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Abstract

Over the recent years, data-driven approaches that take advantage of the availability of

large manually-annotated datasets have proven effective at visual perception tasks. We

witnessed particularly rapid improvements in the image classification task, where ma-

chines now surpass human-level performance. However, the progress in certain instance-

level recognition tasks, such as object segmentation and human pose estimation, has not

been as rapid. In part, the rate of improvement has been affected by the difficulty of

manually annotating very large amounts of data for these tasks.

In this work we explore if semi-supervised learning approaches that utilise unlabelled

video data can provide a reasonably effective alternative to the manually annotated data

for instance-level recognition. Central to our approaches is the idea that good models

should consistently predict the same label for different pose and view variations of the

same object instance. We employ a hard example mining heuristic to find video frames

in which the model makes mistakes and correct them by combining the information

from the remaining video frames. By noting that video can be seen just like a source

of transformation, we generalise our approach to unlabelled images and apply it to the

human pose estimation task. The resulting technique, which we call keypoint data

distillation (KDD), is simple and very effective.

Using a collection of unlabelled video frames, we show that the Mask R-CNN model

combined with KDD achieves state-of-the-art results on the COCO Keypoint Challenge,

outperforming all other entries by a significant margin.
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Chapter 1

Introduction

1.1 Overview

Computers perform exceptionally well at solving tasks which have a clear mathematical

specification that can be translated to a sequence of machine instructions. Examples

include performing numeric operations on millions of numbers, solving scheduling prob-

lems and finding shortest paths between places. However, humans often find such tasks

challenging due to the amount of cognitive reasoning required.

Challenges. In contrast, machines programmed by specifying rules struggle at visual

perception tasks that humans find easy. For instance, when humans look at the images

shown in Fig. 1.1 they can immediately see that the scene contains people and horses.

Furthemore, humans require no additional reasoning to localise objects, denote object

outlines or identify body parts of the people in the images. However, these are all very

challenging tasks for a machine. In particular, computers operate on images encoded

using arrays of numbers indicating brightness values at each position. Deriving more

abstract meaning from the raw numbers corresponding to an object is challenging due to

the almost infinite variability across different object instances and scenes in the natural

world. Hence, it is not feasible to come up with a clear mathematical specification for

visual perception tasks.

One way to approach this problem is to rely on heuristic specifications. For instance, one

of the first computer vision attempts at object recognition proposed modeling objects as

collections of rigid pieces connected by ’springs’ [25]. Such approaches have had limited

success and have not come even close to human-level performance at visual perception

tasks. Contrary to this line of thought, humans excel at perception tasks and yet have

never been provided with a set of rules of any kind. Instead, humans learn from data,

by observing the world and being taught by others.
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1.1. OVERVIEW CHAPTER 1. INTRODUCTION

Figure 1.1: (Top Left) Image classification. (Top Right) Object detection. (Bottom Left)
Object instance segmentation. (Bottom Right) Human pose estimation. Classification is an
image-level task while detection, segmentation and pose estimation are instance-level tasks.

An alternative way to tackle the lack of mathematical specification in visual percep-

tion tasks is to employ data-driven approaches. In particular, instead of programming

machines to perform perception tasks, humans design learning algorithms and let com-

puters discover patterns in data automatically by showing them examples. Although

the core algorithmic concepts behind such approaches have been long known [71, 45],

we have only recently started to see their effectiveness at perception tasks.

Encouraging Progress. Over the past few years, the rapid increase in performance

of learning-based methods at visual perception tasks has been largely driven by more

powerful computing platforms and the availability of large manually annotated datasets.

We have witnessed particularly dramatic improvements in image classification [43], with

machines even surpassing human-level performance [35] on the ImageNet challenge [72].

Further Challenges. However, the progress in instance-level tasks, such as segmen-

tation and pose estimation (Fig. 1.1, bottom), has not been as rapid. Instance-level

tasks are more challenging since they require both localising the objects and perform-

ing some form of fine-grained classification. Furthemore, manually segmenting objects

and locating human keypoints is much more labour-intensive than specifying categories

for an image. Hence, creating very large datasets for instance-level tasks is very time-

consuming and expensive. Although a relatively large dataset is available [51], it is likely

that additional labelled data would speed up the progress in instance-level tasks.
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Long-term Goal. An alternative approach to labelling additional data for instance-

level tasks is to develop algorithms for learning from unlabelled data. Hence, we could

potentially leverage the practically infinite amount of unlabelled data available. There

has been some encouraging progress in this direction at certain computer vision tasks.

For instance, edge detectors trained using unlabelled data [48] achieve the same level of

performance as the ones trained on labelled data. However, in the case of instance-level

tasks methods that require no supervision, in the form of manual annotations, are still

far from achieving the level of performance of the methods trained with full supervision.

Our Goal. In this work we explore if semi-supervised approaches can provide a rea-

sonably effective alternative to manually annotated examples for instance-level tasks.

In particular, we use models trained in a fully-supervised setting to generate annotated

examples from unlabelled video data. We then re-train the models using the additional

generated data. We choose video as the source of unlabelled data due to its availability

and the spatio-temporal information it provides.

1.2 Outline

The rest of this work is organised in five chapters

• In Chapter 2 we provide the necessary background on classical computer vision

techniques and machine learning.

• In Chapter 3 we start our study by investigating if noisy labels obtained from a

model trained in a fully-supervised setting can be used for learning an instance-

level task from unlabelled videos. To this aim, we choose the tracking task and

develop a framework for learning of tracking.

• In Chapter 4 we investigate if a model trained with full supervision can bootstrap

itself from a collection of unlabelled videos. Namely, we develop a hard example

mining heuristic based on dense object tracks and utilise it to generate annotated

data from videos. We then use the generated data to re-train the model.

• In Chapter 5 we generalise the idea from Chapter 4 and simplify our method. In

particular, we use a model trained in a fully-supervised setting to generate annota-

tions from still images by combining the model predictions computed at different

transformations of an image. We then re-train the model using the generated data.

• In Chapter 6 we close the exposition and discuss future directions.

10



1.3. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.3 Contributions

We summarise the contributions of our study

• We demonstrate that noisy predictions obtained from a model trained with full

supervsion can provide useful signal for learning of tracking from unlabelled videos.

As a byproduct of our investigation, we develop a powerful framework for learning

of tracking. (Chapter 3)

• We develop an approach for generating hard examples for a model trained in a

fully-supervised setting by using spatio-temporal information available in unla-

belled videos. (Chapter 4)

• We propose a simple and very effective approach for semi-supervised learning

from unlabelled image collections. Using a collection of unlabelled video frames,

we show that the Mask R-CNN model trained using our method surpasses the

accuracy of all previous approaches for human pose estimation on the COCO

Keypoint Challenge. (Chapter 5)
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Chapter 2

Background

2.1 Low-level Features

Establishing feature correspondences in image sequences is an essential part of many

computer vision algorithms. Examples include panoramic image stitching [9], video

stabilisation [42] and 3D reconstruction [3]. This section provides necessary background

on feature detection and tracking. For a more thorough introduction we recommend the

Chapter 4 of the Computer Vision book by Szeliski [85], on which we based this section.

Point features can be used to establish feature correspondences between different images.

However, some features are more distinct and can be identified easier than others. Hence,

we want to detect image features that can be matched reliably across different images.
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2.1. LOW-LEVEL FEATURES CHAPTER 2. BACKGROUND

Figure 2.1: Image pair with patches extracted from different types of regions. Source:
Figure 4.3 of [85].

2.1.1 Feature Detection

Consider the image pair with three patches shown in Fig. 2.1 to see how well different

patches could be matched. Notice that the uniform regions are almost impossible to

distinguish and match. The patches containing large gradient changes (edges) are easier

to identify. However, there is an ambiguity known as the aperture problem. Namely, we

can only align the patches along the direction normal to the edge direction. The third

class of patches includes regions with large gradient changes in two directions (corners)

which are the easiest to match of the three.

We can formalise our reasoning and quantify the similarity of image patches by defining

an appropriate similarity measure. The simlest similarity measure we can use is the sum

of squared difference,

ESSD(u) =
∑
i

(I0(xi + u)− I1(xi))
2 , (2.1)

where I0 and I1 are the images being compared, u = [x, y]> is the displacement vector

and i ranges over all the pixels in the patch.

In the feature detection setting we only have access to the image of interest and we

cannot know which features might get compared to which patches. Hence, we estimate

the stability of image features by comparing the image with itself and computing the sum

of squared difference measure in the small neighbourhood ∆u. The resulting function

13
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is called the auto-correlation function

EAC(∆u) =
∑
i

(I0(xi + ∆u)− I0(xi))
2 (2.2)

We can approximate the image intensity in the small neighbourhood ∆u by using the

Taylor series expansion

I0(xi + ∆u) ≈ I0(xi) +∇I0(xi)
>∆u (2.3)

Consequently, we can approximate the auto-correlation function

EAC(∆u) =
∑
i

(I0(xi + ∆u)− I0(xi))
2 (2.4)

≈
∑
i

(
I0(xi) +∇I0(xi)

>∆u− I0(xi)
)2

(2.5)

=
∑
i

(
∇I0(xi)

>∆u
)2

(2.6)

= ∆u>A∆u (2.7)

where A is the auto-correlation matrix

A =

[
I2
x IxIy

IxIy I2
y

]
(2.8)

A number of classic feature detectors are based on performing eigenanalysis on the

auto-crrelation matrix A and finding local maxima in the scalar measures derived from

eigenvalues of the auto-correlation matrix [73].

Harris and Stephens [32] propose detecting features by maximising the quantity

det(A)− α tr(A)2 = λ0λ1 − α(λ0 + λ1)2 (2.9)

with α = 0.06. Shi and Tomasi [74] suggest that good features to track can be found by

finding maxima in the smaller eigenvalue min(λ0, λ1). Since aliasing effects at the edges

can inflate the smaller eigenvalue, Triggs [88] proposed using the quantity λ0−αλ1 with

α = 0.05.

14
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Figure 2.2: Kanade-Lukas-Tomasi (KLT) feature tracking.

2.1.2 Feature Tracking

Given the feature locations in the initial frame of a video, the task of feature tracking

is to estimate the feature locations in the remaining frames of the video. The main

distinction between feature tracking and general feature matching problem is that the

motion between the adjecent frames of the video is expected to be small.

The local motion between features in subsequent frames is mostly translational. Hence,

searching for patches with the low sum of squared difference (2.1) metric works well in

practice. However, in case of the large motion it is more efficient to use the hierarchical

search strategy [54]. Namely, the search is performed at different scales and the matches

from lower resolution images are used to initialise the serach for larger resolution images.

After tracking features for longer periods of time, their appearance can change. Hence,

comparing potential feature locations with the initially detected patches can result in

match failures. One way to overcome this is to re-sample features at newly matched

locations. However, this approach can often lead to features drifting from their original

locations [74]. This is particularly undesirable when we are interested in tracking features

located on a moving object.

A better way to overcome this issue is to estimate an affine transformation between the

features in the base frame and the features in the current frame. Shi and Tomasi [74] use

the points obtained from the translational model [54] to estimate an affine transformation

between the initial feature locatios and the current feature locations. The resulting

tracker is often called Kanade-Lukas-Tomasi (KLT) tracker and its steps are shown in

Fig. 2.2.
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2.2. MOTION ESTIMATION CHAPTER 2. BACKGROUND

2.2 Motion Estimation

2.2.1 Parametric Motion

For parametric motion, we use a correspondence mapM , parametrised by θ, to estimate

motion that transforms image I0 to I1. The map M could be parametrised by any

of the standard motion models. Consequently, the number of parameters depends on

the chosen motion model. For example, translation would require estimating only two

parameters while an affine transformation would require estimating six parameters.

We can generalise the Lukas Kanade algorithm [54] to estimate parametric motion mod-

els [85]. In particular, we want to find

θ∗ = arg min
θ

∑
i

(I1(M(xi;θ))− I0(xi))
2 (2.10)

However, it is difficult to optimise the objective function (2.10) directly. Hence, we can

apply an iterative scheme

∆θ∗ = arg min
∆θ

∑
i

(I1(M(xi;θ + ∆θ))− I0(xi))
2 (2.11)

and update the parameters at each iteration

θ ← θ + ∆θ∗ (2.12)

By using the Taylor series expansion we can simplify the objective function (2.11) to

obtain

∆θ∗ = arg min
∆θ

∑
i

(
I1(M(xi;θ)) +∇I1

∂M

∂θ
∆θ − I0(xi)

)2

(2.13)
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2.2.2 Optical Flow

Figure 2.3: Optical Flow computed using Farneback’s algorithm [22] and visualised using
the colour encoding presented in [2].

Optical flow is the most general way to represent motion and is the most challenging

one to estimate [85]. It can be seen as a set of displacement vectors {di}, describing

the independent motion at each pixel xi. The optical flow estimation problem can be

framed as the minimisation of the colour difference between the corresponding pixels

summed over the image

ESSD−OF ({di}) =
∑
i

(I1(xi + dj)− I0(xi))
2 (2.14)

However, the problem is underconstrained since the number of unknowns is twice the

number of equations. One way to approach this problem is to minimise the error function

locally over the overlapping patches. This approach usually involves performing the

Lucas Kanade algorithm [54] to obtain sub-pixel estimates [85].

An alternative way to approach the problem is to constrain the problem and search for

the global solution. Horn and Schunck [39] proposed a framework that adds smoothness

terms on the {di} field using regularisation. In their technique, the linearised brightness

consistancy constraint is given by

EHS =

∫
(Ixu+ Iyv + It)

2 dx dy (2.15)

where (Ix, Iy) = ∇I1 and It is the brightness change between images.
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2.3 Machine Learning

Machine learning is concerned with developing algorithms that exract patterns from

data automatically. We will first provide necessary background on machine learning.

For a more thorough introduction to machine learning we recommend textbooks, such

as [6] and [57]. For necessary background on mathematics for machine learning, we

recommend the lecture notes for CO-496 at Imperial College [16].

Deep learning refers to a type of machine learning and we will provide necessary back-

ground on certain aspects of deep learning. For a more comperhensive background

on deep learning we recommend the Deep Learning book by Goodfellow, Bengio, and

Courville [29].

2.3.1 Supervised Learning

The task of supervised learning is to learn to estimate a function f : Rd → Rt from a

training set D consisting of N inputs xi ∈ Rd and their corresponding labells yi ∈ Rt,

i = 1, .., N . We assume thate each (xi,yi) ∈ D is an independent and identically

distributed (i.i.d.) sample from a data generating distribution.

For example, xi could be a vector of numbers, representing the number of rooms and

the area of a flat and yi could be the estimated price of the flat. The elements of xi are

called features. In general, both xi and yi could be more complex structured objects.

For instance, xi could be photos of people and yi could be positions of faces detected

in the photos.

We can compactly represent our inputs using a matrix containing a different example

in each row

X =


x>1
x>2
:

x>N

 ∈ RN×D (2.16)

which is commonly called the design matrix. Similarly, if labels are scalars, we can

represent them compactly using a vector y = [y1, ..., yN ]> ∈ RN .
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2.3.2 Linear Regression

We will use the linear regression model to demonstrate the concepts we introduce

throughout this section.

In the linear regression setting the task is to predict a continious variable y ∈ R from

the given input x ∈ Rd. The model can be written as

y = f(x) + ε = θ>x+ ε (2.17)

where θ ∈ Rd are the parameters and ε ∼ N
(
0, σ2,

)
.

Parameters θ are the values that control the behaviour of the model and that we wish

to estimate. A common way to think of θ is as a set of weights θi that determine how

each input feature xi affects the prediction.

Note that the ”linear” in the name refers to the fact that the model is linear in the

parameters. Linear regression can be made to model non-linear relationships by intro-

ducing the basis functions. Namely, we can replace each input x by a non-linear basis

function φ(x). For example, the polynomial basis function has the form

φ(x) = [1, x, x2, x3, ..., xk] (2.18)

When using the basis functions, the design matrix becomes

Φ =


φ>0 (x1) φ>1 (x1) .. φ>k (x1)

φ>0 (x2) φ>1 (x2) .. φ>k (x2)

: : :

φ>0 (xN ) φ>1 (xN ) .. φ>k (xN )

 (2.19)

and the model can be written as

y = θ>φ(x) + ε (2.20)
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2.3.3 Maximum Likelihood Estimation

A common way to estimate the parameters of a model is to perform the maximum

likelihood (ML) estimation

θ∗ = arg max
θ

p(y|X,θ) (2.21)

Maximising the log-likelihood is equivalent to maximising the likelihood, since logarithm

is a monotonically increasing function. We prefer working with the log-likelihood as it

is more numerically stable. The log-likelihood formulation can be written as

θ∗ = arg max
θ

log p(y|X,θ) (2.22)

Many software optimisation packages provide procedures to find minima of functions,

rather than maxima. Hence, it is often more convenient to turn the log-likelihood max-

imisation problem into the equivalent problem of minimising the negative log-likelihood

θ∗ = arg min
θ
− log p(y|X,θ) (2.23)

We assumed that the training samples are independent and identically distributed

(i.i.d.). Thus, we can write our optimisation problem as

θ∗ = arg min
θ
− log

N∏
i

p(yi|xi,θ) (2.24)

= arg min
θ

N∑
i

− log p(yi|xi,θ) (2.25)

To make this more concrete, we perform the maximum likelihood estimation for the

linear regression model defined in (2.17). Note that since we assumed Gaussian noise,

the likelihood is also Gaussian. The negative log-likelihood (NLL) can be written as

NLL(θ) =

N∑
i

− log

[(
1

2πσ2

) 1
N

exp

(
− 1

2σ2
(yi − θ>xi)

2

)]
(2.26)

=
1

2σ2
(y −Xθ)>(y −Xθ) (2.27)

where we ignored all the terms independent of θ. From (2.27) we see that the NLL

of the linear regression is a qudratic in θ. Hence, it has a unique global minimum θ∗

20



2.3. MACHINE LEARNING CHAPTER 2. BACKGROUND

0.6 0.4 0.2 0.0 0.2 0.4 0.6
x

1.0

0.5

0.0

0.5

1.0

f(
x
)

MLE
Data

0.0 0.2 0.4 0.6 0.8 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

f(
x
)

MLE
Data

Figure 2.4: Linear regression applied to 1D data. (Left) Line determined using maximum
likelihood estimation. (Right) Polynomial of degree 4 determined using maximum likelihood
estimation.

that can be obtained by computing the gradient of NLL and equating it to zero. The

gradient of NLL is given by

∂NLL

∂θ
=

1

σ2
(θ>X>X − y>X) (2.28)

Equating to zero we obtain the maximum likelihood estimate for the linear regression

model defined in (2.17)

θ∗ = (X>X)−1X>y (2.29)

By observing that the design matrix is independent of the parameters, we can generalise

the computed maximum likelihood estimate (2.29) to the linear regression model with

basis functions defined in (2.20) to obtain

θ∗ = (Φ>Φ)−1Φ>y (2.30)
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Chapter 3

Learning to Track

3.1 Introduction

In this chapter we investigate if noisy predictions from a model trained in a fully-

supervised setting can provide a sufficient amount of useful signal for learning a non-

trivial visual task. To this aim, we choose the tracking task. Given the position of an

object in the initial frame of a video, the task of tracking requires predicting the position

of the object in the remaining frames of the video.

We approach the tracking task in a data-driven manner. In particular, we use an

object segmentation method trained in a fully-supervised setting to generate tracking

training examples from unlabelled videos. Next, we propose an approach for training a

convolutional network to predict how objects move across the video frames. Finally, we

show that our model, trained using noisy segments, outperforms the geometric baselines.

3.2 Related Work

The problem we explore in this chapter has not been addressed much in the literature.

Nevertheless, we discuss related elements from the recent work in a number of areas.

Feature Learning from Tasks. Over the recent years a number of approaches for

learning features from ’pretext’ tasks have been proposed. Examples include, learning

to order shuffled video frames temporaly [56], predicting the relative location of cropped

image patches [59] and image inpainting [64]. In contrast to our setting, noise-free labells

for the aforementioned ’pretext’ tasks are easily obtainable using simple algorithmic

proceedures. More related to ours is the work of Pathak et al. [63], where the authors

show that good features can be learnt from noisy labells obtained by unsupervised

motion segmentation. Unlike ours, their approach is unsupervised and the emphasis is

on feature learning. Nonetheless, their results support our findings.
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Video Classification. Since both video classification and tracking take video data

as inputs, we build upon the recent advances in convolutional network architectures

for video classification. For instance, Tran et al. [87] propose using 3D convolutions to

learn spatio-temporal features and Karpathy et al. [41] present a number of convolutional

networks that learn from stacked video frames. Simonyan and Zisserman [78] observe

that operating on raw video frames is a difficult task since it requires the network to learn

to implicitly represent the spatio-temporal motion-dependent features in the first layers.

Consequently, they propose a convolutional network that operates on dense optical flow

fields. We experiment with both the stacked raw frame inputs and the optical flow

representations proposed in [78], but find that an alternative optical flow representation

works best in our setting.

Pixel Map Prediction. Instead of predicting a single score like in classification or a

tuple of numbers like in bounding box regression, our setting requires predicting a seg-

mentation mask. Hence, we draw inspiration from the the work that uses convolutional

networks to predict pixel maps for various tasks [20, 13, 18]. In order to reduce the

computation and help achieve translational invariance, a common approach is to use

pooling layers. However, the pooling layers reduce the spatial resolution which, in case

of pixel map prediction tasks, needs to be recovered. To this aim, many authors employ

the deconvolution layers [96, 52, 69], which often results in fairly complex architectures.

Since our network takes relatively small patches as inputs and maintaining spatial infor-

mation is important for the tracking task, we employ no pooling operations. Similarly,

Eigen et al. [19] and Shi et al. [75] apply convolutional networks without pooling to im-

age denoising and super-resolution tasks, respectively. Unlike the two aforementioned

approaches, we use ReLU [58] instead of tanh nonlinearities for the hidden layers. Using

ReLUs avoids saturation [43] and hence allows us to train deeper networks that yield

superior performance at our tracking task.

Tracking. Visual tracking has a large body of work; Smeulders et al. [81] povide a

comperhensive overview of the area. For a number of years, the most successfull tackers

have been based on discriminative approaches that update the model of the tracked

object in an online fashion [40, 31, 37]. Following the success of deep learning at various

computer vision tasks, trackers based on deep networks are starting to emerge [91, 97, 5].

Unlike most of the tracking approaches, our method tracks segments instead of bounding

boxes. Segmentation masks allow for capturing complex deformations, which makes this

setting more challenging. We emphasize, however, that our goal in this chapter is not

to develop the state-of-the-art tracker but to investigate if our semi-supervised scheme

can yield reasonable performance at the tracking task.
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3.3 Segmenting Objects

Given a sequence of frames It, It+1, ..., It+n and a binary mask Mt denoting the position

of an object at time t, the task of tracking requires predicting the object position at

time t+ n represented by a binary mask Mt+n. Hence, in order to construct a dataset

suitable for learning the tracking task, we need to be able to segment objects from video

frames. To this aim, we utilise the DeepMask [66] and SharpMask [67] networks trained

for object segmentation in a fully-supervised setting.

DeepMask. Given an image, DeepMask generates a set of segmentation masks with

the corresponding set of object score likelihoods. DeepMask employs an approach based

on a convolutional network that operates on raw image data.

For a given input patch, DeepMask predicts the object segmentation mask and the

score denoting how likely the patch is to contain an object. Both the mask and the

score prediction are performed using a single convolutional network. In particular, the

network consists of a shared feature extraction trunk which branches into two pathways

that handle mask and score prediction. The proposed architecture choice increases the

inference speed and serves as a form of regularisation.

The network is trained jointly for the two tasks. The training samples are patch triplets

consisting of an image patch, a binary mask corresponding to the patch and a label

specifying whether the patch contains an object. In order to achieve generalisation to

out-of-training-set objects, only the triplets containing objects are used for training.

The generalisation ability of DeepMask is particularly important for our use case, since

unlabelled videos are likely to contain object classes not present in the training set.

During full scene inference, the network is applied densely across a number of locations

and scales. This ensures that each object is seen in the ’canonical’ training view in at

least one of the patches. The procedure is performed in a fully convolutional fashion,

which makes it fast and computationally efficient.

SharpMask. Object segmentation task requires combining low-level spatial informa-

tion with the high-level object information. This represents a conflicting goal for the

feedforward convolutional networks, since the early layers capture local spatial infor-

mation while the later layers capture object-level information. To tackle this issue,

SharpMask proposes a refinement module that augments the feedforward convolutional

networks and results in a bottom-up/top-down approach. In particular, a coarse mask

is first predicted in the forward pass and then refined in a backward pass. SharpMask

builds on top of the DeepMask architecture and achieves significant accuracy and speed

improvements over the baseline DeepMask model. SharpMask’s training and inference

procedures largely follow the ones of the original DeepMask framework.
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Figure 3.1: Mask matching process. First, features are detected within the mask area in
the initial frame. Next, the detected features are tracked across the frame sequence. Finally,
the matching heuristic is applied to select the matching mask from the last frame.

3.4 Mask Matching

Given a sequence of frames It, ..., It+n, we use the SharpMask [67] network to obtain two

sets of masks, {Mt} and {Mt+n}, representing objects in frames It and It+n, respectively.

However, in order to construct the training examples suitable for learning the tracking

task, we need to establish correspondences between pairs of masks. In particular, we

require a set of pairs of the form (M i
t ,M

j
t+n), such that the i-th mask from the frame It

and the j-th mask from the frame It+n correspond to the same object.

To this aim, we devise a mask matching procedure based on low-level feature tracking.

Namely, for each mask M i
t from the frame It, we detect a set of feature points P i

t . Then,

we perform feature tracking to obtain a set of feature locations P i
t+n within the frame

It+n. Finally, we employ a mathcing heuristic to determine the best matching mask

M j
t+n from the frame It+n (if any). The process is depicted in Fig. 3.1.

Feature Detection. In order to perform feature tracking successfully, we first need to

detect features that can be tracked reliably across the frames. In practice, good features

to track usually correspond to ’corners’ and are derived by eigenanalysis of the auto-

correlation matrix (2.8). We utilise the Shi and Tomasi [74] feature detection algorithm

to detect a set of feature points P i
t within each of the masks M i

t .
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Feature Tracking. After detecting features P i
t in the initial frame, we want to esti-

mate their corresponding locations P i
t+n in the last frame. Since the motion and the

appearance deformation between the consecutive frames is expected to be small, the

features detected in the initial frame can be searched for in the subsequent frames. Fea-

ture movement between consecutive frames can be modelled using a translational model

and solved for my minimising the squared difference (2.1) in the local neighbourhoods.

However, to account for occasional larger movement efficiently, it is beneficial to incor-

porate a pyramidal search strategy. Thus, we use the Lucas-Kanade algorithm [54] to

find feature correspondances between the consecutive frames.

The aforementioned procedure works well for short sequences, but becomes less reliable

with the increase in the length of the sequence. In particular, in longer sequences

the feature appearance undergoes larger changes which cause feature missmatches and

drift. To alleviate this issue, we use RANSAC [24] to estimate a homography between

the current feature locations and the feature locations in the initial frame and remove

the outliers. Note that we are only interested in identifying the outliers in the estimation

process and that the computed homography transformation is unused. The resulting

feature tracking procedure is inspired by the KLT tracker [85].

Match Selection. Starting from a mask M i
t we obtain a sparse set of feature locations

P i
t+n within the frame It+n and proceed to determine the best matching mask M j

t+n. We

compute the number of features that fall within each of the masks and take the mask

M j
t+n that maximises this count as the best candidate match. In order to verify the

match, we employ the method proposed in [21] and require that the number of features

within the mask is large relative to the total number of features

within(P i
t+n,M

j
t+n)

|P i
t+n|

> match threshold (3.1)

Backward Matching. The mask matching procedure works well when segmentation

masks corresponding to the same object are present in both sets of masks {Mt} and

{Mt+n}. However, this is not always the case since (1) an object may not be visible in

both frames due to occlusion or going out of view and (2) SharpMask may fail to detect

the same object in both frames. In such scenarios, the matching procedure outlined so

far produces false positives.

In order to account for false positives, we repeat the entire matching process in the

backward direction and take as final matches only the pairs of masks that agree in both

directions. We found this step to be critical for achieving a very robust mask matching

procedure. Note that the doubled computation time is not a concern since the mask

matching process is performed only once as part of the data generation process.
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3.5 Tracking Network

Using SharpMask and the mask matching procedure we can construct a set of examples

of the form (Mt, It, ..., It+n,Mt+n) from a collection of unlabelled videos. Given such

examples, we design and train a convolutional network to perform the tracking task.

Frame Stacking. One way to approach the problem would be to design a network

that takes the mask Mt and stacked video frames It, ..., It+n as inputs and predicts the

mask Mt+n as the output. As noted by Simonyan and Zisserman [78], operating on

raw video frames is a difficult task since it requires the network to implictly represent

spatio-temporal motion-depent features in the first layers.

A common way to represent motion is to use optical flow. In particular, a dense optical

flow field can be seen as a set of displacement vectors d(u, v) between the consecutive

video frames. Using optical flow field instead of the raw frames makes the learning task

easier as the network does not need to learn to represent motion implicitly. However,

there is more than one way to encode optical flow information into a format suitable for

an input into a convolutional network.

Flow Stacking. We consider the optical flow stacking approach proposed by [78]. In

particular, for each pair of the consecutive frames the horizontal and vertical components

of the flow field F x ∈ Rh×w and F y ∈ Rh×w are considered as image channels. Then,

for a sequence It, ..., It+n the flow fields for consecutive frames are stacked into a volume

Ft→t+n ∈ Rh×w×2(n−1) and used as network input.

We found this approach to give better signal than using raw video frames. However,

the resulting performance was still unsatisfactory. Furthermore, since the depth of the

input volume depends on the length of the video sequence, the flow stacking approach

requires having different networks for different temporal offsets n.

Flow Accumulation. To overcome the limitations of the flow stacking approach, we

utilise the flow accumulation procedure used for weak video stabilisattion by [62]. In

particular, the horizontal and vertical components of the flow fields for the subsequent

frames of the sequence are accumulated into a single flow field Ft→t+n ∈ Rh×w×2.

F x
t→t+n = accumulate(F x

t , ..., F
x
t+n−1) (3.2)

F y
t→t+n = accumulate(F y

t , ..., F
y
t+n−1) (3.3)

Two main benefits of this approach are: (1) it makes the learning task easier as the

network does not need to learn to combine flow fields implicitly and (2) a single network

operating on fixed size inputs is used to handle all temporal offsets. We found this

approach to yield superior performance to the aforementioned alternatives and require

a network of smaller capacity that takes less time to train and is faster to run.
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Confidence Maps. Dense optical flow estimation is usually framed as an energy

minimisation problem and solved for a displacement field by incorporating assumptions

such as smoothness or brightness consistency. Those approaches are not perfect and

produce noisy estimates. However, the estimates are often more reliable in textured

regions that contain good low-level features.

In order to help the network, we experimented with using a confidence map that would

give higher weight to flow in the areas of good features. In particular, we tried using

the harris responses [32] and minimal eigen values of the auto-correlation matrix [74]

as additional input channels. However, we found neither of those made a significant

difference, which may suggest that the network learns to ignore noise in the flow field.

Consequently, we omitted the confidence map input from our network architecture.

Patch Prediction. Inspired by DeepMask [66], we adapt the patch-based prediction

and training approach. In particular, for a binary mask and the flow field corresponding

to an object-centered patch in the initial frame, our network predicts a binary mask for

the object patch in the last frame.

Each training sample is a tuple containing (1) a binary mask corresponding to the

input patch msource (2) the horizontal component of the flow field fx, (3) the vertical

component of the flow field fy and (4) the binary mask mtarget corresponding to the

output patch. We use lowercase symbols to emphasize that tuple elements correspond

to patches rather than entire frames. In order for a patch to be valid we require that

(i) the patch contains an object in the center

(ii) the object is fully within the patch

(iii) the moved object is fully within the patch

All the patches that do not meet the aforementioned constraints are discarded from

training. The procedure used to construct the tuples from full masks and flow fields is

given in the implementation details section.
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conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8

3x32 32x32 32x32 32x32 32x32 32x32 32x32 32x1

3x3 3x3 3x3 3x3 3x3 3x3 3x3 3x3

ReLU ReLU ReLU ReLU ReLU ReLU ReLU Sigmoid

Table 3.1: Network configuration of the SegTrack model. Each convolutional layer uses a
stride of one and performs zero padding, which is not shown for brevity.

Network Architecture. To construct network inputs we resize the mask msource, the

horizontal flow field fx and the vertical flow field fy to a fixed spatial resolution hp×wp

and stack them together to obtain an input volume of size 3×hp×wp. Given the input

volume, our network predicts a mask of size hp × wp with continuous values between

zero and one. To binarize the continuous mask output, we threshold the values using a

global threshold. The configuration of our model, which we call SegTrack, is outlined in

Table 3.1. We next describe our architectural choices.

The spatial information contained in the convolutional feature maps is important for

the tracking task. Hence, we chose not to include any pooling layers and pad all the

convolutional layers to maintain the same spatial resolution throughout the network.

Note that this approach would be very computationally expensive in case of full images,

but is fairly cheap in our setting since the network operates on small fixed-size patches.

Following the VGG networks [79] philosophy, we experimented with not overly deep

networks that use only 3×3 convolutional filters. In terms of the effective receptive field

size, a stack of filters of smaller size is equivalent to a single filter of larger size. However,

using a stack of smaller filters has two benefits: (1) it incorporates non-linearities in

between which make the decision functions more descriminative and (2) it reduces the

number of parameters which can be seen as a form of regularisation. Consistent with

evidence presented for other tasks [84], we found that the network depth is of crucial

importance for our tracking task.

All hidden layers of our network utilise ReLU non-linearities. In contrast to tanh non-

linearities, using ReLUs avoids saturation and hence allows us to train deeper networks

that yield superior performance in our setting. Since we are interested in predicting

binary masks, we chose the sigmoid non-linearity for the last network layer.

We experimented with using a larger number of filters in the hidden layers and varying

the number of filters between the layers. However, we found this to have little impact on

the accuracy while increasing the training and inference times significantly. Hence, we

chose to limit the number of filters in all the hidden layers to a relatively small number.

During training, we minimise the pixel-wise binary cross entropy loss between the target

mask and the predicted mask.
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Full Scene Inference. During full scene inference, for each object mask we construct

a patch, satisfying the first two assumptions made during training, and run it through

the network. Each prediction is then ’inpainted’ in place of the corresponding patch,

to obtain the full scene prediciton. A limitation of this approach is that the patch

prediction is performed sequentially, which causes the inference time to grow linearly

with the number of objects in the scene. However, this is not a concern in practice since

the number of tracked objects is small in most cases.

A pragmatic way to improve the full scene inference speed would be to take advantage of

the GPU capabilities and perform prediction in batches. Alternatively, an algorithmic

way to improve the full scene inference time would be to run the network in a fully-

convolutional fashion, like is done in DeepMask. In contrast to DeepMask, at full-scene

inference time the input to the tracking framework is a set of dense object masks that

could be overlapping, which makes running the network fully-convolutionally non-trivial.

Nevertheless, it could be done by incorporating the ideas presented in [49]. However,

this is not the focus of our tracking task investagtion presented in this chapter.

3.6 Implementation Details

Given a collection of unlabelled videos, we first perform the data generation procedure

to construct a set of training samples for the tracking task. The data generation involves

segmenting objects from video frames, computing optical flow, matching masks between

frames and constructing the training tuples of the appropriate format. The obtained

dataset is stored to disk and used for training and evaluation. We next describe the

implementation of the required steps in more detail.

Mask Matching. To segment objects in video frames we use the pre-trained Sharp-

Mask model provided by the authors.1 For each frame we select top 10 masks according

to the objectness scores. To binarize the continious SharpMask outputs we apply a

threshold of 0.2. We experimented with applying non-maximum suppression (NMS) to

the mask outputs but found that it made no impact on the overall performance. Likely

since the mask matching process serves as a good way to filter out bad masks. In our

feature tracking algorithm, we use the implementations of feature detection [74] and

pyramidal Lucas-Kanade [54] from the OpenCV toolbox [8]. We use a thresold of 0.5

for the match selection heuristic.

1https://github.com/facebookresearch/deepmask 30
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Optical Flow. We compute optical flow using the popular method of [22], available

from the OpenCV toolbox. Its fast computation time allows us to perform OpticalFlow

estimation on-the-fly during the data generation process. To accumulate optical flow

across multiple frames, the flow at integer locations at each stage is obtained using the

nearest neighbor interpolation. Note that there is little storage overhead since we only

store flow patches of small resolution.

Sample Creation. Given a binary mask Mt, the flow field Ft→t+n and the binary

mask Mt+n, a training tuple is constructed as follows. First, we compute the bounding

box for the object in mask Mt of size hbox × wbox. We next construct a square patch

of size psize = 1.4 ∗ max(hbox, wbox) enclosing the centered object. Provided that the

patch satisfies the necessary constraints for a training sample, the patch areas from the

binary masks and the flow field are cropped and resized to 64×64 resolution. Note that

special care needs to be taken when resizing the flow fields since the intensities need to

be scaled accordingly. In particular, we scale the flow patch intensities by 64
psize

.

Training. We adapt online stochastic gradient descent for training. This scheme is

optimal for stochastic optimisation with good starting points [89] and we found it to lead

to better convergence than gradient descent with mini batches in our setting. However,

the disadvantage of this choice is that we do not fully exploit the parallelism available

in modern architectures [46]. We use weight decay of 0.0005 and momentum of 0.9.

The starting learning rate is set to 0.001 and adjusted according to a fixed learning rate

schedule. In particular, after the first 50 and 120 epochs we reduce the learning rate to

0.0005 and 0.0001, respectively. We train for 200 epochs and use early stopping to help

avoid overfitting. Our models take around 7 hours to train on a single Nvidia TitanX

GPU. All training experiments were conducted using Torch7 [14].

Inference. At test time, we construct the patches using the aforemention procedure

and run each patch through the network. To binarize the continious mask otuputs we

use a threshold of 0.5.
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3.7 Experiments

Dataset. We perform our experiments using a collection of videos obtained by com-

bining the BVSD [82], FBMS [60] and DAVIS [65] video datasets. The resulting video

collection consists of 209 videos. Since we are not interested in the original tasks for

which those datasets were created, we discard all the labells provided by the datasets.

We shuffle the video collection randomly and use 60% of the videos for training, 20%

for tunning the hyper parameters and leave out 20% for testing. Note that we perform

the split assignement at the video level rather than the sample level in order to ensure

that different splits do not share samples constructed from the same video.

Preprocessing. Sample generation process is applied to each of the splits individually

to construct the patch samples. We created a separate dataset for each of the temporal

offsets used in our experiments. The sizes of the splits vary slightly depending on the

temporal offset. Typically, the number of samples in the training splits is around 22k

while the validation and test splits contain around 7k samples each.

Metrics. We measure the similarity between the predicted and ’ground truth’ masks

by utilising the commonly used Intersection over Union (IoU) metric. IoU is computed

by taking the interesection of the predicted mask and the ’ground truth’ mask and

dividing it by their union. When the IoU score between the predicted and the ’ground

truth’ mask is above a thresold we consider the prediction to be correct. For all of our

experiments, we report the mean and median IoU scores as well as the accuracy at the

IoU thresholds of 0.5 and 0.7.

Baselines. To assess the tracking performance of our approach, we compare our learnt

model to four geometric baselines

(i) Identity: copies the mask

(ii) T mean: translates the mask by the mean flow vector from the mask area

(iii) T median: translates the mask by the median flow vector from the mask area

(iv) Warp: warps the mask using the flow field

Noisy Ground Truth. Due to the lack of ground truth labels we use the noisy

segmentations as ground truth during evaluation. Consequently, achieving the perfect

score is not feasible because of the noise present in the ’ground truth’ data. As will be

seen later, in some cases our model predicts masks considerably better than the ’ground

truth’. However, those predictions may get penalised in the quantitative evaluation.

Neverthless, the setup serves as a good indicator of the tracking performance.
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IoU mean IoU median acc@0.5 acc@0.7

Identity 0.816 0.865 94.175 80.455
T mean 0.871 0.899 98.992 92.602
T median 0.871 0.899 99.006 92.767
Warp 0.874 0.904 98.910 92.698
SegTrack 0.879 0.912 99.006 93.126

Table 3.2: SegTrack vs. geometric baselines results for the temporal offset of 1.

Next Frame. We first evaluate the performance at predicting the object position in

the next frame (Table 3.2). Note that the identity baseline achieves very high scores.

Although our model outperforms the baselines, the amount of movement between con-

secutive frames is small and makes it hard to draw strong conclusions.

IoU mean IoU median acc@0.5 acc@0.7

Offset 3

Identity 0.698 0.732 83.201 56.280
T mean 0.814 0.851 96.749 80.879
T median 0.816 0.853 97.020 80.937
Warp 0.810 0.847 95.704 80.472
SegTrack 0.823 0.868 95.762 83.182

Offset 6

Identity 0.619 0.625 73.795 38.247
T mean 0.750 0.775 93.358 66.210
T median 0.753 0.777 93.700 65.502
Warp 0.733 0.754 89.886 60.039
SegTrack 0.765 0.813 92.072 72.102

Offset 9

Identity 0.568 0.562 62.028 29.622
T mean 0.698 0.711 88.094 52.485
T median 0.704 0.716 88.624 53.324
Warp 0.672 0.680 81.710 47.294
SegTrack 0.714 0.759 86.923 62.006

Table 3.3: SegTrack vs. geometric baselines results for the temporal offsets of 3, 6 and 9.

Larger Offset. We turn to evaluating our model at predicting masks for frames further

apart (Table 3.3). Our model outperforms the baselines in all metrics and for all settings.

Furthermore, as the temporal offset increases and the task becomes more challenging,

the gap between the tracking model and the baselines increases. This clearly shows that

the model manages to learn something more than a standard geometric transformation.
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Figure 3.2: SegTrack example predictions on the selected test patches. From left to right:
input frame, input mask, input flow, target frame, target mask, predicted mask, absolute
error. Flow channels are visualised as one image using the color encoding from [2]. Video
frames are shown only for illustrative purposes.

Qualitative Fig. 3.2 shows the SegTrack model outputs on the selected test patches.

The absolute difference between the ground truth and predicted masks is shown in

the rightmost column. The SegTrack model achieves good results in all cases. It is

particularly interesting to note the cases where the predicted masks are of better quality

than the noisy ground truth masks. For instance, the ground truth mask for the cat

example is lacking a portion of the mask corresponding to the legs of the cat. However,

since the source mask is complete the SegTrack model is able to predict a significantly

better mask than the noisy ground truth.
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3.8 Discussion

We developed a semi-supervised approach for learning of tracking from unlabelled video

data. Our experiments demonstrate that the model trained on noisy segments outper-

forms the geometric baselines. Furthemore, in some cases, the model manages to learn

to produce predictions better than the noisy segments it was trained on. Those results

are encouraging and show that useful signal can be extracted from noisy predictions.

Although the tracking task was not our focus, we created an interesting framework for

learning of tracking, as a byproduct of our investigation. It is not unlikely that the

proposed approach could be extended further to deliver superior tracking performance.

Following the observation that the tracking predictions are in some cases better than

the predicted object segmentations, it should be possible to use the tracking network to

generate additional training data for re-training the object segmentation network. The

entire process can then be repeated in an iterative fashion. We leave this direction for

future work.
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Chapter 4

Video Bootstrapping

4.1 Introduction

In the previous chapter we have shown that noisy predictions from a model trained in

a fully-supervised setting can provide sufficient amount of useful signal for learning a

non-trivial visual task from unlabelled videos. In this chapter we investigate if a model

trained using labelled data can bootstrap itself using a collection of unlabelled videos.

In order to improve the model, we want to find examples on which the model does not

perform well. Suboptimal performance is manifested either by the model predicting the

correct label with low confidence or by the model predicting an incorrect label. Examples

that cause such predictions are hard examples in the context of the given model and

would provide useful signal for improving the model. In contrast, examples for which

the model predicts the correct labels with high confidence are already mastered by the

model and hence would provide no additional information.

The aforementioned observation is not new and has been used in the computer vision

community for decades. In particular, it forms the basis of the bootstrapping technique

that iteratively updates the model by selecting hard training examples from a pool of

labelled examples. However, when trying to apply this idea to unlabelled images we face

two challenges: (1) given a prediction for an image we cannot automatically determine

whether the prediciton is correct or not and (2) assuming we can somehow establish

that a prediction is incorrect we do not know what the correct label is. We tackle those

issues by taking advantage of the spatio-temporal information available in videos.

A good model should predict a consistent label for the same object across the video

frames with high confidence. However, object pose and scene conditions may vary

significantly across the frames and hence make predicting the correct label more difficult

in certain frames. Therefore, it is likely that the model would predict correct labels with

high confidence in easier frames and be less confident or misspredict in harder frames.
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In contrast to the still image case, we can identify the low-confidence predictions and

mispredictions in hard frames using the high-confidence predictions for the same object

made in other video frames. Furthermore, the correct labels for the incorrect predictions

can be approximated by interpolating the labels from the frames with high-confidence

predictions. This can be seen as a form of spatio-temporal ensembling, where the predic-

tions for the same object in different frames are combined to obtain a superior prediction.

We use an object instance segmentation model trained in a fully-supervised setting to

obtain a set of predictions for each of the video frames. Next, we develop a method for

linking the individual frame predictions into a set of dense object tracks. The linking

method is then augmented with a hard example mining heuristic and used to extract

hard examples from unlabelled videos. Finally, we re-train the model using the generated

examples and present the experimental results.

4.2 Related Work

Bootstrapping. Origins of bootstrapping can be traced back to the early work on face

detection [83, 70], where bootstrapping was applied in order to cope with the imbalance

between the number of positive (face) and negative (background) examples present in

the datasets. Instead of starting with all of the negative examples from the dataset, the

idea was to gradually expand the training set with the negatives for which the model

predicts a face (hard negatives). This led to an algorithm that alternates between two

steps: (1) using a fixed model to mine hard negatives to add to the active training set

and (2) training the model on the fixed active training set.

Thereafter bootstrapping has been generalised to object detection and applied to a

variety of models. Examples include training SVMs [15] and boosted decision trees [17]

for pedestrian detection. Specialisations of bootsrapping for certain classes of models

have been developed as well. For instance, Felzenszwalb et al. [23] proposed a version

of bootstrapping for SVMs and proved that it converges to the global optimal solution.

Simlilar to the traditional bootstrapping, our method relies on mining hard examples

and using them to update the model. Unlike the traditional bootstrapping, we mine

hard examples from unlabelled data and use generated labels for training.

Bootstrapping in Deep Learning. Perhaps surprising at first, bootstrapping in

its traditional form has not seen a widespread use in the modern object detection algo-

rithms that employ deep networks. The main reason for this is likely that deep networks

are trained using descent algorithms on datasets with millions of examples, which re-

sults in training times that typically range from days to weeks. Hence, performing the

alternating bootstrapping steps would slow down the development process significantly.
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Our method suffers from the same limitation. However, unlike the traditional bootstrap-

ping, it provides additional labelled data and is still much faster than the alternative of

annotating the data manually. Hence, we believe this is a reasonable trade-off.

In order to overcome the long iteration times, a number of approaches for training deep

networks using bootstrapping in an online fashion have been proposed. A common theme

in these methods is that hard examples are selected based on the current loss of each

datapoint. For instance, image patches with high loss are selected when learning image

descriptors [80] and good features [92] using siamese networks. [53] and [76] select hard

examples for each mini-batch based on the loss when training convolutional networks for

image clasification and object detection, respectively. Online bootstrapping techniques

are complementary to our method.

4.3 Mask R-CNN

We apply our video bootsrapping method to the recently proposed Mask R-CNN [33]

object instance segmentation network. We chose Mask R-CNN since it is a conceptually

simple, fast and very general framework. Hence, it allows us to easily generalise our

method to other tasks, such as human pose estimation. However, the downside is that

Mask R-CNN is a very strong baseline and hence makes seeing positive signal from our

method more challenging. We briefly review Mask R-CNN and its predecessors.

R-CNN. Most of the modern object detectors are based on the two-stage approach

embodied by the R-CNN [27] framework. The first stage of the R-CNN pipeline uses a

class-agnostic region proposal method [90] to compute a set of candidate object locations.

In the second stage, a convolutional network is used to extract a fixed-size feature vector

from each of the proposed regions. The feature vectors are then classified using the class-

specific SVMs and the refined boxes are regressed using the class-specific bounding-box

regressors. R-CNN was the first to show that features obtained using deep networks can

outperform hand-engineered features at object detection by a large margin.

There are several limitations of the original R-CNN pipeline. Firstly, training is a three-

stage process and involves training a convolutional network, a set of class-specific SVMs

and a bounding-box regressor per-class. Secondly, training is very slow and requires a

lot of space for storing the intermediate training data to disk. Finally, inference is slow

since features need to be extracted for each of the region proposals in the test image.

SPPnet. He et al. [36] propose SPPnet to speed up R-CNN by sharing computation. In

particular, SPPnet computes a single shared feature map for the entire image and max-

pools a portion of the feature map inside each proposal into a fixed-size output. SPPnet

achieves fast inference times but is still limited by the three-stage training process.
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Fast R-CNN. In order to overcome the limitations of the original R-CNN and the

SPPnet, a single-stage training algorithm was proposed in the Fast R-CNN [26] frame-

work. Given an image and a set of object proposal regions of interest (RoIs), a Fast

R-CNN network first computes a single convolutional feature map for the entire image.

Then, for each object proposal the RoI-pooling layer extracts a fixed-size feature vector

from the shared feature map. Each feature vector is fed to a sequence of fully-connected

layers that branch into two sibling output layers for classification and bounding box re-

gression. Hence, the entire procedure is performed using a single convolutional network

that can be trained end-to-end with a multi-task loss.

Faster R-CNN. Fast R-CNN framework assumed a set of object proposals are given

as input. Most proposals computation methods leverage low-level grouping and silency

cues [90, 98] and have become the test-time bottleneck of the Fast R-CNN system. In

order to address this, Ren et al. [68] proposed the region proposal network (RPN) for

computing the object proposals. Since RPN is a deep network itself, the convolutional

layers can be shared between the RPN and Fast R-CNN. Hence, proposal computation

comes almost for free. The resulting system formed the Faster R-CNN framework.

Faster R-CNN introduced a four-step training process for learning shared features using

alternating optimisation. In the first stage, an RPN network is trained and used to

compute a set of region proposals. In the second stage, the computed proposals are

used for training a Fast R-CNN network. After the second stage, the two networks are

independent and share no features. In the third stage, the layers specific to RPN are

fine-tuned starting from the Fast R-CNN network from the second stage and keeping the

convolutional layers fixed. Finally, the layers unique to the Fast R-CNN are fine-tuned

starting from the third-stage RPN network with the shared layers frozen. Consequently,

the networks share the convolutional layers and form a unified framework.

Mask R-CNN. In principle, Mask R-CNN [33] is an intuitive extension of the Faster

R-CNN framework to object instance segmentation. Mask R-CNN employs the same

two-stage process. The first stage is identical to Faster R-CNN and utilises the RPN. In

the second stage, in parallel to predicting the class and the bounding box, a binary mask

is predicted for each RoI. Since the spatial layout is important for instance segmentation,

RoIPool is replaced with RoIAlign which preserves spatial information.

Mask R-CNN architecture consists of a backbone network used for feature extraction

and the task-specific heads that are applied to each RoI separately. Its general design

allows for the backbone network to be instantiated with a number of recent architectures

[34, 94, 50]. The classification and bounding-box regression heads are straight-forward

extensions of the standard Faster R-CNN heads while the mask head is a small fully-

convolutional network that predicts a segmentation mask in a pixel-to-pixel manner.
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Figure 4.1: Example object track computed using hysteresis linking.

4.4 Object Tracks

Given a sequence of video frames, we use Mask R-CNN to obtain a set of object masks

for each of the video frames. In order to be able to apply our video bootstrapping

idea, we require a method for computing dense object tracks from individual frame

predictions. Specifically, a dense object track consists of a set of masks predicted in

contiguous frames that correspond to the same object.

Feature Tracking. One way to approach this problem is to generalise the mask match-

ing method presented in Chapter 3 to dense object tracks. Namely, for each of the masks

in the initial frame of the sequence a set of features is detected and tracked across the

sequence. Then, for each of the intermediate frames the best matching mask is selected

by applying the mask matching heuristic. In essence, for a sequence of length n a dense

track is constructed by solving n − 1 mask matching problems each of which uses the

initial frame as the source frame.

Although this method works well for some scenes, we found that it produces false posi-

tives in cluttered scenes and fails to capture more challenging movement. In contrast to

the two-frame mask matching setting, we have access to the masks predicted for each

of the intermediate frames. The masks output by Mask R-CNN provide much richer

information than the low-level features. A limitation of the approach based on feature

tracking is that it does not take advantage of the information available in masks.

IoU Linking. Instead of linking masks indirectly via the tracked features, we can

directly link the masks according to a similarity measure. Since the amount of motion

between the consecutive frames is expected to be small, the intersection over union (IoU)

metric is well-suited for this use case.
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Figure 4.2: Example object track for a breakdancer performing challenging movement in
a cluttered scene. The track is computed using hysteresis linking. Note that the tracks
computed for the remaining objects in the scene are not shown for clarity.

Using IoU linking, mask tracks can be computed by starting from the initial frame

and picking the masks in the subsequent frames that maximise the IoU metric greedily.

We found this approach to work considerably better than the feature-based linking.

However, it has two limitations: (1) it does not take the predicted scores into account

and (2) it needs to be run on a large number of sampled sub-sequences in order to

achieve dense scene coverage.

Hysteresis Linking. Inspired by hysteresis thresholding used for edge linking [11], we

devise a mask linking algorithm that employs hysteresis thresholds. In particular, we

use three thresholds: score-low, score-high and iou-low. The high score threshold is used

to initiate the tracks while the low thresholds are used to extend the tracks.

The algorithm proceeds as follows. First, the mask with the highest score of at least

score-high is chosen as the seed mask. The mask is then propagated forward and back-

ward as long as it can be linked with another mask whose score is above score-low and

whose IoU overlap with the current mask is above iou-low. Once the track cannot be

extended further, the masks belonging to the track are pruned from the pool of available

masks. The whole process is iterated until no more tracks can be constructed.

We found that the mask linking approach based on hysteresis thresholding works ex-

tremely well in practice. An important additional benefit of this method is that it

provides a natural way of achieving dense scene coverage. Hence, the algorithm is run

once per video and requires no sampling of sub-sequences.
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Figure 4.3: (Top) Each subfigure shows the classification score over time. The argmax
class for each time step is shown on the top x-axis. (Bottom) Mask tracks corresponding
to the score plots shown in the top row. (Left) The model is always confident. (Middle)
Out-of-trianing-set category. (Right) The model is not confident in certain frames.

4.5 Hard Example Mining

We discuss three charactersitic types of object tracks observed while experimenting with

mask linking on videos sampled from DAVIS [65] and YFCC100m [86] datasets.

Confident Tracks. The first category consists of mask tracks where the model is

confident throughout the track. An example is shown in Fig. 4.3, left. Object poses

whose masks form the tracks in this category are already mastered by the model and

hence would provide no additional information for improving the model.

Out-of-training-set Tracks. Fig. 4.3, middle, shows an object track corresponding

to a goat. Since the goat category is not present in the labelled training set, the model

predicts various other categories, such as dog and sheep. Surprisingly, the masks found

in the tracks of this type are still of high quality, which suggests that Mask R-CNN

masks generalise well. Handling out-of-training-set categories is beyond the scope of

this work. Hence, we focus on the categories present in the labelled training set.

Tracks with Hard Examples. In order to improve the model we want to identify hard

examples using the object tracks. An example track that allows us to that is shown in

Fig. 4.3, right. In particular, such tracks mainly consist of high-confidence predictions

for the same category but also include some object views for which the category is

predicted with lower confidence or the predicted category differs from the one predicted

in the high-confidence frames. We are interested in finding object tracks of this type.
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Figure 4.4: Example tracks found using the hard example mining heuristic. (Top) Scores
predicted for the hard examples are marked with dots in the score plots and the correspond-
ing argmax classes are suffixed with pluses. (Bottom) Masks predicted for hard examples
are denoted using bounding boxes.

Mining Heuristic. In order to find tracks that contain hard examples, we augment our

hysteresis linking method with a mining heuristic. In particular, when propagating the

seed mask forward and backward we consider a window of size W around each prediction

to determine if the prediction corresponds to a hard example.

Suppose W = 3, for simplicity. Then, in order for a mask at time t to be considered as a

hard example we require that (1) the mask score is below score-low, (2) its IoU overlaps

with the masks from the frames t − 1 and t + 1 are at least iou-low and (3) the masks

chosen at times t− 1 and t + 1 have the scores above score-high and the same argmax

class. Note that we do not enforce that the hard example prediction is of a class different

from the neighboring predictions, in order to allow for finding low-confidence predictions

of the likely correct class. When no mask satisfying the aforementioned conditions is

found in a window, the mining heursitic falls back to the standard hysteresis linking.

Example tracks obtained using the mining heuristic are shown in Fig. 4.4.

Label Generation. Given the tracks containing hard examples, we want to generate

target labels for the hard examples. Each label is a triplet consisting of a binary mask,

a bounding box and a class name. For each hard example we first generate the mask by

computing the union of the two neighboring masks from the track. The bounding box

is then constructed by taking the tight box around the generated mask. Finally, in case

the predicted class differs from the class of the neighboring predictions from the track,

the class of the neighbors is used as the target class.
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4.6 Implementation Details

Given a collection of unlabelled videos, we first run Mask R-CNN inference to obtain

a set of predictions for each of the frames. Next, we employ our mining heuristic to

find object tracks that contain hard examples. Labels for the hard examples are then

generated from the object tracks. Finally, we re-train the model using the generated

labels. We next describe the implementation details of the required steps.

Mask Inference. The first step of our hard example mining process involves running

Mask R-CNN inference on each of the video frames. We use Mask R-CNN implementa-

tion kindly provided by the authors. We consider Mask R-CNN variations with ResNet

backbones and train feature sharing versions using the four-step alternating optimisa-

tion process, described earlier in the Mask R-CNN section. All of the hyper-parameters

are set following the original Mask R-CNN.

Video Indexing. To ease the process of working with arbitrary collections of videos,

we designed a COCO-style video annotation format. In particular, we extended the

COCO annotation format by adding a video level to the annotation hierarchy. Using

the developed annotation format has two additional benefits: (1) it allows us to trivially

parallelise Mask R-CNN inference over the video frames and (2) it enables us to efficiently

store and re-use the computed annotations.

Motion Blur Filtering. Since a significant number of unlabelled videos in the wild

contains motion blur that could introduce bias, we experimented with filtering out the

blurry videos. In particular, we implemented a motion blur meter based on the spread

of edges [55]. However, we found that Mask R-CNN was very robust to motion blur.

Consequently, we decided not to use motion blur filtering as part of our pipeline.

Mask Linking. Mask linking is performed on run-length encoded (RLE) masks. In

addition to reducing the space required for storing the masks, the RLE format allows us

to perform IoU computations directly on the encoded masks. Hence, the RLE eliminates

the need to decode the masks and makes the linking procedure very fast. We use the

optimised RLE IoU meter implementation available from the COCO toolbox.1

Example Mining. When mining hard examples we consider a temporal window of size

three around each of the predictions. We set the hysteresis thresholds iou-low, score-low

and score-high to 0.5, 0.5 and 0.8, respectively. To avoid construction of trivial tracks,

we impose a minimal track length of three.

Training. When training with generated data, we simply treat the generated labels

as ground truth and follow the original Mask R-CNN training process. All training

experiments were conducted using the Caffe2 framework.

1https://github.com/pdollar/coco 44
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4.7 Experiments

Labelled Data. As the source of labelled data, we use the MS COCO object instance

segmentation dataset [51]. COCO includes objects from 80 categories and contains 80k

training and 40k validation images with over 850k annotated objects. Following the

common practice [4], we use the union of 80k training and 35k validation images (train-

val35k) for training and report results on the remaining 5k validation images (minival).

Video Data. We use the YFCC100m [86] dataset as the source of unlabelled video data.

The YFCC100m dataset contains around 700k videos that have been uploaded to Flickr

over the span of 10 years. Hence, the dataset contains videos that differ significantly

in both quality and content. In order to experiment with our method, we sampled a

subset of 1.5k videos containing around 200k frames in total. Note that although there

are more frames in this sample than there are images in COCO trainval35k, the frames

come from fewer videos and are thus much more correlated than COCO images.

Preprocessing. Since some of the YFCC100m videos are of very high resolution (4K),

the decoded frames take a large amount of space. Furthermore, storing the frames in

the very high resolution would be wasteful since the frames would get downscaled to the

Mask R-CNN ’canonical’ resolution at inference time. Hence, when decoding the videos

we downscale the frames such that the longer side of each frame is at most 800 pixels.

We perform no motion blur filtering as part of the video data preprocessing.

Metrics. We evaluate our models on COCO minival (5k) using the standard COCO

detection evaluation metrics. We report the average precision (AP) for different thresh-

old settings including AP (averaged over ten IoU thresholds), AP75 (IoU 0.75) and AP50

(IoU 0.5). Additionally, we report AP for small, medium and large objects denoted by

APS , APM and APL, respectively. Unless otherwise specified, the AP is averaged over

all the categories. Note that the AP is computed using mask IoU in all cases.

Models. For all the experiments we use the Mask R-CNN model with ResNet-50-C4

backbone architecture. In order to simplify the training process and create a more

controlled setup, instead of using an RPN that shares features with the Mask R-CNN,

we use a separately trained RPN in all of the experiments.

Training Hyperparameters. All of the models used in our experiments are trained

using the same hyperparameters. We train for 80k iterations with a learning rate of 0.02

which is divided by 10 at iteration 60k. All other hyper-parameters follow the settings

used for the ResNet-50-C4 backbone in the Mask R-CNN paper.

Baselines. We consider two baselines: (1) the model with a backbone pre-trained on

ImageNet1k classification set [72] and then fine-tuned on COCO trainval35k and (2) the

model from (1) fine-tuned on COCO trainval35k once more.
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init train #gen AP AP50 AP75 APS APM APL APp

Baseline In-1k coco n/a 28.7 47.8 30.1 9.2 32.4 47.4 37.1

Vid-25k In-1k coco+gen 25k 27.5 46.1 29.0 8.8 30.9 46.3 36.2

Vid-50k In-1k coco+gen 50k 26.7 45.2 28.8 8.7 29.9 44.7 35.6

Baseline coco coco n/a 29.8 49.1 31.5 9.7 33.4 50.0 38.1

Vid-25k coco coco+gen 25k 29.1 47.8 30.7 9.2 32.3 48.3 37.1

Vid-50k coco coco+gen 50k 28.3 47.1 29.7 9.2 31.8 47.0 36.5

Table 4.1: Instance segmentation evaluation results on COCO minival (5k).

Generated Examples. We mine hard examples from 1.5k videos sampled from the

YFCC100m dataset. In our experiments we use only the examples found for person

category. Focusing on person category has three benefits: (1) it avoids the issue of

out-of-training-set categories, (2) since Flickr videos are mainly people-centric ensures

that there will be a reasonable number of examples in a relatively small video sample

and (3) makes the experiments more controlled and easier to analyse. We consider two

samples of generated person annotations, containing 25k and 50k person instances.

Training Procedure. When training with generated data we combine the generated

examples with the labelled COCO examples and treat the resulting collection as a single

dataset. Combining the labelled and generated data, instead of fine-tuning on generated

data only, has two advantages: (a) it provides better gradient estimates and (b) it helps

prevent overfitting the noise in the generated data. We experiment with initialising

weights from models pre-trained on ImageNet1k classification and COCO.

Results. We compare the models trained with additional generated data to baselines

trained using labelled data only in Table 4.1. We notice that for both weight initialisation

strategies, the baselines outperform the models trained with generated data. Further-

more, as the amount of generated data increases the model performance decreases.

Limitations. Although the results as presented above show no positive signal, we

emphasise two important limitations of our training procedure.

Firstly, both the baselines and the models that use additional generated data were

trained for the same number of iterations. This implies that the baselines have on

average seen each training example more times than the models trained with additional

data. Hence, instead of allowing the models to take advantage of the additional data we

effectively substituted some of the manually annotated examples with generated data.

Therefore, it is not realistic to expect that the models trained with generated data using

our procedure could achieve performance any higher than the baselines. In light of this

observation, the results showing the drop of 1-2 AP could be seen as encouraging.
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The second limitation of our training procedure concerns handling of negative examples.

In particular, images containing objects with generated annotations are likely to contain

additional objects that have not been identified as hard by our example mining heuristic.

However, our training procedure does not account for unlabelled objects present in the

scenes and treats them as background regions. Consequently, during the optimisation

process the model gets tasked with conflicting goals which likely has a negative effect

on the resulting learnt features.

4.8 Discussion

We developed a semi-supervised approach for bootstrapping models trained in a fully-

supervised setting using unlabelled video data. We base our approach on the observation

that models trained using the available amounts of labelled data are not fully invariant

to a variety of appearance changes objects undergo in large video collections.

Examples generated using our method demonstrate that spatio-temporal information

available in video data can be used to identify hard examples in unlabelled videos.

However, our quantitative evaluation has not shown a clear positive signal. We hypoth-

esise that surpassing the performance of the baseline models requires addressing the

previously outlined limitations of our training procedure for generated data.

Taking everything into account, we have seen some positive signal and believe that the

main idea presented in this chapter is promising. In Chapter 5 we generalise our main

idea and simplify the methodology. Furthermore, we address the shortcomings of the

training procedure applied to generated data in this chapter.
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Chapter 5

Data Distillation

5.1 Introduction

In Chapter 4 we developed a semi-supervised approach for bootstrapping models trained

in a fully-supervised setting using unlabelled video data. Our idea was based on the

hypothesis that a good model should predict the same label for the same object through-

out a video. The proposed method was to find cases in which the model makes mistakes

and correct them. In order to identify such cases, we relied on heuristic example mining

which is less than ideal. In this chapter we take a more general view on the main idea

and simplify our method.

One way to think about video is just like a source of transformation. Hence, ensuring

that the model predicts the same label for the same object throughout a video amounts

to making the model invariant to the video transformation. It follows that our idea can

be generalised to still images. In particular, given an unlabelled image, irrespective of

what the correct image label is, a good model should predict the same label for different

transformations of the image.

Since our models trained using the available amounts of labelled data are likley not

fully invariant to such transformations, some transformed views will allow for better

predictions than others. Hence, much like in the case of object track from the previous

chapter, we can combine the predictions from the transformed image views to assemble

a superior prediction for the original image.

We adopt the generalised view and test our hypothesis on unlabelled images as follows.

Given an unlabelled image we run inference on a number of different transformed versions

of the image and combine the obtained predictions to generate a label for the image.

We perform the aforementioned labelling procedure on a collection of unlabelled images

and use the generated annotations to re-train the model.
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We apply our approach, which we call data distillation, to the human pose estimation

task using the Mask R-CNN framework. In order to analyse different aspects of our

approach, we perform a sequence of experiments on the COCO keypoints task. Finally,

we show that our simple method is very effective and combined with Mask R-CNN leads

to state-of-the-art performance on the COCO Keypoint Challenge.

5.2 Related Work

Model Ensemble. A well known way to imrove performance of a machine learning

model is to train a number of variations of the model on the same data and average

their predictions at test time [30, 44]. Model ensembling is extremely effective and is

heavily utilised in commercial systems [38] and academic challenges [72, 51]. However,

it has two limitations: (1) training an ensemble of models is very cumbersome and (2)

performing inference is computationally expensive.

Knowledge Distillation. Caruana and collaborators [10] show that test time limita-

tions of model ensembling can be overcome by compressing the knowledge of an ensemble

of models into a single smaller model. Their approach was extended by Hinton and col-

laborators [38] who proposed an alternative way of compressing the ensemble knowledge,

which they called distillation. Instead of distilling knowledge of many models on the

same data, we distill knowledge of the same model under different views of the data.

Data Augmentation. A standard way to improve model generalisation is to employ

data augmentation [95, 77], which effectively increases the size of a labelled training

set. In particular, both training inputs and labels are transformed using the same

label-preserving transformations and the transformed samples are used as additional

training examples. In contrast, we apply transformations to unlabelled data and use the

combined transformed predictions as training labels.

Multi-transform Testing. A possible way to improve test time performance of a

fixed model is to average its predictions for different transformations of the test input.

Examples include averaging predictions for several image crops, multiple scales and

horizontally flipped images [43, 79, 35]. At a high-level, our label prediction procedure

does the same thing. However, instead of using this procedure to enhance the test time

performance of our model we utilse it for generating labels for unlabelled data.
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5.3 Keypoint R-CNN

We test our data distillation idea by applying it to the recently proposed Mask R-CNN

model [33]. Mask R-CNN is a conceptually simple, fast and very general framework.

Hence, it makes it easy to experiment with our approach on any of the instance-level

tasks. To this aim, we choose the human pose estimation task and refer to the corre-

sponding Mask R-CNN instantiation as Keypoint R-CNN. We briefly review Keypoint

R-CNN, focusing on aspects of training important for our approach. An overview of the

Mask R-CNN framework and its predecesors can be found in Chapter 4.

Human Pose Estimation. Keypoint R-CNN tackles the human pose estimation task

by utilising the standard two-stage approach. In the first stage, a set of object proposal

regions of interest (RoIs) are predicted using the region proposal network (RPN). In the

second stage, in parallel to predicting the class and the bounding box, a set of keypoint

locations is predicted for each RoI.

Keypoint R-CNN models keypoints using one-hot encoded heatmaps. In particular, for

each of the K keypoint types of an instance (e.g. nose, right ear, etc.) the training

target is a m ×m binary mask with only a single pixel set. Hence, the keypoint types

are treated independently and a heatmap is predicted for each type. Note that this is,

up to a small modification, identical to how object masks for instance segmentation are

predicted using Mask R-CNN.

Hierarchical Sampling. Keypoint R-CNN training procedure largely follows the one

of its predecessors [26, 68]. In order to save computation by taking advantange of feature

sharing, a hierarchical mini-batch sampling is employed. In particular, each mini-batch

of size R is constructed by first sampling N images and then by sampling N/R RoIs

from each image. Note that in case of Keypoint R-CNN only the images that contain

at least one visible keypoint are used for training.

RoI Sampling. Each image contains a significantly larger number of background RoIs

than foreground RoIs. Hence, using a uniform RoI sampling strategy would result in an

inefficient learning process. To overcome the imbalance problem, the background RoIs

are subsampled at random to achieve a ratio of 1 : 3 of foreground to background RoIs.

Thus, a quarter of each mini-batch constitutes of foreground RoIs.

Foreground vs. Background. RoIs are classified as foreground or background based

on their IoU overlap with ground truth boxes. Each RoI with an overlap greater than

or equal to 0.5 is considered as foreground. RoIs with an overlap in [0, 0.5) are treated

as backgound. Note that using a non-zero lower bound can be thought of as a form of

hard negative mining under the assumption that RoIs that have at least some overlap

with ground truth boxes are more likely to represent hard examples [26, 36].
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Figure 5.1: Keypoint R-CNN with KDD results on COCO test-dev (Section 5.7.3).

5.4 KDD Inference

In order to test our hypothesis, we apply the data distillation idea to the human pose

estimation task. We chose this task for two reasons. Firstly, there is less labelled data

available for it than for the other instance-level tasks, such as detection or segmentation.

Hence, we would likely require less additional generated data to see positive signal, which

would allow us to iterate faster. Secondly, the instance-level predictions for the keypoints

task consist of a number of individual keypoint types (e.g. nose, left ear, etc.), which

allows for cherry-picking individual keypoints from different predictions.

Prediction Matching. Given an image, the idea is to run inference on the transformed

versions of the image to obtain a set of keypoints predictions per transformation. For

each person, the predictions from the transformed images should then be combined

to obtain a single prediction. However, to be able to combine the predictions at the

instance-level, we need to determine which predictions correspond to the same instance.

To this aim, we utilise the region-based nature of the Keypoint R-CNN. In particular,

given a set of RoIs for the original image we apply a transformation to the RoIs to obtain

a set of corresponding RoIs in the transformed image space. Next, we run the trans-

formed image through the network feature extraction trunk to obtain the transformed

feature map.1 We then use the transformed RoIs to select features from the transformed

feature map and run the keypoint network head to obtain the keypoint predictions in

the transformed image space. Finally, the keypoint predictions in the transformed image

space are projected to the original image space by applying the inverse transform.

It follows that all the transformed predictions obtained using the same RoIs from the

original image are in correspondence. In practice, we take the bounding boxes predicted

for the original image as the set of RoIs used for computing the transformed predictions.

1We sometimes loosely use transformed X to mean X for the transformed image. 51
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Figure 5.2: More results of Keypoint R-CNN with KDD on COCO test-dev (Section 5.7.3).

Combining Predictions. Given a set of predictions computed under various trans-

formations and corresponding to the same instance, we want to combine them into a

single prediction. To this aim, we consider a number of heuristics, such as taking the

keypoints with the maximal scores or averaging the keypoint locations. Furthermore,

since the predictions can be combined by either combining the predicted heatmaps or

the image locations obtained from the heatmaps, we consider heuristics that operate on

both of those representations.

Transformations. In order for a transformation to be applicable within our data dis-

tillation framework, we require that the transformation (a) is label-preserving and (b)

has a corresponding geometric inverse. We employ a range of geometric image trans-

formations. Examples include scale, aspect ratio and horizontal flip. We also consider

transformations that operate on image intensities, such as histogram equalisation.

Size-dependent Scaling. Many transformation have the same effect on all objects,

irrespective of the object size. For example, performing horizontal flip results in superior

predictions for both small and large objects. However, it is important to notice that

some transformations have varying effects depending on the object size. For instance,

upscaling an image helps with predictions for small objects. In contrast, upscaling has

little effect on large objects. In case of downscaling the difference is more extreme.

In particular, downscaling helps with predictions for large objects while it hurts the

predictions for small objects. In order to account for this behaviour, we selectively

apply transformations that alter image scale by object size.

We elaborate on the specific heuristics and transformations in the implementation details

section. Furthermore, we evaluate their effectiveness as part of our experiments.
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Figure 5.3: Examples of annotations generated from Sports-1M video frames [41].

5.5 KDD Training

By employing the keypoint data distillation (KDD) inference procedure, we compute a

set of predictions for each of the unlabelled images. We next use the obtained predictions

to generate labels for re-training the model.

Prediction Selection. Since the computed predictions inevitably include predictions

of poor quality, generating labels from all of the predictions would lead to the undesir-

able training outcome. Ideally, we would like to generate labels only from the correct

predictions. However, since we have no way of knowing if a prediction for an unla-

belled image is correct, we use the predicted scores as a proxy for prediction quality. In

particular, we apply a global threshold to the computed predictions and treat only the

predictions whose score is above the threshold as ’ground truth’. Note that since the

prediction selection is performed at the instance-level we use the bounding box scores.

Although the predicted scores range from zero to one, they have little to do with the

notion of probability in practice. In particular, throughout our experiments we observe

that models trained using varying amounts of data predict scores of different distribu-

tions. Typically, models trained using more data tend to become overly confident and

consistently predict very high scores. Therefore, the same score value has different im-

plications on prediction quality in the context of different models. Consequently, the

score threshold for the prediction selection should be set dynamically per model.

The raw score threshold can be treated as a hyperparameter and tuned per model.

However, in order to reduce the search space we experiment with setting the score

threshold as a function of the number of ground truth instances, unlabelled images or

predictions. Although all three options have drawbacks, they make reasoning about the

threshold setting significantly easier and are straightforward to set in practice.
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Figure 5.4: (Left) All the detected objects (blue). (Middle) Bg RoIs (red) and Fg RoIs
(green) obtained by applying a single threshold on the detected objects. Note how the crowd
of people is wrongly treated as Bg. (Right) Bg RoIs (red) and Fg RoIs (green) obtained
using the ’gray region’ approach. Most of the wrong Bg RoIs are filtered out.

Keypoint Visibility. Selected instance-level predictions consist of K individual key-

points, corresponding to each of the keypoint types (e.g. left elbow, nose, etc.). However,

in many of the object views captured by real-world images not all of the keypoint types

are visible. Consequently, a large number of the selected instance-level predictions will

contain false positive keypoint predictions. In order to account for this, we employ a

visibility threshold and consider only the keypoints whose score is above the thresold as

visible when generating the object labels.

Background RoIs. We treat the generated object keypoint annotations as ground

truth and proceed to re-train the Keypoint R-CNN model. Recall that a RoI is consid-

ered foreground if its IoU overlap with a ground truth box is at least 0.5 and background

otherwise. Hence, all the RoIs that have no overlap with ground truth boxes are treated

as background. In case of images with generated ground truth labels, there may be

person instances without the corresponding annotations. Consequently, the RoIs over-

lapping with such instances would be treated as background, which would likely have a

negative effect on the learning process.

An instance may not have a corresponding generated annotation because (a) the instance

has not been detected at all or (b) the prediction for the instance has been filtered out

based on the score threshold. Although we cannot do much about (a), we can account

for RoIs that are considered as background due to (b). Namely, instead of discarding all

the predictions with the score below a threshold we introduce a ’gray region’ consisting

of predictions we are unsure about. Concretely, if the score for a prediction falls within

[score-lo, score-hi) we say that the prediction belongs to the ’gray region’. We then

disallow classifying RoIs that have a certain overlap with the predictions from the ’gray

region’ as background. Similarly as before, the predictions whose score is below score-lo

are discarded while the predictions with the score of at least score-hi are treated as

ground truth. Note that using a single threshold is a special case of this approach in

which score-lo and score-hi are set to the same value.
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Figure 5.5: More examples of generated data from Sports-1M dataset. Notice the noisy
annotation spanning two instances (left). Predicting keypoints correctly for cases like this
one is challenging due to the ambiguity.

Data Mixing. Annotations obtained using our data generation procedure are noisy.

Thus, when re-training the model using generated data, it is beneficial to also include

the clean data used to train the original model. In particular, including the clean

data results in better gradient estimates and helps prevent overfitting of random noise

structures in the generated data.

One way to achieve this is to combine the clean data and the generated data into a

single dataset and perform training as usual. This approach works very well when the

amount of data of both types is roughly the same. However, when there is significantly

more generated data than there is clean data, the generated data overwhelms the clean

data leading to a less efficient learning process.

To overcome the aforementioned limitation we employ a different strategy. In particular,

we keep the two types of data separate and construct each mini-batch by sampling images

from the two pools in accordance to the desired proportion. Hence, irrespective of what

the total amount of data of each type is, we achieve the desired ratio. This training

procedure results in a significantly more efficient learning process. An additional benefit

of this approach is that it allows us to iterate faster by using shorter learning schedules.

Iterative Training. The whole data distillation process can be performed in a boot-

strapping fashion. In particular, the two steps of generating the data and re-training

the model can be alternated until convergence.

Note that in each training iteration the weights can be initialised either from the original

initial weights or using the model from the previous iteration. When starting from the

original weights, the same hyperparameters can be used for each iteration. In contrast,

the hyperparameters need to be tuned for each iteration when starting using the model

from the previous iteration. Although starting from the previous iteration weights could

yield higher performance in theory, we found the alternative of starting from the original

weights to work better in practice possibly due to an easier optimisation process.
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5.6 Implementation Details

Base Models. We use the Keypoint R-CNN with ResNet50-C4 and ResNet50-FPN

backbones as base models for the KDD procedure. Keypoint R-CNN implementation

was kindly provided by the authors. We train the base models by using the hyperpa-

rameters outlined in the Mask R-CNN work [33].

Inference. At test time, we use 300 and 1000 proposals for the C4 [68] and FPN [50]

backbones, respectively. We then run the bounding box branch on these proposals to

obtain the initial boxes. The set of boxes is further refined by applying a score threshold

of 0.05, non-maximum suppression (NMS) [28] with a threshold of 0.5 and taking the

100 highest scoring boxes. The refined set of boxes is used for applying the keypoint

branch on the original image. For a transformed image, the features are first computed

by applying the feature extraction trunk. The refined boxes are then transformed and

used to apply the keypoint head on the features for the transformed image.

Heuristics. In order to combine the predictions made for the same instance under dif-

ferent transformations, we consider a number of heuristics. For combining the predicted

keypoint locations in the image space our heuristics include taking the keypoints with

the maximal score (Spatial Max), averaging the keypoint coordinates (Spatial Average)

and using the weighted average of the spatial coordinates (Spatial Weighted Average).

Note that each heuristic is applied per keypoint type (e.g. nose, left elbow, etc.). Fur-

thermore, we consider heuristics that combine the predicted heatmaps by taking the

pixel-wise max across each of the heatmap types (Heatmap Max) or by averaging the

heatmaps of each type (Heatmap Average). The keypoint locations in image space are

then derived from the combined heatmaps.

Transformations. We implement a range of image transformations each subset of

which can be employed during the KDD inference procedure. Aspect ratio of an image

is altered by setting the desired absolute aspect ratio or by changing the relative aspect

ratio to achieve shrinking/stretching effects. To apply scaling we specify the length of

the shorter side in pixels and scale the image while preserving the aspect ratio. For

both aspect ratio and scaling transformations we utilise the bilinear interpolation. We

further allow flipping the image horizontally and vertically at each of the aspect ratios

and scales. Elastic deformation of an image is performed by smoothing a small randomly

generated flow field with a Gaussian kernel and using it to warp the image [77]. To

perform histogram equalisation of an RGB image we convert the image to the YCbCr

color space and apply the histogram equalisation implementation from the OpenCV

toolbox [8] to the Y channel.
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Size-dependent Scaling. We support applying scaling transformations selectively

by object size. However, since KDD inference is performed on unlabelled images, we

cannot know the true sizes of the objects in the scenes. Hence, we approximate object

sizes using the areas of the predicted bounding boxes. In particular, we use a box area

threshold of 1802 pixels and consider objects as small/medium if their area is below the

threshold and as large otherwise. Consequently, scaling up and scaling down are applied

only to small/medium and large objects, respectively. In order to take advantage of the

shared computation we run inference for each object size at each scale, but only consider

the predictions from the appropriate scales when combining the predictions. Note that

although we determined the box area threshold empirically, we found that it matches

the statistics of the object sizes in the labelled training data we considered quite well.

Label Generation. To generate object keypoint annotations, we treat keypoints with

logit (before softmax) scores of at least 1.0 as visible. Unless otherwise stated, we set

the instance-level score-hi threshold such that only N of the computed predictions have

scores of at least score-hi, where N is twice the number of manually-annotated objects

used to train the base model. Furthemore, when the ’gray region’ strategy is employed

we set the lo-score threshold to 0.7 and filter out all the background RoIs whose IoU

overlap with a box from the ’gray region’ is at least 0.1.

Data Balancing. When re-training our models with generated data, we set the tar-

get ratio of annotated-to-generated images in each mini-batch to 6 : 4. Following the

common practice [7], instead of sampling each mini-batch individually, we maintain two

queues of data and iterate over the permutations of the samples with a fixed stride.

Training. We consider a RoI with an overlap of at least 0.5 with a ground truth box

foreground and background otherwise. RoIs are sampled to ensure the target foreground-

to-background ratio of 1 : 3. Each mini-batch consists of 2 images per GPU and N RoIs

per image, where N is 64 for the C4 backbone [68] and 512 in case of the FPN backbone

[50]. We adopt synchronised gradient descent training using a 8-GPU machine. The

training experiments are conducted using the Caffe2 framework.1

For training both the C4 and the FPN backbones we use the starting learning rate of

0.02. In case of the C4 backbone the learning rate is divided by 10 after 3/4 of the

total number of iterations. When training the FPN backbone we divide the learning

rate by 10 after 2/3 and then again after 8/9 of the total number of iterations. For both

backbones, we use a weight decay of 0.0001 and a momentum of 0.9.

We use the RPN with anchors that span 5 scales and 3 aspect ratios, as in [50]. In

all of our experiments we train a separate RPN that does not share features with the

Keypoint R-CNN, which results in a more controlled setup and allows for convenient

ablation. Nevertheless, the equivalent feature-sharing models can be trained.

1https://github.com/caffe2/caffe2 57
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5.7 Experiments

Labelled Data. We use the MS COCO dataset [51] as the source of labelled data for

the KDD procedure. COCO contains around 80k training and 40k validation images

with over 850k annotated objects from 80 categories. However, only the person category

has annotated keypoints. In particular, the keypoints are annotated for around 200k

person instances. COCO contains 17 person keypoint types (e.g. left hip, right ear, nose,

etc.), not all of which are visible for every instance. Following the common practice [4],

we use the union of 80k training and 35k validation images (trainval35k) as the source of

training data and leave out the remaining 5k validation images (minival) for validation.

Note that many of the training and validation images contain no people.

Unlabelled Data. In order to construct collections of unlabelled images we utilise

frames from the Sports-1M video dataset [41]. The dataset consists of 1.1 million

YouTube videos belonging to 487 categories of sports. This dataset is well suited for

our KDD approach since most of the sport categories contain people. Hence, compared

to a dataset where people are not as common, using Sports-1M will likely require fewer

inference runs, and thus less computation, to generate a certain number of annotations.

Image collections are created from the Sports-1M videos using hierarchical sampling.

In particular, N sport categories are first sampled from the dataset, M videos are then

sampled from each of the selected categories and finally K frames are sampled from each

of the selected videos, to obtain a collection of N×M×K images. Note that the frames

from the same video are more correlated than the frames from different videos of the

same category and even more so than the frames from videos of different category. Hence,

choosing larger values for N and M , and smaller values for K is generally preferred.

Preprocessing. Some of of the YouTube videos that comprise the Sports-1M dataset

contain large amounts of motion blur, which could potentially introduce bias. However,

we found Keypoint R-CNN to be suprisingly robust to motion blur and not to exhibit any

systematic errors. Thus, we do not perform any form of data filtering or preprocessing.

Metrics. We evaluate our approach on the COCO Keypoint Challenge using the stan-

dard COCO metrics for characterising the performance of a keypoint detector. In order

to be able to quantify the similarity between the ground truth and the predicted key-

points COCO defines an object keypoint similary (OKS) measure. The OKS plays a role

analogous to the IoU for boxes/segments. Consequently, thresholding the OKS defines

the matches between the ground truth and predicted keypoints and allows computing

average precision (AP). We report the AP for different threshold settings including AP

(averaged over ten OKS thresholds), AP75 (OKS 0.75), and AP50 (OKS 0.5). We also

report the AP for medium and large objects denoted by APM and APL, respectively.

Note that small objects in COCO contain no keypoint annotations.
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backbone scales HF SD heuristic AP AP50 AP75 APM APL

ResNet50-C4 800 n/a 58.6 82.7 63.6 52.6 68.6

ResNet50-C4 800 X hm avg 60.5 83.3 65.6 54.8 70.2

ResNet50-C4 400-1200 X hm avg 62.5 84.4 68.2 57.4 71.7

ResNet50-C4 400-1200 X X hm avg 63.2 84.9 69.0 58.5 72.0

ResNet50-FPN 800 n/a 64.2 86.4 69.2 59.1 72.6

ResNet50-FPN 800 X hm avg 65.4 87.0 70.8 60.4 73.6

ResNet50-FPN 400-1200 X hm avg 66.6 87.5 72.5 61.7 74.7

ResNet50-FPN 400-1200 X X hm avg 67.0 87.8 73.0 62.3 74.9

Table 5.1: COCO minival (5k) keypoint detection AP (%). All models are trained on
COCO trainval35k. The scales denote the lengths of shorter image sides in pixels. Ranges
are in increments of 100. Entries that employ KDD inference use heatmap averaging heuris-
tic. Legend: HF: applying horizontal flip at each scale, SD: using size-dependent scaling.

5.7.1 Transformation Selection

In order to determine the optimal set of transformations and the heuristic to use for

the KDD label generation procedure, we employ a data-driven approach. In particular,

we train a standard Keypoint R-CNN model, apply KDD with different combinations

of transformations and heuristics at test time and select the set of transformations and

the heuristic that yield the highest accuracy.

Experimental Setup. We use a standard Keypoint R-CNN model with ResNet50-C4

backbone trained on COCO trainval35k and evaluate different combinations of trans-

formations and heuristics at test time on COCO minival. We performed a thorough

evaluation of different KDD settings and report only the most effective ones in Table 5.1.

Optimal Combination. For all of the combinations of transformations considered

we found the heatmap averaging heuristic to consistently perform the best. Out of

all the image transformations, horizontal flipping and scaling stood out as the most

effective ones. Namely, including horizontal flip in any combination increases the overall

accuracy. Although applying standard scaling on its own improves the accuracy, scaling

objects depending on their size is superior. Our best performing combination, shown in

Table 5.1, brings an absolute 4.8 AP improvement over the ResNet50-C4 baseline.

Generalisation. We performed our search for the optimal KDD inference setting using

the C4 model. To see if our findings generalise to FPN models, we evaluated the most

effective combinations found for the C4 model using the FPN equivalent. The best

performing combination gives an absolute 2.8 AP improvement over the FPN baseline,

as shown in Table 5.1. However, the relative improvement from the baseline is smaller,

likely due to the invariance added by the feature pyramids utilised in the FPN.
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backbone GT GEN AP AP50 AP75 APM APL

ResNet50-C4 val35k n/a 47.7 75.3 50.0 41.9 57.0

ResNet50-C4 val35k train 54.7 79.8 58.7 49.0 64.6

ResNet50-C4 trainval35k n/a 58.6 82.7 63.6 52.6 68.6

ResNet50-FPN val35k n/a 54.9 80.5 59.0 50.1 62.8

ResNet50-FPN val35k train 60.2 83.8 65.4 55.2 68.4

ResNet50-FPN trainval35k n/a 64.2 86.4 69.2 59.1 72.6

Table 5.2: COCO minival (5k) keypoint detection AP (%). Legend: GT: training data
with ground truth annotations, GEN: training data with generated data.

5.7.2 Controlled Setting

In order to quantify how the quality of the labels obtained using our approach compares

to the manually-annotated labels, we designed a controlled experiment. In particular,

we use a subset of the images from a labelled dataset to train a base model. We then

consider the rest of the images as unlabelled and apply the KDD procedure. Hence, we

can see if the model trained using KDD improves and, if so, how close it comes to the

upper bound obtained by training an equivalent model using all of the labelled images.

Experimental Setup. We perform this experiment using the COCO dataset. In

particular, we use the images from val35k as labelled data and treat the images from train

as unlabelled. We perform the same experiment with the ResNet50-C4 and ResNet50-

FPN backbones. In both cases we employ the set of best performing transformations,

outlined in the revious section, for KDD inference during label generation.

Results. We present the results on COCO minival in Table 5.2. In case of the ResNet50-

C4 backbone, the KDD model improves over the val35k model by absolute 7.0 AP.

Furthermore, it comes surprisingly close to the trainval35k upper bound (3.9 AP). The

ResNet50-FPN version achieves similar results by bringing an improvement of 5.3 AP

over the val35k model and getting to 4.0 AP from the trainval35k upper bound.

Although we have seen very positive signal in the experiments presented in this section,

it is important to keep in mind the differences between this setting and the more general

setting where arbitrary image collections are used as a source of unlabelled data. Firstly,

in this setting both the labelled data and the unlabelled data come from the same dis-

tribution. Secondly, COCO images are considerably cleaner than some of the potential

unlabelled data sources, such as Sports-1M frames coming from YouTube videos.

We emphasise that the reported results, in this section and the following ones, do not

employ KDD inference at test time. Utilising KDD inference at test time has a potential

to further improve the performance but is not the focus of our work.
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backbone GT GEN AP AP50 AP75 APM APL

ResNet50-C4 trainval35k n/a 58.6 82.7 63.6 52.6 68.6

ResNet50-C4 trainval35k Sports-1M 61.1 83.4 66.2 55.4 71.0

ResNet50-FPN trainval35k n/a 64.2 86.4 69.2 59.1 72.6

ResNet50-FPN trainval35k Sports-1M 66.7 87.5 72.9 61.4 75.3

Table 5.3: COCO minival (5k) keypoint detection AP (%). Legend: GT: training data
with ground truth annotations, GEN: training data with generated data.

5.7.3 Large Dataset

Encouraged by the positive results obtained in the controlled setting, we proceed to

see if our approach generalises to a large dataset of unlabelled images coming from a

different distribution than the labelled data.

Experimental Setup. We construct a collection of around 180k unlabelled images

using the frames from the Sports-1M videos. In particular, we first randomly select 100

sport categories and then sample a single frame from around 1800 randomly sampled

videos from each of the selected categories. As the source of labelled data we use all of

the COCO images. The ResNet50-C4 and the ResNet50-FPN base models are trained

on trainval35k for 80k and 90k iterations, respectively. When training on the union

of labelled and generated data we increase the maximal number of iterations for both

models four times. All other hyperparameters are set following Section 5.6.

Results. We compare the models trained using the KDD approach to the baseline Key-

point R-CNN models and report the results on COCO minival in Table 5.3. The models

trained using KDD outperform the baselines for both of the backbone architectures.

Interestingly, the AP increase of absolute 2.5 is the same in both cases. We note that

the performance increase is significantly larger in the AP75 than in the AP50 metric,

which is where most of the improvement in the AP comes from.

The equal AP improvement of the two backbone versions is in contrast with the con-

trolled setting, where C4 had a larger increase in the AP than the FPN, which might

suggest that in the context of a large dataset the FPN backbone benefits from greater

representational capacity.

In order to see if the KDD approach is affected by the variance in the sampled collection

of Sports-1M frames, we experimented with using image collections of similar size sam-

pled from the varying number of categories and videos. We obtained similar results in

all cases, which suggests that the KDD approach is robust to the variance in the Sports-

1M distribution. Surprisingly, we found that when applied to a large dataset the KDD

method is insensitive to the lower bound used for the ’gray region’ of the detections.
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GT GEN AP AP50 AP75 APM APL

CMU-Pose+++ [12] COCO n/a 61.8 84.9 67.5 57.1 68.2

G-RMI [61] COCO+MPII n/a 62.4 84.0 68.5 59.1 68.1

KRCNN [33] COCO n/a 62.7 87.0 68.4 57.4 71.1

KRCNN w KDD COCO Sports-1M 64.7 88.0 70.9 59.8 72.6

Table 5.4: COCO test-dev keypoint detection AP (%). CMU-Pose+++ is the 2016 com-
petition winner. G-RMI uses two models (Inception-ResNet-v2 and ResNet-101) trained
on COCO and MPII [1] (40k labelled instances). Both of the Keypoint R-CNN (KRCNN)
models use the ResNet50-FPN backbone. Legend: GT: training data with ground truth
annotations, GEN: training data with generated annotations.

Following the significant improvements achieved over the Keypoint R-CNN (KRCNN)

baselines on COCO minival, we compare the KRCNN trained using the KDD approach

to the state-of-the-art keypoint detectors on COCO test-dev, which has no disclosed

labels. We use the same ResNet50-FPN model as in the COCO minival experiments.

Main Results. We report the results on COCO test-dev in Table 5.4. KRCNN trained

using the KDD approach outperforms all previous state-of-the-art models. This includes

CMU-Pose+++ the winner of the COCO 2016 Keypoint Challenge, G-RMI [61] trained

using an additional labelled dataset and the standard version of the KRCNN [33]. Fur-

thermore, KRCNN with KDD does so by a margin of 2.0 AP, which is considerably

larger than the difference in performance between the other entries (at most 0.6 AP).

Medium Objects. Although KRCNN outperforms G-RMI in the overall AP, the

G-RMI model performs better on medium objects. Both CMU-Pose+++ and KRCNN

models have roughly the same accuracy on medium objects and were trained using only

the COCO dataset, which has no annotations for small objects. Since KDD procedure

places no limitations on object sizes when generating labels, it is likely that the generated

data used for training the KRCNN with KDD model includes small objects. Thus, it is

possible that the significant increase in the medium object accuracy between the KRCNN

and the KRCNN with KDD models was stimulated by the generated annotations for

small objects.

Large Objects. The KRCNN model outperforms the CMU-Pose+++ and G-RMI mod-

els on large objects by a wide margin. KRCNN with KDD widens this gap by bringing

an additional improvement over the KRCNN performance on large objects.

Like in the case of COCO minival, the KRCNN with KDD model improvement over the

base KRCNN model comes mostly from the AP75 metric. In contrast, KRCNN makes

a difference over the CMU-Pose+++ and G-RMI models in the AP50 metric.
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5.8 Discussion

We proposed a simple approach for semi-supervised learning from a collection of un-

labelled images. Our method combines model predictions computed at different image

transformations to generate labels for unlabelled images that are then used to re-train

the model. We applied our approach to the human pose estimation task using the

Keypoint R-CNN model. We conducted experimental analysis on the COCO keypoints

dataset to demonstrate the effectiveness of our approach. Furthermore, we reported

state-of-the-art results on the COCO Keypoints Challenge.

Our data distillation approach is very general and can be applied to other instance-level

tasks, such as detection and segmentation. We leave this direction for future work.
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Chapter 6

Conclusion

Over the recent years, we witnessed rapid progress in visual perception tasks that has

been mostly driven by the availability of large manually annotated datasets. Machines

have become particularly effective in the image classification task, even surpasing human-

level performance. However, the increase in performance in the instance-level tasks, such

as object segmentation and human pose estimation has not been as rapid. In part, due

to the difficulty of manually annotating very large datasets for these tasks.

In our study we explored if semi-supervised learning approaches could help advance

object-instance recognition without relying on additional manually annotated data.

Concretely, in Chapter 3 we have shown that models trained in a fully-supervised set-

ting can provide useful signal for learning an instance-level task from unlabelled videos.

In Chapter 4, we developed a hard example mining approach that relies on the spatio-

temporal information available in videos. We then generalised our approach in Chapter

5 and proposed a simple but effective method for semi-supervised learning from unla-

belled images. By combining our method with the Mask R-CNN model we achieved

state-of-the-art performance in human pose estimation.

Over the course of our investigation we have seen some promising results. We believe

that this is an interesting research direction and hope that our work may inspire future

research in semi-supervised learning of instance-level recognition.
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CHAPTER 6. CONCLUSION

Although our study has provided us with valuable insights, it has also posed many

questions that we would like to address in future work.

1. The training procedure for generated data used in Chapter 4 suffered from sig-

nificant limitations. We addressed those limitations in Chapter 5 by using data

mixing strategies and employing regional thresholding. Although, the approach

presented in Chapter 5 is generally more compelling, we would still like to go back

to the setting from Chapter 4 and apply our updated training procedure.

2. We have seen very positive signal from applying our approach to a relatively large

sample of Sports-1M frames. However, in the context of the entire Sports-1M

dataset, we used less than 10% of the available data. Hence, we would like to

investigate what are the limits of our approach, both in terms of the training

duration and the size of the unlabelled dataset.

3. In this study we applied the data distillation approach to human pose estimation.

To determine if our approach generalises to other instance-level tasks, we would

like to apply the data distillation procedure to boxes and masks.

4. One way to generalise our data distillation approach is to consider different instance-

level tasks. Another path forward is to consider different levels of abstraction. In

particular, in the same way data distillation is applied to model outputs it could

be applied to features. In fact, model outputs are ’features’, just low dimensional

and interpretable. One of the challenges in this direction is coming up with inverse

feature transformations (in case of geometric transforms inverses were available in

closed-form). One way to overcome this issue would be to train another model to

serve as the inverse. The model could be trained using data generated from dense

object tracks, similarly to how we approached learning of tracking. This direction

is also related to slow feature analysis [93] and equivariant features [47]

5. We implemented the data distillation approach in a bootsrapping-style fashion.

An alternative approach would be to think about data distillation as a form of

regularisation and apply it during training. In case of Mask R-CNN, one way to

accomplish this would be to add model heads corresponding to different transfor-

mations and form a multi-transformation loss.
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[22] Gunnar Farnebäck. “Two-frame motion estimation based on polynomial expan-

sion”. In: Scandinavian conference on Image analysis. Springer. 2003, pp. 363–

370.

67



BIBLIOGRAPHY BIBLIOGRAPHY

[23] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.

“Object detection with discriminatively trained part-based models”. In: IEEE

transactions on pattern analysis and machine intelligence 32.9 (2010), pp. 1627–

1645.

[24] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography”.

In: Communications of the ACM 24.6 (1981), pp. 381–395.

[25] Martin A Fischler and Robert A Elschlager. “The representation and matching of

pictorial structures”. In: IEEE Transactions on computers 100.1 (1973), pp. 67–

92.

[26] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE International Conference

on Computer Vision. 2015, pp. 1440–1448.

[27] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature

hierarchies for accurate object detection and semantic segmentation”. In: Proceed-

ings of the IEEE conference on computer vision and pattern recognition. 2014,

pp. 580–587.

[28] Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. “Deformable

part models are convolutional neural networks”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2015, pp. 437–446.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,

2016.

[30] Lars Kai Hansen and Peter Salamon. “Neural network ensembles”. In: IEEE trans-

actions on pattern analysis and machine intelligence 12.10 (1990), pp. 993–1001.

[31] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet, Ming-Ming Cheng,

Stephen L Hicks, and Philip HS Torr. “Struck: Structured output tracking with

kernels”. In: IEEE transactions on pattern analysis and machine intelligence 38.10

(2016), pp. 2096–2109.

[32] Chris Harris and Mike Stephens. “A combined corner and edge detector.” In: Alvey

vision conference. Vol. 15. 50. Manchester, UK. 1988, pp. 10–5244.

[33] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn”.

In: arXiv preprint arXiv:1703.06870 (2017).

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-

ing for Image Recognition”. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). June 2016.

68



BIBLIOGRAPHY BIBLIOGRAPHY

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification”. In: Pro-

ceedings of the IEEE international conference on computer vision. 2015, pp. 1026–

1034.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Spatial pyramid pool-

ing in deep convolutional networks for visual recognition”. In: European Conference

on Computer Vision. Springer. 2014, pp. 346–361.

[37] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. “High-speed

tracking with kernelized correlation filters”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 37.3 (2015), pp. 583–596.

[38] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a

neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[39] Berthold KP Horn and Brian G Schunck. “Determining optical flow”. In: Artificial

intelligence 17.1-3 (1981), pp. 185–203.

[40] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Tracking-learning-detection”.

In: IEEE transactions on pattern analysis and machine intelligence 34.7 (2012),

pp. 1409–1422.

[41] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. “Large-scale video classification with convolutional neural

networks”. In: Proceedings of the IEEE conference on Computer Vision and Pat-

tern Recognition. 2014, pp. 1725–1732.

[42] Johannes Kopf, Michael F Cohen, and Richard Szeliski. “First-person hyper-lapse

videos”. In: ACM Transactions on Graphics (TOG) 33.4 (2014), p. 78.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural Information

Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105.

[44] Anders Krogh, Jesper Vedelsby, et al. “Neural network ensembles, cross validation,

and active learning”. In: Advances in neural information processing systems 7

(1995), pp. 231–238.

[45] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. “Backpropagation applied to

handwritten zip code recognition”. In: Neural computation 1.4 (1989), pp. 541–

551.

69



BIBLIOGRAPHY BIBLIOGRAPHY
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