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Abstract

Reinforcement learning has achieved considerable success in recent years. One significant break-

through was Google DeepMind’s deep Q-network (DQN), which mastered a wide range of

Atari 2600 games to a super-human level using only the pixels and score. However, reinforce-

ment learning agents lack essential properties necessary for artificial general intelligence (AGI);

namely they are slow to learn, unable to transfer knowledge between similar tasks and are un-

able to reason abstractly. In this thesis we seek to advance a method likely to overcome these

drawbacks, known as deep symbolic reinforcement learning (DSRL). By applying recent ad-

vancements in the unsupervised learning of generative factors to fully-convolutional variational

autoencoders, we develop a first iteration solution for a scalable DSRL system.
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Chapter 1

Introduction

1.1 Motivation

A long term goal of artificial intelligence (AI) is the development of artificial general intelligence

(AGI). Since the field’s inception in the 1950s, it has swung between hype and breakthroughs,

followed by disappointment and reduced funding, known as AI winters [17]. During the first

period of hype from the 50s to the early 70s, Marvin Minsky made the following prediction: [9]

“In from three to eight years we will have a machine with the general intelligence

of an average human being.” - Marvin Minsky, 1970

This prediction was clearly not realised, and the first AI winter would shortly follow.

Symbolic AI was developed during this winter, which encodes knowledge as human-readable

rules and facts, making it easy to comprehend chains of actions and abstract relationships [23].

For instance, given the unary relations red and strawberry, and the binary relation bigger,

we can say that A is the smallest red strawberry by writing

red(A) strawberry(A) ∀B bigger(B, A)

1



2 Chapter 1. Introduction

But given the unary relations yellow and banana we could also write that A is the third biggest

yellow strawberry, or a red banana, and so on. We can see that the rules and facts in symbolic

logic can be endlessly recombined and extended. This allows for the manipulation of high-level

abstract concepts, which is key to AGI [13].

However, symbolic AI has a major philosophical problem: the facts and rules are only mean-

ingful to the human writing them; their meaning is not intrinsic to the system itself. This is

known as the symbol grounding problem.

Today we find ourselves in yet another period of hype and exciting breakthroughs. Rein-

forcement learning (RL) has become a prominent area of research, with many considering it

fundemental for AGI [15], as have deep neural networks. Recently, deep reinforcement learning

(DRL) systems have achieved impressive feats, including mastering a wide range of Atari 2600

games to a superhuman level using only raw pixels and score as input, and the board game Go

[21, 28].

Figure 1.1: May 1997: Gary Kasparov
makes his first move against IBM’s Deep
Blue. Deep Blue would later emerge the
victor in the best of six games; the first
time a reigning world chess champion is de-
feated by a computer. [26].

Figure 1.2: March 2016: Lee Sedol, one
of the greatest modern Go players, plays
his first move of game three against Al-
phaGo. AlphaGo won four of five games.
This feat was considered by many to be a
decade away. [22].

Though DRL systems are not afflicted by the same problems as symbolic AI, they have a

number of drawbacks of their own. Namely, they are: [13]

1. Slow to learn. Neural networks require large data sets and are therefore slow to learn.
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2. Unable to transfer past experience. They often fail to perform well on tasks very

similar to those they have mastered.

3. Unable to reason abstractly. They fail to exploit statistical regularities in the data.

4. Hard to reason about. It’s often difficult to extract a comprehensible chain of reasons

for why a deep neural network operated in the way it did.

Deep symbolic reinforcement learning (DSRL) is the marrying of DRL and symbolic AI; a

recent advance which overcomes the symbol grounding problem and the drawbacks associated

with DRL [13]. That is, DSRL systems overcome the symbol grounding problem, and are:

1. Fast to learn. Large data sets are not necessary.

2. Able to transfer past experience. Symbolic AI lends itself to multiple processes

associated with high-level reasoning, including transfer learning.

3. Able to reason abstractly. The agent is able to exploit statistical regularities in the

training data by using high-level processes like planning or causal reasoning.

4. Easy to reason about. Since the front end uses symbolic AI, its knowledge is encoded

as human-readable facts and rules, making the extraction of comprehensible chains of

logic much easier.

The DSRL framework is shown in Figure (1.3). The neural back end takes a high-dimensional

input and outputs a symbolic representation. This symbolic representation is then fed to the

symbolic front end, whose role is action selection. The agent then acts on the environment

and obtains a reward and the sensory input of the next time step. As the neural back end

learns how to represent the raw input data in a compositionally structured representation in

an unsupervised manner, and the symbolic front end learns to select the action with maximum

expected reward over time, the system as a whole learns end-to-end.

The unsupervised extraction of features from a wide range of scenes is still a challenge in AI

research. Since DSRL systems require this extraction in forming the symbolic representation,
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Neural back end Symbolic front end

Environment

AgentSensory
input Reward

Motor
output

A B C

Figure 1.3: Overview of deep symbolic reinforcement learning system architecture. A: The
neural back end maps high-dimensional raw input data to a compositionally structured
symbolic representation. B: The compositionally structured symbolic representation. C:

Reinforcement learning of mapping from symbolic representation to action with maximum
expected reward over time. Adapted from: Garnelo et al. [13].

the current system only works for toy data sets. In order for the system to scale to complex

scenes, a scalable method of extracting an object’s type and position must be found.

1.2 Contributions

With a recent development, β-VAE, it is possible to learn independent generative factors in

complex scenes using variational autoencoders [14]. In this thesis, we apply the technique

proposed in β-VAE to the novel fully-convolutional variational autoencoder architecture, and

in turn assess the feasibility of this architecture for advancing DSRL. We approach this in the

following way:

• Propose the novel architecture of the fully-convolutional variational autoen-

coder. This is (as far as we know) the first consideration of a fully-convolutional varia-

tional autoencoder.

• Propose a number of novel methods to solve the low-level extraction of objects

and their location in fully-convolutional variational autoencoders. This is done

by inventing novel architectures and loss functions, which are inspired by the developments
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made in β-VAE. These approaches are shown to be good starting points in solving this

open problem.

• Collect experimental evidence for each proposed method. Each proposed method

is assessed by a range of experiments. These include reconstructing its input, qualitatively

examining the latent representation of high-level objects in the scene as well as generating

new samples by sampling from the prior and using Markov chain Monte Carlo (MCMC).

• Assess the feasibility of using fully-convolutional variational autoencoders to

advance DSRL. Upon assessment of the experiments, we propose a suitable method

that (at least) partially solves the problem of latent representation of high-level objects

in the scene.
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Chapter 2

Background

In this section, we will provide the motivation for using binary cross-entropy for a reconstruction

loss term. We will then mention the software used to emulate the Atari games, Stella, and the

machine learning framework used to make our data set, the Arcade Learning Environment.

Lastly we will mention the motivation for using Keras, a machine learning library.

2.1 Loss functions

The idea of image reconstruction plays a vital role throughout this project. Although it’s

possible to qualitatively compare the original to its reconstruction, it’s important to be able to

quantify the difference, which lends itself to automation. The loss function will quantify how

similar two images are.

To compare loss functions, we’ll use the MNIST data set. MNIST is a collection of 70, 000

black-and-white images of handwritten digits, with 60, 000 in the training set containing and

10, 000 in the test set. These images will be represented as vectors without loss of generality.

7



8 Chapter 2. Background

2.1.1 Euclidean Distance

The Euclidean distance between two vectors x and y is defined by

√∑
i

(xi − yi)2

where xi and yi are the ith components of x and y respectively.

Euclidean distance is an intuitive measure of the distance between two points in space. Unfor-

tunately, this doesn’t also translate to visual similarity, as illustrated by Doersch et al. [11].

Figure (2.1) is a digit drawn from the MNIST dataset, and Figures (2.3) and (2.2) are at-

tempted reconstructions. Of the reconstructions, Figure (2.2) looks most like the original, but

Figure (2.3) is closer when using Euclidean distance.

Figure 2.1 Figure 2.2 Figure 2.3

Figure 2.4: Reprinted from: [11]

This leads to an alternative measure, binary cross-entropy, which gives a much better quantifi-

cation of how visually similar two images are.

2.1.2 Binary Cross-Entropy

Consider a single black-and-white pixel with probability p(0) = c of being 0 and p(1) = 1 − c

of being 1. Here p(x) is a probability distribution over the possible pixel values x ∈ {0, 1}.

Suppose a given model tries to learn the distribution described by p(x), and says that the pixel
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has probability q(0) = ĉ of being 0 and q(1) = 1− ĉ of being 1. The model is perfect if it learns

the true distribution, that is, if q(x) = p(x) for x ∈ {0, 1}. We’d like to quantify how similar

the distributions p and q are.

This is done by computing the binary cross-entropy between p and q, which is defined by

H(p, q) = −c log ĉ− (1− c) log(1− ĉ)

To see how we may use this as a similarity measure among images, consider a 1 × 1 image.

Normalising this image yields a pixel value in the interval [0, 1], which may now be interpreted

as a probability, corresponding to c above. In the normalised reconstructed image, the pixel

value corresponds to ĉ. We simply compute the binary cross-entropy to measure the similarity

of these two distributions, and in turn, the similarity of the images themselves! (Note: we could

have also assigned the probabilities to 1− y and 1− ŷ by symmetry of binary cross-entropy).

For images larger than 1× 1, we may take the component-wise binary cross-entropy, then, for

example, average the components. How the component-wise binary cross-entropies are suitably

combined to give a single floating point number will vary from problem to problem.

2.2 Stella

Video games are becoming increasingly popular in the generation of data sets for machine

learning purposes. One reason for this is that they do not inherit many operational drawbacks

from real world data, such as noise, the stability of the camera or the observation of rare

circumstances (the video game may just be queried for rare cases) [34, 24].

We chose Stella, a popular Atari 2600 emulator, as it supports a wide number of games, and

therefore gives us a wide choice of scenes to choose from.
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2.3 Arcade Learning Environment

The Arcade Learning Environment (ALE) is a framework built on top of the Atari 2600 emulator

Stella [1]. This library was a suitable choice because:

• Emulation details are abstracted away from the researcher

• Frames can be saved during game play, which is used to collect training data

• Games may be run in headless mode, which speeds up data collection considerably

• The module is well documented and widely used by AI researchers

2.4 Keras

Keras is a high-level neural network library written in Python [6]. It was a suitable choice

because it supports:

• A wide range of regularisers and callbacks

• Lambda layers, which is necessary for sampling in variational autoencoders

• The creation of custom loss functions, which is necessary when developing new methods

• Integration with TensorFlow and TensorBoard

• Nividia GPUs support



Chapter 3

Related Work

3.1 Autoencoders

An autoencoder is a neural network that learns a compression algorithm for its input data

in an unsupervised manner [20]. This is achieved by placing constraints on a hidden layer,

called the latent space, and setting the target values to the input values, effectively learning

the identity function. Since the network is trying to reconstruct the original input from the

constrained latent space, over time the latent space corresponds to a meaningful compression

of the network’s input.

Encoder Decoder

Figure 3.1: A black-box description of an autoencoder. The autoencoder learns the identity
function, and in turn, the encoder and decoder learn suitable encoding and decoding

algorithms respectively.

As before, we will use the MNIST data set to compare architectures. Unless specified in the

example, the Adam optimiser is used with a learning rate of 1e − 4, the batch size is 1 and

the loss function is binary cross-entropy. Intermediate layers use the ReLU activation function,

while the final layer uses sigmoid.

11
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3.1.1 Fully-Connected Autoencoders

In dense feed-forward neural networks we may place a constraint on the latent space by reducing

the number of neurons, as shown in Figure (3.2). Images must be flattened into vectors to be

fed as input. Consequently, any spatial information is destroyed in dense feed-forward neural

networks.

Encoder Decoder

Input Output

Figure 3.2: An example architecture of a fully-connected autoencoder. The latent space is
constrained by having fewer neurons than the input and output layers.

An example architecture is given in Table (3.1), which was trained on MNIST. Despite the

latent space being ∼ 4% of the size of the input space, the network is capable of producing

realistic reconstructions. For verification, a collection of samples from the dataset and their

corresponding reconstructions are shown in Figure (3.3).

Layer Output shape

InputLayer (1, 28, 28)
Flatten (784,)
Dense (32,)
Dense (784,)
Reshape (1, 28, 28)

Table 3.1: A simple fully-connected autoencoder with one hidden layer. After 15 epochs, the
validation score was recorded to be 71.94.
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Figure 3.3: A collection of images from the MNIST data set and their respective
reconstructions using the fully-connected autoencoder specified in Table 3.1. The original

MNIST images are in odd columns, and their reconstructions to their immediate right.
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3.1.2 Fully-Convolutional Autoencoders

In fully-convolutional feed-forward neural networks, we may place a constraint on the latent

space by reducing the number and/or size of the filters, as shown in Figure (3.4). To compare

the fully-convolutional autoencoder to the fully-connected, we’ll train the architecture in Table

(3.2) on MNIST. As before, we’ll compare the reconstructions to the originals, which can be

found in Figure (3.5).

Figure 3.4: An example architecture of a fully-convolutional autoencoder. The latent space is
constrained by reducing the number and/or size of the filters.

Layer Output shape

InputLayer (1, 28, 28)
Conv2D (32, 28, 28)
MaxPooling2D (32, 14, 14)
Conv2D (4, 14, 14)
MaxPooling2D (4, 7, 7)
UpSampling2D (4, 14, 14)
Conv2DTranspose (32, 14, 14)
UpSampling2D (32, 28, 28)
Conv2DTranspose (1, 28, 28)

Table 3.2: A simple fully-convolutional autoencoder with 2D convolutions and max pooling,
plus the corresponding deconvolutional layers. After 15 epochs, the validation score was

recorded to be 64.89.

Convolutional layers have been shown to be effective in tasks with images as input [18, 33, 30].

This is because spatial information is preserved in convolutional layers, and the number of

trainable parameters is far less in a convolutional layer than it is in a fully connected layer.

Convolutional layers will be used from here on as we’ll be using images as input.
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Figure 3.5: A collection of images from the MNIST data set and their respective
reconstructions using the fully-convolutional autoencoder specified in Table 3.2. The original

MNIST images are in odd columns, and their reconstructions to their immediate right.
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3.2 Variational Autoencoders

The variational autoencoder is central to this project, and we’ll therefore dedicate a consid-

erable amount of time exploring it. First we’ll precisely define the problems the variational

autoencoder solves, after which we may develop its loss function and detail its implementation.

This section will conclude by developing an intution of the theory covered by way of examples.

3.2.1 A Probabilistic Perspective

We’ll begin by making necessary definitions and describe the input data as samples from a

generative process. This sets the context to detail the problems the variational autoencoder

solves.

Let X = {x(i)}Ni=1 be the data set of N independent and identically distributed samples of the

variable x. (X may be a data set of images, for instance). Let us assume that these samples

are generated by a random process with parameters θ∗ involving an unobserved latent variable

z in the following way:

Algorithm 1 Generate data set X

1: for i = 1→ N do
2: z(i) ∼ pθ∗(z) // Sample from true prior
3: x(i) ∼ pθ∗(x|z(i)) // Sample from true conditional
4: Append x(i) to X
5: end for

We only observe the data set X in this process. The parameters θ∗ and latent variables

Z = {z(i)}Ni=1 are unknown to us. Let us assume that the prior pθ∗(z) and conditional pθ∗(x|z)

are parameterised by the distributions pθ(z) and pθ(x|z) respectively. In this context, the

variational autoencoder provides [16]:

1. ML or MAP estimation for the parameters θ

2. An approximation of the latent variable z(i) given x(i) and set of parameters θ
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3.2.2 Overcoming the Intractable Posterior

The variational autoencoder solves the problems above by approximate inference of the latent

variable z. Exact inference is not possible, and to see this we may use Bayes’ theorem to find

an expression for the posterior:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(3.1)

The marginal likelihood

pθ(x) =

∫
pθ(z)pθ(x|z)dz (3.2)

involves an exponential-time integral over every combination of the latent variable z, and is

therefore computationally intractable [16]. Instead, we define an approximation qφ(z|x) to the

intractable posterior. Since qφ(z|x) gives a distribution over the possible latent variables z

that generated the given data point x, it is known as the probabilistic decoder. By the same

reasoning, pθ(x|z) is known as the probabilistic decoder.

3.2.3 Finding a Suitable Loss Function: the ELBO

The variational autoencoers’s ability to learn the generative parameters θ∗ relies on how closley

qφ(z|x) approximates pθ(z|x). In the interest of training a model, this difference will be

quantified. For this we use the KL divergence

DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z|x)

]
(3.3)

which measures how much information is lost when we represent pθ(z|x) with qφ(z|x) (mea-

sured in nats) [4]. Using the KL divergence, our problem now amounts to the optimisation
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problem [19]:

θ∗,φ∗ = arg min
θ∗,φ∗

DKL(qφ(z|x)||pθ(z|x)) (3.4)

To see how we can start to minimise the KL divergence, we’ll start by rewriting it in a different

form:

DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z|x)

]
(3.5)

= Eqφ(z|x)
[

loge qφ(z|x)
]
− Eqφ(z|x)

[
loge pθ(z|x)

]
(3.6)

= Eqφ(z|x)
[

loge qφ(z|x)
]
− Eqφ(z|x)

[
loge

pθ(z,x)

pθ(x)

]
(3.7)

= Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z,x)

]
+ Eqφ(z|x)[loge pθ(x)] (3.8)

= Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z,x)

]
+ loge pθ(x) (3.9)

Here we see that the KL divergence depends on the intractable marginal likelihood pθ(x)!

There’s no way we can minimise it if we can’t write down pθ(x). However, we can get around

this: we’ll minimise the KL divergence, but not directly. Instead, we try to find a quantity

which we can maximise, and show that in turn this minimises the KL divergence. The trick is

not obvious, but is simply done by finding a lower bound on the log marginal likelihood.

Using Jensen’s inequality

f(E
[
X
]
) ≥ E

[
f(X)

]
(3.10)
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we can write down a lower bound on the log marginal likelihood:

loge pθ(x) = loge

∫
pθ(x, z)dz (3.11)

= loge

∫
pθ(x, z)

qφ(z|x)

qφ(z|x)
dz (3.12)

= loge Eqφ(z|x)

[
pθ(x, z)

qφ(z|x)

]
(3.13)

≥ Eqφ(z|x)

[
loge

pθ(x, z)

qφ(z|x)

]
(3.14)

:= L(θ,φ;x) (3.15)

Expression (3.14) is called the ELBO (short for expected lower bound) [2, 16].

How does the ELBO help us with minimising the KL divergence? First recall the alternative

form of the KL divergence:

DKL(qφ(z|x)||pθ(z|x)) = Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z,x)

]
+ loge pθ(x) (3.9)

Writing this in terms of the ELBO we have:

DKL(qφ(z|x)||pθ(z|x)) = −L(θ,φ;x) + loge pθ(x) (3.16)

Since the KL divergence is the negative of the ELBO up to an additive constant (with respect

to q), minimising the KL divergence is equivalent to maximising the ELBO [3]. Now we may

make a revision to our original optimisaiton problem (3.4). Our problem is written as [19]:

θ∗,φ∗ = arg max
θ∗,φ∗

L(θ,φ;x) (3.17)

3.2.4 Writing the ELBO in Closed-Form

We’ve found that we can maximise the ELBO to minimise the KL divergence between the

approximation qφ(z|x) and the intractable posterior pθ(z|x). Now we will seek to write the

ELBO in closed-form, after which we will be able to implement the variational autoencoder.
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To write the ELBO in closed-form, we’ll start with a useful manipulation:

L(θ,φ;x) = Eqφ(z|x)

[
loge

pθ(x, z)

qφ(z|x)

]
(3.18)

= −Eqφ(z|x)

[
loge

qφ(z|x)

pθ(x, z)

]
(3.19)

= −Eqφ(z|x)

[
loge

qφ(z|x)

pθ(x|z)pθ(z)

]
(3.20)

= −Eqφ(z|x)

[
loge

qφ(z|x)

pθ(z)

]
+ Eqφ(z|x)

[
loge pθ(x|z)

]
(3.21)

= −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)
[

log pθ(x|z)
]

(3.22)

Thus for a single data point x(i), the ELBO becomes:

L(θ,φ;x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(3.23)

With some assumptions and a bit of work, we’re finally in a position to write the ELBO

in closed-form. The first term is the KL divergence between the probabilistic encoder and the

prior. To make our lives simpler, we can choose the prior to be standard multivariate Gaussian:

pθ(z) = N (0, I) (3.24)

We will also assume that the posterior is a k-dimensional Gaussian with diagonal covariance.

It follows that the approximate posterior should take the same form. That is,

qφ(z|x(i)) = N (µ(i),σ2(i)I) (3.25)

where µ(i) and σ(i) are the mean and standard deviation (respectively) for data point x(i).

With these two assumptions, and the KL divergence for k-dimensional Gaussians,

DKL(N0||N1) =
1

2

[
tr(Σ−11 Σ0) + (µ1 − µ0)

TΣ−11 (µ1 − µ0)− k + ln

(
det Σ1

det Σ0

)]
(3.26)
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we may write the first term in closed-form:

DKL(qφ(z|x(i))||pθ(z)) =
1

2

[ k∑
j=1

σ
2(i)
j +

k∑
j=1

µ
2(i)
j − k − ln

k∏
j=1

σ
2(i)
j

]
(3.27)

Now we turn our attention to the second term of the ELBO:

Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(3.28)

Luckily, maximising terms like this is encountered regularly in statistics, and is known as

maximum likelihood estimation. This can be taken to be the reconstruction loss (defined it

earlier) [19].

Therefore, using an unspecified reconstruction loss, the ELBO is:

L(θ,φ;x) =
1

2

[ k∑
j=1

σ
2(i)
j +

k∑
j=1

µ
2(i)
j − k − ln

k∏
j=1

σ
2(i)
j

]
+ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(3.29)

3.2.5 Implementing the Variational Autoencoder

The variational autoencoder uses a neural network for the probabilistic encoder qφ(z|x) [16].

First a näıve implementation of the variational autoencoder will be proposed. As we shall see,

this implementation needs one adjustment, known as the “reparameterisatoin trick”. This will

lead to the final implementation of the variational autoencoder, and conclude our formal study.

The probabilistic encoder

qφ(z|x(i)) = N (µ(i),σ2(i)I) (3.25)

requires the mean µ(i) and standard deviation σ(i) for a given data point x(i). These two vec-

tors will be represented by distinct layers in the latent space of a neural network, as shown in

Figure (3.6) [19].
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x

Figure 3.6: A näıve implementation of the variational autoencoder. The input x is mapped to
intermediate layers taking the values of µ and σ2. The latent variable z is then sampled from

the probabilistic encoder z ∼ qφ(z|x). Finally z is mapped back to the input dimension to
give reconstruction x̃. Adapted from [19].

Unfortuntely we cannot perform backpropagation, as it makes no sense to differentiate the the

random variable z wrt φ (z is drawn from a distribution, and not a function of φ). To solve

this, we introduce an auxillary variable ε and vector-valued function gφ(x, ε) parameterised by

φ [16]. The auxillary variable ε is governed by a parameterless distribution, which we will take

to be the standard multivariate Gaussian.

The sampling step can now be written as

z = gφ(x, ε) = µ+ σ � ε ε ∼ N (0, I) (3.30)

where � represents the element-wise product. This is a reparameterisation of the random

variable z ∼ qφ(z|x) with a differentiable function gφ(x, ε), and is suitable known as the

“reparameterisation trick” [16]. The reparameterisation trick allows backpropagation to be

used, and thus completes our method of solving optimisation problem (3.17).

The correct implementation of the variational autoencoder is shown in Figure (3.7).
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x

Figure 3.7: A viable implementation of the variational autoencoder. Sampling from the
probabilistic encoder qφ(z|x) is simulated by evaluating z = gφ(x, ε) = µ+ σ � ε.

Adapted from [19].

3.2.6 Intuition Behind the Variational Autoencoder

In this section, we’ll develop the intuition behind the variational autoencoder. We’ve been

considering the data set X = {x(i)}Ni=1. Now we’ll choose X to be the MNIST data set

(the vector x(i) now corresponds to a flattened MNIST image of length 28 × 28 = 784).

For visualisation purposes, we’ll also take the latent space dimension to be k = 2, that is,

z = (z1, z2).

The probabilistic encoder

qφ(z|x(i)) = N (µ(i),σ2(i)I) (3.25)

gives a normal distribution over the values of the latent variable z(i) given data point x(i).

Suppose a sample is drawn from this normal distribution and passed through to the decoder.

The decoder then reconstructs the original image from the latent representation. Since we’ve

chosen our latent space to be two-dimensional, it’s possible to visualise this process, which is

done in Figure (3.8). It’s then possible to compare the reconstruction to the original (using an

appropriate reconstruction loss function), and therefore to train the autoencoder as a whole.
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Recall that we chose the prior to be the standard multivariate Gaussian

pθ(z) = N (0, I) (3.24)

We also derived the loss function to be

L(θ,φ;x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]

(3.23)

which we want to maximise. Since

DKL(qφ(z|x(i))||pθ(z)) ≥ 0 (3.31)

maximising the ELBO is equivalent to reducing the KL divergence between the probabilistic

encoder qφ(z|x(i)) and the prior pθ(z). Therefore after training, we expect that the prob-

abilistic encoder should map samples to the standard multivariate Gaussian. (In practice,

L(θ,φ;x(i)) > 0 ∀i, so we therefore only expect it to be approximately mapped to the standard

Gaussian). Decoding samples from the prior should correspond to meaningful reconstructions.

A visualisation of sampling from the prior is given in Figure (3.9).

We also know that

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2) (3.32)

and therefore, by taking the sum of the distributions of all data points x(i), we have

N∑
i=1

qφ(z|x(i)) = N (
N∑
i=1

µ(i),
N∑
i=1

σ2(i)) (3.33)

Surprisingly, this happens to approximate the prior p(z)! That is,

N∑
i=1

qφ(z|x(i)) ≈ p(z) (3.34)

A nice visualisation of this result is given in Figure (3.10).
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Figure 3.8: The encoder takes a data point and returns a normal distribution (orange); some
samples of which are shown (blue). A sample is drawn from the normal distribution (red) and

decoded. Adapted from: [12].
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Figure 3.9: The prior distribution should approximate the standard multivariate Gaussian
N (0, I). Samples of the prior are shown (yellow); two of which are decoded (red and blue).

Adapted from: [12].
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Figure 3.10: The sum over the latent space distributions of all data points x(i) approximates the multivariate isotropic Gaussian.
Adapted from: [12].
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3.3 Unsupervised Learning of Generative Factors

Learning disentangled generative factors of a scene in an unsupervised manner is an open

challenge in AI research. Although many attempts have been made, they have not scaled well

[32, 27, 10, 31, 7]. However, two recent advancements have made significant headway: β-VAE

and InfoGAN [5, 32].

3.3.1 InfoGAN

InfoGAN is an information theoretic extension of the Generative Adversarial Network, which

has convincingly learnt generative factors of multiple data sets in an unsupervised manner,

including MNIST, 3D faces and 3D chairs [5].

Figure 3.11: InfoGAN convincingly learns the underlying generative factors in the 3D face
data set. Rows correspond to a data point and columns the value of the latent variable

(varied from −1 to 1). Each section (a), (b), (c) and (d) consider a different latent variable.
Source: [5].

However, InfoGAN is sensitive to the choice of the prior distribution, and therefore requires a

priori knowledge of the data set, as well as the number and type of generative factors [32]. Ide-
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ally, the number of generative factors would be inferred and not made explicit by the designer.

On this basis, we can conclude that future work is needed.

3.3.2 β-VAE

β-VAE is the first method to overcome what InfoGAN could not: to learn the (unspecified

amount of) generative factors of a data set in an unsupervised manner. First a formal derivation

of β-VAE will be proposed, then a comparison of InfoGAN, β-VAE and VAE.

Derivation

Recall that for the variational autoencoder, we assumed the data point x was generated by a

process involving a latent variable z and conditional p(x|z). For β-VAE we make a slightly

different assumption: data point x ∈ RN was generated by conditionally independent factors

v ∈ RK s.t. p(v|x) =
∏

k p(vk|x), conditionally dependent factors w ∈ RH and the conditional

p(x|v,w). In short, this is written as

p(x|v,w) = Sim(v,w) (3.35)

where Sim is short for a true world simulator. β-VAE seeks to represent these generative

factors in the latent variable z ∈ RM , such that

p(x|z) ≈ p(x|v,w) = Sim(v,w) (3.36)

Note that, unlike InfoGAN, β-VAE does not specify the number independent generative factors

K; instead it is inferred. However, in order for z ∈ RM to learn the conditionally independent

factors v ∈ RK , we must assert that M ≥ K.

As before, the posterior pθ(z|x) is intractable, which motivates the introduction of the prob-

abilistic encoder qφ(z|x). A reasonable objective is to find the most likely parameters of the

model over all latent variables that produced the observed data. This is summarised more
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precisely as the optimisation problem

θ∗,φ∗ = max
φ,θ

Eqφ(z|x)
[

log pθ(x|z)
]

(3.37)

A constraint is added to control the capacity of information in the latent space and encourage

the factors v to be learnt in a disentangled manner. The probabilistic encoder qφ(z|x) is

pressured to be close to an isotropic Gaussian, implicitly applying an independence pressure.

By using the KL divergence, we form the optimisation problem

θ∗,φ∗ = max
φ,θ

Eqφ(z|x)
[

log pθ(x|z)
]

(3.38)

s.t. DKL(qφ(z|x)||p(z)) < ε

The Lagrangian of optimisation problem (3.38) is

F(θ,φ;x) = Eqφ(z|x)
[

log pθ(x|z)
]
− β(DKL(qφ(z|x)||p(z))− ε) (3.39)

Since β, ε > 0,

F(θ,φ;x) ≥ L(θ,φ;x) = Eqφ(z|x)
[

log pθ(x|z)
]
− βDKLqφ(z|x)||p(z)) (3.40)

By applying pressure for qφ(z|x) to be close to the prior p(z), the latent space learns the

conditionally independent factors v in a different subset of z than the conditionally dependent

factors w. β controls the degree of this pressure. Also note that β = 1 yields the ELBO

formulated earlier (3.22), and β = 0 yields the maximum likelihood case. It’s hypothesised

that disentangled representations are learnt for β > 1.

As the prior needs to be isotropic, it’s often chosen to be the standard multivariate Gaussian:

p(z) = N (0, I) (3.41)
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Figure 3.12: A comparison of InfoGAN, β-VAE (β = 20) and VAE on the 3D face data set.
Different latent variables are varied for sections (a), (b) and (c). All models learnt lighting
and elevation, but only InfoGAN and β-VAE managed to continuously vary the azimuth.

Source: [32].

3.4 Improving Sampling from Generative Autoencoders

with Markov Chains

A generative autoencoder may be defined as an autoencoder that pressures its latent distribu-

tion qφ(z|x) to match a given prior p(z) [8]. As discussed earlier, the KL divergence term in

the ELBO applies this pressure:

L(θ,φ;x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)
[

log pθ(x|z)
]

(3.23)
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In Section (3.2) it was assumed that the data set X was generated by

z(i) ∼ p(z) x(i) ∼ pθ∗(x|z(i)) (3.42)

where p(z) is a parameterless prior distribution and pθ∗(x|z(i)) is the true conditional. As the

true set of parameters θ∗ is unknown to us, we may attempt to generate samples with learnt

parameters θ:

z(i) ∼ p(z) x(i) ∼ pθ(x|z(i)) (3.43)

Now suppose

∫
qφ(z|x)p(x)dx = p̂(z) (3.44)

where p(x) is the distribution that generated data setX. The generative procedure (3.43) makes

the erroneous assumption that qφ(z|x) perfectly matches the prior p(z), that is, p(z) = p̂(z)

[8]. Since only pressure was applied to match the two, this is clearly not true in general. That

is, in general,

p(z) 6= p̂(z) (3.45)

Therefore we have

∫
pθ(x|z)p̂(z)dz = p(x) 6=

∫
pθ(x|z)p(z)dz (3.46)

which suggests that the generative procedure (3.43) does not produce samples from p(x) exactly.

To sample from p(x), a new generative procedure is proposed [8]:

z(i) ∼ p̂(z) x(i) ∼ pθ(x|z(i)) (3.47)

As p̂(z) is unknown, it is not obvious how to sample from generative autoencoders using
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Figure 3.13: The probabilistic encoder qφ(z|x) maps a given data point x to the unknown
distribution p̂(z). The probabilistic decoder pθ(x|z) is trained to map samples from p̂(z) back
to p(x), since its inputs are drawn from the probabilistic encoder qφ(z|x). A sample from the

prior p(z) will not be mapped back by pθ(x|z) to p(x) exactly if p(z) 6= p̂(z).
Adapted from: [8].

procedure (3.47). However, it is possible to formulate a Markov chain Monte Carlo (MCMC)

chain that starts with an arbitrary latent variable zt=0 and converges with zt→∞ ∼ p̂(z) [8].

This is done by successively encoding and decoding the same sample as follows:

xt=k+1 ∼ pθ(x|zt=k) zt=k+1 ∼ qφ(z|xt=k+1) (3.48)

where zt=0 is arbitrarily chosen.
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Figure 3.14: Samples from a variational autoencoder trained on the CelebA data set after
t = 0, 1, 5 and 10 steps of the generative procedure (3.48). The MCMC chain was initialised
with a sample from the prior zt=0 ∼ p(z), which often improves the quality of the samples.

Source: [8].



Chapter 4

Implementation

4.1 Dimensionality Reduction

Machine learning with high-dimensional data, such as images, is often computationally inten-

sive. Atari 2600 frames are RGB images (3 channels) of size 210×160, expressed in shorthand as

(3, 210, 160). (This data is much higher in dimensionality than MNIST, which has dimensions

(1, 28, 28)). Considering the training sets considered in this project are of ∼ 100, 000 images,

data points of dimension (3, 210, 160) are too computationally intensive for machine learning

purposes with the best hardware available (2 × NVIDIA Tesla K80 GPU Accelerators). It is

therefore necessary to reduce the dimensionality of our data set. Google DeepMind’s Human-

level Control Through Deep Reinforcement Learning [21] made use of Stella, as we have, and

have convincingly struck a reasonable balance between resolution and dimensionality reduction.

This section will be a short but necessary mentioning of the pre-processing pipeline used to

generate the data sets in later chapters.

35
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4.1.1 Pre-processing Pipeline

Ensuring Object Persistence

Atari 2600 games can only store a limited number of sprites per frame due to the limitations

in hardware during its development [21]. This is an issue as some objects that appear in one

frame fail to appear in the next. To solve this lack of object persistence, even and odd frames

are combined by taking the maximum over each channel (RGB). By taking the maximum, we

ensure that any object present in one frame is also present in the other.

Extracting Luminance and Cropping

The luminance Y is then extracted from the RGB image [29]:

Y = 0.2126×R + 0.7152×G+ 0.0722×B (4.1)

The resultant greyscale image of shape (1, 210, 160) is cropped to (1, 84, 84).

File Formats

Image formats were discovered to be more important than originally thought. Empirically,

PNG or GIF formats were reasonable formats, but using JPEG often resulted in distortions

near the perimeter of objects. An example of this effect is shown in Figure (4.2).

4.2 Qualitative Assessment Using GUIs

To qualitatively assess the significance of a latent neuron in the final reconstruction, we change

its value over a given range and inspect the reconstructions. In order to speed up this process,

Tkinter was used to develop a GUI with a sliding bar corresponding to the latent neuron’s
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Figure 4.1: A collection of frames captured from Space Invaders emulated on Stella. Left
column: an even frame. Middle column: the (odd) frame following. Right column:

Combining the even and odd frames by taking the maximal value over each channel (RGB).
Clearly the bullets visible in one frame fail to persist in the next. As mentioned, this is due to

the limited number of sprites Atari 2600 can load in a single frame.



38 Chapter 4. Implementation

Figure 4.2: Pre-processed frames captured from Pong emulated on Stella. These frames were
originally 84× 84, but are printed here as 168× 168 to emphasise distortions. Left: The

JPEG format distorts the ball, paddle and score sprites. Right: The PNG format displays
the frame without such distortions.

value. This real-time reconstruction allows for much quicker feedback, and hence we were able

to explore the role of latent neurons in the reconstruction process much quicker.

4.3 Training and Validation Data Generators

Since our data set consists of ∼ 100, 000 high-dimensional data points, it is not possible to

load these directly into memory. Instead, a custom data generator was made that pulls data

samples from a given directory. In this way, only batch size-many data points are loaded at

once. Once a data point is pulled, an internal counter is incremented so that no data point

is repeated. The data generator throws an exception when it’s queried to return more unique

data points than it’s given.

4.4 Ensuring Numerical Stability in the Latent Space

In the implementation of the variational autoencoder loss function, we use log variance instead

of variance to spread values evenly, which helps with backpropagation. This is because it’s

easier to learn with an approximately equal step size between values rather than those that are
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either clumped or sparse. Since log is monotonic, the value ordering is invariant, which allows

back propagation to implicitly optimise the variance σ2.

4.5 Activation Functions in the Latent Space

Conventionally, activation functions are used in the hidden layers, such as sigmoid or, more

commonly, ReLU. However, we must be careful not to mindlessly follow this trend. It makes

no sense to use a ReLU activation function on the mean layer of the variational autoencoder.

The mean µ ∈ R is unconstrained, and hence a no activation function is appropriate. Likewise,

since we use log variance, we also have the property that lnσ2 ∈ R. By the same reasoning, we

do not apply an activation function to this layer to leave lnσ2 unbounded.

4.6 Keras Callbacks

Throughout the results section we use a number of Keras’ features, which include:

• Learning rate annealing. Reducing the learning rate with the number of epochs can

be quite beneficial in consistently achieving an optimum.

• Check-pointing model weights and architecture. Saving the model after each epoch

(if it betters the previous best) is extremely useful. This allows for the continuation of

training at a later date and for real time testing.

• Reduce LR on plateau. Often it’s hard to pick the right factor to reduce the learning

rate each epoch when using LR annealing. An easier method is reducing the LR on

plateau, where the LR is reduced by a given factor when the monitored quantity does not

improve.

• Early stopping. When training models, sometimes the model starts to make very

marginal improvements. Early stopping terminates the training at this point, often sig-

nificantly reducing training time.
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Chapter 5

Methods

“It is not unscientific to make a guess,

although many people who are not in

science think it is.”

R. P. Feynman

In order for symbolic extraction to take place in a DSRL system, the latent space must preserve

the types of objects and the spatial information of the original scene. In other words, from the

latent space alone, it must be possible to deduce an object’s type and location. We explore the

feasibility of using fully-convolutional variational autoencoders for this purpose. This is exciting

new territory; the fully-convolutional variational autoencoder has (to the best of our knowledge)

never been explored. We therefore have many degrees of freedom with how we proceed. In this

section, we will make educated guesses of how a working architecture looks and encode desirable

properties in loss functions, which will be inspired by the successful techniques developed in

β-VAE.

5.1 Single Latent Filter

As mentioned, the type and position of an object must be preserved in the latent space. This

may be achieved by using a single latent filter, with the object type corresponding to the value

41
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of the activation at the relevant position on the filter. Recall that it does not make sense to

use an activation function in the latent space, and therefore the object type is represented by

an unbounded real number.

5.1.1 Architecture

The input image is passed through convolutional layers to build increasingly meaningful hidden

representations. The convolutional mean µ and variance σ2, both of shape (1,m, n), are

sampled using the reparameterisation trick

z = gφ(x, ε) = µ+ σ � ε ε ∼ N (0, I) (3.30)

so we may use backpropagation. The corresponding deconvolutional layers are applied to re-

construct the original image.

Figure 5.1: The fully-convolutional single latent filter architecture. Blue: An arbitrary
amount of convolutional layers. Green: The latent mean µ and variance σ2, which are both

single filters of shape (1,m, n). Orange: A single latent filter of shape (1,m, n) sampled
component-wise from µ and σ2. Red: The corresponding deconvolutional layers.

5.1.2 Neuron-Level Redundancy Reduction

As with all autoencoders, a reconstruction loss term must appear in the loss function as to learn

the identity function, which ensures a meaningful lower-dimensional representation is learnt in

the latent space. Hence we also include the reconstruction loss term

Eqφ(z|x)
[

log pθ(x|z)
]

(5.1)
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in the final loss function for this architecture.

We also saw in β-VAE that the multiplicative factor on the KL loss term

−βDKL(qφ(z|x)||pθ(z)) (5.2)

varies the pressure of redundancy reduction on the latent space. As we seek to have non-zero

activations in the latent space if and only if an object is present, it’s in our interest to reduce the

number of unnecessarily activated neurons. Therefore the application of a redundancy pressure

term seems suitable, and is therefore included in the loss function. However, as we no longer

have a one-dimensional latent space, we must decide on how this term will appropriately reduce

redundancy in a two-dimensional latent space.

To reduce the redundancy in a two-dimensional latent space, we choose to flatten the (1,m, n)-

dimensional single latent filter to an m× n vector z, which is then matched to the prior p(z),

an isotropic Gaussian. We choose the prior to be p(z) = N (0, I) for convenience.

By reducing the two-dimensional latent space to one dimension, we arrive at the same loss

function as in the β-VAE case:

L(θ,φ;x) = −βDKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)
[

log pθ(x|z)
]

(5.3)
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5.2 Multiple Latent Filters

Although it’s conceivable that a single latent filter could represent types and locations of objects

in the scene, it seems unlikely to do so. It’s well known that filters may learn a set of weights

to recognise information-rich features in the scene, like edges or corners. Perhaps this property

could be leveraged by using multiple filters in the latent space, where any given latent filter is

not responsible for representing multiple types of objects, but one specific object.

By the same reasoning for the single latent filter architecture, we keep the reconstruction loss

Eqφ(z|x)
[

log pθ(x|z)
]

(5.4)

to learn a meaningful low-dimensional representation in the latent space. However, we propose

three techniques of redundancy reduction in the latent space to achieve our desiderata:

• Neuron-level redundancy reduction

• Näıve filter-level redundancy reduction

• Weighted filter-level redundancy reduction

5.2.1 Architecture

The architecture is the same as the fully-convolutional single lantent filter architecture, but

with strictly more than one filter in the latent space. The convolutional mean µ and variance

σ2, both of shape (k,m, n), are sampled using the reparameterisation trick

z = gφ(x, ε) = µ+ σ � ε ε ∼ N (0, I) (3.30)

so we may use backpropagation. The corresponding deconvolutional layers are applied to re-

construct the original image.
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Figure 5.2: The fully-convolutional multiple latent filter architecture. Blue: Unchanged.
Green: The latent mean µ and variance σ2, which are both single filters of shape (k,m, n).
Orange: A single latent filter of shape (k,m, n) sampled component-wise from µ and σ2.

Red: Unchanged.

5.2.2 Neuron-Level Redundancy Reduction

To reduce the redundancy of activated neurons across the whole (k,m, n)-dimensional latent

space, so that neurons are only activated when necessary, we apply neuron-level redundancy

reduction. The latent filter of shape (k,m, n) is flattened to a k × m × n vector z, which is

then pressured to match the prior p(z) = N (0, I).

The loss function is therefore written as

L(θ,φ;x) = −βDKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)
[

log pθ(x|z)
]

(5.5)

where z ∈ Rk×m×n is the flattened (k,m, n)-dimensional latent space.
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5.2.3 Näıve Filter-Level Redundancy Reduction

β-VAE sought to factorise the latent space into independent and dependent generative factors

of the scene, in effect “disentangling” the latent space. By similar reasoning, we’d like the

activation of filters to clearly correspond to independent object types, with no two filters active

for the same object. Hence we seek a factorisation over the activity of latent filters with no

redundancy.

To achieve this, the k filters of the (k,m, n)-dimensional latent space are averaged across

their activations and stored in a vector z̄. We then pressure the vector z̄ to match the prior

p(z) = N (0, I).

Latent lters

Average
�lters

Latent vector
  of size

Compute
loss

Decouple average
lter term

The loss function is therefore written as

LNF (θ,φ;x) = −βDKL(N (µ̄, σ̄2)||pθ(z)) + Eqφ(z|x)
[

log p(x|z)
]

(5.6)

where µ̄ ∈ Rk and σ̄2 ∈ Rk are the averages of µ ∈ Rk×m×n and σ2 ∈ Rk×m×n.

5.2.4 Weighted Filter-Level Redundancy Reduction

It’s a subtle but necessary point that we should be careful to evaluate loss terms in a comparable

way. For example, taking the sum of one and comparing it to the average of another (which

is always less than the sum) serves to bias the loss function. This leads to the possibility

that the average filter activation KL loss term in the naive filter-level redundancy technique
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is significantly under-represented when taking the sum reconstruction loss. (For simplicity,

assume that we will take the sum reconstruction loss from here on.)

When evaluating the average filter activations, we get a single floating point number for m×n

pixels, where m and n are the width and height of the latent filter respectively. Hence, when

calculating the KL loss term, we may multiply by m×n so that the KL loss and reconstruction

loss are of comparable size.

Latent lters

Average
�lters

Latent vector
  of size

Compute
loss

KL loss term

The loss function is therefore written as

LNF (θ,φ;x) = −β|z|
k
DKL(N (µ̄, σ̄2)||pθ(z)) + Eqφ(z|x)

[
log p(x|z)

]
(5.7)

where µ̄ ∈ Rk and σ̄2 ∈ Rk are the averages of µ ∈ Rk×m×n and σ2 ∈ Rk×m×n.

5.3 Winner Takes All

As mentioned, we’d like the activation of filters to clearly correspond to independent object

types, with no two filters active for the same object. Assuming the latent space takes this

structure, we would expect no more than one filter to be activated in any given position.

(Objects must have distinct types: a sprite cannot be a gunship and a number at the same

time.) This leads to the Winner Takes All method, where we apply a position-wise pressure to

the latent space so that no more than one filter has a high activation in any given position.
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Figure 5.3: Multiple types of objects
recognised in same position.

Figure 5.4: At most one object recognised in
a given position.

5.3.1 Position-Wise Redundancy Reduction

Consider a convolutional latent space z of shape (k,m, n). Let zi,j ∈ Rk be the vector storing

the activations over the k filters at position (i, j). Naturally, we also let qi,jφ (z|x) represent

the probabilistic encoder for zi,j ∈ Rk. By matching the probabilistic encoder to an isotropic

Gaussian we may reduce the redundancy, as argued previously. We choose to include the

following term in our loss function:

m∑
i=1

n∑
j=1

DKL(qi,jφ (z|x)||pi,j(z)) where pi,j(z) = N (0, I) (5.8)

As shown with β-VAE, the multiplicative β controls the redundancy pressure. We will include

this also and see if we observe a similar effect later.

Extract Decouple

Therefore the final loss function is given as:
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LWTA(θ,φ;x) = Eqφ(z|x)
[

log pθ(x|z)
]
− β

m∑
i=1

n∑
j=1

DKL(qi,jφ (z|x)||pi,j(z)) (5.9)

5.4 Separating Colour Spaces

As the task of unsupervised object recognition in fully-convolutional variational autoencoders

is an open problem, it’s reasonable to start by solving easy recognition tasks. Since sprites in

Atari games are of different colours, we can use these colour channels to make the separation

of objects easier. An example for a frame of Space Invaders is shown in Figure (5.9). Since this

technique is independent of architecture, it applies to all mentioned in the chapter.

Figure 5.5: Original Figure 5.6: Red Figure 5.7: Green Figure 5.8: Blue

Figure 5.9: A comparison of a 210× 160 RGB frame from Space Invaders and its red, green
and blue channels. The bullet is clearly separated from other sprites in the blue channel. The
red and green channels separate collections of sprites. The red channel excludes the gunship

and players score, while the green partially excludes the barriers.

One obvious limitation of this method is that the number of sprites separated is limited by the

number of colour channels.



50 Chapter 5. Methods



Chapter 6

Results

In this chapter we will perform a number of experiments to assess the proposed methods from

last chapter. We wish to keep the architectures fixed and vary the method, which is done to

accurately assess its feasibility. Of course, some methods require a change in architecture, in

which case we make the smallest possible change. First we will mention the architectures used,

after which we will explore each proposed method in detail.

Unless specified otherwise, the Adam optimiser was used with a learning rate of 1e − 3. We

also use a data set of 100, 000 pre-processed frames of Space Invaders (generated with the

Arcade Learning Environment), with a 90-10 training-test split. With such a large data set of

high-dimensional data, we train the models with early stopping (until the gains are no longer

qualitatively different) to ensure a breadth of parameters are explored.

6.1 Architectures

In this section we will use architectures similar to one proven to capture the generative factors

in the Atari game Space Invaders [14]. We do not claim that these architectures are optimal,

but simply that they are capable of learning the generative factors in the scene.

The architectures used are specified in Tables (6.1), (6.2) and (6.3).

51
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Layer Output shape Connected to

InputLayer (1, 84, 84)
Conv2D 1 (32, 42, 42) InputLayer
Conv2D 2 (64, 21, 21) Conv2D 1
Conv2D 3 (1, 8, 8) Conv2D 2
Conv2D 4 (1, 8, 8) Conv2D 2
Sampling (1, 8, 8) Conv2D 3 & Conv2D 4
Deconv2D 1 (64, 20, 20) Sampling
Deconv2D 2 (32, 40, 40) Deconv2D 1
Deconv2D 3 (1, 84, 84) Deconv2D 2

Table 6.1: Fully-convolutional single-filter variational autoencoder.

Layer Output shape Connected to

InputLayer (1, 84, 84)
Conv2D 1 (32, 42, 42) InputLayer
Conv2D 2 (64, 21, 21) Conv2D 1
Conv2D 3 (8, 8, 8) Conv2D 2
Conv2D 4 (8, 8, 8) Conv2D 2
Sampling (8, 8, 8) Conv2D 3 & Conv2D 4
Deconv2D 1 (64, 20, 20) Sampling
Deconv2D 2 (32, 40, 40) Deconv2D 1
Deconv2D 3 (1, 84, 84) Deconv2D 2

Table 6.2: Fully-convolutional multiple latent filter variational autoencoder.

Layer Output shape Connected to

InputLayer (3, 84, 84)
Conv2D 1 (32, 42, 42) InputLayer
Conv2D 2 (64, 21, 21) Conv2D 1
Conv2D 3 (8, 8, 8) Conv2D 2
Conv2D 4 (8, 8, 8) Conv2D 2
Sampling (8, 8, 8) Conv2D 3 & Conv2D 4
Deconv2D 1 (64, 20, 20) Sampling
Deconv2D 2 (32, 40, 40) Deconv2D 1
Deconv2D 3 (3, 84, 84) Deconv2D 2

Table 6.3: Fully-convolutional multiple latent filter variational autoencoder for RGB images.
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6.2 Single Latent Filter

6.2.1 Results

The single latent architecture, found in Table (6.1), was trained for 10 epochs, and the valida-

tion, validation KL and validation reconstruction loss recorded. The results are shown in Figure

(6.1). The single latent image method is clearly capable of achieving reasonable reconstruction

and KL loss on unseen data.

We see that the reconstructions of several inputs, shown in Figure (6.14), are qualitatively

perfect. For each value of β, the reconstruction is indistinguishable from its input. This comes

as quite a surprise, as we initially suspected this method is too restrained in the latent space.

The latent representations of scenes, shown in Figure (6.27), do not meaningfully correspond

to their original scene. Even for high β, the scenes do not seem to become anything more

interpretable than noise. We further took the average of the latent filters over the test set of

10, 000 data points, and achieved similar results, which are shown in Figure (6.40).

Likewise, the decoded samples from the prior p(z) and unknown distribution p̂(z), shown in

Figures (6.31) and (6.36) respectively, do not have any meaningful relation to the original scene.

This is true for all values of β tested. This tells us that even for reasonable values of the KL

loss term, the latent image method struggles to generate realistic samples.

6.2.2 Summary

• The latent image method is capable of qualitatively perfect reconstruction of its input.

• Despite the perfect reconstruction, the method seems to struggle with learning inter-

pretable latent representations of high-level concepts in the scene for all values of β.

• The latent image method also seemed to struggle to produce meaningful generative sam-

ples from the prior p(z) and unknown distribution p̂(z) despite reasonable values of

validation KL loss.
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Figure 6.1: Single latent filter architecture. The validation, validation KL and validation
reconstruction loss for the latent image architecture and different values of β.
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Figure 6.2: Original Figure 6.3: β = 1 Figure 6.4: β = 4 Figure 6.5: β = 16

Figure 6.6: Original Figure 6.7: β = 1 Figure 6.8: β = 4 Figure 6.9: β = 16

Figure 6.10: Original Figure 6.11: β = 1 Figure 6.12: β = 4 Figure 6.13: β = 16

Figure 6.14: Single latent filter architecture. A selection of Space Invader frames and
their corresponding reconstructions for different values of β.



56 Chapter 6. Results

Figure 6.15: Original Figure 6.16: β = 1 Figure 6.17: β = 4 Figure 6.18: β = 16

Figure 6.19: Original Figure 6.20: β = 1 Figure 6.21: β = 4 Figure 6.22: β = 16

Figure 6.23: Original Figure 6.24: β = 1 Figure 6.25: β = 4 Figure 6.26: β = 16

Figure 6.27: Single latent filter architecture. Frames from Space Invaders and their
corresponding latent images for different values of β.

Figure 6.28: β = 1 Figure 6.29: β = 4 Figure 6.30: β = 16

Figure 6.31: Single latent filter architecture. The best of 10 samples from the prior
p(z) = N (0, I) for different values of β.
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Figure 6.32: Original Figure 6.33: β = 1 Figure 6.34: β = 4 Figure 6.35: β = 16

Figure 6.36: Single latent filter architecture. Samples from the unknown distribution
p̂(z) after one step of MCMC for different values of β. Samples for subsequent steps did not

improve, hence we only include the first for each value of β.

Figure 6.37: β = 1 Figure 6.38: β = 4 Figure 6.39: β = 16

Figure 6.40: Single latent filter architecture. An average of the activations in the latent
image over 10, 000 images from the test set for different values of β.
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6.3 Neuron-Level Redundancy Reduction

6.3.1 Results

The multiple latent filter architecture, found in Table (6.2), was trained for 10 epochs with

the neuron-level redundancy reduction loss function, and the validation, validation KL and

validation reconstruction loss recorded. The results are shown in Figure (6.41). The multiple

latent filter architecture with neuron-level redundancy reduction is clearly capable of achieving

reasonable reconstruction and KL loss on unseen data, and achieves similar KL loss values as

the single latent filter architecture, but considerably better reconstruction loss values.

Although the method reconstructs its input near perfectly, as shown in Figure (6.54), the latent

representations do not represent objects in the scene in an interpretable way. This is true also

for the averaging of the latent filters over the 10, 000 test data points for all values of β. These

results are shown in Figures (6.59) and (6.80) respectively.

Surprisingly, the decoded samples from the prior resemble the original scenes, shown in Figure

(6.63). From these results, it’s clear that the realism of these generated scenes improves with

increasing β. As expected, the generative samples from the unknown distribution p̂(z) are more

realistic. It’s also clear that increasing β encourages the samples from p̂(z) to stray further

from the input, but in a statistically consistent way.

6.3.2 Summary

• The multiple latent filter architecture with neuron-level redundancy reduction is capable

of near perfectly reconstructs of its input.

• It also fails to learn interpretable latent representations of high-level concepts in the scene

for all values of β.

• However, it’s capable of generating semi-realistic and statistically consistent samples.

Varying β has noticeable effects on the realism of the generative samples.
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Figure 6.41: Multiple latent filter archiecture with neuron-level redundancy
reduction. The validation, validation KL and validation reconstruction loss for the latent

image architecture and different values of β.
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Figure 6.42: Original Figure 6.43: β = 1 Figure 6.44: β = 4 Figure 6.45: β = 32

Figure 6.46: Original Figure 6.47: β = 1 Figure 6.48: β = 4 Figure 6.49: β = 32

Figure 6.50: Original Figure 6.51: β = 1 Figure 6.52: β = 4 Figure 6.53: β = 32

Figure 6.54: Multiple latent filter architecture with neuron-level redundancy
reduction. A selection of Space Invader frames and their corresponding reconstructions for

different values of β.
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Figure 6.55: Original

Figure 6.56: β = 1

Figure 6.57: β = 4

Figure 6.58: β = 32

Figure 6.59: Multiple latent filter architecture with neuron-level redundancy
reduction. A Space Invaders frame and the activations over its corresponding latent filters

for different values of β.

Figure 6.60: β = 1 Figure 6.61: β = 4 Figure 6.62: β = 32

Figure 6.63: Multiple latent filter architecture with neuron-level redundancy
reduction. The best of 10 samples from the prior p(z) = N (0, I) for different values of β.
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Figure 6.64: β = 1
(original)

Figure 6.65: β = 1
(19 steps)

Figure 6.66: β = 1
(26 steps)

Figure 6.67: β = 1
(60 steps)

Figure 6.68: β = 4
(original)

Figure 6.69: β = 4
(1 step)

Figure 6.70: β = 4
(7 steps)

Figure 6.71: β = 4
(98 steps)

Figure 6.72: β = 32
(original)

Figure 6.73: β = 32
(1 step)

Figure 6.74: β = 32
(15 steps)

Figure 6.75: β = 32
(48 steps)

Figure 6.76: Multiple latent filter architecture with neuron-level redundancy
reduction. A selection of Space Invader frames and the following samples from the unknown

prior p̂(z) using MCMC for different values of β.



6.3. Neuron-Level Redundancy Reduction 63

Figure 6.77: β = 1

Figure 6.78: β = 4

Figure 6.79: β = 32

Figure 6.80: Multiple latent filter architecture with neuron-level redundancy
reduction. An average of the activations in the latent image over 10, 000 images from the

test set for different values of β.
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6.4 Näıve Filter-Level Redundancy Reduction

6.4.1 Results

The multiple latent filter architecture, found in Table (6.2), was trained for 10 epochs with

the näıve filter-level redundancy reduction loss function, and the validation, validation KL and

validation reconstruction loss recorded, which are shown in Figure (6.81). As with previous

methods, the image reconstructions are near perfect even for high β, as shown in Figure (6.94).

Interestingly, in Figure (6.99), we see the beginnings of high-level objects in the latent filters!

It’s possible to make out the representation of the score bar for each value of β. We also see some

very promising results on the average activations of the latent filters in Figure (6.120). The

score bar and ground are recognised in at least one filter, with sometimes noticeable activations

on the barriers. The value of β does not have a noticeable influence on the latent filters.

Further, we see that the samples from the prior p(z) are far from resembling the original scene,

but samples from the unknown distribution p̂(z) are very realistic for high β! We expect poor

samples from the prior as we pressure µ̄ and σ̄ to be close to p(z), not µ and σ as before.

6.4.2 Summary

• As with the previous methods, the näıve filter-level redundancy reduction method near

perfectly reconstructs its inputs irrespective of the value of β.

• The method achieves the first signs of latent filter representations of high-level objects in

the scene. This is especially obvious in the average activations of latent filters, where the

score, floor and barriers are clearly recognised.

• However, the generative power of this method is quite strong. Samples from the unknown

distribution p̂(z) resemble the original scene after a threshold value of β.

• We therefore have a method that learns persistent high-level features and may generate

realistic novel samples.
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Figure 6.81: Multiple latent filter architecture with näıve filter-level redundancy
reduction. The validation, validation KL and validation reconstruction loss for the latent

image architecture and different values of β. The validation reconstruction loss for β = 16, 32
were ∼ 950, and are therefore excluded in two plots for readability.
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Figure 6.82: Original Figure 6.83: β = 1 Figure 6.84: β = 2 Figure 6.85: β = 32

Figure 6.86: Original Figure 6.87: β = 1 Figure 6.88: β = 2 Figure 6.89: β = 4

Figure 6.90: Original Figure 6.91: β = 1 Figure 6.92: β = 2 Figure 6.93: β = 4

Figure 6.94: Multiple latent filter architecture with näıve filter-level redundancy
reduction. A selection of Space Invader frames and their corresponding reconstructions for

different values of β.
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Figure 6.95: Original

Figure 6.96: β = 1

Figure 6.97: β = 4

Figure 6.98: β = 32

Figure 6.99: Multiple latent filter architecture with näıve filter-level redundancy
reduction. A Space Invaders frame and the activations over its corresponding latent filters

for different values of β.

Figure 6.100: β = 1 Figure 6.101: β = 4 Figure 6.102: β = 32

Figure 6.103: Multiple latent filter architecture with näıve filter-level redundancy
reduction. The best of 10 samples from the prior p(z) = N (0, I) for different values of β.
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Figure 6.104: β = 1
(original)

Figure 6.105: β = 1
(1 step)

Figure 6.106: β = 1
(5 steps)

Figure 6.107: β = 1
(10 steps)

Figure 6.108: β = 4
(original)

Figure 6.109: β = 4
(1 step)

Figure 6.110: β = 4
(5 steps)

Figure 6.111: β = 4
(10 steps)

Figure 6.112:
β = 32 (original)

Figure 6.113:
β = 32 (1 step)

Figure 6.114:
β = 32 (5 steps)

Figure 6.115:
β = 32 (10 steps)

Figure 6.116: Multiple latent filter architecture with näıve filter-level redundancy
reduction. A selection of Space Invader frames and the following samples from the unknown

prior p̂(z) using MCMC for different values of β.
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Figure 6.117: β = 1

Figure 6.118: β = 4

Figure 6.119: β = 32

Figure 6.120: Multiple latent filter architecture with näıve filter-level redundancy
reduction. An average of the activations in the latent image over 10, 000 images from the

test set for different values of β.
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6.5 Weighted Filter-Level Redundancy Reduction

6.5.1 Results

The multiple latent filter architecture, found in Table (6.2), was trained for 10 epochs with

the näıve filter-level redundancy reduction loss function, and the validation, validation KL and

validation reconstruction loss recorded, which are shown in Figure (6.121). Despite the large

weight on the KL loss term, the image reconstructions are near perfect for all β, as shown in

Figure (6.134).

High-level objects are clearly represented in the latent filters, particularly for β = 4. The

barriers and score are again clearly identified in the latent filters. This does not seem to be

the case with β = 32, which suggests there is an optimal value of β. Further, the average

activations of the latent filters in Figure (6.156) show that, on average, β = 4 and β = 32 both

detect persistent high-level objects in the scene.

When comparing the input to the corresponding latent filters, we find an interesting result. We

can easily spot the barriers and score for β = 4, but not so for β = 32, as shown in Figure

(6.139). Further, the samples from the unknown distribution p̂(z) are much more interesting

for β = 4 than β = 32. For β = 32, the samples do not differ very much from its input,

whereas samples for β = 4 differ widely (bullets disappear and scores change), but in a realistic

consistent way. These results are shown in Figure (6.152).

6.5.2 Summary

• The method is capable of near perfectly reconstructing the original image, despite having

a large multiplicative factor on the KL loss term.

• Latent representations of persistent high-level objects in the scene are clear for some β.

• Further, values of β also have a noticeable effect on the generated samples from the

unknown distribution p̂(z).
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Figure 6.121: Multiple latent filter architecture with weighted filter-level
redundancy reduction. The validation, validation KL and validation reconstruction loss for

the latent image architecture and different values of β.



72 Chapter 6. Results

Figure 6.122: Original Figure 6.123: β = 1 Figure 6.124: β = 4 Figure 6.125: β = 32

Figure 6.126: Original Figure 6.127: β = 1 Figure 6.128: β = 4 Figure 6.129: β = 32

Figure 6.130: Original Figure 6.131: β = 1 Figure 6.132: β = 4 Figure 6.133: β = 32

Figure 6.134: Multiple latent filter architecture with weighted filter-level
redundancy reduction. A selection of Space Invader frames and their corresponding

reconstructions for different values of β.
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Figure 6.135: Original

Figure 6.136: β = 1

Figure 6.137: β = 4

Figure 6.138: β = 32

Figure 6.139: Multiple latent filter architecture with weighted filter-level
redundancy reduction. A Space Invaders frame and the activations over its corresponding

latent filters for different values of β.
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Figure 6.140: β = 1
(original)

Figure 6.141: β = 1
(18 steps)

Figure 6.142: β = 1
(26 steps)

Figure 6.143: β = 1
(39 steps)

Figure 6.144: β = 4
(original)

Figure 6.145: β = 4
(1 step)

Figure 6.146: β = 4
(5 steps)

Figure 6.147: β = 4
(40 steps)

Figure 6.148:
β = 32 (original)

Figure 6.149:
β = 32 (1 step)

Figure 6.150:
β = 32 (47 steps)

Figure 6.151:
β = 32 (62 steps)

Figure 6.152: Multiple latent filter architecture with weighted filter-level
redundancy reduction. A selection of Space Invader frames and the following samples from

the unknown prior p̂(z) using MCMC for different values of β.
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Figure 6.153: β = 1

Figure 6.154: β = 2

Figure 6.155: β = 4

Figure 6.156: Multiple latent filter architecture with weighted filter-level
redundancy reduction. An average of the activations in the latent image over 10, 000

images from the test set for different values of β.
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6.6 Separating Colour Spaces

6.6.1 Results

The multiple latent filter RGB architecture, found in Table (6.3), was trained for 15 epochs,

and the validation, validation KL and validation reconstruction loss recorded.

The reconstructions for RGB images were poor compared to their greyscale equivalents. For

example, in Figure (6.169), β = 2 fails to reconstruct individual space invaders, and β = 4 fails

to reconstruct entire columns.

Figure (6.174) shows that the latent filters fail to meaningfully learn an interpretable repre-

sentation of the original input. However, the average activations have detected the persistent

score bar at the top of the frame, shown in Figure (6.191). The value of β appears to have no

effect on the latent filters.

Samples from the unknown distribution, p̂(z) shown in Figure (6.187), are reasonable for a

small number of steps of MCMC. The generative samples quickly begin to look unrealistic with

more than 40 steps. Here the value of β seems to encourage the generated images more realistic.

The poor results for this method are likely due to the increase in dimensionality of the input.

If left to train for a sufficiently long time, we suspect this would improve the model.

6.6.2 Summary

• The increase in dimensionality of the input requires a non-trivial amount of more time

training. It is likely this method will do at least as well as with greyscale images.

• For this particular test, the reconstructions were the worst out of every method

• The method struggled to learn interpretable latent representations

• Show reconstructions and convolutional layers of each
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Figure 6.157: Original Figure 6.158: β = 1 Figure 6.159: β = 2 Figure 6.160: β = 4

Figure 6.161: Original Figure 6.162: β = 1 Figure 6.163: β = 2 Figure 6.164: β = 4

Figure 6.165: Original Figure 6.166: β = 1 Figure 6.167: β = 2 Figure 6.168: β = 4

Figure 6.169: Multiple latent filter architecture for RGB with weighted filter-level
redundancy reduction. A selection of Space Invader frames and their corresponding

reconstructions for different values of β.
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Figure 6.170: Original

Figure 6.171: β = 1

Figure 6.172: β = 2

Figure 6.173: β = 4

Figure 6.174: Multiple latent filter architecture for RGB with weighted filter-level
redundancy reduction. A Space Invaders frame and the activations over its corresponding

latent filters for different values of β.
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Figure 6.175: β = 1
(original)

Figure 6.176: β = 1
(7 steps)

Figure 6.177: β = 1
(17 steps)

Figure 6.178: β = 1
(18 steps)

Figure 6.179: β = 2
(original)

Figure 6.180: β = 2
(10 steps)

Figure 6.181: β = 2
(17 steps)

Figure 6.182: β = 2
(31 steps)

Figure 6.183: β = 4
(original)

Figure 6.184: β = 4
(1 step)

Figure 6.185: β = 4
(3 steps)

Figure 6.186: β = 4
(20 steps)

Figure 6.187: Multiple latent filter architecture for RGB with weighted filter-level
redundancy reduction. A selection of Space Invader frames and the following samples from

the unknown prior p̂(z) using MCMC for different values of β.
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Figure 6.188: β = 1

Figure 6.189: β = 2

Figure 6.190: β = 4

Figure 6.191: Multiple latent filter architecture for RGB with weighted filter-level
redundancy reduction. An average of the activations in the latent image over 10, 000

images from the test set for different values of β.



Chapter 7

Conclusion

7.1 Summary of Thesis Achievements

This thesis has made small novel steps in solving the open problem of the scalable unsupervised

extraction of an object’s type and location using fully-convolutional variational autoencoders.

We have:

• Proposed a novel architecture: the fully-convolutional variational autoencoder. This

is an exciting first step in the development of the preservation of spatial information in

learning representations of objects in a scene.

• Proposed a number of novel methods to solve the low-level extraction of objects

and their location in fully-convolutional variational autoencoders. Namely, this was the

proposal of the single latent filter architecture, the multiple latent filter architecture,

neuron-level redundancy reduction, näıve filter-level redundancy reduction and weighted

filter-level redundancy reduction.

• Collected experimental evidence for each proposed method. Each method’s

capabilities were tested, including how well they reconstructed their input and if the

latent space learnt an interpretable encoding of the original scene.
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• Assessed the feasibility of using fully-convolutional variational autoencoders to

advance DSRL. After examining the experimental data collected, we can confidently say

that we have made a small novel step towards solving the problem of scalable unsupervised

extraction of an object’s type and location. This is achieved with a multiple latent filter

architecture using weighted filter-level redundancy reduction.

7.2 Future Work

There are two very promising avenues to explore from here.

The first is a step away from the variational autoencoder and back to a deterministic fully-

convolutional autoencoder with a regularization technique called OrthoReg, introduced in Reg-

ularizing CNNs with Locally Constrained Decorrelations [25]. This regularization technique

reduces redundancy among the latent filters, which is precisely what we were trying to achieve

with the filter-level redundancy techniques developed.

The second is the exploration of the Winner Takes All method. Although this method was

originally thought to be equivalent to neuron-level redundancy reduction, it was realised too

late that this was not so. Given more time, it would be interesting to see if this method works

as intended.
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