
Project Report

Department of Computing

Imperial College of Science, Technology and Medicine

PowerKap - A tool for Improving Energy
Transparency for Software Developers on

GNU/Linux (x86) platforms

Author:
Krish De Souza

Supervisor:
Dr. Anandha Gopalan

Submitted in partial fulfilment of the requirements for the M.Eng Computing 4 of
Imperial College London

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Objectives . 7
1.3 Achievements . 7

2 Background 9
2.1 The relationship between power and energy. 9
2.2 Power controls on x86 platforms . 9
2.3 Improving software for power efficiency . 10

2.3.1 Algorithm . 10
2.3.2 Multithreading . 10
2.3.3 Vectorisation . 10
2.3.4 Improper sleep loops . 12
2.3.5 OS Timers . 13
2.3.6 Context aware programming . 13

2.4 Current methods of monitoring energy. 14
2.4.1 Out of Band Energy Monitor . 14
2.4.2 In-Band Energy Monitor . 14

2.4.2.1 Powertop . 15
2.4.2.2 Turbostat . 16

2.5 Related Work . 16
2.5.1 ENTRA 2012-2015 . 16

2.5.1.1 Common Assertion Language 16
2.5.1.2 Compiler Optimisation and Power Trade-offs 18
2.5.1.3 Superoptimization . 18
2.5.1.4 Thermal trade-off . 20

2.5.2 eProf . 20
2.5.2.1 Asynchronous vs Synchronous 20
2.5.2.2 Profiling implementation 21

2.5.3 Energy Formal Definitions . 21
2.5.3.1 Java Based Energy Formalism 22
2.5.3.2 Energy Application Model 22

2.5.4 Impact of language, Compiler, Optimisations 22
2.5.4.1 Choice of Language . 22
2.5.4.2 Relation of execution time and energy consumption 23
2.5.4.3 Impact of Optimisation flags 23
2.5.4.4 Choice in Algorithm . 25

2.6 Similar Tools . 25
2.6.1 AEON . 25
2.6.2 Visual Studio . 26

2.7 Gathering Energy Measurements . 27
2.7.1 Module Specific Registers (MSR) . 27

2.7.1.1 Running Average Power Limits (RAPL) Interfaces 27
2.7.2 Perf . 30
2.7.3 PAPI (Performance Application Programming Interface) 30

1

2.7.4 HWMON . 30
2.7.5 Intel Powercap . 30
2.7.6 PowerAPI . 31
2.7.7 Summary . 31

2.8 Interacting with these interfaces from user space 33
2.8.1 Sysfs . 33
2.8.2 NetLink . 33
2.8.3 Procfs . 33

3 Profiling a program 35
3.1 Initial Ideas . 35
3.2 The Profiler . 35

3.2.1 Design Ideas . 35
3.2.2 Chosen Design . 36
3.2.3 Why not use current profilers? . 38
3.2.4 Choice of energy interface . 38

3.2.4.1 Energy Consumption of CPU and Memory 38
3.2.5 Thermal Information . 39

3.2.5.1 Battery Information . 39
3.2.5.2 DiskIO . 39
3.2.5.3 Network . 40
3.2.5.4 Choice of language . 41

3.2.6 Profiler Design . 41
3.2.6.1 Forker . 41
3.2.6.2 Profiler . 43
3.2.6.3 Sysfs, Procfs and Energy Interfaces 43
3.2.6.4 Printer . 45
3.2.6.5 Measurement and Energy Structure 45
3.2.6.6 Networking Script . 49

3.2.7 Implementation Details . 49
3.2.7.1 Steps taken to minimise the overhead introduced by the profiler 49
3.2.7.2 Avoiding the impact of the user environment 51

3.3 Linux Java Energy Assessment (LJEA) plugin 51
3.3.1 Choice of IDE . 52
3.3.2 EnergyPoints . 52

3.3.2.1 The profiling code . 52
3.3.2.2 StackTrace . 54
3.3.2.3 Energy Graphs . 54

3.3.3 Implementation Details . 54
3.3.3.1 The UI design . 54
3.3.3.2 Action Classes . 57

4 Project Evaluation 59
4.1 The hardware and methodology . 59
4.2 The Profiler . 62

4.2.1 The Results . 62
4.3 The Battery Measurements . 62
4.4 CPU Measurements . 66

2

4.4.1 Battery vs CPU measurements . 66
4.4.2 CPU Stress Test . 66
4.4.3 Desktop vs Laptop . 69

4.4.3.1 Gaming Desktop . 69
4.4.3.2 Modern Laptop . 72

4.4.4 Governor Choice . 74
4.4.5 BigBuckBunny Mplayer Test . 76
4.4.6 Choice of Algorithm . 79
4.4.7 Asynchronous vs Busywait . 81
4.4.8 Effects of Timers . 83
4.4.9 Reproducibility of the results gathered 83

4.4.9.1 John the Ripper . 85
4.4.9.2 OpenSSL . 86
4.4.9.3 STREAM Benchmark . 86
4.4.9.4 Sunflow benchmark . 87
4.4.9.5 MPlayer . 87
4.4.9.6 Summary of Benchmark Findings 89

4.4.10 Temperature Sensor Data . 89
4.4.11 IO Capturing Capability . 91

4.4.11.1 Ping Test . 91
4.4.12 DiskIO Capturing Technique . 94
4.4.13 Case Study: Browser Comparison 96
4.4.14 LJEA . 100

4.4.14.1 Graphing Module . 100
4.4.14.2 Energy Trace . 100

5 Conclusion 103

6 Recommendations for Future Work 104
6.1 PowerKap . 104

6.1.1 Expanding the interfaces . 104
6.1.2 Sysfs/Procfs/Linux Interfaces . 104
6.1.3 Asynchronous computing . 104
6.1.4 Machine Learning and Model Generating 105
6.1.5 Handling Thermal Spikes . 105

6.2 LJEA . 105
6.2.1 Introducing code suggestions . 105
6.2.2 Expanding to other IDEs and Languages 106

7 Appendix 112
7.1 User Guide . 112

7.1.1 Setup . 112
7.1.2 How to use PowerKap . 112
7.1.3 How to use LJEA . 113

3

Abstract

This report covers an exploration of a technique for evaluating the energy consumption
of programs on GNU/Linux (x86) based platforms. The project in particular, focuses
on capturing energy information based on physical counters present in user space. In
addition, the project explores some of the interfaces, and evaluates their reproducibility
across different platforms.

This project introduces a series of tools that can be used to evaluate the energy con-
sumption of a program. These tools integrate directly into developer environments to
improve energy behaviour for programs. Various techniques are evaluated in this project
across a series of benchmarks over different hardware, including a case study comparing
Mozilla Firefox 53 and Google Chrome 59. From our findings, it was determined that
Firefox can be more efficient than Chrome when watching a YouTube video.

Our approach makes use of a novel technique for capturing network traffic informa-
tion by utilising user namespaces. This is a new feature introduced in modern kernels
(Linux Kernel 3.8 and above). This is useful as the bytes sent and received scale linearly
with energy use.

4

Acknowledgements

I would like to thank Dr. Anandha Gopalan who helped supervise this project even on his
time off. I would also like to express my gratitude to my family for their moral support and
warm encouragements.

5

1 Introduction

1.1 Motivation

Measuring energy usage is a topic of significant importance in our energy-aware society.
In 2012, the energy consumption of the ICT industry corresponded to 4.7% of the world’s
energy consumption [1]. This corresponds to approximately 530Mt of CO2 released into
the atmosphere [1]. Climate change targets necessitate reduction of energy consumption
in all aspects including the IT industry. In particular, data centers have been viewed as
particularly inhibitive towards climate goals [2]. A large data center can consume around
30GWh (Gigawatt hours) of power per year according to IT trade association TechUK. A
mismanaged poorly operated datahall (data center) can consume approximately 60% more
energy relative to a well managed one. This can be increasingly problematic as more data
centers are built to cope with increased Internet demand. In Figure 1, we can see some
predictions for energy usage over the next decades. Realistically, the worst case scenario is
unlikely to occur for economic reasons. However, it clearly emphasises the need for energy
efficiency.

Figure 1: Global Energy demand from Data Centers 2010-2030 [3]

Traditionally, industry have achieved better power efficiency through gains in hardware
improvements. In contrast, the software side of energy consumption is often overlooked.
According to Gadi Singer, vice-president of the IAG (Intel Architecture Group) and gen-
eral manager of the SoC (System on a Chip) enabling group at Intel, by better optimising
software to be in control of power states, it is possible to achieve up to 3-5x better power
consumption [4].

Such a task is quite laborious with current technologies. This is because current meth-
ods of profiling and optimising software energy rely upon deep inspection throughout the

6

software stack. In particular, energy information present in hardware does not translate di-
rectly to developer tools such as the compiler or Integrated Developer Environment (IDE).
This can make it difficult for developers to know the effects of their design choices with re-
spect to energy consumption. Even the effects of different hardware platforms for the same
code can produce drastically different energy profiles, which can be unclear to a developer.

In terms of current methodologies, there are few commercial tools for estimating power
consumption of software on GNU/Linux. At present, there are various power estimation
and calibration tools provided by Intel for x86. This includes two open source programs,
Powertop [5] and Turbostat [6] which enables the ability to measure the overall power
consumption. These tools, provide a system overview for energy consumption without par-
ticular granularity in information related to the codebase. For example, it is not possible to
use these tools to find the energy cost of a specific function within a program. In addition,
there are a lot of interfaces present on GNU/Linux that enable power and energy profil-
ing. However, these require some form of calibration and none are integrated into common
developer tools such as IDEs. There is a need to rectify this situation by creating a user
facing program to estimate how much energy is being consumed. In this way, developers
can capture energy information during the execution of a specific function or test. This
can be useful for capturing unexpected energy usage. The idea is that developers could
design specific tests that enable the estimation of the energy consumed by programs such
as Google Chrome. This is to ensure optimum energy behaviour. An example could be
watching a YouTube video in the background. In such a situation where the video cannot
be seen, is it particularly necessary for the GPU to be running and consuming energy?

1.2 Objectives

The goal of this project is to improve energy transparency during development. This will
be achieved by completing the following objectives.

1. Create a more granular mechanism for developers to profile specific portions of code
using current hardware energy metrics.

2. Design a plugin or extension that enables developers to easily profile the code within
their current development environments.

3. Display the results of profiling the code back to the user in an informative form.

4. Evaluate the tool’s reproducibility and accuracy against other commercial tools.

5. Assign system information and energy metrics to specific portions of code. Based on
this, create guarantees for the energy cost for a given behaviour on a specific hardware
platform.

1.3 Achievements

The following contributions have been made in this project.

1. Created a set of tools to measure the CPU and memory energy consumption of a
generic program all within user space. This is without any further modifications to
the user’s system or additional permanent configuration.

7

2. Created an user intuitive interface that enables users to interpret results directly
within the IDE.

3. Enabled an ability for users to highlight specific code aspects within their code just
by annotating the code.

4. Created an unique method of capturing per process network bandwidth. This enables
estimation of networks without relying on expensive user space programs.

5. Used PowerKap to research to evaluate the energy efficiency of Mozilla Firefox 53 and
Google Chrome 59.

6. Used PowerKap to explore the energy consequences of various benchmarks on various
platforms and governors. In particular, researching the key differences in energy
handling for laptops and desktop processors.

7. Evaluated the reproducibility of the measurement data. In particular, demonstrating
that the energy behaviour of programs is not necessarily the same across different
hardware. Demonstrated this by benchmarking across identical hardware.

8

2 Background

This section is designed to explore some of the relationships between software and power.

2.1 The relationship between power and energy.

Power is defined as the rate of doing work, measured in Watts [7]. On computers, this value
is recorded over a small finite value of time. For this reason, it is still defined as the average
power consumed over a period of time. This is in contrast to instantaneous power which is
the rate of energy consumption at a particular moment [8].

Within this report, power and average power are used interchangeably. The goal of Pow-
erKap is to reduce the overall energy consumption.

2.2 Power controls on x86 platforms

When considering software efficiency on x86 platforms the first concept to note is that of
hardware states. These states were introduced through an open standard called ACPI (Ad-
vanced configuration and power interface) [9]. This standard was created in 1999 through
a consortium consisting of Hewlett-Packard, Intel, Microsoft, Phoenix and Toshiba.

Within the standard, particular hardware behaviour is defined for specified states. In gen-
eral, the higher the state for a given device, the lower it’s energy consumption. This is
because under higher states, the device can attain lower energy consumption by disabling
or turning off sub-components as required. For example, a state of C0 indicates that a
CPU core is operating normally. In a state of C3, the core is allowed access to caches, but
main memory access for the core is disabled. The core also stops generating clocks and
disables “snooping activity”. The expected behaviour of states C0-C3 are described further
in section 8.1 of the specification, with ACPI v2.0 adding capabilities for further C states.
In addition, C states apply both per core and for the processor as a whole. When the entire
processor achieves a high C state, the power consumption can be reduced significantly [8].
The ACPI standard also provides other state requirements such as specific device states
D0-D3 or further control of processor states P0-Pn. The D states perform similarly to C
states whilst P states differ as they control processor frequency and voltages [10]. For exter-
nal components that are connected through the PCI Express interface, a different standard
is used for power management called ASPM (Active State Power Management). This in-
terface grants additional power states (Link states) which can improve power efficiency in
exchange for greater latency [11].

Operating Systems are able to adjust scheduling and various power states to optimise for
different environments via these various states. This is achieved by implementing an ACPI
compliant module called an OSPM (Operating System-directed configuration and Power
Management) [9]. This allows the Operating System to control the CPU sleep states for
a given device. For example, when a laptop is plugged in, the OSPM may optimise the
hardware behaviour for performance. In general, the longer the CPU spends in higher C
states and P states, the more energy is saved. However, frequent transitions from high and
low C states can also be expensive. This is because these transitions can introduce latency.
As such, the machine must stay in active states longer resulting in energy penalties.

9

2.3 Improving software for power efficiency

This section corresponds to a series of suggested improvements to software that are based
on green technical manuals by Intel [12, 10]. These improvements are important as they
relate to specific behaviours that this project is trying to distinguish. The goal of many of
these techniques is to reduce and consolidate the number of high power C state activities.

2.3.1 Algorithm

Algorithm and data structure choice can have massive impact on power profile of a program.
When deciding software design, it is important to tailor the program to handle average use
cases. This is generally achieved through manual inspection and understanding the context
in which a program is being used. An algorithmic choice can optimise a problem to use
less time or less space. In turn, such benefits would result in greater energy efficiency by
reducing the time a CPU is active allowing it to return to idle faster. Similarly, optimising
an algorithm for less space would have the advantage of reducing costly cycles spent shifting
data from main memory or disk storage.

2.3.2 Multithreading

Definition 2.1. Threads are a basic unit of CPU utilisation. They consist, of a program
counter, stack and a set of registers [13].

Introducing parallelism can be another approach to maximise the power efficiency of a
program. To do so, one could split a program into multiple smaller sets of computation
called threads. These threads can then be run concurrently across multiple cores of CPU.
By doing this, the program can achieve greater efficiency as more actions can be completed
during the same cycle. This means that the task can be completed faster and the CPU can
return to idle power efficient states quicker. This efficiency can be seen in Figure 2 which
compares the power efficiency gains when completing a task using a multithreaded versus
single threaded approach. According to the original paper [10], the 8 threaded example in
Figure 2 consumed 25% less power relative to the single threaded benchmark.

2.3.3 Vectorisation

If multithreading is not possible, another approach to introducing parallelism within indi-
vidual programs is to take advantage of the instruction set of a given platform. On x86
platforms, Intel and AMD provide advanced instructions such as SIMD (Single instruction
multiple data). By doing this, computations can be completed much quicker. This enables
the CPU to return to idle faster therefore saving energy. Such speed optimisation can be
explained by Figure 3. The availability and choice of vectorization instructions, depends
upon the type of compiler. For example, to enable most vectorization instructions on GCC
simply compile the program with -o3 flag [15].

10

Figure 2: The above benchmark was run by Intel [10]. The test ran Maxon’s
Cinebench 11.5 [14] on an Intel i7 processor.

Figure 3: The above diagram is an example of a SIMD (single instruction
multiple data) instruction. In the left, four add operations are necessary to
complete the task. The case on the right can instead be completed using just
one operation using the correct SIMD instruction. In this way, parallelism is
introduced at an instruction level.

The diagram above was sourced from kernel.org [16]

11

whi le (! a c q u i r e d l o c k)
{

s l e e p (0) ;
}
do work () ;
r e l e a s e l o c k () ;

Figure 4: An example of an energy inefficient tight loop from Intel [12].

i f (! a c q u i r e d l o c k)
{

f o r (i n t i = 0 ; i < max spin count ; ++i)
{

mm pause () ;
i f (r e a d v o l a t i l e l o c k ())
{

i f (a c q u i r e l o c k ())
{

goto PROTECTED CODE;
}

}
}
Sleep (0) ;
goto ATTEMPT AGAIN;

}
PROTECTED CODE:
do work () ;
r e l e a s e l o c k () ;

Figure 5: An example of a better optimised tight loop from Intel [12].

2.3.4 Improper sleep loops

Figure 4 illustrates an example tight loop. These loops are typically used when waiting for
a device or signal. This loop can cause a processor to run in a highly active state. This is
because the program causes the Operating System to perform multiple expensive operations
called context switches. In each case, when the program calls sleep, the active thread is
switched out. This requires the saving of the current program state which can be expensive.
With a time set to 0, the thread is immediately switched back resulting in another context
switch.

Instead, it is recommended by Intel to reduce the times in which the code is busy-waiting
by adding pause instructions. An illustration of optimised code can be seen in Figure 5.
According to Intel, the code from Figure 5 allows waiting tasks to acquire the CPU more
easily. It also reduces the number of context switches by reducing the calls to sleep(0). In

12

addition, the CPU can reach higher C states by reducing running power components within
the pipeline. According to Intel, such practices can result in significant savings of up to
21% power saving at the CPU level [12].

Another alternate approach to avoid such loops is to adopt an event driven paradigm. This
paradigm works by only performing the do work() function when notified by an external
program. This saves power as a program simply reacts upon notification. Such mechanisms
depend on the choice of Operating System and language.

2.3.5 OS Timers

For programs that rely on repeated tasks occurring at scheduled intervals, it is normally a
convention to specify some time slice in which the task is repeated. Such tasks can be made
more power efficient by ensuring such activities repeat at a similar time to that of other
activities. Such a mechanism is called timer coalescing.

This mechanism provides power benefits through the fact that in between timer inter-
vals, the CPU can idle. If a program is not synchronised with the system timer or has an
unnecessarily low timer resolution (say 1ms), this can cause unnecessary power draw. This
is because the CPU performs a “wakeup” where it shifts from idle states to active states
to perform the task. On Windows, the normal System timer occurs at 15.6 ms. For this
reason, it is recommended for repeated timer tasks at an interval larger than this value [10].
According to Microsoft’s documentation, by utilising high resolution timers smaller than
this value, a given program could cause a reduction of battery life by up to 25% [17].

Definition 2.2. A Jiffy is a unit of time, that represents the number of timer interrupts
since the system has booted. On each timer interrupt by the CPU, the number of Jiffies are
incremented by one. The relationship between Jiffy and seconds is defined by the constant
HZ within the kernel. This value defines the number of Jiffies each second [18].

On GNU/Linux platforms, the default rate for a given program is a complex topic with
massive variability depending on choice of kernel and hardware. For example, with kernel
versions before 2.4, the tick rate between Jiffies would be 10ms. This was changed from 2.4
to a value such that each tick occurred at 1ms [19]. From kernel version 3.10, the kernel has
introduced more dynamic capabilities. In such cases, when idle the tick rate can be slowed
such that it may occur once a second. This occurs if the flag “CONFIG NO HZ FULL” is
enabled within the kernel configuration. From a developer perspective, such variances can
be difficult to code for power efficiency. For this reason, it is recommended to utilise a kernel
mechanism called “timer slack” [20]. This mechanism allows the developer to specify how
long each call be delayed for. In this way, the kernel can coalesce the activities of multiple
timers so that multiple actions can occur whilst the processor is already active.

2.3.6 Context aware programming

In relation to the earlier OSPM mechanism stated earlier, most operating systems have
the capability of detecting whether certain hardware and devices are enabled or not. This
information can be utilised by software developers to improve the energy efficiency of their
programs. This is because if the feature or hardware device is not required, it should be
possible for users to disable certain features of the code. For example, if the device has

13

disabled a web-cam, it should not be necessary to initialise or use any of the data structures
relevant for the camera within the program.

In addition to the above, the OSPM mechanism on most Operating systems provide the
capability of allowing developers to be aware of the current power schemes adopted by the
Operating System. For example, Windows programs are capable of knowing whether the
machine is in a “High performance mode” or other “Battery saving mode”. This concept
could be leveraged to better improve battery performance. For example, for a game, when
running on battery, it would be worthwhile to cap the framerate of the program to the
refresh rate of the monitor. Additional frames beyond this would provide minimal gain as
it’s unlikely to be noticeable to the user.

2.4 Current methods of monitoring energy.

In order to physically monitor the energy usage of a given program or function, there are
two categories of energy monitoring methodologies, each with advantages and disadvantages
depending on the context of the purpose [21].

2.4.1 Out of Band Energy Monitor

These types of energy monitors, are used to measure the energy by using methodologies
external to the system. Examples of such a system include the use of physical readings
such as ammeters, voltmeter and stop watch. These kinds of metrics have certain advan-
tages when evaluating a system as a whole. This is because sampling external readings
would not affect the performance of the system. For a developer however, such metrics
have limited utility for diagnosing the energy usage of individual programs. This is be-
cause they are not granular enough to distinguish the energy usage of specific components
within a system. In some cases, such external metrics can be turned to in-band energy
monitoring techniques. For example, with a laptop running GNU/Linux on battery, it
is possible to measure the energy usage by reading current drawings written to the file
“/sys/class/power supply/BAT0/current now”.

2.4.2 In-Band Energy Monitor

Another way to measure the energy use involves integrating power monitoring within the
system. This method is described as an “In-band” power monitor. This works by mea-
suring specific performance counters such as CPU state transitions, process wake ups or
reading specific energy registers. On newer Intel platforms such as SandyBridge, these met-
rics have been improved due to the introduction of Running Average Power Limit (RAPL)
metrics [22]. The energy usage provided by RAPL is localised to specific power domains
such as the cores or DRAM. Recent x86 processors from AMD have similar capabilities that
are available using fam15h power drivers [23]. They provide similar energy consumption
statistics for the processor as a whole. The main disadvantage of this approach is that by
sampling such metrics within the system, the power measurements themselves affect the
energy usage, which reduces the accuracy of the measurements.

On GNU/Linux there are a variety of free and open tools that are used to currently measure
the energy usage of a program and a system.

14

Figure 6: This picture demonstrates some of the per program statistics offered
by Powertop [5].

2.4.2.1 Powertop

This free and open software was designed by Intel to optimise power behaviour on Intel
Linux based platforms. The program takes advantage of current metrics provided by the
OSPM and hardware counters to provide a general overview of energy consumption. This is
achieved by taking advantage of the RAPL registers and ACPI statistics to measure aspects
such as wakeups, C state transitions and specific device features. The program is also able
to read and provide specific kernel and device configurations to optimise device power usage
on GNU/Linux platforms.

Figure 6, shows a snapshot of Powertop in use. The Figure shows a breakdown of the
number of wakeup operations as well as CPU usage per program. The tabs at the top
lead to further details such as C state transitions per core and frequency information. In
addition, Powertop reads the data from the battery discharge file stated previously and is
able to estimate the power consumption in Watts. Such a feature is only available when
the battery is discharging.

Similarly, in Figure 7, the additional capabilities offered by the program can be observed. In
this case, Powertop offers the ability to set and tune specific kernel and device configuration
to optimise power consumption.

At present, the tool is open source and is capable of running on a variety of platforms
and hardware including both Android and GNU/Linux [5].

By using the “–workload” flag, it is possible to profile a specific binary file to analyse
the power usage of the program relative to the rest of the system. This is designed to
be used to benchmark a program against others. For accuracy, Powertop recommends the
program to be used for multiple iterations to improve the accuracy of the model. Such
information however, has limited value for an energy conscientious developers as the infor-
mation provided by the tool does not tie directly against code. This makes it difficult to
estimate which specific portions of code lead to problematic power behaviour.

15

Figure 7: A snapshot of some of the tuning capabilities present within Powertop.

Figure 8: Turbostat is a simple program that provides information relating to
C state transitions and power consumption for the CPU and GPU.

2.4.2.2 Turbostat

The Turbostat tool is limited in capability relative to the Powertop tool listed previously. It
was designed by Intel and provides accurate information regarding the CPU. In particular,
the program provides specific information of the C state and power consumption of a given
CPU core. Figure 8 shows the statistics offered by the program that are generated from
reading CPU information [6].

2.5 Related Work

2.5.1 ENTRA 2012-2015

In addition to the above physical measurements and utilities used to profile power for x86
systems, new strategies are actively researched to form generic modelling solutions that are
not tied to hardware. For example, the Whole Systems ENergy TRAnsparency project
(ENTRA) [24] was designed to explore some of these techniques. Below are some of the
findings.

2.5.1.1 Common Assertion Language

This Common Assertion Language [25] was designed to introduce a concept of extending in-
formation relating to energy and resource consumption throughout the software stack such

16

// a s s e r t energy < co s t (20)
// a s s e r t a >= 0
i n t f a c t o r i a l (i n t a) {

Int r e s u l t = a ; //(Line 1)
// a s s e r t max loop i t e r a t i o n s < 1000
whi l e (a > 0) { //(Line 2)

r e s u l t = r e s u l t ∗ (a − 1) ; //(Line 3)
a = a − 1 ; //(Line 4)

}
re turn r e s u l t ;

}

Figure 9: A simple program to compute factorial.

as at instruction level or source level. The theory is to create a language agnostic approach
where software developers can provide a specification with respect to resource consumption
for their program. The developer would achieve this by restricting program behaviour using
pre-conditions, post-conditions and assertions. In addition, the paper refers to additional
environmental assertions that specify the power consumption, accuracy, bound restrictions
and time restrictions.

For the code in Figure 9, a developer can specify a set of energy bounds for the instructions
such as, lines (1), (2) having a cost of 1 whilst (3) and (4) having a cost 2. Based on this
information, it is possible to produce a lower and upper bound for inputs that satisfy the
assertion for energy cost. For example, in this case, for an input value of 0, the minimum
cost of the above function would simply be 2. This is because the above code would simply
run instructions 1 and 2 once respectively. Additionally, for an input value of 3, the cost
would be the following:

1 + 1 + 2 + 2 + 1 + 2 + 2 + 1 + 2 + 2 + 1 = 17

In the above example, line 1 is run once, line 2 four times and the lines 3 and 4 three times
each. This is the largest input value that satisfies the above cost estimate. As such, this
is the upper bound in terms of input to the function that satisfies the cost assertion. This
information could subsequently be fed back to the developer to estimate the utility of the
function for certain inputs.

In practice, the above procedure occurs at a lower level in the software stack by performing
the code analysis at an instruction level. This is done whilst retaining the assertions made
in the original higher source code. The developer in addition would provide explicitly the
cost of each instruction for a given platform. By using these assertions to form constraints,
a static analyser can check whether a specific function satisfies its energy constraints or
assertions. If the input is unspecified, it would also be able to return specific bounds to
the input that satisfy the given energy budget. The reason the process provides an upper-
bound is because the cost of an instruction can vary depending on the circumstances and
environment. For example, if a function calls an external or non-analysed function, the
developer would need to provide an estimate of the energy cost of the given call.

17

a = b ∗ c + g ;
d = b ∗ c ∗ e ;

(a) Non-optimised common sub-expression elimination

f = b ∗ c ;
a = f + g ;
d = f ∗ e ;

(b) Optimised common sub-expression elimination

Figure 10: In the example, the code b*c is optimised to a new variable. This
avoids recomputing b*c multiple times saving energy.

This approach using static analysis has a lot of benefits from a developer perspective.
This is because the developer can specify and guarantee the energy consumption of a given
program within a certain constraint by using assertions and a contract. On the other hand,
the tool does present disadvantages as it requires calibration from developer to estimate a
per instruction energy cost for the platform.

2.5.1.2 Compiler Optimisation and Power Trade-offs

Most current compiler optimisation improve the energy consumption of a given program [26].
These reduce energy usage by decreasing the amount of work performed. Examples of such
optimisation include Dead-code elimination and common sub-expression elimination. This
can be observed in Figure 10. However, not all optimisation necessarily follow this princi-
ple. A few optimisations require context of the problem in order to be efficient for energy
consumption. One example includes the use of compilers that optimise the code layout that
take advantage of memory hierarchies. By introducing greater spatial and temporal locality
in data accesses, it is possible to improve power usage by reducing memory transitions and
improving the speed of the program. Such techniques however, do introduce additional code
which can result in energy penalties.

An example of such a case is demonstrated in Figure 11. In this case, a standard for
loop is broken down into smaller sub loops. This is so that data used within the inner loop
remains in the cache longer. However, this can introduce more branching which can result
in an overhead. For small input sizes, this additional branching can increase the power
consumption for the given program.

2.5.1.3 Superoptimization

Another strategy for optimising code for energy includes a technique called “Superopti-
misation” [26]. This technique was developed by Dr. Massalin in 1987 [28] to optimise
instruction code. The basic idea of this approach is to take a portion of code and to enu-
merate all viable options of instruction code and checking whether it is equivalent to that
produced from a given piece of code. This equivalence is achieved by first testing the func-
tion with test values and seeing if it produces the correct output. If the test passes, the
function is verified using program verification techniques such as SMT solvers.

18

i n t A[MAX VAL, MAX VAL] , B[MAX VAL, MAX VAL] ;
f o r (i n t i = 0 ; i < MAX VAL; i++) {

f o r (i n t j = 0 ; j < MAX VAL; j++) {
A[i , j] = A[i , j] + B[i , j] ;

}
}

(a) Unoptimized loop

i n t A[MAX VAL, MAX VAL] , B[MAX VAL, MAX VAL] ;
f o r (i n t i =0; i< MAX VAL; i+=BLOCK SIZE) {

f o r (i n t j =0; j< MAX VAL; j+=BLOCK SIZE) {
f o r (i n t k=i ; k<i+BLOCK SIZE ; k++) {

f o r (i n t l=j ; l<j+BLOCK SIZE ; l++) {
A[k , l] = A[k , l] + B[l , k] ;

}
}

}
}

(b) Optimized loop

Figure 11: The above code is an example of loop tiling from Intel [27].

This principle is demonstraced by Figure 12. In the original paper on Superoptimiza-
tion [28], Dr. Massalin translated the small function written listed in the figure. When
compiled with a SUN-C compiler, the resulting code was achieved in approximately 9 in-
structions. Instead, Dr. Massalin found a functionally equivalent program using just 4
instructions. This was achieved by exhaustively exploring the instruction set space to find
functionally equivalent code. The code at the bottom of the figure shows the generated
code which achieved the result in simply 4 instructions. This was achieved by exploiting
features of two’s complement. The main advantage of this approach is that it completely
eliminated costly jump instructions.

This technique currently is designed for optimising code for memory and speed; however,
by applying a cost function for the instructions produced, the technique can be extended
to optimise small code pieces for energy efficiency.

In terms of limitations, the above technique can be quite impractical for anything but simple
programs. This is because the search space can become impractically large for platforms
with complex instruction sets and large programs. In addition, the technique according to
Dr. Massalin does not work for pointer based languages [28]. This is because the pointer
to memory can point to anywhere in memory. As such, pointer based operations can expo-
nentially increase the search space for the instructions to the point of impracticality. This
is especially the case on modern systems which use larger memory sizes and caches.

19

i n t signum (i n t x)
{

i f (x > 0)
re turn 1 ;

e l s e i f (x < 0)
re turn −1;

e l s e
re turn 0 ;

}

(x in d0)
add . 1 d0 , d0 | add d0 to i t s e l f
subx . 1 d1 , d1 | subt rac t (d1 + Carry) from d1
negx . 1 d0 | put (0 − d0 − Carry) in to d0
addx . 1 d1 , d1 | add (d1 + Carry) to d1
(signum (x) in d1)

Figure 12: The above code is the example presented by Dr. Massalin in his
original paper on Superoptimization [28].

2.5.1.4 Thermal trade-off

When people consider programs and optimise behaviour, it can be easy to ignore other
sources of energy side effects that are consequences of their program. One of the major uses
of energy within data-centers are the cooling systems necessary to manage the immense
heat generated by the hardware. Software developers, are often unaware of the thermal
consequences of the software we write. One example of such a trade-off includes register
allocation in compilers. Traditionally, when deciding which register to allocate data, com-
pilers often choose the earliest free register. This introduces potential thermal consequences
as the early registers get frequently used and flushed. This in itself could cause more energy
inefficiency relative to using other registers as more power is required to cool the device.
According to the paper, in a sample system with 12 registers with heavy usage, 5% of
energy could have been saved by following a even register allocation as opposed to simply
picking the last free register [29]. Interestingly, this result contrasts with traditional advice
with respect to idle hardware. In this case, it can be more energy efficient to schedule use
between active components to reduce thermal energy use.

2.5.2 eProf

The eProf academic project was designed to estimate energy use of programs for Linux and
Android based platforms [30]. It achieves this without annotating the original source code.

2.5.2.1 Asynchronous vs Synchronous

Within the paper, the authors observe the nature of energy consumption of a system and
breaks them down towards synchronous and asynchronous components. For example, with
the CPU and memory hierarchy systems of a computer are synchronous components. This

20

means that as code executes, both components consume energy as the instructions are ex-
ecuted.

In contrast, asynchronous devices are far more complex. These are components such as
the network, disk and other IO forms. When a program interacts with such components,
the program execution becomes complex. In the case of Linux the method of IO works as
following:

1. Code executes some system call to the kernel and requests some device resource.

2. The kernel allocates a device request and places the request on a request queue.

3. The thread is blocked and put to sleep until the resource is returned.

4. The device at this point has it’s own schedule for the packets and eventually executed.

5. The device processes the request synchronously consuming energy.

6. Upon finishing, the device sends the data back to the kernel and the thread is woken.

The nature of steps 3-6 can make it difficult to estimate how much energy is actually being
consumed directly by the program. This is for several reasons including the fact that there
is energy consumed when the device is servicing a different request. Equally, the device
may consume additional energy due to the process being switched out whilst the requested
process is sleeping.

2.5.2.2 Profiling implementation

eProf aims to alleviate some of the main limitations of the above synchronous and asyn-
chronous devices by creating an energy model that estimates how much energy each device
consumes. This model is trained initially by a series of micro-benchmarks such as SPEC
CPU 2006. In this way, a linear model is generated of the energy consumed by the CPU.

For asynchronous devices such as disks and networks, the model is generated by stress-
ing the disk and generating data between request duration and energy. This can be then
used to estimate the energy consumption of these various devices by relating it to how much
data is consumed from the process. According to the paper, the relationship between data
accessed and energy consumes is linear.

Based on this approach, eProf manages to break down an application and function by
gathering specifically how much energy each function consumes based on the models they
generate.

The main limitation of this approach involves the calibration step required for the profiler.
In this case, benchmarks need to be run on the machine to generate an accurate model for
the energy consumption of a target platform. It also requires specific modification of the
Linux kernel.

2.5.3 Energy Formal Definitions

Another project explored in academia is the concept of formalising definitions for estimating
the energy consumption. Some of these models are explored in this section.

21

2.5.3.1 Java Based Energy Formalism

An example of such a framework includes [31] which specifies a model for estimating the
energy consumption of a java-based application. This is broken down as follows.

EComponent = EComputational + ECommunication + EInfrastructure

In this case, computational costs are the energy costs consumed by the CPU, memory and
IO operations. The communication cost is the amount of energy estimated due to exchang-
ing data over the network. The final infrastructure cost which is the sum of the overhead
incurred by the OS and JVM.

Within the paper, the author relies on previous research which has shown that the en-
ergy consumed for wireless communication is proportional to the size of transmitted and
received data.

2.5.3.2 Energy Application Model

Another project [32] explored a more generic approach for specifying the energy consump-
tion of a program. Within the paper, the author breaks down an application’s energy
consumption into the following formula.

EApp = EActive + EWait + EIdle

In this case, EActive corresponds to the time in which the application is running on the
underlying system. Ewait corresponds to the time spent waiting for another component of
subsystem. Finally, EIdle corresponds to the time in which the equipment is not performing
any work for the application.

2.5.4 Impact of language, Compiler, Optimisations

Some of the differences in energy cost by language and algorithm choice are explored here.
The author originally calculated these impacts by comparing various programs in different
languages using a recursive implementation of the Tower of Hanoi problem. These measure-
ments were gathered on a Dell Precision T3400 workstation computer with an Intel Core
2 Quad processor (Q6600), and running Ubuntu Linux version 11.04. Measurements were
gathered using PowerAPI. Further details of this tool is linked in Section 2.7.6.

2.5.4.1 Choice of Language

From the results presented in Figure 13, it is clear that there is a drastic difference between
energy consumption across scripting languages such as Perl and Python. The difference be-
tween the energy consumption of Perl, Python and Prolog can be up to 1000% higher than
that of native code. The reason for this is additional energy consumed simply to interpret
the scripting language.

Another interesting aspect is the difference between Virtual Machine languages such as
OCaml, Java and C/C++. In some cases, such as with Java, the code compiled is signif-
icantly more energy efficient than native code. This is because of optimisations and code
prediction provided by the Java Virtual Machine. One optimisation in this case, is the use

22

Figure 13: A comparison of Tower of Hanoi recursive implementation across
various languages. The energy consumed (Joules) is marked in a log10 scale.
This graph is from a PhD thesis on the effects of energy consumption on software
systems [33].

of JIT (just-in-time) to detect repetitive code which is further compiled down to native
code.

2.5.4.2 Relation of execution time and energy consumption

Another interesting observation from the benchmark was the comparison of energy con-
sumption against time. In this case, the author performed a series of benchmarks using
the Tower of Hanoi problem as a sample program. This is a CPU bound benchmark. This
linear relationship can be observed in Figure 14. The author however, stresses that this
relationship is not universal across programs. With other more complex programs such as
video decoding and the like having more complex energy to execution time. This is because
in more advanced cases, the CPU is not the limiting factor and could run at variable clock
speeds. At times, it is beneficial to run at lower clock speeds for a larger execution time as
this would consume less energy than running at a higher clock speed for a shorter execution
time.

2.5.4.3 Impact of Optimisation flags

As observed earlier, the choice of optimisation flags can greatly impact the energy consump-
tion of a program. When compiling with the O2 flag for example, the author noted a saving
of approximately 27% relative to an non-optimised version. Similarly, the choice in O3 flag
also produces a significant saving in energy over O2. In this case producing approximately
87% energy consumption relative to O2.

23

Figure 14: A comparison of Tower of Hanoi energy consumption across various
languages.This graph is from a pHD thesis on the effects of energy consumption
on software systems [33].

24

Figure 15: A comparison of Tower of Hanoi using iterative and recursive along
with various optimisation flags.

2.5.4.4 Choice in Algorithm

The tower of Hanoi is a perfect example for demonstrating the energy consequence of algo-
rithms. In the case of this benchmark, the author compares the iterative version against a
recursive implementation.

Figure 15 is interesting as it shows how much more energy the iterative version consumes.
In this case, the iterative version consumes approximately 400% more energy relative to the
standard recursive implementation. Using the O2 flag, both implementations end up match-
ing in terms of energy consumption. However, only the O3 flag achieves better efficiency
with the recursive implementation.

2.6 Similar Tools

This section explores a variety of energy profiling tools used on other platforms. The idea
in this case is to understand their strengths, weaknesses and capabilities.

2.6.1 AEON

The AEON plugin [34] for IntelliJ provides power profiling of Android Apps directly within
the IDE. This tool works by utilising the ADB (Android Debug Bridge) to get power
statistics directly from a connected android device. The power statistics are provided by
a profiler from Qualcomm called Trepn [35]. Through this mechanism, the tool is able
to attain accurate information relating to CPU/GPU and network activity. It also grants
battery discharge rates for compatible Android devices.

25

Figure 16: This Figure is from the AEON plugin page [34].

The way this tool profiles the code is by injecting network profiling metrics at energy
points. Upon running the tool on the Android device, statistics are stored at specific points
by the profiler. Following this, the tool is able to read the values at these specific profile
points to plot a graph.

In terms of usability and utility for a developer the above program provides an ideal model
as to what this project seeks to achieve. This is because the tool enables the capability
to easily visualise the energy cost of a given function between certain portions of code.
The tool is able to relate this data to the original source code with suggestions made for
possible improvements to the code base. PowerKap aims to recreate these visualisations.
In particular the tool makes use of common debugging features such as breakpoints and
energy graphs for users to intuitively select particular points in the energy profile. These
features can clearly be seen in Figure 16.

2.6.2 Visual Studio

On Windows based platforms, Microsoft has made recent strides to improve the energy pro-
filing capability for their platforms. This was part of their move towards ensuring battery
efficiency for windows store apps on their mobile platforms. For this reason, they introduced
as part of Visual Studio 2013 [36], an application that is capable of profiling various CPU
and network metrics. These can be seen in Figure 18. This project again aims to enable
developers to be aware of how much energy their specific application is using. It is also able
to achieve this across a variety of supported languages such as C#, C++, Visual Basic and
JavaScript.

In terms of usability and utility, this program is a particularly good demonstration of
how to integrate such tools in the development environment. The tool requires minimal
installation beyond that which already comes with the SDK (Software Developer Kit) and

26

i f (performance && performance . mark) {
performance . mark (markDescr ipt ion) ;

}

Figure 17: In order to use Visual Studio’s energy consumption tool, the de-
veloper needs to annotate their code with specific logging points such as the
JavaScript code listed below.

IDE (Integrated Developer Environment). It also requires minimal annotation to the code
whilst preserving functionality. The main disadvantage of the above application is obviously
that it is limited purely to Windows and the fact that it does not contain statistics about
other hardware such as other peripherals or the GPU.

As of Visual Studio 2017, the tool appears to have been deprecated due to lack of use
and the fact that the tool gave inaccurate values for energy use [37].

2.7 Gathering Energy Measurements

The first stage with any power efficiency tool is to be able to capture how much energy
is consumed. This is normally not a simple task as many of power detection approaches
are not normally unified behind a single implementation or interface. Below are some
of the available techniques and rational behind various mechanisms of capturing energy
information.

2.7.1 Module Specific Registers (MSR)

On Intel platforms, it is possible to access the energy counters within a CPU directly [38].
This approach works by utilising a module provided by the kernel called “MSR” (Module
Specific Registers). Once loaded, a user can read RAPL energy statistics directly with root
or sufficient read/write privileges. These can be accessed through the interface at “/de-
v/cpu/CPUNUM/msr” [39].

In terms of advantages, such an approach presents an advantage over other methods as
it records directly results from the registers without any influence from the kernel. On Intel
platforms, there is a wealth of information provided by this interface with respect to energy
information.

2.7.1.1 Running Average Power Limits (RAPL) Interfaces

The energy and power interface presented by RAPL is specific to certain areas of the
computer. These areas are referred to as domains. These are listed below.

1. Package
The first domain available to measure is package specific. This is for support on multi-
CPU machines such as servers. The statistics generated in this layer are specific to
the CPU package as a whole. Within this package, the energy counters are normally
updated every millisecond. However, under high CPU loads, the package may only
be updated every 60 seconds.

27

Figure 18: Upon profiling the respective portion of code, the developer is given
useful visual information relating to CPU, network, data and display usage.

28

2. PP0 (Core)
This domain refers to specifically the stats of all the CPU cores within a package
and L1 and L2 caches [40]. The energy counter information presented in this layer is
updated every millisecond.

3. PP1 (Uncore)
The PP1 domain is only available on consumer devices. This interface is identical
to the core domain above but refers specifically to the portions of the chip referred
to as Uncore. This normally refers to other parts of the chip outside the core such
as the integrated GPU, L3 cache rings and memory controller [40]. According to
the documentation, this domain refers to the “power plane of a specific device in the
Uncore”.

4. DRAM
On Server and certain architectures, Intel offers the ability to additionally capture
energy consumption for the main memory controller.

Below is a list of capabilities that are available through the MSR interface. These relate to
controlling the power consumption of a platform along with several different counters.

1. Power Limit
This interface allows the capability of adjusting various aspects of the system such as
specifying specific power limits, adjusting time windows (seconds) for updating power
counters. This is necessary because power is averaged over a period of time.

2. Energy Status (Joules)
This interface allows the ability to gather information from various energy counters.

3. Perf Status (Optional)
This optional interface is not available on all platforms and provides specific informa-
tion with respect to performance effects that are caused by power limits.

4. Power Info (Optional) (Watts)
In addition to the above, this interface grants a range of parameters with respect to
power for specific domains.

5. Policy
4-bit interface that allows hints to hardware on how to subdivide power to specific
domains.

One of the main disadvantages of this approach to record such information is the fact that
it requires root, along with configuration by installing the MSR module. It also requires
intimate knowledge and interaction with the CPU which can be unsuitable for profiling
unknown, buggy or insecure code. In addition, such a tool requires specific information
with respect to the platform and is difficult to extend. For example, to read various MSR
registers requires specific domain knowledge such as the access bits in specific registers. For
this reason, PowerKap avoids such direct approaches as there are alternative user space
mechanisms that provide equivalent information.

29

2.7.2 Perf

The Perf system is a performance analysing subsystem available for GNU/Linux that allows
users to instrument specific CPU counters, as well as kernel objects and information [41].
It is developed in parallel with the GNU/Linux Kernel and can be used by simply installing
additional packages such as “GNU/Linux-tools-common”. Once installed, the user can
gather performance counter information by making use of the “Perf” command. In order
to use the system for power profiling, it requires a kernel version greater than version 3.14
along with platform specific support [42].

There are many advantages of using such an approach for an energy profiler. Namely, sup-
plementary information can be gathered from the system including memory cache misses,
sleep times as well as granularity of how much time the CPU spends in each function. It is
also largely compatible across a variety of platforms including products designed by IBM,
AMD and Intel.

On the other hand, such an approach has certain disadvantages. For example, this in-
terface requires intensive calibration by users relative to other approaches. For example,
to use this interface requires additional packages as described earlier. In order to allow
user programs to access energy statistics from user space, requires either root privileges or
configuration that sets a kernel “paranoia” level value to less than 1. This paranoia level
describes access writes to the various Perf subsystem. In addition to the above, support for
various platforms often depends on kernel support which can be slow for most non-rolling
distributions such as Ubuntu or Red Hat Enterprise Linux. Often such Operating Systems
rely on much older kernel versions for stability reasons. Security and hardware support are
then backported to such kernels as required.

2.7.3 PAPI (Performance Application Programming Interface)

The PAPI interface is similar to the Perf event system and provides an easy interface for
users to profile their code [43]. It also provides supplementary information such as cache
misses and counter specific information. To use the PAPI interface the package “papi-tools”
is required. This tool is again limited by the fact that it requires additional installs and
configuration that is specific to the platform and distro. For example, to make use of MSR
information, the MSR module also needs to be loaded into the kernel.

2.7.4 HWMON

Another module interface that often gets compiled in the GNU/Linux kernel is the HWMON
interface [44]. This stores various energy and thermal information for respective CPU and
sensors. Once the module is loaded and compiled, it is possible to read various thermal
and energy attributes at “/sys/class/hwmon”. This interface is one of the few methods
of gathering energy information for AMD based platforms. See Figure 19 for details of
hardware support.

2.7.5 Intel Powercap

As with HWMON, the GNU/Linux kernel often comes with a built in Intel Powercap
module [45]. This module allows the MSR registers to be read from user space. This is

30

Figure 19: Table of interfaces that the AMD supports for energy and power [47].

achieved by reading the energy attributes within the “/sys/class/powercap”. Within this
directory, there are an assortment of subdirectories that reflect the MSR and RAPL domain
package structure listed previously with MSR. In addition, new versions of profilers such
as PAPI 5.5 makes extensive use of this interface to gather energy information for a CPU
package.

2.7.6 PowerAPI

The PowerAPI [46, 33] is a hardware profiling tool designed by the Lille University of Sci-
ence and Technology. This API is designed in Scala and is capable of capturing various
energy hardware information. At present, it is designed as a research project and as such is
not available by default on most Linux platforms. It makes use of various process specific
information such an energy and thermal information. This interface at present hasn’t been
tested and aspects such as the Powercap interface are still in development.

This tool requires a calibration stage and applications must be linked against it to make
use of it.

2.7.7 Summary

It is clear that there are a large assortment of methodologies for measuring various energy
and power sensors. This can be difficult to design against as each of these interfaces require
their own specific configuration or modules installed. For example, to use the Perf system,
you need to install additional Perf specific packages and for the MSR interface, it is necessary
to know specific registers. Figure 20 is a handy table with respect to CPU energy support
and interface support for Intel platforms.

31

F
ig

u
re

2
0
:

T
a
b

le
o
f

in
te

rf
a
c
e
s

th
a
t

th
e

In
te

l
p

la
tf

o
rm

su
p

p
o
rt

s
fo

r
e
n

e
rg

y
a
n

d
p

o
w

e
r

[4
7
].

32

2.8 Interacting with these interfaces from user space

Each of the interfaces, have their own methodologies and approaches for capturing informa-
tion. For example, to make use of information in the PAPI or Perf interface simply requires
including specific headers within your program. Other approaches such as the MSR or Sysfs
interface require reading files within various directories in the GNU/Linux subsystem. In
addition, the kernel itself offers various methods of providing such information to user space.
This section explores some of the capabilities of these default directories. In particular, the
Sysfs subsystem, Netlink interface and Procfs subsystem are described.

2.8.1 Sysfs

The Sysfs subsystem is a feature introduced in GNU/Linux 2.6 that allows kernel code to
export information into user space through an in-memory file system [48]. The directory
contains a series of symbolic links, files and directories that allow access to specific device
information as well as kernel structures. In the context of PowerKap, many directories
are included within the structure that grants useful energy information. This includes the
Powercap interface, HWMON along with generic thermal info and ACPI information. In
addition, ACPI information on modern kernels such as battery discharge have been moved
from other file-system structures into the Sysfs.

In terms of information transfer, this file-system is useful for developers to gather infor-
mation. This is because it provides a file-like interface which is easily accessible by most
utilities. It is also architecturally portable and allows for event based signalling. This as
discussed earlier and is advantageous to avoid busy polling.

2.8.2 NetLink

Another subsystem that offers ACPI information such as battery and thermal information
includes the Linux Netlink System [49, 50]. This system is more advanced than the Sysfs
system and relies on networking for communication between the kernel and user space. As
such, it offers much of the same advantages for Sysfs such as event based information and
is architecturally portable. It also allows transfer of large data, which may be necessary
for future device based power information. The Sysfs system at present, does not allow the
capability of transferring large data and is limited in size to the equivalent of one page.

2.8.3 Procfs

The Procfs [48] is a in-memory file system present on GNU/Linux systems. This system
exists only in memory and provides a useful mechanism to gain further information relating
to specific attributes for a process. Within the structure, there are plenty of useful interfaces
that are useful for program profiling. For example, within the file in “/proc/<pid>/io” it is
possible to get various useful information with respect to disk usage. This includes statistics
such as the number of read, write system calls as well as the raw amount of data read and
written to storage. There is also information about how much data was lost to errors.

Other useful information present in the process folder includes network specific data in-
formation. For example, in “/proc/<pid>/net/dev” there is useful data relating to how
many bytes have been received and sent from network interfaces. This information is from

33

the perspective of the process, but relates to the total bytes consumed for the system. Such
information can be useful for capturing network usage but require further modifications to
the execution of the program. Namely, the program would be required to use a virtualised
network interface specific for that program. The directory also considers useful information
with respect to program profiling such as the time spent in idle and the number of voluntary
and involuntary context switches.

The main limitation of this subsystem is the volatility of the data present in this struc-
ture. This is because such information is in-memory directly from the kernel. As such,
when a process is killed or terminated, the entire file structure can disappear leading to cor-
ruption. Worse would be if the Linux Kernel re-assigns that process id to another process
which can lead to wrong results being gathered. Other issues concerning this subsystem
includes the fact that this interface does not support event-based signalling nor large data
structures.

34

3 Profiling a program

3.1 Initial Ideas

Initially, the project aimed to replicate the functionality of the Energy Consumption tool for
Visual Studio. This approach would have been ideal for usability as a developer could profile
their entire tool from within a single program without additional configuration. This ap-
proach works for Microsoft as they control the entire process of profiling from the compiler,
Operating System, IDE and power capturing tools. For example, the tool could deliberately
reduce the power consumption of the IDE by preventing various dynamic analysis processes
from occurring. This uniformity in control, enables easy and energy efficient interactions
across these various mechanisms.

Such an approach does not work for GNU/Linux mainly due to the lack of conformity
across the various components. The approach used for PowerKap was to build a profiling
mechanism external to the IDE. This approach has numerous advantages. Namely, this
enabled the profiling mechanism to capture various energy statistics without conflicting
with various security features present within the IDE. For example, with IntelliJ IDE, the
plugin file access is limited in access to files within the current project directory. This is also
advantageous, as it enables PowerKap to be extended to alternative IDEs such as KDevelop
or Eclipse. It also allows the possibility of profiling code without worrying about the IDE
necessarily influencing the results. This in turn would improve the accuracy of the results.

PowerKap is currently designed with two main components. The first being a profiler
and second being a mechanism to integrate the results back to the developer.

3.2 The Profiler

3.2.1 Design Ideas

There are currently a few methodologies and approaches to be considered from other pro-
filer designs. The first approach considered was to follow a similar approach to TREPN
with AEON. In this case, TREPN works as an app that continuously probes the various
Qualcomm interfaces present on Android devices. This profiler works independent of any
running program and runs continuously in the background. Developers are able to make
use of this profiler by adding annotation within the application that facilitates interaction
with TREPN. AEON utilises this approach by communicating with TREPN over adb (An-
droid debug bridge) and the network. Such an approach can be replicated on Linux by
using various forms of IPC (Inter-process communication), such as UNIX sockets, memory
mapped files and named pipes.

For PowerKap, such an approach would have some advantages namely the fact that the
application can control the profiler to enable more granular energy information. For ex-
ample, the executing program can notify the profiler in order to gather more frequent or
accurate measurements. The main limitations of this approach mainly concern program
timing and overheads in IPC. This is because, using IPC would introduce various timing
delays caused by reading, writing and handling the various IPC mechanisms. It would also
require additional infrastructure such as buffers to handle situations such as too much data
being produced. This approach is favourable for the AEON profiler as the host computer

35

can serve as a consumer for this data without affecting the measurements. As such, the
Android device would not have to handle the overheads of consuming and processing the
data. Another limitation of this program would be the fact that many current GNU/Linux
IPC mechanisms are currently not supported across various high-level languages. This is for
various security and portability reasons. As such, IPC mechanisms are not uniform across
different Operating Systems. This can be difficult for development when the code that is
being profiled is designed for multiple architectures and platforms.

Another potential approach is to design energy models which can further be used to es-
timate the energy consumption of a program. This approach is particularly useful for asyn-
chronous computing. This strategy works by stress testing a computer under a benchmark
like SPEC-2006 and creating a model which equates energy consumed with things such as
bytes written to disk. For the CPU, it can also be used to identify the energy consumption
of certain code blocks. This approach is generally accepted and is used in academic projects
such as e-Prof. However, the main limitation of this approach for this design is the fact
that this approach requires calibration and that additional equipment is necessary to verify
the accuracy of the models. This approach also requires a lot more intensive calibration
towards the specific language in order to be useful. For example, in the case of Java. it may
be necessary to develop a model based on Java Byte Code in order to get relevant useful
information about the original source code.

3.2.2 Chosen Design

The approach chosen for PowerKap was to design a framework that explicitly controls the
execution of the target program. In doing so, PowerKap gains additional benefits such as
greater timing control for the execution of the program. In addition, PowerKap eliminates
the limitations of IPC mainly by maintaining a separation between the executing program
and the profiler. Instead, PowerKap makes used of standard files to communicate. This ap-
proach allows results to be stored for further analysis, and ensures any annotations remain
compatible across other platforms such as Windows. This approach in turn loses granularity
in control for profiling during execution.

PowerKap works by sampling synchronous counters throughout the execution of the user
program at regular intervals. The user program in turn annotates the code by inserting
specific profiling code to highlight positions of interest. These annotations mark points of
interest by printing timestamps at execution. The profiler repeats multiple executions of
the program in order to further reinforce the gathered measurements.

This simple approach to profiling facilitates multiple capabilities that are advantageous
for profiling. For example, by explicitly controlling the execution of a program, it is pos-
sible to use more volatile interfaces such as the Procfs energy interface listed previously.
This is because the parent process can be explicitly aware of the times in which the child
process is active. The simple filesystem approach is also compatible across languages and
Operating Systems. It also requires minimal calibration and testing for the user.

In Figure 21, one can see a simple overall architecture of PowerKap. The main idea is
to abstract away the profiler aspects such as the timing, program execution, printer from
the sensors and energy data.

36

Figure 21: A simple overview of PowerKap.

37

3.2.3 Why not use current profilers?

As discussed previously, there are currently various tools and designs at present that capture
various power and energy information across a variety of energy interfaces. There are a few
reasons for not using Powertop, Turbostat or other middleware such as PowerAPI. Such
APIs were not designed specifically for profiling a program. In this case, it is imperative
to be aware of the mechanism and how data is being captured. This is because the API
may not necessarily be the most energy efficient or uniform approach. The other reason
why PowerKap does not extend from other tools is mainly due to a lack of documentation
and easy build mechanisms. This is certainly the case for projects such as Powertop which
cannot be built purely from the source repository without additional configuration.

3.2.4 Choice of energy interface

One of the main aims of this project is to explore the extent to which the current programs
can gather energy estimations without particular user configuration or installation. The
reason for this is because in most cases, it can be unrealistic to expect the user to down-
load or configure specific modules just to enable profiling. The program is also designed to
explore the limits of what is available from user space alone. This approach was designed
mainly because developers are unlikely to want to profile untested and buggy code with
root privileges. This is particularly relevant for GUI applications with configuration in the
home directory. By running root, the user could potentially brick their home directory due
to changing file permissions [51].

These restrictions can cause a lot of limitations with respect to the data that can be gath-
ered from the profiler. For PowerKap, the aim is to capture as much information relating
to energy consumption. For this reason, the project currently captures information on the
following sub-categories.

1. Network Bytes

2. Disk Bytes

3. Temperature data

4. CPU energy statistics

5. Battery statistics

There were chosed for a few reasons. Namely, this project would replicate the functionality
provided by the Microsoft Visual Studio Energy Tool. Another reason is that there is a
particular limit with the number of interfaces and data that can be captured during each
interval. This is to reduce the energy costs for gathering and processing this data. Similarly,
too many samples could result in significant misalignment in sampling.

3.2.4.1 Energy Consumption of CPU and Memory

The first and probably most useful information gathered by PowerKap is the energy in-
formation presented via the Powercap interface in the Sysfs directory. This information
is useful mainly because in this case the user can capture accurately the various energy
metrics relating to the Core, Uncore and DRAM controller present from RAPL.

38

Unfortunately, these statistics are specific to the package as whole rather than per thread.
In order to gain more granular thread specific information, it may be useful to use a different
metric like CPU utilisation.

3.2.5 Thermal Information

In addition to the above, and in keeping with the issues of thermal energy listed previously,
PowerKap aims to capture various thermal data. At present this is simply sensors registered
in the Linux kernel and present in the thermal zone interface. This was chosen over the
HWMON interface mainly because it is generic and standardised across kernels.

3.2.5.1 Battery Information

Most laptops in addition come with a built-in power meter. This is through the battery
sensor which grant useful data with respect to current and voltage draw. This sensor is
independent of the system and is located in the Sysfs system. With this data, it is possible
to corroborate some of the energy trends so long as the rest of the device systems are either
off or retain uniform energy consumption.

3.2.5.2 DiskIO

As explored in the background section, DiskIO can have a drastic effect on energy con-
sumption. For profiling, PowerKap works by gathering IO stats present in the executed
child process. This approach has some limitations mainly due to the fact that it is limited
purely to the child process. The reason PowerKap restricts this behaviour is because the
child process is the only PID that the profiler has control over. For this reason, if a process
decides to spawn more children explicitly for the purpose of writing, the program will not be
able to capture this IO data. Upon completing, the profiler does not have any notification
of the process being stopped. As such, these children could theoretically be assigned to
another process which could lead to inaccurate disk information.

An alternate approach to handling this would be to use a dynamic linked library to capture
read and write information. This would work by utilising a technique LD PRELOAD to
create a custom function to intercept calls. This approach can accurately capture at the
point of the systemcall which can be useful for recording the point at which the disk is
being accessed. The way this mechanism works is that the library chosen would be called
before the corresponding read system call. The main limitation of this approach is that it
doesn’t account for the situation when data is cached and does not call from disk. This
is in contrast to the IO file in the Procfs system which accurately accounts for the actual
bytes written and read from disk. Another limitation of this approach is the fact that this
approach would require additional inter-process communication techniques to capture the
various information recorded from the system call. This is because the library would be
loaded with the process and would therefore not have a mechanism to communicate with
the profiler. Unfortunately, this technique would also result in an overhead due to the fact
that the function would be slower than performing a native system call.

At present, the profiler only captures the point in which data is actually read and writ-
ten from disk. Unfortunately, it is not currently possible to capture the actual energy

39

information from the disk. This is because, currently there are no energy or power counters
exposed for these devices.

3.2.5.3 Network

Another important aspect with respect to energy consumption is networking. This can have
significant effect on energy consumption due to the asynchronous nature of this system. As
with the IO system, network adapters currently do not expose power or energy information.
As such, the design of the module in PowerKap is similar to that used for disks. In this
case, the aim was simply to capture synchronous data corresponding to the process such as
the amount of bytes sent and received from the process.

This data is not particularly simple to capture as the kernel does not distinguish between
the received and sent bytes for a specific process. Instead the kernel provides statistics
of the bytes transmitted simply per interface. For example, it accounts for specific data
from the Ethernet or wireless adapter. For this reason, it was particularly challenging to
capture the data corresponding to a single process. At present, there are a few approaches
attempted each with their own advantages and disadvantages.

The first approach considered was to try and capture data by using a technique called
“strace”. This approach works by intercepting the process whenever it calls a relevant
system call. This technique is similar to that used of LD PRELOAD. To capture specifi-
cally network information, this approach would need to be paired with “-e trace=network”.
Unfortunately, this approach comes with disadvantages namely in terms of speed. In a
worst-case scenario, this approach could lead to a 442x slower performance than without
strace [52]. This kind of overhead is not acceptable when calibrating a function for esti-
mating the average energy consumption.

Another approach that was considered was the use third party external module such as
Nethogs [53]. This interface makes use of a various other libraries such as libpcap and
ncurses to capture the network consumption of specific processes. It works by scanning the
/proc/net/tcp file for established TCP connections. Upon reading the file, the local and
remote socket addresses along with inode numbers are tracked. Nethogs subsequently uses
the libpcap utility to sniff traffic and associate the data with /proc/net/tcp. In order to
make use of this utility, there are many limitations at present. The first being user configu-
ration; in order to make use of the program, users have to assign permission to the library
using the “setcap” command and root privileges. In addition, the program does not offer a
stable library to interface with. At present, the library needs to be compiled from source,
is undocumented and is unlikely to work across distributions. The approach also requires
significant processing relative to other methods. For this reason, this approach was also
dismissed.

The final technique that was considered was to make use of the interface capturing ca-
pabilities present in Procfs. This would be possible by creating a virtual adapter which
is only usable by the target process. This is currently an approach which is unique to
PowerKap and was achieved without root privileges. To do so, it was possible by making
use of user-namespaces. This is a sandboxing technique introduced by kernel 3.8 and com-
pleted in 3.9. At present it is used by few applications including Google Chrome, Firejail

40

(sandboxing software) and various container technology such as Docker. This approach has
many advantages relative to the other approaches, namely a reduction in overheads. For
example, to ping from the virtual interface to the Ethernet adapter only introduces a speed
overhead of 0.05ms on Linux kernel 4.11. It also provides many other benefits with respect
to security and isolation, which is particularly useful when profiling unknown or potentially
dangerous code.

This feature requires the use of root privileges. The exception to this is if the names-
pace is created using clone or using the setns function. Both require the executing binary
to have capabilities such as the CAP SYS ADMIN and CAP NET ADMIN. Fortunately,
upon setting the capability, the rest of the application can remain in user space. In this case,
the executing process is isolated with the same executing privileges as the calling process.

3.2.5.4 Choice of language

The energy profiler for PowerKap is designed in C++. This is due to various reasons, the
first is to enable extensibility in PowerKap. This is because a lot of kernel and user inter-
faces such as PAPI and Perf all are written to be used in C. For this reason, PowerKap needs
to be capable of reusing current code and interfaces to extend features and sensors. The
language C++ was chosen simply to enable this compatibility with such external interfaces.

This project uses C++ over C is to take advantage of the Objected Oriented features
of language. This feature is useful for encapsulating and processing and manipulation of
data behind class structures. Therefore, the project is able to maintain a clear separation
between the various mechanisms needed to read and process the various data elements. In
the future, this property would be useful when incorporating other interfaces such as the
msr module which requires register specific knowledge. The C++ STL also grants useful
features such as string manipulation, fast dynamic data structures and file manipulation
utilities. These are useful for manipulating the data gathered from the various energy
interfaces which are not particularly clean or consistent.

3.2.6 Profiler Design

The profiler is the component that captures the energy information of a program. It is
designed to minimise the amount of energy consumed by the profiler itself. It can be
broken up into a series of sub-components that are listed as follows. These can be seen in
Figure 22.

3.2.6.1 Forker

The forker module is a program that is dedicated towards controlling the profiler and ex-
ecution of user-defined programs. This module is particularly complex as it makes use of
a variety of low-level kernel techniques to ensure minimal overhead, explicit timing control
and to reduce risks of zombie child processes. The main method of achieving these goals is
through the use of the clone systemcall. This function call is more beneficial in this case
than fork or vfork. This is because this call allows PowerKap to control various aspects of
the fork such as being able to spawn the child fork within its own namespace. In this case,
PowerKap makes use of the following flags:

41

F
ig

u
re

2
2
:

A
U

M
L

d
ia

g
ra

m
o
f

th
e

m
a
in

c
o
m

p
o
n

e
n
ts

fo
r

P
o
w

e
rK

a
p

.

42

The first flag PowerKap makes use of is CLONE VFORK. This flag is an optimisation
that allows the pausing of the parent process until the child process either calls exit or ex-
ecve. This approach is useful as it allows the profiler to ignore setup costs for creating the
fork and setting up the namespaces. As a result, PowerKap will only profile the portions of
code corresponding to the program.

PowerKap also makes use of the SIGCHLD flag which is particularly useful. The main
advantage of this flag is that upon the child process being killed, the signal SIGCHLD is
propagated to PowerKap. This is useful as PowerKap has specific signal handlers that can
capture this signal and stop capturing data from volatile interfaces.

The final set of flags used by PowerKap mainly concern those in setting up a custom
namespace. These are the flags CLONE NEWPID and CLONE NEWNS. The flags in this
case are particularly useful for setting up an isolated program with its own network space.

3.2.6.2 Profiler

The actual profiler module is designed to act as a coordinator for accessing the different
energy interfaces and printing the results. It is designed in an energy efficient manner.
For example, during initialisation, the program begins by checking various thermal, energy
and battery interfaces to ensure that the system minimises the number of IO calls. This is
important for gaining accurate readings and to ensure a minimum overhead.

The actual profiling stage takes 3 steps which are again designed to minimise energy impact.
The first stage while profiling is simply to read raw measurements and store the result. Once
this stage is complete and the profiler has stopped running, the program subsequently calls
the printer before processing the raw results into a useful form. This step is important as
there are cases where it is necessary to correct various sensor measurements. An example
includes AMD’s thermal sensors included in modern Ryzen CPUs. In this case, there is a
systematic error present that means that readings are consistently off [54]. This error is
present to ensure the fans turn on. For PowerKap, this stage is designed to measure deriva-
tive measurements from the raw results. Upon completing this stage, the profiler prints the
results and aggregates all the results from the run into a cumulative measurement. This
stage is important as otherwise the density of gathered results could be too large especially
for long running programs. The cumulative results stage is designed to gather important
information such as running averages for the result along with maximum, minimum and
standard deviation values.

3.2.6.3 Sysfs, Procfs and Energy Interfaces

One of the key points of the profiler is to be able to capture data from potentially multiple
interfaces with as little user configuration as possible. For this reason, the program makes
use of the Sysfs interface. This was chosen because most of the modules such as Powercap,
thermal and battery and provided by default in the GNU/LINUX kernel. The information
captured from these various interfaces and encapsulated within their own class.

PowerKap also makes use of volatile memory structures such as Procfs to gather process and
system information. This interface is more complex than the Sysfs structure mainly due to

43

void k i l l P r o c e s s (P r o f i l e r ∗ p r o f i l e r)
{

i f (: : pid > 0)
{

// Let the proce s s terminate c l e a n l y f i r s t
k i l l (: : pid , SIGTERM) ;
std : : t h i s t h r e a d : : s l e e p f o r (std : : chrono : : m i l l i s e c o n d s (2 0 0 0 0)) ;
i n t s t a t u s ;
p i d t pid ;
i f ((pid = waitp id (−1 , &status , WNOHANG)) <= 0)
{

i f (pid == 0)
{

//Send SIGKILL a f t e r 20 seconds
k i l l (: : pid , SIGKILL) ;
whi l e (waitp id (−1 , &status , WNOHANG) > 0)
{

//Wait f o r the proce s s to be k i l l e d
//(SIGKILL cannot be ignored)

}
} e l s e i f (pid == −1)
{

// ” Error k i l l i n g c h i l d process , c l e a r i n g up and e x i t i n g ”
i f (p r o f i l e r)
{

p r o f i l e r −>r e s e t P r o f i l e r () ;
}
e x i t (EXIT FAILURE) ;

}
}
std : : cout << ” Process terminated c l e a n l y ” << std : : endl ;
: : pid = −1;

}
}

Figure 23: This figure shows the main mechanism for handling the killing of
zombie processes. Particular care needs to be taken to ensure that child pro-
cesses actually terminate.

44

char s tack [4 0 9 6] ;
s t r u c t : : c loneArgs ch i ldArgs ;
ch i ldArgs . args = parmList ;
ch i ldArgs . envp = envp ;

i n t pid = c lone (chi ldProg , s tack + 2048 ,
CLONE NEWPID | CLONE NEWNS | CLONE VFORK | SIGCHLD,
&ch i ldArgs) ;

Figure 24: An example of the clone function used in Forker. In this case,
the stack needs to be setup. The arguments and environment variables are
passed as the last argument to the function. These are subsequently used as
the arguments to the execve call in childProg.

the volatility in reading the contents of this file system. To help handle this volatility, this
interface is designed in a different fashion to that of the Sysfs interface. In this case, the
process works by gathering the data from the file line by line. It also keeps track of the last
successful measurements in case of temporary file failures. The directory is also designed in
a particularly error sensitive fashion to avoid creating new measurements unless it comes
from the correct process id. This can be observed in Figure 25.

3.2.6.4 Printer

The final profiling stage for PowerKap is to print the results generated into usable formats.
So far, PowerKap supports printing various formats including tab separated values(TSV),
comma separated values(CSV) and JavaScript Object Notation(JSON). This approach was
chosen to enable users to display the results in alternative programs if required. In order
to support JSON, PowerKap uses Nlohmann’s JSON serializer for C++ [55].

3.2.6.5 Measurement and Energy Structure

In addition to the energy interfaces, the program is designed such that the internal function-
ality of each sensor and measurements are separated. The above main modules in Figure 22
are able to interact with the data using a series middleware of classes. This layer can be
seen in Figure 26.

The classes listed in Figure 26 reflect the three stages of PowerKap. Each encapsulate
all the behaviour and methods necessary for each stage and provide an easy interface to
interact with the sensor data in Figure 27.

In Figure 27, one can see the various data sensors captured by PowerKap. The choice
in capturing battery, CPU, thermal, network and disk attributes was chosen specifically
because they match the functionality provided by Visual Studio. In the future, it would
be possible to extend this functionality to additional interfaces such as graphics power
consumption and peripheral energy consumption.

45

const NetworkInfo∗ Proc f s : : getNetworkInfo (i n t pid)
{

const NetworkInfo∗ r e s u l t = NULL;
i f (adapterPresent)
{

std : : s t r i n g d i r = ”/ proc /” + std : : t o s t r i n g (pid) ;
d i r += ”/ net /dev ” ;
std : : s t r i n g l i n e ;
s td : : i f s t r e a m i n f i l e (d i r) ;
i f (! i n f i l e . f a i l ())
{

whi le (std : : g e t l i n e (i n f i l e , l i n e))
{

r e s u l t = th i s−>parseNetStr ing (l i n e) ;
i f (r e s u l t != NULL)
{

break ;
}

}
i n f i l e . c l o s e () ;

}
i f (r e s u l t != NULL)
{

th i s−>prevNetworkInfo = r e s u l t ;
} e l s e {

i f (p r o f i l e r S t a t e && ! (∗ p r o f i l e r S t a t e))
{

i f (de tec tNetwork Inte r face (pid , ”veth−a ”))
{

i f (prevNetworkInfo != NULL)
{

r e s u l t = th i s−>prevNetworkInfo−>c lone () ;
}

} e l s e {
adapterPresent = f a l s e ;
// Error no v i r t u a l namespace pre sent .
// Skipping Ana lys i s .

}
}

}
}
re turn r e s u l t ;

}

Figure 25: The function designed to read the Procfs file network interface.

46

F
ig

u
re

2
6
:

A
U

M
L

d
ia

g
ra

m
o
f

th
e

m
e
a
su

re
m

e
n
t

la
y
e
r

fo
r

P
o
w

e
rK

a
p

.

47

F
ig

u
re

2
7
:

A
U

M
L

d
ia

g
ra

m
o
f

th
e

c
u

rr
e
n
t

se
n

so
r

c
la

ss
e
s

fo
r

P
o
w

e
rK

a
p

.

48

3.2.6.6 Networking Script

Many network applications require use of networking capabilities. Unfortunately, the de-
fault approach used with the setns function is to create a default namespace without any
networking adapters. The normal approach used by Chrome is to assign a specific adapter
to this network namespace. For PowerKap, a custom virtual adapter was needed so that
it could be tracked in the Procfs system. To do so, a bash script was used to generate the
necessary configuration. This script can be observed in Figure 28. This script is particularly
useful as it is designed entirely to use the ip command rather than ifconfig and the like. As
such, it is compatible with new Linux systems which do not come with the legacy depre-
cated network tools. It also forwards traffic between the interfaces using iptables. This is
a particularly fast kernel firewall. The reason, PowerKap uses this shell script rather than
within the program using system is mainly so that users can configure various aspects such
as the ip to avoid network conflicts. All the commands executed in this script are designed
to be temporary and will reset on reboot.

3.2.7 Implementation Details

This section is designed to serve as a documentation on some of the design decisions faced
when constructing the profiler.

3.2.7.1 Steps taken to minimise the overhead introduced by the profiler

As discussed earlier, with any form of in-band energy technique the accuracy of the mea-
surement can be influenced by the profiler itself. PowerKap aims to minimise this impact
as much as possible. This has influenced the design in many ways. The first being the sep-
aration of the integrated developer environment and the profiler. This is unlike other tools
such as the visual studio profiler which is integrated into the IDE , these tools introduce
IDE as an overhead. This would reduce the accuracy of the results generated.

The three stage pipeline used for PowerKap is also primarily designed to reduce the power
consumption of PowerKap. In this case, processing the results only happens once gathering
the raw data is complete therefore further analysis and processing does not influence the
energy consumption of the results. In addition, the final stage of storing the results in
averages enables minimal data to be stored for each run. This reduces the overall memory
consumption used by PowerKap.

Other energy efficient techniques used are inspired by the green software techniques de-
scribed in the background section. This mainly involves techniques such as only using
interfaces that are usable and giving the option for users to pick and choose which metrics
to gather. Both of these enable energy efficient approaches by avoiding IO wherever possible.

Another aspect that influenced the design of PowerKap is the type of data and the capturing
mechanisms. The idea of the project was to avoid storing as much information unless rele-
vant for energy and to ensure a consistent mechanism of capturing the data. For example,
at present most of the techniques rely on file type directories present in the Sysfs and Procfs
systems. All the data captured are related purely towards synchronous energy information
and most of the data gathered is captured and processed within the kernel rather than
user space. This approach minimises energy usage by avoiding the overheads of capturing

49

#!/ bin /bash

echo ”Welcome to my s c r i p t to c r e a t e a t e s t i n t e r f a c e : ”
echo ” F i r s t p l e a s e p ick a number cor re spond ing to the i n t e r f a c e you wish
to bind . ”
ip l i n k show | grep UP

i f [”$EUID” −ne 0]
then echo ” Please run as root ”
e x i t

f i

read −n 1 −p ” Input S e l e c t i o n : ” i n t e r f a c e
input=”${ i n t e r f a c e } : ”
s t r i n g I n t e r f a c e =”$ (ip l i n k show | grep $input)”
cutVal=${ s t r i n g I n t e r f a c e #∗:}
c h o s e n I n t e r f a c e=${ cutVal%%:∗}
s y s c t l −w net . ipv4 . ip fo rward=1
ip netns add t e s t n s
ip l i n k add veth−a type veth peer name veth−b
ip l i n k s e t veth−a netns t e s t n s
ip netns exec t e s t n s ip addr add 192 . 168 . 163 . 1/24 \

broadcast 192 . 168 . 163 . 255 dev veth−a
ip netns exec t e s t n s ip l i n k s e t dev veth−a up
ip netns exec t e s t n s ip l i n k s e t dev l o up
ip addr add 192 .168 .163 .254/24 broadcast 192 . 168 . 163 . 255 dev veth−b
ip l i n k s e t dev veth−b up
ip netns exec t e s t n s ip route add d e f a u l t v ia 192 . 168 . 163 . 254 dev veth−a
l o c a l I P=”$ (hostname −I)”
getIP=${ l o c a l I P%% ∗}
echo $ c h o s e n I n t e r f a c e
echo ${ getIP }
i p t a b l e s −t nat −A POSTROUTING −s 192 . 168 . 163 . 0/24 \
−o $ c h o s e n I n t e r f a c e −j SNAT −−to−source $getIP

i p t a b l e s −A FORWARD − i $ c h o s e n I n t e r f a c e −o veth−b −j ACCEPT
i p t a b l e s −A FORWARD −o $ c h o s e n I n t e r f a c e − i veth−b −j ACCEPT

Figure 28: Network Virtual Adapter script

50

Mean1 = x1

S1 = 0

Meank = Meank−1 + (xkMeank−1)/k

Sk = Sk−1 + (xkMeank−1) ∗ (xkMeank)

V ar = SK/k − 1

SD =
√
V ar

Figure 29: Welford’s algorithm for computing variance.

through multiple techniques. For example, by using a technique such as the asynchronous
Netlink interface, it could be difficult to retain a consistent interval in timing. Similarly,
whilst other information present in the Procfs directory can be useful such as specific CPU
utilisation and page swapping information, these statistics would greatly increase the size
of each measurement which can increase the memory consumption overhead for PowerKap.
Instead, current profiling tools such as the Perf system would be more useful for optimising
the program in this regard.

3.2.7.2 Avoiding the impact of the user environment

One of the main issues with the problem of energy transparency is the influence of exter-
nal factors such as the Operating System, background tasks, scheduler and even hardware
influences. For example, for a hard drive that is extremely fragmented, extra energy could
be spent waiting for the disk to gain results. Subsequent data could equally require less
energy due to caching in memory. Alternatively, at extremely low power, the GNU/Linux
system may itself prioritise other tasks or deliberately enable energy efficient modes with
the hardware. These kinds of external influences can be difficult to control and can affect
the accuracy of the results.

PowerKap tries to gain meaningful results that are useful for the developer. For this reason,
the program calculates information such as standard deviation so that developers can judge
the accuracy of the results presented. To calculate the Standard Deviation for PowerKap,
Welford’s Algorithm [56] is used. This algorithm was developed by B.P Welford in 1962
and provides a mechanism of computing sample variance in a single pass. It achieves this
without storing sample data points. This property is useful for reducing the overhead of
PowerKap and to enable greater reproducibility across runs. The algorithm can be seen in
Figure 29 and is useful for computing variance without risking numerical overflow. Such a
situation would be a problem if using the standard sample variance formula listed as follows.

Sk =

∑∞
k=1(x− x̄)2

k − 1

3.3 Linux Java Energy Assessment (LJEA) plugin

Along with the profiler, there is a second portion to the project which is designed to integrate
the information gathered from PowerKap into the integrated development environment.

51

Figure 30: An example energy point that is automatically generated for the
user.

This part of the module also has an important aspect of enabling the user to annotate the
code for additional details whilst profiling elements. It also provides further granularity in
the information gathered. This part of the project can also be split into various components.

3.3.1 Choice of IDE

IntelliJ was chosen the chosen platform for displaying the results. The predominant reason
being that it is open source and has an open plugin API. The IDE is a commonly used de-
velopment platform that is used extensively for multiple platforms. It has been extended by
Google to form Android Studio. Due to this extensibility and wide support for languages,
it is a good platform to develop LJEA. In addition, the platform was chosen due to the
addition of a “power saving mode” [57]. With this mode, IntelliJ disables energy intensive
activities such as error highlighting, on-the-fly inspections, autopopup code completion, and
automatic incremental background compilation. This could be useful in the future if the
tool could integrate directly within the IDE. Other benefits provided by IntelliJ includes
extensions and custom language extensions. These features would be useful for implement-
ing specific contracts for resource consumption.

At present, PowerKap only supports Java on IntelliJ. However, in the future, other IDEs
and other languages can be extended to support LJEA. Java was chosen as an initial lan-
guage to support profiling mainly because Intellij provides native support for Java. The
project could be extended to CLion or to other IntelliJ languages

3.3.2 EnergyPoints

The first key aspect of this module with respect to power profiling is the capability of
insertion specific points in the program to highlight energy use. This step is designed to
highlight points of interest and to provide file location information. This can be seen in
Figure 30. In this case, when the code is executed, a timestamp is recorded along with the
file and line location. This allows the user to easily navigate to points of interest.

Before program termination, the user needs to specify points to print these generated data.
This is so that the user can choose the best point for performing the IO necessary to profile
the program. It is also because only the user the entry and exit point for a program.

3.3.2.1 The profiling code

Upon annotating the code, the user can automatically generate a package and class which
are specifically designed to handle these timepoints. This code is generated in a separate
package at the root of the project to avoid conflicting with the current code base. This code
can be seen in Figure 31.

52

Figure 31: The automatically generated energy time code. It contains various
information such as the file location, class name and line number.

53

3.3.2.2 StackTrace

Upon executing the program and interpreting the JSON results from PowerKap, the user
is presented a stacktrace corresponding to the points in which the generated program has
executed the timepoints.

Figure 32 shows an example stacktrace of a program. The mechanism works by comparing
the executed time with a recorded start time marked by PowerKap. Based on averaging
these elapsed time points, the program looks up the energy data produced from the profiler
to create an average energy total. Within each entry point, the user is presented information
relating to how much energy the CPU and memory hierarchy consumed from the Powercap
interface. In addition, the user is provided various data such as how much battery was
consumed between the various entries in the list.

Figure 32: An example stacktrace.

The stacktrace box also provides features such as the capability of navigating the source
code along with setting markers on energy graphs.

3.3.2.3 Energy Graphs

Along with the stacktrace, the user is presented a series of graphs that enable the user to
visualise the energy consumed by the program over a period of time. This can be seen in
Figure 33. Within each entry point, the user can also clearly see the error presented by the
measurements. These are shown by the lighter graph surround the entry points which allows
the user to determine the quality and accuracy of the results. In order to generate these
graphs, the tool JFreeChart [58] is used. This tool offers many capabilities that were useful
such as the capability of saving image plots. It also enabled auto-sizing of the plots and
markers. The deviation capability is also built into the tool by using a deviation renderer.

3.3.3 Implementation Details

The process of building the graphical interface for LJEA was rather straightforward relative
to building PowerKap. This is because there is a lot more documentation and tutorials which
were useful for building the various graphical elements. The main design constraint for this
part of the project was maintainability and usability.

3.3.3.1 The UI design

Figure 34 shows the overall structure of the graphing module used for LJEA. The above
mainly constitutes the model aspect of the plugin. In this case, we have the JSON struc-
ture generated from PowerKap, converted into Java class objects. These are all contained

54

Figure 33: The graphing module.

55

F
ig

u
re

3
4
:

A
o
v
e
rv

ie
w

o
f

th
e

st
ru

c
tu

re
o
f

th
e

L
J
E

A
g
ra

p
h

in
g

m
o
d

u
le

.

56

behind JSONReference. This structure is useful for generating and processing data such as
those used for the stacktrace. The structure is useful as calls can cascade down subclasses
such as PackageInfo, Network Data, Disk Data and Battery Data. A custom deserializer
was necessary to process the thermal data.

Along with this we have another layer which is designed to process this JSON generated
data. In Figure 34, these are noted by classes with the “Process” prefix. These take in user
options from the GUI and process the data into a usable format for JFreeChart. Finally, the
package Energy Graph factory is designed in a standard Model View Controller structure.
Within the package, there are two files, one being a form file and the other the controller
class. These represent the view and controller respectively. The view was designed using
Java Swing and is built with IntelliJ’s swing designer.

3.3.3.2 Action Classes

Figure 35: A overview of the structure of the LJEA graphing module

The action classes used in LJEA are designed simply to manipulate the GUI to enable the
various annotations necessary for the project to work. This includes the energy annotation
points and the various aspects necessary to generate the TimeKeeper class. This mainly
involved manipulating the source and file system using virtual files and the PSIFile structure
used within IntelliJ.

57

p
u

b
li

c
v

o
id

a
c

ti
o

n
P

e
r
fo

r
m

e
d

(
fi

n
a

l
A

n
A

c
ti

o
n

E
v

e
n

t
e
v

e
n

t
)
{

fi
n

a
l

E
d

it
o

r
e

d
it

o
r

=
e
v

e
n

t
.
g

e
tR

e
q

u
ir

e
d

D
a

ta
(
C

o
m

m
o
n

D
a
ta

K
ey

s
.E

D
IT

O
R

)
;

fi
n

a
l

P
r
o

je
c

t
p

r
o

je
c

t
=

e
v

e
n

t
.
g

e
tR

e
q

u
ir

e
d

D
a

ta
(
C

o
m

m
o
n

D
a
ta

K
ey

s
.P

R
O

JE
C

T
)

;
/

/
A

c
c
e
ss

d
o
cu

m
en

t
,

c
a

r
e

t
,

a
n

d
s

e
le

c
t

io
n

fi
n

a
l

S
e

le
c

t
io

n
M

o
d

e
l

s
e

le
c

t
io

n
M

o
d

e
l

=
e

d
it

o
r

.
g

e
t
S

e
le

c
t
io

n
M

o
d

e
l

(
)

;

/
/
N

ew
in

s
t
a

n
c

e
o

f
R

u
n

n
a

b
le

to
m

a
k
e

a
r
e
p

la
c
e
m

e
n

t
R

u
n

n
a

b
le

ru
n

n
a

b
le

=
(
)
−>
{

if
(

E
n

e
r
g

y
P

r
o

fi
le

r
G

e
n

e
r
a

t
o

r
.
is

E
n

a
b

le
d

(
p

r
o

je
c

t
)
)
{

fi
n

a
l

D
o
cu

m
en

t
d

o
c
u

m
e
n

t
=

e
d

it
o

r
.
g

e
tD

o
c
u

m
e
n

t
(

)
;

V
ir

t
u

a
lF

il
e

f
il

e
=

e
v

e
n

t
.
g

e
tD

a
ta

(
P

la
tf

o
rm

D
a

ta
K

e
y

s
.V

IR
T

U
A

L
F

IL
E

)
;

S
t
r
in

g
fi

le
P

a
t
h

=
f
il

e
!=

n
u

ll
?

f
il

e
.

g
e

t
U

r
l
(
)

:
”

”
;

S
t
r
in

g
fi

le
N

a
m

e
=

f
il

e
!=

n
u

ll
?

f
il

e
.g

et
N

a
m

e
(
)

:
”

”
;

in
t

li
n

e
N

u
m

b
e
r

=
e

d
it

o
r

.
g

e
tC

a
re

tM
o

d
e
l

(
)

.
g

e
t
L

o
g

ic
a

lP
o

s
it

io
n

(
)

.
li

n
e

+
1

;
S

t
r
in

g
re

p
la

c
e
m

e
n

tT
e
x

t
=

E
n

e
r
g

y
P

r
o

fi
le

r
G

e
n

e
r
a

t
o

r
.
c
la

ss
N

a
m

e
+

”
.
in

s
e

r
t
T

im
e

P
o

in
t

(\
”

”
+

fi
le

P
a

t
h

+
”
\”

,
”

+
”
\”

”
+

fi
le

N
a

m
e

+
”
\”

,
”

+
li

n
e
N

u
m

b
e
r

+
”

)
;”

;
in

t
o

ff
s

e
t

S
t

a
r

t
=

e
d

it
o

r
.
g

e
tC

a
re

tM
o

d
e
l

(
)

.
g

e
t
O

ff
s
e

t
(

)
;

d
o

c
u

m
e
n

t
.

in
s
e

r
t
S

t
r
in

g
(

o
ff

s
e

t
S

t
a

r
t

,
re

p
la

c
e
m

e
n

tT
e
x

t
)

;
}

}; /
/

M
a
k

in
g

th
e

r
e
p

la
c
e
m

e
n

t
W

ri
te

C
o
m

m
a
n

d
A

ct
io

n
.r

u
n

W
ri

te
C

o
m

m
a
n

d
A

ct
io

n
(

p
r
o

je
c

t
,

ru
n

n
a

b
le

)
;

s
e

le
c

t
io

n
M

o
d

e
l

.
r
e

m
o

v
e

S
e

le
c

t
io

n
(

)
;

}

F
ig

u
re

3
6
:

A
n

e
x
a
m

p
le

o
f

th
e

m
e
th

o
d

u
se

d
to

g
e
n

e
ra

te
th

e
ti

m
e
st

a
m

p
s.

58

4 Project Evaluation

In this section, the aim is to try and evaluate and research some of the capabilities of Pow-
erKap.

From background research, there are currently many methods and approaches that can
evaluate the accuracy and effectiveness of the profiler. In the ENTRA project for example,
the chosen approach is to evaluate the effectiveness of the profiler against a set of known
programs with known energy consumption. This is particularly useful for simple architec-
tures and restricted environments. In the case of the original deliverable, the developers
restricted and specialised the series of benchmarks for XMOS devices [59].

This approach does not scale well for larger devices such as laptops, desktops and the
like. This is because of the large variability in hardware, software and background pro-
cesses which can each contribute to variability in energy performance. The other limitation
in this case is the ability to measure the accuracy of various measurements. This is because
without laboratory equipment, it can be difficult to estimate the true accuracy in energy
measurements for specific components.

4.1 The hardware and methodology

For the purpose of evaluating PowerKap, various hardware was used to measure the accu-
racy of the profiler across platforms. The first being a Dell XPS 13 9343 laptop running
Kubuntu 17.04. This laptop was advantageous as it contains a Broadwell 5th generation
processor. Specifically an Intel i7 5500U (a 2 physical, 2 virtual core processor). This pro-
cessor is useful as it contains an integrated memory controller which enables the DRAM
RAPL statistics. In addition, the laptop has 8gb of RAM, a 4k IPS touchscreen, Broadcom
wireless chip and 512GB Samsung SSD. To avoid the influence of energy consumption of
the various integrated devices within the laptop, various components such as the webcam,
Bluetooth and USB controller were disabled. Similarly, for each test, various components
were also disabled such as the WiFi, BlueTooth and screen brightness. The idea in this case
was to isolate the environment to the component that is being stressed.

Along with this laptop, a custom desktop was also used as a comparison to see how the same
tests perform unconstrained. This system is a high performance modern gaming desktop.
This platform was useful as it can be used to demonstrate the energy consumption differ-
ences in a platform that is not energy or thermally constrained. In terms of hardware, this
system runs with a 6gb Nvidia GTX 1060, Intel i5 7500 (a 4 physical core processor) and
16GB of 2133Mhz DDR4 memory. It also uses a 275GB Crucial MX300 SSD. For cooling,
the system has 3 case fans and a Corsair H45 hydropump water cooler. Software side, this
platform also provides an interesting test as it runs the same Kubuntu 17.04 instance as used
in the laptop. The exception in this case is the use of a different energy governor. In this
case it uses the Linux kernel CPU Frequency governor [60] as opposed to the default Intel
Pstate governor. This governor is responsible for transitioning the CPU C and power states.

Another reference point used was a Dell XPS 15 9560 running with a Nvidia GTX 1050
and Intel i7 7700HQ (4 physical cores, 4 virtual cores). This platform as it shared many
similarities with the Dell XPS 13, whilst providing a useful reference point against the

59

Figure 37: The set of laptops used for testing. In this case, a Dell XPS 15 9560,
a Dell XPS 13 9343 and two Toshiba Portege R830-13 laptops.

gaming desktop. The platform in this case had 16GB of RAM and a 512GB SSD. When
performing the tests on this machine, the test was run from a 128GB Sandisk Cruzer USB
stick. The operating system in this case was running Ubuntu 16.04, which provides a useful
comparison between the old 4.4 kernel and the new 4.10 kernels.

In addition to the laptop listed previously, an external power meter was used. This was a
“Plugin electricity cost meter” from Maplin with a model number N67FU. This device has
an accuracy of 1.5% for measuring power. To evaluate the power consumption for this, the
results were recorded by video. This video was played back at a slower speed to capture the
change in power every second. To ensure there is no background influence with the power
meter, a kettle was plugged into adjacent plugs and it was confirmed that there were no
power fluctuations in the meter.

Another test that was used includes specifically tests to measure the reproducibility of
the measurements on legacy hardware. For this reason, PowerKap was also evaluated on a
pair of Toshiba Portege R830 with Intel i5 2520M (a 2 physical, 2 virtual core processor)
processors, 4GB of RAM and 13.3in screen. All the machines were booting and running
tests purely from the USB stick listed previously. This was to avoid the difference in per-
formance degradation caused by legacy hard disks.

Unless specified otherwise, each test was repeated 3 times.

60

Figure 38: The custom built gaming desktop and the power meter used for
testing.

61

4.2 The Profiler

4.2.1 The Results

Before proceeding with the evalutation, it is important to be aware of what each diagram dis-
plays. The energy graphs represent the energy consumed by various CPU domains including
Uncore, DRAM and Core. The package total in this case is the sum of all these components
and represents the total energy for the CPU. For each graph, the y axis corresponds to
the change in a normalised change in energy counter. The units in this case are µjoules
per second. This is equivalent to the instantaneous power consumed for that domain. The
graph in this case, simply plots the power consumed for these various domains against time.

The battery graphs similarly represent the total power consumed by the system as a whole.
On the y-axis, the graph displays the actual instantaneous power values for the system.
This was calculated by taking the product of the current (mA) reported by the battery and
the voltage (mV). The value was then converted to Watts. This obviously comes with some
loss of precision in this conversion. The units in this case are joules per second.

The IO graphs, are designed to show the number of bytes transmitted and sent. This
is because according to our research, the wireless bytes sent and received directly corre-
spond to the energy consumed by the device. A similar linear relationship is also known
with hard disks.

The final graph represents a change in temperature against time for various components.
The units are recorded in micro degrees Celcius.

4.3 The Battery Measurements

One of the first aspects that is important to evaluate is the battery measurements. This
is particularly useful for evaluating the total power consumption for a given system. If the
methodology used for calculating this is correct, it can prove to be a useful reference point
to compare the rest of the energy measurements. This test was run using the Dell XPS 13
and Maplin power meter.

Figure 39 shows the results of three tests. These consist of power drawn from the wall under
various background and profiling conditions. The stress test used was generated using the
stress command. This is a package which is specifically designed as a workload-generator.
In this case, the test is simply to calculate the square root of a random number. This
utility causes the CPU to maximise utilisation at 100%. From the test shown in Figure 39,
we used a maximum number of threads of 2 as that creates the highest effective workload
for the system. The idea is to try and estimate whether the energy consumption across
both mechanisms are consistent. It was also important for the purpose of estimating the
actual power consumption of PowerKap. Within the graph, some interesting results can be
observed. Namely, by averaging the stress results over 5 minutes, shows an average average
power consumption of 27.3W. In contrast, the sensor reported an average reading of 20.9
and 20.8 with the systems running PowerKap and background alone. This is approximately
6.4-6.5W lower than the stress test. This test is also interesting as it highlights the minimal
impact of PowerKap when run with a sampling rate of every second. There are few possible
reasons for this such as the fact that the sampling rate for PowerKap could be too low to

62

Figure 39: A graph of the various out-of-band power results.

have an effect on the power consumption.

This minimal impact of PowerKap is corroborated by Figure 41 which shows the exact
same series of tests performed generated from PowerKap. Averaging out the power mea-
surements during the run results in an average power consumption of 15.9W for both the
background and PowerKap. This value is significantly lower than the 21W reported by
the power wall. Reasons for this could include power losses caused by the ac-dc power
adapter used by the laptop. This was a limitation of the test as there isn’t a methodology
of capturing the energy past the adapter without special equipment. Another potential
power loss includes hardware specific features that are designed to be more power efficient
on battery. To mitigate such potential hardware issues, various hardware components such
as the monitor were turned off to ensure the only difference in the test is the execution. Un-
der stress, the average power for the test was reported as 21.3W. This is only 5.4W higher
than the background test. An interesting aspect of this test is the comparison between the
power graphs for the stress test. What is clear from repeated runs of the experiment is the
particular power spike in the beginning following a plateau. This trend is demonstrated in
both the out-of-band and in-band approaches.

In terms of quality of the results, it is difficult to determine the actual accuracy of the
results reported from both sensors. This is because the battery sensor does not provide any
accuracy or precision guarantees for the values gathered. All that is offered is the infor-
mation presented in Figure 40. The values aren’t particularly reliable. This can be seen
from the first 25,000ms where there are periods with approximately 3W difference under

63

Figure 40: Laptop battery information offered within the command “dmide-
code”.

load. However, this test was useful for determining the power profiling trend, which can be
useful for developers. In order to determine the accuracy, it would be better to perform the
experiment in laboratory conditions in a standardised environment.

64

F
ig

u
re

4
1
:

T
h

is
g
ra

p
h

sh
o
w

s
th

e
p

o
w

e
r

c
o
n

su
m

p
ti

o
n

o
f

th
re

e
a
sp

e
c
ts

.
T

h
e

fi
rs

t
b

e
in

g
a

st
re

ss
te

st
w

h
ic

h
is

sh
o
w

n
th

e
re

d
li
n

e
.

T
h

e
g
re

e
n

li
n

e
re

p
re

se
n
ts

th
e

m
e
a
su

re
m

e
n
ts

w
h

e
n

te
st

in
g

P
o
w

e
rK

a
p

w
it

h
in

it
se

lf
.

F
in

a
ll
y
,

th
e

b
lu

e
li
n

e
is

th
e

b
a
ck

g
ro

u
n

d
.

65

4.4 CPU Measurements

4.4.1 Battery vs CPU measurements

This section evaluates the credibility of the CPU power metrics when evaluating the power
consumption of programs. The approach taken to evaluate these metrics is to compare the
results with corresponding battery power data. These tests are important to establish the
accuracy and boundaries of the various CPU measurements.

4.4.2 CPU Stress Test

Figures 42-45 show the result of running the same stress package as listed previously in the
battery section. This test was designed to explore the effects of multithreading on energy
consumption and to test the limitations of PowerKap when starved of resources. Within
the four graphs, various observations are shown that are particularly useful for profiling
energy. The first being the difference between one and two thread energy consumption.
This can be seen in Figure 42 where a distinct difference between the blue and red lines
can be observed. This indicates that as expected, the difference in using multiple cores
does lead to an increase in energy consumption. Another interesting point to note is the
difference between the background, one core and two core stress test. In this case, a user
may expect that the energy consumption for stressing two cores perfectly would be almost
double the energy consumption of single core. This is clearly not the case as the graph
shows stressing a single core, is almost as energy impactful as stressing two cores. This is
probably because the CPU loses energy benefits that are attained when both cores are idle.
Mainly the ability to achieve higher package C states.

Another interesting observation from the graph is the impact of hyperthreading. This
is a hardware feature available on certain Intel processors that allow the simulation of vir-
tual cores. In this case, we can observe that in this case the impact on the CPU energy
consumption is roughly the same as that of two cores. This can be seen by the matching
red and green lines seen in 42.

From Figure 43, we can see another consequence of this technique with respect to en-
ergy profiling. In this case, we can clearly see how under all the stress test conditions, the
energy consumption of the memory system is reduced relative to the background DRAM
energy consumption. One possible reason for this is likely to do with the consequence of the
stress test. In this case, as the CPU Utilisation goes to 100% on both cores, background
processes may be put to sleep. As a result, their resources are released. This observation is
corroborated by the minimal difference between the single thread run and the dual thread
run. In the single core case, some background processes can still continue which is not the
case for the four thread case. This result in particular highlights the limitation in simply
finding the difference in energy consumption in idle versus stressed conditions. From this
example, we can see that in resource constrained situations, certain components can con-
sume less energy relative to just the background.

Both Figures 44 and 45 are the results of the stress test from both the battery and the CPU.
These can be used to verify the accuracy of the measurements. In this case, we compare the
package energy consumption relative to the power consumption reported by the battery. In

66

F
ig

u
re

4
2
:

D
e
ll

X
P

S
1
3

S
tr

e
ss

te
st

,
C

o
re

E
n

e
rg

y
g
ra

p
h

F
ig

u
re

4
3
:

D
e
ll

X
P

S
1
3

S
tr

e
ss

te
st

,
D

R
A

M
E

n
e
rg

y
g
ra

p
h

67

F
ig

u
re

4
4
:

D
e
ll

X
P

S
1
3

S
tr

e
ss

te
st

,
P

a
ck

a
g
e

T
o
ta

l
E

n
e
rg

y
g
ra

p
h

F
ig

u
re

4
5
:

D
e
ll

X
P

S
1
3

S
tr

e
ss

te
st

,
B

a
tt

e
ry

G
ra

p
h

68

both situations, we can see a similar general trend in the graph corresponding to a sharp
initial spike following a plateau in the graphs. In both graphs, we can also clearly see a
sharp distinction in energy consumption between the background and multithreaded exam-
ples. The distinction between two and four CPU stress test are less clear from the battery
test compared with the package test. This is likely because the battery measurements are
less accurate due to variability in temperatures and device performance.

4.4.3 Desktop vs Laptop

In addition to the previous experiment, the process was repeated on both a gaming desktop
platform and a modern laptop. The main idea for this experiment was to see if there would
be a noticeable difference in energy patterns for desktops and laptops. The other main goal
of this test was to see if the same trend in energy consumption per core follows on other
platforms. This test is important because it demonstrates the capability of the system for
generalising a energy consumption trend across different platforms.

4.4.3.1 Gaming Desktop

The first aspect to evaluate was the results gathered from the gaming desktop. These can
be viewed in Figures 46 and 48. These graphs are also quite interesting from a energy per-
spective, especially when developing programs. From Figure 46, we can observe some major
differences compared to the results gathered from the laptop CPU test used in Figure 42.
The first and most striking difference being the clarity of the results gathered relative to
the laptop results. In this case, the results are well-defined with minimal deviation with
respect to energy results. The standard deviation in this case for all the results present for
the energy consumption of the CPU package are less than 1 million microjoules per second.
This is in comparison to the same stress test on the laptops which all have a maximum
standard deviation of 1.4-2.5 million microjoules per second for the package energy. There
are multiple possible explanations for this large difference. This includes potentially an
impact caused by thermal throttling in the case of the laptop. Alternatively, this could also
be explained by the difference in governor used. In this case, the laptop p-state governor
may prioritise power-consumption over the more balanced governor used by the desktop.
Another potential explanation could be the difference in architecture between the KabyLake
and Broadwell processors although this aspect would be difficult to measure without a large
sample size. In any case, all of these issues demonstrate that the same test varies across
platforms, as you would expect for systems with different hardware.

Another interesting aspect of this test is the energy rate used per core. For each addi-
tional CPU thread stressed, the desktop has a consistently higher energy consumption per
core used. For example, the difference between the background and 1 core is approximately
8.4W. Similarly, the difference between 2 and 3 cores is about 9.3W of additional power
consumed. However, the difference between stressing cores 3 and 4 is negligible, with only
an addition 0.3W on average being consumed. This can be observed from Figure 46, where
we can observe a orange line almost matching the green line. Possible reasons for this be-
haviour includes the possibility that at least one core is always reserved for the Operating
System. This isn’t to say that stressing with an additional core does not have an effect.
In Figure 48, we can observe a significant variability in the Uncore energy rate specifically
for the 4 thread stress test. This is a surprising result, as the same trend is not observed

69

F
ig

u
re

4
6
:

G
a
m

in
g

D
e
sk

to
p

,
S

tr
e
ss

te
st

,
C

o
re

E
n

e
rg

y
g
ra

p
h

F
ig

u
re

4
7
:

G
a
m

in
g

D
e
sk

to
p

,
S

tr
e
ss

te
st

,
P

a
ck

a
g
e

T
o
ta

l
E

n
e
rg

y
g
ra

p
h

70

F
ig

u
re

4
8
:

G
a
m

in
g

D
e
sk

to
p

,
S

tr
e
ss

te
st

,
U

n
c
o
re

E
n

e
rg

y
g
ra

p
h

71

on laptop computers. Within Intel’s documentation, the components referred to as Uncore
are not explicitly defined as to what the energy domain refers to. In this case, it is likely
to correspond with potentially cache or memory controllers as this behaviour matches the
reduced energy consumption displayed in Figure 43.

Another important aspect of these graphs relative to the laptop results is the difference
between the package total energy and the core energy. In the desktop case, the graphs show
an average of about 7W consumed between the cores and there rest of the package. In
comparison, the laptop measures a difference of only 1.5W. This large difference in energy
consumption per core, and the energy consumed for the rest of the package can likely be
explained by the fact that the laptop processor is likely designed to be more efficient. These
differences are important to consider depending on the target application, because in some
cases it appears to be more energy efficient to use more cores on the laptop relative to the
desktop.

4.4.3.2 Modern Laptop

In this section, we explore the results gathered from a modern laptop from the same ar-
chitecture as the desktop. These can be viewed from Figures 49 and 50. The first striking
information gathered from this test was the difference in energy measurements from a mod-
ern laptop in comparison to the Dell XPS 13. In this case, the results gathered in Figure 49
follow closer the graphs generated with the gaming desktop. The results gathered are dis-
tinct with little spread or variation in the data. This again is likely to be due to potential
thermal throttling on the Dell XPS 13 relative to the newer laptop. From this graph, we
can also observe how threads 5-8 do not have a noticeable energy impact. This observation
follows the hyperthreading observations noticed within the 4 threaded CPU test previously.
In Figure 50, we can see the memory impact of the various tests. In this case, nearly all of
the results have a memory energy consumption of around 0.5J. The exception in this case
being the single thread test which do not appear particularly reliable.

Another possible theory behind the difference is likely to be due to the difference between
the Intel I7 5500U and the i7 7700HQ. The Dell XPS 13 laptop is using an ultraportable
processor. For this reason, it may have different power peaks relative to the Dell XPS 15.
This test further corroborates that particular energy behaviour on different Intel platforms
are not necessarily consistent. For this reason, programs should be tailored specifically to
a target platform.

72

Figure 49: Dell XPS 15, Stress test, Package Total Energy graph

Figure 50: Dell XPS 15, Stress test, DRAM Energy graph

73

4.4.4 Governor Choice

As discussed in the previous selection, one possible reason for the difference in energy
consumption could likely be due to different governors. This governor is responsible for
managing the power states of the CPU. In this experiment, the aim was to eliminate this
as a variability in the results. To do so, the test repeated the same stress experiment used
previously but with the Intel P-state governor. This governor has recently been patched in
Kernel 4.10 to ensure more performant behaviour on desktop platforms [61].

Figure 51: Gaming Desktop, Pstate vs CpuFreq Governor test, Package Total
Energy graph

From Figure 51, we can see an overall picture of the energy rate for both governors. In
general, both governors seem to have the same power behaviour. The exception to this is
the single core performance at around 150000 milliseconds during which we can see a spike
in energy.

The Uncore graph in this case, is a lot more interesting. In this case, comparing Fig-
ures 52 and 48, we can see that the general trend for multiple cores appears to be the same.

74

Figure 52: Gaming Desktop, Pstate vs CpuFreq Governor test, Uncore Energy
graph

The exception is the single core energy consumption. In this case, there is a large vari-
ability in the single core performance test which was not observed with the CPUFrequency
governor. This is observed from the purple line which is significantly lower than the rest
of the graph. This likely adds to the theory that the governor may introduce variability in
the energy consumption in exchange for power efficiency.

75

4.4.5 BigBuckBunny Mplayer Test

The tests so far have been designed to test the behaviour of various CPU platforms under
extreme workloads. These can be particularly unrealistic in real world situations. For this
test, the project is exploring a more realistic benchmark of a typical workload. This test
involved running Mplayer’s benchmark [62] with various number of threads. This test works
by testing the video playback of a 1080p video titled BigBuckBunny [63]. This test was
performed on the desktop as this test was specifically designed to test the differences in
physical cores. The results of this test can be observed from Figures 53-55.

The results of this test were particularly interesting as it mainly corroborates the guidance
provided by Intel with respect to multithreading. The first interesting point to observe with
this test is the reduction in execution times for the different physical core cases. In this
case, we can observe a significant reduction in execution time by running the test with two
threads relative to the one. The single thread example ran in around 364 seconds whilst the
two thread test ran in 217 seconds respectively. This is a reduction of 40% execution time
which is significant. In contrast, the four thread and three thread tests both ran with an exe-
cution time of 174 and 181 seconds respectively. A gain of 52% and 50.2% in execution time.

When comparing the average package energy consumption for this test, we found that
the single thread consumed 8,175J. The two thread test ran with an energy consumption
of 5,793J. Finally the three and four thread tests consumed on average 6,535J and 5,972J
in total. This result is interesting as it shows that the two thread case is the most efficient
solution compared to all the other solutions. It’s also useful for a usability perspective as
consuming all the four threads significantly impacts temperature and usability of the plat-
form. This test demonstrates the utility of PowerKap for enabling developers to be aware
of these decisions.

76

F
ig

u
re

5
3
:

G
a
m

in
g

D
e
sk

to
p

,
B

ig
B

u
ck

B
u

n
n
y

T
e
st

,
C

o
re

E
n

e
rg

y
g
ra

p
h

F
ig

u
re

5
4
:

G
a
m

in
g

D
e
sk

to
p

,
B

ig
B

u
ck

B
u

n
n
y

T
e
st

,
P

a
ck

a
g
e

T
o
ta

l
E

n
e
rg

y
g
ra

p
h

77

F
ig

u
re

5
5
:

G
a
m

in
g

D
e
sk

to
p

,
B

ig
B

u
ck

B
u

n
n
y
,

U
n

c
o
re

E
n

e
rg

y
g
ra

p
h

78

4.4.6 Choice of Algorithm

As discussed in the background section, the choice of algorithm can have a significant effect
in the energy efficiency of a program. One of the goals of the profiler was to be able to
distinguish the different energy results for the various algorithms. To test this, a benchmark
was created that compared the effect of various sorting algorithms. This mainly comprised
of 4 algorithms consisting of insertion sort, merge sort, bubble sort and randomised quick
sort. For each test, the procedure was as follows.

1. Delete all previous results from fileSystem

2. Create a random generated array from a specific seed

3. Write array to disk

4. Sleep for 5 seconds

5. Read array back

6. Perform sorting algorithm

7. Sleep for 5 seconds

8. Write results to disk

This procedure was chosen to try and eliminate potential influences of caching by reading
the results from disk. This approach didn’t quite work which will be discussed later. How-
ever, it did seem to produce noteworthy results. The graphs below were generated from 3
separate runs of the sorting test.

Based on the results shown in Figure 56, we can see some useful observations from this
execution of the program. When timing the various sorting algorithm, it was found that
Insertion sort algorithm took about 30 seconds, Merge sort 0.12 seconds, Bubble sort 500
seconds and randomised quick sort 0.08 seconds. Based on this timing, and the correspond-
ing energy graph, it is quite clear to identify the portions of code corresponding to the
insertion sort and merge sort. It also highlights specifically the importance of using an ap-
propriate algorithm. The merge sort and quick sort algorithms happened before and after
the bubblesort test. In this case, the various sorting algorithms are indistinguishable from
the thread sleep stage when the energy consumption of the system effectively matches the
background. The reason for this is partly due to sample rate and the speed at which the
algorithm completed.

The sleep times in this case can be seen at the points in which the green and red lines
meet. These results are corroborated by the battery graph in Figure 59, where we can see
the red line effectively match the green line within the graph.

Another interesting aspect of the graph are the spikes in the background energy at around
the 100,000 millisecond and 200,000 millisecond points. This large variability was likely
caused by background GPU processing. This can be seen in Figure 60 which compares the
Uncore and the package total. When we compare the two graphs, we can see that the fluc-
tuations appear to occur at points in which the Uncore values seem to change. These seem

79

to demonstrate the influence of these Uncore energy totals with rerespect to the package as
a whole.

These results are useful as they demonstrate how algorithm choice can clearly impact energy
choice. These will hopefully be useful for developers to at least be capable of distinguishing
energy inefficient algorithms and behaviours. Unfortunately, this test also demonstrates
some of the flaws and difficulties with this methodology. Namely that it can be difficult to
estimate the energy of particularly optimised or in this case quick code.

Figure 56: Dell XPS 13, Sorting Test,
Core Energy graph

Figure 57: Dell XPS 13, Sorting Test,
DRAM Energy graph

Figure 58: Dell XPS 13, Sorting Test,
Package Total Energy graph Figure 59: Dell XPS 13, Sorting Test,

Battery Graph

80

Figure 60: Dell XPS 13, Sorting Test, Uncore to Package Total Graph

4.4.7 Asynchronous vs Busywait

The main purpose of this test was to evaluate the capability of PowerKap for detecting en-
ergy inefficient behaviour with respect to asynchronous and busy-wait designs. In this test,
we spawn a secondary thread that is responsible for notifying the parent thread. Each test
runs for 5 minutes, with one test checking the effects of a while (true) loop without sleep.
The other test performs the same test but with the parent thread waiting for a notification.

From Figures 61 and 64, we can clearly see a noticeable effect caused by the busy-wait
test relative to the asynchronous notification test. In this case, the loop appears to con-
sume approximately 5 additional watts during each second of the busy wait loop. This can
be observed from the green line which is significantly higher for the first half of the exe-
cution. In contrast, the asynchronous loop consumes an energy consumption that matches
the background as shown by the green and red lines effectively matching. This at least
demonstrates that PowerKap is capable of identifying such problematic energy behaviour.

81

Figure 61: Dell XPS 13, BusyWait Test,
Core Energy graph

Figure 62: Dell XPS 13, BusyWait Test,
DRAM Energy graph

Figure 63: Dell XPS 13, BusyWait Test,
Package Total Energy graph

Figure 64: Dell XPS 13, BusyWait Test,
Battery Graph

82

4.4.8 Effects of Timers

Another important concept introduced in the background section was the importance of
timers. In this case, the test was to evaluate the energy consumption of various timer based
functions on the platform. This capability was tested using PowerKap, to see if there is an
effective impact of running the profiler with a smaller timing interval.

In this test, we can see a lot from the energy metrics gathered from the CPU. Namely
we can compare the energy performance in the 10ms, 100ms and 1 second sample rate.
From Figures 65 and 67, one can see some useful general trends with respect to energy con-
sumption of PowerKap. In particular, the sampling rate for the 10ms example consumes
significantly more energy compared to the 100ms and second sampling rate. This is demon-
strated by the red line which is significantly higher than the green and blue lines. This trend
is matched by the memory and core energy consumption. The result corroborates what was
discovered during the background reading that timing loops can significantly impact energy
usage.

In terms of actual energy consumption, in this case we compare the average energy con-
sumed by the package during these runs. For the 10ms sampling test, the energy consumed
by the package was approximately 6,385J. The 100ms test consumed on average 6006J for
the CPU whilst the one second sampling rate consumed 5887J. For reference, the back-
ground sampling only consumed approximately 5822J. As such, the 10ms sampling rate
consumed on average 10% more energy in comparison to the pure background run. The
100ms sampling test in comparison consumed on average 3% more energy relative to the
background run. Finally, the one second sampling rate only consumed 1% more energy
relative to the background.

Figure 68 also shows the battery statistics gathered from this test. Unfortunately, the
results gathered are less clear cut than the Core energy consumption. In this case, the
standard deviation between results are not quite enough to make definitive conclusions.
Possible reasons for this is likely to do with temperature and battery condition fluctuations
at the time of the test.

4.4.9 Reproducibility of the results gathered

One of the important aspects when attributing the energy results for a program is the im-
portance of the ability to reproduce the results. For this experiment, this test is designed to
explore the reproducibility of the physical measurements gathered across the same hardware
but with different ages and usage. This test was done on the two identical Toshiba laptops.
The idea in this case is to see if the results generated from PowerKap can be attributed
towards a platform as a whole.

In this test, the project uses numerous CPU and memory based tests that are also available
through other benchmark suites. These tests cover a large set of common CPU bound tasks
such as cryptography, ray tracing, video playback and a specific memory benchmarks. These
are all common tests that are used in various benchmarks to evaluate CPU performance
[64, 33, 65].

83

Figure 65: Dell XPS 13, Timer Com-
parison Test, Core Energy graph

Figure 66: Dell XPS 13, Timer Com-
parison Test, DRAM Energy graph

Figure 67: Dell XPS 13, Timer Compar-
ison Test, Package Total Energy graph

Figure 68: Dell XPS 13, Timer Com-
parison Test, Battery Graph

84

4.4.9.1 John the Ripper

The first test was a benchmark provided within a open source program called John the rip-
per. This program is a password cracking utility designed to break passwords with various
hashing algorithms. The results of the two tests are displayed in Figures 69-70.

There are some interesting points to note from the comparison graphs listed above. In
Figure 69, we can see the total package energy consumption for both laptops. In both
cases, the energy trend is mostly similar for both programs. The exception in this case is
the Uncore graph in Figure70 in which we can see a distinct difference between the two
executions. In one case, there are far more pronounced spikes in one laptop relative to the
other graph. These seem to occur at the same peak points in the other laptop. This could
be for various reasons including memory degradation.

Figure 69: Toshiba Comparison, John
The Ripper Test, Package Total Energy
graph

Figure 70: Toshiba Comparison, John
The Ripper Test, Uncore Energy graph

85

4.4.9.2 OpenSSL

This test runs an OpenSSL benchmark designed again to measure the energy consumption
for a commonly used cryptographic function. In this case, the test measures the speed of
the laptops when performing AES-256-cbc.

Observing the above graphs, we can see a similar trend to that noted previously. In this
case, the general package energy remains roughly similar for both platforms. The main
exception being the results generated for the uncore graph in Figure 72. From the graph,
we again observe a difference in the spikes during the execution of both programs.

Figure 71: Toshiba Comparison,
OpenSSL Test, Package Total Energy
graph

Figure 72: Toshiba Comparison,
OpenSSL Test, Uncore Energy graph

4.4.9.3 STREAM Benchmark

The STREAM benchmark [66] is an open source academic benchmark designed to evaluate
the sustainable memory bandwidth. In this case, the aim of the project was to evaluate a
cache only benchmark to see if the energy consumption is similar on both platforms. From
Figures 73-74, we can see the result of this experiment. The result of this experiment is
particularly interesting. In this case, both lines follow much closer relative to the previous
graphs. Possible reasons for this is because this benchmark is designed to stress test purely
the cache structure. As such, it may not be as massively affected by the difference in
memory.

86

Figure 73: Toshiba Comparison,
Stream Test, Package Total Energy
graph

Figure 74: Toshiba Comparison,
Stream Test, Uncore Energy graph

4.4.9.4 Sunflow benchmark

The Sunflow benchmark, is a Java benchmark provided by the DaCapo Benchmarks [67].
This is a noteworthy benchmark used in famous publications including John Hennessey and
David Patterson’s book “Computer Architecture: A quantitative approach” [65]. Within
the book, the authors use it to accurately compare the performance of this test against
various architectures. For this test, we used the Sunflow benchmark which performs ray
tracing on images.

The graphs shown in Figures 75 and 76 are particularly interesting as both laptops ap-
pear to follow almost exactly the same execution and energy profile. However, there does
seem to be a large variance in the execution especially between 0 and 3000 seconds and
3500-4000 seconds.

4.4.9.5 MPlayer

The final test used was a similar test used earlier. This was the Mplayer test which is
designed to test the energy performance of a CPU when performing a playback of BigBuck-
Bunny. In this test, we evaluate the accuracy of the energy measurements for both laptops.
The graphs of these can be seen in Figures 77 and 78. This test was interesting as it demon-
strates some of the issues with assuming the same energy profile for identical hardware. In
this case, the two laptops performing the same test from the same storage device result
in entirely different execution and energy consumption profiles. Possible reasons for this
are likely to be due to age of hardware. We have already demonstrated that one laptop
consumes different Uncore energy usage, it is not unlikely that the same applies to other
aspects to the hardware. For example, in this case, one laptop may have a slower bandwidth
when reading the file from the USB. Other possible reasons is likely again to be for thermal
reasons. This is not unreasonable for laptops with large use which could accumulate dust.
This explains the difference between this benchmark and the desktop result.

87

Figure 75: Toshiba Comparison, Sun-
flow Test, Package Total Energy graph

Figure 76: Toshiba Comparison, Sun-
flow Test, Uncore Energy graph

Figure 77: Toshiba Comparison,
MPlayer Test, Package Total Energy
graph

Figure 78: Toshiba Comparison,
MPlayer Test, Uncore Energy graph

88

4.4.9.6 Summary of Benchmark Findings

To conclude from these various benchmarks, this project has demonstrated that in certain
aspects, the energy profile for various components act in very similar ways. However, this
is not guaranteed and can be affected quite significantly by factors relating to the age of
the hardware. In this case, we unfortunately only have a sample of size of two, so it is not
enough to form conclusions. However, this trend does indicate that this approach may not
be suitable for generalising energy performance across hardware.

4.4.10 Temperature Sensor Data

Another important point that was highlighted with the stress tests was the importance of
temperature information. These appear to greatly affect that accuracy of results due to
thermal throttling. This chapter evaluates the capability of the system for detecting ther-
mal information. The first test, comes from the thermal sensors gathered during the laptop
stress test. The results of this can be observed from Figure 80.This image shows the results
of the thermal data captured by PowerKap. The main limitation in this case, is the quality
of the sensors used. For example, in the image, we can observe the lime green line rep-
resenting a thermal package referred to as “pch wildcat point” which continuously reaches
negative values. This is definitely an inaccurate sensor that represents the temperature of
the chipset of the laptop. Other challenges include the multiple similarly named thermal
sensors present on the laptop, with very little information as to what each sensor represents.

This lack of information can be even worse on custom builds such as desktops which often
come with even fewer thermal sensors. This can be observed in the same stress test per-
formed on the desktop as seen in Figure 81.

For each of these thermal sensors, many components do not register any particular informa-
tion with respect to granularity. This can be seen in Figure 79. This image demonstrates
part of the limitations of the system currently with respect to thermal interfaces. Namely,
the current open interfaces are heavily underused and do not currently offer granular infor-
mation with respect to components. This is particularly problematic as it may be useful to
know aspects such as register temperatures and cooling energy consumption.

Figure 79: Information about a thermal sensor on the desktop. This was pro-
vided by the “dmidecode” command.

89

Figure 80: Thermal Data XPS 13 stress test, CPU 4

90

Figure 81: Thermal Data Gaming Desktop stress test, CPU 4

4.4.11 IO Capturing Capability

This section explores the capability of PowerKap with some IO driven aspects. These as
shown previously, can be costly from an energy perspective. The main idea of this test is
to see the capability of the network and disk techniques that PowerKap uses.

4.4.11.1 Ping Test

The first test performed, was a baseline test to prove the capability system and to demon-
strate that it works. The main approach of doing this was to use the default Linux ping
tool with the Google DNS address 8.8.8.8. Each ping was sent at a 30 second interval with
a packet size of 1024 bytes. The results of this test can be seen in Figures 82.

The results from Figure 82 are useful as it demonstrates that PowerKap can accurately
capture network data. In this case, it was able to accurately capture all data sent at a
regulate interval with the correct packet size. Within the results there are interesting data
points, namely the small spikes in network traffic that periodically occur. These points
correspond to data points that periodically occur to maintain the virtualised network. This
can be beneficial as it gives an accurate representation of how the deice would act in a real
world test. However, such data is not directly relevant to the program.

91

F
ig

u
re

8
2
:

D
e
ll

X
P

S
1
3
,

N
e
tw

o
rk

S
e
n
t

B
y
te

s,
p

in
g

te
st

,
1
0
2
4

p
a
ck

e
t

si
z
e

3
0

se
c
o
n

d
in

te
rv

a
l

F
ig

u
re

8
3
:

D
e
ll

X
P

S
1
3
,

N
e
tw

o
rk

R
e
c
e
iv

e
d

B
y
te

s,
1
0
2
4

p
a
ck

e
t

si
z
e

3
0

se
c
o
n

d
in

te
rv

a
l

92

F
ig

u
re

8
4
:

D
e
ll

X
P

S
1
3
,

N
e
tw

o
rk

S
e
n
t

B
y
te

s,
p

in
g

te
st

,
1
0
2
4

p
a
ck

e
t

si
z
e
,

1
se

c
o
n

d
in

te
rv

a
l

F
ig

u
re

8
5
:

D
e
ll

X
P

S
1
3
,

N
e
tw

o
rk

R
e
c
e
iv

e
d

B
y
te

s,
p

in
g

te
st

,
1
0
2
4

p
a
ck

e
t

si
z
e
,

1
se

c
o
n

d
in

te
rv

a
l

93

The test in Figure 84, demonstrates the same ping test but at the default interval of one
second. From this graph, we can see that the graph is mostly accurate with the exception
of certain spikes. Even in this case, all the traffic is accounted for.

One of the main limitations of the technique used by this approach is the fact that the
precision of the data depends heavily on the sampling rate. In this way, valuable informa-
tion with respect to the times in whcih traffic is sent, is lost. To avoid this, it’s recommended
to repeat the test with a smaller sample size that just records network traffic.

4.4.12 DiskIO Capturing Technique

One of the aims of the algorithm test presented previously was to eliminate potential caching
issues. To do so, the project deliberately stored and read data from disk. Unfortunately,
this test also demonstrated several flaws with the current approach of measuring disk data.
In this case, we can observe this from the following figures.

From Figure 86, we can see several issues with respect to the data. In particular, each
test case is designed to be about 5.5MB in size. However, from what we can observe from
the graph, no data is actually being read beyond an initial 8800 bytes. The reason for this,
is likely to do with space and time locality optimisation present in the OS and Java. In
particular, as we write the data to disk, it is likely to still be present in various caches. For
this reason, when we subsequently request data from the disk, it fetches the data from the
cache anyway. This kind of approach highlights the main flaw in capturing data just purely
by the bytes send and received to the storage controller. This approach also doesn’t really
work as the nature of caching can greatly affect subsequent executions. To alleviate this,
the current approach is to simply account for the first execution. In the future, the program
can be improved by dropping the cache before profiling.

echo 3 > / proc / sys /vm/ drop caches

This command sends a signal to the kernel to clear the page cache and free slab objects.
Unfortunately, such a command at present requires root privileges which makes it unsuit-
able for PowerKap.

Another limitation gathered from Figure 87 demonstrates a limitation of the methodology
of the program. At present, the method of capturing the information works by sampling
precisely the disk data stats present in Procfs. Unfortunately, there is a limitation in cap-
turing data at the end of the process. This is especially the case for data that is written just
before program termination. In such cases, the data may be lost due to the Procfs directory
being destroyed before PowerKap could capture this additional data. This can be seen from
the results which show a file write of 38.6MB in comparison to the 42MB actually written
to disk. For this reason, this approach is not particularly suitable for capturing disk data
information.

94

F
ig

u
re

8
6
:

D
e
ll

X
P

S
1
3
,

S
o
rt

in
g

T
e
st

,
IO

R
e
a
d

G
ra

p
h

F
ig

u
re

8
7
:

D
e
ll

X
P

S
1
3
,

S
o
rt

in
g

T
e
st

,
IO

W
ri

te
G

ra
p

h

95

4.4.13 Case Study: Browser Comparison

The last test used to evaluate the profiler was a test designed to compare the relative energy
consumption when displaying a YouTube video. This was the test that originally inspired
the creation of this program. For this test, the procedure was simply to open a default in-
stance of Mozilla Firefox 53 and Google Chrome 59 that both open a 1080p YouTube video.
In both cases, the video is using a VP9 encoding. This is important as this encoding is not
hardware accelerated on both browsers and the hardware. The test each ran for 5 minutes,
with the video active whilst the browser cut off mid way through the video. This test was
particularly useful for demonstrating the robustness of PowerKap as Google Chrome makes
use of advanced features such as namespaces and multi-process execution. The first aspect
to evaluate is the total energy consumption according to the battery and CPU.

In Figures 88-91, we can see the energy results of executing the test. What is clear across
all of the graphs is that Mozilla Firefox appears to be significantly more power efficient effi-
cient than Chrome for browsing YouTube. In this case, Google Chrome appears to consume
more total energy, Uncore energy and DRAM energy. This is likely for a few reasons such
as the multiprocess and sandboxing used in Chrome. These results are corroborated by the
battery statistics.

In addition to this, PowerKap also captures various IO traffic. The results of this can
be observed in Figures 92- 95.

Figure 88: Browser Comparison, Package Total Energy Graphs

96

Figure 89: Dell XPS 13, Browser Comparison Test, Uncore Energy Graphs

Figure 90: Dell XPS 13, Browser Comparison Test, DRAM Energy Graphs

97

Figure 91: Dell XPS 13, Browser Comparison Test, Battery Graph

Figure 92: Dell XPS 13, Browser Comparison Test, Network Received Bytes

98

Figure 93: Dell XPS 13, Browser Comparison Test, Network Sent Bytes

Figure 94: Dell XPS 13, Browser Comparison Test, IO Read Bytes

99

Figure 95: Dell XPS 13, Browser Comparison Test, IO Written Bytes

4.4.14 LJEA

The other important feature is the ability to attribute the measurements gathered back
to the program. This is an important step as the ultimate goal for this tool is to enable
developers to be aware of the energy cost of their programs and functions.

4.4.14.1 Graphing Module

The first point to note is that all the measurements gathered and profiled previously were
generated and saved by LJEA. In each case, the module managed to handle a large volume
of data reliably.

4.4.14.2 Energy Trace

Another important feature of the project was the stacktrace, to see if the energy results
gathered could be attributed back to the source code. This approach was tested with the
algorithm benchmark created earlier.

In Figure 96, we can observe the result of the stacktrace along with various execution
points. Within this image, we can observe some limitations with respect to the program.
The first can be the fact that elements one and two are missing from the stack trace. The
reason for this, is because certain events can occur much faster than the sampling rate of
PowerKap. This can be problematic when attempting to attribute energy as simply the in-
formation is lost. One such solution to this problem is to choose a smaller sampling interval
with PowerKap. This as shown previously can affect the energy measurements gathered.
For this reason, this project is unable to gather fine detailed information that occur in a

100

short interval.

That is not to say that the approach does not necessarily work for all cases. In this case,
one possible use is to identify specific code or functions of interest. This can be seen from
the graph in Figure 97. In this case, the stack trace technique was accurate in pinpointing
the points in which the function sorting algorithms occur.

This test, is only able to work on perfectly synchronous code. In this case, it doesn’t
rely on any external factors such as an external database, networking, or even hard disks.
This technique is unlikely to work reliably for such codebases as this technique requires aver-
aging the time stamps across multiple runs to find an accurate marker point. Alternatively,
this approach may only work when evaluating a program over a single run.

Figure 96: Algorithms StackTrace with all stackpoint markers enabled

101

Figure 97: Algorithms StackTrace with all stackpoint markers enabled

102

5 Conclusion

To conclude, we have demonstrated the capability of measuring the energy consumption of
a given program using physical measurements on Linux. All of this is possible within user
space. This was achieved by gathering various physical data counters along with making
use of advances in the Linux Kernel. In addition, this project integrates the results of these
energy metrics into a common integrated development environment (IDE). Through this
tool, it is now possible to identify potential problematic power behaviour such as busy loops.
It is also now possible for developers to see the actual energy consumption of their program
and make further analysis. We have shown this in our case study of BigBuckBunny video
player, where we have demonstrated that the two threaded program was more efficient than
the four threaded test. This kind of result allows developers to better adjust their code to
maximise energy efficiency for a target platform.

In addition, this project has explored the difference in energy consumption across vari-
ous hardware platforms. In particular, we evaluated using common benchmarks to see if
such techniques can be used to create formal contracts on energy consumption. Our bench-
marks have shown that even across identical hardware and operating systems, there can
be differences in the energy profile. We also found that different platforms have different
energy requirements especially with respect to desktop versus laptop energy consumption.
As such, it may be inaccurate to assume that the same energy preserving behaviour applies
across hardware. This is even the case on identical hardware where uncontrolled factors
can result in different energy profiles. In particular, it may be a challenge to guarantee a
generalised energy consumption for a program across multiple platforms and hardware.

In this project, we have shown the capability of the program in distinguishing real world
programs energy profiles. In this case, we have tested two commercial browsers and came
to the conclusion that Firefox is significantly more energy efficient on this particular Dell
XPS 13 9343 laptop when watching YouTube. This conclusion may not apply universally
as we have shown that in some of our hardware analysis that not all platforms demonstrate
the same power curves.

From PowerKap, we can also conclude the effectiveness of the new virtual adapter tech-
nique. In our tests, we have demonstrated that it is capable of accurately measuring the
network usage of a given program.

103

6 Recommendations for Future Work

In our evaluation of PowerKap, we have demonstrated many flaws in the current issues
of using physical counters especially in capturing disk and temperature information. This
section expands upon this, by exploring potential approaches to improve PowerKap to
mitigate against these issues.

6.1 PowerKap

6.1.1 Expanding the interfaces

It would be useful to expand PowerKap to become a more general profiler. Within the
background section, we have described multiple forms of interfaces that are each useful for
a specific hardware configuration and purpose. It would be particularly useful in this re-
spect to expand to gain data from say the Perf or PAPI interface. These structures already
come with additional information which itself can be useful for program profiling. This
can include various counters and data such as page cache miss information and the specific
times in which a thread is active or sleeping. This approach would come with a trade-off in
that they require root and additional configuration. It would however, be useful to gather
these metrics if they are available.

In addition to this, there are scopes to expand the energy interfaces gathered such as
the GPU power and energy consumption. This can be quite complex as currently the GPU
market on Linux is quite fragmented between proprietary and open source drivers. Cur-
rently the only the methodology of interacting with Nvidia graphics power data is through
PAPI. Each mechanism often comes with its additional configuration and processing.

6.1.2 Sysfs/Procfs/Linux Interfaces

Another issue with respect to power profilers on Linux is the inconsistency across Kernel
versions. This can be particularly challenging as in certain versions, entire directories may
shift. This can be problematic for estimating energy and would likely break the profiler.
Historically, this was the case as the entire Battery and ACPI information were present
in the Procfs directory. In this regard, it would be useful to have a unified systemcall or
interface that gathered most of the energy metrics. This would save energy when profiling
as currently various techniques are necessary to interact with each attribute separately. At
present, the GNU utils do provide some interfaces for resources, this is mainly through the
Resources.h header [68]. This interface gives a particularly useful set of metrics relating to
the resource consumption of a process. It would be particularly useful to have a similar
interface available for energy counter metrics.

6.1.3 Asynchronous computing

Another major challenge which wasn’t dealt with particularly effectively is the problem with
asynchronous devices in computers. This is particularly problematic in scenarios which rely
on an external factor such as a network response from a server. In these contexts, Pow-
erKap is not particularly effective past the first run. In order to improve this situation, it
is recommended to attempt the approach used by eProf. In this case, it would be useful to
create an energy model for these asynchronous network and disk attributes. The idea being

104

that whenever a program requests a certain amount of data from a network card, or hard
disk, this model is used to estimate the energy consumption of this request.

The main reason this approach wasn’t currently adopted is mainly due to the fact that
the energy estimation for generating this model cannot currently be done from software
alone. This is because additional external power meters are necessary to gain the physical
energy values required for generating the energy model.

6.1.4 Machine Learning and Model Generating

At present, the main technique of estimating the energy consumption of a program is quite
simplistic. In this case, the code currently just maps the execution with the physical energy
counter metrics. In the future, it would be particularly useful to perhaps use an intermedi-
ate form of the code such as JavaByteCode. By analysing patterns and blocks, PowerKap
may be able to generate a more generalised database with respect to energy consumption.
This kind of approach would be useful as at present, measuring the energy consumption
by execution time can take a significant amount of time. For example, each benchmark
used in the evaluation section took significant amount of time to generate, in particular in
the order of minutes and hours. This is unacceptable for most developers who would like
to know the energy consumption within seconds to minutes. This can only be done from
analysing and attributing energy properties with source code.

This model based approach may also be useful for generalising the energy consumption
for any input. At present, PowerKap only works on test cases and scenarios where the
input and program is already constructed. In the future, it would be useful to be able to
make a general assumption or estimate of the energy consumption based on any input.

6.1.5 Handling Thermal Spikes

One major issue at the moment when evaluating programs is the issue of understanding
what aspect of the device is responsible for potential variations during the execution. This
can be observed in our evaluation graphs by certain areas with large standard deviation.
With such small sample sizes used during repeated execution, it is currently not possible
to eliminate energy points as anomalous. For this reason, the current method of gathering
energy information is susceptible to large spikes. These can be caused for various reasons
including temperature or hardware degradation. In the future, it would be useful to be able
to trace the origin of these spikes and perhaps filter them out. It would be useful to design
PowerKap to detect the general trends across a platform and to filter these results out.

6.2 LJEA

6.2.1 Introducing code suggestions

In the context of AEON, the plugin is capable of discovering poor energy behaviour such
as the use of improper wake locks. This capability can be extended into LJEA now that we
can measure the energy profile of a given piece of code. In this case, the tool could be used
to test various input and conditions, such as different data structures or threads. Using the
information gathered, we can tune the program to optimise for a particular platform. For
example, in the Mplayer evaluation benchmark, we were able to deduce that the optimal

105

energy consumption for MPlayer was to use two threads rather than four. If this capability
was available automatically, this product could greatly improve energy efficiency of software.

6.2.2 Expanding to other IDEs and Languages

Part of the reason this project has split the power profiler and the plugin was so that it
could be used for different languages. As such, this project is capable of being extended to
other IDEs such as kDevelop or Eclipse.

106

References

[1] Erol Gelenbe and Yves Caseau. The Impact of Information Technology on Energy
Consumption and Carbon Emissions. Ubiquity, 2015(June):1:1–1:15, June 2015. ISSN
1530-2180. doi: 10.1145/2755977. URL http://doi.acm.org/10.1145/2755977.

[2] Alison Coleman. How much does it cost to keep your computer online? (Lots, it turns
out), April 2017.
[Article], Available: http://www.telegraph.co.uk/business/energy-efficiency/

cost-keeping-computer-online/, Accessed on 31/05/2017.
[3] Anders S. G. Andrae and Tomas Edler. On global electricity usage of communication

technology: Trends to 2030. Challenges, 6(1):117–157, 2015. ISSN 2078-1547. doi:
10.3390/challe6010117. URL http://www.mdpi.com/2078-1547/6/1/117.

[4] Chris Edwards. Lack of Software support marks the low power scorecard at DAC. July
2011.
[Article] Electronics Weekly 15-21 July 2011—No. 2072, Accessed on 05/12/2016.

[5] POWERTOP. Powertop User’s Guide. Technical report, 2015.
[Online], Available: https://01.org/powertop/overview, Accessed on 27/12/2016.

[6] TURBOSTAT. Turbostat Man Page. Technical report, 2010.
[Online], Available: http://manpages.ubuntu.com/manpages/precise/man8/

turbostat.8.html, Accessed on 27/12/2016.
[7] POWERDEF. Oxford Power Definition.

[Online], Available: https://en.oxforddictionaries.com/definition/power, Ac-
cessed on 09/01/2017.

[8] chrisdavidmills wcosta, nnethercote. Power Profiling Overview, 2015.
[Online] Available: https://developer.mozilla.org/en-US/docs/Mozilla/

Performance/Power_profiling_overview, Accessed on 08/01/2017.
[9] ACPI. Advanced Configuration and Power Interface Specification, Vol. 6.0a, Chapters

3 and 8. Technical report, ACPI, 2016.
[Online], Available: http://www.acpi.info/, Accessed on 30/12/2016.

[10] Dr.Bob Steigerwald and Abhishek Agrawal. Developing Green Software.
[Report]. Available: https://software.intel.com/sites/default/files/

developing_green_software.pdf, Accessed on 06/01/2017, 2010.
[11] ASPM. ECN ASPM OPTIONALITY, Chapter 5.4.1. Technical report, 2013.

[Online], Available: https://pcisig.com/sites/default/files/specification_

documents/ECN_ASPM_Optionality_2009-08-20.pdf, Accessed on 30/12/2016.
[12] IAORM. Intel R©64 and ia-32 Architectures Optimization Reference Manual, Chapter

13.5. Technical report, 2016.
[Online], Available: http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf, Ac-
cessed on 27/12/2016.

[13] Dr John Bell. Thread Definition.
[Online], Available: https://www.cs.uic.edu/~jbell/CourseNotes/

OperatingSystems/4_Threads.html, Accessed on 09/01/2017.
[14] Cinebench. Maxon Cinebench benchmark tool, 2017.

[Online], Available: https://www.maxon.net/en/products/cinebench/, Accessed on
27/12/2016.

[15] GCC. GCC optimization flags, 2017.
[Online], Available: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.

107

http://doi.acm.org/10.1145/2755977
http://www.telegraph.co.uk/business/energy-efficiency/cost-keeping-computer-online/
http://www.telegraph.co.uk/business/energy-efficiency/cost-keeping-computer-online/
http://www.mdpi.com/2078-1547/6/1/117
https://01.org/powertop/overview
http://manpages.ubuntu.com/manpages/precise/man8/turbostat.8.html
http://manpages.ubuntu.com/manpages/precise/man8/turbostat.8.html
https://en.oxforddictionaries.com/definition/power
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Power_profiling_overview
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Power_profiling_overview
http://www.acpi.info/
https://software.intel.com/sites/default/files/developing_green_software.pdf
https://software.intel.com/sites/default/files/developing_green_software.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN_ASPM_Optionality_2009-08-20.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN_ASPM_Optionality_2009-08-20.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html
https://www.maxon.net/en/products/cinebench/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

html, Accessed on 07/01/2017.
[16] SIMD. Kernel Org SIMD Examples, 2017.

[Online], Available: https://www.kernel.org/pub/linux/kernel/people/geoff/

cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.

html, Accessed on 07/01/2017.
[17] WINDOWSTIMER. Timers, Timer Resolution, and Development of Efficient Code.

Technical report, 2010.
[Online], Available: http://download.microsoft.com/download/3/0/2/

3027D574-C433-412A-A8B6-5E0A75D5B237/Timer-Resolution.docx, Accessed
on 08/01/2017.

[18] Robert Love. Linux Kernel Development (2Nd Edition) (Novell Press). Novell Press,
2005. ISBN 0672327201. Accessed on 11/01/2017.

[19] JIFFY. Linux Jiffy and Tick Rate, 2013.
[Online], Available: http://elinux.org/Kernel_Timer_Systems, Accessed on
07/01/2017.

[20] Jonathan Corbet. Timer Slack. 2010.
[Online], Available: https://lwn.net/Articles/369549/, Accessed on 07/01/2017.

[21] Belinda Liviero. Measuring application power consumption on the Linux* Operating
Systems, 2013.
[Online], Available: https://software.intel.com/en-us/blogs/2013/06/

18measuring-application-power-consumption-on-linux-operating-system

,Accessed on 27/12/2016.
[22] Srinivas Pandruvada. Intel Running Average Power Limit, 2014.

[Online], Available: https://01.org/blogs/2014/

running-average-power-limit-%E2%80%93-rapl, Accessed on 16/12/2016.
[23] Andreas Herrmann. AMD linux hardware power driver (fam15h power).

[Online], Available: https://www.kernel.org/doc/Documentation/hwmon/fam15h_

power, Accessed on 14/01/2017.
[24] ENTRA. Whole-Systems Energy Transparency Project.

[Report], Available: http://entraproject.eu/, Accessed on 05/01/2017, 2012-2015.
[25] ENTRA. Common Assertion Language, Deliverable Number D2.1. Technical report,

University of Bristol, 2013.
[Report], Available: http://entraproject.eu/wp-content/uploads/2014/03/

deliv_2.1_final.pdf, Accessed on 30/12/2016.
[26] ENTRA. Energy Optimization: Basic Static Techniques, Deliverable Number D4.3.

Technical report, Roskilde University, 2014.
[Report], Available: http://entraproject.eu/wp-content/uploads/2014/09/

deliv_4.1.pdf, Accessed on 30/12/2016.
[27] Intel. How to Use Loop Blocking to Optimize Memory Use on 32-Bit

Intel R©Architecture. December 2013.
[Online], Available: https://software.intel.com/en-us/articles/

how-to-use-loop-blocking-to-optimize-memory-use-on-32-bit-intel-architecture,
Accessed on 09/01/2017.

[28] Henry Massalin. Superoptimizer: A Look at the Smallest Program. SIGPLAN Not.,
22(10):122–126, October 1987. ISSN 0362-1340. doi: 10.1145/36205.36194. URL
http://doi.acm.org/10.1145/36205.36194.

[29] Zorana Banković. Study of Possible Static Power Reduction due to Temperature Hot
Spot Reduction provided by Uniform Register Utilization, Attachment D4.1.1.

108

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
http://download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/Timer-Resolution.docx
http://download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/Timer-Resolution.docx
http://elinux.org/Kernel_Timer_Systems
https://lwn.net/Articles/369549/
https://software.intel.com/en-us/blogs/2013/06/18measuring-application-power-consumption-on-linux-operating-system
https://software.intel.com/en-us/blogs/2013/06/18measuring-application-power-consumption-on-linux-operating-system
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://www.kernel.org/doc/Documentation/hwmon/fam15h_power
https://www.kernel.org/doc/Documentation/hwmon/fam15h_power
http://entraproject.eu/
http://entraproject.eu/wp-content/uploads/2014/03/deliv_2.1_final.pdf
http://entraproject.eu/wp-content/uploads/2014/03/deliv_2.1_final.pdf
http://entraproject.eu/wp-content/uploads/2014/09/deliv_4.1.pdf
http://entraproject.eu/wp-content/uploads/2014/09/deliv_4.1.pdf
https://software.intel.com/en-us/articles/how-to-use-loop-blocking-to-optimize-memory-use-on-32-bit-intel-architecture
https://software.intel.com/en-us/articles/how-to-use-loop-blocking-to-optimize-memory-use-on-32-bit-intel-architecture
http://doi.acm.org/10.1145/36205.36194

[Online], Available: http://entraproject.eu/wp-content/uploads/2014/09/

deliv_4.1.pdf, Accessed on 30/12/2016, 2014.
[30] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin. Profiling software for en-

ergy consumption. In 2012 IEEE International Conference on Green Computing and
Communications, pages 515–522, Nov 2012. doi: 10.1109/GreenCom.2012.86.

[31] Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption framework
for distributed java-based systems. In Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering, ASE ’07, pages 421–424,
New York, NY, USA, 2007. ACM. ISBN 978-1-59593-882-4. doi: 10.1145/1321631.
1321699. URL http://doi.acm.org/10.1145/1321631.1321699.

[32] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware application
design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31, August 2008. ISSN 0163-
5999. doi: 10.1145/1453175.1453180. URL http://doi.acm.org/10.1145/1453175.

1453180.
[33] Adel Noureddine. Towards a Better Understanding of the Energy Consumption of

Software Systems. Theses, Université des Sciences et Technologie de Lille - Lille I,
March 2014. URL https://tel.archives-ouvertes.fr/tel-00961346.

[34] David Gonzalez. AEON (Automated Android Energy Optimization), 2016.
[Online], Available: https://plugins.jetbrains.com/idea/plugin/

7444-aeon-automated-android-energy-optimization-, Accessed on 12/01/2017.
[35] Qualcomm. Qualcomm’s Trepn profiler, 2016.

[Online], Available: https://developer.qualcomm.com/software/

trepn-power-profiler, Accessed on 12/01/2017.
[36] Microsoft. Analyse Energy in Store Apps, 2015.

[Online], Available: https://msdn.microsoft.com/en-us/library/dn263062.aspx,
Accessed on 04/05/2017.

[37] VSDEPRECATED. Energy Consumption Counter option in Visual Studio 2017,
2017.
[Online], Available: https://social.msdn.microsoft.com/

Forums/vstudio/en-US/3260a475-eb9e-4c5f-9bf5-14219cdbbc81/

energy-consumption-counter-option-in-visual-studio-profiler-2017?

forum=vsdebug, Accessed on 19/05/2017.
[38] INTELMSR. Intel 64 and IA-32 Architectures software developer manual Vol. 3, Chap-

ter 14.9. Technical report, 2016.
[Online], Available: http://download.intel.com/products/processor/manual/

325384.pdf, Accessed on 04/05/2017.
[39] LINUXMSR. Linux MSR man page.

[Online], Available: http://man7.org/linux/man-pages/man4/msr.4.html, Ac-
cessed on 19/05/2017.

[40] Anand Lil Shilpi. Nehalem: the unwritten chapters.
[Article], Available: http://www.anandtech.com/show/2663, Accessed on
13/06/2017, 2008.

[41] PERF. Perf Linux System.
[Online], Available: https://perf.wiki.kernel.org/index.php/Main_Page , Ac-
cessed on 19/05/2017.

[42] Vince Weaver. Reading RAPL energy measurements from Linux.
[Online], Available: http://web.eece.maine.edu/~vweaver/projects/rapl/, Ac-
cessed on 19/05/2017.

109

http://entraproject.eu/wp-content/uploads/2014/09/deliv_4.1.pdf
http://entraproject.eu/wp-content/uploads/2014/09/deliv_4.1.pdf
http://doi.acm.org/10.1145/1321631.1321699
http://doi.acm.org/10.1145/1453175.1453180
http://doi.acm.org/10.1145/1453175.1453180
https://tel.archives-ouvertes.fr/tel-00961346
https://plugins.jetbrains.com/idea/plugin/7444-aeon-automated-android-energy-optimization-
https://plugins.jetbrains.com/idea/plugin/7444-aeon-automated-android-energy-optimization-
https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.qualcomm.com/software/trepn-power-profiler
https://msdn.microsoft.com/en-us/library/dn263062.aspx
https://social.msdn.microsoft.com/Forums/vstudio/en-US/3260a475-eb9e-4c5f-9bf5-14219cdbbc81/energy-consumption-counter-option-in-visual-studio-profiler-2017?forum=vsdebug
https://social.msdn.microsoft.com/Forums/vstudio/en-US/3260a475-eb9e-4c5f-9bf5-14219cdbbc81/energy-consumption-counter-option-in-visual-studio-profiler-2017?forum=vsdebug
https://social.msdn.microsoft.com/Forums/vstudio/en-US/3260a475-eb9e-4c5f-9bf5-14219cdbbc81/energy-consumption-counter-option-in-visual-studio-profiler-2017?forum=vsdebug
https://social.msdn.microsoft.com/Forums/vstudio/en-US/3260a475-eb9e-4c5f-9bf5-14219cdbbc81/energy-consumption-counter-option-in-visual-studio-profiler-2017?forum=vsdebug
http://download.intel.com/products/processor/manual/325384.pdf
http://download.intel.com/products/processor/manual/325384.pdf
http://man7.org/linux/man-pages/man4/msr.4.html
http://www.anandtech.com/show/2663
https://perf.wiki.kernel.org/index.php/Main_Page
http://web.eece.maine.edu/~vweaver/projects/rapl/

[43] PAPI. PAPI homepage.
[Online], Available: http://icl.cs.utk.edu/papi/index.html, Accessed on
19/05/2017.

[44] HWMON. Linux HWMON interface.
[Online], Available: https://www.kernel.org/doc/Documentation/hwmon/

sysfs-interface, Accessed on 19/05/2017.
[45] POWERCAP. Intel Powercap Interface.

[Online], Available: https://www.kernel.org/doc/Documentation/power/

powercap/powercap.txt, Accessed on 19/05/2017.
[46] Spiral Team. PowerAPI git page.

[Online], Available: https://github.com/pwrapi/pwrapi-ref, Accessed on
31/05/2017.

[47] CPUCHART. Various Energy Interface support for Intel and AMD platforms.
[Online], Available: http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_

support.html, Accessed on 19/05/2017.
[48] Patrick Mochel. The Sysfs FileSystem.

[Online], Available: http://milbret.anydns.info/pub/linux/kernel/people/

mochel/doc/papers/ols-2005/mochel.pdf, Accessed on 19/05/2017, 2005.
[49] Pablo Neira-Ayuso, Rafael M. Gasca, and Laurent Lefevre. Communicating between

the kernel and user-space in Linux using Netlink sockets. Software: Practice and
Experience, 40(9):797–810, 2010. ISSN 1097-024X. doi: 10.1002/spe.981. URL http:

//dx.doi.org/10.1002/spe.981.
[50] NetlinkACPI. Kernel Driver Power Meter.

[Online], Available: https://www.kernel.org/doc/Documentation/hwmon/acpi_

power_meter, Accessed on 19/05/2017.
[51] aj504. RootSudo.

[Online], Avaulable: https://help.ubuntu.com/community/RootSudo#Graphical_

sudo, Accessed on 05/06/2017.
[52] Brendan Gregg. strace wow much syscall (a comparison of the impacts of strace).

[Online], Available: http://www.brendangregg.com/blog/2014-05-11/

strace-wow-much-syscall.html, Accessed on 05/06/2017.
[53] raboof. NetHogs.

[Online], Available: https://github.com/raboof/nethogs, Accessed on 01/06/2017,
2017.

[54] rhallok. AMD Ryzen Community Update, 2017.
[Online], Available: https://community.amd.com/community/gaming/blog/2017/

03/13/amd-ryzen-community-update, Accessed on 24/05/2017.
[55] nlohmann. Nlohmann’s JSON for C++, 2016.

[Online], Available: https://github.com/nlohmann/json#

serialization--deserialization, Accessed on 15/06/2017.
[56] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-

merical Algorithms, volume 2. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997. ISBN 0-201-89684-2.

[57] JetBrains. JetBrains IntelliJ Idea PowerSaveMode, 2016. [Online], Available: https://
www.jetbrains.com/help/idea/2016.3/status-bar.html, Accessed on 10/01/2017.

[58] David Gilbert. JFreeChart, 2016.
[Online], Available: http://www.jfree.org/index.html, Accessed on 15/06/2017.

[59] IMDEA Software Institute XMOS Limited Rosklide University, University of Bristol.

110

http://icl.cs.utk.edu/papi/index.html
https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://www.kernel.org/doc/Documentation/power/powercap/powercap.txt
https://github.com/pwrapi/pwrapi-ref
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
http://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
http://milbret.anydns.info/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://milbret.anydns.info/pub/linux/kernel/people/mochel/doc/papers/ols-2005/mochel.pdf
http://dx.doi.org/10.1002/spe.981
http://dx.doi.org/10.1002/spe.981
https://www.kernel.org/doc/Documentation/hwmon/acpi_power_meter
https://www.kernel.org/doc/Documentation/hwmon/acpi_power_meter
https://help.ubuntu.com/community/RootSudo#Graphical_sudo
https://help.ubuntu.com/community/RootSudo#Graphical_sudo
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html
https://github.com/raboof/nethogs
https://community.amd.com/community/gaming/blog/2017/03/13/amd-ryzen-community-update
https://community.amd.com/community/gaming/blog/2017/03/13/amd-ryzen-community-update
https://github.com/nlohmann/json#serialization--deserialization
https://github.com/nlohmann/json#serialization--deserialization
https://www.jetbrains.com/help/idea/2016.3/status-bar.html
https://www.jetbrains.com/help/idea/2016.3/status-bar.html
http://www.jfree.org/index.html

ENTRA Benchmark Suites, Deliverable Number 5.1, 2013.
[Report], Available: http://entraproject.eu/wp-content/uploads/2014/03/

deliv_5.1_final.pdf, Accessed on 05/06/2017.
[60] Dominik Browski. Linux Kernel CPUFreq governor.

[Online], Available: https://www.kernel.org/doc/Documentation/cpu-freq/

governors.txt, Accessed on 13/06/2017.
[61] Alex Campbell. Kaby Lake is unleashed with Linux kernel 4.10, 2017.

[Article], Available: http://www.pcworld.com/article/3173618/linux/

kaby-lake-is-unleashed-with-kernel-410.html, Accessed on 13/06/2017.
[62] The MPlayer Project. Mplayer, 2000.

[Online], Available: http://www.mplayerhq.hu/design7/news.html, Accessed on
15/06/2017.

[63] Blender Foundation. Big buck bunny movie, 2008.
[Online], Available: https://peach.blender.org/, Accessed on 15/06/2017.

[64] OPENBENCHMARK. Phoronix CPU OpenBenchmark, 2010.
[65] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2011. ISBN 012383872X, 9780123838728.

[66] John D McCalpin. STREAM benchmark. Link: www. cs. virginia. edu/stream/ref.
html# what, 22, 1995.

[67] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications, pages 169–
190, New York, NY, USA, October 2006. ACM Press. doi: http://doi.acm.org/10.
1145/1167473.1167488.

[68] GNU Free Software Foundation. GNU/Resource.h syscall API.
[Online], Available: http://www.gnu.org/software/libc/manual/html_node/

Resource-Usage.html, Accessed on 15/06/2017.

111

http://entraproject.eu/wp-content/uploads/2014/03/deliv_5.1_final.pdf
http://entraproject.eu/wp-content/uploads/2014/03/deliv_5.1_final.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.pcworld.com/article/3173618/linux/kaby-lake-is-unleashed-with-kernel-410.html
http://www.pcworld.com/article/3173618/linux/kaby-lake-is-unleashed-with-kernel-410.html
http://www.mplayerhq.hu/design7/news.html
https://peach.blender.org/
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html

7 Appendix

7.1 User Guide

This guide forms a setup and manual in using PowerKap and LJEA.

7.1.1 Setup

First, setup and install the libraries. To install PowerKap, this is a relatively simple pro-
cedure. All that is needed is to run the commands “make optimised” followed by “sudo
make install”. This procedure compiles PowerKap with the -O2 flag and installs the files
in /usr/local directory. It also allocates the correct permissions and capabilities for the file
and shell script.

To install LJEA, all that is necessary is to install the zip from disk. This can be done
by performing the following action on the menus.

File > Settings > Plugins > Install plugin from disk

7.1.2 How to use PowerKap

This program can work from command line without root. Before profiling a binary, it
is necessary to setup the virtual adapter to gather network traffic. This can be achieved
by running “sudo profKap -a”. From that point, it is only necessary to pick an internet
facing network adapter. Upon installation the user makes use of a series of flags to set the
parameters of the profiling. These are listed as follows.

1. -a This enables the virtual adapter necessary for PowerKap to run.

2. -t This sets the time in which the program should run. It is useful for programs that
do not terminate. The value is recorded in seconds.

3. -r This is used to set the number of times PowerKap repeats the test.

4. -i This sets the interval between sample points. The value passed is recorded in
milliseconds.

5. -e The flag necessary to tell the program to profile an external program.To use this
flag requires program arguments. An example of such a command is as follows:

profKap −e −− / usr / bin /program <program−args>

6. -s This tells the profiler to skip profiling the background.

7. -z Print intermediate values. This flag is useful for gathering raw and intermediate
results for further verification.

8. -x Prints the results gathered to std::cout.

9. -c Prints the results in JSON format. This is needed to be used in LJEA. These are
stored in the calling directory for the program.

112

10. -v Prints the results gathered in CSV format. These are stored in the calling directory
for the program.

11. -b Prints the results gathered in TSV format. These are stored in the calling directory
for the program.

12. -g Skips gathering network measurements.

13. -h Skips gathering CPU RAPL metrics.

14. -j Skips gathering data relating to the disk.

15. -k Skips gathering battery information.

16. -l Skips gathering temperature information.

7.1.3 How to use LJEA

In order to use the plugin to profile code requires the following steps.

1. The first step is to enable the time profiling capabilities of the program. This can be
done by performing the following action in the main toolbar.

Energy module > Enable T imePoint Logging

2. For positions of interest, we want to automatically generate energy points. This can
be done by right clicking the position on a line of code and selecting generate. Then
simply just select the insert energy point option.

3. At the program exit, it is necessary to insert a print point. This procedure is the same
as the one used to insert the point.

The procedure for anaylsing the results gathered is also simple. All that is necessary is to
upload the JSON and the elapsed times file to the plugin via the provided buttons. To
use the stack trace, simply highlight a specific JSON file within the configuration table and
click refresh. This would load the data into the elapsed stack trace tab. To annotate the
graph, simply select the points of interest and refresh the graph to add markings. Finally,
to navigate back to the source code, simply right click the energy point to navigate to the
relevant piece of code.

113

	Introduction
	Motivation
	Objectives
	Achievements

	Background
	The relationship between power and energy.
	Power controls on x86 platforms
	Improving software for power efficiency
	Algorithm
	Multithreading
	Vectorisation
	Improper sleep loops
	OS Timers
	Context aware programming

	Current methods of monitoring energy.
	Out of Band Energy Monitor
	In-Band Energy Monitor
	Powertop
	Turbostat

	Related Work
	ENTRA 2012-2015
	Common Assertion Language
	Compiler Optimisation and Power Trade-offs
	Superoptimization
	Thermal trade-off

	eProf
	Asynchronous vs Synchronous
	Profiling implementation

	Energy Formal Definitions
	Java Based Energy Formalism
	Energy Application Model

	Impact of language, Compiler, Optimisations
	Choice of Language
	Relation of execution time and energy consumption
	Impact of Optimisation flags
	Choice in Algorithm

	Similar Tools
	AEON
	Visual Studio

	Gathering Energy Measurements
	Module Specific Registers (MSR)
	Running Average Power Limits (RAPL) Interfaces

	Perf
	PAPI (Performance Application Programming Interface)
	HWMON
	Intel Powercap
	PowerAPI
	Summary

	Interacting with these interfaces from user space
	Sysfs
	NetLink
	Procfs

	Profiling a program
	Initial Ideas
	The Profiler
	Design Ideas
	Chosen Design
	Why not use current profilers?
	Choice of energy interface
	Energy Consumption of CPU and Memory

	Thermal Information
	Battery Information
	DiskIO
	Network
	Choice of language

	Profiler Design
	Forker
	Profiler
	Sysfs, Procfs and Energy Interfaces
	Printer
	Measurement and Energy Structure
	Networking Script

	Implementation Details
	Steps taken to minimise the overhead introduced by the profiler
	Avoiding the impact of the user environment

	Linux Java Energy Assessment (LJEA) plugin
	Choice of IDE
	EnergyPoints
	The profiling code
	StackTrace
	Energy Graphs

	Implementation Details
	The UI design
	Action Classes

	Project Evaluation
	The hardware and methodology
	The Profiler
	The Results

	The Battery Measurements
	CPU Measurements
	Battery vs CPU measurements
	CPU Stress Test
	Desktop vs Laptop
	Gaming Desktop
	Modern Laptop

	Governor Choice
	BigBuckBunny Mplayer Test
	Choice of Algorithm
	Asynchronous vs Busywait
	Effects of Timers
	Reproducibility of the results gathered
	John the Ripper
	OpenSSL
	STREAM Benchmark
	Sunflow benchmark
	MPlayer
	Summary of Benchmark Findings

	Temperature Sensor Data
	IO Capturing Capability
	Ping Test

	DiskIO Capturing Technique
	Case Study: Browser Comparison
	LJEA
	Graphing Module
	Energy Trace

	Conclusion
	Recommendations for Future Work
	PowerKap
	Expanding the interfaces
	Sysfs/Procfs/Linux Interfaces
	Asynchronous computing
	Machine Learning and Model Generating
	Handling Thermal Spikes

	LJEA
	Introducing code suggestions
	Expanding to other IDEs and Languages

	Appendix
	User Guide
	Setup
	How to use PowerKap
	How to use LJEA

