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Abstract

Gaussian process state-space models (GPSSMs) have been shown to be a competitive
way of learning from time series due to their ability to identify complex systems; as
a result, GPSSMs have the potential to be applied in areas such as Economics, En-
gineering and Physics. However, the current techniques for learning GPSSMs suffer
from a variety of issues; for example, some methods have long training times or
constraints on expressiveness while other methods have difficulties in dealing with
high-dimensional latent spaces.

We provide an overview of all the key background material and focus on learn-
ing GPSSMs using a recent method that combines Hilbert reduced-rank Gaussian
processes and sequential Monte Carlo. We also present several novel contributions,
which add additional features to this recent method; for example, online learning,
distributed learning, learning under Student-t noise and learning with Student-t pro-
cesses. Additionally, we improve the Hilbert reduced-rank Gaussian process model
using neural networks and state-of-the-art MCMC methods. This gives us a signifi-
cant improvement in training times for high-dimensional inputs compared with the
original Hilbert reduced-rank model. Finally, we use our improved reduced-rank
Gaussian process model to create a novel GPSSM. We demonstrate all these contri-
butions in a range of examples.
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Chapter 1

Introduction

Consider a sequence of time-ordered observations i, ...,yr. Our aim is to learn
something about the system which has generated these observations and to predict
future observations. Most interesting systems contain noise and this means that we
cannot predict the future observations exactly even if we have perfect knowledge of
the system; however, we can search for a predictive distribution. This distribution
should ideally take into account all sources of uncertainty; for example, the system
noise and the uncertainty in any estimated parameters. Although we are looking for
a predictive distribution, we can compute statistics of this distribution such as the
mean and variance in order to provide a point prediction and a confidence interval.
The idea is that, though the point prediction might not be correct, the true value
should have a high probability of falling inside the confidence interval.

As an example, consider the following autoregressive model known as an AR(1)
model:

Y1 = 0.5y + vy (1.1

v % N(0,1) (1.2)
Despite the fact that we know all the parameters of this system, given y1.7 = y1, ..., yr
we cannot predict yr,; with certainty; however, there does exist an optimal predic-
tion. Let yr,1 be our prediction of yr,; given y,.r, then the optimal g, is [Hamil-
ton, 1994]:

Y1 = Elyri] (1.3)

= 0.5yT (14)

Although (1.4) is the optimal prediction of y,, the true value might be far away
from this prediction and that is why we also wish to provide a distribution over the

possible values of yr,;. In this example, we can calculate the optimal predictive
distribution as:

yr+1|yrr ~ N(0.5y7, 1) (1.5)

Now, yr.1|y1.7 ~ N(0.5yr, 100) is also a valid predictive distribution but it is not the
optimal one because it has more uncertainty than necessary.
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Suppose next that we have observations yy, ..., yr from the AR(1) model:

Yt+1 = QY + Uy (1.6)
v N0, 0?) (1.7)

We could try and estimate the parameters « and o? using the data v, ..., yr and then
provide a predictive distribution of yr,; by assuming that the estimated parameters
have no uncertainty; for example:

yri1lyir, &, 6% ~ N(ayr, 62) (1.8)

where & and 62 is our estimate of the parameters o and o? respectively. However,
this predictive distribution is overconfident and we should try to take into account
the uncertainty that we have in the model parameters in order to get a more accurate
predictive distribution. One way to do this is to use Bayesian statistics. If we assume
that we have some prior distributions for o and o?:

a ~ p(a) (1.9

2

o? ~ p(o?) (1.10)

then, under the Bayesian framework, we can find the posterior distributions of the
parameters given the data using Bayes’ Theorem:

p(ylzT‘O‘a az)p(a)p(a2)
p(y1.1)

pla, o|yrr) = (1.11)

where we have assumed the prior distributions are independent. Using this, we
can find a posterior predictive distribution of y71|y:.r which takes into account the
uncertainty in the model parameters:

puraibn) = [ [ ploralna.a 2.0l ) dado? (1.12)
2 2
= //p(yTJrl‘yT,04,02)p<y1:T’a70 )P)P() 1 a2 (1.13)
p(yl:T)
1

(Y1) //N(QyT’U )p(yrrla, 0”)p(a)p(o”)dado (1.14)

As you can see, it can get complicated quickly and with Bayesian statistics you often
have intractable integrals: we will look at methods for dealing with these in Chapter
2.

Why look at Gaussian process state-space models?

So far we have been focusing on predictive distributions rather than point estimates,
and one of our many reasons for pursuing Gaussian process state-space models
(GPSSMs) is that they naturally fit into this Bayesian framework. Furthermore,
the more recent techniques for learning GPSSMs provide predictive distributions
that take into account many different sources of uncertainty: from the observation
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and latent noise, to the uncertainty in the latent states and kernel hyperparame-
ters. Moreover, Gaussian process state-space models have be shown; for example, in
Frigola [2015], to be a competitive method of learning from time series data. We be-
lieve there are two main reasons for this; firstly, time series data (especially if highly
autocorrelated) does not contain as much information as the same amount of inde-
pendent data but it is known that Gaussian processes are efficient learners in low
data environments [Rasmussen and Williams, 2006]. Secondly, Gaussian processes
are very flexible and this makes them ideal for putting inside a state-space model
since often the interesting time series are rather complicated.

Other methods of learning time-ordered data:

There are many techniques other than GPSSMs available in the machine learning and
statistical literature for dealing with time series; here, we will briefly discuss a few of
them. One of the simplest models is the autoregressive AR model, this is linear and
it can learn simple systems via maximum likelihood or expectation-maximisation
[Hamilton, 1994]. Other linear models include moving-average models (MA), au-
toregressive moving-average models (ARMA) and autoregressive integrated moving-
average models (ARIMA). The key points for all the above linear models are that;
firstly, they can be written as state-space models; secondly, they can only learn simple
systems and thirdly, traditional forecasting methods for these models only take into
account the system noise and do not include the uncertainty in the estimated param-
eters. More complex non-linear models include Generalized Autoregressive Condi-
tional Heteroskedasticity (GARCH) models which allow for stochastic variance, and
Holt-Winters/Exponential Smoothing models which are good at forecasting simple
systems. However, none of these models are particularly expressive and they have
difficulties dealing with high-dimensional data. A final example is recurrent neural
networks, they have been shown to learn some complex systems but have long train-
ing times and only give point estimates. Overall, there seems to be a lack of fully
Bayesian flexible models and GPSSMs aim to fill this gap.

The layout of this thesis is as follows, first we look at the key background material
required to understand GPSSMs such as Gaussian processes, reduced-rank Gaussian
processes, sequential Monte Carlo and state-space models. Then, we present our
novel contributions with examples throughout to compare and contrast our new
models with the previous ones. A summary of our contributions is stated below.

Contributions

1. Created a new covariance function called the Adaptive covariance which is
particularly suited to the Hilbert reduced-rank GP of Solin and Sarkka [2014]
and useful for situations in which it is difficult to choose a good covariance
function.

2. Combined the mGP of Calandra et al. [2016] with the Hilbert reduced-rank
GP of Solin and Sarkkéa [2014] to create the manifold-Hilbert reduced-rank GP
and we show how this model retains the properties of the original mGP but is
much faster due to its use of reduced-rank GPs.
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3. Added new features to the model of Svensson et al. [2016] such as learn-
ing with Student-t noise, online learning, forgetful online learning, distributed
learning and learning with Student-t processes.

4. Improved the Hilbert reduced-rank Gaussian process model of Solin and Sarkkéa
[2014] to allow it to scale much better as the input dimension increases. We
call this model the deep Hilbert Gaussian process model (DHGPM).

5. Used the DHGPM to create a new GPSSM that can learn systems with high-
dimensional latent spaces quicker than the model of Svensson et al. [2016].




Chapter 2

Background

2.1 Gaussian Processes

Definition 2.1. [Rasmussen and Williams, 2006, p. 13] A Gaussian process (GP) is
a collection of random variables, any finite number of which have a joint Gaussian
distribution.

As a result of these Gaussian finite dimensional distributions we can define a Gaussian
process solely in terms of a mean function m(-) and a covariance function k(-, -).

Definition 2.2. [Rasmussen and Williams, 2006] A scalar-valued covariance function
or scalar-valued kernel is a function k(x, x’) with two inputs € R" and =’ € R™
such that:

1. k(x, o) is real: k(z,x') € R.

2. k(x,x') is symmetric: k(x,x’') = k(a/, ) Vo, 2’ € R".

3. k(x,a’) is positive definite: given any n inputs x, ..., x,, the matrix K €
R"=>"= with entries K;; = k(x;,x;) € R is positive definite. This matrix is
known as the covariance or Gram matrix.

An example of a scalar valued covariance function is the squared exponential (SE)
covariance function:

2|2
k(x,z') = exp ( — %) eR 2.1)
where [ is a hyperparameter and x,a’ € R"*. See chapter 4 of Rasmussen and
Williams [2006] for many more examples of covariance functions.

Definition 2.3. [Alvarez et al., 2012] A multi-output covariance function or multi-
output kernel is a function k(x,z’) : R%=*"= — RDP*P guch that each (d,d’) entry
of the output matrix is a scalar-valued covariance function with inputs (x,d) and
(«',d’). The (d,d') entry of the output matrix is written as k(z,«')s» € R and we
note that we must have k(x,2')ss = k(a',x)s 4 since k(x,x’)qs is a covariance
function with inputs («,d) and (2, d').
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An example of a multi-output covariance function is:

n o k(m7w/)1,1 k(wuwl)l,Q
k(wa T ) - < k:(:c, wl)Q,l k’(iB, 33/)272 (22)
_ |2 d— d)?
klx,x')ga =exp | — M exp | — g eR (2.3)
’ 22 212

where [1, [, are hyperparameters and x, ' € R". See Alvarez et al. [2012] for many
more examples of multi-output covariance functions.

Although multi-output covariance functions are not that popular, we are interested
in them because of their application to multi-output Gaussian processes which are
particularly important for Gaussian process state-space models. It is possible to avoid
using multi-output kernels but we would like to investigate whether they could be
useful.

Notation:
Let f be a Gaussian process (GP) with mean function m(-) and covariance function
Ek(-,-), then f is written as:

f~GP(m,k) 2.4

Given a single input © € R, we have that f(z) € RP and we will write f;(z) € R
for the dth component of f(x). Also, given a single input «, the mean function m(x)
is related to f(x) by:

fi(z)
m(z) = E[f(x)] =E : e RP (2.5)
fp(z)

Given two inputs x, ' € R™, the covariance function k(x, «’) is related to f(x) by:
k(z,a') = cov(f(x), f(x') = E[(f(z) — m(2))(f(2) — m(z')"] € R”*"  (2.6)

where the matrix k(x, ') has components [Alvarez et al., 2012]:
k(x,x)gw = cov(fa(x), fo(2') € R (2.7)

In the general case, there are no independence assumptions in (2.7) and so it is a
dense matrix; however, as we shall see in section 2.1.2 making certain assumptions
about this matrix can reduce the computational cost.

The notation in (2.4) is used to represent the joint distribution of the random vari-
ables f(x) at all possible inputs € R"». However, if we take a finite number of
inputs X = [z, ..., zy] € R™* then by the definition of Gaussian process we have
that:

vee(f(X)) ~ N (vee(m(X)), K(X, X)) (2.8)

6
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where vec(Z) is the vectorisation of the matrix Z (an operation which stacks the
columns of Z on top of each other to form a vector), f(X) = [f(x1), ..., f(xNn)] €
RN m(X) = [m(x1), ..., m(xy)] € RP*YN and

k(xy,x1) k(xy,xs) -+ k(x,xN)
k(xs, x k(xo, x o k(ao,

K(X,X) = ( ; ) K ; 2 ) ( ” W | e gvosn (2.9)
k(xy,x1) k(xy,x2) -+ k(xzy,xy)

In the case that D = 1 we can drop the vec and then this matches the notation in
Rasmussen and Williams [2006].

As a example, suppose we are interested in finding the joint distribution of f(x;) €
R? and f(x;) € R* where f ~ GP(m, k) and we use a multi-output kernel. In this
case, we have that:

f1($1)
vee(f(X)) = }EE;:; (2.10)
fa(@2)
m1($1) k(wbwl)l 1 k($1,$1)1,2 k($1,$2)1,1 k($1,w2)1,2
~ N m2(151) k(wbwl)m k(931,331)2,2 k(w17932)21 k(331,332)22
m1(e’132) ’ k(€132,331)11 k(mQam1)1,2 k($2>332)11 k($2,$2)12
mz(e’L'Q) k($27$1)21 k‘(CBQ,ﬂ?l)Q,z k($2,$2)21 k(m2,$2)22
(2.11)

2.1.1 Gaussian Process Regression

In this section, we will provide an overview of Gaussian process regression following
the derivation in Rasmussen and Williams [2006]. However, we will also explicitly
deal with the general case of f(x) € R”. In many ways, the general derivation is
similar to the univariate case (D = 1) and the results are well known but we aim to
make clear the link between the different forms of the density functions which can
arise in the general case. These different forms are a result of a relationship between
the matrix-normal and multivariate-normal distributions.

Consider a set of data D = {(y;,«;) |i = 1,..., N} where y; € R™ and z; € R" for
i =1,...,N. In Gaussian process regression, the aim is to use this data D to find the
posterior distribution of a Gaussian process relating inputs «x; to outputs y; and then
to provide a predictive distribution for f, = f(«.) given a test input x,.. Formally,
this means that we have the following system (i = 1,..., N):

v = f(x;) + € (2.12a)
f~GP(m,k) (2.12b)
&1Q C N(0,Q) (2.12¢)
p(yilf, i, 0) ~ N(f(x:), Q) (2.12d)
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where Q € R"™*" (usually diagonal) and @ represents all the model hyperparame-
ters which includes @Q and the hyperparameters of kernel .
We wish to:

1. Learn the optimal hyperparameters 6.,.
2. Find the predictive distribution p(f.| X, Y, X, 0.).

where we have Y = [y;,....,yy] € RN, X = [z),...,xy] € RV test inputs
X, = [Ty, ..., Tops] € R™*M and function values f, = [f(Ts1), ..., f(Tnr)] € RW*M,

Definition 2.4. [Schicke, 2013, p. 6]. Given matrices X € R™*" and Y € RP*? the
Kronecker product is defined as:

Y xpY - 1Y
1Y  x2Y - 29,Y

XY = , o : € RmPxna (2.13)
.I'le xm2Y e QJmnY

It has properties [Schacke, 2013, pp. 7-9]:

1. (XY)(ZeT)=XZeYT
for X e R™" Y e RP*4 Z ¢ R™" and T € R?*s,

2. (X®Y)!'=X"'1eY lif X and Y are invertible.

3. Let X and Y have eigen-decompositions PAP~! and QBQ ' respectively
where A and B are diagonal. Then the eigen-decomposition of X ® Y is
(PeQ)A@B)(PeQ)™

Definition 2.5. [Gupta and Nagar, 2000] A random matrix X € R"*" is said to have
a matrix normal distribution MN,, ,,(M,U, V) if the density function satisfies:

_ 1 1 1y _ Trr-1(y _
p(X|M,U,V) = (2#)%|V\%\U]% exp ( 5 trfV (X -M) U (X M)])
(2.14)

where M € R™™, U € R, V € R™"™ and | - | is the determinant.

An important result [Gupta and Nagar, 2000] is the relationship between the matrix
normal and the multivariate normal distributions:

X ~MN, (M, U,V) <= vec(X) ~ Nyn(vec(M),V @ U) (2.15)

where ® is the Kronecker product and vec(X) is the vectorisation of X.

Consider p(Y|f(X),0) where f(X) = [f(x1), ..., f(zy)] € R

p(Y|f(X),0) = Hp(yilf(wi)ﬁ) (2.16)
= HN(yz’f(wz)a Q) (2.17)
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1 N

oc exp(—5 Z(yz — f(@) QM (yi — f(=,))) (2.18)
= eXp(—%[VeC(Y) — vece(f(X)]"(In ® Q) '[vec(Y') — vec(f(X))]) (2.19)

\)

where Iy is the N x N identity matrix and to get (2.19) we used a standard result
for the Kronecker product: X' ® Y ! = (X ® Y)~! provided both X and Y are
invertible.

From (2.19) we get that:
p(vec(Y)|f(X),0) = N (vec(Y)| vec(f(X), Iy ® Q) (2.20)
And hence by (2.15) we get:
p(Y[f(X),0) = MN(Y[f(X),In,Q) (2.21)

When we talk about the distribution of Y what we are really talking about is the
joint distribution of all the components Y;; and so the distributions of Y and vec(Y")
must be the same: they contain the same random variables Y;;. This means that
at any particular test point y, the densities py (y) and p..(yv)(y) are equal (note
that the supports are also the same). However, the parametrisations will in general
be different; for example Y might follow a matrix-normal distribution and vec(Y’)
multivariate-normal distribution.

We can use the above results to get p(Y' | X, 0):

HYIX.6) = [ (Y1720, 0p(/(X)I0)df (2.22)

= /N(VGC(YNVeC(f(X))JN ® Q)N (vec(f(X))| vec(m(X)), K(X, X))df
(2.23)

= N (vec(Y)| vec(m(X)), K(X,X) + Iy ® Q) (2.24)

To find the hyperparameters we maximise log(p(vec(Y )| X, 8)) with respect to 6.
In the standard marginal-likelihood way, this will find a balance between data fit
and model complexity. See Rasmussen and Williams [2006, Ch. 5] for a discus-
sion and detailed overview of how to find the optimal hyperparameters. Since
log(p(vec(Y)| X, 0)) is multivariate normal there are no additional technical diffi-
culties over the univariate case; however, there may be more hyperparameters and
bigger matrices involved so it can take more time for the optimisation algorithms to
complete.

Finally using (2.8) and (2.24) we get:

() (o) (S D))
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where we note that:

cov(vec(f.),vec(Y)) (2.26)
= cov(vec(f(Xy)), vec(f(X))) (2.27)
= K(X,, X) € RMmxNny (2.28)

Hence, via Gaussian conditioning we get p(f.| X.,Y, X, 0):

with:

m, = vec(m(X,)) + K(X., X)(K(X,X) + Iy ® Q) 'vec(Y —m(X)) (2.30)
V. =KX, X,) - KX, X)(K(X,X)+Iy®Q)'K(X,X,) (2.31)

2.1.2 Reducing the Computational Cost

Both Gaussian process prediction (finding p(f«|X.,Y, X, 0)) and hyperparameter
optimisation (training) involve inverting matrices of size Nn, x Nn, and this re-
quires O(N 3n§j) operations in general. Therefore, in cases where we have a large
amount of training data or in cases with high output dimension n,, training and
prediction can take a long time; furthermore, even storing the Nn, x Nn, matrix
in memory might not be possible [Rasmussen and Williams, 2006, p. 171]. In this
section, we will briefly discuss various methods for dealing with these issues.

Special multi-output kernels:
Consider the d, d’ entry on the submatrix of K(X, X) associated with =, ’":

k(.’B, CU/)d’dl cR (232)

This could be any scalar-valued covariance function with inputs: (x,d) and (', d’)
[Alvarez et al., 2012, p. 8]. For example, a valid covariance function is the multi-
output kernel from (2.3) which as we shall see is known as a separable kernel. Using
a covariance function on (x, d) and («’, d’) allows us to easily construct K (X, X) but
this leads to the covariance matrix being of size Nn, x Nn,. To reduce the compu-
tational cost associated with the output dimension n,, we can use special covariance
functions [Alvarez et al., 2012]. A basic type of special covariance function is a
separable covariance function; this is a covariance function of the form:

k(x,2')ga = kx(x,2")kp(d,d) (2.33)

where ky(x,2’) € R and kp(d,d’) € R. This leads to:
k(x,z') = ky(x,2')B (2.34)
KX, X)=kk(X,X)®B (2.35)

where B € R™*™ is a symmetric, positive definite matrix with entries B;; =
kp(d;,d;) for i, = 1,...,N and kx(X, X) is a matrix with entries ky(X, X);; =

10
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k(xz;,z;) € R for i,j = 1,...,N where k(x;,x;) is some scalar-valued covariance
function. Immediately we can see that the storage costs have been reduced from
O(N?*n?) to O(N? + n?) and using standard properties of the Kronecker product we
get:

KX, X) ' =(kx(X, X)®B) ' =ky(X,X) '@ B! (2.36)
and hence the number of operations for the inversion is reduced from O(N?n}) to
O(N? 4 n3). Using eigen-decompositions it is possible to invert K (X, X) + Iy ® Q
when K(X, X) = kx(X,X)®B in O(N*+n). In the case where Q = ¢2I, Alvarez
et al. [2012, p. 26] provide a method to do just this by noting:

(kx(X,X)® B+ Iy ®0°L,,) " vec(Y) (2.37)
= ugl(pakx (X, X) + o Iy) 5" (2.38)
d=1

where Y = [y1,...,yn]| and pg, u4 for d = 1, ..., n, are the eigenvalues/eigenvectors
of B and ¥ = (y{ug,...,ykuqs) € RY for d = 1,...,n,. This can also be applied in
the case where vec(Y') is replaced by K (X, X,) by using the same method on each
of the columns of K (X, X,).

One thing we have not mentioned is how to find B, GPy [2012] suggests setting
B =WWT 4 eI (¢ > 0) and then viewing W and ¢ as covariance hyperparameters
finding them in the usual way by maximising the marginal likelihood. This way is
good because it ensures B is positive definite and if W € R™ then there are only
n, + 1 additional hyperparameters to find.

Although we motivated these special covariance functions as a means to reduce
computational cost, there are alternative constructions: the linear model of core-
gionalization (LMC) leads to the sums of separable covariances and a special case
known as the intrinsic coregionalisation model (ICM) leads to the separable covari-
ance case we have looked at above. Furthermore, it is possible to extend Gaussian
process regression to the case where each output dimension has different training
data and all the above is discussed in depth by Alvarez et al. [2012]. Sometimes
the special covariance functions use techniques similar to the sparse GPs discussed
below and introduce inducing point variables. It is worth pointing out that design-
ing these special covariance functions is not only about computational cost (most
sparse GP techniques can be used on top of the special covariance function if nec-
essary) but also about creating covariance functions that can express the relation-
ship between multiple output dimensions sufficiently; for example, see Alvarez and
Lawrence [2009].

Independent GPs for each output dimension:

Consider the dataset D = {(y;,x;) | ¢ = 1,...,N} with y; € R™ and x; € R".
The independent GP for each output dimension approach splits D up into datasets
D; = {(yijyx:) |i = 1,..,N} for j = 1,...,n, where y;; € R is the j® component
of y;. This approach then trains independent univariate-output GPs on each of the

11
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datasets D;. This removes the issue of multi-output kernels since all kernels will now
be scalar-valued and this approach automatically reduces training times to O(n, N?).
Moreover, by performing operations in parallel and reusing parts one can effectively
reduce the training time to O(N?3).

A question that should be asked is whether the computational expense of multi-
output covariance functions is necessary and worth it. The reason why we might
wish to consider multi-output covariance functions is that the different dimensions
can give information about each other: in other words the outputs are correlated.

Consider the following example:

n\ [ fi(z) €1\  (tanh(z) €1

()= G+ () - () () e
where €, 6 S N (0,1). Now y; and y, are statistically independent, and f(x), fa(x)
are statistically independent (since z is a constant). That said knowing f;(x) allows
us to completely determine f,(z) and vice versa. As a result, using a multi-output
covariance function will give us a better predicted mean and variance for both f;(x),
f2(z) compared with independent GPs since we can use information about f;(x) to
understand f,(z) better and vice versa. To understand why this is the case, notice
that using information about y, for y; provides two samples from N (0, 1) at each
z input instead of one and therefore for a single training point = we can use “F¥2
as a better (lower MSE) estimate of f; than just y;. Extending this to D output
dimensions with a single training input x and y; = tanh(x) + ¢;;¢ = 1,.., D where
e N(0,1), we see that as D — oo, we get that & Sy 3 Ely;] = tanh(z) by the
strong law of large numbers.

In some cases, such as the above, we get better results using multi-output kernels;
however, in general using independent GPs for each output dimension is a good
choice which balances speed with model accuracy. Although it is an approximation,
independent GPs can be a competitive alternative to multi-output kernels with the
key advantage being a reduced computation cost; for example, see Turner et al.
[2010]; Frigola [2015].

Sparse Gaussian Processes:

Previously, we looked at reducing the cost associated with high output dimensions
but now we will look at reducing the costs associated with a large amount of training
data. One way to do this is to use sparse Gaussian process approximations and an ex-
tensive discussion can be found in Quifionero-Candela and Rasmussen [2005]. The
idea is to introduce a set U = |u4, ..., uz| of latent (hidden) variables often called
inducing variables where p(u) ~ N (0, K(U,U)) and then assume that f, and f are
independent given U. This leads to [Quifionero-Candela and Rasmussen, 2005]:

p(fe f) = / p(For Flu)p(u)du (2.40)
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N / P(Fulw)p( ) () du (2.41)

where p(f., f) is the joint distribution of the training and test data. The key is to
find a good set of inducing variables and the different sparse GP methods introduce
different additional approximations on top of (2.41) as well as different methods
for choosing the set U of inducing variables [Quifionero-Candela and Rasmussen,
2005]. Examples include: The Subset of Regressors, The Deterministic Training Con-
ditional Approximation and The Fully Independent Conditional Approximation. These
are discussed in Quifionero-Candela and Rasmussen [2005] and a comparison of
their performance in given in Rasmussen and Williams [2006]. Other methods in-
clude combining variational and sparse techniques; for example in Titsias [2009].
Furthermore, sometimes the computational cost associated with the amount of train-
ing data and the high output dimensions are dealt with in the same algorithm; for
example, Variational Inducing Kernels [Alvarez et al., 2010].

Hilbert reduced-rank Gaussian Processes:

The Hilbert reduced-rank Gaussian process approximation [Solin and Sarkka, 2014]
(which we will also refer to as a reduced-rank Gaussian process) is an important
Gaussian process approximation which does not fall under the above sparse GP
framework. Instead of using inducing points, the Hilbert reduced-rank GP of Solin
and Sarkkd [2014] attempts to approximate the kernel. As we shall see, Hilbert
reduced-rank GPs can be used to greatly reduce the computation cost and we are
particularly interested in this approximation because of its application to GPSSMs.

For now, suppose we have a scalar-valued (i.e. k(x,2’) € R) and isotropic station-
ary covariance function (kernel) (i.e. k(x,z’) is a function of || — &’||) with input
dimension n, = 1 (i.e. z,2’ € R). Furthermore, suppose that all the training and
test data lies in the domain [—L, L] for some L € R. In this case, the m € Z-, ba-
sis function approximation of the covariance function (kernel) is [Solin and Sarkka,
2014]:

blw,a') & 3 S(VA))6;(w)65(x) (2.42)
1 (7mjz+ L)
¢j(x) = \/Esm( 5] ) (2.43)
_ (Y
A = (ﬁ) (2.44)

where z,2" € R, the )\; and ¢;(z) are eigenvalues and eigenfunctions of the Laplace
operator in the domain [— L, L] and S is the spectral density of the covariance func-
tion. This spectral density always exists in the case of a stationary covariance func-
tions (Bochner’s Theorem) and is calculated as [Solin and Sarkka, 2014]:

S(w) = /k(r) exp(—iw’r)dr (2.45)

13
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where r = ||z —'|| and we note that since we have assumed the covariance function
is isotropic stationary by definition it is a function of ||« — «’||. The actual derivation
of (2.42)-(2.45) is complex and will not be discussed here but can be found in Solin
and Sarkka [2014].

There are two sources of approximation in (2.42); firstly, we only take finitely (m)
many eigenvalues/eigenfunctions whereas they are infinity many and secondly, the
domain is bounded by [—L, L]. The bounding of the domain means that even in the
limit as m — oo this is still an approximation [Solin and Sarkka, 2014] and also
means that we get edge effects (i.e. poor performance) near the domain boundary:
we really do need the training and test data to be well within this domain bound-
ary. As an example, consider the univariate RBF (Radial Basis Function) kernel; it
turns out that we only need to take around the first 12 eigenfunctions (i.e. m = 12)
before adding any more has a negligible effect on the approximation accuracy (the
eigenvalues decay relatively fast). However, more complex covariance functions do
require more eigenvalues/eigenfunctions and performance depends on the decay of
the eigenvalues [Svensson et al., 2016; Solin and Sarkka, 2014].

Solin and Sarkka [2014] also give the result for the common case where we have a
stationary kernel with inputs z € R? and a domain Q = [—L;, L] X ... X [—Lg, Lg]
with Dirichlet Boundary conditions (i.e. zero on the boundary). Suppose k(x, 2’) is
a stationary kernel and let m = (my, ..., my) € R¢ be a vector giving the chosen num-
ber of basis functions in each of the d input dimensions, then the m-approximation
of k(x, ') is [Solin and Sarkka, 2014]:

km(waw/)% Z S( )‘j1 ~~~~~ jd>¢j1 ,,,,, jd(w)¢jl ----- jd(wl) (2.46)

where 1 = (1,...,1) € RY, each j; can take any integer between 1 and max(j;) = m;
inclusive and the eigenvalues are:

d . 2
m
Ajiyvda = (—]k) (2.47)
2Ly
k=1
and the eigenfunctions are:
d .
1 . ij(SCk + Lk))
i1yeja (L) = sin (2.48)
@ =1 msin (P

Firstly, note that the number of terms in the sum (2.46) is Hle m; and secondly, note
that this is a scalar-valued covariance function, so in the case we wish to turn it in a
multi-output covariance function we can; for example, apply this approximation to
a kernel on (x,d) and (', d’) for d,d' € {1, ..., D} where D is the output dimension.

Given training data X = [z, ...,xy], we can apply the above results to Gaussian

14
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processes by noting that we can write the covariance matrix K = K(X, X) as [Solin
and Sarkka, 2014]:
K ~ ®AP" (2.49)

where A is a diagonal matrix with A;; = S(1/A;), ®;; = ¢;(x;) for j = (41, ..., Ja)
and data 1, ..., zy with x; € R%

Solin and Sarkka [2014] were not that clear on what should happen in the case
d > 1 since writing this out naively will result in complex interactions between high-
dimensional objects. To deal with this issue, we introduce a simple method to map
these high-dimensional arrays back to two dimensional arrays. The idea is to map
each (j, ..., jq) to a unique integer between 1 and H‘f max(j;) using the map:

d
M . (jh ...,jd) —>] € {1, ,HmaX(j,J} (2.50)
d - d
My ja) =14 G = 1) [] max(i) (2.51)
j= k=i+1

where max(ji) is the maximum value each j; can take and HZ: 41 max(jr) = 1. For
example, in the case that we have an input dimension of 5 and each j; takes a value
between 1 and 12 (i.e. 12 eigenfunctions for each dimension) we would map:

M(1,1,1,1,1) =1 (2.52)
M(1,1,1,1,2) = (2.53)
M(1,1,1,2,1) = 13 (2.54)
M(5,1,1,1,1) = 82945 (2.55)
M(6,7,4,5,3) = 114531 (2.56)
M(12,1,1,1,1) = 228097 (2.57)
M(m) = M(12,12,12,12,12) = 248832 = 12° (2.58)

Going back to (2.49), we can now map each j to an integer using M(ji, ..., Ja)
so we replace j with M(3) = M(ji,...,jq) and hence with 7 = (j1,...,J4); Ajj
becomes Anqgj,,..j.)MGi,...j,) and ®;; become P, .. ;). This allows us to map
the original hlgh dlmension objects back to two dimensions and thus leaves A and
® as matrices. The fact that this scales poorly as the number of input dimensions d
increases is not as a result of this mapping but inherent to the approximation and in
section 3.3 we shall introduce a solution to this problem. Now we understand how
to transform these high-dimensional arrays to two dimensions, we can write out the
results needed for reduced rank GPs. Given the system (2.12) withn, = 1, Q = o2
and a set of test inputs x,, ..., ., with z,, € R we have [Solin and Sarkka, 20141]:

E[f.] = ®*(®T® + 2 A1) 'dTy (2.59)
V[f] = 2@ (®T® + o2 A~ )1 (2.60)

where ®}; = ¢;(x.,) and j is mapped to an integer using M. Something similar can
be done for the marginal likelihood [Solin and Sarkka, 2014, p. 10]. As a result,
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the computationally expensive matrix inversions are independent of the size of the
training data and the Hilbert reduced-rank GP can train in O(m?) where m is the
number of terms in the kernel approximation sum (2.46). However, this approxima-
tion scales very poorly as the input dimension d increases.

A final thing to note is that we can use the Karhunen-Loéve expansion to write
[Solin and Sarkka, 2014]:

f(X) ~ Z fi9i(X) = Fo(X) (2.61)

where the ¢; are the basis functions from (2.46) and the f; are some constants. If
d > 1 we use the mapping 7 — M(j1, ..., Ja)-

2.1.3 Examples

In this section, we look at some examples of Gaussian process regression on syn-
thetic data.

Example 1:

One of the most useful properties of covariance functions (kernels) is that summing
(or multiplying) two different covariance functions returns another covariance func-
tion which has inherited the properties of both the original covariance functions
and combined them in an additive (or multiplicative) way. For example, consider
training data y, X generated by the system:

yi = f(z:) + € (2.62a)
f(z) = 2% + 3sgn(z) (2.62b)
e 0 N(0,3?) (2.62¢)

Using a kernel formed from summing a Rational Quadratic and MLP kernel, Gaus-
sian process regression can learn something close to the true function: see Figure
2.1.

Example 2:
In this example, we compare some different forms of multi-output GP regression
using the example we looked at in (2.39) but with four output variables:

Yin fl (l’l) €i1
vie | | fola) €
vz | | f3(x) + €is (2.63a)
Yia f4(ZL’Z) €i4
fj(x) = tanh(x) (2.63b)
ey N (0,1%) (2.63¢)
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All the multi-output models were trained on 60 data points using 10 optimisation
restarts and RBF covariance functions. The plots were produced using GPy [2012]
and we write the training data as (X,Y) where X is the training inputs and Y =
(y',...,y") is the training outputs with y° being the training output for the i output

dimension. The results are display in figures 2.2-2.4.

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Full Gaussian Process, SUM Covariance Function)

—— Predicted Mean of f(x*) .
151 === 2 *Predicted Std. Dev. of f(x*)
Actual (noiseless) Function

e Training Data Z

10 1

- -

. e

L] -
'r———r—-.f’

f(x*)

-~
~ ~
- ~
~ ~
-~ ~
S~

S~

—10 1

-3 -2 -1 0 1 2 3
Test Inputs x*

Figure 2.1: Univariate Gaussian process regression with a Rational Quadratic + MLP

Kernel and 100 points (z;, y;) of training data generated by the system (2.62).

Independent Multi-Output Gaussian Process Regression

1.5

= Mean

=== True Function
Confidence

1.0 A

=15 T T
-3 -2 -1 0 1 2

Figure 2.2: A plot of p(fi(z«)|z«, X,y"') against test inputs z,. This is the posterior
predictive distribution of the first dimension of f(x) in the case of each output dimension

having a GP trained independently.
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ICM Multi-Output Gaussian Process Regression

1.5

—— Mean

=== True Function
Confidence

1.0 A

Figure 2.3: A plot of p(fi(z.)|z«, X,Y) against test inputs z, in the case of a GP with a
separable multi-output covariance: k(x,z')ss = kx(x,z')kp(d,d’). Notice how much
more confident the model is compared to the independent GP case.

Fully Dependent Multi-Output Gaussian Process Regression

1.5
— Mean

=== True Function
Confidence

|
=
wn

Figure 2.4: A plot of p(fi(x.)|z«, X,Y’) against test inputs z, in the case of a GP with

(! AN]12 .
a full multi-output covariance: k(xz,x')qs = exp < — W). It is not that

different to the separable multi-output covariance.

18



Chapter 2. Background 2.2. STATE-SPACE MODELS

2.2 State-Space Models

A state-space model is a model of the form:

x1 ~ p(x1) (2.64)
Ti|xig ~ p(xe|T_1) (2.65)
Ye| e ~ plye| ) (2.66)

where the x; € R" fort = 1, ..., T are latent (unobserved) variables and the y;, € R™
fort = 1,...,T are observed variables. We will refer to (2.64) as the initial distribu-
tion, (2.65) as the transition distribution and (2.66) as the observation distribution.
A graphical model is provided in figure 2.5.

Figure 2.5: A state-space model

Two important special cases of the general state-space model are:

1. The Gaussian linear state-space model (also known as the Gaussian linear dy-
namical system):

= Fx,_ |+ ¢ (2.67a)
y; = Gx, + wy (2.67b)
xy ~ N (1, Py) (2.67¢)
e ~N(0,Q,) (2.67d)
w; ~ N (0, Ry) (2.67¢)

where F', G are matrices of suitable size and P;, Q;, R; are covariance matrices
of suitable size. This model has a number of desirable properties such as a
closed form recursive formula for filtering and smoothing called the Kalman
filter and the Kalman smoother respectively.

2. The additive state-space model:

x; = f(xi1) + € (2.68a)
Yy = g(x;) + wy (2.68b)
x1 ~ p(xy) (2.68¢)
€ ~ pl€) (2.68d)
w; ~ p(wy) (2.68e)

where f and g are functions. As we shall see in section 2.3, a Gaussian process
state-space model is an additive state-space model with Gaussian process priors
on f and g.
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Given an arbitrary state-space model and observations vy, ..., yr, important problems
include:

1. Finding the filtering distributions: p(x;|y,...,y:) fort =1,...,T.

2. Finding the smoothing distributions: p(x|y,...,yr) fort =1,...,T.

3. Prediction of future y: p(yris|yi, ..., yr) for some s € Z>.

4. Finding the unknown parts of the initial, transition and observation distribu-
tions.

The general name for the first three problems is inference while the general name
for the fourth problem is learning. We will discuss learning briefly at the end of this
section and cover it in more depth for the specific case of Gaussian process state-
space models in section 2.3. For now, we will discuss inference.

2.2.1 Inference: The General Framework

Bayesian filtering and smoothing is a framework which encompasses all the infer-
ence (filtering, smoothing and prediction) that we will look at in this thesis. We will
now state the key results in this general case and throughout this section suppress
the dependence on possible parameters for clarity.

Given observations y;.; (Where as usual y;; means vy, ..., y;), the joint smoothing
distribution is [Doucet et al., 2001]:

p(yl:t|m1:t)p($1:t>
Jyrg) = 2.6
p<w1.t|y1.t> fp<y1:t’wl:t)p<w1:t)dw1:t (2.69)

this can be turned into a recursion version [Doucet and Johansen, 2012]:

p(Ye| e )p(xe| ) 1)
p(yt|y1:t—1)

where p(y;|y1.+—1) can be found using the integral [Doucet and Johansen, 2012]:

p(T1e|yre) = p(T1:-1|Y1:4-1) (2.70)

P(Ye|y1a-1) = /p(wt—l|ylzt—1)p($t|$t—1)p(yt|$t)d$t—1:t (2.71)

The filtering distribution p(x;|y;.;) can be found by a two step procedure [Doucet
et al., 2001; Doucet and Johansen, 2012]:

p<mt|y1:t—1) = /p(xt|mt—1>p<wt—1|y1:t—1)dmt—1 (2.72)
x x g

P(iBt’yu) _ P(yt| t)p( t|yl.t 1) (2.73)
p<yt|y1:t—1>

where (2.72) is called prediction and (2.73) is called updating. Finally given ob-
servations y;.7, the smoothing distribution p(x;|y;.7) can be found via the Forward-
Backward Recursions [Doucet and Johansen, 2012]:

T, 1|x
(x| yr.7) :p($t|y1:t)/%p(iﬁwﬂylf)dwtﬂ (2.74)
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where the p(x;|y,.;) for t = 1,...,T were found during filtering (forward pass) and
after we have collected all the data we can perform the smoothing (backward pass)
recursively via (2.74). An alternative to this is the Generalised Two-Filter Formula
which is discussed in Doucet and Johansen [2012]. As noted in Doucet et al. [2001]
these equations are ‘deceptively simple’ since they often require the solution of in-
tractable integrals. To deal with this, some approximations are needed and we
will now look at two different types of possible approximations: deterministic and
stochastic.

2.2.2 Inference: Deterministic Methods

The two main deterministic inference frameworks are Gaussian filtering and varia-
tional inference. Gaussian filtering is in fact a form of the more general variational
inference but it is very important because many methods traditionally used for infer-
ence in state-space models such as the Kalman filter, extended Kalman filter (EKF),
unscented Kalman filter (UKF) and cubature Kalman filter (CKF) are all special cases
of Gaussian filtering [Deisenroth, 2010].

Before discussing Gaussian filtering we will introduce the shorthand notation de-
fined in Deisenroth [2010]:

Biye, = Bl Y] (2.75)

tx1|t2 = cov(xy, [Y1.1,) (2.76)
“?ﬂtg = Elyu [Y1.1,] (2.77)
Zfﬂtz = cov[Y, [Y11,) (2.78)
Efﬁtg = cov[Tt,, Y, [Yi:1,) (2.79)
EiﬁtQ = COV[Yry, Tt |Y1:t,) (2.80)

The idea behind Gaussian filtering is to approximate most of the distributions which
arise in the Bayesian filtering computations with Gaussian distributions by moment-
matching; for example, we approximate p(z:|y:.) with a N(uf,, Xf,) distribution.
Notice that in the case where p(x|y;.;) is already Gaussian then the above ap-
proximation will leave the distribution unchanged. The only distributions that are
not (usually) approximated are the initial (2.64), transition (2.65) and observation
(2.65) distributions because as long as we can find their first two moments we do
not need to approximate them.

Assuming we know p |, ; and X7 ,, , and therefore have a Gaussian approxima-

tion of p(@;_1|y14-1) as N("’t—lmfmtqv Efﬁl‘tfl), it is possible to derive i)y and Efﬁ
and therefore a Gaussian approximation of p(x;|y;.;) [Deisenroth, 2010]. Following
this recursively will yield a sequence of Gaussian approximate filtering distributions.
To derive the updates, we note that Gaussian filtering allows us to avoid direct com-
putation of the prediction update integral in (2.72) because all we need are the first

two moments (since we are going to approximate it with a Gaussian distribution)
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and hence following Deisenroth [2010] we get:

p(@elyre—1) = N(pie—1, i1 (2.81)
where

pi = Elp(i|yri-1)] (2.82)

_ / 2op(@ |y da: (2.83)

= // xp(xe| 2 1)p(Ts1|Y1:-1 ) ds 1 dey (2.84)

= // x (x| 21 )dep(Te—1|Y1-1)dTe 1 (2.85)
:/E[p(wt\wt—l)]p(wt—l|y1:t—1)dwt—1 (2.86)

= /]E[p(mt|$t—1)]/\/($t—1|uf_1t_l,Ef_1|t_1)d$t—1 (2.87)

where we note that if the expectation exists (i.e. is finite) swapping the integrals is
allowed by Fubini’s Theorem. Via a similar method,

tI\t—l = /E[p(wt|xt_1)p(a:t|a:t_1)T]/\/'(mt_1|uf_1t_l,Ef_lt_l)da:t_l
_“tm\tfl(utx\tfl)T (2.88)

Using the same approach it is possible to derive Zfﬁ_l, EZ ., and Etyﬁ_l [Deisenroth,

2010]. The filter updates are derived in Deisenroth [2010] and are reproduced here:

Hijy = M1 + Eﬁ—ﬂz}?\tq)il(yt - F”Zt—l) (2.89)

e = T T T () T (2.90)
Although Gaussian filtering avoids computation of certain integrals such as (2.72),
there is no guarantee that these new integrals (2.87), etc are tractable. As a result,
the different Gaussian filtering methods make different additional approximations;
for example, the extended Kalman filter performs filtering on the additive state-
space model by linearisation of the non-linear functions (approximating f(z;_;) with
Fyx;_1). This allows for the simple computation of the required integrals: see (2.91)—
(2.96). Other Gaussian filtering methods; for example, the unscented Kalman filter
and the cubature Kalman filter attempt to approximate the new integrals (2.87), etc
directly. For more details see Deisenroth [2010]. In the case of the linear Gaussian
dynamical system, there are no approximations made by Gaussian filtering: all the
required equations can be computed exactly and the resulting update equations are
the Kalman filter update equations; for example, (2.87) becomes:

[ Bl @ N @ 1, By s (2.91)
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= /Fmt—lN(mt—lmf—ut—la Ef—l\t—l)dmt—l (2.92)
= F”’txfﬂtfl (2.93)

and the updates become (Deisenroth [2010]):

Pije = F gy + Eﬁt—lGT(Gzﬁt—lGT +Ry) "y — G 1-1) (2.94)
=20+ 20, G(GE,_,G" + R)T'GX, | (2.95)

where
f&ﬁ|t71 = thmfuthT + Q: (2.96)

Using the same ideas as Gaussian filtering, it is possible to derive a set a recursive
equations to generate the Gaussian approximated smoothing distributions, these ap-
proximate distributions become the exact smoothing distributions in the linear Gaus-
sian dynamical case and are known as the Kalman smoother: see section 4.2.2 in
Deisenroth [2010].

A more general Bayesian filtering/smoothing method is variational inference which
tries to approximate the distributions inside the Bayesian integrals (2.71)-(2.72)
with distributions that make the computation of the integrals tractable.

Definition 2.6. [Bishop, 2009] The Kullback-Leibler divergence is defined as:

KL(q|lp) = — / g(z) log (%)dm (2.97)

where p and ¢ are functions. Its properties include:

1. KL(qllp) > 0.
2. KL(qllp) =0 <= q=p.

Consider (2.72) which is reproduced here for convenience:

p($t|y1:t—1) = /p($t|e73t—1)p(ﬂ3t—1|y1:t—1)dﬂ3t—1 (2.98)

A variational method would try to make this integral tractable by approximating
p(xi—1|Yy1.4-1) or p(x;|x,—1). One way to do this would be to consider a distribution
q(x—1|y1..—1) which approximates p(x;_i|y1,—1). To select the appropriate ¢ one
usually tries to find the ¢ that minimises the Kullback-Leibler divergence KL(q||p).
Now of course if no constraints are placed on ¢ then the optimal ¢ is p which is not
very helpful. The key to variational inference is to come up with constraints on ¢
that are not too tight and allow the required integrals to become tractable. These
methods tend to be very problem specific and so we will not discuss them here: they
will be introduced as needed.
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2.2.3 Inference: Stochastic Methods

The main stochastic methods for inference in state-space models are sequential
Monte Carlo (SMC) methods also known as particle filters and particle smoothers.
In this section, we will look at a basic particle filter known as the bootstrap filter
and then discuss the issues which can arise in SMC methods; finally, we will briefly
look at smoothing and an important state-of-the-art particle smoother called Particle
Gibbs with Ancestor Sampling (PGAS) [Lindsten et al., 2014].

In particle filters, the aim is (often) to devise a method to sample from the distribu-
tions p(x1.|yy.) fort = 1,..., T and if we can sample from such distributions, it is triv-
ial to sample from the filter distributions by just taking the last element of the sam-
pled vectors. The assumption [Doucet et al., 2001] is that sampling from p(x1.|y;.)
directly is hard (or sampling takes a long time) and for state-space models this is al-
most always the case. As a result, sequential Monte Carlo (SMC) methods are based
on importance sampling, which, instead of sampling directly from p(x;.|y;..), sam-
ples from a importance or proposal distribution ¢g(x1.;|y;.;) that is similar to p(x;.|y;.)
but easier to sample from. These samples are then weighted; with samples most like
samples from p(x1.|y1+) given more weight. Formally, an importance distribution
q(x1.¢|y1+) can be any distribution that such that p(x1.4|y1.¢) > 0 = q(x14|y14) > 0
[Doucet et al., 2001]. In the case of importance sampling in state-space models we
have [Doucet and Johansen, 2012]:

wt(w1:t>Q<$1:t‘y1:t)

T ) = (2.99)

P(T1:4|Yr:t) Z,

zZ, - / wn(@10)q( @1 yr) (2.100)

wi(@1,) = PEL0 Y1) (2.101)
Q(wlzt|y1:t)

where ¢(x1.|y;.) is the importance distribution and the w,(x;.;) are known as the
unnormalised weights. This formulation relies on knowing p(1.;, y1.¢), which, unlike
p(x1.4|y14), is usually easy to calculate for state-space models. To calculate some
quantity of interest say E,[h(x;.;)] we can get independent samples !, from ¢ and
approximate it as [Doucet and Johansen, 2012]:

Ey[h(zr)] = ) Wih(a,) (2.102)
where (@)
) Wy wﬁ:t
W)= =—" (2.103)
' > wi(@y)

Now the main issue here is that it is very inefficient since as noted in Doucet et al.
[2001] we are not really using the sequential nature of the problem and forgetting
everything we learnt at time ¢ — 1 for time ¢. In Doucet and Johansen [2012] it is
shown that one can rewrite the weights allowing for sequential updates:

wt(wlzt) = wt71<m1:t71)at<m1:t) (2.104)
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Oét(wlzt) _ p<m1:tay1:t> (2105)

p<w1:t717 y1:t71)Q($t ’wlth? yu)

A particle refers to a vector «.; and so having N particles means we have N vectors
xt, fori=1,...,N. Associated to each particle is a weight w; (¢ ,) which determines
its importance in describing the true distribution. Before stating the bootstrap filter
algorithm, there two more things we need to deal with: resampling and choosing
a suitable importance/proposal distribution. One of the problems that can arise in
SMC is weight degeneracy (also known as path degeneracy) [Doucet and Johansen,
2012]. This occurs when we have a continually increasing particle weight variance
and eventually this leads to one particle having all the weight which is problematic
since all the estimates will end up being based on only one particle. This weight
degeneracy is measured by the effective sample size [Doucet and Johansen, 2012]:

ESS = — ! : (2.106)

Zi:l(WtZ>2
with smaller £SS meaning more weight degeneracy. This degeneracy can be re-
duced using resampling and Doucet and Johansen [2012, p. 13] gives a detailed
overview of all the most common resampling techniques. Unfortunately, resam-
pling causes another type of path degeneracy known as sample degeneracy or sample
impoverishment whereby all particles eventually become the same [Doucet and Jo-
hansen, 2012]. One method to deal with this is to only resample when necessary (i.e.
only resample if £S5 is smaller than some threshold say ). This is known as adap-
tive resampling. The last thing left to do is to find a suitable importance/proposal
distribution, for SMC in state-space models all we need to find is a proposal distri-
bution of the form [Doucet and Johansen, 2012]:

q(xe|T1:-1, Y1) (2.107)

It turns out [Doucet and Johansen, 2012, p. 20] that the optimal (in the sense of
minimising weight variance which is important due to path degeneracy) proposal is:

) p(as| s
(| 1021, Y1) = p(yi|2)p(@i|@:-1) (2.108)
p(yt|wt71>

Although this is the optimal proposal distribution, choosing a different proposal dis-
tribution is often done and the bootstrap filter uses the bootstrap proposal distribu-
tion: q(a;|®1.4—1, Y1) = p(x¢|xi—1). This is non-optimal but it is still good because the
optimal proposal requires computation of p(y,|x; ;) and this might not be tractable.
It is possible to use MCMC methods to approximate the integral in p(y,|x, 1) but
this will tend to slow everything down. Overall, the bootstrap proposal is a good
and easy choice to make; however, in certain cases we will do better with different
proposal distribution.
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Algorithm 1: The Bootstrap Filter with Adaptive Resampling [Doucet et al.,
2001; Doucet and Johansen, 2012]
Input : Number of Particles N, Observations y;.7-, Function M (x;.)
Output: N samples from p(x.7|y;.7), Weights Wi fori =1,..., N and
E[M(x;)| fort=1,..,T

1 set weights wi = 1/N fori=1, ..., N;

2 fort=1,.., Tdo

3 if t =1 then

4 | sample @} ~ p(x,) fori=1,...,N;

5 else

6 sample x| ~ p(x|x._ ;) fori=1,...,N;

7 setx}, = (¢, |, x!) fori=1,..,N;

8 end

9 | compute importance weights: w! = w;_,p(y|x});

10 | normalise importance weights: W/ = —i—;
i=1 Wt

11 compute E[M (z,,)] = S8, WM (zi,);

12 compute effective sample size: £SS = —x—+—;
s (W)?

13 if £SS < ¥ then

14 resample particles and set w! = 1/N using techniques in Doucet and

Johansen [2012, p. 13];
15 end

16 end
17 return @} ., Wi fori =1,..., N and E[M(z,,)] fort =1, ..., T}

Due to sample impoverishment, most likely the N samples of p(x;.r|y;.7) from the
bootstrap filter will all be exactly the same (if 7" is large) but by setting M (x) = =,
we can get a good value for the mean of the sequence of filtering distributions over
time and something similar can be done the other moments. See section 2.2.5 for
some examples.

SMC methods for smoothing follow the same ideas as filtering; however, they of-
ten have a higher time complexity. Although, in theory, we could get samples from
the smoothing distribution p(x;|y;.7) by just looking at the ¢th component of the
vector p(x1.r|y1.r) for each of the N samples; in practice, due to sample impover-
ishment this will not give a good result [Doucet and Johansen, 2012]. Methods
for smoothing include the Fixed-Lag Approximation and Forward Filtering-Backward
Smoothing both of which are discussed in Doucet and Johansen [2012, pp. 34-36].
One of the most recent particle smoothing methods is Particle Gibbs with Ancestor
Sampling (PGAS) [Lindsten et al., 2014], this requires an additional input compared
with the bootstrap filter: a reference trajectory which the algorithm uses to guide it-
self to the invariant distribution of the latent states. This reference trajectory could
be outputted from another method; for example, the mean trajectory in the boot-
strap filter (i.e. the sequence M (zy.,) when M (x1,) = ;) or it could be the output
trajectory from the previous run of the PGAS algorithm. Unlike the bootstrap filter,
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PGAS only produces one sample (trajectory) per run and although degeneracy still
occurs in each run, only producing one sample per run mitigates this degeneracy
and also means we do not need to use as many particles as in the bootstrap filter
[Lindsten et al., 2014]. The PGAS algorithm is provided in Algorithm 2.

Although we have looked at SMC from the point of view of state-space models,
it can be used in a wide variety of sequential and non-sequential problems [Doucet
and Johansen, 2012, p. 35]; for example, sampling via Metropolis-Hastings can
use SMC to improve mixing and this leads to particle Metropolis-Hastings and other
particle MCMC methods [Dahlin and Schon, 2016]. We will compare a few SMC
methods with some Gaussian filtering methods in section 2.2.5.

Algorithm 2: Particle Gibbs with Ancestor Sampling [Lindsten et al., 2014;
Svensson et al., 2016]

Input : Number of Particles N, Observations y,.7, Reference Trajectory (&;.7)
Output: One sample from p(x1.7|y1.7)

sample x! from the initial distribution p(zx,) fori =1,..., N — 1;

set ¥ = y;

set weights w’ = p(y;|z!) fori =1,..., N;

fort=2,..., Tdo

/* resampling and ancestor sampling */
5 sample with replacement N — 1 particles a4, ...,ay_; from the N particles
x!, , with the probability of selecting particle %, , proportional to its
weight;

6 | compute p' = w'p(&|x’_,) fori=1,..., N where p(x;|z;_,) is the transition
distribution;

AW N =

7 | normalise: p' = pr} fori=1,...,N;
8 sample a single particle a, from the N particles ., , with the probability

of selecting particle z}.,, , equal to p’;

/* particle propagation x/
9 sample ! from the transition distribution p(x;|z; 1 = a;) for

1=1,...,.N —1;
10 set x) = @y
1 | setxi, ,=a;fori=1,.., N;

/* weighting */
12 | set weights w' = p(y;|x!) fori =1,...,N;
13 end

14 return one sample x;.; by sampling from the particles with the probability of
selecting particle x! . proportional to its weight w?;
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2.2.4 Learning

There are two possible kinds of learning that can be done in state-space models.
Firstly, there is parametric learning, this is where we assume that the functional
forms of the initial, transition and observation distributions in (2.64)—-(2.66) are
known but there are some unknown parameters. In this case, the task in learn-
ing is to find these unknown parameters; for example, in the linear state-space
model one way to find the optimal parameters is via a combination of Kalman fil-
tering/smoothing and expectation-maximisation (see Hamilton [1994] for more de-
tails). Furthermore, parametric learning in non-linear non-Gaussian models is pos-
sible via PGAS. We can construct a Gibbs sampler and alternate between sampling
from the distributions p(x1.7|yi1.7, @) and p(0|x1.7, y1.7) where 0 represents the un-
known parameters. After an initial burn-in period this will generate (approximate)
samples from the posterior distribution of the parameters: see Lindsten et al. [2014,
p. 2161] for more details. Although these methods have good theoretical properties,
there are still issues and one of the key problems is identifiability.

Definition 2.7. [Lehmann and Casella, 1998] Suppose the random variable X has
a distribution pg where 0 is a vector of parameters, then we say 6 is identifiable if
Po, = po, = 01 = 0s.

When optimising the parameters, having a lack of identifiability results in the model
having many equivalent optima. This might not be a problem by itself, since by the
very nature of identifiability they are all equally valid given the observations, and
if we just want to perform forecasting this unidentifiabilty might not be a problem
[Frigola, 2015, p. 19]. However, if we wish to be able to interpret the parame-
ters, then identifiability is an issue since not all parameter values may even make
sense. In this case, placing priors on the parameters or starting the optimisations
in different places may help to alleviate this issue. For a general state-space model:
(2.64)-(2.66) we cannot expect to have identifiability.

The second kind of learning in state-space models is non-parametric learning and
this is where we do not assume any particular functional form for the initial, transi-
tion and observation distributions. Non-parametric learning is a hard problem and
generally requires us to assume something about the final form; for example, an ad-
ditive state-space model with a Gaussian likelihood. We will look at non-parametric
learning in depth for the particular case of Gaussian process state-space models in
section 2.3.
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2.2.5 Examples

In this section, we will compare Gaussian filtering/smoothing with sequential Monte
Carlo methods via a number of examples.

Example 1:

The first set of examples will be based on the model:
Ly = O-th—l + € (2109)
Yy = 3z + wy (2.110)
x; ~ N(0,0.12) (2.111)
e X N(0,0.3%) (2.112)
w, < N(0,1%) (2.113)

The bootstrap filter will use 500 particles and PGAS will use 5 particles starting from
a reference trajectory of all zeros and a burn-in of 30 samples. We generated a single
set of 300 points of simulated observations/hidden states from the model above and
each of the methods were given the same set of simulated observations. The aim was
to find the hidden states and we scored each of the methods by calculating the MSE
between the mean of filtering/smoothing distribution and the true hidden states.
The MSEs for the first example are displayed in following table:

Method: MSE:
Bootstrap Filter 0.066
Bootstrap Smoother | 0.055
Kalman Filter 0.065
Kalman Smoother | 0.053
PGAS 0.052

(2.114)

On this simple linear system, the above SMC methods perform similarly to their
Kalman equivalents. This is as expected because the Kalman methods are meant
to be the optimal (best unbiased estimator) filters/smoothers on this sort of system
[Hamilton, 1994]. The results are plotted in figures 2.6-2.8.

Example 2:

The second set of examples will compare the unscented Kalman filter (UKF), boot-
strap filter, unscented Kalman smoother (UKS), bootstrap smoother and PGAS. This
set of examples will be based on the model:

x; =sin(x;_1) + € (2.115)
Yy = exp(x;) + wy (2.116)
x, ~ N(0,0.1%) (2.117)
e: ~ N(0,0.3?) (2.118)
w; ~ N(0,1?) (2.119)
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with everything else the same as in the first set of examples. The results are plotted
in figures 2.9-2.11 and the MSEs are displayed in the following table:

Method: MSE:
Bootstrap Filter 0.17
Bootstrap Smoother | 0.14
UKF 0.21

UKS 0.20

PGAS 0.14

(2.120)

The key takeaway from both examples is that SMC methods are a competitive in-
ference method and can provide excellent estimates of the required distributions

compared to the traditional methods such as the UKF/UKS.

The Kalman Filter
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Figure 2.6: The Kalman Filter (Example 1)
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The Bootstrap Filter
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The Unscented Kalman Smoother
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Figure 2.11: Particle Gibbs with Ancestor Sampling (PGAS) (Example 2)

2.3 Gaussian Process State-Space Models
A Gaussian process state-space model (GPSSM) is a model of the form:

;= f(xim1) + €&
Y = g(x) + w;
x, ~ p(x1)

[~ GP(my, ky)
g~ GP(mg, ky)

where €, and w,; are random variables, the x; € R"= for ¢

(2.121a)
(2.121b)
(2.121¢)
(2.121d)
(2.121e)

1,...,T are latent

(unobserved) variables and the y, € R™ for ¢t = 1,...,T are observed variables. In

the case where we have:
€ %l N(Ov Q)
w, X N(0, R)

(2.122)
(2.123)

then this is called a GPSSM with (independent) Gaussian latent and observation
noise. When we refer to a GPSSM we will be referring to a GPSSM with Gaussian
latent and observation noise unless stated otherwise. Sometimes the functional form
of f or g is known and so we only have one GP; in the case where the functional
form of f is known and g is a GP we will call this a GPSSM with a known transition
function and in the case where the functional form of ¢ is known and f is a GP we
will call this a GPSSM with a known observation function. As with all state-space
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models there are two key problems we wish to solve: learning and inference. We
will now look briefly at inference and then discuss the current status of research for
learning GPSSM:s.

2.3.1 Inference in GPSSMs

Once we have knowledge of the posterior predictive distributions for the transition
function f in (2.121a) and observation function g in (2.121b), many of the infer-
ence techniques we discussed previously (unscented Kalman filter, bootstrap filter,
etc) can be used directly for GPSSMs. However, this assumes that we can come
up with some method for learning the covariance hyperparameters in f and ¢ as
well as finding their respective posterior predictive distributions. This is non-trivial
because, in general, we will not have knowledge of the true hidden states x; even
during training. Furthermore, even if somehow we could learn the functions f and
g, as they are GPs there will always be some posterior uncertainty; but the inference
techniques we have seen so far do not take into account this addtional uncertainty
and so will tend to give overconfident predictions [Deisenroth et al., 2009; Deisen-
roth, 2010].

As a result, several inference techniques have been devised which are tailored to
GPSSMs. Gaussian filtering has been applied to GPSSMs [Deisenroth et al., 2009;
Deisenroth, 2010] in a form known as the Gaussian process Assumed Density Filter
(GP-ADF). Here, the Gaussian filtering framework is unchanged in the sense that
we only need to compute to moments Efﬁ/_l: Ei" ._1» etc. However, in the GPSSM
case the required moment calculations need to take into account the uncertainty in
f and g. Moreover, the GPs f, g have uncertain inputs: when trying the calculate the
next hidden state, the previous hidden state has a distribution of possible values and
this uncertainty increases the GP posterior uncertainty. All this additional complex-
ity leads to the required integrals (e.g. for computing Zfﬁj_l) only being tractable
for a very small set of covariance functions such as the square exponential or ratio-
nal quadratic covariances [Deisenroth et al., 2009]. Furthermore, during training,
knowledge of the true hidden states is required [Deisenroth et al., 2009] which may
not be possible depending on the problem. That said, in cases where these integrals
are tractable the GP-ADF performs much better [Deisenroth et al., 2009, sec. 6.1]
than the standard unscented Kalman filter (UKF) and it also performs better than
a form of the UKF which takes GP uncertainty into account (GP-UFK) [Ko and Fox,

2008].

This has been extended to smoothing in Deisenroth [2010]; Deisenroth et al. [2012]
and is known as GP-RTSS. This performs better than the standard unscented Kalman
smoother (UKS) [Deisenroth et al., 2012, p. 5] but for the same reason as the GP-
ADF, we have a very limited choice of covariance functions. For both the GP-ADF
and GP-RTSS, the results are only derived for the case of the different output di-
mensions using independent GPs with scalar-valued covariances rather than using a
single GP with a multi-output covariance. That said, it is probably possible to derive
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something similar for the multi-output case.

Other inference techniques used successfully in GPSSMs are expectation propaga-
tion [Deisenroth and Mohamed, 2016] (although it was only derived and tested
using an SE kernel) and particle filters [Frigola et al., 2013]. Although, the SE ker-
nel is expressive, for some tasks other kernels are better suited (say for forecasting a
periodic function) and as a result we are really looking for methods that work well
across a wide range of covariance functions.

2.3.2 Learning in GPSSMs

Suppose we have a sequence of observations Y,.r = [y, ..., yr] and we wish to learn
a GPSSM; this means that we wish to find the covariance hyperparameters for the
functions f and ¢ (or in the Bayesian case a posterior distribution for these hyper-
parameters). Wang et al. [2008] tried to combine learning the hyperparameters
for the latent/observation GPs with learning the true hidden states, effectively try-
ing to perform smoothing and hyperparameter learning at the same time. To do
this, Wang et al. [2008] use a model based on the Gaussian process latent variable
model (GPLVM) [Lawrence, 2004] and find the distributions of p(Y'|X) and p(X)
by marginalising out g and f respectively. Although Wang et al. [2008] only states
these results, a similar derivation can be found in Frigola [2015, pp. 29-30] and we
can use the relationship between the matrix and multivariate normal distributions
to get the results in Wang et al. [2008]. Wang et al. [2008] seem to get some good
results but the issues are that training can take a long time, the model is very prone
to overfitting since we have a lot of freedom when minimising over all the hidden
states (especially if the hidden states have a higher dimension than the observations)
and the model only provides point-estimates rather than distributions for the param-
eters. However, it is not limited in its choice of covariance function unlike many of
the filtering methods we discussed before.

Turner et al. [2010] use the GP-Gaussian filtering methods from Deisenroth et al.
[2009] to learn a GPSSM via expectation-maximisation. In the original GP filter-
ing/smoothing methods knowledge of the true hidden states are required but Turner
et al. [2010] side-step this by introducing pseudo training sets (for both the obser-
vation and transition equations) that are learnt along side the covariance hyperpa-
rameters. The idea is that in the FE-step we can filter using a GP-ADF which has been
constructed using the pseudo-training set rather than the actual true hidden states
(which we do not know) and in the M-step as well as optimising the covariance hy-
perparameters we also optimise the pseudo-training set. Then, in the standard EM
way we iterate between the two steps waiting for convergence; however, due to the
approximations required in the M -step, we do not have any guarantees that it will
converge. A limiting factor for learning using this method is the restriction on possi-
ble choices of covariance functions inherited from Gaussian filtering with Gaussian
processes as well as only providing point-estimates of parameters; although, unlike
Wang et al. [2008] we do get a distribution over the hidden states (using GP-ADF or
GP-RTSS).
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A popular set of methods for learning GPSSMs are variational methods. In all these
methods, the aim is to derive an approximation to the marginal likelihood p(Y.7|0)
(i.e. marginalising out the hidden states) where 6 are the covariance hyperparame-
ters and then optimising it; finding (approximately) the covariance hyperparameters
with a trade off between data fit and model complexity. This is done by defining the
evidence lower bound (ELBO) as:

L(q) = /q(Z|9) log %dz (2.124)

where Z is all the things we do not know (excluding the covariance hyperparameters
0); for example, the hidden states X.r, functions f, g and any inducing variables
for the sparse GP approximations. This is a lower bound to the marginal likelihood
p(Y1.7|0) and so we use it to approximate the marginal likelihood and optimise it
with respect to ¢, any other variational parameters and . Optimising with respect
to ¢ without any constraints would give the optimal ¢ as p(Yi.r, Z|0) resulting in
an intractable integral. Hence, the different variational methods introduce different
additional assumptions on ¢q. Having decided on the additional assumptions about
q, the ELBO is optimised using some numerical techniques; for example, gradient
ascent. Damianou et al. [2011] use the GPLVMs applied to GPSSMs idea from Wang
et al. [2008] but additionally marginalise out the hidden states X using variational
techniques and as a result overfitting is less of a problem compared to Wang et al.
[2008]. Other uses of variational inference include Frigola et al. [2014]; Frigola
[2015] which provide two variational methods (although certain calculations re-
quire a particle smoother) that use sparse GPs and learn from challenging data rea-
sonable well and relatively fast (couple of minutes for 500 data points [Frigola et al.,
2014]). Also, they allow for online learning [Frigola, 2015, pp. 66-67]. The main
issue with all these variational methods is that they are not fully Bayesian and only
provide point estimates of the parameters. Furthermore, they require that the varia-
tional assumptions are approximately correct. Other variational models include the
model by Eleftheriadis et al. [2017] that combines variational methods and recur-
rent neural networks in order to efficiently learn a GPSSM.

Another set of methods for learning GPSSMs are based on sequential Monte Carlo
and in particular Particle Gibbs with Ancestor Sampling (PGAS); for example, both
Svensson et al. [2016] and Frigola et al. [2013] use PGAS to learn the hyperpa-
rameters of a GPSSM. The models suggested in these two papers both use a fully
Bayesian approach (i.e. we get posterior distributions over all the hyperparameters)
with Svensson et al. [2016] improving the work of Frigola et al. [2013] by using the
Hilbert reduced-rank approximation of the GP to speed up learning quite consider-
ably.
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We will now focus on the model by Svensson et al. [2016]. Here, we will describe
the model and in the next chapters we will attempt to improve upon this model.
Suppose we have a set of observations y;.7 = vy, ..., yr, a reduced-rank GPSSM is a
model of the form [Svensson et al., 2016]:

x; = Ad(xy_1) + wy (2.125a)
Y ~ D(Ye| 1) (2.125b)
x1 ~ p(ay) (2.125¢)
w, ~ N(0,Q) (2.125d)
Q ~ IW(lg, Ag) (2.125¢)
AlQ ~ MN(A|0,Q,V) (2.1250)
V = diag(S~' (v/ A1), - STHV Am)) (2.125g)
0 ~p(0) (2.125h)

Notes:

1. S is the spectral density (2.45) of the chosen covariance function for the tran-
sition GP. As in Hilbert reduced-rank GPs, this covariance function must be
stationary.

2. ¢(x;) = [p1(x1), ..., d(x)]T With ¢;, A, the eigenfunctions/eigenvalues used to
approximate the covariance function. See (2.46)-(2.48) and (2.51) if required.

3. For simplicity, p(y;|x;) and p(x;) are assumed to be known; although, the
model can be adapted to accommodate unknown parameters in these distri-
butions as well.

4. W is the inverse Wishart distribution and M\ is the matrix-normal distribu-
tion described in (2.14).

5. The model comes from transforming the GPs to their reduced rank form using
the Karhunen-Loéve expansion: see (2.61).

6. 6 represents all the covariance hyperparameters and p(0) is the prior distribu-
tion of 6.

Following Svensson et al. [2016], let

T

d=> ¢¢f (2.126)
tj}

U= Gz (2.127)
t;l

X=> 2z (2.128)
t=1

(2.129)

where z; = [¢1(xy), ..., dm(xs)]", ¢ = T111. Then some posterior distributions of A,
Q and 0 given data y,.r = y1, ..., yr are [Svensson et al., 2016]:

p(Qlxir, yr7) = IW(Q|T + 1o, Ag + & — (T + V) 1) (2.130)
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p(A|Q, z1ry17) = MN(A|B(Z+V) 1L Q,(Z+V)™) (2.131)
p(9’Q7 Az, 'y1;T) X p(e)p(Q|$1:T, yl:T>p(A‘Qa L1.T, y1:T) (2.132)

Algorithm 3: Learning of reduced-rank GPSSMs [Svensson et al., 2016]

Input : data y;.7, priorson A, Q, 6

Output: K samples with p(x1.7, A, Q, 8|y;.7) as invariant distribution.
Sample initial «1.7[0], A[0], Q|0], 8[0] ;

fork=0,..,K —1do

N =

3 sample x,.7[k + 1]| A[k], Q[k], O[] using PGAS [Lindsten et al., 2014, p.
2160];

4 | sample Q[k + 1]|A[k], 8[k], z1.7[k + 1], O[] using (2.130);

5 sample A[k + 1]|Q[k + 1], z1.7[k + 1], O[k] usmg (2.131);

6 sample [k + 1]|x1.7[k + 1], Ak + 1], Q[k + 1] using Metropolis-Hastings

7 end

8 return all samples of x,.7, A, Q, 0

The training algorithm for reduced-rank GPSSMs is provided in Algorithm 3. From
the output of this algorithm, we discard some of the early samples (burn-in) and
then use the remaining samples to compute statistics of certain parameters such
as the mean and variance. In particular, the mean and (marginal) variance of the
predictive transition function given a test state «x, is [Svensson et al., 2016]:

E[f.(x,)] =~ mean[A]d(x.) (2.133)
V[f.(x.)] ~ diag(cov|A]p(x,) cov[A]") (2.134)

where ¢ is as in (2.125a).

The state-of-the-art methods for learning GPSSMs all have a number of desirable
properties; however, they vary in their expressiveness and how quickly they can
learn. An ideal method for learning a GPSSM would have the following properties:

1. Allows for real-time online parameter learning.

2. Can efficiently learn from a wide range of possible datasets.

3. Can produce a predictive distribution of multi-step-ahead observations in real-
time.

4. Robustness to outliers.

5. Allows for non-Gaussian latent and observation noise.

6. Can learn from large datasets in reasonable time.

The rest of this thesis will be focused on improving some of the state-of-the-art meth-
ods for learning GPSSMs by focusing on these ideal properties.
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Chapter 3

Contributions

In this chapter, we introduce several novel contributions to the theory of Hilbert
reduced-rank Gaussian processes and Hilbert reduced-rank Gaussian process state-
space models.

3.1 Extending Hilbert reduced-rank Gaussian Processes

A key limitation of reduced-rank Gaussian processes is the difficulty in using any-
thing more than the most basic covariance functions. In theory, the equations we
described in (2.46)—(2.48) can be applied to any stationary covariance function but
in practice it can be challenging to derive the spectral density. Moreover, although it
is theoretically possible to extend the Hilbert reduced-rank GP to use any covariance
function by changing the eigenfunctions and eigenvalues in (2.46), finding these
eigenvalues and eigenfunctions is hard. To mitigate these issues we propose two
solutions. Firstly, we introduce a new adaptive kernel that removes the need to find
spectral densities while being well suited for use in reduced-rank GPs. Secondly,
we combine the Hilbert reduced-rank GP model with the work of Calandra et al.
[2016] to form the manifold-Hilbert reduced-rank Gaussian process model and this
can introduce non-stationarity to stationary kernels.

3.1.1 The Adaptive Kernel

In their derivation of Hilbert reduced-rank GPs, Solin and Sarkka [2014] define the
following inner-product and operator:

(fr9) = [ f(@)g(x)w(x)de (3.1)
Kf(z) = / ke, @) f (2 )w(a)da (3.2)
with w(x) some positive weight function such that f w(x) exists (i.e. is finite). Then
they note that since K is self-adjoint with respect to the above inner-product (covari-

ance functions are symmetric) via the spectral theorem there exists a decomposition
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of K into eigenvalues and orthogonal (with respect to (3.1)) eigenfunctions. Solin
and Sarkka [2014] use this to write the covariance function as

/C(:E,:I:,) = Z ,lev---vjdéjla---vjd(m)¢j17---7jd(m,) (3.3)

J1yeeesdd

for some positive eigenvalues v;, . ;, € R-,, orthogonal eigenfunctions ¢;, _;, and
inputs € R%. Then they try to find these eigenvalues/eigenfunctions for particular
covariance functions.

We use (3.3) to motivate the construction of a new covariance function: the adaptive
covariance function. Instead of trying to find the eigenvalues/eigenfunctions for a
particular covariance function, we fix a set of orthogonal eigenfunctions and let the
eigenvalues become covariance function hyperparameters. This allows us to create
some expressive covariance functions that naturally fit into the Hilbert reduced-rank
GP framework while eliminating the need to find spectral densities, which can be
challenging for certain covariance functions.

Solin and Sarkka [2014] required the covariance functions to be isotropic-stationary
because it allowed them to find the eigenvalues/eigenfunctions in a simple manner.
Furthermore, it turns out that the same set of eigenfunctions can be used for all sta-
tionary covariance functions [Solin and Sarkka, 2014]. However, we note that any
valid covariance function will be self-adjoint with respect to (3.1) and hence can be
decomposed in the form of (3.3). As a result, given the right set of eigenfunctions,
we can construct any covariance function. In the adaptive covariance, we fix the
eigenfunctions and this means that we are restricting ourselves to a particular family
of covariance functions. The corresponding eigenvalues are covariance hyperparam-
eters and so the adaptive covariance function can adapt itself into any covariance
function of this chosen family.

Definition 3.1 (The Adaptive Covariance Function). For inputs = € R? and given a
fixed set of eigenfunctions {¢;, ;i =1,...,m;;i =1,...,d; } such that
by ... - RT — R, the adaptive covariance function is:

k<m>wl) = Z ’7j1,-~-7jd¢j1,---,jd(m)quh-.-,jd(w,) (34)
1

J1seesJd=

where ~;, ;, > 0 are hyperparameters, m = (my,...,mq) and 1 = (1,...,1) € R%
The m determines the complexity with larger m, creating a more complex and ex-
pressive kernel with increased computational cost. As in (2.46), if d > 1 we can map
(71, .- ja) — Nvia (2.51). We also introduce a shorthand notation:

k(a a') =) 7i6(x)0;(x) (3.5)
j=1

where 5 = (41, ..., Ja). This equation is equivalent to (3.4).
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Theorem 1. The adaptive covariance function is a valid scalar-valued covariance func-
tion.

Proof.

L. Itisreal: k(z,x') = >, v;0(z)¢;(z) € R
2. It is symmetric:

k(x, ') = Z%f/’j(w)%(w')

M)

vi05() P ()

=

', x)

I
S,
—~

since ¢;(x) € R.

3. It is positive definite: given an arbitrary collection of inputs X = [z, ..., zy],
the matrix K = K (X, X) with ij entry k(x;, z;) can be written as K = ®AP”
where ®, A are defined in (2.49). Since the covariance hyperparameters (and
hence eigenvalues) are constrained to be positive, we have that K is positive

definite.
]

Learning a reduced-rank Gaussian process with this adaptive kernel is simple, given
an eigenbasis (i.e. given ¢;) replace (2.46) with (3.4) and let the v;, _;, in (3.4)
become hyperparameters, then optimise the marginal likelihood [Solin and Sarkka,
2014, p. 10] with respect to the v;, ;, and the noise parameters.

One useful family of eigenfunctions (the ¢;) for the adaptive kernel is the Fourier
eigenbasis from (2.48). This leads to every stationary covariance function being a
special case of our adaptive covariance function because any (piecewise-continuous)
periodic covariance function can be decomposed into these eigenfunctions (Fourier
sine series) and non-periodic (piecewise-continuous) functions can be decomposed
into this form as long as we restrict the domain (represented by lengths L, in (2.48)).
This means for periodic covariance functions the lengths L, in (2.48) should become
additional parameters so we can find the periodicity automatically and in this case
we should be able to extrapolate to data outside of the domain 2 (defined as in
(2.48)). On the other hand, in the non-periodic case the L, must be fixed in a
manner that allows the domain (2 to encompass all the training and test data and
we cannot extrapolate outside of (2. This inability to extrapolate is usually not an
issue, but as we shall see combining the adaptive covariance function with a mani-
fold Gaussian process (mGP) [Calandra et al., 2016] can allow for extrapolation of
non-periodic covariance functions.

3.1.2 The Manifold-Hilbert reduced-rank Gaussian Process

The manifold Gaussian process (mGP) uses a simple idea: given a valid covariance
function k(x,z’) where z, ' € R? and an arbitrary function M : R? — R/ then
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k(M (x), M(x')) is also a valid covariance function [Mackay, 1998]. Calandra et al.
[2016] introduced the mGP and they used a neural network to create the mapping
function while finding the neural network parameters during hyperparameter opti-
misation. It turns out that a combination of the reduced-rank GP, adaptive kernel
and the mGP can produce some very interesting results. From the perspective of the
reduced-rank GP, using the mGP is equivalent to having an adaptive eigenbasis:

ggjl ----- Ja ¢j1 ----- ja © M (3.6)
km(wa CL'/) ~ Z S( )\jl ,,,,, jd>¢§j1 ~~~~~ Jd (w)gzgjl ~~~~~ Jd (wl> (37)
(J1,-rda)=1

However, with this greatly increased flexibility comes an increased computational
cost. We will refer to this combination of the mGP and reduced-rank GP as the
manifold-Hilbert reduced-rank GP or the reduced-rank mGP.

3.1.3 Examples

In this section, we compare the Hilbert reduced-Rank GP and the manifold-Hibert
reduced-Rank GP to the full GP (the standard case from (2.12)) across a variety of
kernels. Throughout this set of examples, we will only consider univariate input and
output GPs. The performance of the various models will be tested using the root
mean square error (on test data) and the mean log likelihood of the test data. Both
of these statistics are defined below.

Given a trained model and a test dataset {(z},y;) for i = 1,..., K}, we can con-
struct the posterior predictive distribution of f, = f(z}) given the training data X,y
and a test input z} using (2.29). Suppose that the posterior predictive distribution
of £.|X,y,z} is N(uf,0r?), then we define:

i

1. The root mean square error (RMSE) (smaller is better):

K
1
RMSE = | = > (=)’ (3.8)

i=1

2. The mean log likelihood (LL) (larger is better):
1K
- — i T
LL = e ;_1 log N (y? |t 077) (3.9)

Finally, all the models will be given 10 optimisation restarts, all reduced-rank models
will use 12 basis functions and the training time will be defined as the mean time
for an optimisation restart.
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Example 1:

Aim: It is known from Calandra et al. [2016] that the mGP can produce better re-
sults than the full GP; however, the mGP is slower than using the full GP. The aim
of this example is to demonstrate that the manifold-Hilbert reduced-rank GP retains
the properties of the original mGP but is now faster than the full GP.

Training Data: 2000 pairs (z,y) with each z generated by sampling from A(0, 1)
and y generated using system:

y = sgn(x) + wy (3.10)
wy ~ N(0,1?) (3.11)

Test Data: 300 pairs (x,y) with = equally spaced between —3 and 3 and y generated
as above.

Additional Information: All the reduced-rank GP models will use a domain length
L = 6 and all the manifold-Hilbert reduced-rank models will use a neural network
with 3 hidden layers of 1, 6 and 2 neurons respectively with log-sigmoid activations.

Results:
RMSE LL Mean Time
Model Kernel (on test data) | (on test data) | (seconds)

Full GP RBF 1.10 -1.51 29.41
Full GP Matern32 1.09 -1.51 34.64
Full GP MLP 1.04 -1.46 160.00
Hilbert reduced-
rank GP RBF 1.10 -1.52 0.34
Hilbert reduced- | 1. o3 1.10 1.52 0.31
rank GP
Hilbert reduced- )
rank GP Adaptive 1.10 -1.52 0.95
Manifold-
Hilbert reduced- | RBF 1.04 -1.46 5.49
rank GP
Manifold-
Hilbert reduced- | Matern32 1.04 -1.46 5.81
rank GP
Manifold-
Hilbert reduced- | Adaptive 1.04 -1.46 9.54
rank GP

Table 3.1: Results for Example 1
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A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Hilbert reduced-rank Gaussian Process, RBF Covariance Function)
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Figure 3.1: A Hilbert reduced-rank GP with an RBF covariance function (table 3.1, row
4)

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Manifold-Hilbert reduced-rank Gaussian Process, Adaptive Covariance Function)
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Figure 3.2: A manifold-Hilbert reduced-rank GP with an adaptive covariance function
(table 3.1, row 9)
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Example 2:
Aim: To demonstrate that the manifold-Hilbert reduced-rank GP can learn some
challenging periodic functions.

Training Data: 1200 pairs (x,y) with = equally spaced between —15 and 15 and y
generated using system:

y = sgn(cos(0.82)) + wy (3.12)
w; ~ N (0,0.5) (3.13)

Test Data: 1000 pairs (z,y) with = equally spaced between —50 and 50 and y gener-
ated as above.

Additional Information: All the reduced-rank GP models will use a variable domain
length (i.e. we optimise the domain length) and all the manifold-Hilbert reduced-
rank models will use a neural network with 3 hidden layers of 1, 6 and 2 neurons
respectively with sin(x) activation functions.

Results:
RMSE LL Mean Time
Model Kernel (on test data) | (on test data) | (seconds)
Full GP RBF 0.99 -1.35 10.17
Full GP Matern32 0.99 -1.33 6.71
Full GP Periodic 0.56 0.84 23.71
Exponential

Hilbert reduced-
rank GP RBF 0.60 -0.92 0.37
Hilbert reduced- | o130 0.60 0.92 0.34
rank GP
Hilbert reduced- )
rank GP Adaptive 0.60 -0.92 1.23
Manifold-
Hilbert reduced- | RBF 0.52 -0.76 6.81
rank GP
Manifold-
Hilbert reduced- | Matern32 0.52 -0.76 7.48
rank GP
Manifold-
Hilbert reduced- | Adaptive 0.52 -0.76 8.12
rank GP

Table 3.2: Results for Example 2
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A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Full Gaussian Process, PERIODIC_EXPONENTIAL Covariance Function)
‘ 1] ' »
i A g
1]
1.0 A
I I
0.5 A
N —— Predicted Mean of f(x*)
% 0.0 —-—-- 2 * Predicted Std. Dev. of f(x*)
h —— Actual (noiseless) Function
—-0.51
: padl  fud 0 IO A I ;
—-1.0 A W A
) Ivyl | Iy WM I~y
v vy U'| !'u' ‘\q rl "i\'
_20 0 20 40

f(x*)

Test Inputs x*

Figure 3.3: A full GP with a periodic exponential covariance function (table 3.2, row 3)

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Manifold-Hilbert reduced-rank Gaussian Process, Adaptive Covariance Function)
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Figure 3.4: A manifold-Hilbert reduced-rank GP with an adaptive covariance function

(table 3.2, row 9)
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Example 3:
Aim: To demonstrate that the adaptive covariance function can sometimes give bet-
ter results than the RBF or Matern32 covariance functions.

Training Data: 1000 pairs (z,y) with = equally spaced between —1 and 1 and y
generated using system:

sin(x)

Wt (3.14)

w; ~ N(0,0.1%) (3.15)

Test Data: 1200 pairs (z, y) with = equally spaced between —3 and 3 and y generated
as above.

Additional Information: All the reduced-rank GP models will use a variable domain
length.

Results:
RMSE LL Mean Time
Model Kernel (on test data) | (on test data) | (seconds)
Full GP RBF 0.03 1.16 7.00
Full GP Matern32 0.17 0.77 7.89
Full GP Periodic 0.18 0.52 17.25
Exponential

Hilbert reduced-
rank GP RBF 0.06 1.10 0.54
Hilbert reduced- | /. o132 0.12 0.96 0.54
rank GP
Hilbert reduced- )
rank CP Adaptive 0.02 1.23 2.89

Table 3.3: Results for Example 3
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A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Hilbert reduced-rank Gaussian Process, RBF Covariance Function)
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Figure 3.5: A Hilbert reduced-rank GP with an RBF covariance function
(table 3.3, row 4)

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Hilbert reduced-rank Gaussian Process, Matern32 Covariance Function)
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Figure 3.6: A Hilbert reduced-rank GP with a Matern32 covariance function
(table 3.3, row 5)
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f(x*)

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Hilbert reduced-rank Gaussian Process, Adaptive Covariance Function)
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Figure 3.7: A Hilbert reduced-rank GP with an adaptive covariance function
(table 3.3, row 6)

Discussion:

These examples demonstrate that using the adaptive covariance function does in-
cur a computation cost; however, its performance rivals picking the best covariance
function for the job. This suggests that it could be very useful for the latent GP in
a GPSSM: we cannot observe any of the latent data so trying to pick the best co-
variance function can be challenging. These examples also show that the manifold-
Hilbert reduced-rank GP has retained the properties of the original mGP but is much
faster.
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3.2 Extending Hilbert reduced-rank GPSSMs

The work by Svensson et al. [2016] suggests that reduced-rank GPSSMs could be
very useful for time series analysis; however, there are several desirable features
that the model by Svensson et al. [2016] lacks. In this section, we introduce several
novel learning methods for reduced-rank GPSSMs such as online learning, forgetful
online learning, distributed learning, learning with student-t distributed transition
noise and learning with Student-t process state-space models (STPSSMs). All these
new methods augment the model and allow it to be used in many new situations; for
example, in reinforcement learning. Throughout this section, we will assume that
the basic GPSSM model is the same as in (2.125).

3.2.1 Online Learning

Currently, the reduced-rank GPSSM by Svensson et al. [2016] does not allow for on-
line learning and so here we present a novel algorithm for online learning in Hilbert
reduced-rank GPSSMs. Online learning means being able to update the model when
we receive a new data point without having to retrain the whole model; in a sense,
online learning can be viewed as efficient updates in the presence of new data. These
online updates are useful for applications where we do not receive all the data in one
go (e.g. reinforcement learning) because GPSSMs do take time to train: around a
few minutes for 1000 single-dimension observations. Without online learning, every
time we added new data, we would have to spend some time waiting for the model
to update and it would not be realistic to continuously repeat the process of receiv-
ing new data and updating the model. However, we propose a new method that
reduces update times to less than a second (depending on a variety of factors).

Before we introduce our new algorithm, we require a part of the original algorithm
by Svensson et al. [2016], which is summarised in Algorithm 4. Svensson et al.
[2016] gave a suggestion on how the model might be adapted for online learning:
use the posterior distribution at time ¢ for the prior when we receive the new data
at time ¢ + 1. For example, the update for (2.130) would be:

P(Q|T1441, Yr:41) X P(Tit1, Y1 | Qs T1t, Y1:)P(Q| T 10, Y1:t) (3.16)

However, there is no point trying to make this distribution update efficient because
we have to completely recompute (2.126)—-(2.128) since we have a new set of states
from the PGAS sample. A similar situation occurs for the other posterior distribu-
tions (2.131) and (2.132). Since we know (2.130)-(2.131) for arbitrary ¢ and since
there no need to produce efficient updates, we can just use the same distributions as
before. However, the quality of the samples from the posterior distributions will in-
crease as the amount of data increases and so we need to introduce sample weights.
For our model, a given sample’s weight is equal to the number of data points used
for creating that sample and with online learning these weights will increase over
time. When we compute various statistics based on the samples (e.g. mean or vari-
ance), we must take the weights into account i.e. calculate the mean/variance with
samples weighted using these given weights.

50



Chapter 3. Contributions  3.2. EXTENDING HILBERT REDUCED-RANK GPSSMS

The Online Learning Algorithm

The algorithm is split into two parts; firstly, the inner loop (Algorithm 4), which
samples from the latent space and parameter space given the observations and sec-
ondly, the main learning algorithm (Algorithm 5) which combines Algorithm 4 with
our method for updating the GPSSM given new data.

Tuning Parameters

In addition to the tuning parameters for the model by Svensson et al. [2016], there
is one tuning parameter for online learning: the number of update samples. This is
the number of times to run the sampling algorithm (Algorithm 4) when we receive
a new data point. We recommend only using one sampling round per data update
unless the data update provides a significant amount of extra data (> 5 pieces of
data). In a similar way to the model by Svensson et al. [2016], we assume that the
initial distribution of the latent state x; is known but this has very little importance
so if we do not know the initial distribution, we set it to N (0,1001I) for a suitably
sized identity matrix I.

Using the Posterior Samples

As the online learning algorithm (Algorithm 5) progresses, we have some samples
A[l : K],Q[1 : K],0[1 : K] and weights[l : K]. Let w[k] for £ = 1, ..., K be the nor-
malised weights, then useful statistics such as the predictive mean and (marginal)
variance of the transition function f given a test state x, can be computed as:

mean[A4] = i Ak (3.17)
BL.(.)] ~ meanlAlole. (3.18)
cov[A] = (k bi hw[k]A[k]A[kF) — mean[A] mean[A]” (3.19)
V[f.(x.)] ~ diag(cov[A]¢[z.] cov[A]T) (3.20)

where ¢ is as in (2.125a). This can all be computed and updated during the algo-
rithm letting us see how the model learns as it receives more data.

3.2.2 Forgetful Online Learning

Another type of online learning is forgetful online learning whereby while we add
data, we also lose some data. This can be useful for systems that are evolving over
time and is effective at keeping the amount of data in the system constant. This can
be helpful because as the amount of data in the GPSSM increases, a slow down will
be experienced. However, even if we start losing some past data, we do not lose all
the past information because we retain all the latent state and parameter samples.
The forgetful online learning algorithm uses a similar idea to the original online
learning algorithm but it has to take into account that we lose information. As a
result, there is an additional tuning parameter called the Maximum Memory Length:
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this is the maximum amount of data to use for each call to InnerLoop (Algorithm
4). The forgetful online learning algorithm is summarised in Algorithm 6 and for
performance statistics we can do something similar to the online learning case. For
simplicity, we will keep number of samples per update (see tuning parameters for
online learning) at one but the algorithm can be extended to multiple samples per
update.

3.2.3 Distributed Learning

It is simple to extend all the above algorithms to make use of multicore/multiprocessor
machines and this is summarised in Algorithm 8. Let w'[k] for k& = 1,..., K be the
normalised (over both & and i) weights for each thread i, then useful statistics such
as the predictive mean and (marginal) variance of the transition function can be
computed as:

#threads K
mean[A] = ) < A'k]w! [k:]) (3.21)
i=1 k=burn-in
E[f.(x,)] =~ mean[A]d[x.] (3.22)

#threads K ' 4 '
cov][A| = Z ( | Al[k](A’[k])Tw’[k]) — mean[A] mean[A]” (3.23)

V[f.(x,)] =~ diag(cov[A]¢[z,] cov[A]") (3.24)

where ¢ is as in (2.125a) and «, is a test point.

Algorithm 4: Inner Loop (based on Svensson et al. [2016])

Input : xq,[k], Alk], Q[k], O[k], y1., InitialDistribution

Output: [k + 1], Ak + 1], Q[k + 1], 8k + 1]

1 sample x.[k + 1]| A[k], Q[k], O[k] using PGAS [Lindsten et al., 2014, p. 2160]
with observations vy, reference trajectory x;.[k] and initial distribution:
InitialDistribution;

/* Alk],Q[k] with (2.125a) gives us the transition distribution for
PGAS and (2.125b) (which is assumed to be completely known)
gives us the observation distribution. */

2 sample Q[k + 1]|A[k], O[], 1. [k + 1], 0]k] using (2.130) with T" = ¢;

3 sample A[k + 1]|Q[k + 1], z1,[k + 1], 8[k] using (2.131) with 7' =¢;

4 sample [k + 1]|x14[k + 1], A[k + 1], Q[k + 1] using (2.132) with 7' = ¢ and
Metropolis-Hastings;

5 return x|k + 1], A[k + 1], Q[k + 1], O[k + 1];
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Algorithm 5: Online learning of a reduced-rank GPSSM

O O N AWy =

_ e e
N = O

13
14
15

16
17
18
19
20

21
22
23
24

Input : Initial data y,.,, Number of samples per update, InitialDistribution
Output: K samples with the k™ sample having p(z1.,, A, Q, 04|y1.;,) as the
invariant distribution.

initialise ., A[0], Q[0], ]0] randomly;

set weights[0] = t;

setty =t;

set V., = X14;

setk = 1;

while k < K do

newdata = getData();

i = number of new data pieces;

t, = tp_1+1;

append the new data to the old data: y,4, = (y1.,_,, new data);

forr=1,...,ido

sample newstates[r] from NV (&, ,,I4,,,..,) where &;, , is the state at

time ¢,_; (weighted average over all samples using weights[k — 1]) and

datens 1S the dimension of the latent space;

/* Using I; .. . rather than the sample covariance ensures
that we always have some exploration and this helps PGAS.

*/

end
set the new reference trajectory: &, = (wlf;,j,ls newstates);
xi, , Alk], Q[k], 0[k] = InnerLoop(&1.,, Ak — 1], Q[k — 1], Ok — 1], y1.,,
InitialDistribution);
weights[k| = t;
for r = 1, ..., Number of samples per update - 1 do
thtr = th14r
weights[k + 7] =t
oyt Alk+71], Qk + 7], 8k + r] = InnerLoop (] " , A[k+r —1],
Q[k +r — 1], [k + r — 1], Y14, InitialDistribution);
end
k = k+Number of samples per update;
end
return zi,, ,..,xf, , A[l: K],Q[l: K],6[1 : K] and weights[1 : K].
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Algorithm 6: Forgetful online learning of reduced-rank GPSSM

Input : Initial data y,.,, Maximum Memory Length

Output: K samples with the k™ sample having p(mtztart:tind, A Q, e‘ytitart:tznd)
as the invariant distribution.

Initialise x;., A[0], Q[0], 8]0] randomly;

weights[0] = t;

(tgremt, 1) = (1,1);

wtsta'rt :tgnd = wl:t;

A W N =

s fork=1,.., K do

6 newdata = getData();

7 i = number of new data pieces;

g | tod=qmd 4,

o | ' = max(t{"?— Maximum Memory Length ,0) + 1;

10 | weights[k] = t§d — tstart;

11 append the new data to the old data: y,,ena = (yy,ena, New data);

12 forr=1, ..., ido

13 sample newstates[r| from N (z;, ,, I4,,,..,) where z;_ is the state at
time ¢{"¢ (weighted average over all samples using weights[k — 1]) and
dratens 1S the dimension of the latent space;
/* Using I;, ., . rather than the sample covariance ensures

that we always have some exploration and this helps PGAS.
*/

14 end

15 Yy = Yystart gend;;

16 | @ = (), 00, NEWStates);

k Yk—1

17 po = mean(z;seart );

18 X = cov(@srar);

/* We compute the mean and variance using the samples of the
latent states at time ¢J"’'. Some of the latent state
samples will not have a sample for time ¢"* and so they are
ignored. */

19 | NewlnitialDistribution = N (u, X)
20 w%mt:t?dlA[kﬁ], Qlk],0]k] = Inner Loop(x*, A[k — 1], Q[k — 1], O]k — 1], y*,

NewlnitialDistribution);

21 end
22 TetUIN (T)0ri pends o T All: K],Q[1: K],0][1 : K] and weights[1 : K].

I t%art :t%zd 5
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Algorithm 7: Distributed learning of a reduced-rank GPSSM

1

2
3
4

7
8

Input : Data y;.r, #threads

Output: K samples with p(z1.7, A, Q, 8|y,.7) as the invariant distribution.

split the observed data y,.r into #threads chunks of approximately equal size;

/* One way to split is sequentially i.e. first chunk is yi4,,
second 1s Yy 414, With ¢; <?9. An alternative way is ordered
random splitting in which each chunk contains a random ordered
set of wy;.r; for example, if the first chunk is y;,,¥Y:,,..-Y:, then
the times must satisfy #; <y < ... <{t,. Usually we would expect
the chunks of data to be disjoint; however, this is not a
requirement. */

let these data chunks be y!, ..., y#hreads,

for each y' in parallel do

xi[1: K], A'[1: K],Q'[1: K],0'[1: K] = LearningAlgorithm(y’, priors

on A, Q, 0);

/* LearningAlgorthim can either be the standard reduced rank
learning of Svensson et al. [2016] or our online/forgetful
online learning algorithm. For the chosen algorithm the
observed data will be the ¥y’ only and the prior
distributions should be the same for each thread. */

if not known already calculate the weight of each sample;

/* For online/forgetful online learning we will already have a
set of weights but for the standard algorithm there are no
sample weights so we set the weights of each sample equal to
the number of data points in the corresponding data chunk.

*/

discard burn in samples;

/* This must be done for each thread. */

end

return weight-sample pairs of A, @Q and 6 for all threads.
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3.2.4 GPSSMs with Student-t noise

In this section, we extend the model of Svensson et al. [2016] to allow for Student-t
noise in the latent states. Learning with Student-t noise is more challenging than
with Gaussian noise because we no longer have closed form posterior distributions
for p(Q|x1.7, y1.7) or p(A|Q,x1.7,y1.7). As a result, we either have to use Monte
Carlo methods to sample from these posterior distributions or variational methods
to find a closed form approximation to these posterior distributions that we can
sample from. Since we wanted to keep the same structure as the model by Svensson
et al. [2016], it seemed reasonable to try and find a Monte Carlo solution.

Definition 3.2. [Roth, 2013]

Let X € R be a multivariate-t distributed random variable with mean p € R, sym-
metric positive definite scale parameter ¥ € R%*? and v € R., degrees of freedom.
The probability density of X at the point x € R? is :

Tain ) = Ho) (14 2w -yt >)J§d (3.25)

LTI, 24, V) = v 1 T r—p .
L(5) (vm)2|3)2 v

A key property of the multivariate-t distribution is that when the degrees of freedom

v tends to infinity, the distribution tends to a multivariate normal distribution with

mean p and covariance X.

A GPSSM with Student-t noise can be written as follows:

x, = Ap(xy_1) +wy (3.26a)
Y ~ p(Y|z:) (3.26b)
w, ~ T(0,Q,v) (3.26¢)
A|Q ~ MN(A|0,Q,V) (3.26d)
Q ~ IW(lg, Ag) (3.26¢€)

where V/, ¢ and the other terms are defined in (2.125a). We will now present an al-
gorithm which uses the same Gibbs structure as the model by Svensson et al. [2016]
but has different MCMC steps inside the Gibbs sampler to deal with the Student-t
likelihood.

The first step is to find a suitable method of sampling from p(A, Q, 0|x1.1) (O is
the kernel hyperparameters). To do this, the main options are either to try and
sample from p(A, Q, 8|x,.r) directly or to split it up into parts and use Gibbs sam-
pling. However, unlike Svensson et al. [2016] who had closed form posterior dis-
tributions, splitting p(A, @, 8|x,.r) can cause us issues because traditional Monte
Carlo methods, such as Metropolis-Hastings or hybrid Monte Carlo, and even newer
methods, such as slice-sampling, can have poor performance when sampling from
high-dimensional posteriors i.e. they can be slow at producing good samples. So ei-
ther we split the p(A, Q, 6|x,.7) into many low-dimensional parts and get very slow
mixing in the Gibbs sampler or we split it into few high-dimensional parts and still
get slow mixing because we are sampling from high-dimensional distributions. Note
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that even if the latent dimension d = 1, then we still need to sample A which will
have m parameters if we use m basis functions. We tried Metropolis-Hastings, hybrid
Monte Carlo and slice-sampling with none of them producing good results.

However, we were able to get good results by sampling from p(A, Q,0|x.r) di-
rectly using a recent MCMC method called the Affine-Invariant Ensemble Sampler
which was originally developed by Goodman and Weare [2010] with a practical im-
plementation (called EMCEE) produced by Foreman-Mackey et al. [2013]. EMCEE
has several advantages compared with other methods; for example, it only has a
few tuning parameters (two single dimensional parameters for most cases) unlike
Metropolis-Hastings or its variants that have a performance highly dependant on
the proposal distribution. Furthermore, EMCEE can give a measure of whether the
drawn samples are ‘good’ samples from the distribution.

The Affine-Invariant Ensemble Sampler algorithm is relatively complex and is dis-
cussed in depth by Goodman and Weare [2010] and Foreman-Mackey et al. [2013].
Here, we will only give a brief overview of the EMCEE algorithm. Suppose we want
to produce samples from the distribution p(x) but only have access to p(x) where
p(x) = +p(x) and Z does not depend on . In this case, the EMCEE algorithm takes
two (main) arguments: log p(x) and the initial positions of the ‘walkers’. The walkers
can be seen as a similar idea to particles in SMC methods with more walkers leading
to samples that more accurately represent the distribution. Each of the walkers per-
form their own semi-independent acceptance sampling and have their own Markov
chain; however, more walkers allows EMCEE to better explore the sample space.
One method suggested by Foreman-Mackey et al. [2013] to initialise the walkers is
to start all the walkers very close to the point * which maximises log p(«) (although
the walkers must start in different places so random noise is added). After a brief
burn-in period, each walker can start to generate samples from p(x). Finally, the EM-
CEE algorithm provides a indicator of whether the samples are ‘good’ known as the
acceptance fraction and ideally this should be between 0.2 and 0.5 (see Foreman-

Mackey et al. [2013] for more details).

In order to use EMCEE for learning GPSSMs with Student-t latent noise we note:

P(A, Q,0x1y) x p(x14|A, Q,0)p(A|Q, 0)p(Q[0)p(6) (3.27)
t
o p(ar) [ [ p(mrlzi 1, A, Q, 0)p(A|Q, 0)p(Q|0)p(6) (3.28)
k=2

With Student-t noise the latent distribution is:

p(xrlzi-1, A, Q,0) =T (x| Ap(z11), Q, V) (3.29)
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Hence we can write that:

t
logp(A, Q. 8lz1.) = Z+ Y log T (@ Ad(@i_1). Q, v) +log MN(A]0,Q, V)
k=2

+1og IW(Q|lo, Ag) + log p(8) (3.30)

Therefore, to produce samples from p(A, Q, 8|x;.;) using EMCEE we use:

t
logp =Y log T(wr|Ad(wx 1), Q,v) + log MN(A|0,Q, V) (3.31)

k=2

+1log IW(Q|lg, Ag) + log p(0) (3.32)

In many ways, the algorithm for learning GPSSMs with Student-t noise in the latent
states is simple: all we do is switch between sampling the latent states using PGAS
and sampling the parameters via EMCEE with occasional optimisation steps in order
to initialise the EMCEE walkers. There is only one additional tuning parameter for
this algorithm compared with that of Svensson et al. [2016]: the optimisation dis-
tance. This optimisation distance controls the number of sampling iterations before
optimising logp again. Based on the examples we have tried, an optimisation dis-
tance of 5 is recommended since this balances speed (the optimisation step is slower
than a sampling step) with performance.

Another thing to mention about our algorithm is that we only use two walkers in
each call to EMCEE. Although this may seem at odds with what Foreman-Mackey
et al. [2013] recommend (the number of walkers should be at least twice the di-
mension of the sample space), we are implicitly using more walkers since we ini-
tialise the start point at each call to EMCEE rather than using the last position of
the previous walkers. Also, the number of samples we require at each stage is very
small so there is little need for a large number of walkers (which would be able to
produce a large number of quasi-independent samples that accurately represent the
distribution).

Finally, we make use of automatic differentiation to find the gradient of (3.32)
and hence we can use a gradient based optimisation method: this is much faster
than a non-gradient based method such as Nelder-Mead. Our choice of optimisation
method is L-BFGS-B because it allows for the use of bounds which is particularly im-
portant for several parameters. We can now write down the algorithm for learning
GPSSMs with Student-t latent noise: see Algorithm 8. Furthermore, it is quite easy
to adapt this algorithm to online learning: just use the same idea as in Algorithm 5.
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Algorithm 8: Learning a GPSSM with Student-t latent noise

Input : Observed data y;.r, InitialDistribution p(x;), OptimisationDistance.

Output: x;.r[k|, Alk], Q[k], Olk] for k =1, ..., K.

set x1.7[0], A[0], Q[0], 8[0] to arbitrary but valid (e.g. Q[0] must be positive

definite) values;

fork =0, ..., K-1 do

3 sample x1.7[k + 1|| A[k], Q[k], 8[k] using PGAS [Lindsten et al., 2014, p.

2160] with observations y; .1, reference trajectory ;.7 [k] and initial

distribution: InitialDistribution;

/* Alk],Q[k] with (3.29) gives us the transition distribution
for PGAS and (3.26c) (which is assumed to be completely
known) gives us the observation distribution. */

4 if £ = 0 (mod OptimisationDistance) then

find the maximum (A*, Q*, 8*) of (3.32) given x.7[k + 1] using

L-BFGS-B with the maximum iterations not too large (50-100 is fine);

/* The low maximum iterations ensure that we do not spend
too much time in this step: for small £ we will not have
good samples of ¥y so there is no need to spend a lot of
time in optimisation and for larger k we should not
deviate too far from the maximum between each
optimisation period. x/

6 Set initial walker positions equal to (A*, Q*, 8*) + vector of random

noise;

/* The random noise should be small (|noise;|< 0.05 for all i)
and independently chosen for each parameter of each
walker (e.g. for each walker, each component of A should
have some independent noise). You must be careful that
the noise does not lead to the initial walker positions
being invalid; for example, degrees of freedom v must be
positive and ) must be positive definite. */

—

N

nd

Ise

9 Set initial walker positions equal to (A[k], Q[k], @[k]) + vector of
random noise;

/* above comments still apply */
10 end

11 sample A[k + 1], Q[k + 1], O]k + 1]|x1.1[k + 1] using EMCEE and (3.32) with
#walkers = 2, burn-in = 10;

12 end

13 return x,.r[1: K], Al : K|, Q[1: K], 0]1 : KJ;

o o0
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3.2.5 STPSSMs: A State-Space Model with a Heavy Tailed Process

Utilising the methods of the previous section allow us to present a new state-space
model with a Student-t process rather than a Gaussian process for the prior on the la-
tent state function f. Student-t processes (in the context of regression) were first in-
troduced by Shah et al. [2014] and have several advantages over Gaussian processes;
in particular, they are more flexible and are more robust against outliers because of
the heavy-tailed nature of multivariate-t distribution [Shah et al., 2014]. Further-
more, Student-t processes also possess many of the important properties of Gaussian
processes such as analytic marginal and predictive distributions [Shah et al., 2014];
however, to keep the analytic nature we have to incorporate the noise model into
the kernel rather than having it separate (see Shah et al. [2014] for more details).
If we do incorporate the noise model into the kernel then Student-t processes have
the same computational cost as Gaussian processes [Shah et al., 2014].

Definition 3.3. Shah et al. [2014]
f is a Student-t process with mean function m : RY — R, kernel function % : R¥*¢ —
R and v € R. degrees of freedom, if any finite collection of function values satisfies:

(f(@1), -, f(@a))" ~ T(m(X), K(X, X),v) (3.33)

where X = (581, ...,wn)T, m(X) = (m(wl), ,m(an))T and K(X,X)U = k(ml,w])
This is written as: f ~ TP (m,k,v).

On the whole, Student-t processes are very similar to Gaussian processes; for exam-
ple, training still scales in O(N?) as the amount of data (V) increases, and many of
the approximation techniques used for Gaussian processes can be applied to Student-
t processes. Also, for Student-t processes with multiple outputs, we can either train
separate Student-t processes for each output dimension or use similar ideas (e.g.
linear model of coregionalisation) as for Gaussian processes with multiple outputs.
Furthermore, a key property of the Student-t process is that when the degrees of
freedom v tend to infinity, the Student-t process tends towards a Gaussian process
(proof in Shah et al. [2014]). One important difference is that previously we have
used kernel function and covariance function interchangeably but in the case of the
Student-t process technically k(x,«’) is no longer the covariance. However, it is
approximately the covariance and this approximation gets better as the degrees of
freedom increases.

We will now look at reduced-rank Student-t processes. In the same way as reduced-
rank Gaussian processes, the idea behind the reduced rank approximation is to find
a decomposition of the kernel function K into K ~ ®A®” where we are assuming
that the kernel function is stationary. The derivation of the basis function approx-
imation for Student-t processes is exactly the same as for Gaussian processes since
it relies on finding an approximation to the kernel function rather than any specific
properties of Gaussian processes [Solin and Sarkka, 2014]. Hence, we can use the
same decomposition of the kernel (2.46) and the same basis functions (3.70) com-
bined with the matrix inversion lemma and the original posterior/predictive equa-
tions for f, in Shah et al. [2014] to produce a reduced-rank Student-t process which

60



Chapter 3. Contributions  3.2. EXTENDING HILBERT REDUCED-RANK GPSSMS

trains in O(m?) where m is the number of basis functions.

We will now define an important distribution required for reduced-rank Student-t
processes: the matrixvariate-t distribution. As this distribution is not very common
there are actually several competing probability density functions all of which have
the multivariate-t distribution as a special case. Furthermore, not all the definitions
of the matrixvariate-t distribution tend to the obvious matrix-normal distribution as
the degrees of freedom tend to infinity. The definition we present below is slightly
different to that in Gupta and Nagar [2000]; Zhu et al. [2008]; Iranmanesh et al.
[2010] but tends to the obvious matrix-normal distribution as the degrees of free-
dom tends to infinity which is very important for Student-t processes.

Definition 3.4. Let X € R"™*" be a matrixvariate-t distributed random variable with
mean M € R™ " symmetric positive definite row-scale parameter ¥ € R™*™ |
symmetric positive definite column-scale parameter 2 € R"*" and v € R, degrees
of freedom. The probability density of X at the point € R™*" is :

v+m+n—1

2 (3.34)

1
MT (x|M,2,Q,v) =Z|L, + =S (x - M)Q ' (x — M)"
v
where
[‘n(lﬂrmTJrn—l) 1

e NS EHTE

7 =

(3.35)

and I',,(+) is the n-multivariate Gamma function, I,, is the m x m identity matrix and
| - | is the determinant.

This definition has the property that:
lim MT (x|M,%,Q,v) = MN(x|M, X, Q) (3.36)

V—r00

For completeness, the definitions in Gupta and Nagar [2000]; Iranmanesh et al.
[2010] have that a definition of the matrixvariate-t distribution that has the conver-
gence property:

lim MT (z|M, 2, v, v) = MN (x| M, S, Q) (3.37)

V—00

so using our definition slightly simplifies matters.

Consider the regression problem:

yi = f(x;) + € (3.38)
[ ~TP(,k,v) (3.39)

where we have data (x;,y;) fori = 1,.... N, y; € R% , x; € R% and ¢, is some noise
distribution with location 0 and scale Q. Under the reduced rank approximation this
can be written as [Solin and Sarkka, 2014]:

Yy = Ad(x;) + € (3.40)
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A~ MT(0,Q,V,v) (3.41)

where A € RW*™ ¢(x;) = (¢1(x;), ...0m (x;))T for basis functions ¢;, Q is the noise
scale, V' = diag(S~1(v/\1), ..., S7H(v/An)) where the ); are defined as in (2.47) and
S is the spectral density of the kernel function (which is assumed to be stationary).
However, unlike for Gaussian processes the posterior distribution of A does not exist
in closed form unless we incorporate the noise into the kernel function. If we wish
to use PGAS to sample the latent states, then we cannot incorporate the noise into
the kernel function. As a result, we are forced to use Monte Carlo methods to sample
from the posterior of A but fortunately this can be done by using the same method
as in GPSSMs with Student-t latent noise: EMCEE.

We can now write down the equations of a Student-t process state-space model:

Ty = Ap(xi_q) + wy (3.42a)
Yy ~ p(ys|x) (3.42b)
AlQ ~ MT(A|0,Q,V,va) (3.42¢)
Q ~IW(lg,Ag) (3.424)

where w; can be any noise distribution with mean 0 and scale @. For example,
Gaussian noise:

w; ~ N(0,Q) (3.43)
or Student-t noise:
w; ~ T(0,Q, v) (3.44)
or even Laplace noise:
w; ~ L(0,Q) (3.45)

where L is the multivariate Laplace distribution. Learning in all these models is very
similar to learning in the GPSSM with Student-t noise: we use a Gibbs sampler with
PGAS to sample the latent states and EMCEE to sample the parameter space. For
EMCEE with latent states x;., we would use:

t
logﬁ = Z logp(mk|A¢(mk—l)a Qv 6) + IOg MT(A|07 Q7 Va VA)

k=2
+1ogZW(Q|lg, Ag) +logp(0) (3.46)

where p(xi| Ad(xxr—_1), Q, 0) is the transition pdf and it will depend on the chosen
noise distribution.

We can now present an algorithm for online learning of Student-t process state-
space models (STPSSMs). The algorithm uses the same idea as online learning for
GPSSMs but is combined with the learning structure of GPSSM with latent Student-t
noise. This can be easily extended for multiple data pieces per call to getData(),
multiple PGAS/EMCEE samples per call to getData() or forgetful online learning by
following the same ideas as in GPSSMs. Furthermore, this method can be extended
to other function processes such as Dirichlet processes, Laplace processes and in-
verse Wishart processes by changing the prior distribution on A to a matrixvariate-
Dirichlet, matrixvariate-Laplace or an inverse Wishart distribution respectively.
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Algorithm 9: Online learning of a STPSSM

Input : Initial observed data y;.,, InitialDistribution p(x;),
OptimisationDistance.
Output: =}, , A[k], Q[k], O[k] for k = 1, ..., K and weights.
1 set 2, , A[0], Q[0], 6[0] to arbitrary but valid (e.g. Q[0] must be positive
definite) values;
2 set weights = [ty];
s fork =0, ..., Kdo
4 newData = getData();
5 ley1 =t + 13
6 append the new data to the old data: yi,,,, = (y1.,, new data);
7 sample & from N (&,,, I,,,,. ) where &, is the state at time ¢, (mean over
all samples weighted using weights) and d; .., is the dimension of the
latent space;
8 append ¢, to weights;
set i‘litm—l = (mlf:tkv j");
10 sample m’fj}jﬂ | A[k], Q[k], O]k] using PGAS [Lindsten et al., 2014, p. 2160]
with observations y,., ,, reference trajectory ., , and initial
distribution: InitialDistribution;
/* Alk],Q[k] with the noise distribution gives us the transition
distribution for PGAS and (3.42c) (which is assumed to be

completely known) gives us the observation distribution. */
11 if £ = 0 (mod OptimisationDistance) then
12 find the maximum (A*, Q*, 8*) of (3.32) given a:’ffgklﬂ using L-BFGS-B
with the maximum iterations not too large (50-100 is fine);
13 Set initial walker positions equal to (A*, Q*, 8*) + vector of random
noise;
/* see comments from learning GPSSMs with Student-t noise */

14 end

15 else

16 Set initial walker positions equal to (A[k], Q[k], @[k]) + vector of
random noise;

/* see comments from learning GPSSMs with Student-t noise */
17 end

18 | sample A[k + 1], Q[k + 1],0[k + 1]|};}}  using EMCEE and (3.32) with
#walkers = 2, burn-in = 10;

19 end

20 return migtm:tgnm oz All: K], Q[1: K], 8[1 : K], weights;

I t%art Zt%’]‘d >

/* In a similar manner to online Learning of GPSSMs, if we wish to
compute values such as the mean or covariance of f(x)= A¢d(x)
then we should use a weighted mean and weighted covariance with
the samples weighted by weights. */
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3.2.6 Examples

In this section, we look at some examples of the various new features we have added
to the model of Svensson et al. [2016]. We only consider models with fixed obser-
vation distributions in order to allow for an identifiable latent function and we only
look at models with single-dimensional observation and latent spaces. Furthermore,
we test the performance of the models by computing the root mean square error of
the predicted latent states compared with the true latent states and by computing
the mean log likelihood of the latent states given the learnt model. These statistics
are defined below.

Given a trained model and a test set of latent states (z7,...,z%), we can construct
key statistics for the posterior predictive distribution of f(z}) using the samples from
the parameter posterior. This has already been looked at for online/forgetful online
learning see: (3.18) and (3.20). Now, for learning with Student-t noise or Student-
t processes, suppose that we have samples 64, ..., 0 from the parameter posterior
(here we assume that ; is a vector containing an A sample, a @ sample and a sam-
ple of each of the hyperparameters) and we write fo(x) for the latent function f(z)
with model parameters equal to 8. Then we can define:

1 K

Blf(e) = D o) 3.47)
Vi) = (3 S Uae)?) ~ Bl (3.49

where these tend to the true results as K tends to infinity.

Now we can define:

1. The root mean square error (RMSE) (smaller is better):

T-1

1
RMSE = | =— tzl@sz;l — E[f(z7)])? (3.49)

2. For models which assume a Gaussian noise distribution for the latent states,
the mean log likelihood (LL) is defined as (larger is better):

T-1

LS g N [E )L VI )]+ EIQD)  (3.50)

LLgauss = ﬁ

where E[Q] ~ % Zfi 1 Qo, and Qy, is the value of Q when the model parame-
ters are equal to ;.

3. For models which assume a Student-t noise distribution for the latent states,
calculating the mean log likelihood (LL) is more complex. The idea is still the
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same: we wish to find the probability of the test data under the model so in
this case, we define:

T-1 K
1

LLstudent—t - m Z Z 1Og T(I:—&-l |f91 (ZE:)7 QGH VBZ-) (351)

t=1 =1

where T (z|u, ¥, v) is a multivariate-t density function (parametrised as in (3.25))
with mean y, scale ¥ and v degrees of freedom. The notation Qy, and vy, sim-
ply means the values of Qg, and vy,, respectively, when the model parameters
are equal to 6,.

Example 1:

Aim: This is a ‘sanity-check’ example which allows us to compare the various models
under a simple system. The idea is that we expect these models to produce simi-
lar results (RMSE and LL) not only to each other but also to the results stated in
Svensson et al. [2016]. This should demonstrate that the different ways we com-
pare particular performance statistics lead to the same results when the models are
equivalent. Note that we do expect the training times to be different.

Training Data: A sequence of 500 observations generated by the system:

Tiy1 = f(ﬂft> + wy (352)
Y =Ty + € (3.53)
wy ~ N(0,1) (3.54)
e ~ N(0,1) (3.55)
where
r+1 r <4
Jx) = {—4x +21 >4 (3.56)

The models only receive the observed states ¥, ..., y500. The latent states x1, ..., T509
are discarded.

Test Data: A sequence of 10000 observations and latent states generated by the
above system.

Additional Information: The initial point will be zero (known), the observation dis-
tribution will be known beforehand (i.e. not learnt), all the reduced-rank GPSSMs
will use 12 basis functions, 20 PGAS particles, domain length L = 12, the @ prior
hyperparameters will both be equal to 1 and we will use a burn-in of 50 samples.
The offline models will have K = 180 sampling rounds and the online models will
have K = 200 sampling rounds; furthermore, all the online/forgetful online models
will start with two data points and receive an additional 5 data points every other
sampling round (i.e. number of update samples = 2). Finally, all forgetful models
will have a maximum memory length of 250 data points (see section 3.2.2).
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Results:

Assumed Training Time

Method | Kernel Latent Process | RMSE LL (seconds)
Noise

Offline RBF Gaussian | Gaussian 1.13 | -1.50 83.36
Online RBF Gaussian | Gaussian 1.12 | -1.52 58.06
Forgetful | RBF Gaussian | Gaussian 1.11 | -1.50 45.66
Offline | Adaptive| Student-t | Gaussian 1.13 | -1.53 126.01
Online RBF Student-t | Student-t 1.12 | -1.59 77.50

Table 3.4: Results for Example 1

Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = gaussian, Transition Process = gaussian process,
Covariance Function = RBF, Data Input Method: all_at_once.

—154

—20 1

—— Predicted Mean of f(x*)
=257 ——- 2 * Ppredicted Std. Dev. of f(x*)
—— True Latent Function f(x*)

-10 -5 0 5 10
Test Input x*

Figure 3.8: A GPSSM learnt using the algorithm of Svensson et al. [2016]
(Table 3.4, Row 1)
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Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = gaussian, Transition Process = gaussian process,
Covariance Function = RBF, Data Input Method: online with a maximum memory length of 250.

—154

—20 1

—— Predicted Mean of f(x*)
=251 ==~ 2 *Predicted Std. Dev. of f(x*)
—— True Latent Function f(x*)

-10 -5 0 5 10
Test Input x*

Figure 3.9: A GPSSM learnt using our forgetful online learning algorithm
(Table 3.4, Row 3)

Example 2:
Aim: To compare the different models under a system with Student-t noise in the
latent states.

Training Data: A sequence of 1000 observations generated by the system:

Ty = 0.5z + 3sin(zy) + wy (3.57)
Y = Ty + € (3.58)
wy ~T(0,1,v=1) (3.59)
e ~ N(0,1) (3.60)

The models only receive the observed states y;, ..., y1000- The latent states x1, ..., 1900
are discarded.

Test Data: A sequence of 10000 observations and latent states generated by the
above system.

Additional Information: The initial point will be zero (known), the observation dis-
tribution will be known beforehand (i.e. not learnt), all the reduced-rank GPSSMs
will use 8 basis functions, 20 PGAS particles, domain length . = 10, the Q prior
hyperparameters will both be equal to 1 and we will use a burn-in of 100 samples.
The offline models will have K = 180 sampling rounds and the online models will
have K = 200 sampling rounds; furthermore, all the online/forgetful online models
will start with two data points and receive an additional 10 data points every other
sampling round (i.e. number of update samples = 2). Finally, all forgetful models
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will have a maximum memory length of 250 data points (see section 3.2.2).

Results:

Since the true noise distribution is Student-t, we do not provide a RMSE because it

is unhelpful under Student-t noise due to the presence of large outliers.

f(x*)

Assumed Training Time
Method | Kernel Latent Process LL (seconds)
Noise
Offline RBF Gaussian | Gaussian | -573.47 138.72
Online RBF Student-t | Gaussian -17.30 121.85
Forgetful | RBF Student-t | Gaussian -3.23 59.83
Offline RBF Student-t | Gaussian -3.06 175.64

Table 3.5: Results for Example 2.

Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = gaussian, Transition Process = gaussian process,
Covariance Function = RBF, Data Input Method: all_at_once.

—— Predicted Mean of f(x*)
—=—= 2 * Predicted Std. Dev. of f(x*)
—— True Latent Function f(x*)

-2.5 0.0 2.5 5.0 7.5 10.0

Test Input x*

—-10.0 =75 -5.0

Figure 3.10: A GPSSM with Student-t noise in the latent states learnt using the algo-
rithm of Svensson et al. [2016] (Table 3.5, Row 1)
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Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = student-t, Transition Process = gaussian process,
Covariance Function = RBF, Data Input Method: all_at_once.

—— Predicted Mean of f(x*)
—== 2 * Predicted Std. Dev. of f(x*) /
71 —— True Latent Function f(x*) /

f(x*)

-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Test Input x*

Figure 3.11: A GPSSM with Student-t noise in the latent states learnt using algorithm 8
(Table 3.5, Row 4)

Example 3:
Aim: To compare some combinations of features we have not looked at previously.

Training Data: A sequence of 1000 observations generated by the system:

zi11 = 3tanh(0.5x,) + wy (3.61)
Y = Ty + €4 (3.62)
wy ~ N(0,1.2) (3.63)
e, ~ N(0,0.8) (3.64)

The models only receive the observed states ¥, ..., y1000- The latent states x1, ..., 1000
are discarded.

Test Data: A sequence of 10000 observations and latent states generated by the
above system.

Additional Information: The initial point will be zero (known), the observation dis-
tribution will be known beforehand (i.e. not learnt), all the reduced-rank GPSSMs
will use 8 basis functions, 20 PGAS particles, domain length L = 8, the Q prior
hyperparameters will both be equal to 1 and we will use a burn-in of 50 samples.
The offline models will have K = 180 sampling rounds and the online models will
have K = 200 sampling rounds; furthermore, all the online/forgetful online models
will start with two data points and receive an additional 10 data points every other
sampling round (i.e. number of update samples = 2). Finally, all forgetful models
will have a maximum memory length of 250 data points (see section 3.2.2).

69



3.2.

EXTENDING HILBERT REDUCED-RANK GPSSMS

Chapter 3. Contributions

Results:

Assumed Training Time

Method Kernel Latent Process | RMSE | LL (seconds)
Noise

Offline Adaptive | Gaussian | Gaussian 1.16 | -1.59 143.38
Online Matern52| Gaussian | Gaussian 1.25 | -1.70 92.62
Forgetful | Matern32| Gaussian | Gaussian 1.16 | -1.57 43.80
Offline RBF Student-t | Gaussian 1.11 | -1.59 177.96
Offline RBF Student-t | Student-t 1.12 | -1.59 178.55

Table 3.6: Results for Example 3.

Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = gaussian, Transition Process = gaussian process,
Covariance Function = Matern32, Data Input Method: online with a maximum memory length of 250.

— Predicted Meanof f(x*) ~aeeal
34 === 2*Predicted Std. Dev. of f(x*) e >
—— True Latent Function f(x*) R4 N

f(x*)
o

Test Input x*

Figure 3.12: Forgetful online learning with a Matern32 covariance function
(Table 3.6, Row 3)
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Predicted Latent Function f(x*) vs True f(x*) using Test Inputs x*.
Noise Distribution = student-t, Transition Process = student-t process fixed at 2 degrees of freedom,
Covariance Function = RBF, Data Input Method: all_at_once.

—— Predicted Mean of f(x*) o=
31 --- 2*Predicted Std. Dev. of f(x*) ‘ =
—— True Latent Functionf(x*) S en

f(x*)

_____

~
~~~~~~

Test Input x*

Figure 3.13: An example of learning with a Student-t process
(Table 3.6, Row 5)

Discussion:

From example 1, we can see that all the different models will produce similar results
in a simple system: this is as expected. Furthermore, in example 2, we see that our
novel algorithm for learning in the presence of latent Student-t noise outperforms
the algorithm of Svensson et al. [2016]. This is not surprising because Svensson
et al. [2016] assume the latent noise is Gaussian. Overall, we see that as the amount
of data increases, online learning and forgetful online learning tend to similar results
as the offline learning case. Sometimes these methods perform better than offline
learning and we believe this might be because the weighting system can lead to
bad samples (which are often the early samples even after burn-in) having a small
weight. Moreover, forgetful online learning, in particular, can ‘forget’ outliers which
would usually have a detrimental effect on the sample quality.

3.3 Learning Hilbert reduced-rank Gaussian Processes
in High Dimensions

Consider the Gaussian process regression problem:

yi = f(x;) + € (3.65)
f~GP(0,k) (3.66)
i~ N (0,Q) (3.67)

where y; € Rt g, € Rin, Q € R¥uxdout g the noise covariance and we have
training data {(y;, x;) fori =1,..., N}.
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When we talk about dimensionality in the context of Gaussian processes, we are ei-
ther referring to the input dimension (R%") or the output dimension (R%«t). Usually,
high input dimensions are not mentioned that much because the training time of a
full Gaussian process largely depends on the amount of training data (N) and not
the dimension of the input data (R%»). However, it could be said that as the input
dimension increases, more training data is required to produce a good model. When
we use the Hilbert reduced-rank approximation of the Gaussian process, the picture
is different. As we have noted previously: Hilbert reduced-rank Gaussian processes
do not scale well when the input dimension increases. For completeness, neither the
full Gaussian process nor the Hilbert reduced-rank Gaussian process have much is-
sue with high output dimensions (R%t) because we can just train independent GPs
for each output dimension and although this is an approximation compared with a
full multi-output GP, it is generally a very good approximation. We will now discuss
in depth why the Hilbert reduced-rank Gaussian process model of Solin and Sarkka
[2014] does not scale well as the input dimension increases and the approach we
take to deal with this.

Consider the above regression problem but take d,,, = 1 and d;, = d. In this
case, the Hilbert reduced-rank model of Solin and Sarkki [2014] with domain
Q = [—Ly, L1] X...x [—Lg, L] plus Dirichlet boundary conditions (zero on the bound-
ary) would approximate the kernel as:

m

k”m(wvw/)%'z S( )‘j1 ----- jd)¢j1 ----- jd(m)¢j1 ----- jd(m/) (3'68)

where 1 € R? is a vector of all ones and m = (my, ..., mq) € R is a vector giving the
chosen number of basis functions in each of the d input dimensions. As before we

have eigenvalues:
d S\ 2
Tk
)\jl ..... Jd = Z (2Lk> (3.69)

and the eigenfunctions/basis functions:

< Tje(ze + Ly)
i = i 3.70
gb]l ----- Jd (1}) ’:!;[ \/L_k S111 ( Lk ) ( )

For clarification, when we refer to the number of basis functions in dimension i, we
mean m,;; furthermore, when we refer to the total number of basis functions, we mean

.....

As the dimension of the input space d increases, the number of terms in the ker-
nel approximation sum (3.68) is Hle m; and if the number of basis functions is the
same (say m) in all dimensions then this simplifies to m?. The chosen number of
basis functions per dimension (the m;) can be small but not too small: we do need
at least 8 basis functions per dimension (i.e. m; > 8 for i = 1, ..., d) for a good per-
formance. To emphasise the scaling issue, if we have 5 input dimensions and 8 basis
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functions for each of the input dimensions (i.e. m; = 8 fori = 1, ..., 5), then the total
number of basis functions is 8 = 32768. This means not only do we have to sum
up 8° = 32768 terms every time we need to compute the kernel but we also have to
invert a T[], m; x []._, m; (here equal 32768 x 32768) basis function matrix during
training/prediction. Clearly this becomes unreasonable to use for input dimensions
higher than 2 or 3.

We will now present a novel reduced-rank Gaussian process model that scales con-
siderably better with high input dimensions than the model by Solin and Sarkka
[2014]. This new model is based on a combination of neural networks and Gaus-
sian processes inspired by the mGP of Calandra et al. [2016] and the deep Gaussian
processes of Damianou and Lawrence [2013]. Previous methods involving deep
Gaussian process, such as Damianou and Lawrence [2013], use GPs for the activa-
tion functions but the method here is different and, in fact, we fix the activation
functions and refer to them as kernel augmentation functions.

Consider the regression problem in (3.65)-(3.67) with d,,; = 1 and d;,, = d. As dis-
cussed previously in (2.61), under the Hilbert reduced-rank Gaussian process model,
this can be written as Svensson et al. [2016]:

yi = Ad(x;) + ¢ (3.71)
A~ MN(0,Q,V) (3.72)
& ~N(0,Q) (3.73)

where A € R, Q € R™! is the noise covariance, ¢(x;) = (¢1(2;), .. O pm(m) (€:)) "
for basis functions ¢; and m = (my,...,mq), V = diag(S™ (v A1), ..., ST/ Amm)))
where the \; are defined as in (3.69), S is the spectral density of the chosen kernel
function (which is assumed to be stationary) and we have used the mapping M from
(2.51). Of course, this could be simplified since y; € R but we keep it in this format
just to keep continuity between the previous discussion and the model we are about
to present. The Hilbert reduced-rank GP demonstrates nicely that GP regression is
ultimately just Bayesian linear regression with infinitely many features: the Hilbert
reduced-rank GP just uses finitely many of those features.

In the same way as the neural networks extend linear regression, our new model
which we call the deep Hilbert Gaussian process model will extend the Hilbert
reduced-rank Gaussian process model. Consider a basic multilayer perceptron (MLP)
with activation function o and n € Z>, hidden layers. In the case of regression, for
a given input « the output y is constructed as:

21 = O'(WoCU + bo) (374)
Zi+1 :O'(mzl—i—bl) for: = 1,...,7’L— 1 (375)

Important things to note are that we have a linear final activation and that the acti-
vation function o is applied to each element of the input vector (i.e. is vectorised).
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Also, the backpropagation algorithm is used to find the weights W; and biases b;
for i = 0,...,n. As with all standard neural networks, the MLP is prone to overfit-
ting; although, there are a variety of methods (e.g. [, [, regularisation and dropout)
designed to reduce it. Furthermore, we only get point estimates of the predicted
outputs but having an understanding of the confidence in our estimate can be very
useful so this is a big drawback of the MLP. The deep Hilbert Gaussian process model
(DHGPM) combines the MLP with reduced-rank GPs, and this reduces the risk of
overfitting while providing both point estimates and confidence regions (which take
into account all sources of uncertainty) for the model’s predictions.

The DHGPM arises from breaking the neural net into more pieces:

Zi+1 = O'(UZ'> (378)
hence we can write:
Vi = VVZ'O'(UZ'_l) + bz (379)

Therefore, the MLP with activation ¢, n € Z>, hidden layers and given input « could
have the output y constructed as:

vy = Ao + by (3.80)
v; = Al-(b('vi,l) + bZ for i = 1, ey — 1 (3.81)
y=And(v,1) + b, (3.82)

for weights A; and biases b;. If we imagine that the ¢ in (3.81)—(3.82) is the same
the ¢ in (3.70), then this is starting to look very much like layers of Hilbert reduced-
rank Gaussian processes but without any prior distributions. Hence, to construct the
deep Hilbert Gaussian process model (DHGPM) we add these priors.
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3.3.1 The Deep Hilbert Gaussian Process Model (DHGPM)

Suppose we have training data (y, x;) for k = 1,..., N where 3, € R and z; € RY,
then for a particular input x;, € R? and kernel augmentation function ¢, the DHGPM
with n € Z>, hidden layers is constructed as follows:

vh = Aoz + by (3.83)
vl = A;p(vl_)+bjforj=1,..,n-1 (3.84)
flxr) = Ang(v) ) (3.85)
Y = f(:l:k) + € (386)
er ~ N(0,Q,) (3.87)
Aj|Qj NMN(O,Q],‘/]> forj:(),...,n (388)
Q; ~IW(r;+1,A)forj=0,..,n (3.89)
V; = diag(S; ' (\/ M), ..., S; (W AL)) for j = 0,...,n (3.90)
2
i_ (TS L
b <2Lj) forj=0,...,n (3.91)

As k goes from 1 to N, the above set-up gives us the input-output pairs (y, ;) for
k =1,...,N. The various variables and constants are discussed below.

Notes:

1.

Inputs are assumed to be column vectors. This is important as it means the
given matrix normal distribution is the correct one.

The kernel augmentation function ¢ is vectorised; for example, if we have a
vector v = (vq, ..., v,,)7 € R™ then ¢(v) = (¢(v1), ..., p(vm))T € R™.

Since y; € R, (3.87) is just a univariate normal distribution with mean 0 and
variance Q,, € R.

MN (M, Q,V) is the matrixvariate normal distribution with mean M, row
covariance Q and column covariance V.

. IW(v, A) is the inverse Wishart distribution with degrees of freedom v and

scale A. Although @, € R and so the inverse Wishart distribution simplifies
to an inverse Gamma distribution, the remaining Q; for i = 0,...,n — 1 will be
matrices in general.

For simplicity, the same kernel should be used for all layers. This chosen ker-
nel appears in its spectral density form S; in each layer j. Although the form
of the kernel should be the same for all layers; for example, all layers could
have an RBF kernel, these kernels are not constrained to have the same hy-
perparameters. In other words, for each layer j, if the chosen kernel S; has
hyperparameters 6;, then 6; is not constrained to equal 0, for different layers i
and j (of course within a layer the 8; must be the same for all occurrences of
S;).

75



3.3. LEARNING DHGPMS Chapter 3. Contributions

10.

11.

12.

13.
14.

15.

16.

. The outputs y;, for £ = 1, ..., N should be single-dimensional i.e. y;, € R. For

multiple outputs, fit separate DHGPMs for each output dimension.

. Alayout [dy, ..., d, 4] gives the dimensions of vy, ..., v,_1. So when we refer to

DHGPM with layout [dy, ..., d,,_1] we mean a model with n hidden layers with
input x, € R? mapped to vy € R%, vy mapped to v; € R%, ..., v,,_, mapped to
vp—1 € R%-1 and then v,_, mapped to y;, € R. This gives us the dimensions
of the A, and b; for j = 0, ...,n; for example, suppose with have a DHGPM
with layout [3, 12] with input dimension 4, then this is a DHGPM with 2 hidden
layers and A, € R34, A; € R12*3, A, € R™*!2 b, € R? and b, € R'? (assuming
the input is a column vector).

Q, € R"*"5 where r; is the number of rows in A;. In the inverse Wishart prior
(3.89) the degrees of freedom depends on this parameter r;, which equals the
number of columns (or rows) of Q;.

For simplicity, either we take the @Q; to be diagonal matrices or we take Q,; =
o,I where o; € R., and I is the identity matrix or we take the Q; to be of the
form Q; = p;p] + o;I where 0; € Ry, and p € R"7.

V; € R%*% where c; is the number of columns in A;. In the definition of V;
(3.90) there is a parameter c¢; and this ¢; equals the number of columns (or
rows) of V.

The prior parameters [ and A for the Inverse Wishart prior (3.89) should be the
same for all layers and fixed before training. The degrees of freedom (r; + 1)
might not be the same for all layers (depending on the r;) but the [ should be
the same.

The last layer has no bias term: this helps prevent overfitting.

The biases have no explicit priors; however, they are somewhat constrained by
the priors placed on the A;.

There is no explicit noise terms in each of the hidden or inputs layers (unlike
the output layer) but the @, inside the matrix-normal distribution do take
potential noise into account which is why we need to use the inverse Wishart
prior: it stops the model assuming everything is noise.

Unlike in the Hilbert reduced-rank Gaussian process model, the L, in )’ (3.91)
are not fixed: they are variables for optimisation and sampling.

Training:

Let @ be a vector! of all the unknown parameters in the model, this includes all
the weights A;, the biases b;, the Q;, the L; from (3.91) and the unknown parame-
ters @, of the spectral densities S;. It does not include various fixed parameters like

'When we refer to 8, we assume that it is an element of R” for some D > 0 i.e. all the matrices
have been flattened.
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the / and A in (3.89). Given training data (y, X) = {(yx, xx) for k = 1,..., N}, the
parameters 6 are learnt by maximising the posterior p(6|y, X). To do this, we note
that

p(6ly, X) o p(y|6, X )p(6]X) (3.92)

<HJ\/ yil f(x:), Qn ) (HMN (A;]0,Q;, V))IW(Qjlr; + 1, A)) () (3.93)

where n is the number of hidden layers and p(8) is the joint prior of all the model
parameters in 0 except for the A; and the @Q;. Finding an analytic formula for the
posterior distribution of the parameters is impossible so we learn the posterior via
a two step process. Firstly, we find the maximum of the posterior log likelihood via
L-BFGS-B and then we use EMCEE to sample from the posterior (recall that we get
good results starting the sampler at the maximum). We use L-BFGS-B since gradient
based optimisers are faster than non-gradient based optimisers like Nelder-Mead and
it is trivial to compute the derivatives of (3.93) (with respect to ) using automatic
differentiation. Furthermore, L-BFGS-B allows for the use of bounds which is par-
ticularly important for several parameters. The above is summarised in algorithm 10.

The model we presented above aims to balance the number of parameters to be
optimised with the expressiveness of the model while also limiting the number of
user chosen tuning parameters. However, there are still some tuning parameters
which are set before training and we will discuss them below.

Tuning Parameters

1. Covariance (kernel) function: Due to the requirement to have a spectral den-
sity, we are limited to choosing a stationary kernel. However, the neural net-
work mitigates this limitation somewhat and extrapolation outside the training
data is better than a standard Gaussian process (with a stationary kernel) par-
ticularly when using the adaptive kernel we introduced previously.

2. Prior hyperparameters for ();: [ = 1 and A = I are reasonably good choices
but if it is believed that the data is very noisy, then they could be changed.

3. Model Layout [dy, ..., d,_1]: This is the most important tuning parameter be-
cause the performance of the DHGPM is heavily dependant on the size of the
neural network. The model of Solin and Sarkka [2014] depends most heav-
ily on the input dimension and the number of basis functions; in a sense, the
DHGPM depends on similar things both of which manifest themselves in the
model layout [dy, ..., d,_1]: the larger the input dimension and the more com-
plex the function, the more the DHGPM will require a bigger number of hidden
layers and larger d; in [d, ..., d,,_1] in order to produce good results. We recom-
mend starting with the layout as small as possible (i.e. one hidden layer and
small dy) and if the results are not good (i.e. underfitting) expand the size of
the layout. Also, it is important to remember that for one dimensional inputs a
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DHGPM with kernel augmentation function sin(z) and layout || has a similar
flexibility to the model of Solin and Sarkka [2014] with m basis functions. We
have found good results for DHGPMs with kernel augmentation function sin(z)
and layouts of the form [d, 3d] where d is the input dimension.

4. Kernel augmentation function (activation function): This function is similar
to the activation function in a neural network and it is fixed before training.
We call it a kernel augmentation function because it is able to extend the power
of the kernel beyond those functions which are expected to be drawn from it.
For example, an RBF kernel augmented with sin(x) (i.e. sin(z) augmentation
function) allows us to find smooth periodic functions. In fact, sin(x) is almost
always a good choice of augmentation function due to its ability to extrapo-
late periodic functions and learn non-periodic functions inside a fixed domain
(similar to Fourier analysis). In the context of DHGPMs, sin(x) is able to learn
more complex functions in a much smaller layout than other kernel augmenta-
tion functions like tanh(z). However, for extrapolating non-periodic functions
outside the data regime a tanh(x) or log-sigmoid kernel augmentation function
can also work well.

Algorithm 10: Learning of a DHGPM

Input : Training data X, y.

Output: Samples from parameter posterior p(0| X, y).
1 initialise unknown parameters 6 randomly;

/* Make sure the random initial parameters are valid; for example,
some parameters must be positive. See the Notes section. x/

2 maximise (3.93) via L-BFGS-B to give the optimal parameters 6,;

/* Take note of parameter bounds. Also, using several restarts
(with different random initial parameters) can alleviate the
issue of getting stuck in a poor local maximum. */

3 sample from posterior p(0| X, y) using EMCEE with each walker having initial
parameters 6, + small random noise;

/* See comments about noise in algorithm 8. For DHGPMs use at
least 2p+ 2 walkers where p is the length of the vector 6,. A
total of 500 posterior samples with each walker having a
burn-in of 60 samples usually gives a good characterisation of
the posterior. x/

4 return samples from parameter posterior;

Let© = {0y, ..., 6,,} be our collection of samples from parameter posterior and define
fo(x) to be f(x) from (3.85) but with the parameters of the DHGPM equal to 6.
Given a test input x,, we can define (implicitly conditioned on the training data):

Ely.|z.] = E[f(z.)|z.] ~ Zfe x.) (3.94)

Vit~ ( Zfe @)?) - Bl @)le.))? (3.95)
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Vil = VIf (@)l + — > QY (3.96)
=1

where QY% is the Q,, from (3.87) with DHGPM parameters 6 = 0, and v, is the test
observation corresponding to test input x,.

Issues associated with DHGPMs

As with all Gaussian process models, there are situations in which the DHGPM per-
forms poorly. The potential issues which can occur are discussed below as well as
potential remedies.

1. Local Optima: In the same way as with standard Gaussian process regression
and with the Hilbert reduced-rank model of Solin and Sarkka [2014], it is
possible for the optimisation procedure to return a local optimum, and this
can lead to poor performance. The solution is to restart the optimisation from
several random starting points and this usually solves the issue but has the
draw back of increasing training time.

2. Amount of Data: Generally we need more data for the DHGPM than with the
standard GP. In fact, in the low data regime (less than 200 data points) we
would recommend using the standard GP rather than the DHGPM.

3. Overfitting: Fortunately, overfitting is rare in this model but there are two sit-
uations in which overfitting can occur. Firstly, when the number of data points
is small compared with the dimensions of v, ..., v, ; and secondly when the
training data contains outliers. In the first case, we simply have to reduce the
dimensions of vy, ...,v,,_; and in the second case, we should replace (3.87)
with a Student-t distribution (see next section). That said, if it is thought that
overfitting has occurred in the DHGPM, it is worth testing whether we are in a
local optima since the nature of the model (especially with a sin(z) augmenta-
tion function) means that local optima have many of the same characteristics
as overfitting. Finally, it is worth pointing out that overfitting is not unique to
the DHGPM,; in fact, overfitting affects all Gaussian process models and even
standard Gaussian process regression often overfits in the presence of outliers.

4. Underfitting: We recommended having the layout as small as possible (i.e. the
dimensions of vy, ..., v,_1 as small as possible) because this can reduce training
times significantly. However, this can lead to underfitting and the solution here
is to increase the dimensions of vy, ..., v,_;.

3.3.2 DHGPMs with non-Gaussian noise and Student-t processes

The DHGPM can be adapted to use different noise distributions or to use Student-t
processes: all we have to do is change some prior distributions; for example, if we
wish to change the noise distribution, we should change (3.87) to the desired noise
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distribution and if we wish to use Student-t processes we should change (3.88) to
a matrixvariate-t distribution (3.34). However, changing the model may introduce
additional parameters that will need to be included in 6 if we want them to be
optimised/sampled from. The changes to the prior distributions lead to changes in
(3.93); for example, using a Student-t process with Gaussian noise leads to (3.93)
becoming:

(TIV ). ) ( TTMT (4100 VDY@l +14) )o(6)  G.97)

where MT, is a matrixvariate-t distribution with v degrees of freedom and v is
usually fixed before training and not optimised. Another example is a Student-t
process with Student-t noise which leads to (3.93) becoming:

T n
(H’r<yi|f<a:i>, Q.. u1>) (HMTW(AAO, Q). V)IW(Q,lr; +1, A))p<é> (3.98)
i=1 Jj=0

where 7 is a multivariate-t distribution. In this case, the 14 in 7 is optimised and
so must be added to 6. Since we use EMCEE and automatic differentiation these
changes to (3.93) do not introduce any additional difficulties; we just follow the
same learning algorithm as before while using a suitable replacement to (3.93) and
potentially optimising some additional parameters. However, note that (3.96) as-
sumes that the noise distribution is Gaussian and for a general noise distribution
(with mean zero) we use that (via iterated variances):

m

Vipelo.) = VIf@)@d + o> Viplyla..60) (399)

i=1

where as before © = {60, ..., 8,,,} is our collection of samples from the parameter pos-
terior and V|[f(x.)|x.] is calculated using (3.94) and (3.95). In the case of Student-t
noise, this becomes:

Vo

o QQZ’? (3.100)

Vile] = Vif(@)e] + =

=1

if min;(v%) > 2 otherwise it does not exist (is infinite). Here, v% and Q% are

respectively the noise degrees of freedom r and the noise scale @,, under parameters
0 =20,
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3.3.3 Examples

In this section, we look at several examples of DHGPMs on a variety of synthetic
and non-synthetic datasets. When comparing models, we look at three performance
statistics: the root mean square error (RMSE), the mean log likelihood (LL) and the
mean training time. Suppose we have a test dataset D* = {(x},y}) fori =1,..., N*},
then for the full GP and Hilbert reduced-rank GP we define the RMSE and LL as in
(3.8) and (3.9) respectively. Further suppose that we have samples 01, ..., 6 from
the parameter posterior, then for the DHGPM we define the RMSE as:

N*

RMSE = %Z@ E[f(=2)? (3.101)

where E[f(x})] is defined in (3.94). If the DHGPM assumes a Gaussian noise distri-
bution, then the mean log likelihood (LL) is defined as:

1
LLgouss = 772 ; log N (y; [ELf (7)), E[f ()] + E[Qu]) (3.102)

where E[Q,,] ~ % Zf: . Qz" and Qfﬁ is the value of Q),, when the model parameters
are equal to 6;. Finally, for models which assume a Student-t noise distribution, we
define the mean log likelihood (LL) as:

N K
1 * * Bj Oj
LLstudent—t = N Z Z log T (y; | fo,(27), @7, V™) (3.103)

i=1 j=1

where 7T (x|u, X, v) is a Student-t density function with mean y, scale ¥ and v de-
grees of freedom (using the parametrisation of (3.25)). The notation sz and %
simply means the values of Q,, and v (noise degrees of freedom), respectively, when
the model parameters are equal to 6,.

All models will be given 10 optimisation restarts and the training time will be de-
fined as the mean time for an optimisation restart. In the DHGPM diagrams, we plot
both the model mean and the model optimum. The model optimum is the value of
the model under the parameters 6, found during the optimisation (Algorithm 10,
line 2) and the model mean is the mean value of the model using the parameter
samples and (3.94). Ideally, these two values should be very close and if they are far
apart, then this suggests that the sampling was not successful.

Example 1:

Aim: This is a ‘sanity-check’ example. It compares the performance of the full GP,
Hilbert reduced-rank GP and the DHGPM on a simple system. We expect all the
models to produce similar results.
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Training Data: 250 pairs (x,y) with each x generated by sampling from (-3, 3)
and y generated using system:

as above.

Additional Information:

Yy = 2.5 4+ w,
Wy ~ N(O, 12)

Test Data: 500 pairs (z,y) with x equally spaced between —3 and 3 and y generated

(3.104)
(3.105)

e The manifold-Hilbert reduced-rank models will use a neural network with tanh
activations and 2 hidden layers of 1 and 6 neurons respectively.

e The DHGPMs will use sin(x) activation functions.

More information is summarised in table 3.7.

Assumed Additional
Model Kernel Process Noise Information
Distribution

FullGP 1 RBF Gaussian | Gaussian N/A

Matern32 ) )
Full GP 2 + MLP Gaussian | Gaussian N/A
Hilbert
reduced-rank | RBF Gaussian | Gaussian 12 basis functions, L = 5
GP
Manifold-
Hilbert ) . ) .

Matern32 | Gaussian | Gaussian 12 basis functions, L = 5
reduced-rank
GP
DHGPM 1 Matern52 | Gaussian | Student-t layout = [6]
DHGPM 2 Adaptive | Student-t | Gaussian layout = [2, 2]

Table 3.7: Additional Information for Example 1
Results:
RMSE LL Mean Time
Model (on test data) | (on test data) | (seconds)

FullGP 1 0.99 -1.42 0.14
Full GP 2 0.99 -1.41 0.90
Hilbert reduced-rank GP 0.99 -1.41 0.19
Manifold-Hilbert reduced-rank GP 0.99 -1.42 3.20
DHGPM 1 0.99 -1.44 2.95
DHGPM 2 0.99 -1.41 3.10

Table 3.8: Results for Example 1
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A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Full Gaussian Process, RBF Covariance Function)

2.5
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1.5 1
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f(x*)
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—— Predicted Mean of f(x*)
. === 2 *Predicted Std. Dev. of f(x*)
—— Actual (noiseless) Function

-3 -2 -1 0
Test Inputs x*

Figure 3.14: A full Gaussian process
(Table 3.7, Row 1)
Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.

Noise Distribution = gaussian, Function Process = student-t process with 3 degrees of freedom,
Covariance Function = Adaptive, Number of Input Dimensions = 1.

3.01

2.51

2.0 1
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—— Actual (noiseless) Function
—== Model Optimum

—— Predicted Mean of f(x*)
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Distance along slice

Figure 3.15: A DHGPM with a Student-t process
(Table 3.7, Row 6)
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Example 2:
Aim: To compare the performance of the full GP, Hilbert reduced-rank GP and the
DHGPM on dataset with Student-t noise.

Training Data: 250 pairs (z,y) with each = generated by sampling from (-3, 3)
and y generated using system:

y = 4] tanh(0.5z 4 0.5 cos(0.8z))| + wy (3.106)
w; ~ N(0,1%,v =1) (3.107)

Test Data: 2000 pairs (x,y) with z equally spaced between —3.3 and 3.3 and y gener-
ated as above.

Additional Information:

e The manifold-Hilbert reduced-rank models will use a neural network with log-
sigmoid activations and 2 hidden layers of 3 and 2 neurons respectively.

e The DHGPMs will use sin(z) activation functions.

More information is summarised in table 3.9.

Assumed Additional
Model Kernel Process Noise Information
Distribution
Full GP 1 RBF Gaussian | Gaussian N/A
Matern32
Full GP 2 + Gaussian | Gaussian N/A
RatQuad
Hilbert
reduced-rank | RBF Gaussian | Gaussian 12 basis functions, L = 5
GP
Manifold-
Hilbert . . . .
Matern32 | Gaussian | Gaussian 12 basis functions, L = 5
reduced-rank
GP
DHGPM 1 RBF Gaussian | Student-t layout = [4, 1]
DHGPM 2 Adaptive | Student-t | Student-t layout = [4, 1]

Table 3.9: Additional Information for Example 2
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Results:
Since the true noise distribution is Student-t, we do not provide a RMSE because it
is unhelpful under Student-t noise due to the presence of large outliers.

LL Mean Time
Model (on test data) | (seconds)

Full GP 1 -8.91 0.40
Full GP 2 -9.04 0.92
Hilbert reduced-rank GP -26.57 0.11
Manifold-Hilbert reduced-rank GP -27.10 0.72
DHGPM 1 -2.63 3.52
DHGPM 2 -2.62 2.76

Table 3.10: Results for Example 2

A plot of f(x*)|X,y,x* for Training Data X, y and Test Inputs x*
(Full Gaussian Process, RBF Covariance Function)

________________________________________________________ —— Predicted Mean of f(x*)
—=—=- 2 *Predicted Std. Dev. of f(x*)
—— Actual (noiseless) Function
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10 A

f(x*)
[S)

—10 4

—20 41

—-30 4

Test Inputs x*

Figure 3.16: A full Gaussian process with the noise assumed to be Gaussian
(Table 3.9, Row 1)
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Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = student-t, Function Process = student-t process with 2 degrees of freedom,
Covariance Function = Adaptive, Number of Input Dimensions = 1.

—————
-
—

m————

-
-
—

-

f(x*)

—— Actual (noiseless) Function
—== Model Optimum
—— Predicted Mean of f(x*)
04 === 2 *Predicted Std. Dev. of f(x*)

-3 -2 -1 0 1 2 3
Distance along slice

Figure 3.17: A DHGPM with the noise assumed to be Student-t (Table 3.9, Row 6)

Now consider the same example but with 2500 data points for training:

Assumed Additional
Model Kernel Process Noise Information
Distribution
Full GP RBF Gaussian | Gaussian N/A
DHGPM RBF Gaussian | Student-t layout = [4, 2]

Table 3.11: Additional Information for Example 2 (part 2)

LL Mean Time

Model (on test data) | (seconds)
Full GP -6.08 101.19
DHGPM -2.55 10.45

Table 3.12: Results for Example 2 (part 2)
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Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = student-t, Function Process = gaussian process,
Covariance Function = RBF, Number of Input Dimensions = 1.

f(x*)

—— Actual (noiseless) Function \\\ /
—== Model Optimum N /
—— Predicted Mean of f(x*) s
04 === 2 *Predicted Std. Dev. of f(x*)
-3 -2 -1 0 1 2 3

Distance along slice

Figure 3.18: A DHGPM (Table 3.11, Row 2)

Example 3:

Aim: To demonstrate that the DHGPM can work well with multidimensional input
data and also to show that the DHGPM does not overfit in the presence of very noisy

data.

Training Data: 1000 pairs (x,y) with each @ = (x, z,,x3) generated by sampling
x; from U(—3,3) for i = 1,..,3 and y generated using system:

Y =x1 + T2+ 23 + Wy (3.108)
w; ~ N(0,5%) (3.109)

Test Data: 10000 pairs (z,y) with each © = (1,9, z3) generated by sampling z;

from U(—3.6,3.6) for i = 1, .., 3 and y generated as above.

Additional Information:
e The DHGPMs will use sin(x) activation functions.

More information is summarised in table 3.13.
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Assumed Additional
Model Kernel Process Noise Information
Distribution
FullGP 1 RBF Gaussian | Gaussian N/A
Matern32
Full GP 2 + Gaussian | Gaussian N/A
RatQuad
DHGPM 1 Adaptive | Gaussian | Gaussian layout = [2, 1]
DHGPM 2 Adaptive | Student-t | Gaussian layout = [2, 1]
Table 3.13: Additional Information for Example 3
Results:
RMSE LL Mean Time
Model (on test data) | (on test data) | (seconds)
FullGP 1 5.03 -3.03 10.24
Full GP 2 5.03 -3.03 31.96
DHGPM 1 5.06 -3.04 2.22
DHGPM 2 5.02 -3.03 2.91
Table 3.14: Results for Example 3
Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = gaussian, Function Process = student-t process with 2 degrees of freedom,
Covariance Function = Adaptive, Number of Input Dimensions = 3.
—— Actual (noiseless) Function -
2] === Model Optimum ,,’
—— Predicted Mean of f(x*) /’
——- 2 * Predicted Std. Dev. of f(x*) -~

f(x*)

-3 -2 -1 0 1 2 3
Distance along slice

Figure 3.19: A DHGPM with a Student-t process
(Table 3.13, Row 4)
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Example 4:
Aim: To demonstrate that the DHGPM can work well with multidimensional input
data in low noise environments.

Training Data: 1000 pairs (x,y) with each @ = (x1, 9, 23, 14, x5) generated by sam-
pling x; from U(—3,3) for i = 1, ..,5 and y generated using system:

y =10.1z1 — 0.2z + 0.323 — 0.4x4 + 0.525| + w, (3.110)
w; ~ N(0,0.17) (3.111)

Test Data: 10000 pairs (x,y) with each = (z1, z2, x3, 24, x5) generated by sampling
x; from U(—3.6,3.6) for i = 1,..,5 and y generated as above.

Additional Information:
e The DHGPMs will use sin(z) activation functions.

More information is summarised in table 3.15.

Assumed Additional
Model Kernel Process Noise Information
Distribution
Full GP 1 RBF Gaussian | Gaussian N/A
Matern32
Full GP 2 + Gaussian | Gaussian N/A
RatQuad
DHGPM 1 RBF Gaussian | Gaussian layout = [10]
DHGPM 2 RBF Student-t | Student-t layout = [5, 3]

Table 3.15: Additional Information for Example 4

Results:

RMSE LL Mean Time

Model (on test data) | (on test data) | (seconds)
Full GP 1 0.22 0.20 7.85
Full GP 2 0.17 0.37 34.70
DHGPM 1 0.16 0.31 12.35
DHGPM 2 0.11 0.72 15.18

Table 3.16: Results for Example 4
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Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = student-t, Function Process = student-t process with 2 degrees of freedom,
Covariance Function = RBF, Number of Input Dimensions = 5.

—— Actual (noiseless) Function _-
Y I Model Optimum 7
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Figure 3.20: A DHGPM (Table 3.15, Row 4)

Example 5:
Aim: To demonstrate that the DHGPM can work well on non-synthetic datasets.

The Datasets:

The first three datasets are from Lichman [2013] (see footnotes for the links to the
datasets) and the final dataset was created using data from Chicago Board Options
Exchange [2017] and Yahoo Finance [2017]. Associated with each of the datasets
is a corresponding task, for the first three datasets this task is described in the pro-
vided links and for the final dataset the task is described below. We compare the
performance of the DHGPM and the full GP for each of these tasks.

1. The Airfoil Noise Dataset?: this dataset contains 1503 datapoints of which we
use a randomly selected 1000 points for training and the rest as a test set. The
inputs have 5 dimensions and we try to learn a 1 dimensional output.

2. The Combined Cycle Power Plant Dataset®: this dataset contains 9568 data-
points of which we use a randomly selected 5000 points for training and the
rest as a test set. The inputs have 4 dimensions and we try to learn a 1 dimen-
sional output.

3. The Concrete Compressive Strength Dataset*: this dataset contains 1039 data-
points of which we use a randomly selected 800 points for training and the rest
as a test set. The inputs have 8 dimensions and we try to learn a 1 dimensional
output.

2https://archive.ics.uci.edu/ml/datasets/Airfoil + Self-Noise
3https://archive.ics.uci.edu/ml/datasets/Combined +Cycle + Power + Plant
“https://archive.ics.uci.edu/ml/datasets/Concrete + Compressive + Strength
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4. The final dataset consists of a collection of Open, High, Low, Close and Volume
data points for the S&P 500° and the Open Price of the VIX Index®. The aim
is to calculate the VIX Open Price from the S&P 500 data (on the same day).
We note that VIX is the implied volatility of the S&P 500 and so their is indeed
a relation between the two. This dataset contains 3436 datapoints of which
we use first 3000 for training and the rest as a test set. The inputs have 5

dimensions and we try to learn a 1 dimensional output.

Additional Information:

e The DHGPMs will use sin(z) activation functions.

More information is summarised in table 3.17.

Assumed Additional
Model Kernel Process Noise Information
Distribution
FullGP 1 RBF Gaussian | Gaussian N/A
DHGPM 1 RBF Gaussian | Gaussian layout = [5, §]
DHGPM 2 RBF Gaussian | Student-t layout = [8, 24]
DHGPM 3 RBF Gaussian | Gaussian layout = [16]
DHGPM 4 Adaptive | Student-t | Student-t layout = [3, 2]
Table 3.17: Additional Information for Example 5
Results:
RMSE LL Mean Time
Model (on test data) | (on test data) | (seconds)
FullGP 1 2.35 -0.41 5.71
DHGPM 1 2.11 -0.26 35.18
Table 3.18: Results for the Airfoil Noise Dataset
RMSE LL Mean Time
Model (on test data) | (on test data) | (seconds)
FullGP 1 3.94 0.04 414.94
DHGPM 2 3.88 0.07 257.07

Table 3.19: Results for the Combined Cycle Power Plant Dataset

historical-data

>https://finance.yahoo.com/quote/%5EGSPC/
Shttp://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index,/vix-
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RMSE LL Mean Time

Model (on test data) | (on test data) | (seconds)
FullGP 1 5.31 -0.27 4.92
DHGPM 3 5.01 -0.22 28.78

Table 3.20: Results for the Concrete Compressive Strength Dataset

RMSE LL Mean Time

Model (on test data) | (on test data) | (seconds)
FullGP 1 10.15 -1.25 145.58
DHGPM 4 4.92 -0.91 24.62

Table 3.21: Results for the S&P 500 — VIX Dataset

Discussion:

Overall these examples demonstrate that the DHGPM is a very competitive model
that can often outperform the full GP. While on small datasets (< 1000 data points)
the DHGPM is slower than the full GP, the training time scales well as the dataset
size increases and on larger datasets, the DHGPM will be much faster than the full
GP. In comparison to the Hilbert reduced-rank GP of Solin and Sarkka [2014], the
DHGPM scales significantly better as the input dimension increases.

3.4 Learning GPSSMs with High-Dimensional Latent
Spaces

3.4.1 The Deep Hilbert Gaussian Process State-Space Model

In a similar way to how Svensson et al. [2016] uses the Hilbert reduced-rank GP to
create a reduced-rank GPSSM, we will use the DHGPM to construct a novel GPSSM
that is particularly useful when we wish to have high-dimensional latent spaces. We
will call our new GPSSM the deep Hilbert Gaussian process state-space model (DHG-
PSSM) and in this section, we will explain the model and provide both a training and
prediction algorithm.

The main idea for learning DHGPSSMs is similar to the learning algorithm we cre-
ated for reduced-rank GPSSMs with Student-t noise: we alternate between sampling
the latent states given the model parameters and optimising/sampling the model pa-
rameters given the latent states. We will focus on DHGPSSMs with a latent DHGPM
but a known observation distribution because there is little reason to have both an
observation and transition DHGPM since this increases the computational cost while
not providing any additional flexibility. The reason is due to identifiability and the
same issue effects all GPSSMs; for more details see Frigola [2015, pp. 32-33].
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Set-up:

Suppose we have observations y, ..., yr where y; € R™ for ¢t = 1,...,T and that the
latent state dimension is n, i.e. x; € R™ Vt. A deep Hilbert Gaussian process State
Space model (DHGPSSM) with n € Zs( hidden layers and kernel augmentation
function ¢ is constructed as follows:

zhy = filx) +efori=1,...n, (3.112)
Tii1 = (Tp, o Tp7y) €R™ (3.113)
e ~N(0,Q,;) fori=1,....n, (3.114)
v, = Agy + by fori=1,... n, (3.115)
vjz = Aj,i(b('v;',l’i) +bjforj=1,..,n—1fori=1,...n, (3.116)
fil@) = Anid(vl_, ) fori=1,...n, (3.117)
fl®) = (fi(®), s fo, (@) € R™ (3.118)
A;ilQji ~ MN(0,Q;;,V;;)for j=0,...,nfori=1,..n, (3.119)
Qi ~IW(r;;+1,A)forj=0,...,nfori=1,...,n, (3.120)
V= diag(S;il(\/;{i), S;il(\/g)) forj=0,..,nfori=1,...n, (3.121)
Nt = ( U )Qforj:O,...,n fori=1,..,n, (3.122)
2L,
Y ~ p(ye| e, 0y) (3.123)

where equations (3.112) to (3.122) form a latent multi-output DHGPM on xy, ..., &1
and we have an observation equation (3.123) linking the latent and observed states.
The various variables are discussed in the Notes section and a simple graphical model
is provided in figure 3.21.

Yt1 @

Figure 3.21: A DHGPSSM: the model trains independent DHGPMs that map x; i to z

fori =1,...,n, where z{ (written as 959 in the diagram) is the i™ dimension of x;.

Although this model looks complex, the idea is conceptually straightforward: learn
a latent DHGPM f that maps «x; to x;,;. This means that given the latent states
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x1,...,x7, we need to find the parameters of the DHGPM using training data D =
{(x411, ) for t = 1,...,T — 1} where for each ¢, x, is the input of the DHGPM and
a1 is the output. The challenge here is that the output x;,; is multidimensional in
general, so we could have multidimensional inputs and outputs whereas the DHGPM
assumes we have a single-dimensional output. However, as we mentioned in the sec-
tion on DHGPMs, to deal with multiple outputs, we fit independent DHGPMs to each
of the output dimensions. For example, suppose that the latent dimension is n, and
hence x; = (x},...,x}*) Vt, then all we need to do is to split the training data D into
D; = {(x},,, &) fort = 1,...,T — 1} for i = 1,...,n, and for each D; we train an
independent univariate output DHGPM i.e. we learn a map between x; and «} , for
1=1,...,n,.

Notes:

1. We will use p; to refer to all the parameters in (3.112)-(3.123) with an ¢ sub-
script; for example, the A;,;Vj, b;;Vj, Q;;Vj, L;;Vj and the hyperparameters of
the spectral density S;; for all j are included in p,. Therefore, all the parame-
ters 6 can be written as (p1, ..., pn,, 0,).

2. We use independent DHGPMs when dealing with multiple outputs i.e. a mul-
tidimensional latent space. This means that p;, and p;, are independent for all
i1 # io and hence can be optimised/sampled separately.

3. For fixed i, equations (3.112)-(3.122) form a DHGPM which maps x; € R
to z;,, € R. All the points from the Notes part in the section on DHGPMs still
apply to each of these independent DHGPMs and explain all the parameters
not defined here.

4. For simplicity, we generally use the same tuning parameters for each of the
independent latent DHGPMs; for example, for each ¢ the form covariance
function of each DHGPM should be the same; however, there is no such con-
straint on the covariance hyperparameters since the p; are independent. More-
over, the layout should be the same for all DHGPMs and so the layout of
the i DHGPM [d}, ...,d!,_,] = [dy,...,d,_1]Vi which leads to ¢;; = ¢;Vi and
r;; = r;Vi. Hence, when we refer to the layout of a DHGPSSM we are referring
to [dy, ..., d,_1], which is the layout for all the independent latent DHGPMs.

5. It is simple to adapt the model to have both an observation and latent DHGPM
but we assume the form of the observation distribution is known (3.123) with
some unknown parameters 6, which are optimised/sampled.

6. Adapting the model for latent Student-t noise or latent Student-t processes is
simple. In a similar way to in DHGPMs, for Student-t noise just replace (3.114)
with a Student-t distribution and for a Student-t process replace (3.119) with
a matrixvariate-t distribution. Of course, this may introduce some additional
parameters which need to be optimised.
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7. Due to the independent DHGPMs, the noise (3.114) must be independent for
different 7. In particular, this means that we cannot have a multivariate-normal
or multivariate-t distribution for €, = (¢f,...,€/*): we require independent

univariate-normal or univariate-t distributions for each of the ..

8. Adapting the model for online or forgetful online learning is simple using ex-
actly the same techniques we explained in section 3.2.1.

9. The model is also required to have an initial latent distribution p(z,); however,
this distribution is of little importance and so we usually take x; ~ N(0, 1001)
where I is an identity matrix of suitable size.

Training:

The training process for this model is slightly more complex than in DHGPMs. The
idea behind the training algorithm for DHGPSSMs is to balance optimisation/sampling
of parameters with learning the latent states: we alternate between these two tasks
with our knowledge of the latent states determining how much we can optimise.

One of the key parts of the training process is to optimise the model parameters
given the observations and latent states i.e. to maximise p(@|xy.7, y1.7) With respect
to 8. Now given observations y;.r and latent states x,.; we get:

p(0’w1:T7 yl:T) (3124)
x p(1.7, Y1:7|0)p(0) (3.125)
X p(yr.7r|x1r, Oy)p(T1.700)p(0) (3.126)

since we have independent DHGPMs for each output dimension in the latent states
we get:

p(yl:T‘wl:Ta 0y>p(w1T’0)p(0) (3127)
X p(y1:T|CII1:T, Gy)p(w1:T|p1, ceey an)p(Ph cory Pras Oy) (3128)
x p(yr.r|T1r, 0,)p(6,) Hp(wlzﬂpi)P(Pi) (3.129)

i=1

It can be seen that we have split the parameters into independent positive parts
that are multiplied and hence they can be optimised separately. Now consider

p(x1r|pi)p(p:):

p(x1r|pi)p(p:) (3.130)
T—1 n
N ( TN (il i), Qn,») (H MN(A,,]0,Q;0. Vi IW(Q;lri + 1. A))pw

(3.131)

where n is the number of hidden layers for the i latent DHGPM (which is the same
for all ) and p; is all the parts of p; except for the A, and the Q,,. As expected, this
is the likelihood of a DHGPM with parameters p; and training data D; = {(z}_, =)
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fort =1,...,7 — 1}. We can use this to write the optimisation part of the DHGPSSM
training algorithm: see Algorithm 11.

Another key part of the training process is to sample new latent states 75" given the
observations y,.r, the previous latent states ¢4, and the current model parameters
6. We do this using the PGAS sampler of Lindsten et al. [2014, p. 2160] with ob-
servations y,.r, reference trajectory x¢'4, initial samples drawn using a N/(0, 1001)
distribution and both the transition distribution and observation distribution con-
structed using the current model parameters 6 with (3.112) and (3.123) respectively.

We will now present the training algorithms and discuss some tuning parameters.

List of Algorithms:

1. Optimisation: This algorithm maximises (3.124) with respect to 8 using the
independence of DHGPMs to split up the optimisation as we have discussed in
(3.129).

2. OptimisationLoop: This uses Algorithm 11 to quickly get both the latent states
x 1.7 and parameters 6 near to their respective invariant distributions. The idea
is that we alternative between PGAS and Algorithm 11 until (3.124) decreases
for the first time and then we stop. Since, at this point (3.124) is no longer
just strictly increasing so we must be relatively near to some sort of invariant
distribution.

3. BurnerLoop: In a similar way to the OptimisationLoop Algorithm, the aim is
to get to the invariant distribution but here we add sampling of & which allows
us to burn-in EMCEE while getting even closer to the invariant distribution
compared with OptimisationLoop.

4. Learning of a DHGPSSM: This combines the above algorithms to go from a
set of observations to a learnt DHGPSSM.

5. Prediction: Given a learnt DHGPSSM and test observations yj, ..., y;, this al-
gorithm samples from y;, . for some k € Z,.

Tuning Parameters:

1. Latent state dimension: Unless we know the dimension of the latent state, we
will need to choose it. In general, the dimension of the latent states depends
on the complexity of the process which generates the observations as well as
the level of dependency of the future of the process on its history. In other
words, if we have a complex system or the system depends on observations
which happened many time steps ago, then we will need a correspondingly
bigger latent state dimension.

2. Form of the observational distribution: This might be known depending on
the use case, otherwise set (3.123) to:

Yy =Wz, + b+ v, (3.132)
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for suitably sized matrices W and b and a chosen noise distribution v;. The
unknown parameters form 6,.

3. Number of PGAS particles: 20 particles is almost always a good choice but
lowering it might improve PGAS speed (not by much though).

4. Tuning parameters for the latent DHGPMs: See section on tuning parameters
for DHGPMs.

Prediction:

Having looked at how to train the model, the only remaining question is how to use
a trained model i.e. prediction. The aim of prediction is: given a learnt model and
a collection of ordered test observations yj, ..., y;, find the predictive distribution of
Y/, for some k € Z . Unfortunately for DHGPSSMs, it is not possible to find the ex-
act predictive distribution; however, we can construct a procedure for sampling from
the predictive distribution. Furthermore, given samples y;,, fori =1,..., N, we can
approximate statistics such as the mean and variance of the predictive distribution;
for example,

N
1L
Elyeer] ~ 5 D Yir (3.133)
=1
1 1L 2
Vigra] ~ (NZ(yg+k)z) _ (Nzy;%) (3.134)
i=1

i=1

The prediction algorithm for DHGPSSMs is summarised in Algorithm 15.

Algorithm 11: Optimisation

Input : Observations y;.r, Latent States x;.7, Initial Point 6,, maxIterations

Output: Optimised Parameters 6,

/* All the following optimisations should be done using L-BFGS-B
with the maximum iterations equal to maxIterations. Also start
the optimisation at the corresponding part of 6. */

optimise log p(y1.7|x 1.7, 8,) with respect to 8, to get 6;

fori=1,..,n, do
optimise log p(x1.7|p;) + log p(p;) with respect to p; to get p;;

/* In other words, create a DHGPM with initial parameters
pi, C 0y and training data D; = {(z},,,&;) for t =1,...,T — 1}
then optimise and return p;. x/

i

W N =

4 end
return 0, = (p7, ..., p;,_, 0;);

9]
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Algorithm 12: OptimisationLoop

Input : Observations y;.;-, Current Latent States x.7, Current Parameters 6

Output: New Latent States =%, New Parameters 0,,.,,, #Loops max.J

bestObjective = log p(0|x1.7, y1.7);

forj=1,2,...do

/* Usually this reaches the break point but it is sensible to
set a maximum number of iterations. */

3 sample new latent states x}%" given observations y;.r, current latent states

1.7 and current parameters 6 via PGAS;

4 0,..., = Optimisation(Observations=y,.r, Latent States=z7", Initial Point

=0, maxlIterations=2j + 5);

[

5 if log p(Oyew| 7Y, y1.7) < bestObjective then
6 maxJ = 7;

7 break;

8 end

9 else

10 bestObjective = log p(Oyew| TS, Y1.7);

11 T = TV

12 0=20,..;

13 end

14 end

15 return 7%, 0., mazJ.

98



Chapter 3. Contributions 3.4. LEARNING DHGPSSMS

Algorithm 13: BurnerLoop
Input : Observations y;.r, Current Latent States x;.7, Current Parameters 6,
Base Iterations max.J
Output: New Latent States x7%’, New Parameters 0,,.,,
1 bestObjective = log p(8|x1.7, Yy1.7);
2 fori=1,2,...do

/* Usually this reaches the break point but it is sensible to

set a maximum number of iteratioms. x/

3 sample new latent states x" given observations y;.7, current latent states

x1.7 and current parameters 6 via PGAS;

4 ifi =0 (mod 5) and ¢ > 0 then

5 0. = Optimisation(Observations=y;.r, Latent States=x7%", Initial Point
=0, maxlIterations=2(maxJ + i) + 5);

6 if log p(0.|x75, y1.7) < bestObjective then

7 | break;

8 end

9 else

10 bestObjective = log p(0.|x5 , y1.1);

11 T = VT

12 0=20,;

13 end

14 sample parameters 0,,.,, from p(6|x;.7, y;.r) using EMCEE with initial
positions @ + vector of random noise for each walker and some EMCEE

burn-in steps. We recommend using 10 burn-in steps per walker and 16

walkers;

/* See previous discussions about adding noise to @; for
example, in Algorithm 8. Also, we can use a small amount
of walkers for the same reasons as in Algorithm 8. */

15 end

16 else

17 T = TG

18 sample parameters 0 from p(0|x1.r, y1.r) using EMCEE, with initial
walker positions equal to the walker positions from the previous loop
and 1 burn-in step per walker and 16 walkers;

/* For the first loop, set the initial walker positions to 6
+ vector of random noise for each walker. x/

19 end
20 end

21 return x77, 0,
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Algorithm 14: Learning of a DHGPSSM

(=)0 ]

10
11
12

13
14
15

Input : Observations y;., Number of Samples K

Output: Samples from the parameter posterior p(0|x;1.1, y1.) and samples
from the latent state distribution p(x1.7|y1.7, 0).

initialise unknown parameters # randomly;

/* Make sure the random initial parameters are valid. x/

/* Optimisation Stage: */
initialise latent states x;.r by setting each dimension of x;.r to a random
dimension of y;.7. Repeat this random allocation of .7 around 10-100 times
and finally set the initial latent states equal to the random allocation that
maximised (3.123);

1.1, 8, maxrJ = OptimisationLoop(Observations=y;.7, Latent States=x1.7,
Current Parameters=0);

/* Burn-in Stage: */
x1.7(0], €]0] = BurnerLoop(Observations=y;.7, Latent States=x,., Current
Parameters=0, Base Iterations = max.J);

/* Sampling Stage: */

fork=1,.., K do

sample new latent states xy.7[k] given observations y;.r, latent states

x1.7[k — 1] and parameters 8k — 1] via PGAS;

if i =0 (mod 5) then

0. = Optimisation(Observations=y;.r, Latent States=x.r[k|, Initial

Point =0[k — 1], maxIterations=25);

sample parameters 0[k| from p(0|xy.7[k], y1.7) using EMCEE with initial

positions 6, + vector of random noise for each walker and some

EMCEE burn-in steps. We recommend using 10 burn in steps per walker

and 16 walkers;

/* See previous discussions about adding noise to 0,.; for
example, in Algorithm 8. Also, we can use a small amount
of walkers for the same reasons as in Algorithm 8. */

end

else
sample parameters 0[k| from p(6|xy.7[k], y1.7) using EMCEE with initial
walker positions equal to the walker positions from the previous loop
with 1 burn in step per walker and 16 walkers;

end

end

return x,.7[1 : K|, 0[1 : K|
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Algorithm 15: DHGPSSM Prediction

Input : Samples 0, ..., 8% from the posterior parameter distribution of a
DHGPSSM, test observations yj, ..., y;

Output: Samples from y; , for some k € Z

1 fori=1,...,nSamples do

2 select % uniformly from 6*, ..., 0%;

3 set parameters of DHGPSSM equal to 6%;

4 find the latent states 7, ..., ] corresponding to yj, ..., y; via PGAS;

5 forj=1,..,k do

6

7

8

9

\ sample x,; from p(@, ;@4 ;-1,0") (equation (3.112));
end
sample y,  from p(y; x|Tiik, 0;) (equation (3.123));
end
10 return all samples of y; .

3.4.2 Examples

In this section, we look at several examples of DHGPSSMs and compare them with
an autoregressive full GP and the GPSSM by Svensson et al. [2016]. In the exam-
ples that look at comparing the latent states, we use the formulas of (3.49), (3.50)
and (3.51) to calculate the RMSE, LL (Gaussian) and LL (Student-t) respectively.
Due to unidentifiabilty, in models with unknown observation distributions or multi-
dimensional latent states, we are unable to compare the latent states of different
models; however, we can look at comparing predictions from the model and we will
look at two types of predictions:

1. Prediction of fixed k: Given a sequence of test observations y;, ..., y;., we use
the models to predict y;,, given yi, fort = 1,...,7* — k. Note that we use a
particle filter (bootstrap filter) to get the states at time ¢ rather than a smoother
because we wish to compare predictions given only the history of the process.
We use the formulas of (3.101), (3.102) and (3.103) to compute the statistics
RMSE, LL (Gaussian) and LL (Student-t), respectively, with y’ replaced with
v/, and f(x}) replaced with the model’s prediction for y;, .. Note that the as-
sumed model distribution now refers to the assumed observation distribution.

2. Multi-step forecast: Suppose that the model training data is v, ..., yr,,,,, and
the model test data is vy, 11, ..., yr+, then given the training data we predict
YT, ..k fOr k= 1,..., min(30, 7*) using Algorithm 15. We compare the predic-
tions to the true values using (3.101), (3.102) and (3.103).

Example 1:

Aim: This is a ‘sanity-check’ example comparing the performance of the DHGPSSM
with the model of Svensson et al. [2016] on a simple system. We expect all models
to produce similar results. The set-up is the same as in section 3.2.6, example 1 and
for clarification, we have the same training and test data as in the original example.
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Additional Information:

e The model called GPSSM refers to the model of Svensson et al. [2016] with
none of our new features added.

e The model called DHGPSSM is a deep Hilbert Gaussian process state-space

model.

e The latent DHGPMs in the DHGPSSM will use sin(z) activation functions.

More information is summarised in table 3.22.

Latent Latent Assumed | Observational | Additional
Model Latent Distribution | Information
Kernel Process .
Noise
GPSSM RBF Gaussian | Gaussian Fixed N/A
DHGPSSM RBF Gaussian | Gaussian Fixed layout = [12]
Table 3.22: Additional Information for Example 1
Results:
RMSE LL Mean Time
Model (on test data) | (on test data) | (seconds)
GPSSM 1.13 -1.50 83.36
DHGPSSM 1.06 -1.48 45.53

Table 3.23: Results for Example 1
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Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = gaussian, Function Process = gaussian process,
Covariance Function = RBF, Number of Input Dimensions = 1.

—— Actual (noiseless) Function
—— Predicted Mean of f(x*)

______

P —=—= 2 * Predicted Std. Dev. of f(x*)
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-
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Figure 3.22: A DHGPSSM
(Table 3.22, Row 2)

Example 2:

Aim: This is another ‘sanity-check’ example comparing the performance of the DHG-
PSSM with Student-t noise and our Student-t noise version of the model of Svensson
et al. [2016]. We expect all models to produce similar results. The set-up is the same
as in section 3.2.6, Example 2 and for clarification, we have the same training and
test data as in the original example.

Additional Information:

e The model called GPSSM refers to our Student-t noise version of the model of
Svensson et al. [2016].

e The model called DHGPSSM is a deep Hilbert Gaussian process state-space
model with latent Student-t noise assumed.

e The latent DHGPMs in the DHGPSSM will use sin(z) activation functions.

More information is summarised in table 3.24.

Latent Latent Assumed | Observational Additional

Model Latent Distribution Information
Kernel Process

Noise
GPSSM RBF Gaussian | Student-t Fixed See 3.2.6, Ex. 2
DHGPSSM RBF Gaussian | Student-t Fixed layout = [4]

Table 3.24: Additional Information for Example 2
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Results:
LL Mean Time
Model (on test data) | (seconds)
GPSSM -3.06 175.64
DHGPSSM -2.85 69.97
Table 3.25: Results for Example 2
Predicted f(x*) vs True f(x*) using a Random Slice through the Test Inputs x*.
Noise Distribution = student-t, Function Process = gaussian process,
Covariance Function = RBF, Number of Input Dimensions = 1.
—— Actual (noiseless) Function
—— Predicted Mean of f(x*)
104 ~—" 2 * Predicted Std. Dev. of f(x*)
5 -
% o

—10 4

-20 -15 -10 -5 0 5 10 15 20
Distance along slice

Figure 3.23: A DHGPSSM
(Table 3.24, Row 2)

Example 3:
Aim: To demonstrate that the DHGPSSM can learn with multi-dimensional latent
spaces in reasonable time.

Training/Test Data: Given 500 points x1, ..., 500 evenly spread between -50 and 50,
we generate the corresponding observations v, ..., ys00 using the system:

y = sin(mz) + w; (3.135)
wy ~ N(0,0.17) (3.136)

Then, we discard the x;. The training observations are 1, ..., y300 and the test obser-
vations are 301, ..., ¥500-
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-y Y300-

6,2]. We will also

(3.137)
(3.138)

Mean Time

(seconds)

2.93
174.22

LL

-0.80
0.40

3.4. LEARNING DHGPSSMS

Chapter 3. Contributions

Additional Information:

e We test the ability of the models to predict 4 steps ahead.

e The model called full GP is a full Gaussian process and it learns a mapping

between y; and 1,4 using training observations y, ..

e The model called DHGPSSM is a deep Hilbert Gaussian process state-space

model with a three dimensional latent space and layout

have an observation distribution:

T
Y = O Ty + U

Ut Z’Z\l“i N(O, R)
(a,b,c) and the parameters a, b, ¢ and R are unknown and found

where a”

during training.

e The latent DHGPMs in the DHGPSSM will use tanh(x) activation functions
(only because using sin(x) might be seen as an unfair test).

Results:

RMSE

(on test data) | (on test data)

0.51
0.14

Kernel

RBF
RBF

Model

Full GP

DHGPSSM

Table 3.26: Results for Example 3

A plot comparing the predictions of y(t+4) given y(t) with the true observations
(Full Gaussian Process)
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Figure 3.24: Predicting y; 4 given y; using the full GP
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=== 2*Predicted Std. Dev.
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150

125

100

(DHGPSSM, observation dimension: 0).

Inputs t (standardised)

75

using a random continuous section of the test data

50

A plot comparing the predictions of y(t+4) given y(t) with the true observations

25

Predicting y;,4 given y; using the DHGPSSM. The poor performance with

1.5 1
1.0 A

3.4. LEARNING DHGPSSMS

(P+DA

small ¢ is because we use a particle filter and do not have a lot of information which can

help to calculate the latent states at this point.

—0.5 1
—1.0 1
-1.51
Figure 3.25

A plot comparing the forecast from a DHGPSSM with the true observations
(DHGPSSM, observation dimension: 0).
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Example 4:
Aim: To demonstrate that the DHGPSSM can learn with multi-dimensional latent
spaces and with non-synthetic data.

The dataset and task: Predicting yearly sunspot numbers using the SILSO sunspot
dataset”.

Training Data: The first 200 observations.
Test Data: The remaining 115 observations.

Additional Information:
e We test the ability of the models to predict 2 steps ahead.

e The model called full GP is a full Gaussian process and it learns a mapping
between y; and ¥, » using training observations i, ..., ¥200-

e The model called DHGPSSM is a deep Hilbert Gaussian process state-space
model with a three dimensional latent space and layout = [2]. We will also
have an observation distribution:

Yy = @ + vy (3.139)
v % N(0, R) (3.140)

where a’ = (a, b, c) and the parameters a, b, c and R are unknown and found
during learning.

e The latent DHGPMs in the DHGPSSM will use sin(z) activation functions.

Results:
RMSE LL Mean Time
Model Kernel (on test data) | (on test data) | (seconds)
Full GP RBF 43.57 -1.77 1.47
DHGPSSM RBF 34.94 -1.68 96.39

Table 3.27: Results for Example 4

’https://datamarket.com/data/set/4apm/yearly-mean-total-sunspot-number
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A plot comparing the predictions of y(t+2) given y(t) with the true observations
(Full Gaussian Process)

Predicted Mean

True Observations
—=—= 2 * Predicted Std. Dev.

100

40

20

200 A

150 A

100 -

(z+DA

Inputs t (standardised)

Predicting ;2 given y; using the full GP

Figure 3.27

A plot comparing the predictions of y(t+2) given y(t) with the true observations

using a random continuous section of the test data
(DHGPSSM, observation dimension: 0).
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Predicting .2 given y; using the DHGPSSM.

Figure 3.28
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4.0.3 Conclusions

In this thesis, we have added features to the GPSSM of Svensson et al. [2016],
improved the Hilbert reduced-rank GP of Solin and Sarkka [2014] and created a
novel GPSSM called the deep Hilbert Gaussian process state-space model. Here, we
look at each contribution in turn and provide some concluding remarks.

1. The Adaptive covariance seems to be promising and although there is a com-
putation cost compared with other covariance functions such as the RBF or
Matern32 covariance, its performance is good and it seems to be particularly
useful for DHGPMs and when combined with the manifold-Hilbert reduced-
rank Gaussian process.

2. The manifold-Hilbert reduced-rank GP retains the properties of the original
mGP; moreover, it is faster than the full GP even though the original mGP was
slower than the full GP. From the examples, we can see that it is particularly
good at learning functions with sharp edges. Furthermore, when using a sin(x)
activation, the manifold-Hilbert reduced-rank GP can learn some challenging
periodic functions.

3. Our methods for learning with Student-t noise work even under distributions
with small degrees of freedom and it is not surprising that it outperforms meth-
ods that do not assume a Student-t noise distribution. From the examples, we
can see that it is almost always a good choice to use a Student-t noise distri-
bution even when the true noise distribution is Gaussian. This is because it
does not incur a significant computational cost (especially in the DHGPM) but
with high degrees of freedom, the Student-t distribution tends to a Gaussian
distribution: the models can learn the noise distribution.

4. Online learning and forgetful online learning both tend to a good solution as
the amount of samples and data in the system increases. It is worth pointing
out that sometimes these methods perform better than offline learning and we
believe this might be because the weighting system can lead to bad samples
(which are often the early samples even after burn-in) having a small weight.
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Moveover, forgetful online learning, in particular, can ‘forget’ outliers which
would usually have a detrimental effect on the sample quality.

5. Learning with Student-t process state-space models was somewhat disappoint-
ing because it often had slightly worse (or similar) performance compared with
using Gaussian processes. This is contrary to the results stated in Shah et al.
[2014]; however, we believe this might be because EMCEE has a challenging
time sampling from models which use Student-t processes.

6. The deep Hilbert Gaussian process model trains much faster than the Hilbert
reduced-rank GP when we have high-dimensional inputs. However, for small
datasets it often takes longer to train than the full GP but it does seem to
consistently produce better results than the full GP. With large datasets, the
DHGPM produces good results while also having a training time much less
than the full GP. As a result, we only recommend using the DHGPM for datasets
larger than 1000 data points.

7. The deep Hilbert Gaussian process state-space model (DHGPSSM) can learn
with high-dimensional latent spaces significantly quicker than the model of
Svensson et al. [2016]. However, the limiting factor is the speed of latent state
samples via PGAS, which can be very with large datasets. That said, it has
shown competitive performance compared with the autoregressive full GP.

4.0.4 Future Work
Having studied GPSSMs in depth, we have identified three areas for future work.

1. High-Performance implementation of GPSSMs: We have implemented our mod-
els in pure Python; however, rewriting some of the key bottlenecks (optimisa-
tion steps, PGAS samples) in a low-level language or using GPUs should give a
significant performance benefit.

2. Combine DHGPMs and recurrent neural networks: Instead of using a DHGPM
inside a state-space model, it might be worth trying to combine DHGPMs with
recurrent neural networks by placing matrix-normal priors on all the weight
matrices in a similar way to how we constructed the DHGPMs. It would be
interesting to see if this improves the performance of the recurrent neural net-
work, and it could provide predictive distributions rather than point estimates.

3. Understand relationship between machine learning and functional analysis:
it seems that there is a link between statistical machine learning and func-
tional analysis. Considering that machine learning is a relatively young topic
compared with function analysis, it is worth investigating whether any of the
techniques of function analysis can be applied to machine learning problems.

Overall, we believe that GPSSMs could become one of the best methods for iden-
tification of time-dependant complex systems; however, scalability needs to be im-
proved.
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