
MENG INDIVIDUAL PROJECT

DEPARTMENT OF COMPUTING

Towards Automatic Verification of JavaScript
Programs

Author:
Beatrix de Wilde

Supervisor:
Prof. Philippa Gardner

Second Marker:
Prof. Alessio R. Lomuscio

June 19, 2017



Abstract

JavaScript, due to its dynamic nature and complex semantics, has fewer verification tools than
languages such as C and Java. In order to tackle this challenge, we introduce for the first time
a bi-abductive symbolic analysis for JSIL, an intermediate language for JavaScript verification.
Our analysis is scalable and can fully automatically infer specifications of JSIL procedures that
are non-recursive and do not contain loops.

Bi-Abduction provides the foundation of our analysis; we give the rules of our bi-abductive
symbolic execution and prove their soundness. We further present an algorithm for generating
procedure specifications using these rules.

We give an implementation of our bi-abductive analysis for JSIL and use it to generate specifi-
cations for JSIL programs. Using the tool, we generate and verify specifications for some of the
JavaScript internal functions. Finally, we evaluate the quality of the automatically generated
specifications by comparing them with their handwritten counterparts.



Acknowledgements

First, I would like to thank my supervisor, Prof. Philippa Gardner, for her wholehearted support
throughout this project.

I would also like to thank José Fragoso Santos for all his input and feedback, it has been a
privilege to work with him. I am grateful to Petar Maksimović and Azalea Raad, for sharing
their insight during the project.

For her inspiration and advice across my time at Imperial, I would like to thank my tutor, Prof.
Susan Eisenbach.

Finally, I would like to thank my family and friends for their endless support across these past
four years.



Contents

1 Introduction 5

2 Background 7

2.1 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Program Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Static Verification Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Related Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Separation Logic and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Separation Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Bi-Abduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Related Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The JavaScript Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The JavaScript Intermediate Language . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Motivation for JSIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 The JavaScript Intermediate Language . . . . . . . . . . . . . . . . . . . . 14

2.4.3 The JavaScript Verification Toolchain . . . . . . . . . . . . . . . . . . . . . 17

3 Symbolic Analysis 21

2



Contents 3

3.1 Axioms for Basic Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Symbolic Execution Rules for Control Flow Commands . . . . . . . . . . . . . . . 25

4 Bi-Abductive Symbolic Analysis 31

4.1 Bi-Abductive Analysis: High Level Description . . . . . . . . . . . . . . . . . . . . 31

4.2 Bi-Abductive Axioms for Basic Commands . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Bi-Abductive Proof Rules for Control Flow Commands . . . . . . . . . . . . . . . 35

4.4 Bi-Abductive Algorithm for JSIL Programs . . . . . . . . . . . . . . . . . . . . . . 39

5 Implementation for Bi-Abductive Symbolic Analysis 43

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Implementation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Evaluation 49

6.1 Evaluation Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Generating Specifications for the Internal Functions . . . . . . . . . . . . . . . . . 50

6.2.1 Specification Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 55

7.1 Objectives Achieved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57

A JSIL Semantics and Substitution Lemma 61

A.0.1 JSIL Substitution Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.0.2 JSIL Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



Contents 4



Chapter 1

Introduction

JavaScript is the developer’s language of choice for Web applications and is supported by all
major browsers. It is an untyped, dynamic language, with complicated semantics and notori-
ously confusing corner cases. Among other features, it supports extensible objects, prototype
inheritance, dynamic property access, dynamic functions calls, and type coercion for delaying
error reporting. These features interact in an intricate and sometimes unexpected fashion and
can lead to developers unknowingly introducing bugs and vulnerabilities. For example, even
simple addition can perplex the seasoned developer: adding an object to an empty string results
in the number 0 rather than an error, whereas reversing the arguments leads to a completely
different result and type. In particular, the JavaScript program ’’+ {} results in the string
’[object Object]’ whereas the program {} + ’’ results in the number 0.

In addition to the substantial economic cost resulting from vulnerabilities, program errors in
medical software have led to fatalities in the past. Developers aim to reduce bugs dominantly
through testing and code reviews. This requires significant developer effort and is subject to
human error. Therefore program verification tools have seen a rise in the recent years. For
practical applications, it is vital that these tools can scale to industrial-level codebases. Com-
pared to other languages, such as Java, C, and C++, JavaScript has far fewer tools available
for developers.

As part of an endeavour to verify JavaScript programs, the Program Specification and Verifica-
tion Group at Imperial College London has developed JaVerT [35], which is a semi-automatic
verification toolchain for JavaScript based on separation logic [40]. JaVerT can verify functional
correctness properties of JavaScript programs annotated with preconditions and postconditions
for functions, loop invariants, and folding and unfolding instructions for user-defined predi-
cates, written in an assertion language, JS Logic. JaVerT translates JavaScript programs to the
simple intermediate goto language JSIL, translates JS Logic assertions to JSIL Logic assertions,
and performs verification at the level of JSIL. Correctness results have been established to prove
that verification at the level of JSIL lifts to verification at the level of JavaScript.

As a first step towards fully automated verification of JavaScript programs, we aim to generate
automatic specifications for JSIL procedures. Bi-Abduction [12] is a technique for automatically
generating specifications through the use of separation logic inference rules. The properties that
can be proven using bi-abduction are weaker than those provable semi-automatically, but bi-
abduction allows verification tools to scale to industry-grade code bases.

5



Chapter 1. Introduction 6

Motivation

There are two key motivations for having a fully automatic tool: to automatically verify gen-
eral properties and to support the developer in verifying functional properties of JavaScript
programs.

Specifications provide the footprint of a program. Therefore, using these specifications it is pos-
sible to automatically verify properties of programs. In particular, verification of confinement
properties is of interest for JavaScript programs. Confinement involves preventing untrusted
code from modifying or accessing security-sensitive resources. As web applications are usually
composed of many programs coming from different origins executing in the same global con-
text, it would be beneficial to automatically verify whether sensitive resources get tainted or
leaked.

In addition to automatic verification of general properties, generating specifications can support
developers in verifying functional properties. As it can be taxing for developers to manually
annotate code and write specifications for a large codebase, automatically generating specifica-
tions allows the developer to annotate an interesting subset of procedures or adapt generated
specifications to verify more expressive functional properties.

Contribution

We formalise the symbolic analysis used for the semi-automatic JaVerT tool in a way that closely
follows the implementation of the tool (Section 3). In particular, and in contrast to a previous
formalisation of JSIL logic [35], our analysis is specified in an algorithmic fashion, meaning
that it can be straightforwardly implemented and serve as a basis for the bi-abductive analysis
we are aiming at.

Building upon our symbolic analysis for JSIL, we introduce a bi-abductive symbolic analysis that
generates verifiable specifications for JSIL procedures (Section 4). We establish the soundness
of both analyses. Furthermore, we present an algorithm, that given a JSIL program, infers the
specifications of its procedures. Our analysis is a first step to a fully-fledged bi-abudctive analysis
for JSIL. In particular, we do not support the inference of loop invariants and specifications of
recursive procedures.

Finally, we introduce the tool, JSIL Abduce, that implements the bi-abductive symbolic analysis
for JSIL. The tool is able to produce procedure specifications for a JSIL program (Section 5).
We evaluate the tool by using JSIL Abduce to automatically generate specifications for the JSIL
implementations of the JavaScript internal functions (Section 6). We check that the generated
specifications are correct by checking that they are satisfied by their corresponding implemen-
tations, using the existing verification tool for JSIL, JSIL Verify [35]. We analyse the quality of
the bi-abductive analysis by comparing the inferred specifications with the prior handwritten
specifications.

In the conclusion (Section 7) we discuss how our contributions can be used to achieve fully
automatic verification of JavaScript as well as possible applications of such an analysis.



Chapter 2

Background

First, we provide a background in program verification and static analysis techniques (Section
2.1). We give a summary of related work in this area. We then focus on separation logic, bi-
abduction and a range of program verification tools based on separation logic (Section 2.2).
Additionally, we give high level details of the JavaScript language (Section 2.3).

Finally, we discuss work by the Program Specification and Verification Group at Imperial Col-
lege London in JavaScript verification. In particular, we describe the JavaScript intermediate
language (Section 2.4.2) and the JavaScript verification tool chain (Section 2.4.3).

2.1 Program Verification

2.1.1 Program Correctness

Program correctness is vital, not only to safety-critical code, but to any industrial level system.
The impact of avoidable bugs is evident in today’s society, with recent vulnerabilities such as
a bug in Microsoft Windows [34] which was exploited by the ransomware WannaCry [41].
Affecting over 150 countries, the ransomware encrypted the files of the infected computers
requesting a ransom in Bitcoins. The impact of software bugs can be catastrophic and even lead
to loss of lives, as shown by a bug in Therac-25, a radiation therapy machine, which led to the
death of six patients from radiation overdose [28].

In practice, developers ensure the correctness of code through testing and code reviews. This is
at the expense of developer time and is subject to human error. Dijkstra noted "Testing shows
the presence, not the absence of bugs" [9]. Therefore, the effectiveness of testing is based on
the coverage of the test suite, which, in turn, depends on the manual effort of the developer.
Increasingly, developers are turning to automatic verification tools to analyse the correctness of
programs and support them in the development process. Program correctness can be split into
verifying two types of properties: functional and general.

Verifying functional properties requires checking that a program meets a specification [27].
Program specifications typically consist of a precondition and postcondition. The precondition
outlines the state required before the code is run and the postcondition specifies the state which
holds after execution. We give an example specification in Figure 2.1. The program increments
the i-th element of the array. The precondition states that the i-th element must equal some
value u and the postcondition states the i-th element must equal to u+1 after executing the
program.

7



Chapter 2. Background 8

1 \\ Precondition: arr[i] = u
2 arr[i] += 1;
3 \\ Postcondition: arr[i] = u + 1

Figure 2.1: Specification example

On the other hand, verifying general properties involves proving whether a program will pro-
duce a certain type of error, such as an integer overflow or a null pointer exception. In the
example in Figure 2.1, a general property which may be checked is whether the index i is in the
bounds of the array. General properties are often easier to automatically verify as they require
less developer input.

Generally, verification is split into static and dynamic analysis [18]. Static analysis involves
evaluating the program without running the code, whereas dynamic analysis requires an envi-
ronment in which the program is run. Typically, dynamic analysis [2, 36] is scalable as it only
explores realistic paths. However, dynamic analysis requires the entire execution environment
and often the entire codebase, therefore it is hard to analyse isolated sections of the system. De-
veloper tests, such as unit tests, can be considered a form of dynamic analysis. In comparison,
static analysis is able to explore more execution paths, gaining much higher coverage. Addi-
tionally, if the analysis is performed in a modular style, then it is able to analyse incomplete
sections of code.

2.1.2 Static Verification Techniques

We will now explore the main techniques used in static analysis tools.

SAT and SMT solvers are required for many backends of static analysis tools [15, 3, 8]. Satis-
fiability (SAT) solvers take a boolean formula and try to solve for a variable assignment where
the formula evaluates to true. Satisfiability modulo theories (SMT) solvers are similar to SAT
solvers; however, they take a formula in the first-order logic with equality. Competitions are run
in order to encourage advancement in SAT and SMT solvers [32, 30].

Model checking is a lightweight technique to check whether the program satisfies a property
instead of verifying the entire system [14, 22]. Given a model, M , which is a representation of
a system and a temporal logic formula, φ, relating to the property to be verified, then we check
that the model satisfies the formula. Formally, M |= φ.

Bounded model checking (BMC) takes a program transition system and unrolls the loops to a
predefined depth [6, 13]. A SAT solver can then check whether there is a property violation up
to that depth. BMC is an under-approximation and can scale for large programs. The developer
need only provide a correctness property.

Symbolic execution evaluates program instructions on symbolic values instead of concrete
values [25]. Symbolic values represent an entire range of values that a variable can take,
and get constrained by conditions resulting from the program path covered so far. Therefore,
symbolic execution analysis does not need to perform the infeasible task of exhaustively testing
all possible concrete input values. Additionally, symbolic execution has the ability to produce
concrete test cases, and is therefore usually the basis of many testing tools.

In order to illustrate symbolic execution of a program, we give a snippet of code for a binary
search algorithm in Figure 2.2. The code calculates the middle of the upper and lower bounds,
then it checks if the search key is at that index. Otherwise, it checks if the search key is smaller
or greater than the middle index and returns.



Chapter 2. Background 9

1 index = (lower_index + upper_index) / 2;
2

3 if (arr[index] = key) {
4 return index;
5 } else if (arr[index] < key) {
6 lower_index = index + 1;
7 } else {
8 upper_index = index - 1;
9 }

Figure 2.2: Code Snippet for Binary Search

We give the symbolic execution graph for this code snippet in Figure 2.3. Branching of the
symbolic execution occurs when an if statements is reached, the path conditions are recorded
for each branch. For the branch, where the search key is greater than the middle index, the
path conditions not (arr[index] = key) and not (arr[index] < key) are combined to the single path
condition arr[index] > key. It was discovered that almost all binary searches contain a bug [24],
if the code snippet given in Figure 2.2, is written in Java then the first line contains a bug. An
integer overflow occurs if the sum of lower_index and upper_index exceeds the maximum positive
value for type int.

Figure 2.3: Symbolic Execution Graph of Code Snippet for Binary Search

2.1.3 Related Tools

KLEE [10], a symbolic execution tool, automatically generates tests for the intermediate lan-
guage LLVM. The tool uses environment models written in C in order to stub system calls. The
core KLEE engine uses the STP constraint solver [31] to solve branch conditions and search
heuristics, random path selection and coverage-optimised search to decide which paths to ex-
plore. The focus of KLEE is on general properties and it succeeds in finding many bugs, mostly
memory-related errors, in well established-code.



Chapter 2. Background 10

Symbolic PathFinder (SPF) [38, 39] focuses on the verification of Java. The tool symbolically
executes the intermediate language Java ByteCode. This symbolic execution is built on top
of a model checking tool, Java PathFinder [42]. When branching, the path conditions are
checked by constraint solvers. The tool uses three constraint solvers, Choco [1], CVC3 [33] and
IASolver [20], for different types of constraints. JUnit test cases can be generated by the tool.

CBMC [26] is a bounded model checker for annotated C and C++ programs. First, it translates
the program into an intermediate goto language. It then performs symbolic execution unrolling
the loops to a predefined depth. It passes the resulting formulae, corresponding to paths though
the program control flow graph, into the SAT solver MiniSat 2.2.0 [17]. CBMC can be run with
increasing unrolling depths, in order to reduce false negatives.

2.2 Separation Logic and Tools

2.2.1 Hoare Logic

Hoare logic, a system to reason about the correctness of programs, was developed by Tony
Hoare in the 1960s [21]. Hoare Triples describe the connection between a program’s precondi-
tion P, the code C, and postcondition Q. A Hoare Triple,

{
P
}
C
{
Q
}

, can be interpreted as “if
the precondition P holds, then after executing the program C, the postcondition Q will hold".
Proof of a Hoare Triple

{
P
}
C
{
Q
}

gives partial correctness. In order to establish total correct-
ness, termination of the Hoare Triple must also be proven. Although Hoare Logic is capable of
reasoning about programs that alter the variable state, extending it to account for heap state
leads to issues with scalability when it comes to reasoning about programs.

2.2.2 Separation Logic

Separation Logic [40] extends Hoare Logic in order to scalably reason about the correctness
of programs with heap state. It extends the formulae of predicate calculus with assertions and
connectives to describe the heap. Four new constructs are added to describe the heap: the
empty heap emp; the singleton heap e1 7→ e2; the separating conjunction a1 ∗ a2; and the
separating implication a1 −−∗ a2.

The assertion emp asserts the heap is empty. The assertion e1 7→ e2 asserts the heap has exactly
one cell, with the address given by the value of the expression e1 and the contents given by the
value of the expression e2. The assertion a1 ∗ a2 asserts the heap can be split into two disjoint
parts, where one part satisfies a1 and the other satisfies a2. The assertion a1 −−∗ a2 asserts if the
heap is extended with a part where a1 holds, then in the resulting heap a2 holds.

The Frame Rule, given in Figure 2.4, allows reasoning about portions of the heap that are
affected by the program code C, leaving the framed section R of the heap unmodified. This
allows for local reasoning about the heap.

FRAME{
P ∗ R

}
C
{
Q ∗ R

}{
P
}
C
{
Q
}

where no variable occurring free in R is modified by C.

Figure 2.4: Frame Rule



Chapter 2. Background 11

2.2.3 Bi-Abduction

Abductive inference, described by Charles Peirce [37], finds the most likely explanation for an
observation. Notably adopted by the fictional detective Sherlock Holmes in the works of Sir
Arthur Conan Doyle, Holmes is able to solve cases by abducing important crime information
from clues. Calcagno et al. [12] proposed using abduction in order generate program specifica-
tions.

Formally, abductive inference is when, given an assumption A and an observation O, we abduce
the missing assumption M. In first-order logic, this is presented by the entailment A ∧M ` O.
This problem has been adapted for separation logic and is presented by the entailment A ∗M `
O. This entailment states that given two spatially disjoint assumptions, A and M, we are able to
entail the observation O.

Bi-Abduction [12] generalises the abductive inference problem. It solves the following question:
Given an assumption A and an observation O, what is the required missing assumption M and
additional untouched conclusion F not captured by the observation O? Formally, the problem
can be given by the entailment A ∗M ` O ∗ F . We call the missing state M the anti-frame and
F the frame axiom.

Upon calling a procedure in a program, we are able to use bi-abduction to solve for both the
additional state required before calling the procedure and any additional state not touched by
the procedure call. Given the precondition of the procedure being called and the current state
we solve the problem current state ∗M ` precondition ∗ F .

We give an example of a simple addition procedure add(x,y) which adds the two inputs x and
y together. The precondition of the procedure is

{
x 7→ a ∗ y 7→ b

}
and the postcondition is{

x 7→ a ∗ y 7→ b ∗ z 7→ a+ b
}

. When calling this procedure in a state
{
x 7→ 4 ∗ w 7→ 2

}
we

pose the bi-abduction question:

x 7→ 4 ∗ w 7→ 2 ∗ ?M ` x 7→ a ∗ y 7→ b ∗ ?F

A possible solution is ?M = y 7→ b ∗ a .
= 4 and ?F = w 7→ 2, where ?M is required for the

precondition and ?F is untouched by the precondition.

2.2.4 Related Tools

Separation logic allows verification tools to reason about programs at a larger scale. We discuss
some of these tools.

An initial experiment into whether hand written separation logic proofs could work in an auto-
matic environment was explored with the tool Smallfoot [4]. Smallfoot is a a semi-automatic
tool, as annotations for preconditions and postconditions are required. A specially designed in-
put language was developed for the tool. The assertion language provides inductive predicates
for trees and lists. They note the potential for symbolic execution in automating separation
logic proofs.

Expanding on Smallfoot, Space Invader [43] adds a widening operator to the symbolic exe-
cution in order to guarantee termination of fixed-point calculations. These calculations are
performed in the semantics of while loops. Therefore, the tool is able to find and then prove
while loop invariants.

Similar to Space Invader, SLAyer [5], builds upon Smallfoot’s assertion language. The tool



Chapter 2. Background 12

verifies C programs and targets memory safety errors. No annotations are required. The tool’s
approach to loop invariants is similar to Space Invader. The Z3 SMT solver [15] is used to
reason about pure formulae. SLAyer is able to verify sizeable code bases, including Windows
device drivers.

Abductor [12], goes one step further by generating specifications and is, therefore, fully auto-
matic and able to scale to larger programs. Bi-Abduction is used to generate preconditions for
procedures. The specifications Abductor generates are small specifications, as they only contain
the footprint of the procedures.

A specification table is gradually built up as the functions are split into partitions where every
function is in a lower or the same partition with respect to its caller. The tool starts by inferring
the specifications of the functions in the first partition. Then, it moves on to inferring the speci-
fications of the functions in the second partition. The tool continues through all the partitions,
where in each partition it uses the specifications already generated from the lower partitions.

Abductor was developed further into the industrial level tool Infer [11]. The compositional
nature of the tool allowed it to properly scale. This is shown through the ability for Infer to
be integrated into the Facebook development cycle. Initially aimed at C, the tool has also been
expanded to Java.

Verifast [23] is a semi-automatic verification tool based on separation logic. The tool requires
annotations for preconditions and postconditions, but not for loop invariants. It can take pro-
grams written in C and Java and supports folding and unfolding of user defined predicates. The
toolchain JaVerT [35] is inspired by Verifast, but targets JavaScript verification and is discussed
in Section 2.4.3.

2.3 The JavaScript Language

JavaScript is the predominant language for Web developers. It is conventionally coupled with
CSS and HTML for the writing of client-side web applications. Untyped, dynamic-natured and
supporting concepts from multiple programming paradigms, JavaScript makes the detection of
vulnerabilities difficult. In addition to the nature of the language, most applications include
external libraries such as jQuery, React, and Async, as well as other third-party code. Having
multiple scripts from different sources running in the same global environment can easily lead
to leaking sensitive information.

JavaScript is standardised by the ECMAScript Committee, which provides and regularly updates
the ECMAScript Language Standard. The standard is currently in its sixth edition (ES6). The
standard also defines a strict mode of the language, which improves error reporting and has
better behavioural properties. For this project, we will be working with the strict mode of the
fifth edition of the standard (ES5 Strict) [16], as JaVerT is targeting ES5 Strict. There have been
several attempts at formalising the semantics of JavaScript. Small-step operational semantics
for ECMAScript have been defined by Maffeis et al [29] for ES3. Drawing inspiration from that
work, JSCert [7] provides a formalisation of ES5 semantics in the Coq theorem prover.

JavaScript Objects. As defined in the ECMAScript specification, objects in JavaScript are col-
lections of properties. There are two types of object properties: internal and named. Internal
properties capture the inner workings of the language, such as prototype inheritance and ob-
ject extensibility, and are not available to the programmer. Named properties can be either data
properties or accessor properties and, unlike in C++ or Java, they are not associated with values,
but rather with property descriptors. Property descriptors are lists of attributes, which describe
the ways in which a property can be accessed and/or modified. Depending on the attributes



Chapter 2. Background 13

they contain, named properties can either be data properties or accessor properties. Data prop-
erties contain the value, writable, enumerable, and configurable attributes (denoted by [V], [W],
[E], and [C]), whereas accessor properties contain get and set attributes (denoted by [G] and
[S]), as well as [E] and [C]. The attributes have the following semantics: [V] holds the actual
value of the property; [W] describes whether or not the property’s value can be changed; [E]
indicates whether or not the property will be included in a for-in enumeration; [C] allows or
disallows any change to the other attributes (except for value, which it does not affect), as well
as any change in the type of the property (data to accessor and vice versa); [G] and [S] play a
role similar to getters and setters of Java and provide property encapsulation.

JavaScript Initial Heap. Before the execution of any JavaScript program, an initial heap must
be established, as described in Chapter 15 of the ECMAScript standard. It must contain a unique
global object as well as the constructors and prototypes of all JavaScript built-in libraries, such
as Object, Function, Array, and String, which are widely used by JavaScript programmers.

The global object is critical for the correct functioning of JavaScript programs, as it holds: all
global variables; value properties such as NaN, infinity and undefined; and function properties
such as eval, which executes the supplied string argument containing arbitrary JavaScript code.
Some properties of the global object are fixed; it is, for instance, not possible to reassign to
undefined, Array, or String.prototype. It is, however, possible to reassign to eval, as shown in
figure 2.5, which may introduce serious vulnerabilities. It is also possible to perform prototype
poisoning by, for instance, adding or overriding the properties in the built-in object prototypes,
thereby altering their functionality and possibly gaining access to sensitive information.

1 eval(’2+2’) // returns 4
2 // alters the global objects eval function
3 this.eval = new Function(’return this;’)
4 // which now returns the global object
5 eval(’2+2’) // returns {global: ...}

Figure 2.5: Altering the eval property of the global object

In addition to built-in library functions, JavaScript has internal functions not accessible to de-
velopers. These functions provide core functionality, including: type conversion methods such
as toPrimitive and toBoolean; prototype chain traversal methods such as getProperty; equality
comparison methods; and the methods getValue and putValue.

2.4 The JavaScript Intermediate Language

A separation logic (JS Logic) was developed for a subset of JavaScript, however it is only able
to model a simplified JavaScript heap and is difficult for automation purposes. Therefore, an
intermediate goto language, JSIL, was developed. JSIL, is able to overcome verification diffi-
culties with JavaScript and JS Logic. The toolchain, JaVerT, then compiles JavaScript programs
and JS logic annotations to JSIL and verifies the JSIL programs.

In section 2.4.1 we discuss the complexities involved with JavaScript and the separation logic
developed for JavaScript. In section 2.4.2 we discuss the JSIL language and finally in section
2.4.3 we discuss the toolchain, JaVerT.



Chapter 2. Background 14

2.4.1 Motivation for JSIL

A separation logic (JS Logic) has been developed for a subset of JavaScript by Gardner et
al. [19], built upon a big-step operational semantics of ES3. JS Logic simplifies the memory
model and targets only a fragment of JavaScript. Nonetheless, it is very complex, as illustrated
by the function call rule in figure 2.6, which captures the JavaScript function call.

Figure 2.6: Function Call Rule in JS Logic [19]

JS Logic assertions feature standard boolean assertions and operators on expressions, the sep-
arating conjunction ∗ and implication −−∗, and the heap cell assertion (E1, E2) 7→ E3, which
asserts that the object at location E1 has field E2 with value E3 (or has no field E2, if E3 equals
ø). It also features a non-standard separation logic connective, P∗tQ (read: sepish), which de-
scribes a heap that can be split into two parts that do not need to be disjoint. This connective, as
well as the −−∗ separating implication are known to be very difficult for automation. Expanding
JS Logic, as formulated in [19] to the full memory model of JavaScript and automating it is,
therefore, not feasible.

2.4.2 The JavaScript Intermediate Language

The JSIL language is simpler compared to JavaScript. It does not contain dynamic function
calls, also conditional branches and loops are performed by goto commands and commands
are explicit with no corner cases. Additionally, the separation logic for JSIL (JSIL Logic) is
comparatively simpler than JS Logic: it does not include the ∗t connective or the separating
implication −−∗ and therefore can be easily automated. Additionally, reasoning in JSIL Logic
does not require the simplification of the JavaScript memory model.

JSIL Syntax. The syntax of JSIL is given in Figure 2.7. A JSIL program p ∈ P is a set of top-
level procedures. Procedures consist of three elements: a procedure name, m ∈ Str; a list of
parameters, x and a list of commands, c. The list of commands is numbered and we use the
notation pm(i) to refer to the i-th command of procedure m in program p. JSIL does not provide
an explicit return command; a procedure terminates when it reaches one of two dedicated
indexes, inm and ier. When the inm-th command is reached, the procedure returns normally
and returns the value of the dedicated variable xret; when the ier-th command is reached, the
procedure returns an error and returns the value of the dedicated variable xerr. JSIL commands
are divided into basic commands, which do not affect the control flow of programs, and control
flow commands, which do affect it.

JSIL basic commands include support for object creation, variable assignment and field manip-



Chapter 2. Background 15

Strings: m ∈ Str Numbers: n ∈ Num Booleans: b ∈ Bool Locations: l ∈ L
Variables: x ∈ XJSIL Literals: λ ∈ Lit ::= n | b | m | undefined | null

Types : t ∈ Types ::= Num | Bool | Str | Undef | Null | Empty | Obj | List | Type
Values : v ∈ VJSIL ::= λ | l | empty | error | t | v

Expressions : e ∈ EJSIL ::= v | x | 	 e | e ⊕ e | typeOf (e) | e | nth (e, e)

Basic Commands:
bc ∈ BCmd ::= skip | x := e | x := new () | x := [e, e] | [e, e] := e | delete (e, e) |

x := hasField (e, e) | x := getFields (e)

Commands: c ∈ Cmd ::= bc | goto i | goto [e] i, j | x := e(e) with j | x := φ(x)

Procedures : proc ∈ Proc ::= proc m(x){c}

Notation : x, v, e, respectively, denote lists of variables, values, and expressions.

Figure 2.7: JSIL Syntax

ulation including deletion, lookup and assignment. Additionally, there is support to check if an
object has a field and to get all the fields of an object. The notation [e1, e2] denotes the field e2
of object e1.

JSIL control flow commands use numbered command labels to transfer control to other com-
mands in the current procedure. The unconditional goto command transfers control to the
command labelled i. The conditional goto command transfers control to the command labelled
i if the expression e evaluates to true; otherwise, control shifts to the command labelled j. The
procedure call command obtains the procedure name and the arguments by evaluating, respec-
tively, the expression e and the list of expressions e. The result of the procedure call is assigned
to the variable x. If the program raises an error, control is transferred to the j-th command oth-
erwise, control is transferred to the following command. The phi-assignment command assigns
an element of the list x to the variable x. Each variable in the list x relates to a path taken to
the current command. If there are n variables in the list x then there are n paths to the current
command. If the i-th path was taken then the i-th element of x is assigned to x.

JSIL expressions include JSIL values, JSIL variables, lists of expressions and operators on ex-
pressions. There are various unary and binary operators that can be applied to JSIL expressions
as well as the typeOf (e) operator which returns the type of an expression and the nth (e1, e2)
operator which returns the e2-th element of the list e1.

In order to illustrate some aspects of JSIL, we give the example below, which demonstrates
a JSIL program with one procedure that attempts to retrieve an interval value from a timeout
object. In the program, " else ", "then" and "rlab" are command labels. The basic command

hasField checks if the timeout object has the field interval and assigns the result to variable x.
Then, the control flow command goto transfers control to the command labelled "then" if the
variable x evaluated to true, i.e. if the field interval exists; otherwise, it transfers control to the
command labelled " else ".

The basic command at the label "then" assigns the timeout interval to the variable y, control is
then transferred to the unconditional goto which jumps to the return label rlab. The program
then terminates with the return variable y.

The basic command at the label " else " assigns the default timeout interval to the variable y,
control is then transferred to the skip command which again terminates with the return variable
y.



Chapter 2. Background 16

proc getTimeoutInterval (timeout, defVal) {
x := hasField(timeout, "interval");
goto [x] then else;

then: y := [timeout, "interval"];
goto rlab;

else: y := defVal;
rlab: skip

} with {ret: y, rlab;};

JSIL Semantics. The JSIL memory model includes:

• A JSIL store, ρ ∈ Sto : XJSIL ⇀ VJSIL, which maps variables to values.

• A JSIL heap, h ∈ HJSIL : L×XJSIL ⇀ VJSIL, which maps locations and variables to values.

Each JSIL procedure is executed in an individual store. The semantics of JSIL expressions are
denoted by the judgement JeKρ = v, where evaluating the expression e with respect to the store
ρ results in the value v.

The semantics of JSIL basic commands are denoted by the judgement JbcKh,ρ = (h′, ρ′, v) where
evaluating the basic command bc with respect to the store ρ and heap h results in the value
v, store ρ′ and heap h′. The semantics of JSIL control flow commands are denoted by the
judgement p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, v〉 where starting from the i-th command in procedure m in
program p with heap h and store ρ, where we have come from the j-th command, results in the
heap h′, store ρ′ and value v. The full semantics for JSIL are given in Appendix A.0.2.

JSIL Logic Assertions. JSIL logic assertions are described in Figure 2.8. JSIL assertions include
existential quantification, heap assertions, and pure boolean assertions, excluding disjunction.
The JSIL heap assertions consist of the separating conjunction, the empty heap, the heap cell
(E1, E2) 7→ E3 where the field E2 in object E1 maps to the value E3 and the empty fields
assertion emptyFields(E | E) where the object E can only possibly have the fields E.

LOGICAL VALUES : V ∈ VLJSIL , v | ∅ | V
LOGICAL EXPRESSIONS : E ∈ ELJSIL , V | x | X | 	 E | E ⊕ E | E

JSIL ASSERTIONS : P ∈ ASJSIL , true | false | ¬P | P ∧ P | ∃X.P PURE BOOLEAN

| E = E | E ≤ E EQUALITIES

| emp | (E,E) 7→ E HEAP

| P ∗ P | emptyFields(E | E)

Figure 2.8: JSIL Logic Assertions

JSIL logical expressions used in JSIL assertions are an extension of JSIL expressions with logical
variables and the value ∅. The special value ∅ is used with the heap cell assertion (E1, E2) 7→ ∅
to denote that the objectE1 does not have the fieldE2. The semantics of JSIL logical expressions
are similar to the semantics of JSIL expressions. The judgement JEKερ describes the evaluation
of the expression E with respect to the store ρ and logical environment ε. Logical values consist
of JSIL values and the special value ∅.

In order to illustrate some aspects of JSIL assertions, we give the example below, which is a
JSIL assertion describing one object whose location in the heap is l. This object has three fields,
interval, function, and @proto, described by the first three heap cell assertions. There, we see
that the value of interval is the value of variable time, that the value of function is undefined,



Chapter 2. Background 17

and that the value of @proto is null. The emptyFields assertion states that the only fields that
the object has are interval, function and @proto. The equality assertion states that the variable
time has value 400.

{
(l, interval) 7→ time ∗ (l, function) 7→ undefined ∗ (l,@proto) 7→ null ∗
time = 400 ∗ emptyFields(l | {{interval, function,@proto}})

}

JSIL abstract heaps H ∈ H∅JSIL : L×Str ⇀ VLJSIL are an extension of JSIL heaps with the special
value ∅. An abstract heap is well-formed, if all objects have a non-none @proto field. Formally,
∀H. wf(H) ⇔ (∀l. (l,−) ∈ dom(H) ⇒ ∃V. V 6= ∅ ∧ (l,@proto) 7→ V ∈ H). A JSIL logical
environment ε ∈ EnvJSIL : XLJSIL ⇀ VLJSIL is a mapping from logical variables to logical values.

A JSIL assertion P ∈ ASJSIL is satisfiable if H, ρ, ε |= P where H is an abstract heap, ρ is a
JSIL store and ε is a logical environment. The satisfiability relation of JSIL assertions is given in
Figure 2.9.

H, ρ, ε |= true ⇔ always
H, ρ, ε |= false ⇔ never
H, ρ, ε |= ¬P ⇔ H, ρ, ε 6|= P
H, ρ, ε |= P ∧Q ⇔ H, ρ, ε |= P ∧Q and H, ρ, ε |= Q
H, ρ, ε |= ∃X.P ⇔ ∃V ∈ VLJSIL. H, ρ, ε[X 7→ V ] |= P
H, ρ, ε |= E1 = E2 ⇔ JE1Kερ = JE2Kερ
H, ρ, ε |= E1 ≤ E2 ⇔ JE1Kερ ≤ JE2Kερ
H, ρ, ε |= emp ⇔ H = emp
H, ρ, ε |= (E1, E2) 7→ E3 ⇔ H = (JE1Kερ, JE2Kερ) 7→ JE3Kερ
H, ρ, ε |= P ∗Q ⇔ ∃H1, H2. H = H1 ] H2 ∧ (H1, ρ, ε |= P ) ∧ (H2, ρ, ε |= Q)
H, ρ, ε |= emptyFields(E | E1, ..., En)⇔ H =

⊎
m6∈{JE1Kερ,...,JEnKερ}

((JEKερ,m) 7→ ∅)

Figure 2.9: JSIL Logical Assertions (Satisfiability Relation)

2.4.3 The JavaScript Verification Toolchain

The JavaScript Verification Toolchain (JaVerT), shown in Figure 2.10, verifies JavaScript pro-
grams annotated with JS Logic specifications. It is based on an infrastructure which has three
components: (1) JS-2-JSIL, the compiler from JavaScript to JSIL; (2) JSIL Verify, a semi-
automatic tool for verifying JSIL code annotated with JSIL logic specifications; and (3) JSIL
implementations and verified specifications of the JavaScript internal functions. JaVerT works
in the following way: first, JS-2-JSIL complies JavaScript to JSIL and translates JS logic annota-
tions to JSIL logical annotations. Then the semi-automatic tool JSIL Verify verifies the compiled
JSIL programs with respect to the corresponding JSIL logic annotations, using the JSIL logic
specifications of the JavaScript internal functions.

Annotations for JSIL programs are JSIL logic assertions. Annotations are given for procedure
specifications which include pre- and postconditions. Additionally, annotations for loop invari-
ants, and folding and unfolding user-defined predicates can be written using JSIL logic.

JS-2-JSIL compiles JavaScript code to JSIL code, line-by-line following the ECMAScript English
standard. In order to show this correspondence, as well as how the use of the internal functions
in the standard is reflected in compiled JSIL code, we give a snippet of JSIL code which is
compiled from the JavaScript program 0 == ’’.



Chapter 2. Background 18

As described in the standard, the abstract equality operator first calls getValue on both argu-
ments. Then, it follows the abstract equality comparison algorithm. This algorithm is captured
by the i__abstractEquality internal function.

The ECMAScript standard notes in the algorithm that "If Type(x) is Number and Type(y) is String,
return the result of the comparison x == ToNumber(y)". Therefore the result of this program is
true, as converting the empty string to a number results in the value 0. The equality comparison
is the source of much confusion amongst JavaScript developers. It is recommended to use the
strict equality operator (===) rather than the equality operator (==).

(* The setupInitialHeap function creates the initial heap,
which is established before the execution of any JavaScript program *)

x_0 := "setupInitialHeap"();
x_sc_0 := {{ $lg }};
(* Set this to the global object location *)
x__this := $lg;
(* Get value of first argument *)
x_1_v := "i__getValue"(0.) with elab;
(* Get value of second argument *)
x_2_v := "i__getValue"("") with elab;
(* Perform abstract equality comparison algorithm *)
x_3 := "i__abstractEquality"(x_1_v, x_2_v) with elab;
(* Get the value of the comparison result *)
x_3_v := "i__getValue"(x_3) with elab
xret := x_3_v;

JSIL Verify is a semi-automatic verification tool for JSIL. It is based on a symbolic execution
engine and an entailment engine. The entailment engine has two components: one for resolving
spatial entailments and the other for pure entailments. Spatial entailments are handled by JSIL
Verify, whereas the pure ones are delegated to the Z3 SMT solver. When verifying compiled
JavaScript code, the JSIL logic specifications for the internal functions are imported before the
symbolic execution begins.

Correctness of JaVert. The correctness of JaVert is given by systematic testing of JS-2-JSIL,
the soundness result for JSIL Logic and the correctness result for the translation of assertion
between JS Logic and JSIL Logic. JS-2-JSIL is tested against the ECMAScript ES6 Test262
test suite, where it passes all 8797 relevant tests. Additionally, the JavaScript internal functions
implemented in JSIL are step-by-step faithful to the standard and their specifications are verified
by JSIL Verify.



Chapter 2. Background 19

Figure 2.10: JaVerT [35]



Chapter 2. Background 20



Chapter 3

Symbolic Analysis

The symbolic analysis verifies JSIL procedure specifications. It performs this verification by
symbolically executing JSIL basic and control flow commands. We take the symbolic execution
rules introduced in [35], and modify them, so they closely relate to the implementation. In
particular, the revised rules explicitly show the continuation from the precondition to the final
state where the execution of the procedure does not fault. In the symbolic analysis we represent
the symbolic states as JSIL assertions. The symbolic analysis is split into two sections, first we
define the axioms for basic commands (Section 3.1) then we present the proof rules for the
control flow commands (Section 3.2). Additionally, in Section 3.2 we present an example of
the symbolic analysis. Finally, we establish the soundness of the symbolic analysis formally in
Theorem 1 by appealing to the semantics of JSIL commands.

3.1 Axioms for Basic Commands

The axioms for the JSIL basic commands, given in Figure 3.1, have the form {P} bc {Q}
meaning: when in a state where the JSIL assertion P holds, then executing the basic command
bc will not fault and if the execution terminates then it results in a state satisfying JSIL assertion
Q. Throughout the rules the notation e1

.
= e2 represents e1 = e2 ∧ emp.

We briefly explain the non-standard axioms.

• [OBJECT CREATION] When an object is created it has a single @proto field with a null value.
The emptyFields(x | @proto) assertion, states that the object only has the @proto field.

• [FIELD DELETION] In the field deletion rule, the object field @proto cannot be deleted.

• [MEMBER CHECK] In the member check rule, if the field’s value is not None (∅) then x is
true otherwise x is false.

Evaluation. Soundness of the hoare triples for basic commands is established by Lemma 1.
The lemma connects the hoare triples to the semantics of basic commands. In order to make
this connection abstract heaps are related to concrete heaps using the erasure function, b.c :

H∅JSIL → HJSIL : bHc(l, x) = H(l, x)
def⇐⇒ (l, x) ∈ dom(H) ∧ H(l, x) 6= ∅.

Lemma 1 (Frame Property and Soundness for Basic Commands). For all basic commands bc ∈
BCmd, abstract heaps H, Ĥ1, Ĥ2 ∈ H∅JSIL, stores ρ, ρf ∈ Sto, logical environments ε ∈ Env, values

21



Chapter 3. Symbolic Analysis 22

Basic Commands

FIELD ASSIGNMENT

{(e1, e2) 7→ −} [e1, e2] := e3 {(e1, e2) 7→ e3}

FIELD DELETION
P = (e1, e2) 7→ X ∗X 6 .= ∅ ∗ e2 6

.
= @proto

{P} delete(e1, e2) {(e1, e2) 7→ ∅}

FIELD ACCESS
P = (e1, e2) 7→ X ∗X 6 .= ∅
{P} x := [e1, e2] {P ∗ x

.
= X}

MEMBER CHECK
P = (e1, e2) 7→ X Q = P ∗ x .

= not (X = ∅)

{P} x := hasField(e1, e2) {Q}

VAR ASSIGNMENT

{emp} x := e {x .
= e}

OBJECT CREATION
Q = (x,@proto) 7→ null ∗ emptyFields(x | @proto)

{emp} x := new() {Q}

SKIP
{emp} skip {emp}

FRAME
{P} bc {Q}

{P ∗R} bc {Q ∗R}

CONSEQUENCE
{P ′} bc {Q′} P ` P ′ Q′ ` Q

{P} bc {Q}

EXISTS
{P} bc {Q}

{∃X. P} bc {∃X. Q}

Figure 3.1: Hoare Triples for Basic Commands

v ∈ VJSIL, JSIL heaps ĥf ∈ HJSIL, and assertions P,Q ∈ ASJSIL, if {P} bc {Q}, H, ρ, ε |= P ,
and JbcKbH ] Ĥ1 ] Ĥ2c,ρ = (ĥf , ρf , v), then there is an abstract heap Hf such that Hf , ρf , v |= Q,

ĥf = bHf ] Ĥ1 ] Ĥ2c and JbcKbH ] Ĥ1c,ρ = (bHf ] Ĥ1c, ρf , v).

Proof. For convenience, we name the hypotheses as follows:

• H1: {P} bc {Q}

• H2: H, ρ, ε |= P

• H3: JbcKbH ] Ĥ1 ] Ĥ2c,ρ = (ĥf , ρf , v)

Our goal is to show that there exists a JSIL abstract heap Hf , such that:

• G1: JbcKbH ] Ĥ1c,ρ = (bHf ] Ĥ1c, ρf , v)

• G2: Hf , ρf , ε |= Q.

• G3: ĥf = bHf ] Ĥ1 ] Ĥ2c.

We proceed by induction on the derivation of H1.

• [SKIP] We have that bc = skip and, after applying H1, that P = emp and Q = emp.
From the satisfiability of JSIL assertions and H2, we obtain that H = emp. From H3 and
the semantics of JSIL basic commands, we obtain that ĥf = bĤ1 ] Ĥ2c, ρf = ρ, and
v = empty. We choose Hf = emp, therefore the goals become:

– G1: Jskip KbĤ1c,ρ = (bĤ1c, ρ, empty)

– G2: emp, ρ, ε |= emp.

– G3: bĤ1 ] Ĥ2c = bemp ] Ĥ1 ] Ĥ2c

and all hold directly from the definitions and hypotheses.



Chapter 3. Symbolic Analysis 23

• [FIELD ASSIGNMENT] We have that bc = [e1, e2] := e3 and, after applying H1, that P =
(e1, e2) 7→ _ and Q = (e1, e2) 7→ e3. From the satisfiability of JSIL assertions and H2,
we obtain that H = (Je1Kρ, Je2Kρ) 7→ V , for some value V , possibly ∅. From H3 and the
semantics of JSIL basic commands, we obtain that ĥf = b(Je1Kρ, Je2Kρ) 7→ Je3Kρ ] Ĥ1 ]
Ĥ2c, ρf = ρ, and v = JeKρ3 . We choose Hf = (Je1Kρ, Je2Kρ) 7→ Je3Kρ, therefore the goals
become:

– G1: J[e1, e2] := e3Kb(Je1Kρ,Je2Kρ)7→V ] Ĥ1c,ρ = (b(Je1Kρ, Je2Kρ) 7→ Je3Kρ ] Ĥ1c, ρ, JeKρ3)

– G2: (Je1Kρ, Je2Kρ) 7→ Je3Kρ, ρ, ε |= (e1, e2) 7→ e3.

– G3: b(Je1Kρ, Je2Kρ) 7→ Je3Kρ ] Ĥ1 ] Ĥ2c = b(Je1Kρ, Je2Kρ) 7→ Je3Kρ ] Ĥ1 ] Ĥ2c.

and all hold directly from the definitions and hypotheses, noting that Je3Kρ 6= ∅.

• [VAR ASSIGNMENT] We have that bc = x := e and, after applying H1, that P = emp and
Q = x

.
= e. From the satisfiability of JSIL assertions and H2, we obtain that H = emp.

From H3 and the semantics of JSIL basic commands, we obtain that ĥf = bĤ1 ] Ĥ2c,
ρf = ρ[x 7→ JeKρ], and v = JeKρ. We choose Hf = emp therefore the goals become:

– G1: Jx := eKbĤ1c,ρ = (bĤ1c, ρ[x 7→ JeKρ], JeKρ)

– G2: emp, ρ[x 7→ JeKρ], ε |= x
.
= e

– G3: bĤ1 ] Ĥ2c = bemp ] Ĥ1 ] Ĥ2c

and all hold directly from the definitions and hypotheses.

• [OBJECT CREATION] We have that bc = x := new () and, applying H1, that P = emp and
Q = (x,@proto) 7→ null ∗ emptyFields(x | {{@proto}}). From the satisfiability of JSIL
assertions and H2, we obtain that H = emp. From H3 and the semantics of JSIL basic
commands, we obtain that ĥf = (l,@proto) 7→ null ] bĤ1 ] Ĥ2c, ρf = ρ[x 7→ l], and
v = l, for a fresh location l. We know that l /∈ dom(Ĥ1 ] Ĥ2) from H3. We choose
Hf = (l,@proto) 7→ null ]

(⊎
m6=@proto(l,m) 7→ ∅

)
(note bHfc = (l,@proto) 7→ null).

Therefore the goals become:

– G1: Jnew ()KbĤ1c,ρ = (b(l,@proto) 7→ null ] H1c, ρ[x 7→ l], l)

– G2: Hf , ρ[x 7→ l], ε |= (x,@proto) 7→ null ∗ emptyFields(x | {{@proto}})

– G3: (l,@proto) 7→ null ] bĤ1 ] Ĥ2c = bHf ] Ĥ1 ] Ĥ2c.

and all hold directly from the definitions and hypotheses, noting that l /∈ dom(Ĥ1 ] Ĥ2).

• [FIELD DELETION] We have that bc = delete (e1, e2) and, applying H1, that P = (e1, e2) 7→
X ∗ X 6 .= ∅ and Q = (e1, e2) 7→ ∅. From the satisfiability of JSIL assertions and H2,
we obtain that H = (Je1Kρ, Je2Kρ) 7→ ε(X), where Je2Kρ 6= @proto. Note that bHc = H
since X 6 .= ∅. From H3 and the semantics of JSIL basic commands, we obtain that ĥf =

bĤ1 ] Ĥ2c, ρf = ρ, and v = true. We choose Hf = (Je1Kρ, Je2Kρ) 7→ ∅ therefore noting
that bHfc = emp the goals become:

– G1: JbcKb(Je1Kρ,Je2Kρ)7→ε(X)] Ĥ1c,ρ = (bĤ1c, ρ, true)

– G2: (Je1Kρ, Je2Kρ) 7→ ∅, ρ, ε |= (e1, e2) 7→ ∅
– G3: bĤ1 ] Ĥ2c = b(Je1Kρ, Je2Kρ) 7→ ∅ ] Ĥ1 ] Ĥ2c.

and all follow directly from the definitions and hypotheses, noting that the disjoint union
in G4 is well-defined due to H3.



Chapter 3. Symbolic Analysis 24

• [FIELD ACCESS] We have that bc = x := [e1, e2] and, after applying H1, that P = (e1, e2) 7→
X∗X 6 .= ∅ and Q = (e1, e2) 7→ X∗X 6 .= ∅∗x .

= X. From the satisfiability of JSIL assertions
and H2, we obtain that H = (Je1Kρ, Je2Kρ) 7→ ε(X). Note that bHc = H since X 6 .= ∅.
From H3 and the semantics of JSIL basic commands, we obtain that ĥf = bH ] Ĥ1 ] Ĥ2c,
ρf = ρ[x 7→ ε(X)], and v = ε(X). We choose Hf = H = (Je1Kρ, Je2Kρ) 7→ ε(X) therefore
the goals become:

– G1: Jx := [e1, e2]Kb(Je1Kρ,Je2Kρ)7→ε(X)] Ĥ1c,ρ = (b(Je1Kρ, Je2Kρ) 7→ ε(X) ] Ĥ1c, ρ[x 7→
ε(X)], ε(X))

– G2: (Je1Kρ, Je2Kρ) 7→ ε(X), ρ[x 7→ ε(X)], ε |= (e1, e2) 7→ X ∗X 6 .= ∅ ∗ x .
= X.

– G3: bH ] Ĥ1 ] Ĥ2c = bH ] Ĥ1 ] Ĥ2c.

and all hold directly from the definitions and hypotheses, noting that ε(X) 6= ∅.

• [MEMBER CHECK] We have that bc = x := hasField(e1, e2). After applying H1, we obtain
P = (e1, e2) 7→ X (I1) and Q = P ∗ x .

= not (X = ∅) (I2) Using the satisfiability of JSIL
assertions and H2, we obtain H = (JE1Kερ, JE2Kερ) 7→ ε(X) (I3).

From I2 we consider two possible cases:

– X = ∅ (I4)
Due to I4, we note bHc = H. From H3 and the semantics of JSIL basic commands,
we obtain that ĥf = bH ] Ĥ1 ] Ĥ2c and ρf = ρ[x 7→ true]. We choose Hf = H =
(Je1Kρ, Je2Kρ) 7→ ε(X) and therefore the goals become:

∗ G1: Jx := hasField(e1, e2)Kb(JE1Kερ,JE2Kερ)7→ε(X)] Ĥ1c,ρ = (b(JE1Kερ, JE2Kερ) 7→ ε(X) ]
Ĥ1c, ρ[x 7→ true], true)

∗ G2: (Je1Kρ, Je2Kρ) 7→ ε(X), ρ[x 7→ true], ε |= P ∗ x .
= not (X = ∅)

∗ G3: bH ] Ĥ1 ] Ĥ2c = bH ] Ĥ1 ] Ĥ2c
and all hold directly from the definitions and hypotheses, noting that ε(X) 6= ∅.

– X 6= ∅ (I5)
Therefore H1 ] H2 cannot contain the cell (Je1Kρ, Je2Kρ), as the disjoint union H ]
Ĥ1 ] Ĥ2 is well-defined. The goals follow from the X = ∅ case, with false instead of
true.

• [CONSEQUENCE] We have {P} bc {Q}. From H1 we obtain {P ′} bc {Q′} (I1), P ` P ′ (I2)
and Q′ ` Q (I3). From I2 and H2 we conclude H, ρ, ε |= P ′ (I4). Applying the inductive
hypothesis to I4, I1 and H3 we obtain Hf , ρf , ε |= Q′ (I5), G1 and G3. Finally, we obtain
goal G2 from I5 and I3.

• [FRAME] We have {P ∗R} bc {Q ∗R}. From H1 we obtain {P} bc {Q} (I1). We con-
clude from the satisfiability of JSIL assertions and H2, that there exists a H1 and H2 such
that H = H1 ] H2 (I2), H1, ρ, ε |= P (I3) and H2, ρ, ε |= R (I4). From I2 we have
JbcKbH1 ] (H2 ] Ĥ1)] Ĥ2c,ρ = (ĥf , ρf , v) (I5). Applying the induction hypothesis to I1, I3 and
I5 we obtain that there exists a JSIL abstract heap H ′ such that:

– G1: JbcKbH ]H2 ] Ĥ1c,ρ = (bH ′ ] H2 ] Ĥ1c, ρ′, v)

– I6: H ′, ρ′, ε |= Q.

– G3: ĥ′ = bH ′ ] H2 ] Ĥ1 ] Ĥ2c.

From I6, I4 and the satisfiability of JSIL assertions, we obtainHf , ρ
′, ε |= Q∗R (G2) where

Hf = H ′ ] H2.



Chapter 3. Symbolic Analysis 25

• [EXISTS] We have {∃X. P} bc {∃X. Q}. From H1 we obtain {P} bc {Q} (I1). From the
satisfiability of JSIL assertions and H2, we obtain ∃V ∈ VLJSIL. H, ρ, ε[X 7→ V ] |= P (I2).
Applying the induction hypothesis to I1, I2 and H3, we obtain Hf , ρf , ε[X 7→ V ] |= Q (I3),
G1 and G3. Using I3 and the satisfiability of JSIL assertions we are able to achieve G2.

3.2 Symbolic Execution Rules for Control Flow Commands

We present symbolic execution rules for the control flow commands in Figure 3.2, these rules
allow for verification of procedure specifications.

Procedure specifications have the form {P} m(x) {Q} ∈ Spec where m is the procedure name, x
are the procedure parameters, P is the precondition of the procedure andQ is the postcondition.
The pre- and postcondition are JSIL logic assertions. Procedures can return in a normal mode
or an error mode, this is denoted by a return flag fl ∈ {nm, er}. A specification environment,
S : Str ⇀ F lag ⇀ Spec, maps a procedure name and return flag onto its corresponding
procedure specification.

The symbolic execution rules take the form p, S, m `fl {P, j, i} Q where:

• m ∈ Str and p ∈ P respectively denote the JSIL procedure name and program being
analysed, and S the specification environment;

• fl ∈ F lag denotes the return mode of the procedure currently being executed;

• i denotes the index of the JSIL command to be symbolically executed and j the index of
the command that was symbolically executed immediately before i; and

• P is an assertion describing the precondition of the ith command.

The result of the symbolic execution for control flow commands is an assertion Q which de-
scribes the final state reached.

We say that a specification environment S is well-formed if all the specifications in the spec-
ification environment are provable using the symbolic execution. Formally, for all fl and m

where S(m, f l) = {P} m(x1, ..., xn) {Q} then p, S, m `fl {P, 0, 0}  Q and vars(P) ∪ vars(Q) ⊆
{x1, ..., xn}.

We briefly explain the more complicated rules below.

• [CONDITIONAL GOTO - UNKNOWN] Upon reaching a conditional goto command, where the
conditional expression cannot be evaluated to false or true, the proof rule branches
down both possibilities.

• [PHI-ASSIGNMENT] We use the notation i k7→m j to denote that i is the k-th predecessor of j
in procedure m. The phi-assignment rule assigns the k-th element of the list (x1, ..., xn) to
the variable x, where i is the k-th predecessor of j.

• [RETURN] The terminating commands, return normal and return error, ensure the final
symbolic execution state entails the specified postcondition of the procedure.



Chapter 3. Symbolic Analysis 26

• [PROCEDURE CALL] Both procedure call rules state that the current state must entail the
precondition of the callee and some disjoint frame state PF . The continuation then com-
bines this frame state with the postcondition of the callee.

Control Flow Commands

BASIC COMMAND
pm(i) = bc bc ∈ BCmd {P} bc {Q} p, S, m `fl {Q, i, i+ 1} Q′

p, S, m `fl {P, _, i} Q′

GOTO
pm(i) = goto k p, S, m `fl {P, i, k} Q

p, S, m `fl {P, _, i} Q

CONDITIONAL GOTO - TRUE
pm(i) = goto e k j P ` true ∗ e .

= true p, S, m `fl {P, i, k} Q

p, S, m `fl {P, _, i} Q

CONDITIONAL GOTO - FALSE
pm(i) = goto e k j P ` true ∗ e .

= false p, S, m `fl {P, i, j} Q

p, S, m `fl {P, _, i} Q

CONDITIONAL GOTO - UNKNOWN
pm(i) = goto e k j P 0 true ∗ e .

= false P 0 true ∗ e .
= true

p, S, m `fl {P ∗ (e
.
= true), i, k} Q p, S, m `fl {P ∗ (e

.
= false), i, j} Q

p, S, m `fl {P, _, i} Q

PHI-ASSIGNMENT

pm(i) = x := φ(x1, ..., xn) j
k7→mi p, S, m `fl {P ∗ x

.
= xk, i, i+ 1} Q

p, S, m `fl {P, j, i} Q

PROCEDURE CALL - NORMAL
pm(i) = x := e0(e1, ..., en1

) with k S(m′, nm) = {P ′} m′(x1, ..., xn2) {Q′ ∗ xret
.
= e}

en = undefined |n2n=n1+1 P ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′

Q′′ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] p, S, m `fl {Q′′, i, i+ 1} Q

p, S, m `fl {P, _, i} Q

PROCEDURE CALL - ERROR
pm(i) = x := e0(e1, ..., en1

) with k S(m′, er) = {P ′} m′(x1, ..., xn2) {Q′ ∗ xerr
.
= e}

en = undefined |n2n=n1+1 P ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′

Q′′ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] p, S, m `fl {Q′′, i, k} Q

p, S, m `fl {P, _, i} Q

RETURN - NORMAL
S(m, nm) = {P ′} m(x1, ..., xn2) {Q′} P ` Q′

p, S, m `nm {P, _, inm} Q′

RETURN - ERROR
S(m, er) = {P ′} m(x1, ..., xn2) {Q′} P ` Q′

p, S, m `er {P, _, ier} Q′

Figure 3.2: Control Flow Proof Rules

Example. In order to illustrate the symbolic execution proof rules, we present a proof sketch
for the procedure swap. We prove the specification:

Precondition:{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
Postcondition:



Chapter 3. Symbolic Analysis 27

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗ ret = #next

}
Flag:
Normal

The specification states that the current node cannot be null and it has two none-non fields:
previous and next. The procedure swaps these two fields and returns the value of next.

proc swap (cur_node) {{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
goto [cur_node = null] then else;
then: ret := null;

goto rlab;
else: prev := [cur_node, "prev"];{

cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅ ∗ prev

.
= #prev

}
next := [cur_node, "next"];{

cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅ ∗ prev

.
= #prev

∗ next .= #next

}
[cur_node, "prev"] := next;{

cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅ ∗ prev

.
= #prev

∗ next .= #next

}
[cur_node, "next"] := prev;{

cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗ prev

.
= #prev

∗ next .= #next

}
ret := next;{

cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗ prev

.
= #prev

∗ next .= #next ∗ ret
.
= #next

}
rlab: skip

} with {ret: ret, rlab;};

Evaluation. The soundness of the symbolic analysis is established in Theorem 1. The proof
connects the symbolic execution control flow commands to the JSIL semantics which are given
in Appendix A.0.2.

Theorem 1 (Soundness of Symbolic Analysis). For any abstract heaps H, Ĥ1, Ĥ2 ∈ H∅JSIL, store
ρ ∈ Sto, logical environment ε ∈ Env, program p ∈ P, well-formed specification environment S,
JSIL assertions P,Q ∈ ASJSIL, procedure name m ∈ Str and command labels i and j such that:

• H, ρ, ε |= P (H1),

• p, S, m `fl {P, i, j} Q (H2),

• p ` 〈bH ] Ĥ1 ] Ĥ2c, ρ, i, j〉 ⇓m 〈hf , ρf , o〉 (H3)

then there is an abstract heap Hf such that:

• Hf , ρf , ε |= Q (G1),

• o = fl〈v〉 for some value v (G2),

• bHf ] Ĥ1 ] Ĥ2c = hf (G3),



Chapter 3. Symbolic Analysis 28

• p ` 〈bH ] Ĥ1c, ρ, i, j〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (G4)

Proof. We proceed by induction on the derivation of H3.

[PROCEDURE CALL - NORMAL] It follows that pm(j) = x := e0(e1, ..., en1) with k for a given JSIL
variable x, n JSIL expressions e0, e1, ..., en1 , and index k. We conclude, using H3 and the
semantics of JSIL, that:

Je0Kρ = m′ (I1) p(m′) = proc m′(y1, ..., yn2
){c} (I2) ∀1≤n≤n1

vn = JenKρ (I3)

∀n1<n≤n2vn = undefined (I4) p ` 〈bH ] Ĥ1 ] Ĥ2c, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, nm〈v′〉〉 (I5)

p ` 〈h′, ρ[x 7→ v′], j, j + 1〉 ⇓m 〈hf , ρf , o〉 (I6)

From H2, we conclude that:

S(m′′, nm) = {P ′} m′′(x1, ..., xn3) {Q′ ∗ xret
.
= e} (I7)

en = undefined |n3
n=n1+1 (I8) P ` PF ∗ P ′[ei/xi|n3

i=1] ∗ e0
.
= m′′ (I9)

Q′′ = PF ∗Q′[ei/xi|n3
i=1] ∗ e0

.
= m′′ ∗ x .

= e[ei/xi|n3
i=1] (I10) p, S, m `fl {Q′′, j, j + 1} Q (I11)

From H1, I1, I2,I7, and I9, we conclude that m′′ = Je0Kρ = m′, n2 = n3, and (x1, ..., xn3) =
(y1, ..., yn2)(I12). For convenience, using (I12), we rewrite I7-I10 as follows:

S(m′, nm) = {P ′} m′(y1, ..., yn2) {Q′ ∗ xret
.
= e} (I13) en = undefined |n2

n=n1+1 (I14)
P ` PF ∗ P ′[ei/yi|n2

i=1] ∗ e0
.
= m′ (I15) Q′′ = PF ∗Q′[ei/yi|n2

i=1] ∗ e0
.
= m′ ∗ x .

= e[ei/yi|n2
i=1] (I16)

Noting that all the specs in S are well-formed, we conclude, from I13 that vars(P′) ∪ vars(Q′) ∪
vars(e) ⊆ {y1, ..., yn2} (I17). From H1 and I15, we conclude that there are two heaps H1 and
H2 such that: H = H1 ] H2 (I18), H1, ρ, ε |= PF (I19), and H2, ρ, ε |= P ′[ei/yi|n2

i=1] (I20).
Applying the Substitution Lemma for Assertions (Lemma 3, given in the Appendix 3) to I20 and
I17, we conclude that H2, ∅[yi 7→ JeiKερ|

n2
i=1], ε |= P ′ (I21). From I3, I4, and I21, we conclude

that:
H2, ∅[yi 7→ vi|n2

i=1], ε |= P ′ (I22)

Because the specification environment is well-formed, we conclude that:

p, S, m′ `nm {P ′, 0, 0} (Q′ ∗ xret .
= e) (I23)

Applying the induction hypothesis to I5, I18, I22, and I23, we conclude that there is an abstract
H ′ such that: H ′, ρ′, ε |= (Q′ ∗ xret .

= e) (I24), bH ′ ] H1 ] Ĥ1 ] Ĥ2c = h′ (I25) , and
p ` 〈bH2 ] H1 ] Ĥ1c, ρ, 0, 0〉 ⇓m′ 〈bH ′ ] H1 ] Ĥ1c, ρ′, nm〈v′〉〉 (I26). Since we only consider
programs in SSA, we conclude, from I26, that ρ′ ≥ ∅[yi 7→ vi|n2

i=1] (I27). From I17, I24, and
I27, we conclude that:

H ′, ∅[yi 7→ vi|n2
i=1], ε |= Q′ (I28) JeKε∅[yi 7→vi|

n2
i=1]

= ρ′(xret) = v′ (I29)

Applying the Substitution Lemma to I28, we conclude that H ′, ρ, ε |= Q′[ei/yi|n2
i=1] (I30). Ap-

plying the Substitution Lemma for Expressions to I29, we conclude that: Je[ei/yi|n2
i=1]K

ε
ρ = v′

(I31). From H1, I15, I16, I19, I30, and I31, we conclude that: H1 ] H ′, ρ, ε |= Q′′ (I32).
Applying the induction hypothesis to I6, I11, I25, I32, we conclude that there is an abstract Hf

such that: Hf , ρf , ε |= Q (G1), bHf ] Ĥ1 ] Ĥ2c = hf (G3) , and p ` 〈bH1 ] H ′ ] Ĥ1c, ρ[x 7→
v′], j, j + 1〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (I33) and there is a value v such that o = fl〈v〉 (G2). G4
follows from I1-I4, I26, and I33.



Chapter 3. Symbolic Analysis 29

[BASIC COMMAND] It follows that pm(j) = bc ∈ BCmd (I1). We conclude, using H3 and the
semantics of JSIL, that:

JbcKbH ] Ĥ1 ] Ĥ2c,ρ = (h′, ρ′, v) (I2) p ` 〈h′, ρ′, j, j + 1〉 ⇓m 〈hf , ρf , o〉 (I3)

From H2 we conclude that:

{P} bc {Q} (I4) p, S, m `fl {Q, j, j + 1} Q′ (I5)

Applying the Soundness of Basic Commands (Lemma 1) to H1, I2 and I4, then there is an
abstract heap H ′ such that:

JbcKbH ] Ĥ1c,ρ = (bH ′ ] Ĥ1c, ρ′, v) (I6) H ′, ρ′, ε |= Q (I7) h′ = bH ′ ] Ĥ1 ] Ĥ2c (I8)

We then apply the induction hypothesis to I3, I5, I7 so there exists an abstract heap Hf such
that:

p ` 〈bH ′ ] Ĥ1c, ρ′, j, j + 1〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (I9) o = fl〈v〉 (G2)
hf = bHf ] Ĥ1 ] Ĥ2c (G3) Hf , ρf , ε |= Q′ (G1)

We are then able to apply the semantics to I6, I9 and I1 in order to obtain p ` 〈bH ]
Ĥ1c, ρ, i, j〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (G4)

[GOTO] It follows that pm(j) = goto k . We conclude, using H3 and the semantics of JSIL, that
p ` 〈bH ] Ĥ1 ] Ĥ2c, ρ, i, k〉 ⇓m 〈hf , ρf , o〉 (I1). From H2, we conclude that p, S, m `fl {P, i, k} 
Q (I2).

Applying the induction hypothesis to I1, I2 and H1 gives goals G1-G3 and p ` 〈bH ] Ĥ1c, ρ, i, k〉 ⇓m
〈bHf ] Ĥ1c, ρf , o〉 (I3). From the semantics and I3, goal G4 follows.

[CONDITIONAL GOTO - TRUE] It follows that pm(j) = goto e k l. As we are in the conditional
goto - true case we also have JeKρ = true (I1). From H2, we consider the three possible cases:

• P ` true ∗ e .
= true (I2)

We conclude, using H3 and the semantics of JSIL, that p ` 〈bH ] Ĥ1 ] Ĥ2c, ρ, j, k〉 ⇓m
〈hf , ρf , o〉 (I3)

From H2 and I2 we conclude that p, S, m `fl {P, j, k}  Q (I4). Applying the induction
hypothesis to I1, I4 and H1, gives p ` 〈bH ] Ĥ1c, ρ, j, k〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (I5) and
goals G1-G3. Using the semantics and I5 we obtain p ` 〈bH ] Ĥ1c, ρ, i, j〉 ⇓m 〈bHf ]
Ĥ1c, ρf , o〉 (G4).

• P ` true ∗ e .
= false

From H1 we conclude JeKρ = false, this is a contradiction of I1.

• P 0 true ∗ e .
= false and P 0 true ∗ e .

= true (I2)

From H2 and I2 we conclude that p, S, m `fl {P ∗(e
.
= true), j, k} Q (I3) and p, S, m `fl

{P ∗ (e
.
= false), i, l} Q. Using H1 and I1, then H, ρ, ε |= P ∗ (e

.
= true) follows (I4).

By applying the semantics of JSIL and using H3, we conclude that p ` 〈bH ] Ĥ1 ]
Ĥ2c, ρ, j, k〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (I5) and goals G1-G3. We can then apply the inductive
hypothesis to I3, I4 and I5 to obtain p ` 〈bH ] Ĥ1c, ρ, i, j〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (G4).

[CONDITIONAL GOTO - FALSE] Follows from conditional goto true case.



Chapter 3. Symbolic Analysis 30

[PHI-ASSIGNMENT] It follows that pm(j) = x := φ(x1, ..., xn). We conclude, using H3 and the
semantics of JSIL, that:

i
k7→m j (I1) p ` 〈bH ] Ĥ1 ] Ĥ2c, ρ[x 7→ ρ(xk)], j, j + 1〉 ⇓m 〈hf , ρf , o〉 (I2)

From H2 we conclude that p, S, m `fl {P ∗ x
.
= xk, j, j + 1}  Q (I3). Noting that we assume

programs are only written in SSA form, we can obtain from H1 H, ρ[x 7→ ρ(xk)], ε |= P ∗ x .
= xk

(I4).

Applying the induction hypothesis to I3, I2 and I4 we obtain goals G1-G3 and p ` 〈bH ]
Ĥ1c, ρ[x 7→ ρ(xk)], j, j + 1〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (I4). We can conclude from the semantics, I4
and I1 that p ` 〈bH ] Ĥ1c, ρ, i, j〉 ⇓m 〈bHf ] Ĥ1c, ρf , o〉 (G4).

[RETURN - NORMAL] It follows that j = inm, fl = nm and Q = Q′. From the semantics and H3
we conclude that bH ] Ĥ1 ] Ĥ2c = hf (G3) and o = nm〈ρ(xret)〉 (G2). From the semantics
we obtain ` 〈bH ] Ĥ1c, ρ, _, inm〉 ⇓m 〈bH ] Ĥ1c, ρ, nm〈ρ(xret)〉〉 (G4). From H2, we obtain
P ` Q′ (I1). We then obtain G1 from I1 and H1.

[RETURN - ERROR] Follows from the return normal case, with j = ier and fl = er.



Chapter 4

Bi-Abductive Symbolic Analysis

Given a JSIL procedure, the bi-abductive symbolic analysis infers a set of specifications under
which the execution of the given procedure does not fault. The analysis presented here is a first
step towards a fully-fledged symbolic execution analysis. In particular, we do not provide the
means for automatically inferring loop invariants and we cannot deal with recursive procedures.
In this section, we first give an intuitive account of the bi-abductive analysis (Section 4.1), then
we define the bi-abductive axioms for basic commands (Section 4.2) and the bi-abductive proof
rules for control flow commands (Section 4.2), and we conclude with a description of the
algorithm used to generate specifications for JSIL programs (Section 4.4).

The bi-abductive analysis builds on the symbolic execution given in Chapter 3. In particular,
we establish the soundness of the bi-abductive analysis by appealing to the symbolic execution
analysis. In a nutshell, we prove that all the specifications inferred using the bi-abductive sym-
bolic analysis are verifiable using the standard symbolic analysis. This claim is made formally
in Theorem 2.

4.1 Bi-Abductive Analysis: High Level Description

Here we give an intuitive account of the bi-abductive symbolic analysis. In contrast to the
symbolic analysis, for which the initial precondition holds the entire resource which the program
needs in order not to fault, in the bi-abductive symbolic analysis we have to compute the missing
resource. Hence, in the bi-abductive symbolic analysis, we associate each program point with:

• an assertion P , describing the state (heap and store) when reaching that program point;
and

• an assertion M , describing the resources that need to be added to the initial precondition
so that the program can reach the current program point without faulting.

We refer to (P,M) as the bi-abductive symbolic state.

Suppose that (P,M) holds before the bi-abductive symbolic execution of a given command
c. After analysing c, we obtain a new bi-abductive symbolic state (P ′,M ′). The assertion P ′

describes the heap and store after executing c and M ′ extends M with the resources needed for
the execution of c not to fault.

In order to better illustrate this, suppose we use the bi-abductive analysis to find the pre- and
postconditions of a program containing the following JSIL code:

31



Chapter 4. Bi-Abductive Symbolic Analysis 32

x := [timeout, interval]
y := convertToSeconds(x)
[timeout, interval] := y

Figure 4.1 describes how the bi-abductive symbolic analysis handles this code, comparing it with
the normal symbolic execution. In the normal symbolic execution, we start with an assertion
P , describing all the resources needed for the execution of these three commands not to fault.
After symbolically executing the first command, we obtain P1 (which holds all the resources for
the execution of the last two commands not to fault). After execution the last two commands,
we obtain P2 and P3, respectively. In contrast, in the bi-abductive symbolic analysis, we also
need to update the assertion describing the missing initial resources. It is important to note that
M is monotonically increasing. Therefore, in this example, M2 ` M1 ∗ M̂ where M̂ describes
the resource required to execute the command y = convertToSeconds(x). Ultimately, we use the
final missing assertion M3 to generate the precondition for the procedure and we use the final
symbolic state P3 for the postcondition.

Figure 4.1: Comparison of normal and bi-abductive symbolic execution
In Figure 4.2, we show how the bi-abductive symbolic execution deals with JSIL branching. The
execution branches when it is unable to symbolically evaluate the guard of a conditional goto to
true or false. When this happens, the bi-abductive symbolic execution branches, obtaining two
separate bi-abductive symbolic states: (P T3 ,M

T
3 ) (for the case in which we assume the guard to

evaluate to true) and (PE3 ,M
E
3 ) (for the false case).

4.2 Bi-Abductive Axioms for Basic Commands

The hoare triples given in Figure 4.3 infer missing resources of the JSIL assertion P needed to
execute the command bc. The triples take the form {P,M} bc {Q,M ′}, where:

• P is the precondition of bc and M the missing resources computed so far; and



Chapter 4. Bi-Abductive Symbolic Analysis 33

Figure 4.2: Bi-Abductive symbolic execution with branching

• Q is the postcondition of bc and M ′ the extension of the missing resources for bc not to
fault.

If {P,M} bc {Q,M ′} holds, then there is an assertion M̂ such that: M ′ ` M ∗ M̂ and{
P ∗ M̂

}
bc {Q}where M̂ describes the resources that have to be added to P for the execution

of bc not to fault.

Basic Commands

FIELD ASSIGNMENT - MISSING
P 0 true ∗ (e1, e2) 7→ − Q = P ∗ (e1, e2) 7→ e3 M ′ = M ∗ (e1, e2) 7→ −

{P,M} [e1, e2] := e3 {Q,M ′}

FIELD DELETION - MISSING
P ` true ∗ e2 6

.
= @proto

P 0 true ∗ (e1, e2) 7→ X ∗X 6 .= ∅ Q = P ∗ (e1, e2) 7→ ∅ M ′ = M ∗ (e1, e2) 7→ Y ∗ Y 6 .= ∅
{P,M} delete(e1, e2) {Q,M ′}

FIELD ACCESS - MISSING
P 0 true ∗ (e1, e2) 7→ X ∗X 6 .= ∅

Q = P ∗ x .
= X ∗ (e1, e2) 7→ X ∗X 6 .= ∅ M ′ = M ∗ (e1, e2) 7→ X ∗X 6 .= ∅

{P,M} x := [e1, e2] {Q,M ′}

MEMBER CHECK - MISSING
P 0 true ∗ (e1, e2) 7→ − Q = P ∗ (e1, e2) 7→ Z ∗ x .

= not (Z = ∅) M ′ = M ∗ (e1, e2) 7→ Z

{P,M} x := hasField(e1, e2) {Q,M ′}

BASIC COMMAND
{P} bc {Q}

{P,M} bc {Q,M}

Figure 4.3: Bi-Abductive Hoare Triples for Basic Commands

In order to illustrate the mechanics of the bi-abductive Hoare triples for basic commands, we



Chapter 4. Bi-Abductive Symbolic Analysis 34

give the following example:

P = (timeout, id) 7→ 17 P 0 true ∗ (timeout, interval) 7→ −
Q = P ∗ (timeout, interval) 7→ 400

M ′ = (timeout, id) 7→ − ∗ (timeout, interval) 7→ −
{(timeout, id) 7→ 17, (timeout, id) 7→ −} [timeout, interval] := 400

{
Q,M ′

} Field Assignment - Missing

We start in a state with the object timeout which has one field id and we have already inferred
a part of the precondition, (timeout, id) 7→ −. In order to perform a field assignment operation,
we require that the object timeout has the field interval. Therefore the resulting assertion,
M ′ = (timeout, id) 7→ − ∗ (timeout, interval) 7→ −, consists of the previously inferred assertion
plus the newly required heap cell. The resulting state after performing the field assignment is
Q = (timeout, id) 7→ 17 ∗ (timeout, interval) 7→ 400.

Evaluation. Lemma 2 establishes the soundness of the bi-abductive Hoare triples for basic
commands. The lemma connects the triples to the non bi-abductive Hoare triples for basic
commands.

Lemma 2 (Soundness of Bi-Abductive Hoare Triples for Basic Commands). For any assertions
P,M,Q,M ′ ∈ ASJSIL and basic commands bc ∈ BCmd such that:

• H1: {P,M} bc {Q,M ′}

It follows that there exists an M̂ ∈ ASJSIL such that:

• G1: M ′ `M ∗ M̂

• G2:
{
P ∗ M̂

}
bc {Q}

Proof. We proceed by case analysis on the structure of {P,M} bc {Q,M ′}.

[FIELD ASSIGNMENT - MISSING] Given bc = [e1, e2] := e3 and P 0 true ∗ (e1, e2) 7→ − from the bi-
abductive field assignment missing basic command rule and H1 we obtain: Q = P ∗(e1, e2) 7→ e3
(I1) and M ′ = M ∗ (e1, e2) 7→ − (I2). From I2 it follows that M̂ = (e1, e2) 7→ − where
M ′ ` M ∗ M̂ (I3)(G1). Using I3 we obtain {P ∗ (e1, e2) 7→ −} bc {P ∗ (e1, e2) 7→ e3} (G2) as
shown in the proof derivation tree:

{(e1, e2) 7→ −} [e1, e2] := e3 {(e1, e2) 7→ e3}
Field Assignment

{P ∗ (e1, e2) 7→ −} [e1, e2] := e3 {P ∗ (e1, e2) 7→ e3}
Frame

[FIELD DELETION - MISSING] Given bc = delete(e1, e2) and P 0 true ∗ (e1, e2) 7→ X ∗ X 6 .= ∅ from
the bi-abductive field deletion missing basic command rule and H1 we obtain P ` true ∗ (e2 6

.
=

@proto) (I1), Q = P ∗ (e1, e2) 7→ ∅ (I2) and M ′ = M ∗ ((e1, e2) 7→ Y ) ∗ (Y 6 .= ∅) (I3). From I3
it follows that M̂ = ((e1, e2) 7→ Y ) ∗ (Y 6 .= ∅) where M ′ ` M ∗ M̂ (I4)(G1). Using I4 and I1,
we obtain goal G2 as shown in the proof derivation tree:

{(e2 6
.
= @proto) ∗ ((e1, e2) 7→ Y ) ∗ (Y 6 .= ∅)} delete(e1, e2) {(e1, e2) 7→ ∅}

Field Deletion{
P ′ ∗ (e2 6

.
= @proto) ∗ ((e1, e2) 7→ Y ) ∗ (Y 6 .= ∅)

}
delete(e1, e2)

{
P ′ ∗ (e1, e2) 7→ ∅

} Frame



Chapter 4. Bi-Abductive Symbolic Analysis 35

where P ` P ′ ∗ (e2 6
.
= @proto)

[FIELD ACCESS - MISSING] Given bc = x := [e1, e2] and P 0 true ∗ (e1, e2) 7→ X ∗ X 6 .= ∅ from
the bi-abductive field access missing basic command rule and H1 we obtain Q = P ∗ x .

=
X ∗ (e1, e2) 7→ X ∗ X 6 .= ∅ (I1) and M ′ = M ∗ (e1, e2) 7→ X ∗ X 6 .= ∅ (I2) From I2 it follows that
M̂ = (e1, e2) 7→ X ∗X 6 .= ∅ where M ′ `M ∗ M̂ (I3)(G1). Using I3 and I1, we obtain goal G2 as
shown in the proof derivation tree:

{(e1, e2) 7→ X ∗X 6 .= ∅} x := [e1, e2] {x
.
= X ∗ (e1, e2) 7→ X ∗X 6 .= ∅}

Field Access

{P ∗ (e1, e2) 7→ X ∗X 6 .= ∅} x := [e1, e2] {P ∗ x
.
= X ∗ (e1, e2) 7→ X ∗X 6 .= ∅}

Frame

[MEMBER CHECK - MISSING] Given bc = x := hasField(e1, e2) and P 0 true∗(e1, e2) 7→ − from the
bi-abductive member check missing basic command rule and H1 we obtain Q = P ∗ (e1, e2) 7→
Z ∗ x .

= not (Z = ∅) (I1) and M ′ = M ∗ (e1, e2) 7→ − (I2). From I2 it follows that M̂ =
(e1, e2) 7→ Z where M ′ `M ∗ M̂ (I3)(G1). Using I3 and I1, we obtain goal G2 as shown in the
proof derivation tree:

{(e1, e2) 7→ Z} x := hasField(e1, e2) {(e1, e2) 7→ Z ∗ x .
= not (Z = ∅)}

Member Check

{P ∗ (e1, e2) 7→ Z} x := hasField(e1, e2) {P ∗ (e1, e2) 7→ Z ∗ x .
= not (Z = ∅)}

Frame

[BASIC COMMAND] Given {P,M} bc {Q,M} by applying the basic command rule we obtain
{P} bc {Q} (I1). Therefore, from I1, M̂ = emp where M ` M ∗ emp (G1). By applying the
consequences rule we conclude {P ∗ emp} bc {Q} (G2).

4.3 Bi-Abductive Proof Rules for Control Flow Commands

The bi-abductive proof rules for the symbolic execution of the control flow commands are given
in Figure 4.4. The rules take the form p, S, m ` {P,M, j, i} ab Π, where:

• m ∈ Str and p ∈ P respectively denote the JSIL procedure name and program being
analysed, and S the specification environment;

• i denotes the index of the JSIL command to be symbolically executed and j the index of
the command that was symbolically executed immediately before i; and

• P is an assertion describing the precondition of the ith command, whereas M is an asser-
tion describing the missing resources computed so far.

The result of the bi-abductive symbolic execution for control flow commands is a set Π consisting
of triples of the form (P,M, fl) where: P is a possible postcondition, M is the anti-frame that
needs be added to the precondition so that the execution of the procedure does not fault, and
fl is the return flag for this execution. We briefly explain the more complicated rules below.

• [CONDITIONAL GOTO - UNKNOWN], captures the case when the expression e cannot be evalu-
ated to false or true. Therefore, the symbolic execution explores both paths, adding the



Chapter 4. Bi-Abductive Symbolic Analysis 36

condition to both the current state and the missing state. However, the condition cannot
be added to the missing state if it contains a variable not included in either the collected
missing state so far or the procedure arguments. Adding such a variable would entail the
generation of a non-well-formed specification. The final result is the union of the results
from each path.

• [RETURN] normal and error, these rules return a tuple containing the current state, the
collected missing state and the return flag. The return flag is dependant on the index of
the final command.

• [PROCEDURE CALL] rule includes the solving of the bi-abductive problem. More concretely,
given the current state P and the callee’s precondition P ′, the system needs to find the
assertions PM and PF , such that P ∗ PM ` P ′ ∗ PF . The required missing state is then
added to the collected anti-frame and the untouched frame state is combined with the
callee’s postcondition.

Example. We present a swap procedure example in order to illustrate the bi-abductive proof
rules. In particular, if the current node argument is null the procedure returns null. Otherwise,
the procedure swaps the next and previous fields of the current node. In the example we show
how the current state is transformed and how the missing state is collected. The result contains
two tuples, one with the final state and missing state of the null case and the other with the
swap case. Both cases have normal return flags.

proc swap (cur_node) {
State: { emp }
Missing: { emp }
goto [cur_node = null] then else;
State: { cur_node .

= null }
Missing: { cur_node .

= null }
then: ret := null;

State: { cur_node .
= null ∗ ret

.
= null }

Missing: { cur_node .
= null }

goto rlab;
State: { cur_node 6 .= null }
Missing: { cur_node 6 .= null }
else: prev := [cur_node, "prev"];

State:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ prev .

= #prev

}
Missing: { cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅ }
next := [cur_node, "next"];

State:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ prev .

= #prev ∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅
∗ next .= #next

}
Missing:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
[cur_node, "prev"] := next;
State:{

curnode 6
.
= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅

∗ prev .
= #prev ∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅ ∗

next
.
= #next

}
Missing:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
[cur_node, "next"] := prev;

State:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ prev .

= #prev ∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗
next

.
= #next

}



Chapter 4. Bi-Abductive Symbolic Analysis 37

Missing:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
ret := next;

State:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ prev .

= #prev ∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗
next

.
= #next ∗ ret = #next

}
Missing:

{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
rlab: skip

} with {ret: ret, rlab;};

This bi-abductive symbolic execution generates two specifications, given below.

We give the specification for the case where the current node is null:
Precondition:
{ cur_node .

= null }

Postcondition:
{ cur_node .

= null ∗ ret
.
= null }

Flag:
Normal

We give the specification for the case where the current node is not null, and therefore the
values of previous and next have been swapped.
Precondition:{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #prev ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #next ∗ #next 6 .= ∅

}
Postcondition:{
cur_node 6 .= null ∗ (cur_node, “prev”) 7→ #next ∗ #prev 6 .= ∅
∗ (cur_node, “next”) 7→ #prev ∗ #next 6 .= ∅ ∗ ret = #next

}
Flag:
Normal

Evaluation. We establish the soundness of the bi-abductive control flow rules in Theorem 2.
We assume the specifications of all callee’s a procedure will use are in the specification table
and there is no recursion in the program. In this proof we connect the bi-abductive control flow
rules to the normal control flow rules. We must also update the specification environment in
order to ensure a successful termination of the normal symbolic execution.

Theorem 2 (Soundness of Bi-Abductive Control Flow Proof Rules). For all programs p ∈ P,
specifications S ∈ Spec, procedure names m ∈ Str, assertions P,M ∈ ASJSIL and command labels
j and i such that:

• H1: p, S, m ` {P,M, j, i} ab Π

It follows that for all (Qf ,Mf , f lf ) ∈ Π there exists a JSIL assertions M̂ ′′, P̂ ∈ ASJSIL such that:

• G1: Mf `M ∗ M̂ ′′

• G2: S′ = S[(m, f lf ) 7→
{
P̂
}

m(x) {Qf}]

• G3: p, S′, m `flf {P ∗ M̂ ′′, j, i} Qf

Proof. We proceed by induction on the structure of bi-abductive control flow proof rules.



Chapter 4. Bi-Abductive Symbolic Analysis 38

[BASIC COMMAND] Given pm(i) = bc where bc ∈ BCmd (I1), using the control flow rules and
H1 we obtain {P,M} bc {Q,M ′} (I2) and p, S, m ` {Q,M ′, i, i + 1}  ab Π (I3) Applying the
induction hypothesis to I3, we obtain that there exists some M̂ ′ and P ′ such that p, S′, m `flf
{Q ∗ M̂ ′, i, i + 1}  Qf (I4) where Mf ` M ′ ∗ M̂ ′ (I5) and S′ = S[(m, f lf ) 7→ {P ′} m(x) {Qf}]
(G2). From I2 and Lemma 2, it follows that

{
P ∗ M̂

}
bc {Q} (I6) where M ′ ` M ∗ M̂ (I7).

Hence using I5 and I7 we are able to obtain, Mf `M ∗ M̂ ∗ M̂ ′ where M̂ ′′ = M̂ ′ ∗ M̂ (G1). We

apply the frame rule to I6, which results in
{
P ∗ M̂ ∗ M̂ ′

}
bc
{
Q ∗ M̂ ′

}
(I7). Using I1, I3 and

I7, we obtain goal G3 as shown in the proof derivation:

pm(i) = bc bc ∈ BCmd{
P ∗ M̂ ′′

}
bc
{
Q ∗ M̂ ′

}
p, S′, m `flf {Q ∗ M̂

′, i, i+ 1} Qf

p, S′, m `flf {P ∗ M̂
′′, j, i} Qf

Basic Command

[CONDITIONAL GOTO - UNKNOWN] Given pm(i) = goto e k l (I1), P 0 true ∗ (e
.
= false)

(I2) and P 0 true ∗ (e
.
= true) (I3), we conclude using the control flow rules and H1:

p, S, m ` {P ∗ (e
.
= true),M ∗ (e

.
= true), i, k} ab Πt (I4)

p, S, m ` {P ∗ (e
.
= false),M ∗ (e

.
= false), i, l} ab Πe (I5)

vars(e) ⊆ vars(M) ∪ vars(m) (I6) Π = Πt ∪Πe (I7)

From I7 there are two possible cases, either (Qf ,Mf , f lf ) ∈ Πt or (Qf ,Mf , f lf ) ∈ Πe. We
take the case where (Qf ,Mf , f lf ) ∈ Πt (I8). Applying the induction hypothesis to I4, we
obtain that there exists some M̂ and P ′ such that S′ = S[(m, f lf ) 7→ {P ′} m(x) {Qf}] (I9) and
p, S′, m `flf {P ∗ (e

.
= true)∗M̂, i, k} Qf (I10) where Mf `M ∗ (e

.
= true)∗M̂ (I11). Using

I1 and I10, we obtain goal G3 as shown in the proof derivation:

pm(i) = goto e k l P ∗ (e
.
= true) ∗ M̂ ` true ∗ (e

.
= true)

p, S′, m `flf {P ∗ (e
.
= true) ∗ M̂, i, k} Qf

p, S′, m `flf {P ∗ (e
.
= true) ∗ M̂, j, i} Qf

Conditional Goto - True

The case (Qf ,Mf , f lf ) ∈ Πe follows from the previous case.

[PROCEDURE CALL - NORMAL] Given pm(i) = x := e0(e1, ..., en1) with k (I1), then we obtain using
the control flow rules and H1:

S(m′, nm) = {P ′} m′(x1, ..., xn2) {Q′ ∗ xret
.
= e} (I2)

en = undefined |n2n=n1+1 (I3)
P ∗ PM ` PF ∗ P ′[ei/xi|n2

i=1] ∗ e0
.
= m′ (I4)

Q′′ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] (I5)

p, S, m ` {Q′′,M ∗ PM , i, i+ 1} ab Π (I6)

Applying the induction hypothesis to I6, we obtain that there exists some M̂ and P̂ such that
p, S′, m `flf {Q′′∗M̂, i, i+1} Qf (I7) where Mf `M ∗PM ∗M̂ (I8)(G1) and S′ = S[(m, f lf ) 7→{
P̂
}

m(x) {Qf}] (G2). From I5, Q′′ ∗ M̂ = PF ∗ Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] ∗ M̂

(I9). Additionally, from I4 it follows that P ∗ PM ∗ M̂ ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ M̂ (I10).



Chapter 4. Bi-Abductive Symbolic Analysis 39

Using I1,I2,I3,I7,I9 and I10, we obtain goal G3 as shown in the proof derivation:

pm(i) = x := e0(e1, ..., en1) with k
S(m′, nm) =

{
P ′
}
m′(x1, ..., xn2)

{
Q′ ∗ xret .

= e
}

en = undefined |n2n=n1+1

P ∗ PM ∗ M̂ ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ M̂

Q′′ ∗ M̂ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] ∗ M̂

p, S′, m `flf {Q
′′ ∗ M̂, i, i+ 1} Qf

p, S′, m `flf {P ∗ PM ∗ M̂, j, i} Qf
Procedure Call - Normal

[PROCEDURE CALL - ERROR] Follows from the procedure call normal case.

[RETURN - NORMAL] Given i = inm, then we obtain using the control flow rules and H1 that
Π = {(P,M, nm)} (I1). Therefore Mf = M and M̂ ′′ = emp, where Mf ` M ∗ emp (G1).
We set the new specification environment as follows S′ = S[(m, nm) 7→ {P ′} m(x) {P}] (G2).
Therefore when we lookup the specification in the non bi-abductive normal return rule we get
S′(m, nm) = {P ′′} m(x1, ..., xn2) {Q′′} (I2) where P ′′ = P ′ ∗M and Q′′ = P (I3). Due to I3 we
obtain P ` Q′′ (I4). Using I2 and I4, we obtain goal G3 as shown in the proof derivation tree:

S′(m, nm) =
{
P ′′
}
m(x1, ..., xn2)

{
Q′′
}

P ` Q′′

p, S′, m `nm {P ∗ emp, j, inm} P
Return - Normal

[RETURN - ERROR] Follows from the return normal case.

[ALL OTHER CASES] The phi-assignment, goto, conditional goto true and conditional goto false
follow as M̂ = emp.

4.4 Bi-Abductive Algorithm for JSIL Programs

We provide a procedure level algorithm which converts the result of the symbolic execution
proof rules into a specification table. We infer specifications for non recursive procedures.
In particular, we start by inferring the specifications of procedures with no procedure calls.
We then proceed to infer the specifications of the procedures which only call procedures with
already inferred specifications and so on, until all specifications have been inferred. For this
algorithm, we assume the procedures in the program p given as input are ordered as such.

Algorithm 1 presents the algorithm to infer specifications of a JSIL program p. The specifica-
tion environment, S, contains partial specifications. These specifications are optional for each
procedure and are not assumed to be correct.

First, the algorithm initialises the new specification environment S′, which will contain the
inferred specifications. Next, it loops through all procedures in order. If a partial specification
is provided, the initial state is the partial precondition. Otherwise, the initial state is empty.
Additionally, the symbolic execution always starts with an empty missing state and the 0-th
command.

The algorithm then takes the result of the symbolic execution of the procedure, and loops
through all the resulting tuples. It checks if every final state Qf entails the partial postcondition



Chapter 4. Bi-Abductive Symbolic Analysis 40

if one is provided. Similar to the procedure call rule, this involves solving the bi-abductive
problem. More concretely, given a partial postcondition Q and the computed postcondition
Qf , we have to find QM such that Qf ∗ QM ` Q ∗ true. Intuitively, QM describes the missing
resources that are required by the provided partial postcondition.

The new specification environment is then extended with the inferred specification. The partial
precondition is combined with both the missing resources required for the procedure not to
fault as well as the missing resources required by the partial postcondition. This becomes the
new precondition. The final state combined with missing resources required by the partial
postcondition becomes the new postcondition.

The InferSpec function is defined as follows:

Π := InferSpec(p, S, m, P )
def⇔ p, S, m ` {P, emp, _, 0} ab Π

Algorithm 1 Procedure Level Algorithm
1: S′ := ∅
2: for all proc m(x){c} ∈ p do
3: if (m, _) ∈ S then
4: {P} m(x) {Q} = S(m, _)
5: else
6: P,Q := emp
7: end if
8: Π := InferSpec(p, S′, m, P )
9: for all (Qf ,Mf , f l) ∈ Π do

10: if Qf ∗QM ` Q ∗ true then
11: S′ := S′ ∪ {(m, f l) 7→ {P ∗Mf ∗QM} m(x) {Qf ∗QM}}
12: end if
13: end for
14: end for



Chapter 4. Bi-Abductive Symbolic Analysis 41

Control Flow Commands

BASIC COMMAND
pm(i) = bc bc ∈ BCmd {P,M} bc {Q,M ′} p, S, m ` {Q,M ′, i, i+ 1} ab Π

p, S, m ` {P,M, _, i} ab Π

GOTO
pm(i) = goto k p, S, m ` {P,M, i, k} ab Π

p, S, m ` {P,M, _, i} ab Π

CONDITIONAL GOTO - TRUE
pm(i) = goto e k j P ` true ∗ e .

= true p, S, m ` {P,M, i, k} ab Π

p, S, m ` {P,M, _, i} ab Π

CONDITIONAL GOTO - FALSE
pm(i) = goto e k j P ` true ∗ e .

= false p, S, m ` {P,M, i, j} ab Π

p, S, m ` {P,M, _, i} ab Π

CONDITIONAL GOTO - UNKNOWN
pm(i) = goto e k j vars(e) ⊆ vars(M) ∪ vars(m) P 0 true ∗ e .

= false

P 0 true ∗ e .
= true p, S, m ` {P ∗ (e

.
= true),M ∗ (e

.
= true), i, k} ab Π

p, S, m ` {P ∗ (e
.
= false),M ∗ (e

.
= false), i, j} ab Π′

p, S, m ` {P,M, _, i} ab Π ∪Π′

PHI-ASSIGNMENT

pm(i) = x := φ(x1, ..., xn) j
k7→mi p, S, m ` {P ∗ x .

= xk,M, i, i+ 1} ab Π

p, S, m ` {P,M, j, i} ab Π

PROCEDURE CALL - NORMAL
pm(i) = x := e0(e1, ..., en1

) with k S(m′, nm) = {P ′} m′(x1, ..., xn2) {Q′ ∗ xret
.
= e}

en = undefined |n2n=n1+1 P ∗ PM ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′

Q′′ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] p, S, m ` {Q′′,M ∗ PM , i, i+ 1} ab Π

p, S, m ` {P,M, _, i} ab Π

PROCEDURE CALL - ERROR
pm(i) = x := e0(e1, ..., en1

) with k S(m′, er) = {P ′} m′(x1, ..., xn2) {Q′ ∗ xerr
.
= e}

en = undefined |n2n=n1+1 P ∗ PM ` PF ∗ P ′[ei/xi|n2
i=1] ∗ e0

.
= m′

Q′′ = PF ∗Q′[ei/xi|n2
i=1] ∗ e0

.
= m′ ∗ x .

= e[ei/xi|n2
i=1] p, S, m ` {Q′′,M ∗ PM , i, k} ab Π

p, S, m ` {P,M, _, i} ab Π

RETURN - NORMAL

p, S, m ` {P,M, _, inm} ab {(P,M, nm)}

RETURN - ERROR

p, S, m ` {P,M, _, ier} ab {(P,M, er)}

Figure 4.4: Abductive Control Flow Command Proof Rules



Chapter 4. Bi-Abductive Symbolic Analysis 42



Chapter 5

Implementation for Bi-Abductive
Symbolic Analysis

We give an implementation of the bi-abductive symbolic analysis. Given a JSIL Program, the
tool, called JSIL Abduce, infers specifications for the JSIL procedures in the program. We discuss
the architecture and limitations of the tool (Section 5.1) and present some of the implementa-
tion challenges of the tool (Section 5.2).

5.1 Architecture

JSIL Abduce generates specifications for JSIL procedures, its architecture is given in Figure
5.1. The tool implements the bi-abductive symbolic execution rules and is entirely written in
OCaml. JSIL Abduce has two main components: a bi-abductive symbolic execution engine and
a structural entailment engine. As input the tools takes JSIL programs and optional partial
specifications. The tool verifies each procedure independently, this modular style allows the
tool to scale to large programs.

Before symbolic execution begins, a call graph is generated in order to determine the order in
which procedures should be analysed. Procedures which call no other procedures are analysed
first. Then all procedures which only call procedures with generated specifications are analysed
and so on, until all procedures have been analysed. After the symbolic execution, the result of
multiple branches are combined. If the tool fails to generate a specification or a branch contains
recursion the symbolic execution for that branch ends. Specifications are still generated for the
remaining branches.

Symbolic States. The symbolic execution engine transforms symbolic states (h, ρ, π,Γ, δ). A
symbolic state contains:

• A symbolic heap h : L × XJSIL → VJSIL which is a mapping from locations and JSIL
variables to JSIL values. Where the locations and JSIL variables represent objects and
their fields respectively.

• A variable store ρ : XJSIL → VJSIL which is a mapping from JSIL variables to JSIL values.

• A set of pure formulae π : ASJSIL which is a set of JSIL assertions.

• A typing environment Γ : XJSIL → Types which is a map from JSIL variables to JSIL types.

43



Chapter 5. Implementation for Bi-Abductive Symbolic Analysis 44

Figure 5.1: Architecture

• A set of predicate assertions δ.

Bi-Abductive Symbolic Execution. The symbolic execution engine implements Algorithm 1,
which is explained in Section 4.4. It passes the entailment problem in the procedure call rules
and in the final step of the algorithm to the structural entailment engine.

Anti-Frame Inference. We infer missing resources in two stages of the symbolic execution:
when calling a procedure and when terminating the symbolic execution.

When the symbolic execution reaches a procedure call command, initially the tool finds all
specifications for the procedure being called. The symbolic execution engine then passes the
bi-abductive problem current state ∗ missing state ` precondition ∗ frame to the structural
entailment engine for each specification. If the current state is able to entail the precondition
without the need for missing symbolic state then the symbolic execution transforms the current
state into the callee’s postcondition plus any framed state. Otherwise, the tool branches and for
each specification the missing footprint is added to anti-frame symbolic state and the current
state is transformed into the callee’s postcondition plus any framed state.

When the symbolic execution for a procedure terminates, as outlined in Algorithm 1, we check
that the final state entails any partial postcondition. In particular, the symbolic execution engine
passes the bi-abductive problem final state ∗ missing state ` postcondition ∗ frame to the
structural entailment engine.

Any symbolic state added to the missing footprint must relate to the procedure’s arguments
or return value. Otherwise, the generated specification will not be well-formed. Additionally,
only type information, heap cells and pure formulae are added to the missing footprint ?M .
Entailments involving pure formulae are checked using the constraint solver Z3, whereas those
involving spatial formulae are checked in the structural entailment engine.



Chapter 5. Implementation for Bi-Abductive Symbolic Analysis 45

5.2 Implementation Challenges

We give examples in order to illustrate some interesting aspects of the JSIL Abduce tool.

Typing and Constraints Complexities. When evaluating expressions the tool infers missing
type information and constraints. First, the tool attempts to type an expression with the given
type information. If this fails the tool then attempts to infer the types needed to evaluate an
expression. This type information is added to the type environment in both the current symbolic
state and the missing symbolic state. In addition to type information, the tool infers constraints
required to evaluate an expression. For example, when evaluating the expression, nth (list, 3)
the type List of list and the constraint that the length of list must be greater than 3 is generated.

We give an example to show the additional type information and pure formulae when evaluating
expressions. The getTailElement procedure is a simple combination of basic commands in order
to retrieve the last element of a list. It does not require any objects; instead, it only requires y
to be list. The precondition has the constraint that the list must have at least one element and y
is of type List. These are added when the expressions l−len(y) and l−nth(y,len) are evaluated.

proc getTailElement(y) {
len := l-len(y) - 1;
ret := l-nth(y,len);

rlab: skip
} with {ret: ret, rlab;};

Generated precondition:
{ (y = #y) ∗ (!((l-len(#y)− 1) < 0)) ∗ types(#y : $$list_type) }

Generated postcondition:{
(y = #y) ∗ (len = (l-len(#y)− 1)) ∗ (ret = l-nth(#y, (l-len(#y)− 1)) ∗ (!((l-len(#y)− 1) < 0))
∗ types(#y : $$list_type, len : $$number_type)

}
Return mode:
Normal

Branching. When the tool cannot decide which branch of a goto command to explore, it ex-
plores both commands. The conditional expression can only be added to the missing symbolic
state if the variables are contained within the previously inferred missing state and the param-
eters. Otherwise the symbolic execution would generate an invalid specification.

In order to demonstrate branching within the tool, we give the following example. The proce-
dure simply sets the interval of the timeout object if the interval is not undefined. If the interval
is undefined, the timeout object interval is set to the default value 0. As no partial specification
is given the tool initiates the symbolic execution of the procedure with the empty symbolic state.
As no information is known about the variable interval and it is contained within the procedures
parameters, the symbolic execution explores both possible paths. A specification is generated
for each path.

proc getTimeoutInterval (timeout, interval) {
goto [(interval = undefined)] then1 else1;

then: [timeout, "interval"] := 0.;
goto rlab;

else: [timeout, "interval"] := interval;
ret := timeout;

rlab: skip
} with {ret: ret, rlab;};

The following specification is generated for the undefined case.
Generated precondition:
{ (timeout, “interval”) 7→ − ∗ (interval = undefined) ∗ types(timeout : $$object_type) }



Chapter 5. Implementation for Bi-Abductive Symbolic Analysis 46

Generated postcondition:{
(timeout, “interval”) 7→ 0 ∗ (interval = undefined) ∗ (ret = timeout)
∗ types(timeout : $$object_type)

}
Return mode:
Normal

The following specification is generated when the given interval is not undefined.
Generated precondition:
{ (timeout, “interval”) 7→ − ∗ (not (interval = undefined)) ∗ types(timeout : $$object_type) }

Generated postcondition:{
(timeout, “interval”) 7→ interval ∗ (not (interval = undefined)) ∗ (ret = timeout)
∗ types(timeout : $$object_type)

}
Return mode:
Normal

Procedure Calls. The following example demonstrates the procedure call rule. First, we in-
fer the specifications of the procedure getTimeoutInterval as it calls no other functions. This
procedure requires an object timeout with a field interval . We infer the pre- and postcondi-
tion given below. The specification is added to the new specification environment as shown
in Algorithm 1 and then the new specification environment is used for symbolic execution of
getTimeoutIntervalInSeconds.
proc getTimeoutInterval (timeout) {

ret := [timeout, "interval"];
rlab: skip

} with {ret: ret, rlab;};

Generated precondition:
{ (timeout, “interval”) 7→ #t ∗ (not(#t = None)) ∗ types(timeout : $$object_type) }

Generated postcondition:
{ (timeout, “interval”) 7→ #t ∗ (ret = #t) ∗ (not(#t = None)) ∗ types(timeout : $$object_type) }

Return mode:
Normal

Next, we symbolically execute getTimeoutIntervalInSeconds which calls the procedure getTimeoutInterval
. The symbolic execution of getTimeoutIntervalInSeconds starts with a state and anti-frame emp.
First, the field assignment basic command requires the heap cell assertion (func, “timeout”) 7→
−. The assertion is added to the anti-frame. The procedure call rule then solves the problem
emp ∗ PM ` PF ∗ P where P is the precondition of getTimeoutInterval. This is solved by the
entailment engine. As none of the precondition P is contained in the current state, PM is the
precondition of getTimeoutInterval. This results in PF = (func, “timeout”) 7→ timeout.

The resulting state is then the adapted postcondition of getTimeoutInterval combined with the
frame PF . The resulting anti-frame is PM ∗ (func, ”timeout”) 7→ −. After symbolically executing
the final basic command we obtain the specification below.
proc getTimeoutIntervalInSeconds (func) {

t := [func, "timeout"];
x := "getTimeoutInterval" (t);
ret := x / 1000;

rlab: skip
} with {ret: ret, rlab;};

Generated precondition:{
(func, “timeout”) 7→ #t ∗ (#t, “”interval””) 7→ #i
∗ types(func : objecttype,#t : objecttype,#i : numbertype)

}
Generated postcondition:



Chapter 5. Implementation for Bi-Abductive Symbolic Analysis 47

{
(func, “timeout”) 7→ #t ∗ (#t, “”interval””) 7→ #i ∗ (x = #i) ∗ (ret = (#i/1000))
∗ (t = #t) ∗ types(func : $$object_type, ret : $$number_type,#i : $$number_type, t : $$object_type)

}
Return mode:
Normal



Chapter 5. Implementation for Bi-Abductive Symbolic Analysis 48



Chapter 6

Evaluation

The evaluation of the tool was twofold; that of the tools ability to generate specifications and
that of the quality of the specifications generated. Initially these two qualities were evaluated
by a test suite of JSIL programs. The test suite contains a number of representative examples
in order to test the correctness of the symbolic execution rules. In total, the test suite has 47
procedures, producing 60 specifications.

This evaluation was extended by inferring the specifications of the internal and built-in func-
tions. We were able to find a bug in the implementation of two of the JavaScript internal func-
tions. We evaluate the tools ability to generate specifications for these functions (Section 6.2).
Additionally, we evaluate the quality of the specifications generated, by comparing hand-written
specifications to automatically generated specifications. First, we discuss the infrastructure re-
quired to carry out this evaluation (Section 6.1).

6.1 Evaluation Infrastructure

The infrastructure required to verify the specifications generated by JSIL Abduce is given in
Figure 6.1. The JSIL programs to be evaluated are given to JSIL Abduce which produces a
new specification environment contains the JSIL specifications. The JSIL programs and the new
specification environment is then passed into JSIL Verify, to verify the generated specifications.
JSIL Abduce, generates a call graph before symbolic execution, to calculate the order procedures
are analysed. Procedures must be analysed before any procedure which calls it is analysed.

Figure 6.1: Evaluation Infrastructure

49



Chapter 6. Evaluation 50

Limitations. Currently the basic command getFields is not supported by both JSIL Verify and
JSIL Abduce, therefore for the evaluation we need to filter out all internal functions containing
getFields . We perform the filtering while the call graph is generated. Additionally, JSIL Abduce
does not support recursive, mutually recursive, or looping branches in procedures. Hence,
we detect and halt symbolic execution of these branches, but we continue execution for the
remaining branches in the procedure.

6.2 Generating Specifications for the Internal Functions

JSIL implementations for JavaScript internal and built-in functions were written for JSIL Ver-
ify. We evaluate the tool’s ability to generate specifications for these functions, which involve
approximately 3500 lines of JSIL code. JSIL specifications for the internal functions were also
written, and can be used to verify JavaScript programs compiled to JSIL. We use these spec-
ifications to evaluate the quality of the automatically generated specifications. We give the
generated call graph for a subset of these procedures in Figure 6.2.

During the analysis of the internal functions, we found a bug in the implementation of two
internal functions, i__toDataDescriptor and i__toAccessorDescriptor.

Figure 6.2: Call Graph for a subset of the internal functions.

Results. Table 6.2 gives the results of running JSIL Abduce on the internal functions and the
separate built-in function libraries. This includes the functions relating to the setup of the
JavaScript initial heap contained in the Init library. The number of halted execution branches,
relates to the number of branches halted due to recursion. Most of the internal and built-in
JSIL implementations contain sizeable procedures with many branches. As a result a significant
number of specifications are created per procedure.



Chapter 6. Evaluation 51

Internal and
Built-In

functions

Lines of code
per library

Total
number of
procedures

Number of
procedures
containing

unsupported
operations

Number of
halted

execution
branches

Number of
specifica-

tions
generated

Time taken
(in seconds)

Internal 735 30 0 16 287 40.73
Array 467 16 14 8 7 2.92

Boolean 30 4 0 0 28 1.29
Date 94 10 1 231 0 179.17

Errors 87 17 0 107 1 4.37
Functions 47 6 2 2 8 0.45

Global 14 2 0 0 12 0.44
Init 486 6 0 2 11 9.85

Math 73 18 2 0 145 7.27
Number 23 4 2 0 8 0.43
Object 291 19 1 20 31 2.86
String 194 6 3 0 68 5.06
Total 2541 138 25 49 943 254.84

Table 6.1: Results of inferring specifications of internal functions.

6.2.1 Specification Comparison

The semi-automatic JSIL Verify tool requires the JSIL logic specifications of the JavaScript in-
ternal functions. These hand-written specifications are verified with respect to the JSIL imple-
mentations. We compare these specifications with the automatically generated specifications.

Create Default Object Procedure. The create default object procedure, shown below, creates
an object with the default values as defined in the ECMAScript documentation. It has four
manually written specifications and four automatically generated specifications.

We evaluate the specifications for the case where both cl and ext are undefined. Generally the
specifications contain similar information about the procedure. The automatically generated
specifications contain additional type and spatial information compared to the manually written
specifications. This is due to the type inference when evaluating expressions.

proc create_default_object (l, pr, cl, ext) {

goto [cl = undefined] scl text;
scl: cl := "Object";
text: goto [ext = undefined] sext setall;
sext: ext := $$t;

setall: [l, "@proto"] := pr;
[l, "@class"] := cl;
[l, "@extensible"] := ext;

rlab: xret := l
}
with
{

ret: xret, rlab;
};

Hand written specification:

Precondition:



Chapter 6. Evaluation 52

{
(l = #l) ∗ (pr = #pr) ∗ (cl = #cl) ∗ (ext = #ext) ∗ types(#l : $$object_type)
∗(#cl = undefined) ∗ (#ext = undefined) ∗ emptyFields(#l :)

}
Postcondition:{

(#l, “@proto”) 7→ #pr ∗ (#l, “@class”) 7→ Object ∗ (#l, “@extensible”) 7→ $$t
∗emptyFields(#l : “@proto”, “@class”, “@extensible”) ∗ (ret = #l)

}
Return mode:
Normal

Specification automatically generated by JSIL Abduce:
Precondition:{

(l, “@proto”) 7→ #s_11 ∗ (l, “@class”) 7→ #s_12 ∗ (l, “@extensible”) 7→ #s_13
∗(cl = undefined) ∗ (ext = undefined) ∗ (pr = #s_14) ∗ (ext = undefined)
∗(cl = undefined) ∗ types(l : $$object_type, cl : $$undefined_type, ext : $$undefined_type)

}

Postcondition:{
(l, “@proto”) 7→ #s_14 ∗ (l, “@class”) 7→ “Object” ∗ (l, “@extensible”) 7→ t
∗(cl = “Object”) ∗ (xret = l) ∗ (ext = t) ∗ (pr = #s_14)
∗types(l : $$object_type, cl : $$string_type, xret : $$object_type, ext : $$boolean_type)

}

Return mode:
Normal

Error Construct Procedure. The error constructor, shown below, constructs an object with the
default fields for an error object. Two specifications were manually written for the procedure
whereas seven specifications were automatically generated. We generate more specifications
because are tool does have abstraction. Therefore every time a program branches we gener-
ate a new specification. In particular, the hand written specifications generalise the result of
calling the procedure i__toString which converts v to string type. However, the JSIL Abduce
tool produces a specification for each possible case of the procedure i__toString. The procedure
i__toString has seven specifications, resulting in significantly more cases.

proc Error_construct (xsc, vthis, v) {
xret := vthis;

[vthis, "@class"] := "Error";
[vthis, "@extensible"] := t;

goto [v = undefined] rlab mess;

mess: xerr := "i__toString" (v) with elab;
[xret, "message"] := {{ "d", xerr, t, f, t }};

rlab: skip;
elab: skip

}
with
{

ret: xret, rlab;
err: xerr, elab;

};



Chapter 6. Evaluation 53

Is Data Descriptor Procedure. The isDataDescriptor procedure, shown below, returns whether a
given descriptor is a data descriptor. The five hand written specifications, use the DataDescriptor
(d) and GenericDescriptor (d) predicates. Predicates can summarise portions of specifications and
can lead to more concise specifications. As are tool does not support predicates or abstraction,
the specifications generated are less succinct.

pred DataDescriptor (d) :
types (d : $$list_type, #dwrit : $$boolean_type, #denum : $$boolean_type, #

dconf : $$boolean_type) *
(! (#dval == $$empty)) * (d == {{ "d", #dval, #dwrit, #denum, #dconf }});

pred GenericDescriptor (d) :
types (d : $$list_type) * (d == {{ "g", #genum, #gconf, #gval, #gwrit, #gget

, #gset }});

With these predicates the hand specification, where the descriptor is a data descriptor, is:
Precondition:
{ DataDescriptor(desc) }

Postcondition:
{ ret ==t }

Return mode:
Normal

Even though the automatically generated specification is correct for this case, it is less con-
cise than the hand-written specifications as the details of the case are not summarised with
predicates.
Precondition:{

(desc = #d) ∗ (!(#d =undefined)) ∗ (0. < (l − len#d)) ∗ (l − nth(#d, 0.) = ”d”)
∗ types(#d :list_type)

}
Postcondition:{

(d = l − nth(#d, 0.)) ∗ (desc = #d) ∗ (xret =t) ∗ (!(#d =undefined)) ∗ (0. < (l − len#d))
∗ (l − nth(#d, 0.) = ”d”) ∗ types(#d :list_type, desc :list_type, xret :boolean_type)

}
Return mode:
Normal

Setup Initial Heap Procedure. The initial heap setup procedure, is required for any JSIL
program compiled from JavaScript. The JavaScript heap requires a significant amount of set
up. Therefore the setupInitialHeap function contained within the Init library consists of 435 lines
of code. The automatically generated specifications for this procedure contain approximately
2674 separated assertions in both the precondition and postcondition.

As the first command in a JSIL program compiled from JavaScript is setupInitialHeap, unless the
initial heap is given in a partial precondition, the entire precondition of setupInitialHeap is added
to the anti-frame of the main procedure.



Chapter 6. Evaluation 54



Chapter 7

Conclusion

We have progressed from a semi-automatic symbolic analysis to a fully automatic analysis for
a subset of JSIL. First, we have successfully modified the symbolic analysis for a more explicit
execution. Secondly, we have introduced a bi-abductive symbolic analysis. Finally, we have
implemented a bi-abductive tool to infer procedure specifications. We summarise the objectives
which have been achieved towards fully automatic verification of JavaScript programs (Section
7.1), and we discuss possible future work (Section 7.2).

7.1 Objectives Achieved

We have succeed in modifying the JSIL logic symbolic rules, in order to describe a symbolic
analysis in a style that is closer to the implementation. We have proven this analysis sound with
respect to the JSIL semantics.

We have then introduced a bi-abductive symbolic analysis for generating JSIL specifications.
This analysis is able to infer the missing resources required to run a given procedure. We have
established the soundness of the bi-abductive symbolic analysis in Theorem 2 by appealing to
the standard symbolic execution analysis. Additionally, we have presented an algorithm to
generate specifications for JSIL programs. This algorithm allows for partial specifications to be
given as input to the verification.

Finally, we have developed a tool, JSIL Abduce, which automatically generates specifications for
JSIL programs. The tool has generated over 1000 specifications, which have been verified by the
semi-automatic tool JSIL Verify. We have evaluated the quality of the generated specifications
in Section 6 by comparing them to their handwritten counterparts.

7.2 Future Work

There are two main motivations for generating specifications: to automatically verify properties
of JavaScript programs and to support the developer in the verification of functional properties
of JavaScript programs. We discuss future work in both of these endeavours. Additionally,
future work is required to expand the scope of JSIL programs which the tool can analyse.

Inferring predicate assertions. Currently the tool does not support the inference of logi-
cal annotations needed for folding or unfolding user-defined predicates. This is important for
partial specifications containing predicate assertions, as well as using the hand-written speci-

55



Chapter 7. Conclusion 56

fications for the internal functions. For now, due to unsupported operations, in order to infer
specifications for JSIL programs compiled from JavaScript, we must use the hand-written in-
ternal function specifications. However, issues arise as the hand-written specifications contain
a significant number of predicates. Expanding the tool to infer missing annotations needed to
fold/unfold predicate assertions, would allow us to generate specifications for a greater range
of JSIL programs compiled from JavaScript.

Automatically inferring loop invariants [12]. At present, the tool does not handle looping
JSIL procedures. Additionally, the tool does not explore recursive or mutually branches. Future
work in automatically generating loop invariants and handling recursion is possible for a pre-
established set of abstractions.

Verify properties of JavaScript programs. Future work could explore properties which can
be verified by the generated specifications. For example, the specifications are able to record
the footprint of each procedure. This can be helpful in detecting confinement violations. For
example, detecting whether a program modifies any JavaScript built-in functionality.

Abstraction. As discussed in the evaluation, the quantity of specifications generated for pro-
cedures, with multiple branches and procedure calls, is larger than that of the hand-written
specifications. This is because the hand-written specifications are able to abstract the result of
a procedure call and branching. Expanding the tool to include abstraction would allow us to
have the same specification for describing the behaviour of multiple program paths.



Bibliography

[1] Proceedings of the 3rd International Constraint Solver Competition (2008). pas d’éditeur
commercial, 2008.

[2] T. Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216–234, Oct.
1999.

[3] C. Barrett, P. Fontaine, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2016.

[4] J. Berdine, C. Calcagno, and P. W. Hearn. Smallfoot: Modular automatic assertion check-
ing with separation logic. In Proceedings of the 4th International Conference on Formal
Methods for Components and Objects, FMCO’05, pages 115–137, Berlin, Heidelberg, 2006.
Springer-Verlag.

[5] J. Berdine, B. Cook, and S. Ishtiaq. Slayer: Memory safety for systems-level code. In
Proceedings of the 23rd International Conference on Computer Aided Verification, CAV’11,
pages 178–183, Berlin, Heidelberg, 2011. Springer-Verlag.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without bdds. In
Proceedings of the 5th International Conference on Tools and Algorithms for Construction and
Analysis of Systems, TACAS ’99, pages 193–207, London, UK, UK, 1999. Springer-Verlag.

[7] M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene,
A. Schmitt, and G. Smith. A trusted mechanised javascript specification. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, pages 87–100, New York, NY, USA, 2014. ACM.

[8] R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and arrays.
In Proceedings of the 15th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems: Held As Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009,, TACAS ’09, pages 174–177, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] J. N. Buxton and B. Randell, editors. Software Engineering Techniques: Report of a Con-
ference Sponsored by the NATO Science Committee, Rome, Italy, 27-31 Oct. 1969, Brussels,
Scientific Affairs Division, NATO. 1970.

[10] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of high-
coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[11] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’Hearn, I. Pa-
pakonstantinou, J. Purbrick, and D. Rodriguez. Moving Fast with Software Verification,
pages 3–11. Springer International Publishing, Cham, 2015.

57



Bibliography 58

[12] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional shape analysis by
means of bi-abduction. J. ACM, 58(6):26:1–26:66, Dec. 2011.

[13] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Form. Methods Syst. Des., 19(1):7–34, July 2001.

[14] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[15] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[16] ECMA. 5th Edition of ECMA 262. ECMAScript Language Specification. Technical report,
2011.

[17] N. Eén and N. Sörensson. An Extensible SAT-solver, pages 502–518. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2004.

[18] R. E. Fairley. Tutorial: Static analysis and dynamic testing of computer software. Computer,
11(4):14–23, April 1978.

[19] P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for javascript. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’12, pages 31–44, New York, NY, USA, 2012. ACM.

[20] T. J. Hickey. Iasolver (2010). http://www.cs.brandeis.edu/~tim/Applets/
IAsolver.html, 2017 (accessed June 15, 2017).

[21] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, Oct. 1969.

[22] M. Huth and M. Ryan. Logic in Computer Science: modelling and reasoning about sys-
tems (second edition). Cambridge University Press, 2004. Mass-printing license for Indian
sub-continent operative, Portuguese language edition and online e-publishing licenses in
preparation, 440pp. http://www.cs.bham.ac.uk/research/lics/.

[23] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. Verifast: A
powerful, sound, predictable, fast verifier for c and java. In Proceedings of the Third Inter-
national Conference on NASA Formal Methods, NFM’11, pages 41–55, Berlin, Heidelberg,
2011. Springer-Verlag.

[24] G. R. Joshua Bloch. Extra, extra - read all about it: Nearly all binary
searches and mergesorts are broken. https://research.googleblog.com/2006/06/
extra-extra-read-all-about-it-nearly.html, 2017 (accessed June 15, 2017).

[25] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, July
1976.

[26] D. Kroening and M. Tautschnig. CBMC – C Bounded Model Checker, pages 389–391.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[27] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In
Proceedings of the 16th International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] N. G. Leveson. An investigation of the therac-25 accidents. IEEE Computer, 26:18–41,
1993.

http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html
http://www.cs.brandeis.edu/~tim/Applets/IAsolver.html
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://research.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html


Bibliography 59

[29] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for javascript. In Pro-
ceedings of the 6th Asian Symposium on Programming Languages and Systems, APLAS ’08,
pages 307–325, Berlin, Heidelberg, 2008. Springer-Verlag.

[30] M. J. Marijn Heule and T. Balyo. Sat competition 2017. http://baldur.iti.kit.edu/
sat-competition-2017/index.php, 2017 (accessed June 15, 2017).

[31] D. L. Mate Soos and R. Govostes. Stp constraint solver. http://stp.github.io/, 2017
(accessed June 15, 2017).

[32] G. R. Matthias Heizmann and T. Weber. The 12th international satisfiability modulo the-
ories competition. http://smtcomp.sourceforge.net/2017/, 2017 (accessed June 15,
2017).

[33] S. McLaughlin, C. Barrett, and Y. Ge. Cooperating theorem provers: A case study combin-
ing hol-light and cvc lite. Electron. Notes Theor. Comput. Sci., 144(2):43–51, Jan. 2006.

[34] Microsoft. Microsoft security bulletin ms17-010 - critical. https://technet.microsoft.
com/en-us/library/security/ms17-010.aspx, 2017 (accessed June 15, 2017).

[35] D. Naudžiūnienė, J. Fragoso Santos, P. Maksimović, T. Wood, and P. Gardner. An In-
frastructure for Tractable Verification of JavaScript Programs. Preprint - in submission to
ECOOP’17, 2017.

[36] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89–100, June 2007.

[37] C. Peirce, C. Hartshorne, and P. Weiss. Collected Papers of Charles Sanders Peirce. Number
v. 5-6 in Collected Papers of Charles Sanders Peirce. Belknap Press of Harvard University
Press, 1974.

[38] C. S. Păsăreanu and N. Rungta. Symbolic pathfinder: Symbolic execution of java byte-
code. In Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE ’10, pages 179–180, New York, NY, USA, 2010. ACM.

[39] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. Lowry, S. Person, and
M. Pape. Combining unit-level symbolic execution and system-level concrete execution
for testing nasa software. In Proceedings of the 2008 International Symposium on Software
Testing and Analysis, ISSTA ’08, pages 15–26, New York, NY, USA, 2008. ACM.

[40] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02, pages 55–74,
Washington, DC, USA, 2002. IEEE Computer Society.

[41] U. S. C. E. R. Team. Indicators associated with wannacry ransomware. https://www.
us-cert.gov/ncas/alerts/TA17-132A, 2017 (accessed June 15, 2017).

[42] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs. Auto-
mated Software Engg., 10(2):203–232, Apr. 2003.

[43] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn. Scalable
shape analysis for systems code. In Proceedings of the 20th International Conference on
Computer Aided Verification, CAV ’08, pages 385–398, Berlin, Heidelberg, 2008. Springer-
Verlag.

http://baldur.iti.kit.edu/sat-competition-2017/index.php
http://baldur.iti.kit.edu/sat-competition-2017/index.php
http://stp.github.io/
http://smtcomp.sourceforge.net/2017/
https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://www.us-cert.gov/ncas/alerts/TA17-132A
https://www.us-cert.gov/ncas/alerts/TA17-132A


Bibliography 60



Appendix A

JSIL Semantics and Substitution
Lemma

A.0.1 JSIL Substitution Lemma

Lemma 3 (Substitution Lemma, Assertions). Let vars(P) ⊆ {xi |ni=1}. Then:

H, ρ, ε |= P [ei/xi |ni=1] ⇔ H, ∅[xi 7→ JeiKρ |ni=1], ε |= P

A.0.2 JSIL Semantics

Semantics of JSIL Expressions: JeKρ = v

LITERAL

JλKρ , λ

VARIABLE

JxKρ , ρ(x)

UNARY OPERATOR

J	 eKρ , 	(JeKρ)

BINARY OPERATOR

Je1 ⊕ e2Kρ , ⊕(Je1Kρ, Je2Kρ)

EXPRESSION LIST

J{{e1, ..., en}}Kρ , {{Je1Kρ, ..., JenKρ}}

Semantics of Basic Commands: JbcKh,ρ = (h′, ρ′, v)

SKIP
Jskip Kh,ρ , (h, ρ, empty)

ASSIGNMENT
JeKρ = v ρ′ = ρ[x 7→ v]

Jx := eKh,ρ , (h, ρ′, v)

PROPERTY ACCESS
h(Je1Kρ, Je2Kρ) = v ρ′ = ρ[x 7→ v]

Jx := [e1, e2]Kh,ρ , (h, ρ′, v)

PROPERTY ASSIGNMENT
Je3Kρ = v h′ = h[(Je1Kρ, Je2Kρ) 7→ v]

J[e1, e2] := e3Kh,ρ , (h′, ρ, v)

PROPERTY DELETION
h = h′ ] (Je1Kρ, Je2Kρ) 7→ v Je2Kρ 6= @proto

Jdelete (e1, e2)Kh,ρ , (h′, ρ, true)

OBJECT CREATION
h′ = h ] (l,@proto) 7→ null ρ′ = ρ[x 7→ l] (l,−) /∈ dom(h)

Jx := new ()Kh,ρ , (h′, ρ′, l)

MEMBER CHECK - TRUE
(Je1Kρ, Je2Kρ) ∈ dom(h) ρ′ = ρ[x 7→ true]

Jx := hasField (e1, e2)Kh,ρ , (h, ρ′, true)

MEMBER CHECK - FALSE
(Je1Kρ, Je2Kρ) 6∈ dom(h) ρ′ = ρ[x 7→ false]

Jx := hasField (e1, e2)Kh,ρ , (h, ρ′, false)

GET FIELDS
JeKρ = l h = (h′ ] (l, pn1) 7→ − ] ... ] (l, pnn) 7→ −) (l,−) 6∈ dom(h′)

{{pn1, ..., pnn}} = v Ord({{pn1, ..., pnn}}) ρ′ = ρ[x 7→ v]

Jx := getFields (e)Kh,ρ , (h, ρ′, v)

61



Appendix A. JSIL Semantics and Substitution Lemma 62

Semantics of control flow commands: p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉

BASIC COMMAND

pm(i) = bc ∈ BCmd JbcKh,ρ = (h′, ρ′,−)
p ` 〈h′, ρ′, i, i+ 1〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′′, ρ′′, o〉

GOTO

pm(i) = goto j p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′, ρ′, o〉

COND. GOTO - TRUE

pm(i) = goto [e] j, k JeKρ = true
p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′, ρ′, o〉

COND. GOTO - FALSE

pm(i) = goto [e] j, k JeKρ = false
p ` 〈h, ρ, i, k〉 ⇓m 〈h′, ρ′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′, ρ′, o〉

NORMAL RETURN

` 〈h, ρ, _, inm〉 ⇓m 〈h, ρ, nm〈ρ(xret)〉〉
ERROR RETURN

` 〈h, ρ, _, ier〉 ⇓m 〈h, ρ, er〈ρ(xerr)〉〉

PROCEDURE CALL - NORMAL

pm(i) = x := e(e1, ..., en1
) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2
){c}

∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, nm〈v〉〉

p ` 〈h′, ρ[x 7→ v], i, i+ 1〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′′, ρ′′, o〉

PROCEDURE CALL - ERROR

pm(i) = x := e(e1, ..., en1
) with j JeKρ = m′

p(m′) = proc m′(y1, ..., yn2
){c}

∀1≤n≤n1vn = JenKρ ∀n1<n≤n2vn = undefined

p ` 〈h, ∅[yi 7→ vi|n2
i=1], 0, 0〉 ⇓m′ 〈h′, ρ′, er〈v〉〉

p ` 〈h′, ρ[x 7→ v], i, j〉 ⇓m 〈h′′, ρ′′, o〉
p ` 〈h, ρ, _, i〉 ⇓m 〈h′′, ρ′′, o〉

PHI-ASSIGNMENT

pm(j) = x := φ(x1, ..., xn) i
k7→m j p ` 〈h, ρ[x 7→ ρ(xk)], j, j + 1〉 ⇓m 〈h′, ρ′, o〉

p ` 〈h, ρ, i, j〉 ⇓m 〈h′, ρ′, o〉


	Introduction
	Background
	Program Verification
	Program Correctness
	Static Verification Techniques
	Related Tools

	Separation Logic and Tools
	Hoare Logic
	Separation Logic
	Bi-Abduction
	Related Tools

	The JavaScript Language
	The JavaScript Intermediate Language
	Motivation for JSIL
	The JavaScript Intermediate Language
	The JavaScript Verification Toolchain


	Symbolic Analysis
	Axioms for Basic Commands
	Symbolic Execution Rules for Control Flow Commands

	Bi-Abductive Symbolic Analysis
	Bi-Abductive Analysis: High Level Description
	Bi-Abductive Axioms for Basic Commands
	Bi-Abductive Proof Rules for Control Flow Commands
	Bi-Abductive Algorithm for JSIL Programs

	Implementation for Bi-Abductive Symbolic Analysis
	Architecture
	Implementation Challenges

	Evaluation
	Evaluation Infrastructure
	Generating Specifications for the Internal Functions
	Specification Comparison


	Conclusion
	Objectives Achieved
	Future Work

	Bibliography
	JSIL Semantics and Substitution Lemma
	JSIL Substitution Lemma
	JSIL Semantics



