment. Therefore
all possible global states S is L1 × ...× Ln × LE.

• Acti is a set of all possible local actions. Global action Act is defined as a tuple of the lo-
cal action of all the agents and the environment. Therefore all possible global action Act is
Act1 × ...×Actn ×ActE.

• Pi : Li × LE → P(Acti) is a protocol function which takes a local state and returns the set of
local actions available at that state.

• τi : Li × LE × Act1 × ... × Actn × ActE → Li is an evolution function which takes a local state
and the local actions of all the agent in Agt, and returns the “next” local state.

• I ∈ S is a set of initial global states.

• V : AP → P(S) is a valuation function which maps propositional atoms to the set of global
states where it holds.

2.2.4 Ordered Binary Decision Diagram

Ordered Binary Decision Diagram, OBDD, is the model an interpreted system is translated into and
a model checking algorithm is applied to in MCMAS. It is a representation of propositional formulas
indicating the value of the formula given an interpretation. OBDD is a special instance of Binary
Decision Diagram, which is an optimised Binary Decision Tree for the purpose. Let us look at these
models in order.

Binary Decision Tree

Binary Decision Tree, BDT, can be set to represent a propositional formula. Each path in such BDT
represent one interpretation, and the leaf node indicate the value of the formula. The propositional
variables are represented by the non-leaf nodes and two branches represent two values of the variable.
Suppose we want to represent x ∨ y. Then one possible BDT is:

24 Chapter 2. Background

Figure 2.3: BDT for x ∨ y.

Binary Decision Diagram

Binary Decision Diagram, BDD is a more efficient representation of a propositional formula, obtained
from BDT by removing unnecessary nodes and branches.
Bryant[10] presents the following three rules of doing so without altering the semantics:

1. Remove duplicate terminals.
Eliminate all but one leaf node with a given label and redirect all arcs into the eliminated leaf
nodes to the remaining one.

Figure 2.4: BDT for x ∨ y simplified by rule (1).

2. Remove duplicate non-leaf nodes.
If non-leaf node m and n are labelled with the same variable and has the branches of the same
type are both going into the same nodes, then eliminate one of the two nodes and redirect all
incoming branch to the other node. For instance, BDT of (x ∨ y) ∧ z, simplified using rule (1),
can be simplified as follows using rule (2).

2.2. MCMAS 25

Figure 2.5: BDD of (x ∨ y) ∧ z further simplified using rule (2).

3. Remove redundant test.
If non-leaf node n has both branches going into the same node m, then eliminate n and redirect
all incoming arcs of n to m. For instance, BDD of x∨y simplified with rule (1) can be simplified
with this rule as follows:

Figure 2.6: BDD of x ∨ y further simplified with rule (3).

A BDD is said to be reduced if none of the above rules can be applied any more. For instance, the
BDD on the right in Figure 2.6 is reduced.

26 Chapter 2. Background

Ordered Binary Decision Diagram

According to the ordering of the variable, there can be multiple BDD. Ordered Binary Decision
Diagram is a BDD with a fixed order of the variable. Huth and Ryan[11] define OBDD as “Let
[x1, ..., xn] be an ordered list of variables without duplications and let B be a BDD all of whose
variables occur somewhere in the list. We say that B has the ordering [x1, ..., xn] if all variable labels
of B occur in that list and, for every occurrence of xi followed by xj along any path in B, we have
i < j.”
According to this definition, one possible OBDD representing a formula (x1∨x2)∧x3 with the ordering
[x1, x2, x3] is:

Figure 2.7: An OBDD representing (x1 ∨ x2) ∧ x3 with the ordering [x1, x2, x3].

For a given Boolean formula and an ordering of the variables, there is one canonical reduced structure
of OBDD.

2.2.5 Specification Languages

Many model checkers are built to prove a temporal specification[12]. This is because the application is
often verification of a single program or of a piece of hardware. In applications of multi-agent system,
temporal specifications might not be enough.
Consider verifying a protocol for two agents to communicate a message on a faulty line. A property
of interest might be such as “if the receiver receives the message, and the sender knows that he did”.
To specify such a property, temporal modalities are not a natural choice, if not insufficient. For this
reason, MCMAS supports the automatic verification of specifications that use epistemic modalities,
as well as correctness, and fairness modalities[13].
This section describes temporal and epistemic operators which can be used to define a formula in
MCMAS. Correctness and fairness modalities will be described along with the grammar of MCMAS.

2.2. MCMAS 27

2.2.6 Computational Tree Logic

Computational Tree Logic, CTL is a sub-class of temporal logic, a modal logic that reasons about
time. It allows one to reason about all possible paths initiated from a state.
The syntax is the following:

φ ::= p | ¬φ | φ ∧ φ | EXφ | EGφ | E(φUφ)
The semantics on an interpreted system IS and one of its states s is:

• (IS, s) � φ
s ∈ V (s)

• (IS, s) � EXφ
There exists a path s1, s2, s3, ... such that s1 = s and (IS, s) � φ.

• (IS, s) � EGφ
There exists a path s1, s2, s3, ... such that s1 = s and (IS, si) � φ for all i ≥ 1

• (IS, s) � E(φUψ)
There exists a path s1, s2, s3, ... such that s1 = s and there exists a i ≥ 1 such that (IS, si) � ψ
and (IS, sj) � φ for all 1 ≤ j ≤ i.

For each of them a dual operator can be defined:

• (IS, s) � AXφ
For all paths s1, s2, s3, ... such that s1 = s, (IS, s) � φ holds.

• (IS, s) � AGφ
For all paths s1, s2, s3, ... such that s1 = s, (IS, si) � φ holds for all i ≥ 1

• (IS, s) � A(φUψ)
For all paths s1, s2, s3, ... such that s1 = s, there exists a i ≥ 1 such that (M, si) � ψ and
(IS, sj) � φ for all 1 ≤ j ≤ i.

Alternating-Time Temporal Logic

CTL allow specifying a property of closed system well, providing a way to specify existential and
universal satisfaction. A closed system is a system whose behaviour is completely determined by the
state of the system[14].
In a open system on the other hand, we have the behaviour of environment as an additional factor in the
choice that system makes. Alternating-time temporal logic, ATL offers a way to write an alternating
specification. Alternating specification is a statement about existence of the strategy, which decides
which action is to be performed in a given situation, of an agent so that the satisfaction of a property
is guaranteed no matter how the environment behaves[15].
The syntax is the following:

φ ::= p | ¬φ | φ ∧ φ | 〈〈Γ〉〉Xφ | 〈〈Γ〉〉Gφ | 〈〈Γ〉〉(φUφ)
The informal reading of each operator is:

• 〈〈Γ〉〉Xφ
The agents in Γ have a joint strategy such that φ becomes true at the next state no matter what
other agents do.

28 Chapter 2. Background

• 〈〈Γ〉〉Gφ
The agents in Γ have a joint strategy such that φ is forever true no matter what other agents
do.

• 〈〈Γ〉〉(φUψ)
The agents in Γ have a joint strategy such that ψ becomes true at some point and φ is true until
them, no matter what other agents do.

Though originally the interpretation of ATL was defined on concurrent game structures[15], it can
also be interpreted on interpreted systems[16].

Epistemic Operators

In MCMAS, a formula can be prefixed with epistemic operators to express a property on agent’s, or
a group of agents’, knowledge.
Let s ∼i s′ to hold if and only if local state of agent i in s and s′ are the same. Then, the semantics
of such an operator can be expressed on an interpreted system IS and a state s:

• (IS, s) � Kiφ
For all s′ such that s ∼i s′ we have that (IS, s′) � φ.

• (IS, s) � GKΓφ
For all s′ such that s(∪i∈Γ ∼i)s′ we have that (IS, s′) � φ.

• (IS, s) � DKΓφ
For all s′ such that s(∩i∈Γ ∼i)s′ we have that (IS, s′) � φ.

• (IS, s) � GCKΓφ
For all s′ such that s(∪+

i∈Γ ∼i)s′ we have that (IS, s′) � φ.

Deontic Operator

The deontic operator Oi can be prefixed to a formula, so it reads “in all the possible correctly func-
tioning alternatives of agent, the following formula holds”[17]. Prohibited local states are marked as
red state.
Extend IS by including red states RSi for each agent, and call it DS. Define a binary relation Ri over
a tuple of global states, so that Ri(s, s

′) holds if and only if local state of i in s′ is not in RSi. Then:

• (DS, s) � φ
Equivalent to (IS, s) � φ

• (DS, s) � Oiφ
For all s′, Ri(s, s

′)→ (DS, s′) � φ

2.2.7 ISPL Syntax

In MCMAS, ISPL is used to define the interpreted system and the formula. According to the
documentation[18], the general structure of ISPL is the following:

2.2. MCMAS 29

Semantics = MultiAssignment (MA) | SingleAssignment (SA)
Agent Environment
Obsvars:
...
end Obsvars
Vars:
...
end Vars
RedStates:
...
end RedStates
Actions = {...};
Protocol:
...
end Protocol
Evolution:
...
end Evolution
end Agent
Agent AgentName
Lobsvars = {...};
Vars:
...
end Vars
RedStates:
...
end RedStates
Actions = {...};
Protocol:
...
end Protocol
Evolution:
...
end Evolution
end Agent
Evaluation
...
end Evaluation
InitStates
...
end InitStates
Groups
...
end Groups
Fairness
...
end Fairness
Formulae
...
end Formulae

30 Chapter 2. Background

Variables

Variables of an agent make up its local state, and they are declared in Vars. It can be Boolean,
enumeration and bounded integer[18], which can respectively be declared as:

x : boolean; -- x can be either true or false
y : {one, two}; -- y can be either one or two
z : 1 .. 5; -- z can be an integer from 1 to 5

Local Observable Variables

Local observable variables of an agent are variables of the environment that the agent can observe.
The syntax is:

"Lobsvars" "=" "{" var+ "}"";"

Red States

Red states of an agent is specified as a Boolean formula over its local variable and local observable
variables if the agent is normal. The operator that can be used is and, or, ! and ->. The states that
satisfy the formula are red state, and a green state otherwise. It can be defined for instance:

x = false and Environment.envV1 % where envV1 is a part of Lobsvars

Actions

Actions is defined as enumeration, like so:

"Actions" "=" {" action+ "}"";"

Protocol

A protocol is defined as list of protocol rules:

condition ":" action_set";"

When the condition is satisfied, one action in the corresponding set of actions is non-deterministically
chosen. If multiple conditions are true, then all the actions are considered possible by MCMAS.[18]
Keyword Other can be used to specify the case where none of the condition is hold, like so:

Other : {a1, a2};

2.2. MCMAS 31

Evolution

An evolution is defined as set of evolution rules in the form of:

assignment "if" condition ";"

There are two ways of interpreting an evolution:

• Multi-assignment
In one evolution rule, one can assign values to multiple variables. If there are multiple rules
whose condition holds, only one rule is non-deterministically chosen.

• Single assignment
In one evolution rule, the assignment of only one variable can be specified. Each rules are
grouped according to the variable it updates, and one rule from each group whose condition
holds is non-deterministically applied.

Evaluation

An evaluation defines an atom in terms of the variable of agents, which can be used in the specification
formulae. The format is:

atom "if" condition";"

atom is evaluated to be true at a state if condition holds, and false otherwise.

Initial States

Initial States are represented as Boolean formulae over variables of the agents that initial sates must
satisfy.

Groups

Groups are used in formulae which uses the concept of multiple agents, such as Gamma in EGammaφ.
It can be define as a set, like so:

g1 = {agent1, Environment};

Fairness

A Boolean formula using and, or, ! and -> can be defined as fairness property. The specification is
checked only on the path the fairness conditions hold infinitely often. It can be used for instance to
express a property such as “The faulty line would not drop all the messages forever” in the example
of two agents to communicate over a faulty line.

32 Chapter 2. Background

Specification Formulae

Specification Formulae are defined under Formulae, using atoms defined in Evaluattion, and, or,
!, -> and operators introduced in the previous section. That is[18]:

formula = "(" formula ")"
| formula "and" formula
| formula "or" formula
| "!" formula
| formula "->" formula
| "AG" formula
| "EG" formula
| "AX" formula
| "EX" formula
| "AF" formula
| "EF" formula
| "A" "(" formula "U" formula ")"
| "E" "(" formula "U" formula ")"
| "K" "(" agent_name "," formula ")"
| "GK" "(" group_name "," formula ")"
| "GCK" "(" group_name "," formula ")"
| "DK" "(" group_name "," formula ")"
| "O" "(" agent_name "," formula ")"
| "<" group_name ">" "X" formula
| "<" group_name ">" "F" formula
| "<" group_name ">" "G" formula
| "<" group_name ">" "(" formula "U" formula ")"
| Atom

2.3 Related Works

There has not been much work done in verification of teleo-reactive programs. The only work we
are aware of is that of Dongol et al.[19]. In this work, they have developed a real-time logic that is
based on Duration Calculus to formulate the semantics of teleo-reactive programs. They present a
Prolog program which generates the rely condition that the environment needs to satisfy to guarantee
the regression property of the program. This is a partially mechanised method, as the user needs to
manually prove this condition.

The compilation methodology we use in this project is presented in the work of Boureanu et.al.[20],
applied to verify cryptographic protocols specified in a specification language CAPSL. In this work,
they define a translation from CAPSL models into interpreted system, and rewrite CAPSL goals as
modal specification. Then they present a compiler which implements this translation, so that the
compiler takes CAPSL and outputs ISPL.

Chapter 3

MAS models for Single Bound
Programs

Our aim is to provide a mechanism to automatically verify teleo-reactive programs using a model
checker. We are aware of no similar work done previously and in fact, to our knowledge there is only
one work in verification of teleo-reactive program in general, which was discussed in the background.

Specifically, in this project we explore how we may verify a TeleoR program using MCMAS. We do
this by devising a compiler that compiles a TeleoR program into an ISPL file. The output ISPL
defines an interpreted system which models all possible computation done by the agent running the
input TeleoR program. In this chapter, we formally specify this interpreted system which we wish to
represent in target ISPL.

We first define Single Bound Programs, a class of TeleoR programs which we wish to deal with in
this project. The whole set of TeleoR programs can not be realistically verified for three reasons.
Firstly, TeleoR programs are Turing complete, and thus algorithmic verification is undecidable; we
define a Turing machine in TeleoR to demonstrate this. Secondly TeleoR is a rather large language,
which contains a full blown logic programming language Qulog, and provides mechanisms to support
developers implementing rich semantics which is not only difficult to support, but also leads to state
explosion. Lastly, the formal operational semantics which covers the whole TeleoR was not available,
and the ambiguity is fatal in model checking.

We then present a transition system which represents all the possible computation of the agent. When
we say “the computation of the agent, we refer to the computation done by the evaluator thread,
presented as the operational semantics in Section 2.1.5. Unfortunately, we can not directly use these
operational semantics as the transition system, as it has some unnecessary components, and more
importantly, it only specifies what the valid states and transitions are, and not which transitions are
actually possible.

This is because the actual transitions are dictated by how the BeliefStore is updated. In this chapter,
we assume for two functions, init and next. They together, represent all possible sequences of the
BeliefStore updates that may occur in the environment the agent is placed in. We discuss how these
two functions are actually specified in the next chapter.

We then formally specify the interpreted system that the target ISPL should represent, given the
transition system defined from a Single Bound Program, init and next.

Finally, we mathematically show that this mapping between the transition system to the interpreted
system is correct; that is, a specification holds for the Single Bound Program if and only if it holds

33

34 Chapter 3. MAS models for Single Bound Programs

for the interpreted system.

3.1 Turing Completeness of TeleoR

Algorithmic verification of a program written in a Turing-complete language is undecidable, directly
following the Halting Problem. TeleoR is, unfortunately, Turing-complete because its subset, Qulog is.
Below is a Turing machine emulated in Qulog, based on a Turing machine emulated in Prolog[21].

action ::= left | stay | right
state ::= normal_state || accept
% add dummy qf1, as Qulog does not allow enumeration of one value
accept ::= qf | qf1

turing : (![symbol], ?[symbol]) <=
turing(Tape0, Tape) <=

perform(q0, [], Ls, Tape0, Rs) &
reverse(Ls, Ls1) &
Tape = Ls1 <> Rs.

perform : (!state, ![symbol], ?[symbol], ![symbol], ?[symbol]) <=
perform(qf, Ls, Ls, Rs, Rs).
perform(Q0, Ls0, Ls, Rs0, Rs) <=

get_symbol(Rs0, Sym, RsRest)&
once(rule(Q0, Sym, Q1, NewSym, Action))&
make_action(Action, Ls0, Ls1, [NewSym|RsRest], Rs1)&
perform(Q1, Ls1, Ls, Rs1, Rs).

get_symbol : (![symbol], ?symbol, ?[symbol]) <=
get_symbol([], b, []).
get_symbol([Sym|Rs], Sym, Rs).

make_action : (!action, ![symbol], ?[symbol], ![symbol], ?[symbol]) <=
make_action(left, Ls0, Ls, Rs0, Rs) <= shift_left(Ls0, Ls, Rs0, Rs).
make_action(stay, Ls, Ls, Rs, Rs).
make_action(right, Ls0, [Sym|Ls0], [Sym|Rs], Rs).

shift_left : (![symbol], ?[symbol], ![symbol], ?[symbol]) <=
shift_left([], [], Rs0, [b|Rs0]).
shift_left([L|Ls], Ls, Rs, [L|Rs]).

rule : (!state, !symbol, ?state, ?symbol, ?action) <=

A specific Turing Machine can be configured by adding rule facts and setting symbol and normal state
appropriately. For instance, adding the following lines to the above code makes up a Turing Machine
that, given a sequence of “a” return a tape with one more “a” appended.

symbol ::= a | b
normal_state ::= q0 | q1

3.2. Definition of a Single Bound Program 35

rule(q0, a, q0, a, right).
rule(q0, b, qf, a, stay).

As the whole set of Qulog programs is not algorithmically verifiable, it was necessary to define a subset
on which model checking could be performed.

3.2 Definition of a Single Bound Program

In this section I list the constraints that a Single Bound Program, a verifiable subset of TeleoR
programs supported by the compiler, should satisfy. By doing so we introduce some non-trivial issues
in verifying a TeleoR program using a model checker and why they are non-trivial.

• Single thread and process.
The scenarios of multiple TeleoR agents by can be characterised by:

– A TeleoR program with multiple threads running separate tasks, synchronised on resources.

– Multiple processes each running a TeleoR program.

– Both of the above.

In order to use a model checker on a system, one needs to know its exact semantics. As the
formal semantics of how concurrent tasks run was not available until the very end of the project,
we were limited to the verification of a program with a single thread. With the formal semantics,
one may apply the exact same methodology and extend this project. We also left the verification
of multiple processes running a single thread as a future extension, discussed in Section 7.2.

• No TeleoR rule with while, until.
We did not have the formal semantics for while/until until the end of the project, and therefore
we had no choice not to avoid them. With the formal semantics, one may apply the exact same
methodology we show in this project.

• Arguments given to TeleoR procedures, functions, relations and actions must be
bound.
We say that a term is bound if there is only a finite possible groundings for it. Otherwise, a
term is unbound. For example, int or num are considered to be unbound, whereas the range of
integer or enumeration are considered bound.

abc ::= a | b | c % bound
123 ::= 1..3 % bound

Unbound terms are problematic in model checking, because they lead to an infinite set of states
or paths in the model that represents the program.

• No concept of time.
A TeleoR program can be defined using the time obtained from the system clock. For example,
a TeleoR rule below reads as: “if an agent sees something in a direction for at least 3 units of
time, it moves towards it for 5 units of time”.

36 Chapter 3. MAS models for Single Bound Programs

see(Dir, X) min 3 ∼> move(Dir) for 5

We considered encoding the time by representing a tick of the system clock as a possible state
transition which results in an increment of the integer variable that keeps track of the “current
time”. However this would have meant having to multiply the number of states by the upper
limits of the ticks, leading to state explosion.

• No TeleoR rules with ambiguity.
In TR language, a teleo-reactive language developed by Nilsson, it is ambiguous whether a rule
should be re-fired if another instance of its guard becomes the first inferable instance while the
old instance is still inferable[6]. Consider a TeleoR rule:

see(bottle, Col) ∼> approach(bottle, Col)

Let us say that see(bottle, green) was inferable, and the agent takes approach(bottle, green).
Then supposed that, with a sensor input, see(bottle, blue) is added. In TR, it is ambiguous
whether approach(bottle, green) should continue, or approach(bottle, blue) should start instead.
In TeleoR, there is an implicit ordering among the dynamic facts which are in the BeliefStore.
If see(bottles, blue) happened to come before see(bottle, green), the rule re-fires, and the agent
engages with approach(bottle, blue). Otherwise, it continues with approach(bottle, green, 1.5).
This meant that we need to consider all the orderings of the dynamic facts, at least among those
with the same identifiers. However we could easily guess that this would greatly increase the
number of states. Say we have 5 relations declared as percept or belief, and each of them have
10 possible instantiations. As the number of permutation of these facts is 10!5, there will be
6.2923832e + 32 states where all possible dynamic facts are in the BeliefStore. Clearly, even
the verification of a small program would be infeasible. That being the case, we decided that it
is better to avoid programs with such an ambiguity, where there are multiple instances of the
guard which lead to different instantiation of the action.

• No user-defined relation, function or action.
MCMAS and Qulog fraction of TeleoR are massively different languages and it is out of the
scope of this project to encode all features of a logic programming language into MCMAS.

Additionally, we have the following constraints. They are, admittedly, compared to other constraints,
more trivial to support. However they are not essential features, and we wanted to avoid an additional
complexity.

• No comparison of terms, unless they are numbers or equality and inequality.
Qulog defines the standard ordering between terms[8]. As it is fairly complex and did not seem
to be the case that it is used often, we solely supported arithmetic comparisons and equality
and inequality of two terms.

• No tuple types.
In Qulog, a data can be a tuple, and both the whole tuple and each of its elements may be
unified to one variable. For example, if foo is a relation which takes a tuple of integers, it is
possible for one variable to unify to its argument, and it is likewise for a tuple of variables.

3.3. Single Bound Programs as Transition system P . 37

percept foo : ((int, int))
foo(X) % unify the whole tuple to X
foo((Y, Z)) % unify each argument to Y and Z

We think that tuples are not as essential, as one could substitute them with a sequence of
elements.

3.3 Single Bound Programs as Transition system P .

In this section, we present a transition system which represents all the possible computation of the
evaluator thread of a Single Bound Program. In this system, the state transition occurs when the
BeliefStore is updated, and at each state of the program, the agent computes which action to take by
consulting the updated BeliefStore.
We do this by modifying the operational semantics of the Standard TeleoR program presented by
Clark and Robinson[6], which we saw in Section 2.1.5. We first refer to functions that we assume, init
and next, which we define the possible sequences of BeliefStore states. Then, we see how we modify
the evaluation state. Finally, we formally define the transition system P .

3.3.1 Functions defining BeliefStore Updates

The operational semantics of the Standard TeleoR program defines valid evaluation states of the
evaluator thread and how the valid transition may look like. This however is not sufficient to define
a transition system that we can verify, as it does not define which transitions actually happens. This
is because the transition is determined by how the BeliefStore is updated, thus how the environment
that the agent is placed behaves. To fill this gap, we assume that we have next which tells us how
the BeliefStore may be updated, given the current BeliefStore state. In the next chapter, we have a
further discussion on the exact definition of next. We also assume a function init, which returns all
possible BeliefStore states the agent may have at the start.

3.3.2 Modification to Evaluation States

We are defining a state in P by modifying the evaluation state in the operational semantics for the
Standard TeleoR program presented by Clark and Robinson[6] , which we saw in Section 2.1.5. The
modifications break down into three categories.

• Removing components that are used for executing the TeleoR program, but we would not be
interested in having a specification on.

• Removing components or simplify the components that are not needed to represent the Single
Bound Program.
Though the operational semantics itself does not cover the whole set of TeleoR programs, it
serves as a base on which an extended operational semantics can be defined. As a result of that
and additional assumptions made for Single Bound Programs, there are components that are
not necessary, or overly complex, which we can remove or simplify.

• Adding components necessary to define fairness conditions.
In the next chapter, we discuss how we may check the specification against an environment

38 Chapter 3. MAS models for Single Bound Programs

which is “cooperative” enough that certain actions eventually succeed. We do this by specifying
fairness conditions on the previous BeliefStore state and the action which was just taken. We
add these informations to the states.

For the first category, we remove control actions. For the second category, we remove time stamps,
and simplify BeliefStore states. For the third category, we add the previous BeliefStore state, and the
action that was just taken.

Control Actions

Control actions define the operations done to the action of the agent that is currently undertaken.
For example if the agent is executing a durative action move, and the agent chooses another action
due to a BeliefStore update. Then one of the control actions will be to stop executing move. Since
our concern is on which action is chosen at each evaluation, we do not have to keep track of control
actions.

Time stamps

In the operational semantics of standard TeleoR programs, the list of fired rules FrdRules is a list of
tuples:

(P1, R1, θ1T1), (P2, R2, θ2, T2)...(Pn, Rn, θnTn)
Ti denotes the time when the Ri rule of the TeleoR procedure Pi has fired.
We want to remove this as Single Bound Programs do not use this. In TeleoR programs, Ti is used
for two purposes. One is to support a durative action that lasts for a certain amount of time. For
instance, the following rule reads as “If an agent sees something in its left, it moves towards left for 5
units of time”.

see(left, _) ∼> move(left) for 5

Since Single Bound Programs are assumed not to have a rule which uses the concept of time, the time
stamp is not necessary for specifying the actions.
The other is to see which rule has been continuing to fire over a period of time. This is to evaluate
rules that contain while, until or min. For instance, the following rule reads as “If the agent sees
something on the left, it turns for at least 5 units of time, until it sees it in the centre”.

see(left, X) until see(centre, X) min 5∼> turn(left)

This rule fires from the moment see(left,) is inferable, until see(centre,) is true even
if see(left,) is not inferable any more, at least for 5 units of time. Consequently, the state
transition semantics needs to remember from which time stamp this rule has been firing.

All in all, for a Single Bound Program, neither the evaluation of the condition nor the assignment
of the action requires the time stamps. Thus we can drop the time stamps from the operational
semantics.

3.3. Single Bound Programs as Transition system P . 39

BeliefStore

Recall that in TeleoR the terms in BeliefStore are ordered. The BeliefStore state BS is used to define
fire has `f operator defined, where

BS `f Cθ

holds if and only if the ground instance Cθ is inferable from BS, and θ the first inferable binding.
That is, Cθ is the “first” grounding among all the groundings of C which is in BS. This matters as,
for a rule C ∼> A, different bindings of C might instantiate A differently.
Recall that we assumed that none of the rules in Single Bound Programs are ambiguous. That is, there
are no rules such that there are multiple instances of the guard which lead to different instantiation
of the action. In other words, for any rule C ∼> A, all the bindings for C should bind the variables
in A to the same values.
This means that the BeliefStore for a Single Bound Program does not need the notion of ordering
among the terms. Besides, as Single Bound Program do not have user-defined relations, the BeliefStore
consists only of dynamic facts.
Therefore a BeliefStore state for a Single Bound Program only needs to know which dynamic fact
currently holds. Let us define a signature for these simplified BeliefStore states:

Definition 3.1 (BSC). BSC is a signature which denotes BeliefStore states, which consist only of
dynamic facts, which are not ordered.

Definition 3.2 (`).

∀BS ∈ BSC BS ` Cθ

holds if and only if the ground instance Cθ is inferable from BS.

Previous BeliefStore States and Action Just Taken

As we mentioned before, later we want to specify fairness conditions to rule out unreasonable behaviour
of the environment. To do so, we need the previous BeliefStore state and the action which was just
taken as a part of evaluation state. We justify this in the next chapter.

3.3.3 Transition System

Now we define a transition system P = (SP , IP , RP), where SP is a set of states, IP is a set of initial
states, and RP is a relation which defines the transition, for a Single Bound Program whose starting
task is SP and the maximum call depth is MaxDp ∈ ZZ.
First, let us define a auxiliary function:

Definition 3.3. For a sequence s, length(s) is a function takes a sequence and returns its length.

Let us define a set of possible states SP as follows:

Definition 3.4 (A set of possible states SP). A state in SP , a possible set of states of a transition
system which represents a Single Bound Program whose starting task SP and the maximum call depth
MaxDp ∈ ZZ is formalised as a tuple:

(BS,LBS,MaxDp, SP, FrdRules,Acts, LActs)

where

40 Chapter 3. MAS models for Single Bound Programs

• BS ∈ BSC is the current BeliefStore state

• LBS ∈ BSC is the previous BeliefStore state

• FrdRules is the sequence of n, 0 ≤ n ≤MaxDp tuples:

(P1, R1, θ1, BS), ..., (Pn, Rn, θn, BS)

where ∀i : 1 ≤ i ≤ n Pi is a partially instantiated procedure call, and ∀i : 1 ≤ i ≤ n Ri is an
integer.

• Acts is a set of primitive actions which is chosen according to BS, or an action to indicate an
error state. (i.e. nfr fail or md fail)

• LActs is a set of primitive actions which was chosen in the previous state

For the ease of notation, let us declare some “getter” functions:

Definition 3.5.

BS((BS,LBS,MaxDp, SP, FrdRules,Acts, LActs)) = BS

LBS((BS,LBS,MaxDp, SP, FrdRules,Acts, LActs)) = LBS

Acts((BS,LBS,MaxDp, SP, FrdRules,Acts, LActs)) = Acts

LActs((BS,LBS,MaxDp, SP, FrdRules,Acts, LActs)) = LActs

Definition 3.6 (fire). fire is a relation on a partially instantiated procedure call, integer, binding
and BSC , defined as:

fire(P , R, θ,BS) ≡ ∃θ′BS ` PRθ
′ ∧ θ ⊆ θ′ ∧ no higher fireable rule(P , R,BS)

where

no higher fireable rule(P , R,BS) ≡ ∀R′[1 ≤ R′ < R→6 ∃θBS ` PR′θ]

On SP , define an unary relation valid:

Definition 3.7 (valid). For a state
s = (BS,LBS,MaxDp, SP, FrdRules,Acts, LActs) ∈ SP , define a unary relation valid(s) which
holds if and only if the state satisfies the following conditions, where ∀i : 1 ≤ i ≤ n Pi,Ri

= (Ki ∼>
Ai), ∀i : 1 ≤ i ≤ n Aiθi = Pi+1 and P1 = SP .

∀i : 1 ≤ i ≤ n fire(Pi, Ri, θi, BS)

∀i : 1 ≤ i ≤ n procCall(Pi+1)

[Acts = Anθn ∧ primActs(Acts) ∧ 0 < n ≤MaxDp]

∨ [Acts = md fail ∧ procCall(An) ∧ n = MaxDp]

∨ [Acts = nfr fail

∧ ∃P [¬∃(R, θ)fire(P,R, θ,BS)

∧ [MaxDp > n > 0 ∧ P = Anθn ∧ procCall(P)]

∨ [n = 0 ∧ P = SP]]

3.3. Single Bound Programs as Transition system P . 41

The third condition is a disjunction of three terms, and each term characterises one kind of valid
evaluation state.
The first term represents the non-erroneous state. In this kind of state, a set of primitive actions is
successfully chosen, because the sequence of fireable rules given the BeliefStore state BS, is such that
the length does not exceed MaxDp, and the action of the last fired rule is a set of primitive action.
The second term represents an erroneous state due to a “call stack over flow”. In this state, the
sequence of fireable rules given the BeliefStore state BS has length MaxDp and the action of the last
fired rule is a procedure call.
The third term represents another erroneous state where there is a call to a procedure such that none
of the guard of its rules holds for BS.

We define RP as follows:

Definition 3.8 (State transition RP). A valid transition is defined with a relation RP defined on two
states s, s′ ∈ SP :

RP (s, s′) ⇐⇒ LBS(s′) = BS(s) ∧ LActs(s′) = Acts(s)

∧ Acts(s) 6= md fail ∧Acts(s) 6= nfr fail

∧ valid(s) ∧ valid(s′)

∧ BS′ ∈ next(BS)

Note that the erroneous states do not transition to any other state.

The initial states IP is defined as:

Definition 3.9 (Initial States IP).

IP = {(BSI , {},MaxDp,SP , F rdRulesI , ActsI , {})
|valid((BSI , {},MaxDp,SP , F rdRulesI , ActsI , {})), BSI ∈ init}

Now we defined the transition system P . For later purpose, we want to define a function that takes
a BeliefStore state, task call and the maximum call depth, and returns the action the agent chooses.
To do this, first let us show that it is possible to define such a function; that is, we want to show that
the action chosen and the rules fired by is dependent only on the current BeliefStore state, the task
call and the maximum call depth.

Remark. For an arbitrary state s ∈ SP , if we know its BeliefStore state BS = BS(s), there is only
one possible value for Acts(s) and a sequence rules that fires for BS(s), for a Single Bound Program
with the maximum call depth MaxDp and the starting procedure call SP .

Proof. (sketch)
Let s = (BS,LBS,MaxDp,SP , F rdRules,Acts, LActs),
s′ = (BS,LBS′,MaxDp,SP , F rdRules′, Acts′, LActs′).
Assume valid(s) and valid(s′).
Let n = length(FrdRules) and n′ = length(FrdRules′).
Let FrdRules = (P1, R1, θ1, BS)...(Pn, Rn, θn, BS) and FrdRules′ = (P ′

1, R
′
1, θ
′
1, BS)...(P ′

n, R
′
n, θ
′
n, BS).

Assume FrdRules 6= FrdRules′.
Then ∃i : 1 ≤ i ≤ min(n, n′) Ri 6= R′i ∧ Pi = P ′i or ∃i : 1 ≤ i ≤ min(n, n′) θi 6= θ′i ∧ Pi = P ′i ∧Ri = R′i.
Assume ∃i : 1 ≤ i ≤ min(n, n′) Ri 6= R′i. Assume Ri < R′i. Then fire(Pi, Ri, θi) contradicts with
no fireable rule(Pi, R

′
i, BS). By symmetry, we have that R′i < Ri, does not hold either. Therefore

42 Chapter 3. MAS models for Single Bound Programs

Ri = R′i and 6 ∃i : 1 ≤ i ≤ min(n, n′) Ri 6= R′i.
Assume ∃i : 1 ≤ i ≤ min(n, n′) θi 6= θ′i ∧ Pi = P ′i ∧Ri = R′i. Then there must be a rule where there is
a multiple bindings for the right hand side, given the bindings for the left hand side, which contradicts
with the assumption about Single Bound Programs. Therefore 6 ∃i : 1 ≤ i ≤ min(n, n′) θi 6= θ′i ∧ Pi =
P ′i ∧Ri = R′i

Therefore we have FrdRules = FrdRules′. Then as valid(s) and valid(s′), it follows that Acts =
Acts′.

As this remark holds, we can define the following function.

Definition 3.10 (action). action is a function which takes BS ∈ BSC , a partially ground procedure
call SP , a maximum call depth MaxDp, and returns Acts such that

∃LBS,FrdRules,LActs valid((BS,LBS,MaxDp, SP, FrdRules,Acts, LActs))

3.4 Single Bound Program P as Interpreted System ISP

We define the interpreted system, ISP for a transition system P defined with next and init, repre-
senting the Single Bound Program whose starting task is SP and the maximum call depth is MaxDp.

3.4.1 Local States of the Environment Agent

The local states of the environment agent LE is a tuple (BS,LBS,LActs), where BS,LBS ∈ BSC
and LActs is a set of primitive actions.
For Single Bound Program, we could have also put these information in the private local state of the
agent. However we thought it was better to put it in the local state of the environment agent, when
we considered extending the implementation to support the system with multiple agents.
The interpreted system which can be defined in ISPL is more powerful than the definition of the
interpreted system we use in this report, as one may define a fraction of local state of the environment
which can be seen by each agent, using local observable variables. Therefore putting more information
in the environment agent allows a higher flexibility, especially when the system with multiple agents
are considered. For example, we thought it might make sense that some information is coherent
between among multiple agents, such as the location of the object in the field. This can be achieved
by the agents observing the corresponding fraction of the local state of the environment agent.
We put LActs in the local state of the environment agent as well, as the action of an agent is visible
to all other agents, therefore it makes sense that the previous action is visible to other agents too.

3.4.2 Local States of the Agent

The private local state of the agent Lag is empty as there is nothing left in a state in P which we
could map to it. Therefore we have the local state of the agent to be ((BS,LBS,LActs), ()) where
(BS,LBS,LActs) is the local state of the environment agent.

3.4. Single Bound Program P as Interpreted System ISP 43

3.4.3 Actions of the Environment Agent

In P , there is nothing we could map to action of the environment agent. As a place-holder, let
ActE = {update} .

3.4.4 Actions of the Agent

The possible set actions of the agent Actag correspond to the possible values for the return value of
the protocol function of the agent, which is a set of ground primitive actions.

3.4.5 Local Protocol Function of the Environment Agent

The local protocol function of the environment agent PE takes a local state of the environment and
returns “update”, its only possible action. Formally, PE : LE → P(ActE) is defined as:

PE(s) = {update}

3.4.6 Local Protocol Function of the Agent

In P , there is an outgoing transition from an evaluation state if and only if it is not an erroneous
state. To reflect this, the local protocol function Pag of the agent is such that it takes a local state
of the agent ((BS,LBS,LActs), ()) and returns an empty set if BS characterises an erroneous state,
and returns the chosen sequence of primitive action otherwise. Formally, Pag : Lag × LE → P(Actag)
is defined as:

Pag(((BS,LBS,LActs), ())) =


{} if action(BS,SP ,MaxDp)

∈ {md fail, nfr fail}
{action(BS,SP ,MaxDp)} otherwise

3.4.7 Local Evolution Function of the Environment Agent

The local evolution function of the environment agent τE : LE × (ActE ×Actag)→ LE takes the local
state of the environment agent (BS,LBS,LActs) and the global action (a, update), and returns a set
of new local states (BS′, BS, a) where BS′ ∈ next(BS).

τE((BS,LBS,LActs), (a, update)) =

{(BS′, BS, a)|BS′ ∈ next(BS)}

3.4.8 Local Evolution Function of the Agent

The local evolution function of the agent τag : (LE × Lag)× (ActE ×Actag)→ Lag takes a local state
of the agent, ((BS,LBS,LActs), ()) and returns an empty private local state of the agent, ().

τag(s, a) = {()}

44 Chapter 3. MAS models for Single Bound Programs

3.4.9 Initial States

The set of initial global states I consists of ((BS, {}, {}), ()), where BS ∈ init.

Again, for the ease of notation later on, let us define some “getter” function for the global states of
this interpreted system.

Definition 3.11.

BS(((BS,LBS,LActs), ())) = BS

LBS(((BS,LBS,LActs), ())) = LBS

LActs(((BS,LBS,LActs), ())) = LActs

3.5 Correctness of the Mapping

In this section, we argue that the mapping from a Single Bound Program P to the interpreted system
ISP is correct. By correct, we mean that the validity of the modal specification evaluated at the initial
states of P is preserved in the initial states of ISP and vice versa.
We have not defined the class of specification we want to prove for P . We do this by defining the
valuation function on P and ISP for the propositional atoms that may appear in the specification.
The valuation function for a transition system is a function which takes a propositional atom and
returns the set of states in the system where the given atom holds.
We show that a modal specification evaluated at the initial states of P holds if and only if it holds
at the initial states of ISP by showing that there is a bisimulation between P and ISP . By finding
a bisimulation, we can claim that these two transition systems have exactly the same moves where
the given valuation function is concerned, therefore the validity of the modal specification is preserved.

3.5.1 Valuation Function

Propositional Atoms AP

The natural candidate for specifications which the TeleoR developer may be interested in would be:

• The agent never goes to an error state; that is there is no evaluation state reachable from the
initial state which chose nfr fail or md fail.

• The top-goal of the TeleoR program is achieved; that is, the condition of the top-goal evaluates
to true when evaluated against the BeliefStore state.

Therefore, we want to be able to have propositional atoms about the actions chosen at each evaluation
state, and which dynamic facts are in the BeliefStore.
We also want to have propositional atoms for the actions that were chosen in the previous state, and
which dynamic facts held in the previous state, to define fairness condition. Again, this is described
in Chapter 4. To define this set of propositional atoms, AP , let us define some terms:

Definition 3.12 (groundToAtom). groundToAtom is a bijective function which takes a ground term,
and returns a propositional atom.

3.5. Correctness of the Mapping 45

Definition 3.13 (groundToPreviousAtom). groundToPreviousAtom is a bijective function which
takes a ground term, and returns a propositional atom. We assume that the value it returns is never
returned by groundToAtom for any input.

Definition 3.14 (allGroundings). allGroundings is a function which takes the identifier of a relation
or a TeleoR action and returns all possible groundings.

Definition 3.15 (facts). facts is a set of the identifier of all the relations that are declared as a
percept or belief of the agent.

Definition 3.16 (actions). actions is a set of the identifier of all the actions that are declared as a
discrete or durative action of the agent.

Then AP contains the atoms below, and nothing else.

• groundToAtom(ground fact) ∪ groundToPreviousAtom(ground fact)
For all ground fact in allGroundings(fact) for all fact ∈ facts.

• groundToAtom(ground action) ∪ groundToPreviousAtom(ground action).
For all ground action in allGroundings(action) for all action ∈ actions.

• groundToAtom(md fail) ∪ groundToPreviousAtom(md fail)

• groundToAtom(nfr fail) ∪ groundToPreviousAtom(nfr fail)

Valuation Function of P

Let SP be the set of states in P . Then valuation function of P , VP ∈ AP → P(SP) is defined as
follows:

VISP
(p) =



{s|s ∈ SP BS(s) ` F} if ∃f ∈ facts,∃F ∈ allGroundings(f), p = groundToAtom(F)
{s|s ∈ SP LBS(s) ` F} if ∃f ∈ facts,∃F ∈ allGroundings(f),

p = groundToPreviousAtom(F)
{s|s ∈ SP A ∈ Acts(s)} if ∃a ∈ actions ∪ {md fail, nfr fail},

∃A ∈ allGroundings(a), p = groundToAtom(A)
{s|s ∈ SP A ∈ LActs(s)} if ∃a ∈ actions ∪ {md fail, nfr fail},

∃A ∈ allGroundings(a), p = groundPreviousToAtom(A)

Valuation Function of ISP

Let SISP
be the set of global states in ISP . Then valuation function of ISP , VISP

∈ AP → P(SISP
)

is defined as follows:

VP (p) =



{s|s ∈ SISP
BS(s) ` F} if ∃f ∈ facts,∃F ∈ allGroundings(f), p = groundToAtom(F)

{s|s ∈ SISP
LBS(s) ` F} if ∃f ∈ facts,∃F ∈ allGroundings(f),

p = groundToPreviousAtom(F)
{s|s ∈ SISP

A ∈ action(s)} if ∃a ∈ actions ∪ {md fail, nfr fail},
∃A ∈ allGroundings(a), p = groundToAtom(A)

{s|s ∈ SISP
A ∈ LActs(s)} if ∃a ∈ actions ∪ {md fail, nfr fail},

∃A ∈ allGroundings(a), p = groundPreviousToAtom(A)

46 Chapter 3. MAS models for Single Bound Programs

3.5.2 Bisimulation

Bisimulation on Kripke models can be defined as follows[22]:

Definition 3.17 (Bisimulation). Let M = (S,R, V) and M′ = (S′, R′, V ′) be Kripke models, where
V ∈ A→ P(S) and V ′ ∈ A→ P(S′) where A is a set of propositional atoms.
Let t ∈ S, t′ ∈ S′. Then, bisimulation between (S, t) and (S′, t′) as a binary relation B ⊆ S × S′ such
that:

• B(t, t′).

and for all u ∈ S and u′ ∈ S′ such that B(u, u′):

• For all p ∈ A, u ∈ V (p) ⇐⇒ s′ ∈ V ′(p).

• (forth) If v ∈ S and R(u, v), then there is v′ ∈ S′ with R′(u′, v′) and B(v, v′)

• (back) If v′ ∈ S′ and R′(u′, v′), then there is v ∈W with R(u, v) and B(v, v′).

A term “bisimilar” is defined as follows[22]:

Definition 3.18 (Bisimilar). (M, t) and (M′, t′) are bisimilar if there exists a bisimulation between
M, t and M′, t′.

We have the following theorem[22]:

Theorem 3.1 (Bisimulation invariance of modal formulae). Let (M, t) and (M′, t′) be bisimilar and
let F be any modal formula. Then M, t ` A ⇐⇒ M′, t′ ` A

3.5.3 Proof

We want to show that an arbitrary modal formula F is true at the initial states of a Single Bound
Program P if and only if it is true at the initial states ISP . We do this by first defining a Kripke
model for P and ISP , and finding a bisimulation which relates all the initial states of these Kripke
models to each other.

Let MP = (SP , RP , VP) where:

• SP is the set of all possible evaluation states of P

• RP is the transition relation of P

• VP is as previously defined in Section 3.5.1

Let MISP
= (SISP

, RISP
, VISP

) where:

• SISP
is the set of all possible global states in ISP .

• RISP
⊆ SISP

× SISP
and defined as

RISP
(s, s′) ⇐⇒ ∃a s′ ∈ τ(s, (a, update))

where τ is the global evolution function of ISP .

3.5. Correctness of the Mapping 47

• VISP
is as previously defined in Section 3.5.1

Now we show the following remark:

Remark. The following relation B is a bisimulation:

B(sP , sISP
) ⇐⇒ valid(sP) ∧BS(sp) = BS(sISP

) ∧ LBS(sp) = LBS(sISP
) ∧ LActs(sp) = LActs(sISP

)

Proof. We prove this by showing:

1. For an arbitrary sP ∈ SP and sISP
∈ SISP

where valid(sP), if B(sP , sISP
), then for all p ∈ AP ,

sP ∈ VP (p) ⇐⇒ sISP
∈ VISP

.

2. All initial states of P and ISP can be related with B.

3. Assuming that B(sP , sISP
), the following properties hold:

• For all p ∈ AP , sP ∈ VP (p) ⇐⇒ sISP
∈ VISP

(p).

• (forth) If s′P ∈ SP and RP (sP , s
′
P), then there is s′ISP

∈ S′ISP
with RISP

(sISP
, s′ISP

) and
B(s′P , s

′
ISP

)

• (back) If s′ISP
∈ S′ISP

and RISP
(sISP

, s′ISP
), then there is s′P ∈ SP with RP (sP , s

′
P) and

B(s′P , s
′
ISP

).

Remark 1
Take an arbitrary atom p ∈ AP We consider the four cases.
Assume there is F such that ∃f ∈ facts F ∈ allGroundings(f) p = groundToAtom(F). Then
VP (p) = {s|s ∈ SP BS(s) ` F} and VISP

(p) = {s|s ∈ SP BS(s) ` F}. As BS(sP) = BS(sISP
),

sP ∈ VP (p) ⇐⇒ sISP
∈ VISP

.

Assume there is F such that ∃f ∈ facts F ∈ allGroundings(f) p = groundToPreviousAtom(F).
Then VP (p) = {s|s ∈ SP LBS(s) ` F} and VISP

(p) = {s|s ∈ SP LBS(s) ` F}. As LBS(sP) =
LBS(sISP

), sP ∈ VP (p) ⇐⇒ sISP
∈ VISP

.

Assume there is A such that ∃a ∈ actions A ∈ allGroudings(a) p = groundToAtom(A). Then
VP (p) = {s|s ∈ SP A ∈ Acts(s)} and VISP

(p) = {s|s ∈ SP A ∈ action(s)}. By definition of action
and we have valid(sP), action(sISP

) = Acts(sP) if BS(sISP
) = BS(sP).

Assume there is A such that ∃a ∈ actions A ∈ allGroudings(a) p = groundToPreviousAtom(A).
Then VP (p) = {s|s ∈ SP A ∈ LActs(s)} and VISP

(p) = {s|s ∈ SP A ∈ LActs(s)}. As LBS(sP) =
LBS(sISP

), sP ∈ VP (p) ⇐⇒ sISP
∈ VISP

.

Remark 2
The initial states of P is defined as:

IP = {sP |sP ∈ SP , BS(sP) ∈ init
valid(sP), LBS(sP) = {}, LActs(sP) = {}}

The initial states of ISP is defined as:

I = {sISP
|sISP

∈ SISP
, BS(sISP

) ∈ init
LBS(sISP

) = {}, LActs(sISP
) = {}}

48 Chapter 3. MAS models for Single Bound Programs

Clearly, we can draw a relation B between all states in IP and I.

Remark 3 Take arbitrary sP ∈ SP and sISP
∈ SISP

and assume R(sP , sISP
).

From remark 1, if R(sP , sISP
), we have that for all p ∈ AP sP ∈ VP (p) ⇐⇒ VISP

(p).
By definition of action and we have valid(sP), action(sISP

) = Acts(sP) if BS(sISP
) = BS(sP). Let

a = Acts(sP) = action(sISP
).

If a ∈ md fail, nfr fail, neither sP or sISP
has an outgoing transition. Therefore forth and back

property trivially holds.
Otherwise, sP transits to:

NP = {s′P |s′P ∈ SP , BS(s′P) ∈ next(BS(sP)),

valid(s′P), LBS(s′P) = BS(sP), LActs(s′P) = a}

sISP
transits to:

NISP
= {s′ISP

|s′ISP
∈ S′ISP

, BS(s′ISP
) ∈ next(BS(sISP

)),

LBS(s′ISP
) = BS(sISP

), LActs(s′ISP
) = a}

Clearly, we can draw a relation B between all states in NP and NISP
. Therefore we have forth and

back property.

3.6 Summary

In this chapter we discussed what Single Bound Programs are and how the behaviour of the evaluator
thread can be defined as a transition system. We left out the definition of functions which defines
the sequence of the BeliefStore update. In the next chapter we discuss how they are defined. Then
we define an interpreted system which is equivalent to this transition system. We formally show their
equivalence by stating a bisimulation.

Chapter 4

Specifying a Reasonable Environment

In the previous chapter, we specified the interpreted system which represents all the possible computa-
tion of the agent running a Single Bound Program, given next and init. In this chapter, we formalise
these two functions, thus the set of all possible sequences of BeliefStore updates in the environment.

Preferably, we would like to verify whether the agent successfully attained its top-goal in a reasonable
environment. In other words, we want to exclude unlikely sequences of BeliefStore updates. For
instance, if we had an agent that collects a bottle, we do not want to bother with an environment
where there is no bottle at all.

The question is how we could know what a “reasonable” environment is. The best option would be to
work it out from the information in the TeleoR program. Unfortunately, such information is scarce,
as we will see in this chapter.

Instead of attempting to squeeze out the little information it may contain, we decided to allow the
users to feed an extra file which we call environment configuration. The environment configuration
contains statements that hold in the environment the agent may be situated in. Naturally, the empty
environment configuration is equivalent to making no assumption at all on the BeliefStore updates,
thus the specification is checked against a non-deterministic environment. We discuss what would be
a useful class of statements.

We might have alternatively had an interpreted system which assumes nothing of this environment,
and specify the assumption as a part of the specification. In this chapter we show that this is not
possible, hence it should be expressed as a part of the definition of the interpreted systems.

Finally we discuss a precise semantics of the environment configuration on the interpreted system for
Single Bound Program.

4.1 What Could We Know About The Environment?

We would like to verify that a specification holds for the TeleoR program, given that the agent is in
a reasonable environment. The difficulty is to work out what we can assume for this reasonable envi-
ronment. If we could deduce this from the TeleoR program itself, naturally that would be optimal. In
this section, we see that in some set-ups, TeleoR programs can give us a limited amount of information
on how the BeliefStore might be updated.

49

50 Chapter 4. Specifying a Reasonable Environment

4.1.1 Percept Handlers

The agent is started by the built-in Qulog action start agent(Name, Handle, Convention),
where[8]:

• Name
The name of the agent.

• Handle
The message address of the robot interface or simulation with which the agent will interact.

• Convention
The keyword that specifies how the dynamic facts are updated.

The agents are notified of the changes in the sensor inputs with the messages from Handle. These
messages may be in three different forms, depending on the value of Convention.

• all
The message is a list of all the dynamic facts that hold.

• updates
The message contains which of the dynamic facts that are in the BeliefStore now, should be
removed and added.

• user
The format of the message and how they are handled is specified in the built-in action
handle percepts in the TeleoR program.

If Convention is all or updates, all the information on how the BeliefStore is updated, is in the
simulation file, which may be written in Python, Java, C and C++.[6]. However if Convention is
user, then we may able to gain some information about how the BeliefStore is updated. The following
snippet is from bottle.qlg that comes with Qulog 0.4[8].

percept_message_type ::= set(percept) | unset(percept)

handle_percepts_(Ps) :: ground(Ps) ∼>>
forall P (P in Ps & type(P, percept_message_type)

∼>> handle_percept(P))
handle_percept(set(gripper_open))

∼>> forget holding; remember gripper_open
handle_percept(unset(gripper_open)) ∼>> forget gripper_open

From this declaration, we know that if gripper open holds, holding would never hold. Though
this might be useful information, the applicability is limited as we may only take programs with “user”
configuration.

4.1.2 Attached Qulog Action

In TeleoR, it is possible to specify which Qulog action may be executed after a primitive action. This
Qulog action may add or remove the dynamic facts in the BeliefStore. Again, the following snippet is
from bottle.qlg in Qulog 0.4 distribution[8].

4.2. Environment Configuration 51

..
true ∼> open_gripper ++ update_and_communicate_count(OthrAg)
..
update_and_communicate_count: pedro_handle
update_and_communicate_count(OthrAg) ∼>>

collected +:= 1;
count($collected) to OthrAg

From this, we may deduce that, if the above rule is selected, collected is incremented. However
as can be seen, attached Qulog actions are used to record some knowledge-based information and
possibly communicate it to the others. Therefore if the program is heavily based on sensor inputs, we
do not learn much about the dynamic facts.

4.2 Environment Configuration

We saw that the information of how the BeliefStore is updated is scarce in most of the TeleoR
programs. Rather than attempting to utilise what little clues they might contain, we decided to take
an additional file which we refer to as environment configuration which contains statements that hold
in the environment.
In this section, we specify the environment configuration rules, the statements which compose the
environment configuration. We discuss what kind of rules would be useful to define the environment.
What we want to achieve with the environment configuration is to check the specification only on
the path with reasonable BeliefStore updates. Intuitively, it should be possible to have a specification
such as “if the global state changes in this manner, then the agent satisfies this specification”. This
way we can simply have an interpreted system which contains all possible BeliefStore updates, rather
than defining an interpreted system which reflects the environment configuration rules. Unfortunately
we can not have the statements that we want to express about the environment as a part of the
specification, due to the limitation in the specification language provided by MCMAS. We show that
later in this section.
Then we formally define the environment configuration rules, and how we can define next and init
from these rules.

4.2.1 Wish List

We would like the environment configuration rules to be expressive enough for a user to express their
assumption fully. The following are what we thought the user may want to specify:

• A definite effect of the action
We may assume that some actions would always succeed, and therefore know about how some
dynamic facts are modified in the BeliefStore. For instance, we may think that the gripper of
an agent is sophisticated enough that opening it would always result to adding open gripper
and removing close gripper.

• An eventual effect of the action
We may assume that if a durative action continues for a long enough time, or if a discrete action
is taken for enough times consecutively, then it should succeed at one point. For instance, we
may assume that, if the agent pushes the door for a while, it should at some point open it.

52 Chapter 4. Specifying a Reasonable Environment

• A possible effect of the action
We may assume that taking some action may result in a change in some dynamic fact. For
instance, we may assume that if the agent turns around, some new object might come in its
sight, or some objects might go out of its sight.

• How the environment is at the start
We may assume that the environment is in a certain state at the start. For instance, an agent
that builds a tower using blocks may assume that all of the blocks are on the table, rather than
on each other.

• Which dynamic fact may not change without the action of the agent
We may assume that, without the agent doing anything, some factor in the environment will
not change. For instance, we may assume that without the agent moving, the distance from an
object will not change.

Preferably, we would like the environment configuration rules to be expressive enough for such state-
ments.

4.2.2 Limitation of Specification Languages

Naturally one may think that it must be possible to express a specification which explicitly states the
assumption, thus it is not necessary to change the ISPL. Unfortunately, the specification language for
MCMAS, CTL, is not expressive enough to do this.
Take the assumption on the definite effect as an example. Say we want to assume that “if p holds
and the agent takes act1, then in the next state q will always be true”, and we want to verify that,
under this assumption “the agent will always be idle at one point”. Let idle hold if the agent is idle,
taken act1 be true at the state if the local action of the agent that led to its state is act1, and prev p
be true if p holds in the previous state.
It seems sensible to express this as:

AG(((prev p ∧ taken act1)→ q)→ AF (idle)) (4.1)

However, this is not quite what we want. Consider the following transition system with two paths,
where the initial state is marked with red:

4.2. Environment Configuration 53

Figure 4.1: Example transition system.

What we would like to express is that if the environment conforms to the assumption, then we will
at some point have idle. In other words, we would like to express that “for all paths from the initial
state that follows the assumption of the environment, there is always a state where idle would hold”.
This statement should hold in the transition system above, as only the path at the top satisfies the
assumption and we only need to have AF (idle) for that path.
However (4.1) does not hold. At the initial state (prev p ∧ taken act1)→ q holds, yet AF (idle) does
not as the path on the bottom does not have a state which has idle.
As specifying the assumption as a part of the specification will not do, we are left to modify the ISPL
such that all paths from the initial state satisfy the assumptions.

4.2.3 Formal Definition of Environment Configuration

In this subsection, we present the formal definition of the environment configuration we implemented.
First we define fact modifiers which we use to specify changes in the BeliefStore state that we wish
to see in the rules.

Definition 4.1 (Fact modifier). A fact modifier is a tuple, which specifies the modification of a
BeliefStore state. It can be either of the following:

• (remember, F) where F is a template term of a relation declared as percept or belief. When this
modifier is applied to the BeliefStore, the grounding of F is added to the BeliefStore.

54 Chapter 4. Specifying a Reasonable Environment

• (forget, F) where F is a template term of a relation declared as percept or belief. When this
modifier is applied to the BeliefStore, the grounding of F is added to the BeliefStore.

We now define the environment configuration, which allows us to specify the possible sequences of the
BeliefStore updates.

Definition 4.2 (Environment configuration). Environment configuration is a set of tuples, which can
be one of the following:

• (init, C) where C is a BeliefStore clause. This rule specifies the conditions that should hold for
the first BeliefStore states that the agent may experience.

• (dontF lip, f) where f ∈ facts. This rules specifies that dynamic fact with identifier f does not
change, unless specified otherwise by other rules.

• (definitely, C,A,Ms) where C is a BeliefStore clause, A is a primitive action and Ms is a
sequence of fact modifiers. This rule specifies that if C holds at the current state and the action
A is taken, then the next BeliefStore will have a change specified in Ms.

• (maychange, C,A, F) where C is a BeliefStore clause, A is primitive action and F is a template
term of a relation declared as percept or belief. This rule specifies that if C holds at the current
state and the action A is taken, then the next BeliefStore may have facts obtained from grounding
F added or removed.

• (eventually, C,A,Ms) where C is a condition that may be used as a triggering condition of the
TeleoR rule, A is a primitive action and Ms is a sequence of fact modifiers. This rule specifies
that if the agent continues to take action A from the state where C holds, then eventually the
BeliefStore will have a change specified in Ms.

We restrict that there can be only one rule with definitely per action signature. Consider an environ-
ment configuration with the following rules.

(definitely,move(X), (remember, see(bottle)))

(definitely,move(X), (forget, see(bottle)))

When the agent takes an action move(1), it is ambiguous whether the first rule should be applied first,
therefore see(bottle) would not be in the next BeliefStore, or the second rule should be applied first and
therefore see(bottle) will be in the next BeliefStore, along with other facts.

4.2.4 Semantics of Environment Configuration on ISP

In this subsection, we formally specify the semantics of rules defined in the previous subsection on
ISP , by defining init and next functions that we used to define ISP .
First let us define some auxiliary terms:

Definition 4.3 (subsequence). If seq is a sequence , seqi: is a subsequence of seq from index i,
including the element at index i.

Definition 4.4 (bindings). bindings is a function which takes a template term and returns a set of
bindings such that it does not instantiate input term to false. For instance:

bindings(foo(X)&X = 1)

4.2. Environment Configuration 55

if foo may take 1 or 2, it returns a set of one element, which is a binding which binds X to 1. A
binding which binds X to 2 is not included, as the whole term would evaluate to false.

Definition 4.5 (getModifiers). getModifiers is a function which takes a BeliefStore state BS, an
environment configuration EC and a ground action a and returns a tuple of a list of modifiers which
should be applied to the BeliefStore and set of bindings for the modifiers. If there is a “definitely” rule
which applies for BS and a, getModifiers returns the following:

getModifiers(BS,EC, a) = (Ms, θs)

where (definitely, C,A,Ms) ∈ EC, θs = {θ|BS ` Cθ′ ∧ a = Aθ}

Note that we assumed that there is at most one “definitely” rule per identifier of a primitive action.
Otherwise,

getModifiers(BS,EC, a) = ({}, {})

Definition 4.6 (changing). changing is a function which takes a BeliefStore state BS, an environ-
ment configuration EC and returns all the ground facts which may flip due to “maychange” rule in
EC which applies for BS.

changing(BS,EC) = {Fθ|(maychange, C,A, F) ∈ EC, θ ∈ {θ|BS ` Cθ′ ∧Aθ ∈ action(BS)}

Then init can be defined as:

Definition 4.7 (init). init is a function which returns all possible BeliefStore states that the agent
may have at the start.

init = {BS | BS ∈ BSC ∀(init, C) ∈ EC ∀θ ∈ bindings(C) BS ` Cθ}

next can be defined as:

Definition 4.8 (next). next(BS) is a function which takes the current BeliefStore state and returns
all the BeliefStore state BS′ ∈ BSC that the agent may see next. Specifically, the BeliefStore states
returned are such that for all possible dynamic fact F with identifier f :

[∃(dontF lip, f) ∈ EC ∧ F 6∈ changing(BS,EC) ∧ F 6∈ modified(BS,EC)→
BS′ ` F ⇐⇒ BS ` F]

∧
[∃(dontF lip, f) ∈ EC ∧ F 6∈ changing(BS,EC) ∧ F ∈ modified(BS,EC)→

BS′ ` F ⇐⇒ modify(BS,BS,EC, action(BS)) ` F]

where modifed(BS,EC) is a function that returns a set of dynamic facts
that are modified in modify(BS,BS,EC, action(BS)), which is defined as follows:

56 Chapter 4. Specifying a Reasonable Environment

modify(BS,BS′, EC,Acts) =



BS′ if length(Acts) = 0
modify′(BS,BS′′, EC,Acts2:) otherwise

where
BS′′ = modify(BS′, (Ms, θs))
(Ms, θs)

= getModifiers(BS,EC,Acts1)

modify′(BS, (Ms, θs)) =



BS if |θs| = 0
∨ (Ms, θs) = ({}, {})

modify′(BS′, (Ms, θs′)) otherwise
where
BS′ = modify′′(BS,Ms, θ)
θ ∈ θs
θs′ = θs\{θ}

modify′′(BS,Ms, θ) =


BS if length(Ms) = 0
modify′′(BS′,Ms2:, θ) otherwise

where
BS′ = modify′′′(BS,Ms1, θ)

modify′′′(BS, (remember, F), θ) = BS ∪ {Fθ}
modify′′′(BS, (forget, F), θ) = BS\{Fθ}

Note that the set operation ∪ and \ is used on a BeliefStore state to represent “adding” and “removing”
a set of dynamic facts.
Note also that with an empty environment configuration, next returns a set of all possible BeliefStore
states.
As can be seen, to express the semantics of the statements we had in our “wish list”, we only needed
the current BeliefStore state. If one may wish to extend the environment configuration rules, it might
happen that the current BeliefStore is not enough. In this case the interpreted system ISP should be
extended so the local state contains whatever information the new configuration rules depend on, and
feed it to next as a parameter.

Fairness

With eventually(C,A,Ms) rules, we want to express that if the BeliefStore has C and the agent takes
A, then eventually the next BeliefStore state would have changed as specified in Ms. We can not
express this by modifying the model, and as we discussed previously it can not be expressed as a part
of the specification. Instead, we use fairness conditions. By declaring a formula as a fairness condition,
the specification is checked only on the paths where the formula holds infinitely often.
We first consider the formula as the following, where θ ground C and A:

(LBS ` Cθ) ∧ (Aθ ∈ LActs) ∧ (BS = modify′(BS, (Ms, {θ})))

However this is not what we want. Consider that the specification, “the agent at some point achieves
its top goal”. Imagine we have a path which consists of one state transiting to itself, and at this state
the top goal of the agent holds. Naturally we do not want to exclude such paths, but if the above
formula does not hold, which is probably the case as C is most likely representing an intermediate
BeliefStore state getting towards the top goal, it does get excluded from checking.

4.3. Summary 57

Then we considered the following formula, where θ ground C and A:

(LBS ` Cθ) ∧ (Aθ ∈ LActs)→ (BS = modify′(BS, (Ms, {θ})))

This seems more appropriate, as this would only exclude paths where C holds and the agent continues
to take A, without seeing the desired change in BS.
Then the set of fairness condition which we wish to produce from an environment configuration EC
is the following:

{(LBS ` Cθ ∧Aθ ∈ LActs)→ (BS = modify′(BS, (Ms, {θ}))
| (eventually, C,A,Ms) ∈ EC, θ ∈ bindings((C,A))}

4.3 Summary

In this chapter, we introduced environment configuration, which defines the possible sequence of Be-
liefStore updates.
We came up with a rough idea of what kind of rules would be useful in environment configurations.
Then we formalised these rules, and defined next and init function to fill the missing piece in the
previous chapter. As the rules to express the eventual effect of an action can not be expressed in
terms of the structure of the interpreted system, we defined fairness conditions instead so only the
paths where the agent eventually succeeds in the action are checked against the specification.
We also discussed why taking an environment configuration from the user and specifying the in-
terpreted system accordingly was a necessity, and how alternative methods, such as extracting the
information from TeleoR or specifying the assumption on the BeliefStore updates in the specification
formulae, are not sufficient.

Chapter 5

Implementation

In this section, we see the overview of the implementation and the algorithm used to implement the
compiler.

5.1 Java

I chose Java to implement the compiler. It was expected that the code-base of the compiler would be
fairly large. Therefore it was as safer to choose a statically typed language, so that simple mistakes
can be caught at compile time.

C++, Scala and Haskell were considered. Although in most cases Java is slower than C++, Java
still has a fairly good absolute performance and provides automated garbage collection, which meant
that the memory management is not a concern.

Java has been popular for a long time, and as a result a large array of tools and libraries are avail-
able. Using a great IDE, IntelliJ[23], and not having to implement your own parser or a library to
manipulate propositional logic expression sped up the development massively. This factor led me to
ultimately forgo Haskell.

In Scala it is possible to use libraries in Java, and an IDE is available. However in the end I de-
cided against Scala, as I have no experience in it and the learning curve for Scala is notoriously steep.
It is a multi-paradigm language combining object-oriented-programming, functional programming and
language-orientated-programming[24], and consequently there are many ways of achieving the same
thing, though only a few among them are best practices. For example, there are eight ways of creating
and populating a list in Scala[25].

5.2 ANTLR

A parser generator ANTLR[26] is used to implement the front-end of the compiler.

Initially, I had hoped to reuse the front-end of the compiler of Qulog. There were two reasons that I
concluded that it was better to generate a new parser on my own. First, it was written in QuProlog,
which I am not familiar with. Second, Qulog compiler compiles Qulog into QuProlog[27] which is an-
other logic language and its intermediate states are not appropriate for compiling Qulog to MCMAS,

58

5.2. ANTLR 59

which is a very different language from Qulog.

There are various parser generators whose output language is Java, including Beaver[28], JavaCC[29].
I chose ANTLR as it had by far the best documentation including a book[30] available and had IDE
support.

Thankfully EBNF grammar for Qulog was availlable[31] and after adapting the syntax to the ANTLR
grammar, the only substantial modification necessary was to resolve the mutual left recursion among
some rules.

The following simplified example demonstrates the problem I encountered. ANTLR grammar does
not allow a grammar below, because ANTLR generates an LL parser and foo and bar refers to each
other at the start of the rule and so does foo and par.

foo : bar | par;
bar : foo ’+’ foo | INT;
par : foo ’-’ foo | INT;
INT : (-)?[1-9][0-9]+;

This can be partially resolved by in-lining bar and par in foo.

foo : foo ’+’ foo | foo ’-’ foo | INT;
INT : (-)?[1-9][0-9]+;

ANTLR still will not accept this grammar, it is not clear whether

1 + 2 - 3

should be parserd as

(1 + 2) - 3

or

1 + (2 - 3)

In other words, the associativity is ambiguous for the operators + and -.
In ANTLR it is possible to specify the associativity as following:

foo :
<assoc=left> foo ’+’ foo |
<assoc=left> foo ’-’ foo |
INT;

INT : (-)?[1-9][0-9]+;

The above grammar is accepted by ANTLR and exactly corresponds to the first grammar.
The intermediate representation that ANTLR parser provides is Context, which is essentially a multi-
way tree that contains the information of a code fragment. It also provides a base Visitor class with
a visit method for each class of Context which one can extend to implement their own Visitor.

60 Chapter 5. Implementation

5.3 Other Input Files

5.3.1 Starting Task Information

In TeleoR programs, how the agent is started is specified in a Qulog action. As we assume that there
is no action in Single Bound Program, we decided to accept another file, which lists the argument to
the starting task.
For instance, if the starting task should run with the argument “box”, then this file should be such
that it contains just a word “box”.

5.3.2 Environment Configuration

We formally discussed environment configuration in the previous section. The syntax of the environ-
ment configuration in ANTLR grammar is the following:

config ::= rule*
rule ::= ‘DONTFLIP’ atom (‘,’ atom)*‘;’ |

‘INIT’ atom ‘:’ trRuleLHS (‘,’ trRuleLHS)* ‘;’|
condition ‘DEFINITELY’ bsModifier, (‘;’ bsModifier)+‘;’ |
condition ‘EVENTUALLY’ bsModifier, (‘;’ bsModifier)+‘;’ |
condition ‘MAYCHANGE’ lhsRelationalTerm‘;’ |

condition ::= (‘TRUE’| trRuleLHS) ‘+’ actionWithAnonVar
bsModifier ::= ‘remember’ lhsRelationalTerm+ | ‘forget’ lhsRelationalTerm+

where

• trRuleLHS is a BeliefStore clause

• actionWithAnonVar has is a primitive action, whose arguments may be anonymous variables

• lhsRelationalTerm is a relational term without not

For instance, for program with the declaration in Figure 5.1, Figure 5.2 is a syntactically valid envi-
ronment configuration.

dir::= left | centre | right
thing::= box | ball
percept

holding : (thing),
next_to:(thing,dir),
see:(thing,dir)

durative
move:(),
turn:(dir)

Figure 5.1: Example declaration.

5.4. Collecting the Type Information 61

DONTFLIP holding, see;
INIT holding : not holding(_);
next_to(X, centre) + grab(X) DEFINITELY remember holding(X);
TRUE + turn(X) EVENTUALLY remember see(box, centre);
see(X, centre) + move(_) MAYCHANGE next_to(X, centre);

Figure 5.2: Example environment configuration.

The formal representation of this environment configuration would be:

{ (dontF lip, holding), (dontF lip, see),

(init,not holding()),

(definitely, next to(X, centre), grab(X), ((remember, holding(X)))),

(eventually, true, turn(X), ((remember, see(box, centre)))),

(maychange, see(X, centre),move(), next to(X, centre)) }

The visitor classes for parsing the Single Bound Program could be reused to parse the environment
configuration file, which saved a lot of effort.

5.4 Collecting the Type Information

To compile an ISPL, we often need to compute possible instantiations of terms in the TeleoR program.
We do this based on the type of the term. In this section, we see the algorithms used to extract type
informations from the TeleoR program.
The type informations can be found in two parts of the programs; one is the type definition, and the
other is the type declaration.
In the type definition, the developer may define its own types. The types may be defined in terms of
other types. We will see how we resolve this aliasing.
The type declaration specifies the type of the terms. We also see how we check that all terms are
bound, as they should be to be in a Single Bound Program.

5.4.1 Type Definition

In TeleoR, it is possible to define a new type as previously mentioned in Section 2.1.2. Percepts and
beliefs are to be encoded to IS local variables for the IS environment agent and TeleoR actions are
encoded to IS actions by practically grounding them, which we see later. Therefore it is important to
understand which value is possible, and it is in the type where such information lies.

Types defined through an enumeration of atoms or a range of integers are straightforward. How-
ever, type aliasing introduces some complications. Type aliasing refers to defining a type in terms of
other types. The following is an example of type aliasing.

62 Chapter 5. Implementation

ab ::= a | b
cd ::= c | d
abcd ::= ab || cd
other_name_int ::= int
int_num ::= num || other_name_int

Figure 5.3: Example type declaration.

After recording all the type definitions, the compiler checks for circular dependencies as the Qulog
compiler does not do so. Circular dependencies are detected by constructing a dependency graph of
the types, and finding a loop in it. Each vertex represents a type, and a vertex V has an edge to
another vertex V’ if V’ aliases V. In the above example, a graph would look as follows.

Figure 5.4: Dependency graph of types in Figure 5.3.

If circular dependency is detected, the compilation is aborted.

Later on, we need to compute a possible grounding for relations and actions and in order to do
so, we use their type information. As each type is most likely used multiple times, rather than travers-
ing the dependency graph each time, it was better to resolve the aliasing all at once. Resolution of the
aliasing is resolved in a topological order, worked out from the dependency graph. That is, a type is
resolved strictly after those which it depends on. The complexity of ordering the types in a topological
order is O(V+E) where V is the number of vertices and E is the number of the edges.

Resolution of each type is done as follows.

• If a type does not alias anything, no resolution is needed. (as in ab, cd)

• If a type aliases one type, resolve it as that type. (as in other name int)

• If a type aliases types that enumerate values, then create a new enumerating type referring to
all the values that these aliased types refer to. (as in abcd)

5.5. TeleoR Procedures as Protocol Rules 63

• If a type aliases types which alias types that are not an enumeration, flatten the aliasing by
creating a new aliasing type referring to all the values that these aliased types alias. (as in
int num)

Note that as it is done in a topological order, all the aliased types have their own aliasing resolved
already. As a result of this resolution, the above example would resolve to the following types.

• other name int : An int type

• int num : An aliasing type of int and num

• abcd : An enumeration type of a, b, c and d

• ab: An enumeration type of a and b

• cd : An enumeration type of c and d

As can be seen, after the resolution, there is no type which aliases a user-defined type.

5.4.2 Type Declaration

In type declaration, the type of each term is specified. As a part of the assumption on a Single Bound
Program, all the terms need to have limited possible ground terms that can be instantiated from
them. Specifically, a relation, a TeleoR procedure, and an action are bound if all of their arguments
are enumeration or integer range type.

5.5 TeleoR Procedures as Protocol Rules

The definition of the protocol function of the agent in ISP is such that, given the local state with the
current BeliefStore state BS, it returns action(BS) if action(BS) is a set of primitive actions, and
returns an empty set otherwise. We want to find a way to produce a set of ISPL protocol rules which
is equivalent to this protocol function.

The most straight-forward way to do so is to produce protocol rules where each condition only holds
for a single BeliefStore state BS, and the action is {action(BS)} if action(BS) is a set of primitive
actions, and otherwise {}. However this way we produce as many protocol rules as possible BeliefStore
states, therefore it is not efficient.

Recall that there is only one possible sequence of fired rules for each BeliefStore state. Recall also that
if given a sequence of fired rules, we know which action is taken by the agent. Then we can define
one protocol rule per possible sequence of fired rules. This way we produce as many protocol rules as
possible sequences of fired rules, which is fewer than the possible BeliefStore states.

Let us be more concrete. In order for the agent with the BeliefStore state BS to fire a sequence of
fired rules, (P1, R1, θ1, BS)...(Pn, Rn, θn, BS), BS satisfies:

∀i : 1 ≤ i ≤ n fire(Pi, Ri, θi, BS) (5.1)

We want to define a function toMCMASProtocol which returns a set of protocol rules where, for
all possible sequences of fired rules, there is a rule whose condition is satisfied by the local state of
the agent ((BS′, LBS,LActs), ()) if and only if (5.1) holds with BS = BS′, and action is as can be

64 Chapter 5. Implementation

worked out from the sequence. Then the protocol function consists of the return value of the function,
excluding the elements whose action is not a set of primitive actions.
First let us define notations we use to refer to BeliefStore clauses and protocol rules. Then we
consider how we may translate fire into a condition of protocol rules, and finally we can define
toMCMASProtocol using this translation.

5.5.1 Notation

In this subsection, we introduce notations for BeliefStore clauses, MCMAS condition and ISPL protocol
rules which we use to present the algorithm to translate BeliefStore clauses into MCMAS condition,
and TeleoR procedures into protocol rules.

BeliefStore Clauses

We use the following notation for the BeliefStore clauses which may appear in the Single Bound
Program, based on the TeleoR grammar[8] and the restriction of Single Bound Program. Note that
the terms in bold are keywords.

Definition 5.1 (BeliefStore clauses).

clause ::= literal | literal & clause

literal ::= dynamic(args) | trueSB | not literal | comparison
args ::= arg(, arg)∗
arg ::= val | anonV ar | normalV ar

where

• dynamic ∈ facts is a identifier of a relation declared as percept or belief

• comparison is a comparison term, such as X < 2 or X = left, which when grounded resolve to
either trueSB or not trueSB.

• val is a concrete value that is not variable

• anonV ar is an anonymous variable

• normalV ar is a non-anonymous variable

MCMAS Conditions

We use the following notation for the MCMAS conditions which may appear in ISPL, based on the
grammar of ISPL[18]. Note that the terms in bold are keywords.

Definition 5.2 (MCMAS condition).

mcmasCondition ::= mcmasV ar = value |
(mcmasCondition) |
!(mcmasCondition) |
mcmasCondition and mcmasCondition |
mcmasCondition or mcmasCondition |
true

5.5. TeleoR Procedures as Protocol Rules 65

where mcmasV ar refers to a variable in the local state, and value is a possible value of a variable,
such as true.

ISPL Protocol Rule

We use the following notation for protocol rules, which defines the local protocol function in ISPL.

Definition 5.3 (ISPL protocol rule).

(mcmasCondition : action)

where action is a local action of an agent, and mcmasCondition is a MCMAS condition term.

5.5.2 Condition to Fire a TeleoR Rule as ISPL

Recall the definition of fire:

fire(P , R, θ,BS) ≡ ∃θ′BS ` PRθ
′ ∧ θ ⊆ θ′ ∧ no higher fireable rule(P , R,BS)

Let us consider how we may express ∃θ′BS ` Cθ′. We can do this by

1. Producing all bindings θs which ground named variables C

2. For all θ ∈ θs, compute an equivalent MCMAS condition for BS ` Cθ

3. Express that at least one of the conditions produced in (2) holds.

We achieve (1) with a function getAllBindings. We can not simply express BS ` Cθ as toV ar(Cθ) =
true, where toV ar takes a dynamic fact and returns a IS local variable which is true if the BeliefStore
state the local state represents contains the input fact. This is because the term Cθ may contain an
anonymous variable, therefore may possibly unify with multiple facts in the BeliefStore. For instance
with declaration:

ab ::= a | b
percept foo : (ab)

Then BS ` foo() holds if either foo(a) or foo(b) is present in BS. Therefore to implement (2), we
define a function groundFully, which takes a literal L and a binding θ, and compute all possible facts
which may unify with Lθ. Then we can express BS ` Lθ as “at least one variable representing a
fact in groundFully(L, θ) is true” Finally we present toMCMASCond which use groundFully and
getAllBindings to translate ∃θ′BS ` Cθ′.
With means to express ∃θBS ` Cθ, we can also express no higher fireable rule, which is defined in
terms of 6 ∃θBS ` Cθ; we simply negate the expression for ∃θBS ` Cθ.

Auxiliary Functions

Definition 5.4 (relation). relation is a function which takes a BeliefStore literal and returns true if
it is in the form of dynamic(args).

66 Chapter 5. Implementation

Definition 5.5 (id, args). id and args is a function which takes a literal L where relation(L) is true,
and returns f , As respectively where L = f(As).

Definition 5.6 (normalV ar, val). normalV ar and val is a function which takes an argument for
a relational BeliefStore literal, and returns true if it is a normal variable, and a concrete value,
respectively.

Definition 5.7 (possibleV alues). possibleV alues is a function which takes an identifier f ∈ facts∪
actions i, and returns all the possible values for the ith argument of f according to its type. For
instance, with a declaration shown in Figure 5.1, possibleV alues(holding, 1) would return {box, ball}.
Note that the returned set is always finite as Single Bound Program would only have action or relation
which are “bound”.

Definition 5.8 (toV ar). toV ar is a bijective function which takes a ground relational term or action,
and returns a MCMAS variable.

Definition 5.9 (toV al). toV al is a function which takes a set of primitive actions, and returns the
value in ISPL which represents it.

Definition 5.10 (
∧

for mcmasCondition). Let condition ∈ mcmasCondition has a free variable
i..j, var conds be a set of conditions that describes i...j and S be a set of all instantiated condition
with variables that satisfy var conds.
Then: ∧

var conds

condition

is true if S is empty, and otherwise it is a mcmasCondition that is constructed from connecting all
mcmasCondition in S with and.

Definition 5.11 (
∨

for mcmasCondition). Let condition ∈ mcmasCondition has a free variable
i..j, var conds be a set of conditions that describes i...j and S be a set of all instantiated condition
with variables that satisfy var conds.
Then: ∨

var conds

condition

is false if S is empty, and otherwise it is a mcmasCondition that is constructed from connecting all
mcmasCondition in S with or.

Definition 5.12 (groundNonRelatioal). groundNonRelational is a function that takes a non re-
lational BeliefStore literal, such as trueSB or comparison term X > 1 and a binding, and returns
either trueSB or not trueSB appropriately.

5.5. TeleoR Procedures as Protocol Rules 67

getAllBindings

Definition 5.13 (getAllBindings). getAllBindings takes a BeliefStore clause and returns all the
bindings that grounds the non-anonymous variables.

getAllBindings(L & C, θ) =
⋃
θ′∈θs

getAllBindings(C, θ′), where θs = getAllBindings(L, θ)

getAllBindings(L, θ) =



{} if ¬relation(L)
∧ groundNonRelational(L, θ)

= not trueSB

{θ} if ¬relation(L)
∧ groundNonRelational(L, θ)

= trueSB

getAllBindings′(id(C), arg(C), 1, θ) otherwise

getAllBindings′(f, args, i, θ) =



{θ} if i > length(args)

getAllBindings(f, args, i+ 1, θ) if ¬normalV ar(argsi)
∨ ∃v{argsi → v} ⊆ θ⋃

θ′∈θs getAllBindings
′(f, args, i+ 1, θ′)

where
θs = {θ ∪ {argsi → v}

| v ∈ possibleV alues(f, i)} if normalV ar(argsi)
∧ 6 ∃v{argsi → v} ⊆ θ

getAllBindings(f, args, i+ 1, θ) otherwise

68 Chapter 5. Implementation

groundFully

Definition 5.14 (groundFully). groundFully is a function that takes a BeliefStore literal L and a
binding θ and returns a set of ground BeliefStore literals that may unify with Cθ.

groundFully(L, θ) =


{L′ | id(L) = id(L′),

arg(L′) = groundArgs(id(L), arg(L), θ, 1)} if relation(L)

{groundNonRelational(L, θ)} otherwise

groundArgs(f, args, θ, i) =



() if i > length(args)

{s | s1 = groundArg(argsi, θ)
s2: ∈ groundArgs(f, args, θ, i+ 1)} if val(groundArg(argsi, θ))

{s | v ∈ possibleV alues(f, i),
s1 = v,
θ′ = θ ∪ {argsi → v},
s2: ∈ groundArgs(f, args, θ′, i+ 1)} if normalV ar(groundArg(argsi, θ))

{s | s1 ∈ possibleV alues(f, i),
s2: ∈ groundArgs(f, args, θ, i+ 1)} otherwise

groundArg(arg, θ) =

{
v where{arg → v} ⊆ θ if normalV ar(arg) ∧ ∃v{arg → v} ⊆ θ
arg otherwise

toMCMASCond

Definition 5.15 (toMCMASCond). toMCMASCond is a function that takes a BeliefStore clause,
and returns an equivalent MCMAS condition term.
It is defined as follows:

toMCMASCond(L & C, θ) = toMCMASCond(L, θ) and toMCMASCond(C, θ)

toMCMASCond(not L, θ) =!(
∨

L′∈GL
toV ar(L′) = true)

where GL = groundFully(L, θ)

toMCMASCond(L, θ) = (
∨

L′∈GL
toV ar(L′) = true), where GL = groundFully(L, θ)

All in all, fire(P , R, θ,BS) is equivalent to an MCMAS condition of the following:

[
∨
θ∈AB

toMCMASCond(PR, θ)] and [
∧

1≤i<R

∧
θ′∈AB′

!toMCMASCond(Pi, θ
′)]

where AB = getAllBindings(PR, {}) and AB′ = getAllBindings(Pi, {}).

5.5. TeleoR Procedures as Protocol Rules 69

5.5.3 Protocol Generation Algorithm

Now we know how to generate an MCMAS condition equivalent to fire. The action of a TeleoR agent
is determined by the sequence of TeleoR rules are fired. In other words, its BeliefStore state at the
time is such that it satisfies the condition of firing this particular sequence of TeleoR rules, which is,
the conjugate of fire for all the rules in the sequence. To recreate this, toMCMASProtocol generates
a set of protocol rules such that it includes a protocol rule per a possible sequence of fired rules, such
that its condition is equivalent to the conjugate of fire for the rules in the sequence.
Recall that we also have two erroneous states, where the agent of ISP do not take any action. With
toMCMASProtocol, we compute protocol rules for the sequence of fired rules for those states as well,
and then later remove them from the protocol rules. We use the removed rules to define the valuation
function, as we need to have propositional atoms which hold at the erroneous states.

Definition 5.16 (toMCMASProtocol). The following Python-like pseudo code defines toMCMASProtocol,
which returns a set of protocol rules, where curateForRHS takes an action and a set of bindings, and
return a binding which binds the variables in the action in the same way as all the input bindings.

toMCMASProtocol(P , firedRuleCount)
2 if firedRuleCount > MaxDp:

return {(true: md fail)}
4

toReturn = {}
6 prevRulesDontApply = true;

R = 1
8

while R <= getRuleCount(P):
10 K ∼> A = PR

bindings = getAllBindings(K, {})
12 protocol = translateRHS(A, curateForRHS(A, bindings), firedRuleCount)

guard = true
14 for θ in bindings:

guard = guard or toMCMASCond(K, θ)
16 for rule in protocol

add (guard and prevRulesDontApply and rule.cond : rule.action) to toReturn
18 for θ in bindings:

prevRulesDontApply = prevRulesDontApply and !(toMCMASCond(K, θ))
20 R += 1

22 add (prevRuleDontApply : nfr fail) to toReturn
return toReturn

24

26 translateRHS(A, θ, firedRuleCount) :
if primActs(Aθ):

28 return {(true : toVal(Aθ))}
if procCall(Aθ):

30 return toMCMASProtocol(Aθ, firedRuleCount+1)

Note that there is always a binding returned by curateForRHS as we have no ambiguous rule.
Note also that to produce a set of protocol rules for the agent whose starting task is SP , one needs
to call toMCMASProtocol(SP , 1).

70 Chapter 5. Implementation

5.6 Translating Environment Configuration into ISPL

In this section, we see the algorithm to translate environment configuration rules into ISPL. We
previously saw that environment configuration rules are made up of the following four rules:

1. (definitely, C,A,Ms)

2. (maychange, C,A, F)

3. (dontF lip, f)

4. (init, C)

5. (eventually, C,A,Ms)

The evolution function of the environment agent in ISP is defined in terms of next, which is specified
by the first three rules. We see how next can be expressed as ISPL. Then we see how (4) can be
translated into the initial state condition in ISPL. Finally, we see how (5) can be translated into the
fairness condition in ISPL.

5.6.1 Evolution Rules

Assignment Semantics

As mentioned in Section 2.2.7 in the background, there are two ways to define the evolution in ISPL;
one is single assignment and the other is multi-assignment. We chose single assignment semantics,
as it is more natural and concise to express the change of each local variable as with an evolution item.
For instance, consider a set of n boolean variables which we want them to be changed non-deterministically.
In the multi-assignment semantics, we need to have 2n rules, each specifying possible updates to all n
variables. For instance, if we have three boolean variables, we would have 8 rules:

v1 = true and v2 = true and v3 = true if Environment.Action = update;
v1 = false and v2 = true and v3 = true if Environment.Action = update;
v1 = true and v2 = false and v3 = true if Environment.Action = update;
...

With single assignment semantics, we only need to have 2n rules, where there are two rules per
variable, one setting the variable to true and the other to false. For instance, if we have three boolean
variables, we would have 6 rules:

v1 = true if Environment.Action = update;
v1 = false if Environment.Action = update;
v2 = true if Environment.Action = update;
...

Note that in ISPL, if there are multiple rules on the same variable whose condition evaluates to true
at a given state, one rule is arbitrarily chosen.
Let us say we have one variable v which changes its value to true under a certain condition C among
this n variables, and the others still change their value non-deterministically. With multi-assignment
semantics, the rule will be extremely hard to read, as there will be 2n−1 rules with C as the condition,
all assigning true to v, and each of them updating n− 1 variables differently.

5.6. Translating Environment Configuration into ISPL 71

Generating Evolution Rules

With the assignment semantics fixed, we can show the algorithm to generate the evolution rules from
the environment configuration.
Let us use the following notation to represent an evolution rule:

Definition 5.17 (Evolution Rules).

(mcmasCondition,mcmasV ar, value)

where mcmasCondition is defined in Definition 5.2, mcmasV ar is a local variable in ISPL, and value
is a value that is assigned to mcmasV ar if mcmasCondition holds.

We saw that the environment configuration rules specify the BeliefStore update using a condition on
the BeliefStore state, and a condition on the TeleoR action. Therefore we want to define a function
similar to toMCMASCond, but for the TeleoR actions rather than BeliefStore clauses.
Before doing so, consider that we might have a rule when the chosen agent take multiple actions.
These actions are executed in parallel[6]. We assume that these actions change different sets of facts,
as they must be using separate robotic resources for the actions to be executed concurrently. This
means that an environment configuration rule which specifies the BeliefStore update when an action
is taken should come into effect whenever a TeleoR action is a set of primitive actions which includes
it.
To define toMCMASCond for actions, we assume the following function:

Definition 5.18 (getMultipleActions). getMultipleActions is a function which takes a fully ground
action, and returns the set of values which represent the set of TeleoR actions which includes the given
action. For instance, given move(1), if there is a protocol rules which lead to {move(1), turn(1)} and
a rule with {move(1)}, then it returns {toV al({move(1), turn(1)}), toV al({move(1)})}.

In TRTIS, this is implemented by using a map from a single action to the set of action sets which is
computed while computing the protocol rules. Now define toEvolution, which translate the environ-
ment configuration rules to evolution rules.
Now we can define toMCMASCond for the TeleoR action. Let us extend getAllBindings in Defini-
tion 5.13 so that an action is treated the same as relational BeliefStore literals, and do similarly for
groundFully defined in Definition 5.14. Then we define toMCMASCond for the action of the agent,
and of the environment.

Definition 5.19 (toMCMASCondA, toMCMASCondE).

toMCMASCondA(A, θ) = (
∨

A′∈GA

∨
A′′∈MA(A′)

Agent 0.Action = A′′),

where GA = groundFully(A, θ),MA(A′) = getMultipleActions(A′)

toMCMASCondE(update) = (Environment.Action = update)

where A is a single action.

Regarding how we can translate the modifiers into assignments in the evolution rule of ISPL, consider
the following rule:

(definitely, trueSB, turn(1), ((forget, see()), (remember, see(box))))

72 Chapter 5. Implementation

where see can take either box or ball. We want this syntax to have semantics “when ever the agent
turn(1), then it forgets everything that it sees, then remember see(box)”. In other words, the rule is
equivalent to:

(definitely, trueSB, turn(1), ((forget, see(ball)), (forget, see(box))(remember, see(box))))

We can not express this straight-forwardly in ISPL as see(box) appears multiple times, therefore it
would be ambiguous whether in the next state see(box) would hold or not.
Instead, we need compute an equivalent set of ground modifiers to this list of ground modifiers, so no
fact appears multiple times. For instance, the above rule is equivalent of having:

(definitely, trueSB, turn(1), ((forget, see(ball)), (remember, see(box))))

Let us define a function to do so:

Definition 5.20 (toSet). toSet is a function which takes a binding and a list of modifiers, and returns
a set of modifiers which is equivalent to the given list fully grounded by the given binding. toSet does
so by first applying groundFully to the elements in the list to create a list of set of facts, then iterate
it backwards to take the latest occurrence of each fact.

Now we can define toEvolution as a function which returns the union of evolution rules computed
from definitely, maychange and dontflip rules.

Definition 5.21 (toEvolution). toEvolution is a function which takes the environment configuration
rules, and returns the set of evolution rules.

toEvolution(EC) ={e | (definitely, C,A,MS) ∈ EC, e ∈ toEvolution′((definitely, C,A,MS))}
∪ {e | (maychange, C,A, F) ∈ EC, e ∈ toEvolution′((maychange, C,A, F))}
∪ {(mc, var, val)

| f ∈ facts, 6 ∃(dontF lip, f) ∈ EC,G ∈ getAllGroundings(f), var = toV ar(G),

mc = toMCMASCondE(update), val ∈ {true,false}}

where

toEvolution′((definitely, C,A,MS)) =

{(mc, var, val) | θ ∈ getAllBindings′(C,A),M ∈ toSet(MS, θ),

mc = toMCMASCond(C, θ) and toMCMASCondA(A, θ),

(var, val) = toAssignment(M)}
toEvolution′((maychange, C,A, F)) =

{(mc, var, val) | θ ∈ getAllBindings′(C,A),

mc = toMCMASCond(C, θ) and toMCMASCondA(A, θ),

G ∈ groundFully(F, θ), var = toV ar(G), val ∈ {true, false}}
getAllBindings′(C,A) =

{θ | θ′ ∈ getAllBindings(C, {}), θ ∈ getAllGrounding(A, θ′)}

toAssignment((remember,M)) = (toV ar(M), true)

toAssignment((forget,M)) = (toV ar(M),false)

5.7. TeleoR Program as ISPL 73

5.6.2 Initial States Condition

The following function shows how the initial states condition is computed from the environment
configuration.

Definition 5.22 (toInitStatesCondition). toInitStatesCondition is a function which takes an en-
vironment configuration, and returns a MCMAS condition which specifies the initial states.

toInitStatesCondition(EC) =
∧

G∈GC
toMCMASCond(G)

where GC = {G | (init, C) ∈ EC, θ ∈ getAllBindings(C, {}),
G ∈ groundFully(C, θ)}

5.6.3 Fairness Conditions

The following is the function to produce the fairness condition from the environment configuration.

toPrevCond(L&C, θ) = (
∨

L′∈GL(L,θ)

groundPreviousToAtom(L′)) and toPrevCond(C, θ)

toPrevCond(L, θ) = (
∨

L′∈GC(L,θ)

groundPreviousToAtom(L′))

toFairness(EC) =

{!(toPrevCond(C, θ) and
∨

A′∈GA(A,θ)

groundPreviousToAtom(A′)) or (
∧

M∈toSet(MS,θ)

toAtom(M))

| eventually(C,A,MS) ∈ EC, θ ∈ getAllBindings′(C,A)}

where

GL(L, θ) = groundFully(L, θ)

GA(A, θ) = groundFully(A, θ)

getAllBindings′(C,A) = {θ | θ′ ∈ getAllBindings(C, {}), θ ∈ getAllGrounding(A, θ′)}
toAtom((remember, F)) = groundToAtom(F)

toAtom((forget, F)) =!groundToAtom(F)

Note that we utilise the equivalence ¬(A ∧B) ∨ C ≡ (A ∧B)→ C.

5.7 TeleoR Program as ISPL

We discussed algorithms to translate TeleoR procedures and environment configuration into compo-
nents in ISPL, in a rather formal way. This section aims to present a full view on how an ISPL
file that represents ISP should look like. We do this by looking at a toy example, and stating how
each component of ISPL is expected to be. This should provide a more concrete view of how TeleoR
procedures and environment configurations are translated. In addition, it should give a precise idea
on how the rest of ISP is represented in ISPL, as it is not as complex as to require a formal definition.
Note that toV al is assumed to be implemented so that it returns a string constructed from joining the
identifier and the arguments with “ ”, and toV ar is similar except that it is prefixed by the name of
the agent.

74 Chapter 5. Implementation

5.7.1 Example TeleoR Program

Let us define a toy TeleoR program which we use as an example in this section, the Spinning Agent,
which when facing right turns left, and when facing left turns right.

dir ::= left | right
percept

facing:(dir)
durative

turn:(dir)

task_start spin : ()
spin() {

facing(right) ∼> turn(left)
facing(_) ∼> turn(right)

}

Figure 5.5: Spinning Agent.

We use the following environment configuration as an example. It is rather contrived, but it should
illustrate how environment configurations should be translated.

INIT facing: facing(right);
facing(left) + turn(right) EVENTUALLY remember facing(right);
facing(right) + turn(_) DEFINITELY remember facing(left);
facing(X) + turn(X) MAYCHANGE facing(X);
DONTFLIP facing;

Figure 5.6: Environment Configuration for Spinning Agent.

5.7.2 Action

Environment

The only action that is possible of the environment agent in ISP is update.
Therefore the environment agent in the ISPL should have the following line, regardless of the input
TeleoR program or environment configuration:

Actions = {update};

Agent

The set of actions of the agent in ISP is a set of possible return values of its protocol function.
Concretely, the set of actions of the agent in the ISPL should be set up so that it lists all the used

5.7. TeleoR Program as ISPL 75

grounding of the actions that appear on the right hand side of the TeleoR rules. For instance, for the
Spinning Agent, we should have the following line in the agent:

Actions = {turn__left, turn__right};

If a TeleoR program includes a rule with empty action (), then Actions contains idle .

5.7.3 Local States

Environment

Recall that the local states of the environment agent in ISP is represented as a tuple (BS,LBS,LActs),
where BS is the current BeliefStore state, LBS is the previous BeliefStore state, and LActs is the
previous action.
With the environment configuration, the local variables of the environment should consists of the
following:

• a boolean variable to represent whether a dynamic fact is present in the current BeliefStore
state.

• a boolean variable to represent whether a dynamic fact was present in the previous BeliefStore
state.

• a variable which maintain the action that was just taken.

• a dummy boolean variable which we use to express true and false value, as (dummy = true)
or (dummy = false) and (dummy = true) and (dummy = false) respectively, as ISPL
does not have a built-in true false values.

For instance, given the Spinning Agent program shown in Figure 5.5, the local state of the environment
agent should be:

Vars:
agent__0__facing__left : boolean;
agent__0__facing__right : boolean;
prev__agent__0__facing__left : boolean;
prev__agent__0__facing__right : boolean;
agent__0__taken__action : {none, turn__right, turn__left };
dummy : boolean
end Vars

agent 0 taken action, in addition to a possible value for Agent 0.Action, contains none,
a value to which agent 0 taken action is set at the initial states.

Without the environment configuration, we do not need to keep track of the previous BeliefStore state
or the action which was just taken. Therefore the local state simplifies to:

Vars:
agent__0__facing__left : boolean;
agent__0__facing__right : boolean;
dummy : boolean

76 Chapter 5. Implementation

end Vars

Agent

Recall that the private local state of the agent is empty in ISP , and the agent observes the local
state of the environment. In MCMAS, local variables in the environment can be “seen” by the agent
by declaring them as local observable variables. As the agent does not actually use the previous
BeliefStore state or the action that was just taken in the evolution or the protocol, it suffices that it
observes only the local variables which are used to represent the current BeliefStore state. Therefore
the local state of the agent in the ISPL for the Spinning Agent would be:

Lobsvars = {agent__0__facing__left, agent__0__facing__right};
Vars:
dummy : boolean;
end Vars

5.7.4 Protocol

5.7.5 Environment

Recall that the local protocol function of the environment always returns “update”, its only action.
This can be expressed as follows:

Other : {update};

Agent

The set of protocol rules is computed using toMCMASProtocol(SP , 1), which is defined in Definition
5.16. As mentioned previously, the rules with md fail or nfr fail are not added to the declaration
of the protocol of the agent.
For example, the concrete implementation of toMCMASProtocol(spin, 1) should produce the follow-
ing rules:

(Environment.agent__0__facing__right) : {turn__left}
!(Environment.agent__0__facing__right = true)

and (Environment.agent__0__facing__right = true
or Environment.agent__0__facing__left = true) : {turn__right}

!(Environment.agent__0__facing__right = true)
and !(Environment.agent__0__facing__right = true
or Environment.agent__0__facing__left = true) : {nfr_fail}

Figure 5.7: Expected output of the concrete implementation of toMCMASProtocol(spin, 1).

Then the protocol function of the agent is defined in ISPL as:

5.7. TeleoR Program as ISPL 77

Protocol:
(Environment.agent__0__facing__right) : {turn__left}
!(Environment.agent__0__facing__right = true)

and (Environment.agent__0__facing__right = true
or Environment.agent__0__facing__left = true) : {turn__right}

end Protocol

Note that the condition of the second rule simplifies to Environment.agent 0 facing left =
true and Environment.agent 0 facing right = false.

5.7.6 Evolution

Environment

The evolution of the environment should consist of rules which updates the current BeliefStore states,
the previous BeliefStore states and the action which was just taken.
In ISP , the current BeliefStore state is updated using the next function. In the previous section
we defined the function toEvolution which takes an environment configuration and returns the rules
which are all together equivalent to next. The following is the set of rules which should be returned
by the concrete implementation of toEvolution for the Spinning Agent:

-- facing(right) + turn(_) DEFINITELY remember facing(left)
agent__0__facing__left = true
if (Agent__0.Action = turn__right or Agent__0.Action = turn__left)
and agent__0__facing__right = true;

-- facing(left) + turn(left) MAYCHANGE facing(left)
agent__0__facing__left = true
if Agent__0.Action = turn__left and agent__0__facing__left = true;
agent__0__facing__left = false
if Agent__0.Action = turn__left and agent__0__facing__left = true;

-- facing(right) + turn(right) MAYCHANGE facing(right)
agent__0__facing__right = true
if Agent__0.Action = turn__right and agent__0__facing__right = true;
agent__0__facing__right = false
if Agent__0.Action = turn__right and agent__0__facing__right = true;

The evolution also includes following rules to update the variables representing the previous BeliefStore
state.

prev__agent__0__facing__left = true if agent__0__facing__left = true;
prev__agent__0__facing__left = false if agent__0__facing__left = false;
prev__agent__0__facing__right = true if agent__0__facing__right = true;
prev__agent__0__facing__right = false
if agent__0__facing__right = false;

Finally, the evolution includes the rules to update the variable for the action just taken.

78 Chapter 5. Implementation

agent__0__taken__action = turn__left if Agent__0.Action = turn__left;
agent__0__taken__action = turn__right if Agent__0.Action = turn__right;

Note that if we had not had init rule for facing, the evolution would have also included the rules
presented below in Figure 5.8.

With empty environment configuration, the local variables of the environment agent are only those to
represent the current BeliefStore state. Reflecting that the user assumes a completely non-deterministic
environment, the evolution of the environment in the agent would be:

agent__0__facing__left = true if Action = update;
agent__0__facing__left = false if Action = update;
agent__0__facing__right = true if Action = update;
agent__0__facing__right = false if Action = update;

Figure 5.8: Expected evolution of Agent 0 in ISPL for the Spinning Agent without the environment
configuration.

Agent

The agent does not have anything in its private local state, therefore no evolution rule is necessary.
As ISPL does now allow an empty evolution, we should have dummy evolution rules which is the
following:

Protocol:
dummy = true if dummy = true;
dummy = false if dummy = false;

end Protocol

Clearly, this does not affect the verification.

5.7.7 Evaluation

In evaluation, one can declare the propositional atoms which can be used in Fairness and the specifi-
cation. For ISP recall we defined a valuation function VISP

. We want to define the atoms which are
the domain of VISP

. For atoms, for facts in the current BeliefStore, the previous BeliefStore and the
action which was just taken, it is quite straight-forward. For instance, the atom for facing(left) in
current and previous BeliefStore, and the atom which is true if and only if the action just taken was
turn(left) should be defined as follows:

agent__0__facing__left if Environment.agent__0__facing__left = true;
prev__agent__0__facing__left
if Environment.prev__agent__0__facing__left = true;
agent__0__taken__turn__left
if Environment.agent__0__taken__action = turn__left;

5.7. TeleoR Program as ISPL 79

The atoms for action that is going to be taken at the state are defined using the protocol rules produced
by toMCMASProtocol, including those for the erroneous states. The atoms for the action a is defined
as the conjugate of the conditions of all the protocol rules in the return value of toMCMASProtocol
whose action is a. If there is no protocol rule for a, then the atom is defined so it never holds.
Recall we saw the expected output of the concrete implementation of toMCMASProtocol in Figure
5.7. The evaluation for the current action should be:

agent__0__turn__left if (Environment.agent__0__facing__right = true);
agent__0__turn__right
if !(Environment.agent__0__facing__right = true)

and (Environment.agent__0__facing__right = true
or Environment.agent__0__facing__left = true)

agent__0__nfr_fail
if!(Environment.agent__0__facing__right = true)

and !(Environment.agent__0__facing__right = true
or Environment.agent__0__facing__left = true)

agent__0__md_fail
if Environment.dummy = false and Environment.dummy = true;

Note that this correctly represents that the agent may go to the error state if the agent is not facing
either left or right.

If there is no environment configuration, then only the atoms of the current BeliefStore state and the
action which is about to taken is defined.

5.7.8 Initial States

The condition which is imposed on initial states specifies that the previous BeliefStore is empty,
there was no previous action taken, and that the starting BeliefStore state is in init defined from the
environment configuration. Not to double up the number of states unnecessarily, it should also fix all
the dummy variables to true.
The concrete implementation of toInitStatesCondition should output:

-- INIT facing : facing(right)
agent__0__facing__right = true

Therefore, with the environment configuration, the ISPL for the Spinning agent is expected to have
the following:

InitStates
Agent__0.dummy = true
and Environment.dummy = true
and Environment.prev__agent__0__facing__left = false
and Environment.prev__agent__0__facing__right = false
and Environment.agent__0__taken__action = none
and Environment.agent__0__facing__right = true;
end InitStates

80 Chapter 5. Implementation

Without the environment configuration, only the conditions on the dummy variable should be present.

5.7.9 Fairness

The fairness condition is generated by toFairness. The expected fairness condition for the Spinning
Agent is:

Fairness
-- facing(left) + turn(right) EVENTUALLY remember facing(right)
!(prev__agent__0__facing__left and agent__0__taken__turn__right)
or agent__0__facing__right;
end Fairness

Chapter 6

Evaluation

In this chapter, we evaluate TRTIS by looking at some Single Bound Programs. We also aim to give
the reader a more concrete idea on how one may use TRTIS and MCMAS.

We first look at a small TeleoR program, Object Grabbing Agent, which turns around and grabs a
specified object. With this example, we want to show two things. One is that TRTIS behaves as
described in the previous chapters. We do this by looking at the actual output of TRTIS, with and
without the environment configuration. The other is that, for this small example, the environment
configuration rules are expressive enough. We do this by describing what would be a reasonable
assumption that one may make for such an agent, and express it with the environment configuration
rules.

Then we look at two larger TeleoR programs, Bottle Collecting Agent and Tower Building Agent,
which are simplified versions of “classic” TeleoR programs. Through these examples, we discuss
how the environment configuration rules that we have may be extended to express a more realistic
assumption of the environment.

With Tower Building Agent, we see how one can use TRTIS and MCMAS to debug TeleoR programs.
The advantage of using a model checker is that the model of the program is tested against every
possible execution. With TeleoR program, the debugging is normally done using an environment
simulator or Python robot shell, where the update of the BeliefStore is emulated. These techniques
in contrast, are incomplete, as it is not possible to check all possible situations.

Finally, we look at the performance of both TRTIS and MCMAS for these three examples, and briefly
discuss the user experience of TRTIS.

6.1 Object Grabbing Agent

We start the case studies by looking at Object Grabbing Agent, which turns around and grabs a
specified object.
First we see how the TeleoR program is defined for this agent. Then we see the output of TRTIS
without the environment as is described in the previous chapters, and run it against some specifications.
We then construct environment configuration rules, discussing what assumption could have been made
for the environment. Finally we compile an ISPL with the environment configuration rules, and discuss
how those rules are reflected as expected. We also show that the specification that could not be verified
before may be verified.

81

82 Chapter 6. Evaluation

6.1.1 TeleoR program

Below is the TeleoR program which defines Object Grabbing Agent.

dir::= left | right | centre
obj ::= box | ball

percept
see : (obj, dir),
holding : (obj)

durative
turn : (dir),
stop : ()

discrete
grab : (obj),
release : ()

get_object(X) {
holding(X) ∼> ()
not holding(X) & see(X, centre) ∼> grab(X)
not holding(_) ∼> face(X)
true ∼> release

}

face : (obj) ∼>
face(X) {

see(X, centre) ∼> ()
true ∼> turn(left)

}

task_start get_object : (obj)

As the starting task is get object, the top-goal of this agent is holding(X), where X should be
specified in a file with the option -c. If it does not hold but sees X in the centre, then the agent takes
a discrete action grab. If it is not the case that the agent is holding anything, then a procedure call
face is called, where the agent turns to the left until it sees the object it should grab. Otherwise,
the agent is not holding or facing the box and it is holding something else. Then the agent executes
release, which should leave the object.

6.1.2 Compiled ISPL with Non-deterministic Environment

We compile the program by running trtis input.qlg -c start task call.txt -o output.mas
-d 100, where start task call.txt contains a line box and nothing else.
The below is the resulting ISPL, where some more “obvious” bits are omitted for the clarity. We
observe how it corresponds to the original TeleoR program, and then we see which specification may
be and may not be verified on this program.

6.1. Object Grabbing Agent 83

Semantics = SA;
Agent Environment

Vars:
agent__0__see__ball__right : boolean;
agent__0__see__ball__centre : boolean;
agent__0__see__ball__left : boolean;
agent__0__see__box__right : boolean;
agent__0__see__box__left : boolean;
agent__0__see__box__centre : boolean;
agent__0__holding__ball : boolean;
agent__0__holding__box : boolean;
dummy : boolean;
end Vars

Actions = {update};

Protocol:
Other : {update};
end Protocol

Evolution:
(agent__0__see__box__centre = false) if (Action = update);
(agent__0__see__box__centre = true) if (Action = update);
....
end Evolution
end Agent

Agent Agent__0

Lobsvars = {agent__0__see__box__left,
....
agent__0__holding__ball};

Vars:
dummy : boolean;
end Vars

Actions = {turn__left, idle__, grab__box, release};

Protocol:
(Environment.agent__0__holding__box = true) : {idle__};

(!(Environment.agent__0__holding__box = true)
and !(Environment.agent__0__see__box__centre = true)
and (Environment.agent__0__holding__ball = true)) : {release};

(!(Environment.agent__0__holding__box = true)
and (Environment.agent__0__see__box__centre = true)) : {grab__box};

84 Chapter 6. Evaluation

(!(Environment.agent__0__holding__ball = true)
and !(Environment.agent__0__holding__box = true)
and !(Environment.agent__0__see__box__centre = true)): {turn__left};
end Protocol

Evolution:
dummy = true if dummy = true;
dummy = false if dummy = false;
end Evolution

end Agent

Evaluation
agent__0__see__ball__right

if Environment.agent__0__see__ball__right = true;
agent__0__idle__

if (Environment.agent__0__holding__box = true);
agent__0__turn__centre

if (Environment.dummy = false and Environment.dummy = true);
....
end Evaluation
InitStates
((Agent__0.dummy = true) and (Environment.dummy = true));
end InitStates

Environment Agent

The environment has a local variable for each instantiation of percepts and beliefs. The only action
that it has is update, and the protocol is such that it always selects its only action update. The
evolution of the environment agent is such that it has two rules for each local variable. They have
the same condition Action = update and one rule sets the local variable to true, and another to
false. This makes each local variable set to either true or false.

Agent 0

The Agent 0 agent on the other hand does not have a meaningful local variable and observes the
local variable of the environment, so it may use it in the protocol.
Agent 0 agent has four actions, representing the only four actions taken by Object Grabbing Agent
that runs get object(box), which are turn(left), (), grab(box) and release().
The protocol of the Agent 0 clearly corresponds to that of the source TeleoR program, and the
expected output described in the previous section; If the agent is holding box, then it goes idle. If it
is not holding the box yet it is already facing the box, grab the box. If it is not holding the ball or
the box, and it does not see the box right in front, then turn left. If the agent is not holding or facing
the box and it is holding something else, then releases whatever it is holding.

6.1. Object Grabbing Agent 85

Evaluation

Expectedly, the atoms are defined for the local variables of the environment and the action of the
agent. The atom for the action of the agent is defined with the condition of the protocol rules which
triggers it if there is any, and otherwise defined with false condition.

All in all ISPL is as expected, and correctly characterises Object Grabbing Agent in a completely
non-deterministic environment. We look at the following three specifications:

• AG(!agent 0 nfr fail)
In no reachable state agent 0 nfr fail holds. That is, it is not possible for Object Grabbing
Agent to be in the error state because it does not have a fireable rule.

• AG(!agent 0 md fail)
In no reachable state agent 0 md fail holds. That is, it is not possible for Object Grabbing
Agent to be in the error state because of call stack overflow.

• AF(agent 0 holding box)
From the initial state, whatever happens, agent 0 holding box holds at one point. That
is, the Object Grabbing Agent should achieve its top goal no matter what happens.

Running MCMAS

Running mcmas -c 3 box grabbing.mas gives the following output:

Checking formulae...
Verifying properties...

Formula number 1: (AG (! agent__0__nfr_fail)), is TRUE in the model
Formula number 2: (AG (! agent__0__md_fail)), is TRUE in the model
Formula number 3: (AF agent__0__holding__box), is FALSE in the model
The following is a counterexample for the formula:
< 0 0 >
States description:

------------- State: 0 -----------------
Agent Environment

agent__0__holding__ball = true
agent__0__holding__box = false
agent__0__see__ball__centre = true
agent__0__see__ball__left = false
agent__0__see__ball__right = false
agent__0__see__box__centre = false
agent__0__see__box__left = false
agent__0__see__box__right = true
dummy = true

Agent Agent__0
dummy = true

--

Expectedly, the first two properties hold. The third property however does not hold, as the environ-
ment is such that it is not affected by the action of an agent.

86 Chapter 6. Evaluation

6.1.3 Environment Configuration

Let us come up with a sensible assumption we may make about the environment, in which we expect
the agent to actually be able to grab the box. We see that these assumptions can be expressed with
the environment configuration rules.
We say that the environment is static, in a sense that it will not change without the agent doing
something. This can be expressed as DONTFLIP holding, see;
It is sensible to assume that there is actually a box for the robot to grab, and the turning speed of
the agent is slow enough that it can face it, as otherwise it is impossible for the agent to achieve its
top goal. In other words, if the agent keeps on turning to the left, eventually it should see the box in
the centre. This can be expressed as TRUE + turn(left) EVENTUALLY remember see(box,
centre);.
Let us assume that the gripper is functional enough that releasing the object should always succeed
and it drops everything it was holding, and grabbing the object right in front is always successful.
This can be expressed as a rule TRUE + release() DEFINITELY forget holding(); and
see(X, centre) + grab(X) DEFINITELY remember holding(X);
Summarising, we have the following four rules:

DONTFLIP holding, see;
TRUE + turn(left) EVENTUALLY remember see(box, centre);
TRUE + release() DEFINITELY forget holding(_);
see(X, centre) + grab(X) DEFINITELY remember holding(X);

6.1.4 Compiled ISPL with Configuration

Now let us compile an ISPL with the environment configuration rules, and confirm that the compiler
indeed outputs an ISPL reflecting the environment configuration. Then we run MCMAS on the ISPL
to see whether there is a flaw in the program.
Running trtis input.qlg -c start task call.txt -o output.mas -d 100 -e config.txt
where config.txt contains four rules described in the previous subsection outputs:

Semantics = SA;
Agent Environment
Vars:
agent__0__see__ball__right : boolean;
....
prev__agent__0__see__ball__right : boolean;
....
agent__0__taken__action

: {turn__left, idle__, grab__box, release, none};
end Vars

Actions = {update};

Protocol:
Other : {update};
end Protocol

Evolution:
(prev__agent__0__holding__box = false)

6.1. Object Grabbing Agent 87

if (agent__0__holding__box = false);
....
(agent__0__taken__action = turn__left)

if Agent__0.Action = turn__left;
....
(agent__0__holding__ball = false) if (Agent__0.Action = release);
(agent__0__holding__box = false) if (Agent__0.Action = release);
(agent__0__holding__box = true)

if ((Agent__0.Action = grab__box)
and (agent__0__see__box__centre = true));

end Evolution

end Agent

Agent Agent__0
-- Same as the ISPL compiled without the environment configuration rules
end Agent

Evaluation
prev__agent__0__see__box__centre

if Environment.prev__agent__0__see__box__centre = true;
....
end Evaluation
InitStates
(((Agent__0.dummy = true)

and (Environment.dummy = true))
and (Environment.prev__agent__0__see__box__centre = false)
...
and Environment.agent__0__taken__action = none);

end InitStates
Fairness
(!agent__0__taken__turn__left or agent__0__see__box__centre);
end Fairness

We highlight the difference between this ISPL and the ISPL compiled without the environment con-
figuration rules.

Environment Agent

The local state of the environment agent is expectedly augmented with local variables for the previous
BeliefStore state and the action which was just taken.
The evolution of the environment agent expectedly has new rules to support the semantics of the new
local variables. That is, the local variables with an identifier prev ID is updated with the value of
the local variable with the identifier ID, and agent 0 taken action is updated with the value
of Agent 0.Action.
In addition, the evolution of the environment agent is augmented with three evolution rules that are
derived from two DEFINITELY rules in the environment configuration. Specifically:

• TRUE + release() DEFINITELY forget holding();

88 Chapter 6. Evaluation

This rule adds:

(agent__0__holding__ball = false) if (Agent__0.Action = release);
(agent__0__holding__box = false) if (Agent__0.Action = release);

• see(X, centre) + grab(X) DEFINITELY remember holding(X)
This rule adds:

(agent__0__holding__box = true)
if ((Agent__0.Action = grab__box)
and (agent__0__see__box__centre = true));

As holding and see are declared in the DONTFLIP rule, the evolution of the environment does not
have rules that was seen in the ISPL compiled without the environment configuration.

Agent 0

This agent has no change from the one in the ISPL without the environment configuration.

Evaluation

The evaluation is correctly augmented with the definition of the atoms used to directly refer to the
new local variables.

Initial State

Terms are added to initialise all prev variables to false, and agent 0 taken action to none.

Fairness

There is one fairness condition which must hold infinitely often, added due to one EVENTUALLY rule.
Specifically:

• TRUE + turn(left) EVENTUALLY remember see(box, centre);
This rule adds:

(!agent__0__taken__turn__left or agent__0__see__box__centre);

which excludes the paths where the agent keeps on turning left without seeing the box in the
centre.

All in all, the produced ISPL is as specified in the previous chapter.

Running MCMAS

Running MCMAS, we verify that all three formulae holds for the ISPL with environment configuration,
thus we may conclude that the Object Grabbing Agent will hold the box without going to the error
state, under the assumption that we gave in the environment configuration file.

6.2. Bottle Collecting Agent 89

6.2 Bottle Collecting Agent

Now we look at the Bottle Collecting Agent, which is a simplified example from a literature[6]. With
this example, we see an environment configuration that we may write, and how we might want to
extend the rules so the assumption we make is not too strong.

6.2.1 TeleoR Program

dir::= left | centre | right
thing::= bottle | drop
distance ::= 1..10
angle ::= 1..5
percept

holding : (thing),
gripper_open : (),
next_to:(thing,dir),
see:(thing,dir)

discrete
open_gripper : (),
close_gripper : ()

durative
move:(distance),
turn:(dir,angle)

collect_bottle() {
next_to(drop,_) & next_to(bottle,_) & gripper_open ∼> ()
holding(bottle) ∼> deliver_bottle
true ∼> get_bottle

}

get_bottle : () ∼>
get_bottle() {

next_to(bottle, centre) & holding(bottle) ∼> ()
next_to(bottle,centre) & gripper_open ∼> close_gripper
gripper_open ∼> get_next_to(bottle)
true ∼> open_gripper

}

deliver_bottle : ()∼>
deliver_bottle(){

next_to(drop,_) & gripper_open ∼> ()
next_to(drop,_) ∼> open_gripper
true ∼> get_next_to(drop)

}

get_next_to:(thing)∼>
get_next_to(Th){

Th = bottle & next_to(bottle,centre) ∼> ()
Th = drop & next_to(drop,_) ∼> ()
Th = bottle & next_to(bottle,left) ∼> turn(left,2)

90 Chapter 6. Evaluation

Th = bottle & next_to(bottle,right) ∼> turn(right,2)
see(Th,_) ∼> approach(Th,5,1)
true ∼> turn(left,5)

}
approach:(thing,distance,angle)∼>
approach(Th,Fs,Ts){

see(Th,centre) ∼> move(Fs)
see(Th,left) ∼> move(Fs),turn(left,Ts)
see(Th,right) ∼> move(Fs),turn(right,Ts)

}
task_start collect_bottle : ()

The top goal of this agent is to put a bottle in the drop. This is expressed as being next to both
drop and the bottle. If the agent is holding the bottle, then it calls a procedure, deliver bottle,
otherwise it calls get bottle.
deliver bottle succeeds if the agent is next to the drop, and it has its gripper open. If it is next
to the drop and it does not have its gripper open, it opens the gripper. Otherwise, it calls a procedure
get next to.
get bottle succeeds if the agent is in front of and holding the bottle. If it is in front of the bottle
and not holding the bottle, it attempts to grab it. If it is not in front of the bottle, it calls a procedure
get next to.
In get next to, if the argument is the bottle, then the procedure succeeds if the agent faces it. If it
is the drop, then the procedure succeeds if it is next to it, in whatever direction. In order to face the
bottle, the agent would turn to the direction in a small step, so it does not lose the object from its
sight. If the agent sees the object and is not next to it, then it calls a procedure approach, which
tries to get next to the object by moving and turning around. Otherwise, it tries to look for the object
by turning around at a higher speed.

6.2.2 Environment Configuration

The following is an example environment configuration one may write for this program.

INIT : not holding(bottle)
% The environment is static and it does not change unless the agent
% does something.
DONTFLIP holding, gripper_open, see, next_to;

% Turning slowly, it should at one point sees the object
% right in the front.
see(Th, X) + turn(X, 1)

EVENTUALLY remember see(Th, centre); forget see(Th, X);

% If the agent is next to something, turning at the medium speed
% should allow the agent to face it at one point.
next_to(Th, X) + turn(X, 2) EVENTUALLY remember next_to(Th, centre);

6.2. Bottle Collecting Agent 91

% By turning at high speed, the agent might find something
% or lose something from its sight.
TRUE + turn(_, 5) MAYCHANGE see(_, _);

% The bottle and drop should be in the field
% where the agent may at some point find them by turning
% at high speed.
TRUE + turn(X, 5) EVENTUALLY remember see(bottle, X);
TRUE + turn(X, 5) EVENTUALLY remember see(drop, X);

% Unless the agent is not holding the object, the agent
% might move away / or get close to the object.
not holding(X) + move(_) MAYCHANGE next_to(X ,_);

% The gripper is functional enough that, if the agent
% is right in front of the bottle and it closes the gripper,
% it will definitely hold the bottle and recognise that
% the gripper is not open any more.
next_to(bottle, centre) + close_gripper

DEFINITELY remember holding(bottle); forget gripper_open;

% The gripper is functional enough that, opening the gripper
% would always result to dropping whatever it was holding,
% and the agent will recognise that the gripper is open.
TRUE + open_gripper

DEFINITELY forget holding(_); remember gripper_open;

% If we see the object in front and move straight,
% the agent should get right in front of it at some point
see(Th, centre) + move(5) EVENTUALLY remember next_to(Th, centre);

They are all fairly reasonable, except perhaps for the last rule. It is plausible that the agent sees the
object in front, but with some angle. If the agent moves straight, then it will probably get next to the
object, but either on its left or right. This can not be expressed with the environment configuration
we have. We would need to extend the syntax of the rules and the compiler to accept something along
the line of:

see(Th, centre) + move(5)
EVENTUALLY remember (next_to(Th, centre)
or next_to(Th, left)
or next_to(Th, right));

Similarly, it is plausible that by moving straight, the relative position of the object it sees changes.
For instance, if the agent sees the object in front and moves, then it might see the object to its left or
right. It may be useful to have a rule:

see(Th, centre) + move(5)

92 Chapter 6. Evaluation

MAYREPLACE see(Th, centre) WITH see(Th, left) or see(Th, right);

The model specified in the ISPL compiled with the above environment configuration satisfies the
following specifications:

• AG(!agent 0 nfr fail)
In no reachable state agent 0 nfr fail holds. That is, it is not possible for Bottle Collecting
Agent to be in the error state because it does not have a fireable rule.

• AG(!agent 0 md fail)
In no reachable state agent 0 md fail holds. That is, it is not possible for Bottle Collecting
Agent to be in the error state because of call stack overflow.

• AF((agent 0 next to bottle centre or agent 0 next to bottle left or
agent 0 next to bottle right) and (agent 0 next to drop centre
or agent 0 next to drop left or agent 0 next to drop right)
and agent 0 gripper open);
From the initial state, whatever happens, Bottle Collecting Agent will be next to both the bottle
and the drop in some direction, and has its gripper open. That is, the Object Grabbing Agent
should achieve its top goal no matter what happens.

6.3 Tower Building Agent

6.3.1 TR Program

tab ::= table | floor
block ::= a | b | c
loc ::= block | tab
belief

holding:(block),
on:(block, loc),
over : (loc)

discrete
grab:(block),
move_over:(loc),
release:()

task_start tower : ()
tower() {

on(a,b) & on(b, c) & on(c, table) ∼> ()
on(b,c) & on(c, table)

& not on(_, a) & not on(_, b) & holding(a) ∼> place(a, b)
on(b,c) & on(c, table)

& not on(_, a) & not on(_, b) & not holding(_) ∼> grab(a)
on(c, table) & not on(_, c)

& not on(_, b) & holding(b) ∼> place(b, c)
on(c, table) & not on(_, c)

& not on(_, b) & not holding(_)∼> grab(b)
true ∼> putAllOnTable()

6.3. Tower Building Agent 93

}

putAllOnTable : () ∼>
putAllOnTable() {

on(a, table) & on(b, table) & on(c, table) ∼> ()
holding(a) ∼> place(a, table)
holding(b) ∼> place(b, table)
holding(c) ∼> place(c, table)
on(a, X) & not on(_, a) & X \= table ∼> grab(a)
on(b, X) & not on(_, b) & X \= table ∼> grab(b)
on(c, X) & not on(_, c) & X \= table ∼> grab(c)

}

place : (block, loc) ∼>
place(Block, Loc) {

not holding(Block) & on(Block, Loc) ∼> ()
holding(Block) & over(Loc) ∼> release()
holding(Block) ∼> move_over(Loc)

}

The top-goal of this agent is to build a tower with blocks on the table, where block ‘a’ is at the top,
then followed by block ‘b’ in the middle, and block ‘c’ is at the bottom.
In order to do so, the agent accumulates the block from ‘c’. If the blocks are arranged in a way that
there is no sub tower, then the agent puts all the blocks on the table first, and then starts building
the tower.

6.3.2 Environment Configuration

One possible environment configuration is presented below.

% The environment is static
DONTFLIP holding, on, over;

% The initial configuration of the blocks
% b
% a
% c
% ----

INIT on : on(b, a), on(a, c), on(c, table)
, not on(_, floor)
, not on(_, b)
, not on(b, c), not on(b, table), not on(b, b)
, not on(a, b), not on(a, a), not on(a, table)
, not on(c, c), not on(c, a), not on(c, b);

% At start, the agent is not holding anything
INIT holding: not holding(_);

94 Chapter 6. Evaluation

% If there is nothing on X, and the agent is not holding
% anything, grabbing X will succeed
% and the agent holds X, and X is not on anything.
not on(_, X) & not holding(_) + grab(X)

DEFINITELY remember holding(X); forget on(X, _);

% If there is nothing on Loc, moving over eventually
% allow the agent to be directly above Loc
not on(_, Loc) + move_over(Loc)

EVENTUALLY forget over(_); remember over(Loc);

% If there is nothing on the block, then move_over
% may make the agent be above it, or
% may move the agent away from the block
not on(_, a) & not holding(a) + move_over(_)

MAYCHANGE over(a);
not on(_, b) & not holding(b) + move_over(_)

MAYCHANGE over(b);
not on(_, c) & not holding(c) + move_over(_)

MAYCHANGE over(c);

% By moving over, the agent may move away
% or move over the table.
TRUE + move_over(_) MAYCHANGE over(table);

% The gripper of the agent is functional enough that,
% if the agent holds the block and directly above
% the location, releasing the block put it on
% the location, and the agent does not hold the block
% any more.
holding(Block) & over(Loc) + release

DEFINITELY forget holding(Block); remember on(Block, Loc);

In environment configuration rules, we can to a good extent talk about the property of each action.
However, we cannot do so about the dynamic facts. For instance, it would have been useful to be
able to express “A block can not be on itself”, or “Two blocks can not be on the same block”. As we
can not convey this, we can not test on all initial states, where blocks are arranged in a reasonable
manner. It requires manually changing the INIT rule for on.

6.3.3 Debugging the TeleoR program

We see how we can utilise TRTIS and MCMAS to debug TeleoR programs. Conventionally, one
may test TeleoR programs by running against the environment simulator, or interacting with the
agent through Python robot shell, from which one can update the BeliefStore of the agent[6]. These
techniques are time-consuming and not thorough, as it is hard, if not impossible, to consider all
possible sequences of updates in the BeliefStore.
Using TRTIS and MCMAS on the other hand, given that we have the environment configuration rules

6.3. Tower Building Agent 95

which correctly characterise the environment, is automatic and it is guaranteed to be complete. In
this subsection, we see how one might debug the TeleoR program.

We compile ISPL with the configuration rules presented in the previous subsection, and run MCMAS
against the following specifications:

• AG(!agent 0 nfr fail)
In no reachable state agent 0 nfr fail holds. That is, it is not possible for Tower Building
Agent to be in the error state because it does not have a fireable rule.

• AG(!agent 0 md fail)
In no reachable state agent 0 md fail holds. That is, it is not possible for Tower Building
Agent to be in the error state because of call stack overflow.

• AF(agent 0 on a b and agent 0 on b c and agent 0 on c table)
From the initial state, whatever happens, the Tower Building Agent builds the tower with ‘a’
on the top, then ‘b’, and finally ‘c’ at the bottom. That is, the Tower Building Agent should
achieve its top goal no matter what happens.

Running mcmas -c 3 tower building.mas outputs:

Verifying properties...
Formula number 1: (AG (! agent__0__nfr_fail)), is TRUE in the model
Formula number 2: (AG (! agent__0__md_fail)), is TRUE in the model
Formula number 3: (AF ((agent__0__on__a__b && agent__0__on__b__c)
&& agent__0__on__c__table)), is FALSE in the model
The following is a counterexample for the formula:
< 0 1 2 3 2 >
States description:

------------- State: 0 -----------------
Agent Environment

agent__0__on__a__c = true
agent__0__on__b__a = true
agent__0__on__c__table = true
agent__0__over__a = true
agent__0__over__floor = true
agent__0__over__table = true
agent__0__taken__action = none

...
--
------------- State: 1 -----------------
Agent Environment
agent__0__holding__b = true
agent__0__on__a__c = true
agent__0__on__c__table = true
agent__0__over__a = true
agent__0__over__floor = true
agent__0__over__table = true
agent__0__taken__action = grab__b

...
--
------------- State: 2 -----------------

96 Chapter 6. Evaluation

Agent Environment
agent__0__on__a__c = true
agent__0__on__b__a = true
agent__0__on__b__floor = true
agent__0__on__b__table = true
agent__0__on__c__table = true
agent__0__over__a = true
agent__0__over__floor = true
agent__0__over__table = true
agent__0__taken__action = release

...
--
------------- State: 3 -----------------
Agent Environment

agent__0__holding__b = true
agent__0__on__a__c = true
agent__0__on__c__table = true
agent__0__over__a = true
agent__0__over__floor = true
agent__0__over__table = true
agent__0__taken__action = grab__b

...
--

Note that it is modified so that local variable start with prev is omitted, and only the local variables
of the environment agent whose value is true is shown.
We can see what the problem is in the state 2 and the state 3, which alternate to each other forever.
At the state 3, we notice that the agent executes release to put the block ‘b’ on the table. As the
agent is in between multiple objects including the table when doing so, in the state 2, the block is on
floor, table, and block ‘a’.
Though it is arguable that this particular path is possible in the actual environment, one would notice
that with this program it is possible that the block the agent puts might be placed on two blocks,
which is undesirable. To mitigate this problem, we change the procedure place to the following.

place : (block, loc) ∼>
place(Block, Loc) {

not holding(Block) & on(Block, Loc) ∼> ()
holding(Block) & over(Other) & Other \= Loc ∼> move_over(Loc)
holding(Block) & over(Loc) ∼> release()
holding(Block) ∼> move_over(Loc)
true ∼> grab(Block)

}

With this modification, the agent will continue to move if it is in between multiple objects, until it is
directly above one object.
By running MCMAS against the new ISPL, we see that the model indeed satisfies all the specifications.

6.4. Performance 97

6.4 Performance

In this section we present the performance of TRTIS and MCMAS for the agents presented so far.
We also present a performance measure on what we call Bottle Collecting Agent 2, which has the
same TeleoR program as Bottle Collecting Agent, but have an environment configuration with one
line changed, such that is dontFlip rule only has holding and gripper open.

We compile these agents with and without the environment configuration, and verify three specification
formulae we discussed in the respective case studies. We measure the performance on 64-bit Ubuntu
14.04 Linux machine with a 3.40GHz Intel Core i7-3770 processor and 15.9GiB RAM. The execution
time presented is the average of 1000 iterations.

TeleoR program TRTIS compilation time(seconds)

Object Grabbing 0.4552

Bottle Collecting 2.2896

Tower Building 3.6585

Table 6.1: Mean TRTIS compilation time without environment configuration.

TeleoR program TRTIS compilation time(seconds)

Object Grabbing 0.5090

Bottle Collecting 2.0126

Bottle Collecting 2 1.8955

Tower Building 3.7674

Table 6.2: Mean TRTIS compilation time with environment configuration.

TeleoR program reachable states memory(MB) execution time(seconds)

Object Grabbing 256 ≈ 9.0 0.0041

Bottle Collecting 32768 ≈ 9.1 0.0057

Tower Building 8.38861e+06 ≈ 9.8 0.0277

Table 6.3: MCMAS benchmark without environment configuration.

TeleoR program reachable states memory(MB) execution time(seconds)

Object Grabbing 512 ≈ 9.2 0.0169

Bottle Collecting 79872 ≈ 11.8 0.2372

Bottle Collecting 2 1.0068e+08 ≈ 11.3 0.1401

Tower Building 432 ≈ 10.8 0.5055

Table 6.4: MCMAS benchmark with environment configuration.

With or without the environment configuration, the compilation time of TRTIS is within a reasonable
range. Surprising enough, the compilation time do not change much with environment configuration.
This is probably because the execution time is mainly spent by toMCMASProtocol the most heavy
weight function in TRTIS, and the time spent on additional task of generating additional components
such as fairness condition is almost negligible.

During the development, we realised the execution time of toMCMASProtocol, in Definition 5.16,
gets influenced by how often the boolean expressions of protocol rules are simplified. We use a

98 Chapter 6. Evaluation

jbool expression library[32] to represent MCMAS condition terms. Recall in toMCMASProtocol the
expression gets accumulated as we go deeper in the call sequence, and as we go to the later rules in the
procedure. If we reduce the expression as we add terms to it, the compilation time gets unacceptably
long, sometimes going over a minute for the TeleoR programs we presented in this chapter. Therefore
we reduce the expression only once, at the end, and never do so while we are accumulating the
expression.
However we realised that for some programs, without an intermediate simplification, the size of the
expression gets too big and goes over java heap size. Clearly, we need to find a good middle ground,
or consider an alternative approach.

MCMAS executes very quick for all the agents. The execution time does not seem to grow in proportion
to the number of states. Bottle Collecting Agent 2 has by far the largest reachable states, but its
execution time is not the longest. It does more seem to be the case that the execution time is correlated
to the memory usage, however Tower Building Agent has a significantly longer execution time than
other agents has smaller memory use and smaller number of reachable states.

In general, the number of reachable state is higher with environment configuration. This may seem
counter-intuitive, but this is because without the environment configuration, there is only one state
per possible BeliefStore state, whereas there are multiple state with the same BeliefStore state, with
possible different previously taken action or the previous BeliefStore states.

6.5 User Experience

When the user input an illegal program, depending on the errors, the feedback from the compiler may
or may not be helpful. The compiler can inform the user if for instance:

• There is an ambiguous rule.

• There is a circular dependency among the user-defined types.

• The starting task is not specified.

However, as ANTLR grammar we use for TRTIS is based on EBNF grammar of TeleoR[31], it does
not reject a TeleoR program that is not a Single Bound Program. This should be improved by cleaning
up the ANTLR grammar so it only accepts Single Bound Program.

6.6 Summary

In this chapter, we saw three Single Bound Programs. With Object Grabbing Agent, we saw the
actual behaviour of TRTIS, which was explained in the previous chapters. We also saw that for this
simple program, the environment configuration rule we have is good enough.

With Bottle Collecting Agent and Tower Building Agent, we discussed how we need to make a strong
assumption on the environment, as the environment configuration rule is not expressive enough. Ex-
tending the environment configuration rules such that one may describe the environment fully would
be an appropriate extension to this project.

Using Tower Building Agent as an example, we saw how one can debug a TeleoR program with TRTIS
and MCMAS. Compared to conventional testing using the environment simulator or the Python agent

6.6. Summary 99

shell, TRTIS and MCMAS have the advantage of being completely automatic and thorough, given an
appropriate environment configuration.

Finally, we saw the performance of TRTIS and MCMAS on these three programs. The performance
was good for the agents presented in this chapter. However we discussed that dealing with boolean
expressions becomes the bottleneck with TeleoR procedures with more rules and higher call depth,
therefore we need to have a better strategy around it.

Chapter 7

Conclusion

7.1 Summary of Work

Our goal was to present a mechanism of automating the verification of teleo-reactive program. This
project successfully presented a promising methodology to do so; it involves formalising the semantics
of TeleoR program as a model that can be verified by a model checker, and devising a compiler that
outputs a corresponding model to the input TeleoR program.

We also presented the formalisation of the semantics of Single Bound Program as an interpreted
system. This formalisation is mathematically proved to be correct, therefore the future work to
support a larger class of programs can be confidently based on this.

We presented environment configuration rules which can be used to avoid verifying a program against
unreasonably hostile environments. We evaluated their expressivity by looking at some actual TeleoR
program, and how they may be extended.

We specified and implemented the compiler which translates TeleoR into ISPL. Though the perfor-
mance and the class of programs it can verify is limited, the behaviour is as expected. The algorithms
presented can be reused and extended for future work. We also saw that the compiler can be useful
to debug Single Bound Program.

All in all, we believe that this project can be a good foundation for this field which is yet to be
cultivated further.

7.2 Future Work

We hope that this work could be a solid basis on which future works may be based. The following is
a list of possible extensions of this project:

• Support multiple robotic agents.
As mentioned previously, in teleo-reactive programming, multiple agents may be specified to
collaboratively achieve a common goal. We considered supporting the scenarios of multiple
robotic agents, each of them running as a separate process, by simply composing the agents
produced by TRTIS. However we did not have enough time to think thoroughly on how we
could faithfully represent their collaboration. There are two ways these agents may interact.
One is by messaging with each other. This requires extending the compiler so it may support

100

7.2. Future Work 101

user defined action. The other is an “implicit interaction via dynamic fact about each other.
For instance in the example program in Qulog distribution[8], agents makes an action when it
sees the other agent. We were uncertain how we could represent a reasonable environment with
such an “implicit interaction. One possible way of achieving this is to allow the user to specify
certain percepts to be shared. For instance, it might make sense to have all the agents know
which agent is next to a certain object. This way we may express that, if an agent sees the
object, then it sees the agent next to it as well.

• Support a bigger class of TeleoR.
We mentioned that TeleoR, or more precisely Qulog, is Turing-complete. Therefore it is impos-
sible to have an automatic verification on the whole class of TeleoR. However there are various
features that one may support, which we could not do so as there was no formal semantics
available to us until the very end of the project. We believe that otherwise it would have been
interesting to support:

– Multi-tasking with multiple evaluator threads, which synchronise with each other on the
shared resources

– until / while rules

– User-defined relation, function and action, avoiding Turing-complete fraction

• Extend environment configuration rules.
The environment configuration would be optimal if one could express the exact assumption of
the environment. Therefore the richer the environment configuration rules are, the better it is.
We discussed some ways they can be extended, such as

– MAYREPLACE
Rules which specify that taking an action may replace some facts with other facts.

– Rules that describe properties of the dynamic facts
In a way, environment configuration rules we have give some semantics to the actions. Then
it might be beneficial to have rules which describes a properties of the dynamic facts. For
instance, it would be convenient to be able to express that some facts are mutually exclusive
such as on(a, b) and on(b, a), which say that both block a and b are on top of each other.

Bibliography

[1] N. J. Nilsson, “Teleo-reactive programs for agent control,” JAIR, vol. 1, pp. 139–158, 1994.

[2] N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,” Computer, vol. 26,
no. 7, pp. 18–41, 1993.

[3] K. L. Clark and P. J. Robinson, “Robotic agent programming in TeleoR,” in Proceedings of
International Conference on Robotics and Automation, pp. 5040–5047, IEEE, 2015.

[4] “Related publications.” http://teleoreactiveprograms.net/?page_id=10. Accessed:
04-06-2016.

[5] K. L. Clark and P. J. Robinson, “Multi-tasking robotic agent programming in teleor,”

[6] K. L. Clark and P. J. Robinson, “Programming Robotic Agents : A Teleo-
Reactive Multi-Tasking Approach.” http://teleoreactiveprograms.net/wp-content/
uploads/2014/08/BookSample26-11-14.pdf. Accessed: 03-01-2016.

[7] K. Broda, K. Clark, R. Miller, and A. Russo, “SAGE: a logical agent-based environment monitor-
ing and control system,” in Proceedings of European Conference of Ambient Intelligence, pp. 112–
117, Springer, 2009.

[8] P. J. Robinson, “The Qulog/TeleoR 0.4 Reference Manual.” http://staff.itee.uq.edu.
au/pjr/HomePages/QulogFiles/manual/index.html. Accessed: 03-01-2016.

[9] A. Lomuscio and F. Raimondi, “Model checking knowledge, strategies, and games in multi-agent
systems,” in Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems, pp. 161–168, ACM, 2006.

[10] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision diagrams,” ACM
Computing Surveys (CSUR), vol. 24, no. 3, pp. 293–318, 1992.

[11] M. Huth and M. Ryan, Logic in Computer Science: Modelling and reasoning about systems.
Cambridge University Press, 2004.

[12] E. Clarke, “The birth of model checking,” 25 Years of Model Checking, pp. 1–26, 2008.

[13] A. Lomuscio and F. Raimondi, “MCMAS: A model checker for multi-agent systems,” in Proceed-
ings of Tools and Algorithms for the Construction and Analysis of Systems, vol. 3920, pp. 450–454,
Springer, 2006.

[14] D. Bliosi, “An introduction to Alternating-time Temporal Logic.” http://www.dis.
uniroma1.it/˜bloisi/didattica/apprendimento0809/atl.pdf. Accessed: 26-01-
2016.

[15] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time temporal logic,” Journal of the
ACM (JACM), vol. 49, no. 5, pp. 672–713, 2002.

102

http://teleoreactiveprograms.net/?page_id=10
http://teleoreactiveprograms.net/wp-content/uploads/2014/08/BookSample26-11-14.pdf
http://teleoreactiveprograms.net/wp-content/uploads/2014/08/BookSample26-11-14.pdf
http://staff.itee.uq.edu.au/pjr/HomePages/QulogFiles/manual/index.html
http://staff.itee.uq.edu.au/pjr/HomePages/QulogFiles/manual/index.html
http://www.dis.uniroma1.it/~bloisi/didattica/apprendimento0809/atl.pdf
http://www.dis.uniroma1.it/~bloisi/didattica/apprendimento0809/atl.pdf

BIBLIOGRAPHY 103

[16] A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A model checker for the verification of multi-
agent systems,” in Proceedings of Computer Aided Verification, pp. 682–688, Springer, 2009.

[17] A. Lomuscio and M. Sergot, “On multi-agent systems specification via deontic logic,” in Intelligent
Agents VIII, pp. 86–99, Springer, 2001.

[18] “MCMAS v1.2.2: User Manual.” http://vas.doc.ic.ac.uk/downloads/manual.pdf.
Accessed: 27-01-2016.

[19] B. Dongol, I. J. Hayes, and P. J. Robinson, “Reasoning about goal-directed real-time teleo-reactive
programs,” Formal Aspects of Computing, vol. 26, no. 3, pp. 563–589, 2014.

[20] I. Boureanu, M. Cohen, and A. Lomuscio, “Automatic verification of temporal-epistemic proper-
ties of cryptographic protocols,” Journal of Applied Non-Classical Logics, vol. 19, no. 4, pp. 463–
487, 2009.

[21] “Prolog.” https://en.wikipedia.org/wiki/Prolog. Accessed: 01-05-2016.

[22] I. Hodkinson, “C499: Modal and temporal logic.” University Lecture, Department of Computing,
Imperial College London, 2016.

[23] “IntelliJ IDEA.” https://www.jetbrains.com/idea/. Accessed: 01-05-2016.

[24] “A Tour of Scala.” http://docs.scala-lang.org/tutorials/tour/tour-of-scala.
html. Accessed: 04-05-2016.

[25] “Different ways to create and populate Lists in Scala.” http://alvinalexander.com/
scala/different-ways-create-populate-list-scala-cookbook-range-nil-cons.
Accessed: 04-05-2016.

[26] “ANTLR.” http://www.antlr.org/. Accessed: 01-05-2016.

[27] P. J. Robinson, “Qu-Prolog.” http://staff.itee.uq.edu.au/pjr/HomePages/
QuPrologHome.html. Accessed: 01-05-2016.

[28] “Beaver.” http://beaver.sourceforge.net. Accessed: 08-05-2016.

[29] “JavaCC.” https://javacc.java.net. Accessed: 08-05-2016.

[30] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[31] P. J. Robinson, “EBNF grammar for Qulog.” http://staff.itee.uq.edu.au/pjr/
HomePages/QulogFiles/manual/EBNF-Grammar-for-Qulog.html. Accessed: 01-05-
2016.

[32] “jbool expression library.” https://github.com/bpodgursky/jbool_expressions. Ac-
cessed: 08-06-2016.

http://vas.doc.ic.ac.uk/downloads/manual.pdf
https://en.wikipedia.org/wiki/Prolog
 https://www.jetbrains.com/idea/
 http://docs.scala-lang.org/tutorials/tour/tour-of-scala.html
 http://docs.scala-lang.org/tutorials/tour/tour-of-scala.html
 http://alvinalexander.com/scala/different-ways-create-populate-list-scala-cookbook-range-nil-cons
 http://alvinalexander.com/scala/different-ways-create-populate-list-scala-cookbook-range-nil-cons
http://www.antlr.org/
 http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html
 http://staff.itee.uq.edu.au/pjr/HomePages/QuPrologHome.html
http://beaver.sourceforge.net
https://javacc.java.net
http://staff.itee.uq.edu.au/pjr/HomePages/QulogFiles/manual/EBNF-Grammar-for-Qulog.html
http://staff.itee.uq.edu.au/pjr/HomePages/QulogFiles/manual/EBNF-Grammar-for-Qulog.html
https://github.com/bpodgursky/jbool_expressions

	Abstract
	Acknowledgements
	Introduction
	Objectives
	Challenges
	Contributions

	Background
	TeleoR
	Basic Components in TeleoR
	Type Definitions
	Qulog Type Declarations
	Correctness of a Teleo-reactive Program
	Operational Semantics of Standard TeleoR
	TeleoR Single Task Evaluation Algorithm

	MCMAS
	Model Checking
	Kripke Model
	Interpreted System
	Ordered Binary Decision Diagram
	Specification Languages
	Computational Tree Logic
	ISPL Syntax

	Related Works

	MAS models for Single Bound Programs
	Turing Completeness of TeleoR
	Definition of a Single Bound Program
	Single Bound Programs as Transition system P.
	Functions defining BeliefStore Updates
	Modification to Evaluation States
	Transition System

	Single Bound Program P as Interpreted System ISP
	Local States of the Environment Agent
	Local States of the Agent
	Actions of the Environment Agent
	Actions of the Agent
	Local Protocol Function of the Environment Agent
	Local Protocol Function of the Agent
	Local Evolution Function of the Environment Agent
	Local Evolution Function of the Agent
	Initial States

	Correctness of the Mapping
	Valuation Function
	Bisimulation
	Proof

	Summary

	Specifying a Reasonable Environment
	What Could We Know About The Environment?
	Percept Handlers
	Attached Qulog Action

	Environment Configuration
	Wish List
	Limitation of Specification Languages
	Formal Definition of Environment Configuration
	Semantics of Environment Configuration on ISP

	Summary

	Implementation
	Java
	ANTLR
	Other Input Files
	Starting Task Information
	Environment Configuration

	Collecting the Type Information
	Type Definition
	Type Declaration

	TeleoR Procedures as Protocol Rules
	Notation
	Condition to Fire a TeleoR Rule as ISPL
	Protocol Generation Algorithm

	Translating Environment Configuration into ISPL
	Evolution Rules
	Initial States Condition
	Fairness Conditions

	TeleoR Program as ISPL
	Example TeleoR Program
	Action
	Local States
	Protocol
	Environment
	Evolution
	Evaluation
	Initial States
	Fairness

	Evaluation
	Object Grabbing Agent
	TeleoR program
	Compiled ISPL with Non-deterministic Environment
	Environment Configuration
	Compiled ISPL with Configuration

	Bottle Collecting Agent
	TeleoR Program
	Environment Configuration

	Tower Building Agent
	TR Program
	Environment Configuration
	Debugging the TeleoR program

	Performance
	User Experience
	Summary

	Conclusion
	Summary of Work
	Future Work

	Bibliography

