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Abstract

Modern image capturing and processing devices have relatively high power con-
sumption and low frame rate. Cellular Processor Arrays (CPA) are new imaging
devices with parallel Single Instruction Multiple Data (SIMD) computational capa-
bilities built into every pixel. This enables massive pixel-parallel execution of image
processing algorithms. Additionally, since CPAs are based on analogue technology,
they consume less power compared with digital cameras. While rudimentary image
processing algorithms have been shown on CPA, to the best of our knowledge, no
one has so far ported higher level Computer Vision algorithms to CPA. This thesis
presents novel methods for camera pose estimation and automatic filter kernel code
generation on CPA.

Two main contributions are presented in this thesis. First, two 2DoF Visual
Odometry algorithms based on a sum-of-absolute-difference approach are presented,
along with a novel, tiling-based, 4DoF Visual Odometry system. The pose estimation
algorithms have been shown to work at high frame rates up to 10,000 fps while
consuming 1.23 W of power. The second and main contribution is the theoretic con-
ception and implementation of an automatic code generation system that is capable
of automatically generating programs to implement filter kernels on CPA hardware.
A Viola-Jones based face detector has been implemented to show that one can port
higher level Computer Vision algorithms to CPA.
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Chapter 1

Introduction

Conventional image processing systems consist of multiple distinct hardware com-
ponents. The image gets captured by a digital camera before being transferred over
a bus to the systems main memory. It is only after the image has been transferred
that image processing algorithms can be applied. These algorithms usually run on
CPUs, special purpose signal processors and on more parallel hardware architectures
like GPUs or FPGAs.

While contemporary hardware bus and memory systems are easily capable of
performing this task in real-time, data rates become a problem at high frame rate
applications. For example, a 256x256 sensor, with 8 bits of resolution per pixel
would require a bus capable of a data rate of 6.5 GB/s (Carey et al. (2012)), running
at 100,000 fps. Simpler image processing algorithms like filtering can generally be
done in real-time. However, there are more complex algorithms like object detection,
convolutional neural networks or Simultaneous Localisation and Mapping (SLAM)
algorithms that do not scale to real-time performance or require complex, energy
intensive hardware.

This energy overhead especially poses difficulties to implement such systems
into embedded, energy-limited devices. Cellular Vision Chip, such as the ACE400
(Dominguez-Castro et al. (1997)), ACE16K (Linan et al. (2002)), MIPA4K, (Poiko-
nen et al. (2009)) and the various iterations of the SCAMP chip (Dudek and Hicks
(2005), Dudek (2005), Dudek (2003), Carey et al. (2013)) try to address this prob-
lem by shifting image processing from a dedicated processing unit onto the image
sensors focal plane.

Since image processing is done right on the chip in a pixel parallel fashion, the
vision sensor can output preprocessed abstract information. This information can
take on the form of position of features, subsampled flow vectors, pixels that changed
etc. Since full video frames do not need to be transferred the requirements on the bus
and memory system get relaxed. This can significantly reduce power consumption.

Unlike traditional computers, most of the chips mentioned above store the cap-
tured and intermediate images as analogue instead of digital values. Arithmetic
operations are carried out directly on analogue values. The reasoning behind this is
an effort to increase speed while keeping area and power dissipation at a minimum
as argued by (Dudek and Hicks (2000))

In this thesis, we are mainly going to focus on the latest iteration of the SCAMP

1



Chapter 1. Introduction

chip, the SCAMP-5 (Carey et al. (2013)).

The thesis has two main focuses, the first one being pose estimation (Visual
Odometry). In Visual Odometry, we try to estimate the camera’s ego motion solely
based on analysing a stream of video frames. To be usable in a real-world appli-
cation, these systems have to work in real-time. Generally, we are not interested
in storing the video frames for later use. Estimating the pose right on the image
sensor and only reporting the pose vectors to the host system can greatly reduce the
hardware requirements on bus, memory and host processor. This makes the problem
especially well-suited to be implemented on cellular processor arrays.

The second main focus of this thesis lies in the fact that cellular processor arrays
have a vastly different design than ordinary CPUs and GPUs. Having large number of
processors with only very rudimentary capabilities in operations and I/0, requires a
very different style of programming. It turns out that a lot of image processing algo-
rithms can be reduced to the application of convolutional kernels. In the meantime,
performing an arbitrary convolutional kernel on the cellular processor array requires
significant effort in coding and optimisation. The second and most important part
of this thesis is devoted to the automatic generation of fast, correct code that im-
plements the desired convolutional kernel. A novel algorithm has been proposed
that works backwards from the desired result to the initial state in order to find a
good program for the kernel. Furthermore, an application of the code generation
algorithm is shown by the implementation of a Viola and Jones (2001) based face
detector.

The rest of the thesis is organised as follows:

1. Chapter 1, Introduction contains a short overview of the chapters to come.

2. Chapter 2, Background introduces all the relevant concepts required to under-
stand the rest of the thesis, as well as points the reader into the right direction
to find further resources.

3. Chapter 3, Pose Estimation Introduces two novel 2DoF Visual Odometry al-
gorithms designed for CPA hardware. In addition to that, a novel tiling-based
four degrees of freedom algorithm is presented and evaluated.

4. Chapter 4, Automatic Kernel Code Generation presents a concept and an
algorithm to automatically generate code to perform convolutional filters on
cellular processor arrays. A demo application showing a face detector, similar
to the one by Viola and Jones (2001), is presented.

5. Chapter 5, Conclusion summarises all the previous results, draws a conclusion
and presents opportunities for future.




Chapter 2

Background

2.1 Cellular Processor Arrays (CPA)

Programmable Focal-Plane processors have been around for a long time. While there
was theoretical interest in the topic, real implementations of processors on image
sensors did not appear until the mid 1990s. For example, Dominguez-Castro et al.
(1997) describe in their paper a CMOS chip capable of storing and processing four
binary images. The chip, called the ACE400 is a 20x22 processor array modelled
after Cellular Neural Network (CNN) Universal Machine (Chua and Yang (1988)).

Interesting applications using the ACE400 chip were shown by Zarandy et al.
(2002), with one being the detection and classification of simple objects printed on
a rotating ring at 10,000 fps. The other application involved the analysis of single
sparks from a car spark plug. The unconventionally high frame rate allowed them
to capture around seven frames per spark to properly analyse its properties.

A different approach was taken by Dudek and Hicks (2000), first describing
a single, analogue, sampled current microprocessor, leading to the SCAMP vision
chip (Dudek and Hicks (2005)). Other than the CNN based chips (Chua and Yang
(1988)), which use parallel, hard wired convolution templates for most operations,
the SCAMP consists of a grid of analogue general-purpose processors operating in
a single instruction, multiple data (SIMD) manner. Despite having speed disadvan-
tages, Dudek (2004) argues that the sequential SIMD processor is a better practical
choice, due to smaller circuit area and better achievable accuracy.

Multiple versions of the SCAMP chip have been implemented, starting from a
very small 21 x21 prototype (Dudek and Hicks (2001)) to the more recent 256 x 256
array (Carey et al. (2013)). All implementations share a very similar architecture
which is briefly outlined in the sections to come. As this thesis is mainly based on
SCAMP chip, the subsequent background sections focus on SCAMP.

2.1.1 Architecture

This section is about the architecture of the SCAMP-5 chip, which is the device used
for this study.
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Figure 2.1: Architecture of the 256 x 256 SCAMP vision chip (Carey et al. (2013)).
The chip consists of an array of 256 x 256 processing elements, each one assigned to

exactly one pixel, along with support and driving circuitry. The architecture of a single
processing element is depicted in figure 2.2
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Carey et al. (2013) describes a chip consisting of a square array of 256 x 256
analogue processing units (PE) along with control and readout circuitry to drive
the chip. On this chip, a single instruction stream is distributed to all processing
elements simultaneously. This means that, all processing elements execute the same
instruction at the same time, on their local data. The algorithm that is performed on
the system is thus defined by a sequence of (79-bit) instruction words, issued by the
system controller (Carey et al. (2013)).

Analogue Processing Elements (PE)

Figure 2.2 Shows the detailed architecture of a single processing element. All PEs
incorporate seven S%I analogue sampled current registers, 13 single bit digital DRAM
registers and one SRAM single bit FLAG register (Carey et al. (2011)).

Carey et al. (2011) states that the analogue subsystem is closely related to the
previous SCAMP3 chip, described in Dudek (2005). In this design, all analogue
registers are connected to a common analogue bus, where data is represented as
currents. An advantage of this analogue design is that arithmetic operations can be
performed directly on the bus by current summation and division (Dudek (2005)).
Using this technique, negation, addition, subtraction and division by a small integer
number can be performed without the need for additional, dedicated, ALU hardware.
Division by a small integer factor can be achieved by simultaneously loading the
current from one register into multiple target registers, splitting the total current
into multiple equal parts (Dudek (2003)).

The local analogue bus is connected to the output of the special purpose NEWS
register of the four adjacent processors (north, east, south, west), enabling it to pass
analogue values between cells (Dudek (2005)). Access to an analogue value of a
neighbouring cell is thus a two step process, which involves copying the data from
the source register into the NEWS register first, before copying the NEWS register
of the neighbouring cell to the target register. According to Carey et al. (2011),
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Figure 2.2: Architecture of the processing element (Carey et al. (2012)). Each pro-
cessing element contains 6 general purpose analogue register plus one special purpose
analogue register for neighbour communication. There is an analogue photodiode sys-
tem to capture new frames, as well as connections to global I/0. Note that, apart from
the squarer and comparator, the cell does not contain any analogue arithmetic unit, as
operations are carried out by current summation/division on the bus.

a double register transfer (transfer a value into another register and back) should
not involve an error larger than 0.25% of the maximum signal value. Furthermore,
the PEs have capabilities for the fast execution of low pass filters (diffusion) as well
as for asynchronous trigger wave propagation on the digital registers (Carey et al.
(2011), Carey et al. (2012)).

Every PE contains a photo detector circuit with near linear characteristics, which
allows the system to directly store the current from the photo detector to a register
(Dudek (2005)). Doing this on all processing elements simultaneously captures a
photo with every processing element exactly holding one pixel of the acquired image.

The FLAG register provides local autonomy by inhibiting any data to be written
when the register is not set (Dudek (2005)). The comparator is used to set the
FLAG register, by deciding if a current on the analogue bus is positive or negative
(Dudek (2005)). The 13 general purpose digital registers and the FLAG register
can be read out onto the Local Read Bus (LRB), where they perform a logical nor
operation of all the source bits selected at the same time (Carey et al. (2011)). This
value then gets written back, either direct or inverted to the registers via the Local
Write Bus to the register bank. Carey et al. (2011) also states that, unlike it was
the case with the analogue registers, the LWB is directly multiplexed to the digital
output of the neighbouring cells, allowing single cycle digital communication with
the neighbours. The digital system thus provides intrinsic capabilities for not, nor
and or logical functions in a single cycle (Carey et al. (2011)).

Control System

A sequence of Instruction Code Words (ICW) dictates the algorithm that is performed
on the chip, whereas every PE executes the same instruction on its own data stream
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Figure 2.3: SCAMP system components (Barr et al. (2006)). The SCAMP chip does
not contain any control logic by itself, it executes the instruction stream received by the
SCAMP sequencer. The actual control of the system is performed by the system controller
which sends the appropriate instructions to the SCAMP sequencer as it encounters them
in the program. The algorithm shown in this table shifts the contents of the analogue
register A 10 pixels to the right.

Line # Instruction Target Processor Comment

23

24 A=B SCAMP Copy contents of B into A

25 _load(s0, 0) Controller Initialize sequencer register sO to 0
26 NEWS = A SCAMP Copy contents of A into NEWS

27 A = WEST SCAMP Copy western NEWS register to A
28 _add(so0, 1) Controller Add 1 to sO

29 _compare(sO, 10) Controller Compare sO with 10

30 _jump(c, 26) Controller if sO <10, jump to instruction 26
31 .

Table 2.1: Example instruction sequence (Barr et al. (2006)). SIMD SCAMP instruc-
tions that operate on the analogue processor array arrive in conjunction with standard
instructions sequential instruction for the controller processor. The controller sends the
SCAMP instructions to array via sequencer. Whenever possible, SIMD instructions get
glued to controller instructions to be issued in parallel.

(SIMD) (Barr et al. (2006)), if their FLAG bit is set.

The purpose of the control system is to control the, potentially non-linear, stream
of instructions to the array processor, as well as to provide immediate arguments to
and read out results from the array processor (Barr et al. (2006)).

According to Barr et al. (2006), ICWs for the processor array get issued by the
SCAMP controller, which is implemented as a small, dedicated standard micropro-
cessor. In this system, every SCAMP op-code consists of two parts glued together,
with the first part of the instruction controlling the SCAMP array via the sequencet,
while the latter part controls the controller itself. By following just its own instruc-
tion stream while issuing ICWs to the SCAMP array at the same time, the controller
implicitly controls the algorithm performed on the array (Barr et al. (2006)).

Table 2.1 shows an example algorithm from Barr et al. (2006). The purpose of
the algorithm is to shift the image in the analogue register A ten times to the right.

A SCAMP and a controller instruction always gets issued at the same time, if there
is an instruction available at compile time. If not, the empty slots get filled with nop

6
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Figure 2.4: SCAMP-2 readout architecture (Dudek (2003)). The readout architecture of
the SCAMP-5 mostly equivalent (Carey (2017)). The controller in this graphic includes
the sequencer presented in Figure 2.3. The only means for transferring data to/from
the controller is by means of sequential DA/AD converters. Pixels can get read out
sequentially (by selecting one at a time) or as the sum of a group of pixels by selecting
multiple. In this case, current summation takes place on the readout bus. The adjustable
gain ADC has to be tuned accordingly.

statements (no operation) (Barr et al. (2006)). This ensures that the the controller
and the array processor always operate in parallel, improving system performance.

Readout Architecture

The SCAMP controller can load data to and from the processor array by means of
A/D and D/A converters for analogue values, and directly for digital values (Dudek
(2003)).

Figure 2.4 shows the SCAMP readout architecture as shown in Dudek (2003).
To read out a single cell, the controller selects the required cell and makes the cell
output the current from the required register onto the global readout bus. This
current then gets digitized in the global variable gain ADC (Dudek (2003)). The
paper emphasizes that we can select multiple cells at the same time, whose currents
then add up on the global readout bus. Together with the correct gain settings for the
variable gain amplifier, we can perform local and global summation tasks constant
time (Dudek (2003)).

The readout circuit has a flexible addressing system that facilitates selecting mul-
tiple cells of interest at the same time (Dudek (2003)). Row and column addresses
can not only be set to specific values, but can also contain "don’t care” bits, resulting
in a bit pattern that can adapt to various addressing needs. Cells with row/column
addresses that match the given pattern get selected (Dudek (2003)). There are four
addressing modes of special interest: (Dudek (2003))

1. Single PE Full addresses, no don’t cares.
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Figure 2.5: SCAMP addressing modes (Dudek (2003)). Cells shaded dark are selected
(activated) cells. The image shows patterns that can be selected by setting the selection
and don’t care bits the right way. Half-frame and periodic selections can be performed
trivially with this method.

2. Full array All bits don’t care. Matches entire array.
3. Block selection Don’t cares in the less significant bits.
4. Periodic selection Don'’t cares in the more significant bits.

Some addressing examples can be seen in Figure 2.5.

The SCAMP system has a way to load data into analogue registers by means of a
DAC (Barr et al. (2006)). This input current from a single global DAC is distributed
over the array to every PE (Dudek and Hicks (2005)). Every selected PE can then
copy the value from the input bus to a local register.

2.1.2 Performance

The SCAMP-5 device, introduced in (Carey et al. (2013)), is rated at a clock fre-
quency of 10 MHz, achieving a computational performance of up to 655GOPS at
1.9 pJ/OP. Carey et al. (2013) report a power consumption of 1.23 W (peak) and
0.2 mW (idle).

An application has been shown in Carey et al. (2012) in which the SCAMP-5
hardware manages to track an object on a rotating disc at 100,000 fps. According to
the paper, tracking five objects on the disc at the same time reduces the frame rate to
25,000 fps. The solution in Carey et al. (2012) tracks the position of closed circles,
which is very well-suited to the chip’s asynchronous processing capabilities.
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2.1.3 Software

Upon switching on the SCAMP device, a small program called the OS is loaded from
the host computer onto the chip’s memory (Barr et al. (2006)). This software initial-
izes and calibrates the chip. The OS runs on the system controller, which controls
communication to the host, the analogue hardware and ADC/DAC converters (Barr
et al. (2006)). The OS can easily be extended or modified to change the behavior of
the chip (Barr et al. (2006)). Drivers and C+ + libraries are available for both Linux
and Windows platforms (Barr et al. (2006))

2.1.4 Simulator

The paper (Barr and Dudek (2008)) introduces APRON, a cellular processor array
simulation tool. Most work in this thesis was developed and tested on the APRON
platform.

APRON provides a simulation and prototyping environment for general cellular
processor arrays. The system can not only simulate the software on standard desk-
top computer hardware, but can also be used as a front-end to run the code directly
on the target hardware (Barr and Dudek (2008)). APRON comes with a human
readable programming language called APRON script. Programs written in this lan-
guage get compiled by the APRON compiler to run on the simulator, or by a custom
compiler to run on dedicated hardware (Barr and Dudek (2008)). The simulator
also features a plugin interface to allow the developer to implement custom simula-
tion behaviour to simulate specific hardware (Barr and Dudek (2008)). Plugins to
simulate the behaviour of SCAMP-5 are published by (Chen (2016)). For this thesis,
further plugins were developed, mainly for efficiently storing measurement values
to files.

Error Model

Carey et al. (2013) describes an error model for a double register transfer (copy
values from register A to B requires two transfers due to the inverting nature of the
SI registers) as:

Aij = Bij+ kiBij + ko + €j(t) + 0 (2.1)

According to Carey et al. (2013), the fixed error k, can be easily compensated for
in software. The paper assigns a value of k; = 0.07 for a register range of 0 to 100,
an RMS value of 0.09 for the random error ¢ and an RMS value of 0.05 to the fixed
pattern noise o.

2.2 Visual Pose Estimation

This section summarises related work that has been developed for Visual Odom-
etry (VO) (Section 2.2.1) and Simlutaneous Localisation And Mapping (SLAM)
(Section 2.2.2). In later chapters of this thesis, algorithms are presented to solve
the Visual Odometry task.
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2.2.1 Visual Odometry

Visual Odometry (VO) is a method of estimating a camera’s location and pose solely
from analysing the video feed and a known initial location and pose. In the most
general case, a VO system can estimate the camera’s movement in the full physical
six degrees of freedom space (Naroditsky et al. (2012)); however more restricted
setups that assume a the cameras motion to be restricted to fewer dimensions often
perform better in accuracy and still manage to capture all of the agents expected
movements (Campbell et al. (2005)). VO systems can generally be divided into two
groups, that is monocular and binocular systems. While binocular systems rely on
the input of at least two cameras with known physical configuration, monocular
systems have to rely on the input of a single camera. Stereo VO systems are capable
to measure absolute distances to 3d objects in space by triangulation (Scaramuzza
and Fraundorfer (2011)). Monocular systems on the other hand have to perform the
entire task of estimation on 2D image data. This generally does not inform about the
absolute scale. The absolute scale can only be recovered by knowing the dimensions
of an object in the scene. Scaramuzza et al. (2009) show that there exist certain
situations in which one can in fact estimate the absolute scale from a single camera.
Most notably is the case where the camera is mounted onto a wheeled vehicle at
an offset of its center of motion. Scaramuzza et al. (2009) show that as soon as
the vehicle performs a turn, the absolute scale can be recovered via nonholonomic
constraints.

One of the first implementations of a system similar to Visual Odometry was
done by Moravec (1980) in 1980. The system used a single camera on a horizontal
sliding rail to capture images of the enviromnent from two different angles. The
robot would operate in a stop and go fashion, capturing 9 images from different
angles, extracting features and correlating them in every stop. Matthies and Shafer
(1987) extended the same approach with a better error estimation model. Pioneer-
ing results were shown in Nistér et al. (2004), utilising a Random Sample Consensus
(RANSAC, Fischler and Bolles (1981)) approach to filter out outliers. Nistér et al.
(2004) also came up with the term "Visual Odometry” for the first time, as an anal-
ogy to wheel odometry. More recent approaches in feature tracking based algorithms
and RANSAC are presented in the works by Cheng et al. (2005), implementing a VO
system for the Mars Exploration Rover and Tardif et al. (2008), implementing a
purely incremental moncular VO system. A different approach is followed by Mil-
ford and Wyeth (2008). Instead of tracking and comparing individual features, they
used an appearance based method of comparing frames by a dense sum-of-absolute-
difference method. A similar approach as Milford and Wyeth (2008) is followed
in this thesis. Another appearance based approach was presented by Goecke et al.
(2007) utilising the Fourier Mellin transformatin for a global full frame comparison.
Yet another approach was followed in the paper by Corke et al. (2004), in which
an approach based on sparse optical flow is presented. More recently, Steinbriicker
et al. (2011) showed a real-time VO solution that also incorporates depth informa-
tion from RGB-D sensors.

10
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2.2.2 Visual Simultaneous Localisation and Mapping (V-SLAM)

Although most of the algorithms presented in this thesis belong in the domain of
Visual Odometry (VO), a short summary of the works performed in a similar line
of research, Visual Simultaneous Localisation and Mapping (V-SLAM) is presented
here. While VO is incremental by nature with the goal to ensure local consistency
over the last few frames, SLAM is concerned in achieving a global consensus over
the whole trajectory (Scaramuzza and Fraundorfer (2011)). A SLAM algorithm con-
stantly keeps track of a global map of the environment in order to detect if the agent
returns to a previously visited location (loop closure). This is crucial to ensure global
consistency (Scaramuzza and Fraundorfer (2011)). They also note that a VO system
can be used together with loop closure detection and global optimisation to form a
complete SLAM system.

One of the earliest contributions to the fields were presented in Smith et al.
(1990) and Leonard and Durrant-Whyte (1991). These early contributions were
generally incapable of running in real-time, vastly limiting their applicability to
real world problems. They also sensors such as laser measurements. Real-time
and vision-based, contributions came from Davison (2003) (MonoSLAM), Chiuso
et al. (2000), Deans and Hebert (2005) as well as the very accurate Parallel Track-
ing and Mapping from Klein and Murray (2007). These systems were first limited
to smaller indoor locations. Approaches that are capable of mapping larger scenes
were presented by Clemente et al. (2007) as well as Mei et al. (2011). More re-
cently, Newcombe and Davison (2010) showed a method to incorporate depth infor-
mation measured from commodity depth sensors, such as the Microsoft Kinect into
the SLAM problem (KinectFusion). This approached has been pushed forward by
various researchers in recent years. Most notably are the works by Kerl et al. (2013)
(DVO), Forster et al. (2014) (SVO), Engel et al. (2014) (LSD-SLAM), Mur-Artal et al.
(2015) (ORB-SLAM) and Whelan et al. (2015) (ElasticFusion).

2.2.3 Random Sample Concensus (RANSAC)

At the heart of most contemporary VO and V-SLAM system is the Random Sample
Concensus (RANSAC) algorithm introduced by Fischler and Bolles (1981). RANSAC
is an iterative algorithm, that is capable of fitting a mathematical model under the
existence of outliers (Saeedi et al. (2014)). It does this by random sampling of the
measured data and assessing the quality of every sample subset it takes.

2.2.4 Data Generation

There are many datasets in existence used to verify the performance of Visual Odom-
etry (VO) and SLAM systems, one of the most notable being the dataset by Sturm
et al. (2012). The dataset contains real-world images, with ground truth recorded
by higher frame rate motion capturing cameras. Another notable dataset is the ICL-
NUIM dataset by Handa et al. (2014) from Imperial College. Unlike the set by Sturm
et al. (2012), the ICL-NUIM dataset consists of renderings of synthetic enviroments.
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Figure 2.6: Examples of two Haar-Like features applied to a face image. Evaluated
feature is the pink sum of pixel values in pink area minus the sum of the pixel values in
the blue area. Both features are weak classifiers for a face, with the first one representing
the fact that the eye poerion is usually darker than the cheek portion, whereas the other
represents a bright nose part with shadows on both sides.

ICL-NUIM

The ICL-NUIM datadatasetset (Handa et al. (2014)) is a collection of synthetic im-
ages, rendered along recorded, real-world trajectories. Two environments are mod-
elled, one showing a quite densly populated office scene, while the other shows a
more sparsly populated living room scene. The synthetic nature of the dataset en-
sures a perfect ground truth (Handa et al. (2014)). It also gives the ability to quickly
render new trajectories in the same enviromnent. The POVRay (http://povray.org/)
raytracing software is used to render the individual frames in photorealistic quality.

In this thesis, the original code by Handa et al. (2014) was used to render new
trajectories in the same environments at higher CPA frame rates.

2.3 Viola Jones Face Detection

Face detection is classical problem in computer vision. One of the early contribu-
tions came from Kohonen (1989) using a neural network inspired approach to ex-
tract characteristic eigenvectors that describe a face. This approach was later ex-
tended by Kirby and Sirovich (1990) as well as Turk and Pentland (1991). Turk
and Pentland (1991) coined the term ”Eigenfaces” which is now commonly used for
this method. An alternative, more computationally efficient method was presented
by Viola and Jones (2001). They showed that a strong object detection algorithm
could be combined from a series of weak classifiers, boosted using a method called
Adaptive Boosing (Freund et al. (1999)) to form a strong classifier. Viola and Jones
(2001) used so called Haar-Like features which are inspired by the Haar Functions
introduced by hungarian mathematician Alfred Haar (Haar (1910)). In the context
of object detection, the Haar-Like features reduce to partial sums of the pixels in the
image.

Figure 2.6 shows two examples of such Haar-Like features. The feature is eval-
uated by taking the difference of pixel sums in parts of the image. Every Haar-Like
feature forms a weak classifier for a face. Taken together as a boosted cascade, they
form a strong classifier for faces. According to Viola and Jones (2001), one does not

12



Chapter 2. Background 2.3. VIOLA JONES FACE DETECTION

have to apply all features to every position in the image, as one can reject locations
early on, if the first weak classifiers return a negative result. Summations of pixel
values is generally an expensive operation, with performance scaling proportionally
to the size of the summed area. A contribution of the Viola and Jones (2001) is to
use a alternative integral image representation of the image, allowing to compute
arbitrary partial sums of the image in constant time. A more in-depth analysis of the
algorithm is provided by Wang (2014).
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Chapter 3

Pose Estimation

This chapter introduces three algorithms for camera pose estimation. Three different
algorithms have been implemented in order to solve various pose estimation tasks.
As it is considered an easier problem, the first contributions are two algorithm for
2DoF pitch and yaw estimation (Section 3.4). These algorithms then get extended
to a solution for 4DoF estimation, adding roll and z-translation to the systems capa-
bilities. (Section 3.5).

3.1 Motivation

In this section, we present pose estimation algorithms based on Visual Odometry
(VO). In Visual Odometry, we estimate the pose of a camera solely based on its input
video feed and a known initial pose. The estimation is then performed via integrating
small incremental movements. Conventional VO systems generally require perfor-
mant and energy intensive hardware. For example, Whelan et al. (2013) presents a
robust Visual Odometry algorithm that achieves around 43 fps on a desktop GPU. It
is expected that the massive parallelism of the cellular processor array could achieve
much higher frame rates at a lower energy consumption. Furthermore, running at a
much higher frame rate could naturally increase the system’s robustness to drift as it
integrates smaller incremental movements. This could also open up the possibility to
use simpler algorithms using larger approximations, as the effects of approximations
have less effect.

3.2 Applications

Visual Odometry (VO) systems found application mainly in robotics with the most
notable example being planetary rovers (Lacroix et al. (1999), Olson et al. (2000)).
Especially in GPS denied environments, such as indoor or underground locations,
exact localisation of an agent becomes a harder problem. Additional to VO, there
are other methods available, such as wheel odometry or inertial measurement units
(IMUs). While wheel odometry can suffer from slippage in uneven terrain and IMUs
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Figure 3.1: Conventions for the camera coordinate system chosen to be used in this
thesis

can suffer from time-dependent driftage, VO presents itself as a valuable additional
method to existing methods.

Compared to traditional VO approaches, it is expected that the algorithms im-
plemented on the cellular processor array only have a very low power consumption.
This makes the CPA implementation a good candidate to be used in very energy
limited systems such as small robots or aerial vehicles.

3.3 Conventions

There are multiple conventions one can use in order to define Euler angles and coor-
dinate systems, but in this thesis we are going to stick to the following convention.
We assume a left-handed camera coordinate system with the camera pointing in the
direction of the positive z-axis. Pitch, yaw and roll are therefore defined as rotations
around the z, y and z axis respectively. Figure 3.1 illustrates the chosen coordinates
and the directions of the Euler rotations. The order of Euler rotations is chosen as
x-y-z (pitch-yaw-roll).
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3.4 Yaw & Pitch Estimation

3.4.1 Motivation

According to the definition above, a yaw and a pitch in the cameras coordinate
system should result in a horizontal and vertical image shift. As shifting an image
horizontally and vertically are intrinsic operations on the cellular processor array,
it is thought to be an easier problem to estimate yaw and pitch compared to other
degrees of freedom. However, a more complicated approach that also incorporates
roll and ~ translation are discussed later on in the thesis.

3.4.2 Approach
Angular Velocity Estimation

The goal of this contribution is to provide a system that can estimate the angular
velocities of the yaw and pitch rotations between two video frames, according to the
cameras coordinate system. Knowing the initial pose of the camera, we can then
estimate the camera’s pose after any number of frames, in global coordinates.

Since we ruled out translation, a pitch or yaw rotation should result in the same
apparent movement for all visible objects on the image plane. The idea of the al-
gorithm is to store the last frame and to capture a new one. We assume that if
the camera did rotate by a small angle between the two frames, the the new frame
should essentially be equivalent to the old frame but shifted some pixels into a cer-
tain direction. Computing the sum of absolute difference between a shifted version
of the new frame and the old frame gives us a measure on how good the matching
of the two frames is. Finding motion between the frames is therefore equivalent to
finding a shift offset that gives an alignment with the lowest sum of absolute differ-
ence value. We assume that any motion of the camera between two frames is purely
yaw and pitch motion according to the cameras coordinate system.

Let I®)(x,7) be the pixel value at image position z,y at time ¢, f be the focal
length of the camera and let the camera be free of distortions. Assume a camera
rotation of 3 radians (yaw) and « radians (pitch) between two consecutive frames.

Figure 3.2 shows the situation in which we rotate the camera around the y —axis
(yaw). Doing so, we observe a point seen at a distance of x (along the z-axis). After
the transformation, we find the same point at 2’ in the new image.

The relation between the two points can be established easily from Figure 3.2 as

' = f-tan(B — arctan ;) (3.1

which can be reformulated to

tan(B) —

1+ tan(B) -2

P =f (3.2)

If we assume tan(f3) - $ =0 and only consider small angles 5, we can use the
approximation tan(5) ~ [, we can simplify this to 2’ ~ - f — z. Considering
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Figure 3.2: Apparent position of a pixel after rotation. The blue and red thick lines
represent the image plane before and after a rotation by a. The magenta line is the
vector pointing to a real world location. The values = and 2’ are the distances from the
image center (in x-direction) where we expect to find the real world location in both
images.

coordinates starting at the bottom left (making x positive), we can state the following
approximation: An object we previously found at pixel location (z,y) should now
have moved to location (z + Sf,y + af)

If we further assume similar lighting conditions for both frames at time ¢ and
t + 1, we can say that for the image intensity [ at time ¢

19z, y) =~ I (2 + Bf,y + af) (3.3)

and

11Dz, y) — 1" (z + Bf,y+af)| ~ 0 (3.4)

We define the sum of absolute absolute differences as the following, with H being
the image height, and IV being the image width.

min(W,W—3f) min(H,H—af)
SAD(u,v) = Z Z 11Dz, y) = 1D (2 + u,y +v)| (3.5)

rz=max(1,8f) y=max(1l,af)
From (3.4) it follows that

=0 ifu=afandv=_73f

. (3.6)
> (0 otherwise

SAD(u,v) {
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where as equality in the second case can only occur if the image has self similar sub
images, such as it is the case with a uniform colour. However, if we have enough
variance in the image, we can assume that SAD(u,v) > 0 for u # af,v # 5f

Finding the camera rotation between two consecutive frames thus becomes a
search problem with the goal to minimise the cost function SAD(u,v).

1
(o, B) = 7 argmin(SAD(u, v)) (3.7)
In practice, we can not expect the cost function to equal zero at the correct offset,
however, the minimising approach of (3.7) still holds.
With a given frequency (frame rate) of » (units [1]), we can estimate the angular
velocities as w, =r-aand w, =1 - f.

Visual Odometry

So far, we only measured the angular velocities of the camera between individual
frames in relation to the cameras coordinate system. However, for a real-world
application we may want to know the cameras pose at a certain frame relative to
the world coordinate system. We approach this by Visual Odometry, a process of
accumulating small individual rotations in order to estimate the cameras global pose
at a certain frame.

To perform this task, we need the angular velocities along the = and y axes esti-
mated in the section before, as well as an initial camera pose. Let [o(?), 3 4(0)] be
the Euler rotations (according to our definition) of the cameras initial pose. Given
the well-known definitions of the 3D rotation matrices along the axes

1 0 0 cosf 0 sinf cosy —siny 0
R, =10 cosa —sina| R,= 0 1 0 R, = |[siny cosvy O
0 sina cosa —sinf 0 cospf 0 0 1

(3.8)

We define the initial rotation matrix that maps coordinates in the initial camera
coordinate system to the world coordinate system as

RO = Ro(a®) - R,(8") - R.(7) (3.9)
(4)

Let [w; ,wl(f)] be the angular velocities measured around the respective axes in
the cameras coordinate system at frame i. We perform linear interpolation assuming
that the angular velocity is constant between two consecutive frames. Therefore,
given a frame rate of r, the angles travelled between two consecutive frames i — 1
and i are given by o) = 1. w and g0 = 1. Wl

The transformation matrix in camera coordinates that implements these rotations
can be written as

RY = R,(a) - R,(Y) (3.10)

Therefore, the transformation matrix 7; that maps coordinates in the camera
coordinate system of frame 7 to the world coordinates is given by
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T, = RO .RMW ... RO — HR(k) (3.11)
k=0

(8%
Note that the order of matrix multiplications is important. The || means right mul-
tiplication of values.

In order to compare the results more easily, the camera pose transformation ma-
trix then gets converted into the three smallest Euler angles according to our defi-
nition above. Note that despite our system can not detect any rotations around the
z-axis, the Euler decomposition of 7' generally has a non-zero z component. This
comes from the fact that our motion estimations are always in respect to the cam-
eras coordinate system. With the right sequence of rotations around the = and y
axes of the camera coordinate system, one can induce motions that look like rota-
tions around the z-axis viewed from the world coordinate system.

3.4.3 Implementation

Two different algorithms have been implemented to solve the search problem:

1. Independent ”cross” search, (Algorithm 1) We assume that the actual image
movement is relatively small. In every iteration of the algorithm, we capture
a new frame. At first, we compute the sum of absolute difference from the
current frame and the previous frame. The value obtained this way, is the score
of the hypothesis that the camera did move between the two frames. After
that, for both dimensions, we shift the new image in a local neighbourhood
and compute the sum of absolute value for each, always keeping the minimum
value. Whenever we find a lower value than before, the best hypothesis gets
updated to the current shift.

The algorithm explores a "cross” of hypotheses, with the center point being the
no movement hypothesis.

2. Gradient descend inspired search, (Algorithm 2) The problem of finding u
and v is the problem of finding an alignment of the current frame onto the pre-
vious frame, such that the sum of absolute difference between the two frames
is minimal.

This algorithm performs the search for the best alignment by using a gradient
descend inspired approach. The algorithm starts out with v = 0 and v = 0,
assuming there was no movement between the frames. The sum of absolute
difference for no movement gets stored as the initial best value. From there,
we shift the current frame one pixel in all four directions, computing the sum
of absolute differences in each direction. We keep the minimum value obtained
as well as the direction we took to get there. This identifies the direction to
shift the image in the next iteration, assuming we always go into the direction
which leads to the lowest immediate value. After identifying the direction, we
add the direction to the results variables u or v and shift the current frame in
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Algorithm 1 Independent search in both dimensions. Note that the algorithm es-
sentially does four times the same, shifting the new image into a certain direction
compute the sum-of-absolute differences at each shift.

1: procedure INDEPENDENTSEARCH (last_frame, current_frame)

2: u<+ 0
3: v+ 0
4: shift_frame < current_frame
5: min_sum < MAX VALUE > Reset minimal correlation
6: for i € {0, MAX _SHIFT} do > Explore east direction
7: total_sum < >, . . |shift frame — last frame]
8: if total_sum < min_sum then
9: min_sum < total_sum
10: U 4—1
11: shift_frame < shift east(shift_frame)
12: shift_frame < current_frame
13: for i € {1, MAX SHIFT} do > Explore west direction
14: total_sum < >, . . |shift frame — last frame|
15: if total_sum < min_sum then
16: min_sum < total_sum
17: U — —1
18: shift_frame < shift west(shift frame)
19: shift frame < current frame
20: min_sum < MAX VALUE > Reset minimal correlation
21: for i € {0, MAX_SHIFT} do > Explore south direction
22: total_sum < >, . |shift frame — last frame|
23: if total_sum < min_sum then
24: min_sum < total_sum
25: V41
26: shift_frame < shift_south(shift_frame)
27: shift_frame < current_frame
28: for i € {1, MAX_SHIFT} do > Explore north direction
29: total sum < >, . |shift frame — last frame|
30: if total_sum < min_sum then
31: min_sum < total sum
32: V4= —1
33: shift_frame < shift north(shift_frame)
return u, v
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the obtained direction. We start the next iteration of the process. Again, we
assume no further movement between the current frame and the last frame.
If we detect a direction in which we can get an even lower minimal sum, we
got into this direction and start the next iteration. The process ends when
we identified a local minima, which manifests itself that we get higher sum of
absolute difference values in all four directions. This algorithm assumes the
problem to be locally convex.

The algorithms running on the cellular processor array report the (scaled) value
of the angular velocities back to the host CPU. Scaling and Visual Odometry is then
performed on the host CPU. Since these tasks are just multiplications of 3 x 3 matri-
ces, even very low power devices should be capable of doing that.

3.4.4 Results
Testing Methods

Both implementations were tested on the APRON simulator (Barr and Dudek (2008)).
It has been shown that the implementations work on real hardware as well, however
due to lack of available hardware, all the quantitative results in this sections were
obtained using the simulator software.

A real-world trajectory, recorded with the gyroscope of a smartphone, was used
in the following two environments to create synthetic datasets:

1. Office scene an office room with pillars, checkerboard floor and ceiling panels.
The large amount of individual objects are expected to pose an easier problem
for the pose estimation algorithms, as there are more features for the algorithm
to track.

2. Living room scene a living room with little furniture and plain white walls. It
is expected that this environment poses a bigger challenge to the algorithm, as
the frames have less variance. Especially the ceiling is very uniform.

Figure 3.3 shows some frames taken out from both datasets. The frames cap-
tured with the camera pointing to the ceiling may pose the biggest challenge to the
algorithm. Both environments were rendered with the same trajectory, to generate
comparable results.

Angular Velocity Estimation

Figure 3.4 shows the measured angular velocities of the algorithms on both datasets.
The shaded areas at the bottom give an indication about the variance of the dataset
at the given frames. It is expected that the less variance there is in the images, the
harder it gets for the algorithm to successfully track the motion. Figure 3.5 shows
the squared error to the ground truth. The error is the sum of the squared error of
the pitch and yaw rotations. Table 3.1 shows the means and the standard deviations
of the squared errors for the datasets.
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Algorithm 2 Gradient descent inspired search

1: procedure GRADDESCSEARCH (last_frame, current frame)

2: u<+2o0
3: v+ 0
4: min_sum < ;... |shift frame — last frame| > Get baseline value
5: do
6: next_action + STAY > Assume we found minimum
7: shift_frame <« shift east(current _frame)
8: ESUM <= D, 00 IShift frame — last frame|
9: if t_sum < min_sum then
10: min_sum < t_sum
11: next_action <+ EAST > Lower sum value, if shifted east
12: shift_frame < shift west(current_frame)
13: ESUM < D, 0 IShift frame — last frame|
14: if t_sum < min_sum then
15: min_sum < t_sum
16: next_action <+ WEST > Lower sum value, if shifted west
17: shift_frame < shift north(current_frame)
18: ESUM <= D00 IShift frame — last frame|
19: if t_sum < min_sum then
20: min_sum < t_sum
21: next_action <+ NORTH > Lower sum value, if shifted north
22: shift_frame < shift south(current_frame)
23: ESUM <= D, 0,0 IShift frame — last frame|
24: if t_sum < min_sum then
25: min_sum < t_sum
26: next_action < SOUTH > Lower sum value, if shifted south
27: switch next_action do > Shift current frame for next iteration
28: case FAST
29: current_frame <« shift_east(current frame)
30: u+—u+1
31: case WEST
32: current_frame < shift west(current frame)
33: u+<u-—1
34: case NORTH
35: current_frame < shift north(current_frame)
36: vev+1
37: case SOUTH
38: current_frame <« shift_south(current_frame)
39: v+—v—1
40: while next_action # STAY
41: return u, v
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(a) Example frame from living room set (b) Example frame from office set

(c) Low variance frame, little features to (d) Low variance frame in the office set. The
hold on to. Living room set. ceiling has more texture.

Figure 3.3: Example frames from both tested datasets. It is expected that frames with
low variance are harder to track.

Units: [ﬂ;—g"] Mean Error Std. Error
Living room, Cross 12.45e-6 32.20e-6
Living room, Gradient 5.14e-6 6.80e-6
Office, Cross 6.04e-6 8.88e-6
Office, Gradient 5.24 e-6 7.11 e-6

Table 3.1: Mean and standard deviations of the squared errors in the measurement of
angular velocities for both algorithms on both datasets.
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Figure 3.4: Angular velocities as estimated by the pose estimation algorithms. Both
the independent cross and the gradient descend algorithms were applied to the office and
living room datasets. The region at the bottom shows the (scaled) image variances of
the original video frames.
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Squared angular velocity error
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Figure 3.5: Squared errors of the algorithms on the datasets for the angular velocity
estimation.

All combinations except the cross algorithm on the living room dataset exhibit
good tracking performance with little error. The cross algorithm fails to estimate
the angular velocity properly in a region from frames 650 to 700. This is thought to
be caused by the very little variance the frames in this region exhibit in the living
room dataset. (See Figure 3.3). The office dataset also has little image variance in
this region, however still enough to not be vulnerable to this problem. The gradient
descend based algorithm performs significantly better in this difficult area. The rea-
soning behind this is that the cross algorithm always finds the global minima in both
directions, potentially skipping local minima. As the sum of absolute differences is,
due to the lack of enough image variance, very small for all shifts of the new frame,
it is very well possible that there is a spurious global minima further away from the
correct solution, which may be purely induced by noise or lighting changes. The gra-
dient descend based approach has a more conservative approach. As it assumes that
the problem is convex, it stops as soon as it finds itself in a local minima. An inter-
esting thing to note is, that except one outlier, all the other combinations performed
surprisingly well in this part compared to the rest of the sequence.

In general, we can see that the gradient descend based approach performs better
in all cases. Contrary to the expectation, it actually performed better on the living
room dataset than on the office dataset.

Visual Odometry

The measured angular velocities were accumulated according to equation 3.11. The
resulting pose matrices were transformed into Euler angles according to our defini-
tion (left handed coordinate system, xyz order). The poses obtained for the different
algorithm and dataset combinations can be seen in Figure 3.6. The squared error of
the posed in relation to ground truth is depicted in Figure 3.7. The error means and
standard deviations are listed in Table 3.2. Table 3.3 shows the maximum values
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Units: [rad?] Mean Error Std. Error Max. Error End Error
Living room, Cross 0.236 0.283 1.703 0.467
Living room, Gradient 0.026 0.016 0.083 0.034
Office, Cross 0.045 0.034 0.138 0.133
Office, Gradient 0.039 0.027 0.118 0.049

Table 3.2: Squared mean and standard pose errors for the algorithm and dataset com-
binations. All values in [rad?]

Units: [rad] | Max. Pitch Max. Yaw Max. Roll End Pitch End Yaw End Roll
Liv. r., Cross 0.721 -0.533 1.083 0.185 -0.319 0.576
Liv. r., Grad. 0.188 0.272 -0.095 0.122 0.136 0.022
Off., Cross 0.289 0.302 -0.096 0.254 0.256 0.062
Off., Grad. 0.254 0.308 -0.099 0.108 0.194 -0.002

Table 3.3: Individual dimension maximum and end errors of the estimated pose angle
for the different algorithm and dataset combinations

and end values of the errors in radians, for each dimension.

As expected, the algorithm/dataset combinations that performed best in the an-
gular velocity estimation perform best in the VO task as well. This is due to the fact,
that the pose estimation takes the measured angular velocities as input data and
integrates them over time.

All algorithms experience drift, however, the gradient descend algorithm is sig-
nificantly better with the worst run exhibiting only half the squared error of the best
run with the cross algorithm.

Performance

Because of the lack of real hardware, the following performance calculations are
estimated based on published performance figures of the SCAMP chip and static
analysis of the source code to the algorithms presented. The different operations on
the SCAMP chip take various amounts of clock cycles. The visual processor runs at
a clock frequency of 10M hz, while the controller runs at 200M hz (Carey (2017)).
Since the controller is much faster than the vision chip, and can run operations in
parallel, we ignore the effect of the controller for our runtime estimates. Table 3.4
shows the assumed number of SCAMP operations required to perform the operation
on the vision chip. These values were obtained by reverse engineering the source
code provided by Chen (2016).

Carey et al. (2013) state a power consumption of the vision chip at the maximum
instruction rate of 10 Mhz as 1.23 W and an idle power consumption of 0.2 mV.
Power consumption for a fixed frame rate below the maximum frame rate is com-
puted under the assumption that the processor finishes a frame at maximum clock
speed and then switches to idle state until the beginning of the new frame.

Table 3.5 shows estimated performance calculations for the independent cross
and the gradient descend based algorithms. The independent cross algorithm is not
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Figure 3.6: Euler angles of the camera poses as estimated by the different algorithm-

dataset combinations.
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Figure 3.7: Squared error of the estimated pose for all the algorithm dataset combina-
tions

Operation Clock cycles
north, south, east, west, copy
add, sub

neg

where, all

abs

div2

or, not

nor

nand

and

dshift

global sum 64

— U BRARDNRFE U= =DNDDN

Table 3.4: Assumed clock cycle counts for the individual operations. These values were
obtained by static observation in reverse engineering of the source code (Chen (2016)).
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Independent cross Gradient descend

Avg. cycles per frame 1176 846.72
Std. cycles per frame 0 314.58
Theoretical max. FPS. 8503 11810
Power @ max. FPS 1.23 W 1.23 W
Estimated power @ 60FPS 8.9 mW 6.4 mW

Table 3.5: Estimated performance values for the algorithms on the SCAMP chip.

dependent on the data, every frame takes the same amount of instructions. Thus,
the standard deviation of the number of instructions is 0. The gradient descend
based algorithm however, performs more steps on larger shifts. The mean and stan-
dard deviation values were obtained based on the number of steps the algorithm
performed on the living room and office datasets. The gradient descend algorithm in
its current implementation has no upper bound on the number of steps it performs.
However, in order to guarantee a certain frame rate, it would be trivial to limit the
algorithm to a maximum number of iterations. Table 3.5 demonstrates that the gra-
dient descend based algorithm not only has a better tracking performance, but also
requires less instruction cycles in the mean case.

The values presented here are to be taken with caution, as they are based on
an assumption about the number of clock cycles without actual measurements. In
addition to that, the calculations do not incorporate limitations such as bus speeds
or sleep/wake times into account. Nevertheless, they show the order of magnitude
of performance figures we can expect from a CPA system. It clearly shows that using
a CPA can give extremely high frame rates at a very low energy consumption for
problems like these.

3.5 Yaw, Pitch, Roll, Z Estimation

This section introduces a novel method created to extend the two degrees of freedom
approach presented in Section 3.4 with two additional degrees of freedom, roll and
z-translation. The algorithm is based on splitting the image up into individual tiles,
estimating a basic vector in each tile. These estimates are then used by a statistical
classifier in order to estimate the global movement.

3.5.1 Motivation

Section 3.4 introduced two algorithms based on the sum of absolute differences in
order to estimate the camera ego rotations around the x and y axes relative to the
camera coordinate system. While the results show promising results that the system
works as intended, the use of a system that only estimates rotations around two axes
is limited. In general, we experience the following two limitations:

1. As soon as the camera experiences a roll motion, the visual odometry can
no longer accurately estimate the cameras position, as roll rotations are not

29



3.5. YAW, PITCH, ROLL, Z ESTIMATION Chapter 3. Pose Estimation

tracked.

2. We don’t have any possibility to capture a translation of the camera, we have
to assume that the camera remains at the same place.

Adding roll estimation to the system allows us to capture all 3 degrees of freedom
of rotation which allows us to capture every possible rotational movement. Adding
z-translation allows us to capture camera movement in the direction we are looking
at. In general, this is the most interesting direction of movement, as a wheeled
robot or car is mechanically restricted to move into other directions. Furthermore,
it is expected to be an easier problem to separate roll and z motion from yaw and
pitch, as translations into x and y directions would look similar to yaw and pitch
to the camera. The system could be extended to a 6DoF approach using 3 cameras
pointing in different directions.

3.5.2 Approach

The approach chosen for this problem splits the image into 16 square tiles, estimat-
ing the displacement vector for each tile according to the gradient descend based
algorithm introduced in Section 3.4. For each of the four degrees of freedom we
have an expectation how the individual vectors should be aligned if a motion in this
dimension occurs. Figure 3.8 shows the expected vectors for each tile, given a mo-
tion in one of the four degrees of freedom. The basic concept of the algorithm is
to use a statistical method, in order to match the 16 measured displacement vec-
tors with a linear combination of the expected bases. In order to capture roll and
z-translation at the same time, we can not expect the same apparent movements of
objects in the whole image plane. Instead, this assumption is relaxed to only hold
(approximately) for small sub images. The chosen approach divides the image plane
into 16 tiles, where on each tile, we compute the [u, v] vector according to equation
(3.7).

An expected vector direction and relative magnitude was calculated for each tile
and for each expected mode of motion (pitch, yaw, roll, z). The resulting vectors are
presented in Figure 3.8.

The idea of the algorithm is that every motion between two frames is considered
to be a linear combination of four degrees of freedom, while every degree of freedom
has an expected vector direction in each tile. So measuring the apparent vector in
each tile allows us to to recover the coefficients of the linear combination, which
gives us the hypothesis in all four dimensions.

Let

m:[ul V1 Uy Vg ... Uig Ulﬁ}T (312)

be the measured apparent motion vector components found in each tile.

Let {byaw, bpitcn, brou, b.} be the vectors in the same form as m, but normalised
and with the components of their corresponding base vector field. The resulting,
normalised b vectors are

30



Chapter 3. Pose Estimation 3.5. YAW, PITCH, ROLL, Z ESTIMATION

TLTLTLT I—=l—l—]—] |/ |—=I=|] |ININ]/ ]/
T T T S A P O P e o
R e e e e B A R A VA e R R
LTI ===l INI~|—|/] |Z/]|\]N

Figure 3.8: Expected vector direction for each tile given a certain mode of motion
between two frames. Any legal motion the camera experiences between two frames is
assumed to appear as a linear combination of there vectors, according to Equation 3.13.
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Based on the four base vector fields, we then describe our model as
m — (Oé : byaw + ﬁ : bpitch + - broll) +0- bz =€ (313)

With e being the error we encounter in our estimate. The intuition behind this
model is, that it describes a way to linearly decompose the measured m vector into a
linear combination of the known b vectors. The parameters «, /3,7, 6 from the linear
combination are then the scaled, angular velocities in their respective direction. The
presented form is equivalent to a standard generalised linear regression problem, for
which there are multiple strategies to solve it.

OLS solution

A straight forward solution to the problem is the Ordinary Least Squares (OLS) ap-
proach. This approach requires us to assume, that the error on the estimates follows
a Gaussian distribution. With this assumption, we can write the Ordinary Least
Squares problem. Given B = [bya, bpicn brou b we can state that

[@ 8 v 6]"=(B"™B)"'B'm=B"m (3.14)

Since the matrix B is an orthonormal matrix, that is B'B = B™'B = I. In
every frame, the apparent = — y vectors are measured in all 16 tiles. The CPU then
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computes the matrix vector product B m to get the motion estimations in each of
the four dimensions.

With B constant and known at compile time. Motion estimation is therefore just
a linear combination of the vector components in m. This operation requires at most
4 - 32 = 128 multiply and add operation on a standard CPU and should thus easily
fit into the computational budget of even very limited processing devices. One can
expect to reduce this even further by explicitly multiplying the expression out and
exploit the sparse nature of B.

RANSAC solution

Especially for computer vision related problems, we can, in general, not assume that
the error on the measurements follows a gaussian distribution, but instead consists of
several very accurate measurements with a lot of outliers. A more robust estimation
technique that assumes outliers to be present (RANSAC) was introduced by Fischler
and Bolles (1981). In addition to OLS, RANSAC can be used to eliminate outliers
from the regression problem in Equation 3.13.

3.5.3 Implementation

The tile algorithm has been implemented to run on the APRON (Barr and Dudek
(2008)) simulator because of the lack of available physical hardware. Only the
measurement of the 16 individual tile vectors takes place on the CPA, the matrix
multiplication for the actual estimate happens outside on a conventional processor.
Newer versions of the SCAMP chip which incorporate a more sophisticated system
controller (Carey (2017)) would be powerful enough to perform the estimation on
the same device as well. Yaw and Pitch get estimated using the ordinary least squares
method, Roll and Z-translation get estimated using a 5-sample RANSAC with 90%
inlier confidence threshold.

3.5.4 Results
Testing Methods

The algorithm has been tested on the same trajectory rendered in synthetic envi-
ronments as in Section 3.4. However, this time, the ground truth trajectory and the
rendered images also include roll movements. The camera remains at the same place
throughout the entire scene, only three degrees of freedom are analysed.

In addition to that, the algorithm is tested on a trajectory of a forward facing
camera mounted on a person moving forward. The same trajectory was rendered in
two different environments, one showing a kitchen scene while the other shows a
living room scene.
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Units: [*%°] Mean Error  Std. Error
Living room 7.038 e-06 8.963 e-06
Office 5.831e-06 7.902 e-06

Table 3.6: Mean and standard deviations of the squared angular velocity errors. (Tiled
algorithm, both datasets)

Units: [rad’] Mean Error Std. Error Max. Error End Error
Living room 0.108 0.079 0.322 0.214
Office 0.042 0.046 0.194 0.063

Table 3.7: Means and standard deviations of the squared errors of the estimated poses
using the tiled algorithm on both datasets.

Angular Velocities

Figure 3.9 shows the estimated angular velocities for the tiled algorithm on the living
room and the office datasets. Table 3.6 shows the mean and standard deviations
of the squared error of the tiled algorithm in the three degrees of freedom pose
estimation task.

One can see that the tracking of yaw and pitch angles is still consistent, albeit less
accurate than in the approach presented in Section 3.4. The roll rotation estimate is
considerably less accurate than the yaw and pitch estimate.

Pose Odometry

Figure 3.10 shows the estimated poses of the algorithm together with ground truth
on both datasets. The poses are in z — y — z Euler angles, according to our definition
(section 3.3). Table 3.7 and Table 4.1 show the mean squared and the maximum
individual errors reached on the sequence.

It is evident, that the pose estimation suffers from large drift, especially in the
pitch dimension towards the end of the sequence. A maximum pitch error of 0.498rad
as experienced in the living room dataset, corresponds to an error of approximately
28°. The yaw estimation is considerably better, however, still encounters larger errors
than observed in the two degrees of freedom approach.

Units: [rad] Max Pitch Max Yaw Max Roll End Pitch End Yaw End Roll
Living room 0.498 0.290 -0.271 0.362 0.266 -0.109
Office 0.376 0.193 -0.214 0.136 0.193 -0.084

Table 3.8: Maximum and end errors for the individual dimensions of the estimated
poses for the tiled algorithm.
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Figure 3.9: Estimated angular velocities of the tiled four degree of freedom algorithm.
Applied on both datasets. The shaded regions at the bottom symbolise the image vari-

ance of the datasets.
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Figure 3.10: Estimated poses for the tiled algorithm on both datasets.
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Figure 3.11: Tiled angular velocities in full 4DoF estimation
Units: [rad? Pitch  Yaw Roll
Avg. Squared Error 0.0056 0.0026 0.0009
Max. Squared Error 0.0085 0.0398 0.0078
Table 3.9: Orientation errors for the tiled algorithm, kitchen dataset.
Translation

The algorithm was tested on a synthetic dataset showing the point of view from
a person walking slowly towards a kitchen counter (kitchen dataset) and towards
a sofa in a living room (living room dataset). Figures 3.11, 3.12 and 3.15 show
the estimated angular velocities, camera orientation and camera position in global
coordinates. One can see that the four degrees of tracking algorithm works well at
tracking the camera’s movement both in rotation as well as in z-translation. The
living room dataset shows a better performance at translation estimation, whereas
the kitchen dataset exhibits a better performance in pose estimation. Pose errors are
relatively small with largest squared error being around 0.04 rad. Contrary to the
expectation, both the largest error was encountered in the yaw direction, rather than
roll and = directions. Since we are dealing with a monocular system, the scale of the
translational movement can not be automatically established. The scale shown in
Figure 3.15 was chosen using prior information about the dataset.
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Figure 3.12: Tiled algorithm estimated poses in full 4DoF estimation
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Figure 3.13: Tiled algorithm estimated pose error on kitchen dataset in full 4DoF esti-
mation

Units: [rad?] Pitch  Yaw Roll
Avg. Squared Error 0.0161 0.0042 0.0043
Max. Squared Error 0.0301 0.0464 0.0300

Table 3.10: Orientation errors for the tiled algorithm, kitchen dataset.
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Figure 3.14: Tiled algorithm estimated pose error on living room dataset in full 4DoF
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Figure 3.15: Tiled algorithm estimated camera location in full 4DoF estimation
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3.6 Scaling and Rotation

While not directly used in the current Pose estimation algorithms presented in this
thesis, it is thought to be of importance to be able to perform rotation and scaling
operations on CPA for future algorithms. This section introduces an algorithm that
allows one to rotate and scale an image on the CPA. While shifting images, or part
of images is a very natural operation on the cellular processor array, scaling and
rotating is not. The chip behaves according to the single instruction, multiple data
paradigm (SIMD) which ensures that every processing element always executes the
same introduction. In rotating and scaling however, no two pixel share the same
motion vector between the original and the transformed image.

The SCAMP chip allows us to temporarily deselect some processing elements,
only executing the next instruction on the selected CPAs. Using this technique, the
operation could be implemented nevertheless.

Approach

We use a technique called rotation by shearing introduced in Paeth (1986). The pre-
sented approach decomposes a rotation by matrix M into three shearing operations,
two along the = — azis and one along the y — azis. With a definition of shearing
along = and y axis according to

a 1

S, (a) = [é ‘ﬂ S,(a) = [1 0] (3.15)

Paeth (1986) shows that a rotation matrix can be decomposed according to

cosa —sino 1 —tan$ 1 0 1 —tan$
- 2| . . 2
{sina cos « } {O 1 } {sina 1} [O 1 } (3.16)
Which is a series of shears along the = and y axis. What remains to be done is to
implement a function that performs a shear on the cellular processor array. It turns
out that the same algorithm can also be used to implement scaling with minimal
changes.

Consider a scaling matrix with scaling coefficient v. Again, we can decompose
the matrix into a scaling to z-driection and a scaling into y-direction, giving us

v O _|v 0 |1 O

b =6 617
which is a multiplication of a stretch of the image in x direction, followed by a stretch
of the image in y direction.

Implementation

Let row r;, i € {—128,127} be the i — th row in y direction from the centre of the
array. In the SCAMP case with 256 rows, r; would be row number 128 counted from
the bottom of the chip, starting at 0.
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We observe, that a shear by a € [—1, 1], along the z-axis requires us to shift row r;
by a-i pixels east. Furthermore, we observe that for any row r; with |j| > |i|,7-j > 0,
r; has to be shifted at least « -4 pixels. So when shifting row r;, it makes sense to also
shift all the other rows which incur at least the same shift as r; to save instructions.

The algorithm for a shear into z-direction is outlined in algorithm 3. The select,ows
function first gets called on half of the entire array, and then on one row less in every
iteration of the loop. On the SCAMP chip, this is very easily implemented by select-
ing the entire half-array first and then shifting the selection up or down by one pixel
in every loop iteration. Selecting the entire half array is trivial, thanks to the flexible
addressing system (See section 2.1.1). Shears into the y direction are implemented
according to the exact same pattern with switched coordinates.

Furthermore, we observe that a scale along the y axis by ~ requires us to shift
row r; v - ¢ rows north. This can be done by the exact same algorithm, however
instead of shi ft_west we perform shift_south and instead of shift_cast we perform
shift_north

Results

The algorithm has been implemented and tested on both real hardware as well on
the simulator. Figure 3.16 shows the result of a rotation and scaling by the algorithm
recorded on real SCAMP hardware.

Rotation requires us to perform three shears one after the other. It is evident
from the images, that rotation does degenerate the image quality quite considerably
as it involves quite a few shifts. However, for small rotation angles, the decrease in
image quality is less severe.
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(b) Rotation

(c) Scaling (d) Rotation and Scaling

Figure 3.16: Results of applying the rotation and scaling algorithms on real SCAMP
hardware
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Algorithm 3 Algorithm that performs a shear by « into x-direction on the SCAMP
chip. Function select_rows makes sure that the next operation only gets executed by
the rows given as argument. shift_east and shift_west perform a shift by one pixel
on the selected rows

1: procedure SHEARX ()

2:

W XNy R W

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

acc <0
for: €0...127 do
acc + acc + |af
if acc > 1 then
acc < acc — 1
select_rows(r;...r127)
if o > 0 then
shift_east
else
shift west

acc <0
foric —1... — 128 do
acc < acc + |a|
if acc > 1 then
acc < acc — 1
select_rows(r;...r_12g)
if « > 0 then
shift_west
else
shift_east
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Chapter 4

Automatic Kernel Code Generation

In this chapter, an algorithm is presented to automatically generate program code to
execute an arbitrary convolutional kernel on a Cellular Processor Array. The prob-
lem consists of a very large search tree, which is in most cases intractable to explore
exhaustively. Therefore, we introduce heuristics to point the algorithm to good so-
lutions quickly. The algorithm manages to find good solutions for arbitrary filters
quickly. For filters for which a manual implementation exists, the algorithm has
proven to generate equivalent or better code.

4.1 Motivation

Cellular Processor Arrays, defined by the nature of their design, require the program-
mer to think of algorithmic problems in a different way. There are problems, such as
the ”Sum-Of-Absolute-Differences” class of algorithms described in Chapter 3, that
fit to the platform in a very natural way. However, there are algorithms that fit on
CPA less intuitively. For simple convolutional filters such as the 3 x 3 Gaussian filter,
or the 3 x 3 Sobel filter, developers have come up with hand-crafted implementa-
tions for CPA. As an example, one could implement the 3 x 3 Gaussian filter in the
following way:

Cre
K=_|2 42 =2120-7[1 2 1] (4.1)
121 1

Translated to a SCAMP program, we get a solution with 12 SCAMP instructions,
(Listing 4.1).

Listing 4.1: Algorithm to perform the 3 x 3 separable Gaussian filter. Assume original
Image in A, and result in D.
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7 D = div2 (D)
1 D = div2(A) 8 C = div2(D)
2 C = div2 (D) 9 E = north(C)
3 E = east(C) 10 D = add(D, E)
4 D = add(D, E) 11 E = south(QC)
5 E = west(C) 12 D = add(D, E)
6 D = add(D, E)
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For more complicated filters or large quantities of filters however, it becomes harder
or even impractical to manually generate good quality code implementations. An
automatic generation of the filter code delegates a time consuming part of the de-
velopment process to the software, saving developer time. At the same time, it
improves abstraction by making the filter representation independent from the un-
derlying hardware, so a future CPA, or similar product may be able to use the same
codebase. As many Computer Vision problems can be expressed in terms of con-
volutional filters, being able to automatically generate code for them forms a basic
building block in achieving higher level Computer Vision algorithms on CPA.

4.2 Applications

The first stages of convolutional neural networks for image classification, such as
AlexNet (Krizhevsky et al. (2012)), usually consist of pure convolutional layers. The
coefficients of the filter kernels are all learned in the training phase of the network.
Since we can not make any assumptions on the values prior to learning, the convo-
lutional filters that result appear to be random. An automatic code generation can
produce the code implementation of these learned convolution filters automatically,
making it easier to deploy these kinds of networks to CPAs.

The algorithm presented in Viola and Jones (2001) uses a large set of very simple
Haar features to construct powerful face detection classifier. The algorithm can not
only be trained to detect faces, but any class of objects with distinct shape and
features. Since we can see the Haar-Like features as very simple convolution kernels,
the automatic code generation can produce code to implement a Haar-Like classifier
with a large number of features on a CPA. An implementation of a face detector is
shown in a later Section 4.6.

4.3 Abstraction Levels

One can identify different levels of abstraction when talking about code for the
SCAMP CPA chip. Table 4.1 shows different abstraction levels of code for the CPA
system. Code for the hardware abstraction to levels 1 and 2 is already available
(Chen (2016)).

This thesis takes the abstraction to a higher level, by allowing to generate code
from a high level description of a filter Kernel. Higher level abstractions like com-

Level Description Example
4 Higher level algorithmic descriprion for (...)
Filter Kernel description K=][.]

LOAD instructions to move currents between registers A, B = load(C, D)

3
2 Mapping of arithmetic instructions to load instructions A = add(C, D)
1
0

79-bit instruction word to set switched in PEs 1011001..

Table 4.1: Code abstraction levels
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pilers for general purpose programming languages have not yet been published and
are not in the scope of this thesis.

The approaches presented in subsequent chapters produce code in abstraction
level 2, that can be further compiled down to machine instruction words (level 0)
by existing tools.

4.4 Contribution

This section describes the theoretic approach as well as experimental results ob-
tained for the code generation problem. The code generation algorithm presented
in this thesis takes an arbitrary convolutional filter as an input and outputs a CPA pro-
gram executable on the SCAMP hardware. Section 4.4.1 provides a short overview
of the steps involved in generating a program for CPA.

4.4.1 Overview

The automatic filter code generation can be seen as five individual steps. In a first
step, the coefficients of the input filter get approximated to fit to the hardware ca-
pabilities of the device. This step is explained in Section 4.4.2. Next, the filter gets
transformed into a set notation to be decomposed by the reverse split algorithm.
This step is described in Section 4.4.3.

The reverse split algorithm, described in Section 4.4.9, then tries to decompose
the filters set into additions of subsets, while keeping track of the operations it per-
formed to get there. This way, by trying to reach the initial state from the final state,
we get a plan on how to compose the final state from the initial state.

In a fourth step, we try to reduce the amount of necessary instructions by exploit-
ing equivalence transforms on the computational graph. This operation is described
in Section 4.4.12. In a last step, a graph colouring algorithm computes a valid
register allocation for the computation graph. This is described in Section 4.4.13.

The physical register allocation yields a program that can be executed on the
cellular processor array without any further modifications.

4.4.2 Value Approximation

While exposing massive parallelism, the individual processing elements of the SCAMP
chips are very limited in functionality. Multiplications with arbitrary constants is un-
supported on the hardware. However, since multiplications by constants are the
underlying principle of digital image filtering, this operation had to be implemented
in an alternative fashion.

The SCAMP chip does not support multiplications by arbitrary constants, how-
ever, divisions by integer numbers can be performed by sending current into multiple
registers simultaneously. So, a division by n requires at least n+ 1 available registers,
including the source registers. Since the chip only has 6 available analogue registers,
of which are not always all available and for reasons of simplicity, we restrict any
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division to be a division by two. Multiplications by integer numbers can also be emu-
lated in software, by adding the value to itself. Instead of multiplying by a constant,
we approximate the effect of multiplication by summing up scalings by powers of 2
of the pixel value.

With these restrictions in place, we approximate target values by divisions and
multiplications of two of the original values. Let a € R be an arbitrary value in a
convolution kernel. Let / be a pixel value. We approximate the scaled value as

D
a-IzZad-%-I, 4.2)
d=—o00
with a4 € {—1,0,1}. These are the coefficients defining if we subtract, ignore or
add a certain scaling of the value in order to approximate a. D is the depth of the
approximation. Intuitively, approximating to a higher depth yields a better approxi-
mation.
In a practical implementation, we can set the —oo value of the sum to a value that
is sufficiently low to capture «. A start value of s = — [log,(]«|)] is small enough.

Proof. Assume « > 0 then it follows that s = — [log,(a)]. Let & = ZdD:_HO ()] ad-2id
is the approximation of & and D > 0. With this assumption, the maximum value
achievable is & = Zf}[logz(aﬂ 57 > Zngﬂowﬂ =204 20 o 4 2Me(@] >
Mloga(@)] > 9loga(?) — o For @ < 0. We have same case as for o > 0, but with

al, = —aqvd. O
The approximation problem then reduces to

D
a-I =~ Z ad-ﬁ-l 4.3)

d=—[logs(|e])]

Based on equation (4.3), an algorithm to find an optimal set of a, coefficients
given a desired o and depth is outlined in Algorithm 4. The algorithm iterates
over the sequence 2M°e=2(1eDT ... 2 1 11 1. LAt every iteration, it decides the q;
coefficient current item according to one of the following rules:

1. If the current absolute error is smaller than half of the contribution of the
current item, adding or removing it would bring us further away from the
target. We ignore the current item.

2. If the current absolute error is between half the current item and three quarters
of the current item, adding it would bring us closer to the target, but adding
the next item brings us even closer to the target. We ignore the current item.

3. If the current error is bigger than three quarters of the current item, and adding
it brings us closer to the target, we add the current item

4. If the current error is bigger than three quarters of the current item, and sub-
tracting it brings us closer to the target, we subtract it.
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Error of Approximation

The algorithm outlined in Algorithm 4 finds the optimal approximation of a given
value and requested depth. However, it introduces a systematic approximation error
depending on the input value. The error decreases for higher approximation depths
at the expense of additional approximation terms.

Figure 4.1 shows the best approximation errors obtained by algorithm 4. The D
value signifies the maximum depth the algorithm is restricted to. One can see that,
as expected, going to greater depths does reduce the error for most values. However,
the returns on going to deeper approximations get smaller with every new level.

4.4.3 Filter Approximation

In this Section, we extend the approximation equation (4.3), to approximate a com-
plete convolutional filter.

Given a convolutional kernel K € R™*", and maximum approximation depth D,
let I be a large enough image, and I, ; the pixel at image coordinates 4, j. Let R be the
set of coordinates u, v in the neighbourhood of the center point of the convolution
filter. For n odd: v € {—231..2}, for m odd: v € {—-2=1..-}. For n even:
ue {—22..2}, formeven: v € {—752. .2},

We can write the effect of convolutional kernel K onto the image [ at position
i, j as follows

L= Kuv Tivujio (4.4)

u,vER

To implement Equation (4.4) on the CPA, we approximate the values for K, ,- i1y j+v
using the method described in Equation (4.3). The approximated kernel then looks
as follows

Algorithm 4 Find coefficients to approximate value

1: procedure APPROXIMATE (target, depth)
2: result < 0

3: for d + — [log,(|a])],depth do
4: if result = target then
5: return
6: current <
7: if |result — target| > 3/4 - current then
8: if |result + current — target| < |result — current — target| then
9: Set bd =1
10: else
11: Setby; = —1
12: else
13: Set by =0
14: result < result + b, - current
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Figure 4.1: Theoretical best approximation errors for certain depths for coefficients in
[0,1].

D

1
Ku,v : [i—i-u,j—f—v ~ Z Aduw * ﬁ : Ii+u,j+v (45)
d=—[log,(|a)]

This results in the following equation for our updated image value

D

Iz{,j = Z Z ad,u,v : % : ]i—l—u,j—f—v (46)

u,vER \ d=—[logy(|a])]

With o; = 27% = 27472 . 27D we can write this as

D
Iy=> S Ghue 2P| 27 L, 4.7)

u,vER | d=—[logy(|a)]

J/

=N (u,v)

Since D is the maximum approximation depth, 2= - I is the smallest scaling of the
input value occurring in the sum. Equation 4.7 shows a rule on how to assemble
the desired filter kernel by a sum of the elementary scalings (maximum, 2-7?) of
the input values.

N(u,v) € Z then gives the number of elementary scalings of the image value at
i + u,j + v required, to sum up to the desired filter. Am approximated filter can
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therefore be fully described by the function N(u,v) together with the approximation
depth D.

4.4.4 Set Notation

This section introduces a different notation of the approximate filter, as well as other
preliminary definitions that are used throughout the chapter.
Let the function repeat(a, V) signify the set of N copies of a.

Definition 1. Let an atom be a tuple ([id], u,v) where id is an arbitrary integer unique
to all other defined tuples, u, v denote the coordinates relative to the center of the filter.
An atom symbolises the contribution of an elementary scaling (lowest possible scale) at
coordinates (u,v) to the final filter sum.

Definition 2. Let a goal be a set of atoms. The atoms in a goal are to be viewed as an
addition of the atoms values.

Definition 3. Let a final goal FG be the goal (set of atoms), such that

FG = {repeat(([*id],u,v), N(u,v)) : V(u,v) € R} where xid is an arbitrary integer,
unique in the set. For every position in u,v € R we add exactly N(u,v) atoms to the
set, each with a unique id.

Definition 4. The initial goal represents the set of atoms that is present in a reg-
ister before doing any operations. Let D be the approximation depth, then IG =
{repeat(([*id],0,0),2P)} where xid are the ids of the atoms at u = 0,v = 0 in the
final set for as long as there are such atoms, arbitrary integers, unique in the set oth-
erwise. We add exactly 2P atoms with coordinates (0,0) to the set. Each atom has to
have a unique id.

Example 1. A 3 x 3 gaussian filter can be written as

1

16

1216 (4.8)

16

K =

NN
AN

With an approximation depth of D = 4 we manage to approximate all values without
an error, according to Algorithm 4. In set notation, the final goal of this filter becomes

i e B g
F&=1Y (11,00 ,> (19],0,0),  ([10],1,0). mf]’ 0), (4.9)
(02, -1,1), (13],0,1), ([14,0,1), ([15],1,1)
With the initial goal being
%1]00] )0) Eg]oﬁg)()) Eﬁ]o’%?))b) EE]()Z%?))O)
1G=1 {104 00) ([105.0.0) (106.0.0) (107.0.0) (4.10)
([108], ,O), ([109],0,0), ([110],0,0), ([111],0,0)
With D = 4,270 =

16
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Since the function N(u,v) is given by the approximation algorithm and the ap-
proximation depth D, we can easily construct the final goal of any arbitrary filter
automatically.

Looking at the correspondence of this set notation to the actual implementation
on the chip one can see that the notion of a goal is essentially a sum of different
scalings of pixel values from positions around the center pixel. A goal can be stored
in a register. Every atom corresponds to 27 scale of a pixel value at a certain offset.
Having a goal stored in a register therefore means having the sum of the scalings of
pixel values in a register as described by the atoms of the goal.

4.4.5 Goal Transformations

The nature of the CPA allows us to transform goals into other goals. Since every pro-
cessing unit performed the same operations up until this point, the adjacent process-
ing units of a particular pixels hold the same values, but computed on their source
data. A value stored in a CPA register can be seen as a goal, an accumulated set of
different scalings of pixel values. Shifting the goal to one side essentially converts
the goal to a goal with same scalings, but with different coordinates. We differen-
tiate between shift transformations that operate by shifting goals to neighbouring
processing units, scale and negate transformations that operate on the processing
unit by dividing, negating and adding to itself. Any combination of these transfor-
mations is still a valid transformation.

Negation

Let F' and G be two goals. Goal F is the negation of goal G iff Va € G 3 -’ € F and
Jae GV -d € Fs.t.a,=al, a, =a., a,q # a,,.

Example 2. A negation of G = {([0],1,—2),([1],0,1)}is F' = {—([2], 1, —2), —([3],0,1)}

Shifts

Assume a processing element holds goal {(]0],0,0)} in a register, from its point of
view, the processing unit on the left holds goal {([¢], —1,0)}, that could be obtained
by shifting the value in. However, we can look at the problem solely from the local
processing unit, by saying, that we can convert a goal into another by changing the
coordinates and the ids of all atoms in the goal.

Let G and F be goals. If GN F # (), we can not transform one goal into the other,
as their corresponding elements would no longer be the same after shifting. This
would violate the equality constraint.

Otherwise, if G N ' = () we can transform G into F iff Va € G 3ad’ € F and
da € FVa' € G and Im,n s.t.a,+n=d, a,+m = al, a;q # a,;. (There is an
offset mapping from every element in F' to an element in (). The values a,, a,, a4
represent the atoms z, y and id properties respectively.

Example 3. The goal G = {([0],0,0)} can be transformed into F' = {([1],5, —2)} with
m=295n=—2.
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The goal G = {([0],0,0), ([1],1,0)} can be transformed into F' = {([2],0,—1), ([3],1,—1)}
withm =0,n = —1.

The goals G = {([0],0,0),([1],1,0)} and F = {([2],0,—1),([3],1,—2)} can not be
transformed into each other; as there exists no m,n to shift G to F’

Scales

Let |-| denote the cardinality of a set. In addition to shifting goals, we can scale some
goals by a factor of two. Let F' and G be goals. We can scale F' down to transform
intoGifft G C F, |F|=2-|G| and Va € G3d' € F s.t. a, = dl,a, = a,a;,q # a}, (for
every atom in G there exists an atom in /' with same coordinates but different id).
The same condition holds true for scaling up, with /" = G and G’ =

Example 4. The goal G = {([0],0,0), ([1],0,0), —([2],0,1), —([3],0,1)} can be trans-
formed into F' = {([0],0,0),—([2],0,1)}.
The goal G = {([0],0,0), ([1 ],0,0) ([2],0,1)} can be transformed to
,0), ([5], 0,

1
F={([0,0,0), ([1],0,0), (4], 0,0), ([5],0,0), ([2],0,1), ([3],0, 1) }

Additions

While not considered a goal transformation, additions are still listed here to com-
plete the set of possible operations. Let F' and G be two goals. We define the
addition of F' and G only to be valid, if F N G = ) (the sets are disjoint). Then, the
addition of goals F' and G is the union of both sets: F'+ G = FUG

4.4.6 States

Definition 5. A state is an assignment of goals to integer numbers (slots). One can see
this as an assignment to virtual registers.

Example 5.
0: {([O]v_lv_l)v ([1]707_1)}
Se=141:{([9],0,0)} 4.11)
2:{([13],0,1), ([14],0,1)}

The state S, contains 3 slots, slots 0 and 2 have goals with 2 atoms each, while slot 1
has a goal with only one atom.

Definition 6. The initial state is the state with the initial goal assigned to slot O.
so={0:16 (4.12)

Definition 7. A final state is a state which contains the final goal.

Sp=1k:FG (4.13)
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With k£ € N an arbitrary slot.

Definition 8. A transformation between state slots is a combination of shift, scale and
negate transformation of a goal in a source state slot with subsequent assignment to a
target state slot. A transformation of state slot a to state slot b with h horizontal shift,
v vertical shift s scaling and n negation is represented as b < transform(a : — (v) 1

(h) +(s) ~(n))

Definition 9. An addition between state slots a and b with subsequent assignment to
a target state slot c can be written as ¢ < add(+a, +b), where — signs can be used to
invert an operand.

4.4.7 Graph Representation

A similar notation is introduced for representing the state transformations and addi-
tions as a directed graph. The symbols in Table 4.2 can be used to express a series
of transformations and additions on the state as a graph.

Operation Representation CPA instructions

Addmgn of state slot 0 y N add
and 1 into state slot 2

Addition of negative
slot O and positive * X sub
slot 1 into 2 (Subtraction) @

Shift of slot O right by a,
up by b, scale down ¢ Q —(a) 1(0) +(c) @
0

times into slot 1

north, east, south,
west, div2

Shift and scale slot 0, negate S@) 1t +(e) - north, east, south,

Empty shift (Copy)

€
from slot O to slot 1 @ copy, nop

and store into slot 1 @ @ west, div2, neg

Table 4.2: Graph representation styles

The node numbers represent the slots in the state that we write to or read from.
Note that the algorithms introduced later in this chapter never write to the same
state slot twice, and monotonically increase the state slot they write to. Therefore,
for all graphs in this thesis, the node (state slot) numbering follows the order in
which the computation is carried out.
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4.4.8 State Transformation Plans

In order to find a valid program for the convolution filter, we have to find a path of
transformations from the initial state to reach a final state. Since the transforma-
tions described in Section 4.4.5 all map to elementary CPA instructions, it is then a
relatively easy task to compile a program. There are multiple ways to achieve this.
A straight forward, sequential algorithm is outlined below.

Sequential Approach

Algorithm 5 describes a sequential algorithm to compute a plan to reach a final
state from the initial state. As defined above, the initial state has only the initial goal
assigned to slot 0. The initial goal contains exactly 2 atoms with coordinates (0, 0).

In the first while loop, we scale down initial goal, until only a single atom re-
mains. In every step, we remove half of the atoms, until we are only left with a
single atom. Since the register originally contains 2° atoms, this is always possible.
Now, originating from this single atom, we can generate every other atom present
in the final goal and add it to an accumulator. This again is always possible, as two
single atoms can always be transformed into each other. We perform this for every
atom in the final goal. In a last step, we add the generated atom to a sum of previ-
ously generated atoms, which in the end yields the final goal. Note that we always

Algorithm 5 Sequential, naive algorithm to generate code to achieve the final goal.
The << operations signifies an "append” operation.

1: procedure SEQUENTIALPLAN(finalGoal, D)

2: plan « [|
3: prevAdd + —1
4: prevSlot < 0
5: nextSlot < 1
6: for i = {0...D} do
7: plan << (nextSlot + transform(prevSlot : +(1)))
8: prevSlot + nextSlot
9: nextSlot < nextSlot + 1
10: source < prevSlot
11: for a € finalGoal do
12: plan << (nextSlot < transform(source : — (a,) T (ay) 7(dneg))
13: prevSlot + nextSlot
14: nextSlot < nextSlot + 1
15: if prevAdd > 0 then
16: plan << (nextSlot < add(+4prevNr, +prevAdd)
17: else
18: plan << (nextSlot < transform(prevSlot : €))
19: prevAdd < nextSlot
20: prevSlot + nextSlot
21: nextSlot < nextSlot + 1
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consider the lifetime of an assignment to the state to be infinite, we never overwrite
a slot we have written to before. The slots get assigned to physical registers at a
later stage, however, by simple static analysis one can see that programs generated
by this simple algorithm will always require at most 3 physical registers. This algo-
rithm is always feasible as long as we have 3 available physical registers and always
generates a correct result. However, the runtime is generally far from optimal, as
the algorithm does not make any smart choices.

Example 6. A very simple toy example
K=1[05 1 0.5] (4.14)
Yields the following initial goal and final goal:
IG = {(]0],0,0),([1],0,0) } (4.15)
FG = {([0],0,0),([1],0,0), ([2], =1,0), (13|, =1,0) } (4.16)

Using the sequential algorithm to generate a plan yields the result outlined in Listing
4.2

Listing 4.2: Toy example with sequential algorithm

6 < transform(1 : €)
7+ add(+5,+6)

8 « transform(1 : — (1))
9 « add(+7,+8)

1 transform(0 : +
2 «+ transform(1 : <+ (1))

(2: ¢

€)

—~
—_
N
~—
O 00 O

3 « transform
4 + transform(1 :
5+ add(+3, +4)

uapbh wWON R~

The state obtained after the last step holds the final goal at slot 9 and is therefore
a final state. While this plan is correct and works as intented, it is with 9 steps much
longer than the optimal solution outlined in listing 4.3, which takes only 5 steps.

Listing 4.3: Optimal plan for toy example

4 4 + transform(3 : — (1))
1 1 + transform(0 : +(1)) 5 5 « add(+3, +4)
2 2 + transform(1 : <+ (1))
3 3 ¢ add(+1, +2)

Both plans are represented as a graph in Graph 4.1.

The problem that example 6 shows is, that the sequential algorithm compiles a
plan for every atom in the final set individually, without taking the whole set into
account. Therefore, it completely fails to reuse sub expressions.

4.4.9 Reverse Splitting Algorithm

The sequential approach in Algorithm 5 showed weaknesses in finding good solu-
tions even for very a small problem. A better approach is proposed here to find more
optimal plans for assembling the final set from the initial set.
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@ (b) Optimal solu-
(a) Sequential algorithm tion

1
X
v
S
7

Graph 4.1: Graph representation of the toy example from example 6. The nodes rep-
resent sub results for the final results. Edges labeled with ¢ are empty operation. Edges
with numbers represent a transformation of a value (shift or scale) where as edges with

just a plus represent additions of sub results. The optimal graph is better because it
contains fewer operations.

55



4.4. CONTRIBUTION Chapter 4. Automatic Kernel Code Generation

Motivation

As described, the final goal is a heterogeneous mix of different quantities of atoms
with different coordinates. The initial goal however only contains atoms of a single
coordinate (0,0). In order to generate the heterogeneous mix of the final goal, we
have to assemble different sub goals which we then can add together.

Algorithm 5 does follow the same principle, however, it is only capable of gen-
erating and adding up sub goals with one atom in length. This is apparent in the
graph, where every shifting edge originates from state slot 1 which only contains
one atoms as required by the algorithm.

A smarter approach would be to not naively generate single atoms for the fi-
nal solution, but to generate sub goals for the final solution which in turn can be
transformed again to form other sub goals.

Example 7. If we look at the final goal for the 3x3 Gaussian filter in example 1,
the sequential algorithm would generate and assemble all the 16 atoms of the final
goal seperately. If we have a closer look at the final set, we can spot the following
optimisation.

Assume a program would generate state with the following sub goal (essentially the
middle row) assigned to a slot k € Ny

( .

| (4],-1,0), (5],-1,0), ([6],0,0), ([7],0,0), | _
k{ ([8],0,0),  ([9],0,0),  ([10],1,0), ([11],1,0) }._SCFG (4.17)

If we look at the remaining parts of of the final goal, we can write them as
_ ([0]7_17_1)7 ([1]70’_1>’ ([12]v_1v1)7 ([13]7071>7
FG\S_\{ ([2]707_1)7 ([3]’17_1)7 }U\{ ([14]v0’1)7 ([15]71’1) }/ (418)

Ry R

It is apparent that goals S and Ry, S and R, and Ry and R; all can be transformed
into each other. This follows from the fact, that the coefficients of the lower and upper
rows of the gaussian filter are just one half the coefficients of the middle row.

A smart algorithm can now easily compute the remaining parts R, and R, by reusing
the result previously computed goal, saving massive amounts of work. Generating R,
from S can be done in just two instructions.

As shown in example 7, the order in which we generate and add up sub goals is
crucial to achieve a good result.

Assumptions

We assume, that it is never beneficial to generate a sub goal, which is not part of the
final goal. Let S be any state in the execution of the program, GG a goal in a slot of
S, we can say that VG € S, G C FG for FG the final goal.

56



Chapter 4. Automatic Kernel Code Generation 4.4. CONTRIBUTION

This is a sensible assumption as it ensures that the program never computes
anything that is not part of the final solution.

Search Space and Optimality

The initial goal /G only contains 2P atoms with coordinates (0,0). Any non empty
final goal F'G contains at least one or more atoms, with arbitrary coordinates. If the
initial goal is directly transformable to the final goal, there is a defined, optimal way
of doing so, given by the set of possible transformations.

If the final goal is not directly transformable from the initial goal, the final goal
is an addition of two subgoals. There are 2/F¢! different possibilities of splitting the
final goal into two sub goals. each of these two sub goals are again either directly
transformable from the initial goal or a sum of yet two other sub goals. At some
point, all the sub goals will be directly computable from the initial goal.

We can be sure that this search space contains all the possibilities to build a split
tree to come up with the final goal. Note that this still does not take into account
that we may have the possibility to reuse sub results. It just guarantees that we find
the set of all possible splits. In order to optimise this, we would have to tie branches
of the tree together to reduce computation.

Algorithmic discovery

Described here is the reverse split algorithm that explores the search space men-
tioned before. Let F'G be the final goal. We start with the final goal and perform a
split on it into three parts FG = U + L + R, where we call U the upper goal, L the
lower goal and R the rest goal.

We require U and L to be transformable into each other. Therefore, (|U| > 0) <
(|L| > 0). R always contains the rest that is not covered by U and L, in the extreme
case where we can’t find a U and L, I'G = R. In the other extreme case, where we
can perfectly split into U and L, we have R = ).

If we now build a program that can generate L and R, we know how to assemble
FG as U can be generated from L. We therefore no longer need to consider U. One
could say that we get U for "free” by generating L. From the final goal we had in
the beginning we now generated two goals L and R that we have to generate. If the
split was smart, generating L and R should be an easier task than generating F'G,
bringing us closer to the solution. We can now perform a similar step on L and R.
Let L;, U;, denote the lower and upper set generated at step i, with Ly = L, Uy = U,
Rl(j ) denote the j — th rest step obtained at step i, with R(()O) = R. Step 0 was already
performed above. For i = 1 we now have the following options:

1. Split Lo: Lo =U; + Ly + REO) have {R(()O), Ly, REO)} for next step
2. Split R(()O): R((]O) = U, + Ly + R\"” have {Lq, L1, R\”} for next step

3. Split Ly and R": Ly = U, + R\, RY = L, + R\ have {R\”, L,, R{"'} for next
step
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Assume for any step i we have n goals to split. Analogous to the case i = 1, we
can either split any of those n goals individually or, we can choose any two of the
goals to split together. This yields n + (’;) possibilities to choose sets to split Since
the R goals can be empty, we add or remove at at maximum one goal to the list of
goals to obtain in every step. We perform the algorithm until we arrive at a single
goal that can directly be transformed from the initial goal. A plan is then given by
reversing the list of splits the algorithm performed.

Note that to execute the plan, we have to hold each of the goals in a register
in the device. So in every step, we can omit splits that would yield more sub goals
than the amount of available hardware registers. These cuts greatly improve search
performance as well as ensure that every plan we find is actually executable with the
amount of hardware registers available. In every step, we have n + (g) possibilities
to choose goals to split. This is potentially a very big number. However, since n is
never bigger than the amount of hardware registers, this is generally not a problem.
Especially on the SCAMP, we only have 6 registers of which usually only 3 are really
available to perform the computation, the others being occupied by functionality
outside the scope of the convolution kernel.

A recursive implementation of the algorithm is outlined in Algorithm 6.

Algorithm 6 Reverse split algorithm. The << operation signifies an "append” oper-
ation. generatePairs generayes all the split-pairs that can be applied to the current
goals. isTransformable(a,b) returns true, iff ¢ and b are transformable into each
other.

1: procedure REVERSESPLIT(goals, currentPlan)

2: if |goals| == 1 and isTransformable(goals[0], IG) then
3: plans << currentPlan + (goals, (initialGoal — goals[0])))
4: return
5: upGoals, lowGoals < generatePairs(goals)
6: for (upGoal, lowGoal) € (upGoals, lowGoals) do
7: newGoals < ||
8: for goal € goals do
9: newGoal <+ goal \ (upGoal U lowGoal)
10: if [newGoal| > 0 then
11: newGoals << newGoal
12: newGoals << lowGoal
13: ReverseSplit(newGoals, currentPlan + (goals, (lowGoal — upGoal)))

Algorithm 6 shows a minimalistic implementation of the reverse split algorithm.
The algorithm works exhaustively by evaluating all the possible splits possible in
every step. At every step, the algorithm adds a tuple with the goals to have in
this step, as well as the pair of lower and upper goals that one needs to use in
order to achieve this state from the previous one. Whenever the algorithm finds a
solution, it adds it to the total list of solutions. Note that the reverse split algorithm
does not directly generate a plan with additions and transformations. A second
program generates the actual plan from the output of the reverse split algorithm.
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This program figures out which goals have been splitted and works out the necessary
add and transform operations to get a graph-able plan.

Branch Cutting

The reverse split explores the search tree in a depth-first fashion. If we have a good
pair generation function, it is likely to find good solutions even early on. As soon as
the algorithm finds a solution, the cost of that solution is stored as the current best.
From now on, whenever the algorithm descends down a path that already has an
accumulated cost higher than the already found minimum, the branch is cut of.

Provided a good pair generation function that leads the algorithm to good solu-
tion in the beginning, this can reduce the search space and allows the algorithm to
prove the optimality of a result more quickly.

4.4.10 Pair generation

The reverse split algorithm as outlined in Algorithm 6 relies on the function
generatePairs((goals)) that essentially generates all the possible splits of the goals in
the current step. In order to guarantee that we explore the whole search space, this
function has to return a complete list of upper and lower goals that are applicable
in this particular step. As mentioned before, if we have n goals, we have n + (})
possibilities to select the goals we want to use in the splitting: Either select a single
goal to split, or select two goals out of the n goals to split together (One getting the
upper goal, the other getting the lower goal).

Two goals that are transformable into each other have to be disjoint. Therefore,
it is sufficient to consider the case of splitting two goals, while considering the case
of a single goal as splitting the goal and a copy of itself.

Overview

Assume we have two goals F' and G, which may or may not be the same. We require
UcCF,LcG, LNU = 0and U and L transformable into each other. We have
to find all possibilities of such sets U and L which fulfil subset and transformabil-
ity requirements. The algorithm to generate pairs works essentially by sorting and
grouping together atoms that share certain properties, followed by an exhaustive
generating step.

Figure 4.2 Shows a rough overview of the steps performed. At first, we calculate
the distances between every atom from F' to every atom in G. We then group to-
gether all pairs of atoms that share the same distance. Since there are usually more
than one atoms at a specific coordinate location, there will be equivalent pairs in
these groups. The next steps are all performed on each group individually. At first,
we find and group pairs that share the same coordinates. From the pairs with the
same coordinates, we can find all scalings (scale transformations) that are possible
with these atoms at the specific coordinates.
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Figure 4.2: Steps performed for obtaining split pairs. The reverse splitting algorithm
creates a plan to build a program by splitting up the set representation of the filter kernel.
In order to so, it requires split pairs that are generated according to this flowchart.

Having obtained all this information, we assign an “elementary move” for every
found possible transformation. In a last step, we group the elementary moves that
share the same distances and scaling together in an exhaustive fashion.

Distances

For atoms a € F, b € G, we define the vector d(a,b) = (a, — by, a, — b,) as the
distance between the two atoms.

In a first step, we compute the distances from every atom in F' to every atom in
G, and group the pairs together that share the same distance.

Let A be the set of all pairs (a,b),a € F,b € G. We consider the sets X C A such
that 3D € Z%V(a,b) € X,d(a,b) = D

For two goals to be transformable into each other, all the atoms from the first
set must have a correspondence to an atom in the second set and vice versa, with
all those correspondences having the same distance. Therefore, for further analysis,
we can consider the groups of pairs with same distance individually, without losing
opportunities to find additional transformable sets U and L.

Proof. For a pair of atoms (ay,b;) with distance d(a;,b;) = d; and another pair of
atoms (aq, by) with distance d(as,bs) = do, dy # dy and d; # —d, it follows that
Bm, n to fulfil the shift transformation condition for the two goals U = {a;,a,} and
L ={b1,b}. O

Example 8. For goals F — {([0],1,1), ([1],1,1), ([2],0,1)} and G = {([3],1,0), ([4],0,0)}
Computing the distances, between all atoms we get (only ids printed)
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F G Distance

0] 8] (0,=1)
0] [4] (=1,-1)
1] 8] (0,-1)
1] [4] (=1,-1)
2] 8] (1,-1)
2] [4] (0,-1)

Table 4.3: Distances between the atoms of F' and G. The values in square brackets are
the ids of the atoms.

Grouping the pairs by distance we get

Distance Pairs

(0,=1)  ([0], [3]), ([1], [3]), ([2], [4])
(=1, 1) ([0], [4]), ([1], [4])
(1’_1> ([2]’[3])

Table 4.4: Grouped distances for pairs of /' and G. The values in square brackets are
the ids of the atoms.

Elementary moves

Only considering a single group of pairs of atoms with same distance, we can do
further analysis. The pairs in the group differ either by coordinates (same shift, but
at other coordinates) or just by the ids of the individual atoms. When two pairs in
a group do not differ by coordinates, they provide evidence that there may be an
opportunity for scale transformations as well.

We group together those pairs in the group, that have the same coordinates in
the left atom (and since they all share the same distance, they also have the same
coordinates in the right atom). We then extract the distinct ids from the left and
right atoms of the pairs, and call this a cluster.

Let B be a set of pairs with the same distance. We consider all clusters [ — r with
I =A{aiq : a;q distinct}, | = {biq : bjq distinct} for all pairs (a,b) in the X C B such
that 3z,y € Z, ¥(a,?) € X, a, = z,a, = y. The 7 represents an arbitrary atom.

Example 9. Reconsidering the problem from example 8, we build up the following
clusters for the groups

Distance Pairs Clusters

_ {0}, [1} — {[3]}
0.~ (0l.[80), (1,130 (120 [4) —y Sy
(=1,—1) ([0], [4]), ([1], [4]) {0, [} — {41}
(1,-1) (21,3 {121} — {31}

Table 4.5: Clusters formed for the individual groups. Atoms [0] and [1] end up in the
same cluster, as they share the same coordinates.
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A cluster | — r essentially describes the existence of transformations at a certain
coordinate by a given distance. The transformation can start with any number in
|s| = 1...]l] atoms, and can generate any number of [t| = |s| - 28,1 < [s| - 28 < |r|
atoms, k£ € Z. This property is once again defined by the allowed transformations,
as only scalings of multiples of 2 are allowed. Furthermore, we have to operate
on at least one atom and we can not use more atoms that are available in / and r
respectively. As a next step, we can generate all the possible moves that are available
per cluster. From cluster [ — r we generate the elementary moves s — t according
tos Cl, |s|>1andt Cr 1< |t|.Tk € Zs.t. |s| 28 = |t

Example 10. Continuing example 9 we can generate the elementary moves for the
clusters obtained

Distance Pairs Clusters Elementary moves
107} — {51}
©,-1) (0}, 3, (1), 3), (2, (g LB = ABY ey S
I {E {2 — ()
(11 (O] (@), (11, [4) (101 17} — {4 g s
L-1)  (PL0) BB {2~ (B8]

Table 4.6: Elementary moves generated from the clusters. As an example, the cluster
{[0],[1]} — {[3]} yields two elementary moves. The first one {[0]} — {[3]} involving
no scaling, the second one {[0], [1]} — {[3]} involving a division by two. We omitted
{[1]} — {[3]} as it is indistinguishable from {[0]} — {[3]}

Note that we omitted the elementary move {[1]} — {[3]} as it is indistinguishable
from the move {[0]} — {[3]}. The same holds for {[1|} — {[4]} and {[0]} — {[4]}

As already noted in example 10, elementary moves generated from the same
cluster that share the same coordinates and cardinalities are indistinguishable from
each other. It turns out that only keeping one example of each combinations of car-
dinalities can reduce the search space enormously without altering the functionality.

Exhaustive Grouping of Elementary Moves

The last step that is left to do is to assemble the elementary moves from a group a
pairs of atoms with same distance to arrive at the sets U and L.
Let X be a set of elementary moves, then U =, ,,.ytand L = |, ;. s
_ sl

What is left to do is find valid sets of elementary moves X. Let scaling(s,t) = il
be the scaling of an elementary move s — ¢ and E be the set of all elementary moves
for a group of pairs of the same distance, then any X C £ such that 3f € R.V(s —
t) € X,scaling(s,t) = f is a valid set of elementary moves.

The reasoning behind this is, that upon transformation all the all the atoms from
various coordinates will be performing the same scaling transformation, therefore,

the ratios of the number of atoms at the various positions has to be the same.
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Example 11. Table 4.7 shows an exhaustive set of all split pairs U, L that can be
generated from the sets G and F. The prior results are taken from example 10.

Distance Elementary moves U /L goals

U= {(0.L1)} L={( 1.0)}

oy el By ol @y L= {810}

B e (IO L= {({4.0.0)}
= M g (oL 1) (2,0, L= {([3].1.0), (14],0,0)}

Cioy A0Sy U= {01 L=1{([1].0.0)}

U L e ) U= {0 L (LD} L= {([410.0))

0-0  {2}—{B}  U—{(2.0.1} L={(3.1.0)}

Table 4.7: Exhaustive grouping of the elementary moves to upper and lower goals

4.4.11 Non-Exhaustive Pair Generation and Heuristics
Motivation

The reverse splitting algorithm simply calls the generatePairs function to generate a
list of split pairs applicable to the current state. In the previous subchapter we dis-
cussed a way to exhaustively generate all possible splits to make sure that the algo-
rithm eventually finds the best solution. However, if we have a look at the size of the
search space, it becomes clear that the exhaustive search space becomes intractable
very quickly, even for small examples. Looking at a random 3 x 3 filter kernel with
an approximation depth of 3, we end up with a search tree with a branching factor
of around 300.

Therefore, finding the smart split pairs and presenting them to the algorithm first
really is key to getting good performance out of the reverse splitting algorithm.

There are a couple of metrics implemented to guide the algorithm towards good
solutions quickly which are outlined here. The idea is to generate pairs in batches,
which we then sort based on an ordering metric.

1. Ordering
2. Maximum Pairs
3. Short Distance, Low Scaling

4. Row/Column Splitting

Ordering

We have a set of possible split pairs S for which we want to assign a value b(U, L),
(U, L) € S to each pair. A straight forward choice for this performance that is actually
used in the implementation is

Ul

Y01 = vl

(4.19)
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with d(U, V) the (transformation) distance between the two sets.

The way the reverse split algorithm works is that it essentially allows us to get
sub set U C F'G for the price of a transformation of sub goal L. The ratio defined by
the function b quantises the benefit of applying this pair by computing the ratio of
atoms we can generate from transforming L to the cost we have to pay for doing so.

An ideal pair would get us a large U goal by a very simple transformation from
L.

A problem with this ordering is, that for it to be applied, it requires all pairs
to be computed first. Because of this, a small batch of pairs thought to be good is
generated initially on which the ordering is applied.

Maximum Pairs

If for a specific shift distance and scaling there are multiple pairs available, we only
consider the pair with the longest upper and lower sets. The ordering rule 4.19 from
the previous block already ensures this, but since the pairs with lower atom count
will get sorted to the back of the list, we don’t even have to compute them in the
first place.

Consider a valid set of elementary moves to be grouped together to form U and
L to be those X C E such that 3f € R.Y(s + t) € X, scaling(s,t) = f and A(s >
t) € E.scaling(s,t) = f,(s—t) ¢ X

The reasoning for this is that if there is the opportunity to generate a bigger part
of the of a sub goal with a transformation that is to be performed anyways, there is
it is rarely sensible not to take it.

Short Distance, Low Scaling

Especially when computing solutions for big filters, the exhaustive set contains pairs
of shifts over very large distances. As we know, transformation costs scale with the
distance travelled, we prefer to generate pairs with a smaller distance.

This can be done in the pair generation part, by sorting the groups by distance
and evaluate the groups with smaller distances first. Furthermore, groups with
smaller distances tend to be bigger as the shift can be applied to more positions
on the filter. This is beneficial, as larger groups generally yield larger pairs that can
be used to generate larger parts of the final goal.

Row/Column Splitting

The order metric 4.19 assings a value to choose the current split set based on the
amount of "cheap” atoms we can get by choosing the pair.

The way the reverse splitting algorithm works is, that it can only generate the set
U in a given step. The sets L and R remain and have to be computed in the next
step. Therefore, it is also essential to choose the pairs in a way that results in well
behaved L and R sets.

Example 12. Figure 4.3 represents a 5 x 5 box filter, with the black squares being
present atoms of the final goal. When we compute all possible splits, and order them
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Figure 4.3: Effects of different split pairs with same metric and distance. When splitting
a set into the three sub sets U, L and R, it is crucial to select a split that yields remaining
sets that are easily computable in the next step. The first example shown here is smart
choice for such a split, where as the others probably require more work in further splits.
Even though they all have the same metrics, the fact that the first one is preferred is
reflected in the ordering in which pairs are generated.

based on the order metric, we end up with multiple splits that have the same metric b.
The splits in Figure 4.3 all have the same order metric. All splits have the same distance
(—1,0), no scaling and yield an upper set of size 10. However when looking at the L
and R sets, it is evident that the first split pair produces the best L and R sets for further
splitting.

In general, goals in which the individual atoms are closer together are favourable,
as they are assumed to be easier to split in the next step. Especially favourable
are splits with sets that have the atoms nicely aligned in rows or columns. In the
elementary moves combination step, we only generate these kinds of split sets in the
first place, to explore these likely good candidates first.

4.4.12 Computation Graph Relaxation
Motivation

The reverse splitting algorithm manages to find optimal plans to assemble subsets of
the final goal under the assumption that it never generates a subgoal that is not part
of the final goal.
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There are strong arguments for this assumptions. Consider a final goal F'G and
asub goal A ¢ FG

1. If B C FG with A and B transformable into each other, A will never form a
part of the final solution, and we may as well discard it.

2. If 3B C FG with A and B transformable into each other, we could just have
generated B in the first place, without generating A first. This does not reduce
generality, as every set A is transformable to, is also transformable from B.

While argument 2 is true, it assumes that all transformations incur the same cost.
If this would be the case, it is true that there is never a benefit in computing A first,
as we could just compute B directly and then continue from there. However, in
practice, not all shifts do incur the same cost. Shifts from further away on the chip
will be more expensive in general.

Example 13. A very simple example is the following one dimensional filter K
K= 1 1] (4.20)

2

with the final goal
FG = {([O]v O’ O)? ([1]7 _17 0)7 ([2]’ _1’ O)? ([3]7 17 O)’ ([4]7 17 0)} (4.21)

Graph 4.2 shows both the original and relaxed computation graph for the problem
stated above. The original computation graph is directly obtained from the reverse split
algorithm, whereas the relaxed graph is the result of an additional relaxation step.

The original graph shows the problem well. The algorithm starts building the left
entry (1), then shifts (copies) the left entry two pixels to the right to form the right
entry (2). This is already a total shift of 3 pixels, where as we could just have copied
the original value to the left, and then to the right. To make matters worse, the atom
for the center entry (4) now has to be generated from one of the side entries (1), which
adds yet another unnecessary shift.

As we have seen in Example 13, there are cases in which it is beneficial to com-
pute intermediate results that are not directly part of the final goal, but somewhere
in the middle of two parts of the final goal. This way, we can save some shift opera-
tions.

General Approach

Albeit quite simplified, we use an approach similar to retiming (Leiserson et al.
(1983)), commonly used in integrated circuit design. The idea is, that we can see
the shift operations in the computation graph as three dimensional edge weights
consisting of horizontal shift, vertical shift and scaling.

If we draw a circle containing at least one node in the computation graph, but
does not include the input or output node, we can change the graph according to the
following rule. If we add a constant to the component of a weight to all edges that
go into the circle, we have to subtract the same constant from the component of the
weight of all edges that point out of the circle. The retiming theorem then says that
by doing so, the original meaning of the program (or integrated circuit) remains the
same. This gives us flexibility in changing the edge weights.
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Graph 4.2: Original and relaxed graph for problem in Example 13. Node 1 in the
original graph has the potential to be relaxed, as changing the weights on all of its edges
reduces the number of shifts performed from 4 to 2. Changing the weights on edges
at a node or group of nodes is allowed as we add the same amount to all outgoing
edges we add to all incoming edges. Note that when considering the execution order,
the relaxed graph requires at most 3 values to be live at the same time, where as the
original version only required two. Therefore, the relaxed version will need one more
available hardware register to be performed.
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Graph 4.3: Relaxation is only possible on transformation edges but not on add edges.
Therefore, in order to allow relaxation of a, we introduce a new temporary node ¢
connected with a (relaxable) edge c that connects it to a. All add edges of a are made
such that they now originate from t.

Plus Edges

In our case, the computation graphs generated by reverse split algorithm do not only
contain shift edges, but also add edges. Specifically, since the reverse split algorithm
never produces anything that is not a subset of the final goal, every node except the
start and end nodes will have at least one add edge pointing away from them. While
we can perform retiming on shift edges, this is not possible on add edges. We have
to perform an additional step to deal with these edges.

Let a be the (super)node we would like to relax. a being either a single node or a
group of nodes with just inputs and outputs to the node exposed. Graph 4.3 shows
a representation of the general case of a retiming candidate . We only consider
nodes that only have shift edges as their parents, as the other cases are equivalent to
the case where we just do not include the node providing the add edge. The edges
i, represent the k — th input shift edge, the edges o, represent the k — th output shift
edge and the edges +, represent the k& — th output add edge.

If we were to retime the shift edges in this case, the output add edges would no
longer be valid, as the next node would no longer find their expected result in node
a. Therefore, we have to introduce a new node ¢ and a shift edge from « to ¢ in order
to correct for the induced relocation of a.

Optimal Relaxation

With a (super)node «a that only has shift edges (as ensured by the previous transfor-
mation), we can compute an optimal relaxation amount for every weight dimension.
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We consider the a similar situation as before, with a node a having n input edges
ix, k € {0...n} and m output edges o;, [ € {0...m}. As the correction edge c is a shift
edge, it is considered to be in the output edges o. Let w(e) be the weight of edge e in
a particular dimension. As the computation of the optimal relaxation is equivalent
and independent for each of the three dimensions (horizontal shift, vertical shift,
scale), we omit the notion of the dimension. The total computational cost C'(a) of
node « in the respective dimension is given as follows

Cla) = Jw(iy)| + > lw(o)] (4.22)

If we relax the weights by an integer A € Z, the total computational cost of the
node in the dimension is given by

Cla) = Jwlix) = Al + Y |w(ox) + Al (4.23)
k=0 1=0

This follows from the fact that we subtract the relaxation from all incoming edges
and add the relaxation to all outgoing edges to maintain the functionality

Cla) =Y |w(ix) = Al + Y [w(ox) + A (4.24)

Our goal is to minimise the computational cost C, therefore we can write this as

min C'(a) = m/\inz w(ix) = Al + > [ = w(or) — Al (4.25)
k=0 =0

Which is the simplest form of the well known geometric median problem in one
dimension for which the solution is known as the median of the weights.
In our case, the value for A that minimises the cost function is therefore given as

m}%n C(a) = median({w(ig), ..., w(in), —w(0g), ..., —w(0m) }) (4.26)

Equation 4.26 gives an efficient way of computing the optimal amout of relax-
ation to be applied to every (super)node. The optimal relaxation has to be obtained
for all three dimensions independently.

Liveness analysis

The reverse splitting algorithm always produces nodes that have at least one add
edge pointing away from node. Performing relaxation therefore almost always re-
quires us to introduce the ¢ node to fix the relaxation for the add nodes. Adding the
t node generally leads to the need to store one additional parameter at a given time
in the program, which increases the need for physical registers. Since we operate in
an environment that is mostly restricted by the limited number of physical registers,
finding opportunities to relax involves understanding how many values we have to
maintain at a given time.
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Let be k£ be a node in the graph. Let liveness(k) be the set of nodes, including £,
whose values are also required to be present at the time of computing k, in order
to finish the computation of the graph. We assume k£ to be the latest computation
performed in the graph, therefore all other nodes in liveness(k) will have a lower
value than k. Vn € liveness(k),n < k.

The reverse splitting algorithm only writes to each slot once, increasing the num-
bers of the slots as it passes along. Therefore, computing the liveness of a slot can be
easily computed by iterating once over the plan (equivalent to traversing the graph
in the order of the node numbers) as shown in algorithm 7.

Algorithm 7 Liveness analysis

1: procedure LIVENESSANALYSIS(plan)

2: minMap < {}

maxMap «+ {}

for step € plan do
minMap[step.target] < step
maxMap[step.sourcel] < step
maxMap[step.source2] < step

livenessMap <+ {}

for node € minMap.keys() do

10: for i € {minMap[node]...maxMap[node]} do

11: livenessMap[i] << node

WX NI RW

Algorithm 7 iterates once over the program, recording the step in which every
node gets assigned for the first time. At the same time, it maintains a map of all the
nodes storing the instructions in which the node was last referenced. This map gets
updates in the same iteration over the program. The algorithm ends up with two
maps, one containing the first occurence of the nodes, the other map containing the
last occurences of the nodes. Since every node number only gets used once, we need
to store the value of a node exactly from its first appearance until it is last referenced.
We build up a map containing every node number as a key (= step number in the
program) and a set of all the nodes that have to be live at the same time.

Note that minMap is technically just a map assigning each node number to itself,
as all the nodes get first assigned in the step with the same number, (see Listings 4.2
and 4.3). However, in the actual implementation random node ids were used, while
keeping the ordering external.

Finding relaxation candidates

After obtaining the liveness for every node, we can figure out which nodes or set of
nodes can be relaxed without using more registers than physically available.
A (super)node can be relaxed safely iff

1. There are no add edges pointing out of the node
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2. All the add edges are performed after last shift edge. If this happens, the a
and ¢ node can map to the same physical register and the need for physical
registers does not increase

3. The length of the liveness of all child nodes that get computed from the first
add edge to the last add edge is smaller than the number of physical registers.
If this is the case, we can allocate a physical register to the ¢ node.

If one of these cases is true for a (super)node, we then analyse if relaxation is
beneficial and perform the graph transformation of inserting the ¢ node and changing
the weights. Note that we do not allocate registers in this step. We only take the
physical registers bound into consideration to decide if the relaxed program is still
feasible under the register constraint. Register allocation is performed at a later
stage.

Eliminating Empty Shifts

After the relaxation step, it is likely that we end with shift edges of weight zero. Zero-
edges are obviously not needed, as they suggests the need to store an intermediate
result which is in fact the same as its parent, therefore opening up the possibility to
mapping both values to the same physical register.

Eliminating empty shifts is a trivial operation of just reconnecting the empty
edges to the parents, and removing the now unconnected nodes.

4.4.13 Register Allocation

In order to perform the computational graph on actual hardware, we have to map
the nodes in the graph to physical registers. Since we do not have the possibility of
register spilling into memory on the CPA, it is essential that the program only uses
as many registers as there are physically available on the chip. The reverse splitting
algorithm and the subsequent relaxation step already take this into account, and
only produce code that is guaranteed to fit onto the number of physical registers.
This is achieved by cutting branches that lead to too many sub results to be stored,
but without actually allocating them. The goal of this step is therefore to find a
mapping from the set of virtual registers (node numbers), to physical registers.

For every node in the graph, we compute the liveness of the node. The liveness
is the set of other nodes, that are required to be available at the time we compute
the node, in order to finish the program in the intended order. Since it was already
used in the relaxation step, liveness analysis was already covered in Section 4.4.12.

Given the liveness of a program, we know for every node in the graph, which
other nodes have to be available at the same time.

From this information, we build a bidirectional dependency graph DG from the
computational graph G with the vertices V(DG) being the vertices of G, V(DG) =
V(G). The edges E(DG) being the dependencies obtained in the liveness analysis.
E(DG) = {(a,b) : Va € V(DG), b € liveness(a)}

If a,b € V(DG) and (a,b) € E(DG), then a and b are live at the same time and
can not be allocated to the same physical register. If we have n available physical
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registers, the goal is therefore to find a colouring of the dependency graph DG
using n registers. As in our case the number of physical registers is very small, a
simple backtracking algorithm was implemented, which performed fast enough for
this purpose.

Example 14. We consider the following random filter kernel

0.25 0.125 0.25
K= {0125 0.25 0.25 (4.27)
0.25 0.25 0.25

The reverse splitting algorithm produces the computation graph depicted in Graph 4.4
together with the dependency graph. The dependency graph shows the graph colouring
in the node shapes, where every distinct node shape represents a physical register.

Note that there are edges in the dependency graph that are not expected at first. For
example there is an edge between nodes 1 and 5, even though it is not evident from the
computational graph how these nodes are connected. However, the dependency stems
from the ordering of operations. Since node 6 is dependent on node 1 and gets computed
after node 5 (ordering according to node values), the value of node 1 remains live until
the completion of node 6 and is therefore also live when we compute node 5. Another
thing to note is that nodes 0 and 15 are absent from the dependency graph. This is
due to the fact that these nodes are unconstrained and can be assigned to any arbitrary
register without conflicts.

4.5 Performance Evaluation

The algorithm produces meaningful results for reasonably sized filters. This section
shows some metrics that show the performance of the search algorithm and its pair
generation function

Test System and Methods

The test system runs on an Intel i7-4960HQ processor at 2.60 GHz, together with
16GB 1600 MHz DDR3 RAM. Even though the processor has multiple physical cores,
only one of them is used as the software is not designed for multiple processors. The
system runs macOS 10.12 Sierra.

All of the algorithms have been implemented in Python 3.6. As Python is an in-
terpreted scripting language, it is expected that one could get boost in performance
when implementing the algorithms with a lower level language. When not assum-
ing a particular ordering of the pairs, the order of the pairs has been randomised
eliminate side effects from a possible unexpected ordering from the way pairs get
generated in the first place. The randomisation of the pair ordering makes the pro-
cess stochastic, which is why multiple runs were performed with different random
orderings to obtain comparable results.
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(b) Dependency graph DG and register
allocation. The node numbers are the same
as in the computational graph. Every edge
+ between two nodes represents a dependency
meaning that both values have to be live at the
same time in order to successfully compute

+ G. The node shapes represent the colouring
of the graph, with every distinct node shape

% { representing a hardware register. Nodes that
= do not appear in the dependency graph can be

mapped to any hardware register.

G~
®

(a) Computational graph G

Graph 4.4: Computation graph and register allocation for the random kernel in Exam-
ple 14
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Figure 4.4: Comparison between the maximum pair approach and the full exhaustive
approach. Sampled over 256 independent runs.

4.5.1 Heuristics vs. Exhaustive Search

Maximum Pairs vs. Exhaustive Search

We consider a 3 x 3 Sobel filter kernel

1 0 —1
K=12 0 =2 (4.28)
1 0 —1

The best code for this specific kernel, both the algorithm and the author could
come up with, is a solution consisting of 7 instructions. A possible, best solution is
given by the computation graph 4.5. This graph is the result of an (automatic) relax
operation. The original, optimal graph obtained by the reverse split algorithm has a
length of 8. After register allocation and translation to a SCAMP program, we would
get the program listed in Listing 4.4.

Listing 4.4: Algorithm to perform Sobel filter in x-direction

5 B = east(A)
1 B = north(A) 6 A = west(A)
2 A =add(A, B) 7 B = sub(A, B)
3 B = south(A)
4 A = add(A, B)

Figure 4.4 shows the mean and the standard deviation of the program lengths
obtained at time t, sampled from 256 independent runs. One can see the way the

74



Chapter 4. Automatic Kernel Code Generation 4.5. PERFORMANCE EVALUATION

(1) +

ﬁ
'
74

/Q
_l’_
X
J
5 ny &
Q)
4
+
@\

(b) Graph after relaxtion

‘1)

+

(a) Graph before relaxtion

Graph 4.5: Best computational graph for the Sobel kernel. The solution found by the re-
verse split algorithm contains 8 operations. This solution then gets relaxed to a solution
using the minimum of 7 operations.
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Figure 4.5: Full exhaustive search compared to heuristic search on Sobel 3 x 3 filter.
Sampled over 256 independent runs.

reverse splitting algorithm finds better and better solutions as time goes on, but no
solution exceeds the apparent limit of 8 instructions (7 after relaxation). A full,
randomised exhaustive search can be performed on all split pairs in approximately
30 seconds. However, in more than half of the runs, the optimal solution is already
found after approximately 10 seconds. By only considering maximum split pairs
(always take all atom that can be shifted and scaled a particular distance), we can
improve the performance of the algorithm a lot. Even an exhaustive search of all
possible, maximum pairs finishes in under 5 seconds, with a high probability of
finding the optimum after two seconds. We can see that only considering maximum
pairs indeed improves performance by a fair bit.

Full Heuristic vs. Exhaustive Search

Figure 4.5 compares the fully exhaustive search to the heuristic search.
The heuristic search has the following heuristics enabled:

1. Only considering maximum pairs
2. Only considering row/column Splits

3. Ordering based on length of upper set and shift distance

Since we order all the split pairs based on length of upper set and shift distance, the
order in which we generate the pairs does not matter. Therefore, we do not care
about short distances and low scalings.
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One can see from the figure, that the heuristic search manages to find the op-
timum of 8 instructions almost immediately while the exhaustive search takes (in
general) a much longer time to reliably find it. The figure also shows best and worst
case runs from the sampling of 256 performed exhaustive randomised runs. In the
best case, the exhaustive runs finds the optimal solution almost immediately as well.
This however is just a matter of chance, whereas the heuristic search yields the im-
mediate result in every run.

4.5.2 Code for Well Known Filters

In this section we show the algorithms performance on some other well known filters
in addition to the Sobel filter covered in the previous section.

Gaussian Filter

We assume a 3 x 3 Gaussian like filter of the form
1

1

-7 2

1

DN =~ DN

1
2 (4.29)
1

Figure 4.6 shows both the exhaustive search using the maximum pair assumptionas
well as with all heuristics enabled. One can see, that the last of the 256 runs only
converges to the minimum after 28 minutes and 20 seconds. Even the best case from
the exhaustive search converges to the minimum only after 1 minute and 50 seconds.
This is still far longer than the heuristic approach, which finds the minimal solution
in just 7.4 ms. The convergence of the heuristic approach is shown in Figure 4.7.

The code generated by the algorithm contains 12 instructions and is outlined in
Listing 4.5. To compare this with a hand crafted result, the authors solution to the
same problem is listed in Listing 4.6.

1 A= div2(A) 1 A= div2(A)
2 A = div2(A) 2 B = div2(A)

3 A = div2(A) 3 C = south(B)
4 A = div2(A) 4 A = add(A, Q)
5 B = north(A) 5 C = north(B)
6 A = add(A, B) 6 A = add(A, C)
7 B = south(A) 7 A = div2(A)

8 A = add(A, B) 8 B = div2(A)

9 B = east(A) 9 C = east(B)
10 B = add(A, B) 10 A = add(A, Q)
11 A = west(B) 11 C = west(B)
12 B = add(B, A) 12 A = add(A, C)
Listing 4.5: Autogenerated code Listing 4.6: Handcrafted code for
for gauss 3 x 3 filter gaussian 3 x 3 filter
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Figure 4.6: Heuristics search and max-pair exhaustive search for the 3 x 3 gaussian filter
N = 256

The code generated by the algorithm has the same length as the one generated
by the author and uses every type of instruction the exact same number of times.
However, the ordering of the instructions and the register allocation makes the code
generated by the algorithm use one register less. This trick was unexpected, as the
author believed it was impossible to achieve a solution in 12 instructions using only
two registers.

A problem associated with the automatic filter code generation is, that it does
not take any hardware noise or value range limitations into account. For example,
the code generated for the 3 x 3 gaussian filter does all the divisions right in the
beginning, before it assembles the values together to form the final filter. This is
unfortunate, as the signal values get very small and the effect of noise might get
larger. A better idea would be to spread the divisions further over the program.

For the 3 x 3 Sobel filter, full exhaustive searching even without the maximum pair
assumption was still tractable in reasonable time. The gaussian kernel, which is only
moderately more complicated gets prohibitively expensive to compute exhaustively.
The heuristic version however still performs great, finding the minimal code almost
instantly.
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Figure 4.7: Convergence of the heuristics based approach for the 3 x 3 gaussian filter

Box Filters

We consider common box filters with dimensions n x m of the form
K=|... 1 ...| ez™v (4.30)

These filters do not need any value approximation and expose exactly one atom
per coordinate in their final goal. This makes them especially well suited for optimi-
sation as there is a large potential of reusing previously computed values.

For example, for the 5 x 5 box filter, the algorithm produces the code shown in
Listing 4.7. As we only have one atom per coordinate, we can represent individual
goals graphically. Graph 4.6 shows the computational graph for the 5 x 5 box filter,
annotated with a graphical representation of the goals.

Listing 4.7: Generated code for a 5 x 5 box filter

7 A = add(B, A)
1 A = north(A) 8 B = south(B)
2 A = east(A) 9 A = add(A, B)
3 B = south(A) 10 B = west(A)
4 B = south(B) 11 B = west(B)
5 B = add(A, B) 12 B = add(B, A)
6 A = north(A) 13 A = east(A)
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Figure 4.8: Program length for box filters of size d x d. Note that the program length
increases linearly.

add (B, A) 16 B = add(A, B)
west(B)

The graph gives an interesting insight in the structure of the found program. The
program starts with the initial atom at position (0,0) and successively doubles the
amount of atoms by shifting and accumulating the previous result. Since the width
and height of the filter are odd, it also keeps factors to fix the remaining parts that
can not be obtained by doubling previous results.

Another interesting property of the CPA is apparent, when comparing program
lengths of box filters to the dimensionality of the filter as depicted in Figure 4.8. The
graph shows that the program length for box filters of dimensionality d increases
linearly with d and not, as one would expect, quadratically. This stems from the fact
that the algorithm implicitly separates the filter into two linear sums K = [1, ..., 1]7 %
..., 1].

On a conventional computer, we would have to compute the vertical sum for ev-
ery column to be added by the horizontal sum, requiring us to access every pixel at
least once and therefore scaling with ¢>. However, since we perform every instruc-
tion on every pixel at the same time on the CPA, the vertical sums all get computed at
the same time anyways. Therefore, the horizontal sum can add an arbitrary amount
of horizontal sums, as they are all already computed anyways.

°)
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Graph 4.6: Graphical representation of the computation graph of a 5 x 5 box filter
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4.5.3 Comparisons with CPU and GPU implementations

To compare the execution times of filter kernels on the CPA hardware in compari-
son with standard CPU and GPU implementations, various test runs have been per-
formed.

Testing Environment

A selection of eight well-known filter kernels was executed on a 256 x 256 8bit
grayscale image. The image resolution and colour was chosen to achieve comparable
results to the CPA implementation, as the SCAMP chip features the same resolution.
The chosen algorithms for CPU and GPU are the default algorithms shipped with
OpenCV 3.3.0. The CPU version of OpenCV was compiled with both Threading Build-
ing Blocks (TBB) as well as Integrated Performance Primitives (IPP) enabled. The GPU
algorithms were compiled for CUDA V8.0.61 to run on nVidia CUDA equipped GPUs.
To measure the time, the same algorithm was applied 10000 times to the same image.
The reported time is therefore the average runtime of these filter applications. Only
computation time was measured. Transfers between harddisk and system memory
as well as from system memory to GPU memory were performed outside the timing
loop. A number of different Intel CPUs from different generations were tested as
well as three nVidia graphics cards.

The execution times reported for the SCAMP CPA chip are based on the reported
10Mhz instruction rate (Carey (2017)) as well as the length of the programs gener-
ated by the algorithm presented in this chapter. The number of cycles for individual
instructions is taken from Table 3.4.

The CPU power consumption was read out using the RAPL interface present on
most newer Intel CPUs. The CPU accumulates the used energy in a hardware register
which can get read out. While the values provided by this interface are shown to be
fairly accurate, it is worth noting that they do not stem from an actual physical mea-
surement. Instead, the values are computed based on a built-in energy model that
takes into account various hardware counters (Hackenberg et al. (2013)). Further-
more, the CPU only reports energy consumed instead of current power consumption,
as there is no time associated with the data. Power estimates can therefore only be
performed accurately over a larger period of time (Hackenberg et al. (2013)). A
sample of the accumulated energy was taken before the batch of 10000 filter appli-
cations and after.

The GPU power consumption was read out using the nVidia NVML API, for which
nVidia claims 5% accuracy. Unfortunately, this API is only present on more powerful
professional devices, which is why the energy measurement could only be carried
out on the TITAN X graphics card. The SCAMP measurements are estimated based
on the reported 1.231W (Carey et al. (2011)) power consumption of the chip under
full load (10Mhz). The power and energy consumption was then computed using
the estimated runtimes of the generated kernel algorithms.
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Figure 4.9: Runtime of various well known filter kernels on different types of CPU and
GPU hardware (averaged samples from 10’000 runs), as well as the estimated runtime
for the generated algorithm for the CPA. For the CPU and GPU values, the algorithms
are the default algorithms shipped with OpenCV.

Execution times

Figure 4.9 and Table 4.8 show the execution times of a single application of various
filter kernels on different hardware components.

One can see, that the parallel nature of the CPA (SCAMP) allows it to perform
all of the tested filter kernels in a fraction of the time needed by the other devices.
This is a direct consequence of having a dedicated processing element available for
every pixel, building up the filter on the whole image at the same time. As for
the other devices, we see that for dense kernels (gauss, box) GPUs usually perform
better than CPUs, where as for sparse kernels (sobel, laplacian, sharpen) CPUs seem
to have an advantage. An outlier case being the 7 x 7 box filter, at which only the
most powerful graphics card manages to get a result comparable to the CPUs. It is
assumed that the CPU implementation follows a more suitable algorithm than the
GPU implementation, even though both implementations are based on their vendors
performance libraries (Intel IPP, nVidia NPP). Another reason could be the fact, that
the GTX680 and GTX780 are based on a hardware architecture that is less suitable
for this type of filter than the TITAN X’s architecture.
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L U P
a> M0 o é@’ 6&*\* & %Q$

Gauss3 47.9 40.7 34.0 405 36.2 269 184 4.0
GaussS 72.5 454 375 443 371 248 17.7 121

Box3 48.2 32.0 29.5 334 388 227 168 1.6
Box5 51.9 389 365 40.2 453 279 19.8 3.2
Box7 74.7 66.5 66.0 67.2 3079 117.5 67.0 4.0

Sobel 214 16.6 140 18.1 363 22.7 165 1.4
Laplacian 25.9 29.4 24.2 31.7 893 346 233 2.1
Sharpen 80.0 71.0 59.5 69.8 89.3 346 233 20

Table 4.8: Runtimes of various well known filter kernels on different hardware configu-
rations. Values corresponding to Figure 4.9

Units: [us] With TBB/IPP  Without TBB/IPP

Gauss3 40.5 65.4
Gaussb5 44.3 76.7
Box3 33.4 74.6
Box5 40.2 80.0
Box7 67.2 74.4
Sobel 18.1 419.9
Laplacian 31.7 65.0
Sharpen 69.8 72.4

Table 4.9: Effect of Integrated Performance Primitives (IPP) and Threading Building Blocks
(TBB) on the performance. Evaluated on Intel E5-1630.

Upon inspection it was found that the CPU implementations of the filters heavily
profit from the Intel IPP library. To investigate the effect of the IPP and TBB libraries,
tests were performed with these libraries disabled. Table 4.10 shows the compar-
ison between runs with IPP and TBB compiled into OpenCV, and runs without the
libraries.

Power Consumption

The average power consumption at performing several well known filter kernels on
standard hardware as well as on the SCAMP CPA is reported in Figure 4.11. The
energy spent on the CPUs was obtained by computing the difference of the energy
consumed after the filter application and the energy consumed before the applica-
tion, as reported by the CPU accumulator. The power value was then computed by
dividing this value by the time the CPU spent on computing the filter kernels.

For the TITAN X GPU, a continuous measurement of the current power consump-
tion was carried out, as depicted in Figure 4.10.

Figure 4.11 and Table 4.10 show the average continuous power consumption
of the devices at computing well known filter kernels. One can see, that most CPUs
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Figure 4.10: Power consumption measured on the TITAN X GPU while performing one
million applications of various filter kernels. One can see, that the GPU seems to have
multiple discrete power levels. These power levels are most probably caused by the fact,
that the GPU changes its clock frequency according to the work it is doing.

Units: [W] i7-3720QM i7-4790 i7-6700 E5-1630 TitanX SCAMP

Gauss3 19.128 25.755 22.445 24.836 91.788  1.230
Gauss5 19.573 25.288 22.734  30.835 122.772  1.230
Box3 18.115 28.577 20.256  29.856 126.239  1.230
Box5 18.160 29.778 20.131 33.143 128.744  1.230
Box7 18.092 28.347 19.694 31.163 146.925 1.230
Sobel 19.147 32.693 24.517 34.719 126.857 1.230
Laplacian 19.332  31.820 22.385 33.594 158.172  1.230
Sharpen 17.767 23.887 21.585 32.814 149.515 1.230

Table 4.10: Average power consumption while performing various well known filter
kernels on different hardware components. Averaged over 10000 applications of the
filter kernels.
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Figure 4.11: Average power consumption while performing various well known filter
kernels on different hardware components. Averaged over 10000 applications of the

filter kernels.
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Figure 4.12: Energy spent per filter application for various well known filters on various
hardware components.

consume about 20\ to 30W, with the i7-3720QM using slightly less. This is most
probably due to it being a mobile CPU while the others are desktop class CPUs. The
TITAN X GPU consumes a considerable amount more power than the CPUs, with
values ranging up to more than 1501/. The SCAMP chip in contrast, consumes only
1.23W under full load, which is a lot less than any of the other tested devices. The
benefit in energy ranges from a 180 times improvement (Sobel, i7-6700) all the way
to a 2100 times less energy per frame (Box/, TITAN X).

The continuous power consumption is informative from a systems designer point
of view, however, to compare the performance of the devices at computing filter
kernels, a different metric was computed. Figure 4.12 and Table 4.11 report the
energy the devices spend per single filter application. This value was computed by
dividing the continuous power consumption by the frame rate.

Still, the TITAN X GPU has the highest power consumption for all filters. However,
the difference to the CPUs is considerably smaller than it was for the continuous
power consumption. This follows naturally from the fact, that the GPU manages
to perform more filter applications in the same time. The results look different for
the SCAMP CPA. Since it has not only the smallest computation time per filter, but
also the lowest continuous power consumption, the energy spent per frame is much
smaller than for any device.
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i7-3720QM i7-4790 i7-6700 E5-1630 TitanX SCAMP

Gauss3 0.941 0.786 0.617 1.021 1.542  0.005
Gauss5 1.411 1.143 0.878 1.397  2.120  0.015
Box3 0.868 0.932 0.602 1.000 2.186 0.002
Box5 0.926 1.167 0.737 1.336 2.568 0.004
Box7 1.297 1.922 1.296 2.094 10.820 0.005
Sobel 0.406 0.556 0.360 0.594 2178  0.002
Laplacian 0.497 0.939 0.555 1.041 4.092  0.003
Sharpen 1.418 1.677 1.295 2.281 3.768  0.002

Table 4.11: Energy spent per filter application for various well known filters on various
hardware components.

Approx. Depth | Mean Abs. Error Std. Abs. Error
2 0.26398 0.14141
3 0.11558 0.06348
4 0.05251 0.03038
5 0.02932 0.01627
6 0.01399 0.00827
7 0.00576 0.00324
8 0.00354 0.00197
9 0.00149 0.00085

Table 4.12: Absolute pixel intensity value errors for pixels in range [0 — 1] sampled on
a set of 1000 random images with a set of 100 random filter kernels. The filter kernels
have been approximated to various depths. The blue shaded region shows the standard
deviation in absolute pixel intensity error.

4.5.4 Effects of Approximation

At the beginning of Chapter 4, Figure 4.1 showed the theoretical maximal approxi-
mation accuracy for different approximation depth. While this gives an idea about
how good a coefficient can be approximated, it is unclear what effect this approxi-
mation will have on the final image.

Testing Methods

A set of 100 random 3 x 3 filter kernels was generated. Each filter coefficient is
drawn independent and identically distributed from a constant distribution between
[0, 1]. All coefficients in the filters were approximated with the algorithm presented
in Algorithm 4. A test set of 1000 random images from the Caltech101 (Fei-Fei et al.
(2007)) was chosen. Each filter was applied to the images, once in original (perfect)
configuration and once approximated. The reported errors are then the differences
in pixel intensities after the application of the filters.

88



Chapter 4. Automatic Kernel Code Generation 4.5. PERFORMANCE EVALUATION

0.40 - —— Mean absolute error

Standard deviation absolute error

0.35 1

o o
[N} w
ot S
1 1

Absolute error
o
[\
S
1

0.15 1

0.10 1

0.05 1

0.00 1

2 3 4 5 6 7 8 9
Approximation depth

Figure 4.13: Absolute pixel intensity value errors for pixels in range [0 — 1] sampled on
a set of 1000 random images with a set of 100 random filter kernels. The filter kernels

have been approximated to various depths.
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Results

Figure 4.13 and Table 4.12 shows the real world absolute pixel intensity errors that
result from approximating the filter kernels to various depths using Algorithm 4.
One can see, that every approximation step yields around half the error rate of the
previous approximation. This is expected, since we are approximating at powers
of two. Another thing to note is, that when approximating to a depth of 8, and
assuming an 8-bit input image, the filter kernel is approximated to the same depth
as the input image.

4.6 Face Detection

This section describes the implementation and evaluation of a simple but powerful
face detector similar to the one described in (Viola and Jones (2001)). The theoret-
ical background to this method is discussed in the background section of this thesis.
An in-depth discussion of the algorithm is provided by Wang (2014).

4.6.1 Motivation

Face detection is a commonplace problem, both in Computer Vision research as well
as in industry. The face detector described by Viola and Jones (2001) is quite simple
in design, while being powerful enough to have found widespread industry adoption.
The simple design of the detector allows it to run almost in real-time, reaching frame
rates from about 2 fps on a slower CPU up to about 100 fps on a GPU (Acasandrei and
Barriga (2011)). However, achieving good performance at a low power consumption
is still an unsolved problem where CPAs could be applied to.

The algorithm is based on a set of Haar features which we can see as simple
box-filter like convolution kernels. As we know from Section 4.5.2, box filters are
especially well suited to the CPA architecture, which makes the algorithm an ideal
candidate to implement.

4.6.2 Implementation

A crude version of a Viola and Jones (2001) based face detector has been imple-
mented on the APRON simulator. To ease the process and to obtain comparable
results, the implemented face detector is based on the pre-trained values of the
FrontalFace Haar cascade contributed by Lienhart (2013). This is the default face
detection cascade that is shipped with OpenCV.

Parallelisation

While the CPU implementation of the algorithm detects object by shifting a 24 x 24
pixels detection frame serially over the image, the CPA implementation can detect
objects on every pixel simultaneously. To do this, we assign every processing element
to be responsible for the detection of images in its 24 x 24 pixel neighbourhood.
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Since every possible location on the image is covered by a processing element, we
can apply the features to the whole image simultaneously. This also eliminates the
need for early rejection, as there is no gain in processing speed by disabling some
processing elements.

Features as Filter Kernels

As mentioned above, every processing element is responsible for the detection of ob-
jects in its 24 x 24 neighbourhood. In order to do so, the processing element has to
compute the features which are essentially thresholded differences of partial sums,
of the pixels in its neighbourhood. A straight forward approach would be to just to
represent the features as a large 24 x 24 filter mask. However, looking at the provided
features by OpenCV, one can see that there are a lot of small features at considerable
offset from the center of the detection frame. Figure 4.14 shows an example of a
feature with two sums to be evaluated. Since shifting is a very natural and cheap op-
eration on the CPA, and every pixel performs the same computation simultaneously,
it does not matter where exactly inside the detection frame a processing element
computes the kernel, as the result of the computation can easily get shifted to the
right place. This allows us to relocate the computation of the sums for the feature to
a location that is most suitable for the specific processing element. This is, naturally,
the position where the center of the feature coincides with the processing elements
location. The very sparse 24 x 24 pixel kernel of the straight forward approach there-
fore gets replaced by a smaller, dense kernel of the same size as the area covered by
the features sums.

Reusing Filter Kernels

Looking at the individual features present in a stage of the algorithm, one can see
that often features do only differ in the position of their summing windows inside
the 24 x 24 detection frame. Since we compute the kernels on every position on
the image simultaneously, we can use this fact to reduce the amount of sums (filter
kernels) we have to perform in the first place. As discussed above, it is not important
to where exactly on the image we perform the pixel summation, as long as it is done
at every pixel at the same time, we can easily shift the results to the right place. In
the case of the pre-trained face detector, this technique allows to reduce the number
of individual features one has to compute from 2913 to 1656, which is a reduction by
43%.

Complete Algorithm

The complete algorithm consists out of 1656 filter kernels, distributed over 25 stages.
Every filter application gets followed by a series of thresholds, representing the
thresholds of the features the filter kernel implements. Different constant values are
then accumulated by the processing elements, depending if they passed the feature
threshold.
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24px
24px

24px 24px

Figure 4.14: An example of a feature consisting of two sums. The large 24 x 24 square
is the detection frame of the processing element at coordinates (12,12) in the middle,
shaded in gray. This processing element has to obtain the values of the weighted sums
of the pixels in the red and blue rectangles. To facilitate the problem, the algorithm
translates the feature to a filter kernel, aligned at the center of the detection frame.
After computing the kernel and thresholding, the (binary) result gets shifted to the top-
left to be evaluated by the processing element of which the features center coincides
with the center of our detection frame. At the same time, we get the result from the
processing element on the bottom-right.
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Stage Total kernels Distinct kernels

Reduction

9
16
27
32
52
53
62
72
83
91
99

115
127
135
136
137
159
155
169
196
197
181
199
211
200

9
15
24
26
40
40
46
50
52
61
58
65
73
77
80
76
83
87
90

109
98
95

104

104
94

0.00 %

6.25 %
11.11 %
18.75 %
23.08 %
24.53 %
25.81 %
30.56 %
37.35%
32.97 %
41.41 %
43.48 %
42.52 %
42.96 %
41.18 %
44.53 %
47.80 %
43.87 %
46.75 %
44.39 %
50.25 %
47.51 %
47.74 %
50.71 %
53.00 %

Table 4.13: Features that only differ in the position, but otherwise have similar summing
areas only have to be computed once on the CPA, as the result can get easily shifted to
the right place. This table shows the number of distinct kernels that remain to compute
after this technique has been applied
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After each stage, a stage threshold decides which pixels pass get to the next
stage. Algorithm 8 shows a pseudocode implementation of the detection algorithm
described in this chapter. Note that every instruction gets executed by every pro-
cessing element at the same time. Every processing element computes the kernels
and thresholds locally, on their own local data, even though the underlying feature
requires the sum to be calculated at an offset of the processing elements positions.
This is then corrected by shifting the boolean result of the thresholding operation to
the correct location. Only after that, the leaf value of the specific features get added
up. Every processing element keeps an accumulator for all the features of a stage.
After all features of a stage have been applied, the value present in the accumula-
tor gets evaluated against the stage threshold in order to decide if the processing
elements location remains a candidate for a positive detection in the next stage.

Algorithm 8 Pseudocode for the face detection algorithm as executed on the CPA.
Note that every instruction gets executed by every processing element at the same
time. The apply function applies the convolutional kernel belonging to a group of
features to the image, the code is generated by the algorithm presented in Chapter 4.
shiftDecisionToRight Place() shifts the boolean value, denoting if a feature passes
the threshold at the current pixel, to the correct position in the 24 x 24 detection
frame.

1: procedure FACEDETECT

2: for stage € stages do

3: success < true

4: a<+0

5: for kernel € kernels(stage) do

6: evidence = apply(kernel)

7: for feature € features(kernel) do

8: decision < evidence > threshold(feature)

9: shiftDecisionToRight Place(decision)
10: if decision then
11: a < o + positiveLea f (feature)
12: else
13: a < « + negativeLea f (feature)
14: success <— success&&(a > threshold(stage))
Datasets

The OpenCV model used in this implementation was trained by Lienhart (2013) on
an unknown set of 24 x 24 face images. These are the same image dimensions used
by Viola and Jones (2001) in their original paper. To evaluate the performance of
the algorithms, the MIT CBCL Face Database #1 dataset was used in this thesis. The
original images of size 19 x 19 pixel were upscaled to 24 x 24 pixel using bicubic
interpolation. Test frames of size 256 x 256 pixel were assembled by pasting 100
24 x 24 pixel images on a 10 x 10 grid, leaving a border of 8 pixel on each side.
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The set used to evaluate the algorithms consists of 2329 examples of faces and 4671
examples of non-faces. The dataset turns out to be quite a challenge, as the stock
OpenCV implementations only manages to find 180 faces after 25 stages.

4.6.3 Results

Due to code size limitations in the APRON simulator, we were unable to perform
a full 25 stage face detector. The largest implementation found to work without
technical issues is a a 7 stage implementations.

Testing Methods

The 7-stage implementation of the algorithm was applied on the MIT CBCL Face
Database #1. To achieve a fair comparison, the source code of OpenCV was modified
in a way, that it only takes the first 7 stages of the full 25 stage face detector into
account. Since the face images are of the same size as the trained base window size,
(24 x 24 pixel), detection was only performed on a single (base) scale. OpenCV was
restricted to use only the base scale. Both algorithms output pixel coordinates of
the center point of faces. A coordinate is considered a match, if the coordinate lies
within the boundaries of an actual face image. in the grid of test images.

Detection Rates

Figure 4.15 shows the evolution of the detections on a sample testing frame, by the
CPA algorithm on the APRON simulator. The white dots represent positions where it
is believed that this is the center of a face. One can see, that the algorithm starts out
with a very rough estimate, which gets successively refined as the algorithm reaches
later stages.

Figure 4.16 shows performance measure for both the OpenCV reference imple-
mentation as well as for the CPA implementation. Due to technical limitations, only
7 stages could be implemented on the APRON simulator, allowing only a comparison
of the first 7 stages. One can see, that the performance measures of the CPA imple-
mentation follows the measures of the reference implementation. The algorithm is
very biased in classifying something as a positive example of a face in early stages,
only later stages effectively reduce false positives. This can be seen in the rather low
precision and the high recall rates in early stages.

Processing Time / Energy Consumption

CPU processing times were obtained the same way as described in Section 4.5.3.
Only single scale detection was performed on 70 frames, frames of 256 x 256 pixels
in size, each frame containing up to 100 examples. For a more reliable time estimate,
the classification of the set was done 10 times, the reported timing and energy figures
are averaged over the 10 runs. Unlike in Section 4.5.3, the timing figures for CPU
include transfers from disk to memory, however, due to the small image size, the
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Figure 4.15: Detections of the CPA face detection algorithm on a grid of 10 x 10 faces
from the CBCL dataset. The white dots represent a pixel where the algorithm believed
that there is a face. The more stages we apply, the better the estimate becomes.
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Figure 4.16: Classification rate, recall and precision of the CPA implementation com-
pared to the stock OpenCV implementation on CPU. Note that due to code size limita-
tions, it was only possible to successfully implement the 7 first stages of the algorithm
on CPA.
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Figure 4.17: Speed and energy consumption of CPUs (measured) and CPA (estimated)
at performing the 2full 25 stage OpenCV face detector. Not that detection was only
performed at a single scale on a 256 x 256 image, hence the good CPU performance.
One can see that although having a longer processing time, the CPA can yield significant
energy savings. Note also that these values assume a relatively slow CPA running at
10 Mhez.

images are most likely retained in memory by the operating system. All the system
used for evaluation feature SATA mounted Solid State Drives (SSD).

The figures for CPA are estimates based on the published figures for the SCAMP
chip (Carey et al. (2011)). A clock frequency of 10 M H = is assumed with a peak
power consumption of 1.23 I/ at peak usage. The clock cycle counts for individual
instructions are taken from Table 3.4. Note that the current SCAMP platform is
unable to run this algorithm (see Section 4.6.4). Nevertheless, the figures from the
SCAMP chip were taken into account to get a sensible estimate of the performance
of a CPA device.

Table 4.14 shows the estimated instruction counts, processing times per frame
and energy spent per frame for a CPA running at 10 Mhz with 1.23 W of power
consumption, for the different stages of the algorithm. Note that the more stages we
perform, the longer the runtime as well as the energy per frame gets. Figure 4.17
puts these runtimes into relation with the reference implementation for CPU. One
can see, that the CPA in our current configuration performs about five times worse
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Stage # Instr. Runtime [ms| Energy per Frame [m.J]
1 1011 0.10 0.12
2 2808 0.28 0.35
3 5859 0.59 0.72
4 9094 0.91 1.12
S 13974 1.40 1.72
6 19112 1.91 2.35
7 25077 2.51 3.08
8 31321 3.13 3.85
9 38404 3.84 4.72

10 46356 4.64 5.70
11 54360 5.44 6.69
12 63316 6.33 7.79
13 73068 7.31 8.99
14 83309 8.33 10.25
15 93957 9.40 11.56
16 104545 10.45 12.86
17 116297 11.63 14.30
18 128190 12.82 15.77
19 140690 14.07 17.30
20 156085 15.61 19.20
21 170161 17.02 20.93
22 183887 18.39 22.62
23 198528 19.85 24.42
24 213543 21.35 26.27
25 227703 22.77 28.01

Table 4.14: Estimated runtimes and energy consumptions per frame for a 10MHz cellu-
lar processor array, related to the SCAMP class of chips. The estimated number of cycles
for the different instructions is taken from Table 3.4. Note that although the SCAMP
chip would be capable of running this algorithm in real-time, its analogue architecture
prevents us from performing this many operations without a significant degradation of

the image even at early stages.
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time wise, compared to the CPU implementations. However, this is still a promising
result, given the fact that the CPU runs at a clock frequency 300 times higher than the
CPA. One can imagine a future CPA device running at a higher clock frequency that
could easily outperform current CPU implementations. The CPA energy consumption
is about 7.8 times lower than the most energy efficient CPU, where as the CPU does
not even include energy spent on DRAM and disks.

4.6.4 Practicality on Current Hardware

Figure 4.17 shows that a CPA with specification such as the SCAMP would be capable
of performing the full face detection algorithm at competitive speeds. However, due
to fact that the SCAMP chip is implemented as an analogue device, every operation
performed introduces an irreversible error on the data. According to Carey (2017),
the number of operations one can reliably perform is in the order of magnitude be-
tween 10% — 10?, depending on the quality requirements of the application. With the
full face detection algorithm requiring two orders of magnitude more operations to
complete, it is currently not possible to perform the algorithm on current hardware.
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Conclusion

This thesis contains contributions to the areas of Visual Odometry, automatic code
generation and face detection focussed on Cellular Processor Arrays (CPA). As of
now, there are not many publications about the application of Computer Vision al-
gorithms to Cellular Processor Arrays. For higher level algorithms like Object Detec-
tion or Convolutional Neural Networks there are no known publications as of now.
This thesis represents a first approach on mapping these higher level applications to
CPAs. Starting with arbitrary convolutional filters, it was possible to show that an
efficient face detection algorithm is feasible on CPA.

5.1 Contributions

This thesis contains contributions to pose estimation as well as automatic code gen-
eration. This section summarises the various contributions that have been made.

5.1.1 Pose Estimation

Chapter 3 introduced multiple novel ways to perform pose estimation tasks on Cel-
lular Processor Arrays. The novel algorithms introduced in Section 3.4 form a work-
ing 2DoF Visual Odometry approach for CPA. The simple structure, high achievable
frame rate and low power consumption achievable with the algorithms allow for
promising future applications of these algorithms. It was shown that the perfor-
mance of the algorithms is highly dependent on the availability of enough variance
in the images the camera captures. The algorithm presented in Section 3.5 extends
the 2DoF approach with roll rotation and translation into view direction. This is the
first algorithm to use a tiling method for pose estimation. It was shown, that the
global motion of the camera can be detected using only the vectors measured in the
individual tiles by means of a model fitting approach. An Ordinary Least Squares
and a RANSAC based approach for the model fitting was presented. The evaluation
of the algorithm showed good tracking performance on a synthetic dataset. Four de-
grees of freedom are ideal for applications where the agent is mechanically restricted
to move into one directions, such as wheeled robots and cars.
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5.1.2 Automatic Code Generation
Code Generation

Since a lot of Computer Vision problems can be expressed by means of convolutional
kernels, having the possibility to automatically generate code for convolutional ker-
nels is essential. The implementation of convolutional kernels on Cellular Processor
Arrays is non-trivial, especially for devices with very limited hardware capabilities
such as the SCAMP chip. This thesis presents a formalism to write convolutional ker-
nels as sets of approximation factors. Furthermore, a formalism is presented to en-
code the chips hardware functionalities into operations on sets. An algorithm, called
the reverse splitting algorithm, which uses this formalism to find a minimal plan for
building up the convolutional kernel. The algorithm makes use of heuristics, which
in every step provide it with likely good choices for creating a good program.

Subsequent software is presented that can perform local optimisations for cases
the reverse splitting is known to be unable to find the optimal solution. This is done
by retiming edge values in the computation graph by a method known as retiming
commonly applied in integrated circuit design. Known algorithms such as graph
colouring for register allocation have been used in subsequent steps to create a real,
runnable CPA program from the intermediate representations as well as validating
the result against the input.

The system has proved to be very reliable in generating code for arbitrary fil-
ter kernels. Especially the heuristics has proven to be essential in speeding up the
algorithm to acceptable levels. It has been shown, that the code generated by the
algorithm is in most cases equivalent, or outperforms code written by human experts
for the same convolutional filter.

Code has been generated for a set of commonly used convolutional filters. It
was shown that running the generated code on a SCAMP CPA yields significant
performance and energy gains compared to applying the same filters on standard
hardware.

Face Detection

It was shown, by experiments with the automatic code generation code, that box
filters are especially well-suited to be performed on CPA devices. This is even up
to a point where straight forward linear-time area summations might be more effi-
cient than the constant-time integral image approach introduced by Viola and Jones
(2001). To show this, a simple face detector based on the works by Viola and Jones
(2001) was described. It was shown that, by using the CPAs parallelism, early rejec-
tion, a performance increase feature of the original algorithm, is no longer necessary
on CPA. Furthermore, it was shown that formerly location dependent sums become
independent of actual location when summing on the CPA, allowing the possibility
of reusing results from previous filter applications. This method cut the amount
of filter kernels that the chip has to perform by 43%. It has been shown that a
complex object detection algorithm can work on a CPA, with most likely increased
frame rates and better energy consumption than CPU/GPU implementations on fu-
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ture, faster CPA devices. Unfortunately, due to technical code size limitations, we
were unable to evaluate the full algorithm on current simulation tools. Also, there
is no hardware device currently in existence that could run the generated algorithm
as current analogue devices suffer from noise.

5.2 Future Work

This thesis marks a first step towards high level Computer Vision algorithms on Cel-
lular Processor Arrays. Starting with arbitrary kernel code generation, a number
of possibilities for the implementation of well-known algorithms open up. Further-
more, it shows the limitations of current CPA devices and provides guidance on how
to better target CPAs at higher level Computer Vision algorithms.

5.2.1 Pose Estimation

The 2DoF approaches presented in Section 3.4 work surprisingly well, but are lim-
ited by only capturing motion in two directions. A system containing multiple CPA
cameras pointing in different directions would allow to extend the system with more
degrees of freedom as well as redundancy. This system could use the presented al-
gorithm running on each CPA device. A similar approach could be followed with the
4DoF algorithm. With multiple cameras in a system, one would get 16 measurement
vectors from each CPA device for which a RANSAC based approach could estimate
the global agent motion. All these works would be performed in an attempt to get
accurate tracking at high frame rates on energy limited devices, such as small aerial
vehicles or virtual-reality headsets. The massive frame rate provided by the CPA al-
lows for simpler tracking algorithms using larger approximations. This opens up an
interesting design space involving the trade off between frame rate and complexity.
As of now, it is unclear where the optimal solution lies in this design space.

5.2.2 Automatic Code Generation

Convoltuional Neural Networks such as ImageNet (Krizhevsky et al. (2012)) con-
tain large amounts of convolutional filters in their first layers. Arbitrary kernel code
generation as presented in this thesis would allow the computation of these layers
completely pixel parallel in hardware, significantly speeding up recognition perfor-
mance. Arbitrary filter code generation is a basic building block for many more
sophisticated high-level Computer Vision applications such as edge detection, image
segmentation or object recognition. The complete 25-stage Viola and Jones (2001)
based algorithm shown in this thesis was unable to run on the APRON simulator due
to technical limitations. However, we managed to run a 7-stage implementation.
CPA prototyping and simulation tools better suited for automatically generated code
bases would allow researchers to explore the CPA design space more efficiently.
While this thesis introduces automatic generation of code from the abstraction
level of filter kernels, one can imagine a compiler that can directly compile efficient
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CPA code from a high-level language such as C. Also imaginable is a novel pro-
gramming language better aimed at the pixel-parallel execution capabilities of CPA
hardware.

5.2.3 Hardware

It has been shown in this thesis, that the raw performance figures of the SCAMP chip
compare very favourable with CPU and GPU for convolutions and even for object
detection. However, since the chip is implemented as an analogue circuit, image
degradation is a major problem when applying many operations on the images. As
an example, Figure 3.16 shows the effect of a simple rotation operation on the chip.
While this rotation can still be executed at frame rates magnitudes higher than real-
time, severe image degradation is visible. This puts the current SCAMP chip in a
very special position of the CPA design space. While it would be possible to perform
large amounts of operations, enabling high level image processing algorithms, the
designer is restricted to very short programs because of signal degradation. Due to
this limited possible program length, using a CPA is only beneficial in very high frame
rate applications or very low power applications with the possibility to put the chip to
sleep most of the time. A digital CPA would provide the advantage of perfect signal
representation. This would allow more complicated code to be compiled for the chip.
A digital CPA could also lead to further advantages like the possibility to fabricate
it in a much smaller fabrication process, further reducing energy consumption and
allowing for more hardware to be available per pixel. 3D-stacking of image sensor
and the processing unit would allow significantly more hardware to be placed per
pixel. It is even imaginable to stack multiple layers of processing units on top of each
other, to represent a fully programmable neural-network-like structure. This system
would allow the programmer to shift a signal into 3-dimensions, which could make
applications such dynamic network training using gradient descend possible on the
CPA.
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