
IMPERIAL COLLEGE LONDON

MENG INDIVIDUAL PROJECT

Visualising the Evolution of
Aerodynamic Flows over Time

using Trees

Author:
Mihai POPA

Supervisor:
Prof. Paul KELLY

Department of Computing

June 19, 2017

http://www.imperial.ac.uk
https://www.doc.ic.ac.uk/~phjk/
http://www.imperial.ac.uk/computing

ii

Abstract

Exploring the evolution of features in large-scale time-varying fields is an
important problem in a wide range of science and engineering areas. One
example is the area of Computational Fluid Dynamics (CFD), where the effi-
cient analysis of time-dependent data produced by CFD solvers is essential to
the understanding of fluid flows and their applicability to engineering prob-
lems. Contour trees represent a data structure often used to explore discrete
fields, while ignoring the temporal dimension of the data. They are built to
capture the nesting relationship between the features of one field, and have
been often used as a feature extraction strategy.

In this project we present an algorithm for tracking features in time-varying
datasets, based on spatial overlap and on the structures of the contour trees
corresponding to the data. We integrated the developed algorithm in an in-
teractive graphical interface, where the temporal evolution of field features
can be visualized. The efficiency of the tracking tool was then demonstrated
on datasets belonging to CFD simulations. Finally, we analyzed the feasibil-
ity of running the tracking algorithm in-situ, by integrating it in PyFR, a CFD
solver developed at Imperial College London.

iii

Acknowledgements
Firstly, I would like to thank to Prof. Paul Kelly for his continuous guid-

ance and inspiration throughout this project. I am also extremely grateful to
Dr. Peter Vincent for his enthusiasm in steering the project in the right direc-
tion. I would like to thank to Yoshiaki Abe for his invaluable feedback and
for helping me understand many fluid dynamics concepts.

Finally, I would like to thank Oana and my parents, Dragos and Adriana,
for their unconditional love and support.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Report outline . 3

2 Background and Related Work 4
2.1 Computational Fluid Dynamics 4
2.2 Turbulence and vortex detection 4
2.3 PyFR . 6
2.4 Data analysis . 7

2.4.1 Paraview . 7
2.4.2 The Contour Spectrum 9

2.5 Contour Trees . 10
2.5.1 Definitions and properties 10
2.5.2 Construction . 13

Building an object tree 14
2.6 Using Contour Trees to understand flows 15
2.7 Union-find data structure . 17
2.8 Extracting isosurfaces . 18
2.9 Tracking features . 19

2.9.1 Region-based tracking 20
2.9.2 Tracking as a global optimization problem 23
2.9.3 Based on critical points 24
2.9.4 Based on contour trees 24

2.10 Existing work . 26
2.11 Summary . 27

3 Feature tracking 29
3.1 Computing contour correspondences 30

3.1.1 Contour correspondence definition 31
3.1.2 The algorithm . 32

Building a labeled object tree 33
Building a join tree reflecting overlaps 35
Labeling a contour tree from a join tree 36
Intersecting two labeled contour trees 37

3.1.3 Implementation . 38

v

3.2 Computing arc correspondences 41
3.3 Summary . 43

4 Tool implementation 44
4.1 Functionality overview . 44
4.2 Data manipulation pipeline . 44

4.2.1 Preprocessing the data 45
4.2.2 Building the contour trees for feature extraction 46
4.2.3 Detecting features of interest 47

Filtering spheres . 48
4.3 The graphical interface . 48
4.4 Summary . 49

5 Evaluation 50
5.1 Tracking features in artificial fields 50

5.1.1 Generating small scale meshes with features 50
5.1.2 Tracking moving spheres 52
5.1.3 Spheres that join and split 54
5.1.4 Identifying and tracking a banana 58
5.1.5 Tracking a banana that rotates 58
5.1.6 Plotting contours with different isovalues 62
5.1.7 Larger example with bananas and spheres 62

5.2 Tracking features in fields from aeronautical simulations . . . 66
5.2.1 The fully developed stage of the Taylor Green Vortex . 66
5.2.2 The developing stage of the Taylor Green Vortex 74
5.2.3 Selected features in the fully-developed stage of the tur-

bulent plane Couette flow 84
5.2.4 Selected features in the fully-developed stage of the Tay-

lor Green Vortex . 89
5.3 Feature tracking metrics . 95
5.4 Performance analysis . 97
5.5 Comparison to other feature tracking methods 102
5.6 Tool evaluation . 102
5.7 Summary . 103

6 Analyzing streaks in the turbulent plane Couette flow 104
6.1 Motivation . 104
6.2 Filtering vortices . 106

6.2.1 Performing an orthogonal distance regression 107
6.2.2 Choosing the thresholds 108

6.3 Results . 108
6.4 Summary . 110

7 Conclusions 116
7.1 Reflection . 116
7.2 Deliverables . 116
7.3 Future Work . 117

7.3.1 In-situ feature tracking 117

vi

Scalability and hardware 117
Tracking features in distributed memory 118
Making the tracking information valuable 121

7.3.2 Dealing with data periodicity 121
7.3.3 Paraview plug-in . 122
7.3.4 Designing a domain specific language for feature de-

tection . 122

A Fluid flows used 123
A.1 Taylor Green Vortex . 123
A.2 Turbulent plane Couette flow 124

Bibliography 125

1

Chapter 1

Introduction

1.1 Motivation

Computational fluid dynamics (CFD) is the field aiming to understand flows
of fluids and gases, by using computers in order to simulate and analyse
them. The recent increase in interest for this field is largely motivated by
its wide range of direct applications in industry. As an example, it supports
research concerned with the analysis of air flows around airplanes and cars,
targeting fuel efficiency, noise reduction, safety, or performance.

Naturally, CFD has emerged as an important research field, and multiple
CFD solvers - software tools that carry out the simulations - were developed.
One example is PyFR [47], a solver developed in the Vincent Lab at the De-
partment of Aeronautics of Imperial College London. PyFR is an open-source
Python framework, designed to solve the range of systems governing flows
on mixed unstructured grids containing complex objects, corresponding to
the needs existing in industry.

One of the challenges related to CFD is making the simulations indeed
valuable. As raw data, they represent multidimensional scalar or vector
fields: as an example, PyFR’s output are typically 3D meshes, where each
vertex has associated a velocity, a density and a pressure. For humans this
kind of data is particularly difficult to visualise and understand.

Currently, visualising the data is often done by displaying cutting planes
or 3D isosurfaces (areas with constant scalar value) that highlight features of
the data. As an example, isosurfacing by the Q-criteria scalar is often used
to observe vortical structures. Useful properties of the data can hence be
discovered, but this approach comes with multiple issues:

• How can the researcher find out the isovalues (the constant values defin-
ing the isosurface) of interest? Without a prior knowledge about the
domain, it can only be done by a trial and error approach. This proves
to be inefficient, as rendering the desired isosurfaces can be time con-
suming, especially on large datasets.

• Although cutting planes and isosurfaces are able to highlight global
properties of the data, they may miss certain local information valuable
for the researcher.

Aiming to address these problems, Contour Trees have been used to rep-
resent the global changes in the topology of scalar fields, by capturing the

2 Chapter 1. Introduction

nesting relationship of its isosurfaces. In this way, the Contour Tree graph
represents an indexing method into the field, and can be used to identify the
isovalues corresponding to interesting features of the data.

However, CFD simulations usually consist of multiple snapshots, corre-
sponding to subsequent time steps. This adds an extra dimension, the time,
to the flow understanding problem, and raises a new question: how can the
researcher understand how the flow evolves over time?

A commonly used solution is to visualise global isosurfaces of the data
at a fixed value across multiple time snapshots. The isovalue of interest
can be chosen by trial and error, or by using contour trees. The isosurfaces
will contain many features of interest, and it will be the responsibility of
the researcher to spot how they evolve between snapshots. However, this
approach lacks automation, and quickly becomes unfeasible for simulations
containing many time steps or large fields. In this project we aim to address
this problem, by developing a visualisation tool able to track features of the
flow, as they evolve temporally. Exploring the evolution of features in large-
scale time-varying fields is an important problem in a wide range of science
and engineering areas, including CFD.

The analysis methods described so far do not assume any domain specific
knowledge, and the same approaches would be used, for example, to analyse
both the blood flow in vessels as well as a terrain map, as long as they are rep-
resented as scalar fields. Depending on the application, however, researchers
are more interested in observing the evolution of certain specific features of
the field. These features can be characterized by the means of their 3D shape
or their field values. We include a proof of concept on how our tool can be
extended to detect specific features in a turbulent plane Couette flow, and
demonstrate the tool’s ability to track these towards the later stages of the
flow.

1.2 Contributions

The main goal of this project was to implement a tool supporting the under-
standing of time-varying scalar fields. In order to achieve this, the tool is
able to detect the field features, and track them in the temporal direction. A
summary of the contributions of this project is the following:

• We propose a new algorithm for tracking features in scalar fields, based
on computing correspondences between contour tree arcs. This corre-
spondence information is then used to track temporally the features
defined by the arcs of the contour tree. The approach we describe
is based on an existing algorithm for computing correspondences be-
tween isosurfaces [39]. We also propose an improvement for this al-
gorithm, which enables the application of contour tree simplifications
prior to the computation of the isosurface-level correspondences.

• We developed a tool that uses this tracking algorithm in order to visu-
ally observe field features as they evolve over time. The contour tree

1.3. Report outline 3

corresponding to the field is also presented, and it can be used to inter-
actively select the tracked features.

• The tool is extended with automatic feature detection capabilities. We
demonstrate how the tool is able to automatically detect sphere-like
field features, as well as a specific class of vortex structures detailed at
the next point.

• We demonstrate how the tool can be used to support the understanding
of a specific fluid dynamics environment. To achieve this, we imple-
mented a way to automatically identify streamwise vortex structures
belonging to low-velocity streaks in a turbulent plane Couette flow, and
hence showed how the Q-value analysis can be combined with other
field information, such as velocity.

• We evaluate the capability of running the feature tracking algorithm
at the time the simulation is performed. We highlight the relevance of
this in the context of the I/O bottleneck limiting the ability to store the
simulations produced by CFD solvers.

1.3 Report outline

This document is structured into 7 chapters, which detail the contributions
stated above.

Chapter 2 introduces the reader to the field of computational fluid dy-
namics and explains how turbulence leads to the formation of vortex features
in flows. We proceed by describing how scalar fields are currently visualized,
and introduce the concept of Contour Tree. We then focus on describing al-
ternative feature tracking algorithms existing in the literature.

Chapter 3 presents the feature tracking algorithm developed as part of
this project, and highlights the research contributions produced by the cur-
rent work. In Chapter 4, we present the capabilities of the tool developed,
and focus on several implementation details. The effectiveness of the work
presented in these chapters is evaluated in Chapter 5.

In Chapter 6, we produce a case study on how our tool can be used to im-
prove over the existing literature about understanding a certain phenomena
existing in wall-bounded turbulent flows.

Finally, in Chapter 7, we draw the project’s conclusions and present a
number of future ideas, particularly focusing on the feasibility of conducting
the feature tracking analysis in-situ (at the time the simulation is performed).

4

Chapter 2

Background and Related Work

This chapter aims to describe the context of the current project, and to of-
fer the knowledge background required for understanding the work and the
motivation of the next chapters.

We start by giving details about relevant fluid dynamics aspects, and then
proceed by introducing the concept of Contour Tree. Lastly, we describe
some of the algorithms for tracking features in scalar fields, which currently
exist in the literature.

2.1 Computational Fluid Dynamics

Although the huge increase of enthusiasm and research interest about CFD
happened in the last fifteen years, the first contributions supporting this field
are much older. The Navier - Strokes equations, representing the generali-
sation of Euler’s work on fluid dynamics, have been published in the 19th
century, and still stand as the foundation of many CFD solvers used nowa-
days.

The mathematical equations governing the fluid dynamics were solved
using automated computing for the first time in the 1960s, as a result of the
emergence of the first supercomputers. Since then, the field has continuously
developed due to the progress in computer performance and the increased
availability of performant hardware. However, the recent remarkable devel-
opment of the field was primarily driven by the industry needs, due to its
major benefits in industries like aeronautics, automotive, medical, defense or
petrochemical.

A common example from aeronautics is performing CFD simulations in
order to replace experiments requiring costly wind tunnels; in the petro-
chemical industry, CFD simulations are often used to visualise the transfer
of heat or mass between environments. For engineers working in all these
industries, running simulations rather than actually performing experiments
is time efficient, and leads to significant cost reductions.

2.2 Turbulence and vortex detection

In fluid dynamics, turbulence occurs when a flow leaves the laminar state:
it is no longer ordered and stable, but becomes irregular and chaotic. In

2.2. Turbulence and vortex detection 5

fact, almost all fluid flow that we encounter around us is turbulent: from the
airflow around cars and buildings to the flows during engine combustion.

An attempt to predict the occurrence or the lack of turbulence is repre-
sented by the Reynolds number:

Re =
ρUL

µ

where ρ is the density of the fluid, U is its velocity, L is a characteristic linear
dimension, and µ is the fluid viscosity.

Turbulence is associated with high values of the Reynolds number: it oc-
curs when the value of Re exceeds a certain scalar threshold, called the critical
Reynolds number. The value of the threshold depends on the flow; for exam-
ple, in the plane Couette flow it is 2400. Analysing the formula, we can see
that the occurrence of turbulence in fluid flows is favored by velocity: a fast
flow increases the chance of turbulence. On the other hand, higher viscosity
delays the occurrence of turbulence in the fluid.

A result of turbulence is the existence of vortices. Interestingly, although
vortices seem to represent a very intuitive concept in nature, there is no uni-
versally accepted definition for it [13]. They are often described as a “rapidly
spinning, circular or spiral flow of fluid around a central axis”. This project is
concerned with analysing vortices and vortex structures in flows produced
by CFD solvers, so it is useful to present some of the common ways of mea-
suring them:

• Vorticity, describing the local spinning motion of a continuum near a
fixed point. It is expressed by the formula ~ω = ∇ × ~u, where ∇ is the
del operator and ~u is the flow velocity vector. The presence of vortices
is associated to high vorticity values, but in fact this is not always true:
vorticity may also be high in parallel shear flows where no vortices are
present [13]

• The Q-criterion, a local measure of the excess of rotation rate relative to
the strain rate [11], able to distinguish shear-like flows. It makes use of
the following decomposition of the velocity gradient tensor ∇~v, in the
sum of a symmetric and an anti-symmetric matrix [13]:

∇~v = S + Ω

where S = 1
2
[∇~v+∇~vT] is the rate-of-strain tensor, and Ω = 1

2
[∇~v−∇~vT]

is the vorticity tensor.
The Q-criterion is then expressed as:

Q =
1

2
[|Ω|2 − |S|2]

Positive values of Q indicate the presence of vortices, and higher values
indicate highly expressed vorticity, often in the core of a vortex

6 Chapter 2. Background and Related Work

• The λ2-criterion, which identifies vortices to be local points with:

λ2(S
2 + Ω2) < 0

where λ2(A) denotes the intermediate eigenvalue of a symmetric ten-
sor A [11]. Although accurate, the λ2-criterion is not as used as the
Q-criterion in practice, because of its higher computational cost - com-
puting the eigenvalues of a matrix is expensive.

2.3 PyFR

The current project aims to develop a new way of visualising PyFR simula-
tions along multiple time steps, and to study the feasibility of integrating this
at the time when simulations are performed. In this section, we present an
overview of how data is generated by PyFR and how this can be analysed
using Paraview [2].

At its core, PyFR needs to solve a number of partial differential equations
(PDEs) governing fluid flows: the Euler equations for inviscid compressible
flow and the Navier - Strokes equations for viscous compressible flow. In
order to achieve this, a mesh structure is constructed by splitting the domain
in small regions with simple geometry, such as triangles or quadrilaterals in
2D, and tetrahedra or pyramids in 3D.

In order to solve the equations describing the system, PyFR uses an ap-
proach based on Flux Reconstruction, idea first introduced in [15], which will
only be presented briefly here due to its complexity. Every mesh element is
translated to a standard element in a different space, where the solutions of
the equations are computed. The equation describing the flow system is the
following one:

∂uα
∂t

+∇ · fα = 0

where uα is a conserved quantity, and fα is the flux of this conserved quantity.
Using a time stepping scheme such as RK4, one can simulate the evolu-

tion of the flux iteratively. For a particular time step, the output is repre-
sented by polynomials for each cell of the mesh, that describe the scalar or
vectorial values of the grid in an accurate and compressed manner. These
polynomials are stored in .pyfrs files, while the file format for the mesh de-
scription is .pyfrm. Table 2.1 presents the key functionality of PyFR, accord-
ing to [47].

Although using polynomials to describe values in cells is a good repre-
sentation for accuracy and compactness, the data is difficult to be analysed
in this format. This is why PyFR has an export function, which converts
.pyfrm and .pyfrs files to standard unstructured meshes. These have values
associated to each vertex, while the values within cells can be linearly inter-
polated; this means that they are typically less precise than the initial format.
One format following this representation is .vtu, which was also used for the
input data of the current project.

2.4. Data analysis 7

TABLE 2.1: Key functionality of PyFR

Dimensions 2D, 3D
Elements Triangles, Quadrilaterals, Hexahedra
Spatial orders Arbitrary
Time steppers Euler, RK4, DOPRI5
Precisions Single, Double
Platforms CPUs via C/OpenMP, NVIDIA GPUs via CUDA
Communication MPI
Governing systems Euler, Compressible Navier–Stokes

2.4 Data analysis

2.4.1 Paraview

Paraview [2] is a data analysis and visualization tool often used in under-
standing the flows produced by CFD solvers. It was also frequently used by
us during the project work, in order to assess the correctitude of our algo-
rithms and of our developed tool.

The .vtu files produced by PyFR are loaded into Paraview. These unstruc-
tured meshes correspond to fields where each point has typically associated
three properties: a vectorial velocity, a scalar pressure and a scalar density.
These are instantaneous measures of the properties at the time step the field
snapshot corresponds to. It can be noticed that none of the output properties
are direct measures used for detecting vortices. However, vorticity measures
can be computed using this information. For example, we are able to use
the gradients of the velocity property in order to compute the instantaneous
Q-criterion. This can be then used in order to visualise interesting vortical
features of the data.

For a snapshot of the Taylor Green Vortex simulation, a naive surface Q-
criterion visualisation of the resulting flow is shown in figure 2.1, clearly un-
usable for any kind of analysis. On the other hand, figure 2.2 shows the
isosurface for a fixed isovalue of 0.3, generated using the built-in contour fil-
ter. We can see how many vortex structures are now easily identified. This
motivates the usage of isosurfaces in the process of understanding CFD data
and 3D scalar or vectorial fields in general.

We have seen a basic data analysis workflow used to understand one
snapshot of a fluid flow. This can be useful, but comes with a number of
issues that make it far from ideal, especially when multiple time steps are
analysed:

• There is no way to extract local features, as only global isosurfaces can
be generated. This can be slow when the analysed field is large.

• Understanding how a particular feature evolved between snapshots is
done by eye.

8 Chapter 2. Background and Related Work

FIGURE 2.1: Shallow wireframe view of the Q-criterion for a
Taylor Green simulation

FIGURE 2.2: Vortices visibile in Paraview at Q-criterion iso-
value 0.3 for a Taylor Green simulation

2.4. Data analysis 9

FIGURE 2.3: The Contour Spectrum interface showing the
scalar field statistics

• The above two combined make the approach inefficient and prone to
error, especially if the visualised flow has a high density of interacting
features.

2.4.2 The Contour Spectrum

The concept of Contour Spectrum was introduced by Bajaj et al. in [4], aim-
ing to improve the experience of understanding isocontours. In order to aid
identifying isovalues of potential interest, the contour spectrum consists of
a range of useful information displayed to the user, including statistics for
each isovalue:

• the length or area of the corresponding contours

• the volume of the contours

• a metric based on the slope or the gradient of the function

As mentioned in the introduction, in the absence of domain specific knowl-
edge, the exploratory process of choosing isovalues of interest is an iterative
process, expensive for the researcher; the work of Bajaj et al. comes to ad-
dress this problem. Their efficient way of computing the above mentioned
information is integrated in an user interface, exemplified in Figure 2.3. We
can see how the statistical values are plotted against the isovalue, and how
the values are updated interactively for the selected isovalue.

The contour spectrum was later extended in multiple pieces of work. For
example, in [10] Carr et al. suggest an interface that they call “flexible" iso-
surfaces, where several individual contours with different isovalues can be
displayed and manipulated at once. A level set becomes a particular case of

10 Chapter 2. Background and Related Work

FIGURE 2.4: λ2-isosurfaces for different isovalues [35]

the “flexible" isosurfaces, as it contains all contours corresponding to a fixed
isovalue. In [35], Schneider et al. demonstrate the value of only visualising
the largest contours, one of the information of the contour spectrum. Fig-
ure 2.4 contains three renderings of isosurfaces with particular isovalues (0,
-1000 and -5000 respectively), as well as a rendering of the largest contours
(the scalar value associated to the field is the λ2-criterion, used for measuring
vortices). We can clearly see how the latter is able to reveal all features, while
the first three are cluttered and lose important information.

The approaches described in this subsection aim to make flow features
easier to identify. Although motivated by the global structure of the flows,
they are purely mathematical and the engineer or researcher analysing the
data remains responsible with choosing isovalues that reveal the indeed in-
teresting features.

2.5 Contour Trees

2.5.1 Definitions and properties

In this section we aim to introduce the reader mathematically to the concept
of Contour Tree (CT). Most of the definitions and ideas presented here follow
the work described in [9].

The input to the problem is a set of n points in the multidimensional space
Rd, each having a corresponding scalar value. In order to extend this set of
points to a scalar field, which by definition has a value associated to each
point in Rd, we can define a simplicial mesh with the vertex set being the n
points given, and a function f to interpolate values within each simplex. f is
a linear interpolation function, f : Rd → R, assigning a value to each point in
the domain according to the scalar values in the vertices defining the simplex
it belongs to.

We continue by defining a level set: for a specific constant value y (an
isovalue), it represents the set of points in the domain where the function f
takes the value y:

{p ∈ Rd|f(p) = y}

2.5. Contour Trees 11

These sets are generally not connected, forming multiple connected compo-
nents called isolines in 2D and isosurfaces in 3D. In data of arbitrary dimen-
sion, the term contour is typically used for naming them: so isolines and
isosurfaces are particular cases of contours. A level set can consist of an arbi-
trary number of contours, including 0.

We are interested in the evolution of level sets as the isovalue y is var-
ied, aspect studied in detail by the field of Morse theory. In the Morse the-
ory, points at which the topology of the level sets change are called critical
points, and a fundamental assumption is that these occur at distinct values
in order to avoid certain pathological cases. In practice, this can be enforced
by adding small random scalar perturbations to the initial input data, in an
attempt to guarantee uniqueness [9]. At critical points it was shown that the
set of possible topological changes is limited to six events:

• A new component is created at a local minimum.

• An existing component is destroyed at a local maximum.

• Multiple components are joined into a new component at a saddle point.

• An existing component is split into multiple components at a saddle
point.

• A genus change for an existing component occurs at a saddle point.

• A combination of the above three can occur at highly degenerate multi-
saddle points.

Considering that the components mentioned above are actually contours,
we can see the CT as a graph that reflects how contours interact with each
other: how they appear, join, split and disappear. Note that a genus change
does not affect the tree. Therefore, the CT is constructed to respect the fol-
lowing properties:

• Each leaf of the contour tree corresponds to the creation or deletion
of a contour, happening at a local minimum or local maximum of the
parameter, respectively.

• Each interior node of the contour tree represents the joining or splitting
of multiple contours.

• An edge marks the continuous existence of a contour for all the isoval-
ues in the interval determined by the ends of the edge.

An useful example for visualising this is included in [9] and here we
present a slightly modified version of it. Figure 2.5 shows the development of
the level sets corresponding to a value y as it is increased. We have y1 < y2 <
... < y6. Figure 2.6 contains the corresponding contour tree. Starting with
the global maximum (from y6 towards y1), 4 connected components appear
in sequence. This is reflected by the 4 leaf nodes 7, 8, 9, and 10 at the top of
the contour tree. As the isovalue y decreases, the two contours at the bottom

12 Chapter 2. Background and Related Work

FIGURE 2.5: 3D level sets of y as y increases [9]

FIGURE 2.6: Contour tree for figure 2.5

2.5. Contour Trees 13

join, leading to the creation of node 6 in the contour tree. At the next critical
point, corresponding to an isovalue in the interval (y4, y5), the two contours
at the bottom also join, leading to the creation of node 5. Gradually, these
two components unify, as shown at y2, and remain connected until they split
in nodes 1 and 2, following the contraction of the inward contour and the
expansion of the outward contour.

Looking further at the contour tree in Figure 2.6, we can make an interest-
ing observation about its layout, by assuming that it follows a 2D coordinate
system: the y coordinate of the nodes correspond to the values of their asso-
ciated critical points in the mesh. A consequence of this is that if we intersect
the tree representation with a horizontal line y = c, the intersection points
will correspond to the connected contours with isovalue c, and their union
will form the level set corresponding to this value.

2.5.2 Construction

A commonly used solution for constructing contour trees is due to Carr et
al. in [9]. Regardless the dimensionality of the input space, the proposed
algorithm runs in time O(n log n + Nα(N)), using O(n + N) memory. Here
n is the number of vertices defining the mesh, N is the number of simplices,
and α represents the inverse of the Ackermann function.

The algorithm begins by constructing a join tree and a split tree, which are
going to be merged in order to obtain the contour tree. While an intersection
point of a horizontal line with an edge of the contour tree represents a con-
nected contour with the property {p ∈ Rd|f(p) = y}, the intersection with an
edge of the join tree will have the form {p ∈ Rd|f(p) ≥ y}. Therefore, as we
move the isovalue from +∞ to −∞, the set of active elements will contain
ranges of contours instead of contours: we will call them objects. The upper
objects will grow monotonically: if points p1 and p2 belong to the same object
at isovalue y, they will not be disconnected for any isovalue y′ ≤ y. This fol-
lows from the monotonic definition of objects. Therefore, since upper objects
cannot split, we can observe that join trees will only have information about
how contours appear, merge and disappear, but no information about splits.
Oppositely, the split tree will only have information about how contours ap-
pear, split and disappear, reflecting the evolution of lower objects of the form
{p ∈ Rd|f(p) ≤ y}.

It can be seen that the join and the split trees of a field are symmetrical
by definition. In fact, the algorithm is usually implemented by applying the
same contour merging logic twice, once traversing the vertices of the scalar
field in decreasing order to build the join tree, and once in increasing order
to build the split tree. The two structures are trees, as the child of any node
will correspond to a critical vertex with strictly lower or strictly higher value
(for join trees and split trees respectively). In addition, both trees will have
a root corresponding to an unique upper or lower object that contains all the
points of the field.

Once the join and split trees are built, the contour tree is constructed by
repeatedly choosing and removing a non-root leaf from the join or from the

14 Chapter 2. Background and Related Work

FIGURE 2.7: The join and split trees merge to form the contour
tree [9]

split tree. Suppose leaf v is extracted from the join tree. v and its adjacent
edge will be added to the contour tree. Also, there are two cases:

• v is a leaf in the split tree as well, and it will be simply removed.

• v is a degree 2 node in the split tree. In this case, the two nodes con-
nected to v need to be connected by a new edge, and v will be then
removed.

We can see that after each step the sets of vertices in the two trees will be
invariably equivalent. Inductively, the contour tree will be successfully con-
structed this way. An example of contour tree construction can be seen in
Figure 2.7, taken from the original paper.

For the purpose of this project, we are particularly interested in the pro-
cess of building the join and split trees. Therefore, the rest of the subsection
will focus on explaining this further.

Building an object tree

In order to build the object trees, the idea is to use an union-find data structure,
detailed in section 2.7, that will reflect the currently active upper or lower
objects while the isovalue is varied: if two mesh vertices belong to the same
set, then they belong to the same object.

The stages of the algorithm building the upper tree are:

1. Sort the vertices of the mesh in decreasing order.

2. Traverse the vertices in order. For the current vertex v, add v in the
union-find structure, as a singleton. Then update the join tree and the
upper objects as follows, by looking at the mesh neighbours of v:

• If no neighbour was initialised in the union-find set (so no neigh-
bour was already processed), v is a local maximum. A new leaf
corresponding to it is added in the join tree, meaning that a new
upper object was created.

2.6. Using Contour Trees to understand flows 15

• If a (potentially complete) subset of our neighbours were processed,
but all of them belong to the same set, v is just a new vertex in this
upper object, and we add v to the set. Note that the upper objects
the neighbours belong to are obtained by querying the union-find
data structure. The join tree is not modified in this case.

• If some neighbours were processed, and they belong to two or
more upper objects, v is a join node. Their corresponding union-
find are merged, and v is also added to the set. A new join node,
corresponding to v, is added to the tree, and it is connected to the
parent nodes representing the upper objects that have just been
merged.

We can see that simulating the interactions between upper objects using
disjoint sets is a relatively easy process, which represents the reasoning be-
hind not building the contour tree in one traversal - splitting objects would
be computationally expensive. As mentioned above, the split and the join
trees are symmetrical, and in order to build the split tree, we only have to
modify step 1: sort the vertices in increasing rather than decreasing order.

2.6 Using Contour Trees to understand flows

Contour Trees are often constructed using scalars corresponding to vorticity,
such as the Q-criterion. Since high values of Q are associated to the presence
of vorticity, the upper leaves of the resulting contour tree will correspond
to the appearance of vortex structures. In addition, a branch of the contour
tree will represent a continuous class of isocontours that do not interact with
others, and can be associated to a particular feature. The inner tree nodes will
then correspond to the merge or to the split of features when the isovalue is
decreased.

We have seen that by only using Paraview it is impossible to generate lo-
cal contours associated to features, but only global contours that contain a
multitude of structures. The contour trees are able to aid the dynamic extrac-
tion of local features from the field, using the fact that they represent an index
into the mesh: each contour tree branch is associated to the mesh region con-
taining the branch contours. This means that now we can only contour the
region containing the flow feature of interest. This idea will be detailed fur-
ther in 4.2.2.

Contour trees can also be used to identify isovalues of interest. Since each
node has a Q-criterion value assigned, a researcher can often only look at the
values of the vertices connected by a branch, and determine if the branch
contours are of interest. This improves over the trial and error approach of
guessing isovalues that contain useful structures. Taking this idea further,
the contour spectrum paper [4] suggests that each arc of the contour tree can
be annotated with the statistics corresponding to the contours on the arc. In
this way, we can observe local properties of the features with good precision.

16 Chapter 2. Background and Related Work

FIGURE 2.8: Leaf 80 is pruned from the contour tree. [8]

Simplifying contour trees

Contour trees computed for data from real applications are very sensitive to
noise, and they typically contain a lot of local maxima and minima. These can
be attributed to noise, or just to the creation or disappearance of very small
features, which are typically not of interest for scientists. In order to repre-
sent useful structures for data understanding, and to speed up later analysis,
contour trees are often simplified as the next step after their construction. The
general idea is to repeatedly prune leaves of the tree, according to various cri-
teria, until the remaining tree structure becomes meaningfully simpler. Note
that pruning a leaf of the tree corresponds to a saddle point cancellation, as
observed in Figure 2.8. Here an upper leaf is pruned, so a local maxima is
flattened.

In [8], Carr et. al enumerate a number of local geometrical measures that
can be used as pruning criteria, by defining the priority of removing a leaf
arc from the contour tree:

• Volume. This can be approximated by the number of vertices on the
arc, an easy to compute metric.

• Hypervolume. This represents the integral of function g(v) = f(v) −
f(h) over the region defined by the arc, where f(v) is the value function
of the mesh, and h is the parent vertex of the arc to be pruned.

• Persistence. This represents the difference between the arc’s maximum
and minimum values. Its relevance is motivated by the lack of correla-
tion between the volume of the edge and its value range: large volumes
do not necessarily span large ranges of values.

Repeatedly pruning leaves is often complemented by collapsing degree
2 nodes [8], connected to one node with larger and one node with smaller
value. This is exemplified in Figure 2.9, where vertex 50 is reduced. This
operation is simplifying the contour tree, but does not produce any modifi-
cation in the original scalar field.

The pruning process will always be able to prune the highest priority leaf.
Therefore, the tree will be reduced to one node containing the entire field

2.7. Union-find data structure 17

FIGURE 2.9: Node 50 is reduced from the contour tree. [8]

unless it is stopped earlier. There are two commonly used simple criteria to
decide when to stop the pruning process:

• The maximum pruning priority decreases under a fixed threshold. For
example, we may want to remove all leaves with a volume smaller than
n, where n is chosen according to the desired aggressiveness and to the
size of the field.

• The contour tree has no more than n nodes. This criteria is useful for
producing fixed size trees.

Note that the effect of pruning the contour tree can be also be applied back
to the scalar field data. This can be done by flattening the values of voxels in
pruned vertices. This way, we can also see contour trees as an intermediate
representation able to guide the process of simplifying a scalar field.

2.7 Union-find data structure

The union-find (or disjoint-set) data structure is able to keep track of ele-
ments partitioned into any number of disjoint sets, supporting two kind of
operations:

• Union(S1, S2): the disjoint sets S1 and S2 are merged.

• Find(x): find the subset S that a particular element x belongs to.

In most implementations, each disjoint set is identified by one of its ele-
ments, called the set representative. This way, the Union operation will take
as arguments two set representatives, while Find will return the representa-
tive of the set containing x. Therefore, in order to determine whether x and y
belong to the same disjoint set, the condition Find(x) == Find(y) is checked -
the two sets need to have the same representative.

The efficient way to perform the operations is to represent the disjoint
sets as trees. The representative of a set will be the root of its tree. Each
element holds a pointer to its parent, while the representative’s pointer will

18 Chapter 2. Background and Related Work

just point to itself. Now a Find(x) query will be answered by repeatedly
following the pointer to the parent until we find the representative. For a
Union(S1, S2) operation, we can set the parent of S2 to be S1. FormUnion and
Find operations and n set elements, the complexity of this approach will be
O(m+n2), the worst case being represented by the following order for unions,
when the resulting tree is highly unbalanced: Union(n − 1, n), Union(n − 2,
n− 1), ..., Union(0, 1). Finding that the representative of all elements is 0 will
require 0 + 1 + ...+ (n− 1) steps, which is of quadratic order.

An optimisation is to consider the sizes of the disjoint sets being con-
nected during the Union operation, and to always keep the larger set’s rep-
resentative as the representative of the union. In this way, the height of the
tree cannot be larger than log(n), and the overall complexity is reduced to
O(m+ nlog(n)).

An improvement is now to compress paths whenever the Find(x) operation
is called. Specifically, all the nodes on the path from x to the representative r
will have their parent set to r. This way, the tree is flattened and any further
Find operation for these nodes will reach the current representative in one
step.

Another improvement is to assign a rank to every set, and during an
Union to always keep the representative to be the one with higher previous
rank. In addition, if the two ranks are equal, the rank of the new representa-
tive will be increased by 1, meaning that the maximum depth of the tree was
increased. Therefore, the rank is a measure for the depth of the trees, which
does not take into account the path compression.

These two improvements together were proven to reduce the worst case
complexity to O(αn), where α is the inverse of the Ackermann function. The
proof is however quite involved, and hence omitted here.

2.8 Extracting isosurfaces

This section presents a number of techniques for identifying isosurfaces: re-
gions of the scalar fields that have a constant specific value. Although the
tool developed as part of the project makes use of the Visualization Toolkit
(VTK) library [36] for this task, it is useful to briefly introduce some tech-
niques potentially used behind the scenes.

Substantial research effort has been put into solving this problem, due to
its importance in visualising grids and scalar fields. The Marching Cubes al-
gorithm [25] works by considering every cell (simplex in our case) of the field
and identifying the ones defining the isosurface. This becomes quickly inef-
ficient for large datasets, and several improvements were developed. Some
are based on space sub-division for cell classification, such as the Octrees
method [46]. Others are based on seed sets.

A seed set is a set of mesh points with the following property: any pos-
sible connected component of any contour in the mesh contains at least one
seed. If a seed set is known, the computation of isosurfaces can be done
with a simple propagation algorithm based on locality. We are guaranteed

2.9. Tracking features 19

FIGURE 2.10: Seed set for a slice of wind speed data [21]

to reach every level set component due to the mentioned property of the set.
Intuitively, extracting isosurfaces is efficient when the seed set is small.

[21] proposes an algorithm based on contour trees for computing mini-
mal seed sets, requiring quadratic time and memory. They also propose an
approximation of this algorithm, generating a seed set guaranteed to be no
more than twice larger than the optimal one. This requires only linear mem-
ory and is much more usable in practice. Also, the performance difference
while extracting isosurfaces proved to be at most insignificant. The algo-
rithms start from the following idea: if we construct a bipartite graph where
the nodes on one side are the mesh points, and the nodes on the right side cor-
respond to contours, the problem is reduced to finding a minimal (or small
enough) subset of the nodes on the left that dominates all contours on the
right. A node is dominated if it is connected to at least one node belonging
to the subset. Figure 2.10, taken from [21], shows the layout of a seed set in a
slice of 3D data corresponding to wind speed. In VTK, extracting isosurfaces
is done with a seed based approach, improved in order to counter problems
with datasets containing voids and through-holes [26].

2.9 Tracking features

We have seen so far that displaying contours is a common way of visualising
a scalar field produced by CFD solvers. However, in reality the simulations
consist of multiple scalar fields, corresponding to a sequence of several time
steps. Naturally, the question that arises is how can we analyse the entire

20 Chapter 2. Background and Related Work

sequence efficiently? Snapshots at particular time steps can be analysed as
previously seen in this section. However, this does not offer much context
on the flow evolution in time: it is difficult to observe patterns and visually
follow regions of interest.

We are interested in identifying correspondence between flow features
from a time step to the next one. Mathematically, a flow feature is defined to
be a set of vertices, defining a volume in the mesh. However, semantically,
the definition of flow features and the way to extract them depend on the ap-
plication and on the origin of the flow. In our CFD aeronautics analysis, they
often correspond to vortices: sets of adjacent vertices with high Q-criterion.

The problem of tracking features over time, the correspondence problem,
represents an active field of study, and multiple approaches were developed.
The first algorithms only make use of the spatial overlap between features,
whereas many of the recently developed approaches rely on the topology
knowledge offered by contour trees. In the rest of this section, we are going
to discuss some of the most important algorithms for feature tracking.

2.9.1 Region-based tracking

In [34], Samtaney et al. provide an algorithm for tracking features (objects)
in 2D or 3D, based on some of their attributes such as the centroid and vol-
ume. The paper assumes that the features are "thresholded clusters": adjacent
mesh vertices with their scalar value exceeding a threshold. After the objects
are identified, their evolution over time is subject to:

• Continuation, when an object continues from step ti to ti+1. Note that
continuation accepts object rotation, translation, and (sufficiently small)
size changes.

• Bifurcation, when an object splits into two or more objects at ti+1.

• Amalgamation, when two or more objects merge at ti+1.

• Creation, when a new feature is created.

• Dissipation, when a feature disappears.

In order to decide continuation, the correspondence criteria between two ob-
jects Oi

A and Oi+1
B at consecutive time steps is represented by two conditions:

|Oi
A ∩Oi+1

B | > |Oi
A ∩Oi+1

G |

where Oi+1
G 6= Oi+1

B for all objects Oi+1
G extracted at time step ti+1. OX repre-

sents the size of the object X

|Oi
A ∩Oi+1

B | > Tover

where Tover is a threshold on the size of intersection. With other words, an
object continues between two time steps if the overlap is maximum, and ex-
ceeds a certain threshold.

2.9. Tracking features 21

FIGURE 2.11: Tracking interactions: continuation (1), creation
(2), dissipation (3), bifurcation (4), and amalgamation (5) [34]

Bifurcation and amalgamation take into consideration other properties:
the mass and the volume. Details on how these are calculated are presented
in the original paper. Note that they are equivalent operations: the amalga-
mation can be considered a bifurcation between ti+1 and ti. Deciding the oc-
currence of bifurcation and amalgamation requires considering combinations
of two or more objects from time steps ti+1 and ti respectively. The number
of combinations is exponentially large, but this can be mediated with certain
observations that limit the testing: for example, these two interactions only
occur within neighbours.

Creation happens when an object cannot be associated to any object in the
previous time step, while dissipation occurs when no match is found in the
subsequent snapshot. All the tracking interactions are exemplified in Figure
2.11, taken from the original paper [34].

However, being based on centroids and volumes, the approach proposed
by Samtaney et al. has its limitations. For example, errors can occur when
two different regions have the same center and volume, "such as a torus and
an object inside the hole" [37].

Silver et al. [37] addressed this problem by using overlap tracking to
refine the idea described above. The concepts of continuation, bifurcation,
amalgamation, creation and dissipation are equivalently defined, but their
correspondence criteria are changed. As an example, object Oi

A is now the

22 Chapter 2. Background and Related Work

FIGURE 2.12: Overlap based tracking in a CFD dataset [37]

continuation of object Oi+1
B if and only if the following conditions are satis-

fied:
|Oi

A ∩Oi+1
B | > 0

max(|Oi
A \Oi+1

B |, |Oi+1
B \Oi

A|)
max(|Oi

A|, |Oi+1
B |)

< Tunder

where Tunder is again a specified threshold. Note that continuation is now
conditioned by overlapping. Octrees [33] were used for efficiently computing
the above values for the relevant pairs of objects in different time steps.

Figure 2.12, taken from the original paper, demonstrates the successful
tracking of features in a CFD simulation dataset.

In [28], Muelder and Ma propose the idea to track features by trying to
predict their positions over time. This is motivated by the fact that, when
dealing with data originating from real applications, features often follow
predictable paths. Depending on the approach used, the prediction strategy
will look at how a feature changed position across a number of past time
snapshots. Consequently, a standard overlap-based tracking algorithm is
used for the first time steps, until enough past information is available to
enable prediction. Once the continuation of a feature in the next snapshot
is predicted, they are using a proactive approach to detect the actual corre-
sponding feature: rather than firstly extracting the features, and then trying
to match them to the available predictions, they use the predictions as seeds
used to extract the features of the next time step. This is done using breadth-
first search algorithms on the mesh structure, in order to grow or shrink the
predicted feature, transforming it in an actual feature. Note that they are
defining features to be connected regions with scalar values larger than a

2.9. Tracking features 23

FIGURE 2.13: Adjusting the predicted boundaries to the ones
of a feature [28]

fixed threshold. Figure 2.13, taken from the original paper, shows why both
shrinking and growing the predicted boundaries is required in order to ob-
tain a feature.

Another overlap-based approach for tracking is introduced in [19] by Ji et.
al. They propose to use 4D isosurfacing on the mesh where one dimension is
time, and the other three correspond to the structure of the mesh. Therefore,
each mesh vertex will now have some coordinates (x, y, z, t), and the value
of the vertex (x, y, z) in the tth field. The idea is to consider isovolumes of
this field, which span multiple time steps. Since these are connected, they
manage to obtain tracking information for the features contained in the iso-
volumes. The merge and bifurcation events are detected by looking at the
critical points inside the regions. However, this approach is not very applica-
ble in practice: the addition of the extra dimension generates huge fields for
real data, making the algorithm slow and memory demanding.

2.9.2 Tracking as a global optimization problem

The approaches mentioned so far represent local tracking techniques, where
features are matched independently, by exclusively using local information.
In [18], Ji and Shen translate the problem of computing feature correspon-
dences to a global optimization problem. Their target is to obtain better
matching accuracy, by considering the global context of the field, with the im-
provements being significant when tracking small objects, or when the tem-
poral sampling of the underlying data is low relatively to its velocity. Indeed,
the fundamental principle of most region-based methods is that two features
cannot correspond unless they overlap spatially; if the temporal sampling is
insufficient, this precondition may not hold, as demonstrated by Figure 2.14
taken from the original paper.

Ji and Shen propose to use the Earth Mover’s Distance (EMD) as a cost
function between features from different snapshots. EMD is a metric origi-
nally used in statistics which reflects the minimal amount of work required
to translate one distribution into another. Intuitively, given two spatial dis-
tributions, one can be seen as the mass of Earth spread in space, while the
other represents the holes in the same space. Obtaining the minimal EMD
is now translating to the minimal effort required to fill the holes with mass.
EMD can be solved polynomially using the Hungarian algorithm [29].

24 Chapter 2. Background and Related Work

FIGURE 2.14: Possible effect of insufficient sampling. Overlap-
based algorithms will fail to track the bottom feature [19]

In order to compute the cost of matching two features, these are first de-
composed into the cells they contain, which represent the two distributions
in the EMD problem. Then EMD is computed in terms of the Euclidean dis-
tance between cells. Therefore the problem is now reduced to computing a
minimal cost matching between two sets of features, when a cost function de-
fined on pairs of features is available. Since the algorithm must consider all
possible evolutionary events of features (including merges and bifurcations),
the search space of this optimization problem can become huge. To address
this, the paper also shows how a branch and bound [22] method improves
the runtime of the algorithm.

2.9.3 Based on critical points

A different idea is to track features using tracking algorithms for critical
points. The general concept was introduced for the first time by Theisel and
Seidel in [41]. They proceed by representing the dynamic behaviour of fea-
tures as the stream lines of a higher dimensional vector field. They suggest a
way to construct this vector field (the feature flow field) and make use of ex-
isting stream lines integration methods in order to perform the feature track-
ing in fields. The idea is briefly exemplified in Figure 2.15, where it can be
seen how the behaviour of feature v is tracked by tracing the stream lines of
the field from the feature; however, the supporting mathematical concepts
are quite involved and hence omitted here.

The work of Theisel and Seidel is an interesting theoretical approach,
but a direct implementation of it is very sensitive to noise, since it heavily
relies on numerical methods such as derivatives or differential equations.
Weinkauf et al. improve the applicability of the idea on data coming from
real applications, by proposing a more stable feature flow field in [44].

2.9.4 Based on contour trees

In [39], Sohn et al. combine overlap based tracking with contour trees. They
are interested in the evolution of contours at fixed isovalues over time. This

2.9. Tracking features 25

FIGURE 2.15: Feature tracking using feature flow fields. [41]

FIGURE 2.16: Contours correspondences between two trees.
[39]

is done by detecting overlapping pairs of contours from consecutive time
steps: this way they can define ranges of values for which edges from two
contour trees overlap. Figure 2.16 exemplifies the contours correspondence
calculation for two consecutive contour trees. A point labeled with edge set
E at isovalue w on an edge of the second contour tree means that the contour
evolves from the contours at w on edges in E from the first time step.

They also suggest the following idea: varying time is similar to varying
the isovalue within one time step. With other words, tracking the points in
time where sets in consecutive time steps start and stop to overlap is not
different from tracking the points (critical isovalues) where level sets split
and join in one scalar field. They concretize this idea in a structure called
the Topology Change Graph (TCG), which highlights the topology changes of
time-varying isosurfaces. Using the TCG, they are immediately able to vi-
sualise the evolution of individual time-varying isosurfaces as they merge,

26 Chapter 2. Background and Related Work

split, create or disappear.
All the approaches mentioned so far depend on the definition of a feature

being invariable. However, this may not be always acceptable: for instance,
in a mesh where features are simply regions with high scalar value, we may
want to adjust the threshold defining the features. In applications with large
datasets, recomputing the feature correspondences with every feature defi-
nition change is likely to be unfeasible.

In [45], Widanagamaachchi et al. address this missing dimension. They
propose a new tracking graph, augmented with certain meta information,
which can be used to quickly recompute the correspondences between edges
and contours for distinct and dynamically defined features. Therefore, while
the approach described in [39] requires complete recomputation of the cor-
respondence information every time the way we define the features change,
this can now be avoided. The main observation is that if there are many edge
correspondences between subtrees SiA and Si+1

B in consecutive time steps, the
features defined by the two subtrees are likely to correspond at some point,
depending on their definition.

We can see how the algorithms described in this subsection rely on the hi-
erarchical structure of the data, as described by the contour or join trees. By
using this nesting relationship between regions, tracking information is com-
puted for the entire field. In contrast, by only using the approaches assuming
flat features seen above, this is likely to be a more expensive task.

In [32], Saikia and Weinkauf propose the idea to use the knowledge of
all available time steps in order to decide the correspondences between any
two consecutive ones. They therefore assess the improvement brought by
having a global, rather than a local temporal context when deciding corre-
spondences.

They are extracting the features of interest only using the join trees of
the fields. This is motivated by the fact that in many applications the con-
tour tree is dominated by the join tree, scientists being more interested in
only observing how features appear and join. They then proceed by build-
ing a directed acyclic graph that contains all the features of all time steps,
where features of consecutive time steps are connected by arcs with values
representing the cost of matching them. These costs are obtained consider-
ing both spatial overlap and the similarity between regions’ data. Starting
from a given region, they are then applying the Dijkstra algorithm in order
to find the shortest path through the graph built as described above, which
corresponds to the evolution of the region in time.

2.10 Existing work

The current project partially reuses some of the code written by Daniel Simig
for his undergraduate thesis [38]. During his project, he developed a tool
able to extract and visualize the features of the data using contour trees. His
results relevant to this project are the following:

2.11. Summary 27

FIGURE 2.17: A selected (red) node and the contour corre-
sponding to its subtree [38]

1. Creating a C++ API for computing contour trees, over the libtourtre li-
brary [24]. libtourtre represents an open-source implementation, writ-
ten in C, of the algorithm described in 2.5.2.

2. The implementation of a number of reductions for contour trees, as de-
scribed in 2.6. There were two reductions primarily used throughout
the project:

• Pruning by volume, to remove insignificant features

• Pruning by value, in order to compact arcs corresponding to nega-
tive values in the data. With regards to the Q-criteria, the negative
values correspond to noise and have no physical meaning.

3. Building an interactive GUI that uses the simplified contour tree as an
index in a time step of a flow. The user is able to choose an edge of
the contour tree and visualise one isosurface on that edge, as seen in
Figure 2.17, taken from the original thesis. It represents a local contour,
rather than a global one, exemplifying the dynamic feature extraction
idea presented earlier in this chapter. This is achieved by generating
the contour only on the mesh region corresponding to the arc and its
subtree, which are reproduced using the vertex to arc mapping asso-
ciated to the contour tree. The VTK library is used for extracting the
isosurface of the region, using a so-called VTK contour filter.

2.11 Summary

In this chapter, we presented general Computational Fluid Dynamics knowl-
edge which will be particularly relevant for understanding Chapter 6, where
we use our tool in the context of a real problem existing in the field, as well

28 Chapter 2. Background and Related Work

as for the understanding of certain parts of Chapter 5 where the achieve-
ments of the current project are evaluated. We then introduced contour trees,
and described an efficient and commonly used algorithm for constructing
them, which supports the understanding of the feature tracking algorithm
described in Chapter 3. We then presented several feature tracking tech-
niques existing in the literature, which we evaluate against our algorithm
in Section 5.5.

29

Chapter 3

Feature tracking

The main focus of the project was to implement an algorithm for deciding
correspondence of features between two scalar fields, having in mind its ap-
plicability to time snapshots of fluid simulations.

As discussed in Section 2.9, there is no fixed way to define the features.
However, we decided to use contour trees to extract them, such that any
feature will correspond to an arc of the contour tree. The feature can then
be visualized by contouring the field subregion defined by that arc and its
subtree at any isovalue belonging to the arc. An example of vortex struc-
ture belonging to the Taylor Green Vortex simulation is included in Figure
3.1, where its local local context is contoured at two different isovalues (of
course, both within the scalar range of the nodes connected by the arc). We
can see that the contour appearance is slightly different, but they indeed rep-
resent the same feature. The tracking algorithm should therefore focus on the
correspondence between arcs of two contour trees.

In addition, we would like the algorithm to be able to deal effectively
with noisy data sets, so it should support the integration with contour tree
simplification procedures. Moreover, since the process of storing the data
produced by CFD solvers has recently become a major bottleneck in the field,
the in-situ capabilities of the algorithms for understanding and visualising
the simulations become extremely relevant. Therefore, our approach should
be fundamentally applicable at the time the simulation is performed.

In the rest of the chapter, we are going to describe the feature tracking
algorithm developed as part of the project. The research contributions asso-
ciated to it are the following ones:

(A) Isosurface defining a feature at 1.2 (B) Isosurface defining a feature at 2.17

FIGURE 3.1: Two isosurfaces belonging to the same contour tree
arc, taken at different isovalues.

30 Chapter 3. Feature tracking

• We propose a new algorithm for feature tracking, based on comput-
ing arc correspondences between contour trees. This is achieved by
extending the approach described by Sohn et al. in [39] with a way of
converting contour correspondences to correspondences between arcs.

• We improve the contour correspondences computation algorithm de-
scribed by Sohn et al. to make it applicable to contour trees that have
been previously simplified.

• We demonstrate the efficiency of tracking features in a wide range of
scenarios, while particularly focusing on the ability of tracking vortex
structures in turbulent fluid flow simulations. This work is presented
in Chapter 5.

• We assess the feasibility of running the algorithm at the time the fluid
simulations are performed, work included in Section 7.3.1.

3.1 Computing contour correspondences

Remember that each point on a contour tree arc corresponds to a local iso-
surface. Given two scalar fields, we want to know for each local isosurface of
the second field the (possibly empty) set of local isosurfaces from the other
snapshot that evolve into it. With respect to the contour trees of the two
fields, we therefore want to label each point of an arc of the second tree with
the correspondent set of arcs from the first one. Intuitively, this is a difficult
task, since the domain of the isovalues is continuous. However, the fact that
we approximate the spatial overlap between isosurfaces using the number
of shared mesh vertices means that the correspondence information for an
arc can only change at mesh vertices, therefore a discrete domain. Moreover,
in the case of data coming from real applications the number of arc regions
labeled differently is going to be much smaller compared to the number of
vertices, due to the expected coherence within the data [39], as we will see
later in section 5.3.

Figure 3.2 shows an example of correspondences computed between two
contour trees, CT t and CT t+1. Here, we can see how segments of edges of
CT t+1 are labeled with edges fromCT t. If a point on an arc ofCT t+1 is labeled
with an edge, the contour defined by that point evolves from the contour at
the same value on that specific edge of CT t. The layout of the trees follows a
linear vertical scale, corresponding to the scalar values of the nodes. On the
other hand, the horizontal positions of the nodes are arbitrary.

More formally, for each edge et+1
k ∈ CT t+1, we are going to output a divi-

sion of it in several regions of contours of the form
{((HI(et+1

k), x1), E1), ((x1, x2), E2), ...((xr, LO(et+1
k)), Er+1)}, where HI(e) and

LO(e) denote the two contour tree nodes connected by e. For any (xk, xk+1)
region of contours, the set of correspondent edges Ek+1 will have the form
etp1 , e

t
p2
... ∈ CT t, such that any contour in the region (xk, xk+1) evolves from

the set of contours at the same isovalue on edges in Ek+1.

3.1. Computing contour correspondences 31

FIGURE 3.2: Contour correspondences computation example
between two trees.

3.1.1 Contour correspondence definition

We proceed by giving a formal definition for the correspondence between
two contours.

In 2.5.2, we have seen the definition of upper objects and lower objects
for a fixed isovalue y: connected components of mesh vertices having value
≥ y or ≤ y, respectively. Therefore, for a fixed y at a timestep t, we can
define two sets: {UP t

1, ..., UP
t
n} and {LOt

1, ..., LO
t
m} containing the upper and

lower objects, respectively. Naturally, any contour will be on the border of
one upper object and on the border of one lower object, objects determined
by the threshold equal to the contour isovalue.

We are now able to define the correspondence between two contours Ct
k

and Ct+1
k′ belonging to time steps t and t + 1. For Ct

k and Ct+1
k′ , let’s assume

their upper and lower objects are UP t
x, LOt

y, UP
t+1
x′ and LOt+1

y′ . We say that
Ct+1
k′ corresponds to Ct

k if and only if there is a significant overlap both be-
tween UP t

x and UP t+1
x′ and between LOt

y and LOt+1
y′ .

In order to assess the significance of overlap between two upper (or lower)
objects, the following condition is used:

|UP t
x ∩ UP t+1

x′ |
min(|UP t

x|, |UP t+1
x′ |)

> Tover

where Tover is a specified threshold which filters out undesirable matchings
and can be changed depending on the application. The robustness of up-
per and lower objects against the changes occurring in consecutive fields is
therefore used to track the evolution of contours.

32 Chapter 3. Feature tracking

We notice that the overlap degree is relative to the smaller object among
the two. As an example, this means that if the first object is contained in
the second one, the overlap will always be significant regardless the differ-
ence between their dimensions. On the other hand, the algorithm is not able
to identify correspondences if the upper objects do not share any vertex, a
typical limitation for overlap based tracking algorithms. However, we con-
sidered this an acceptable limitation, having in mind that the tracking algo-
rithm would be eventually running in-situ, where the temporal sampling can
be assumed to be sufficient.

The Tover threshold is a confidence scalar, which should be adjusted ac-
cording to the underlying data. Specifically, there are two basic aspects often
taken into consideration:

• The temporal sampling of the underlying data. When the sampling is
lower, the threshold should be sufficiently low.

• The velocity of the features of the data. When the velocity is higher, the
threshold should be again sufficiently low.

On the other hand, choosing a too low threshold can lead to the report of
false match positives.

3.1.2 The algorithm

We have seen that the correspondence criteria consists of two independent
halves: assessing the significance of the overlap between upper objects and
between lower objects, respectively. The algorithm therefore consists of com-
puting contour correspondences according to upper and lower objects sepa-
rately, in two different passes, and then intersecting this information in order
to obtain the correct contour correspondences. The process of computing the
upper objects correspondences for two contour trees CT t and CT t+1 can be
summarized as follows:

• Label each edge in the join tree of CT t with a set of edges of CT t.

• Label each edge in the join tree of CT t+1 with a set of edges of CT t. This
is done according to the overlaps between the upper objects of the two
time steps, during their growth.

• Label each edge in the join tree of CT t+1 with a set of edges of CT t+1.
Then use this, together with the information from the previous step,
to obtain a partial contour correspondence information between the
two initial contour trees, only by looking at the overlap significance
between upper objects.

The lower objects correspondences will be computed similarly, using the
fundamental symmetry between upper and lower objects. For the rest of
the subsection, we are going to focus on the process of obtaining the upper
objects correspondences, and at the end explain the intersection process be-
tween upper and lower objects correspondences, in order to obtain the con-
tour correspondences.

3.1. Computing contour correspondences 33

Building a labeled object tree

The first operation presented is building an join tree for one of the fields, us-
ing the process described in Subsection 2.5.2. The additional aspect is that,
during construction, the edges of the join tree will be labeled with the cor-
responding ones of the contour tree. An example of building a labeled join
tree from its corresponding contour tree can be seen in Figure 3.3. We can see
how an edge of the join tree can have more than one label, corresponding to
splits happening in the contour tree.

FIGURE 3.3: A labeled join tree and its corresponding contour
tree.

We are going to initialize an union-find (disjoint-set) data structure that
will contain the active upper objects while sweeping the isovalue from∞ to
−∞. While traversing the mesh vertices in decreasing order by their scalar
value, for a vertex v we have again the cases encountered while building the
join tree:

• No neighbour of v has been processed yet. Therefore, we are at a global
maximum, so:

– A new set, corresponding to a new upper object, is added in the
union-find structure

– A new node n is added to the tree. Its label set will be L(n) =
S(CTNode(v)), whereCTNode(x) represents the node correspond-
ing to x in the contour tree, while S(n) denotes the set of son edges
of node n. Note that CTNode(v) is well defined, since v is a global
maximum, so there is a node (an upper leaf) corresponding to v in
the contour tree.

• v is a join:

34 Chapter 3. Feature tracking

– A new join tree node n is created, connected to the k parent nodes
that correspond to the objects being joined. The new node will
inherit their labels, but the ones of the direct parent edges will be
replaced by the label of the join edge in the contour tree (the child
edge of v). Therefore, the label set is:

L(n) =
k−1⋃
i=0

L(T (Xi))− P (CTNode(v)) + S(CTNode(v))

whereX0..k−1 are the objects being merged, T (X) denotes the newest
join tree node added to object X , and P (n) denotes the parent
edges of the contour tree node n. Note that⋃k−1
i=0 L(T (Xi)) = P (CTNode(v)) holds unless one of the merged

objects suffered a split earlier in the tree

– The sets corresponding to the joined objects are merged.

• v is a split:

– v is added in the disjoint set of the object that it belongs to. There
is one such object, since in a well-behaved tree v is not an upper
leaf as well

– A new join tree node n is created, connected to the newest node in
the object X of v, with the label set:

L(n) = L(T (X))− P (CTNode(v)) + S(CTNode(v))

• v is a lower leaf:

– v is added in the disjoint tree object it belongs to

– A new node is created in the join tree, connected to the newest
node of the object v belongs to, with the label set:

L(n) = L(T (X))− P (CTNode(v))

• v is a regular vertex. In this case, we only have to update the object
containing v.

In the above explanation, labels were assigned to nodes, while previously
they were corresponding to edges. The two notations are however equiva-
lent, since all the join tree nodes have at most one child arc (although po-
tentially more parents): the labels of an arc are therefore those in its parent
node.

By following the above process, we can see how additions to the label sets
correspond to the creation of new contour classes, while removals from the
label sets correspond to the termination of contour classes as we sweep the
scalar isovalue from top to bottom. The splits are reflected in the join tree by
the existence of degree 2 nodes, where the label set is changed.

3.1. Computing contour correspondences 35

Building a join tree reflecting overlaps

Using the algorithm described in the previous subsection, we are now in the
position to build a join tree for the first time step, JT t, having the nodes
labeled with edges from CT t. In this subsection, we aim to build a join tree
for the second time step, JT t+1, whose nodes should also be labeled with
edges of CT t in order to reflect significant overlaps between upper objects.

Similarly to the previous subsection, we are going to keep track of how
upper objects evolve as we decrease the isovalue. Here we will store the
objects of the two time steps in two distinct union-find structures, and up-
date them as we traverse the vertices in interleaved decreasing order by their
value. In total, we are going to process vertices twice the number of vertices
in a mesh (as both fields are built on the same mesh), and take action accord-
ing to the type of the current event and whether it comes from time step t or
t+ 1.

When processing a vertex from the second time step, we are going to add
a new node in JT t+1, similarly to the previous section. This ensures that all
nodes in CT t+1 will have a correspondent in the join tree, as expected. The
label set of the node will be the union of the label sets of all parents for the
moment, but updated as described in the following paragraphs.

Apart from keeping track of how the objects evolve, we will also need to
keep track of pairs of objects, from different time steps, that overlap. There-
fore, when processing a vertex v from any of the two timesteps, after the
upper objects are updated, we are also interested in updating the collisions
between objects. Apart from knowing the pairs of objects that overlap, we
will also know the volume (approximated by the number of shared vertices)
of the overlapping region and whether the overlap is considered significant
or not. This information enables us to check the significant overlapping con-
dition. Therefore, after the objects are updated appropriately using the join
tree construction rules, for a vertex v we have the following cases:

• v is an upper leaf in either contour tree, and v has already been included
in an object of the other time step. This means that the vertex v has just
created an object that will share one vertex (v itself) with the older object
containing v in the other time step, so a new collision is added.

• v is not a non-upper leaf critical node. We are going to sum up all the
collisions of the objects merged at this point (just one unless v is a join)
saying that the collision with objectX is significant if at least one parent
had a collision with X previously marked as significant.

• v is a regular node. We only increase by 1 the size of the object v belongs
to.

We will now proceed by traversing all the collisions of the object currently
containing v (there will be exactly one object), and potentially create new
nodes in JT t+1 if the significance of overlaps is changing. If the collision
(UP t

k, UP
t+1
k′) became significant, we are going to create a new node in JTt+1,

child of the last node created for object UP t+1
k′ , which will have the labels of

36 Chapter 3. Feature tracking

the parent and also the labels of the JT t edges the last vertex of UP t
k belongs

to. Similarly, if the collision becomes insignificant instead, we create a new
node removing those labels.

Figure 3.4 shows an example where this operation is performed. The red
circles correspond to points where the significance of the overlap between
upper objects changes, and their position depends on the underlying fields.
We can also notice that JT t+1 is built such that it represents a valid join tree
for CT t+1.

FIGURE 3.4: A join tree reflecting collisions between upper ob-
jects.

Labeling a contour tree from a join tree

In the last two subsections, we have seen the two operations that enable the
construction of two join trees for the second field, one labeled with edges of
the first contour tree and one labeled with those of the second contour tree.
At this point, we proceed by introducing a simple way to combine these two
join trees in order to generate the first half of correspondence information for
edges of CT t+1, the half considering only the upper objects.

The idea is that if a point on a join tree arc at isovalue x has a label et in
the first join tree, and a label et+1 in the second join tree, the isosurface at x
on edge et+1 of CT t+1 will evolve from the isosurface at x on edge et of CT t.

More formally, assume the two join trees are JT t+1
1 and JT t+1

2 , being la-
beled with edges of CT t and CT t+1, respectively. Consider edge j of JT t+1

1 ,
having the label set E1 = {et+1

1 , et+1
2 , ...}. From the construction of JT t+1

2 , we
are guaranteed that HI(j) and LO(j) will also correspond to two nodes in it,

3.1. Computing contour correspondences 37

say n1 and n2. We are now able to decompose (n1, n2) in regions by following
the son edge from n1 until we hit n2, obtaining the regions
{((n1, nk1), E21), ((nk1 , nk1), E22), ...((nkm , n2), E2m+2)}. Now each region
((nkp , nkp+1), E2p+1) will represent, on every edge in E1, a consecutive region
of contours between the two scalar values of nkp and nkp+1 that evolve from
E2p+1 . Remember that E2p+1 is a set of labels assigned to labels in the first
contour tree. Therefore, at this point we managed to label (regions of) edges
of the second contour tree with edges of the first one, having only looked at
half of the overlap condition: only considering upper objects.

An example is included in Figure 3.5. Here, for the arc labeled {et+1
3 , et+1

4 }
in JT t+1

1 , there are two non-empty regions with different labels (i.e. {et2, et3}
and {et2}) on the chain between the same nodes in JT t+1

2 . Both et+1
3 and et+1

4

edges of CT t+1 will be labeled with the two regions in JT t+1
2 , so with edges

of CT t.

FIGURE 3.5: Two join trees, labeled with edges from different
time steps contour trees.

Intersecting two labeled contour trees

The final step of the algorithm is represented by intersecting the label sets
computed for each edge of the second contour tree during the two passes:
once considering upper objects and once considering lower objects.

For every contour tree edge (n1, n2) of CT t+1, we will have two divisions
into regions: {(n1, n

′
1), (n

′
1, n

′
2), ..., (n

′
m1
, n2)} and {(n1, n

′′
1), (n′′1, n

′′
2), ..., (n′′m2

, n2)}.
We are going to merge these regions, ending up with m1 + m2 + 1 regions,
assuming their borders do not coincide.

An example is included in Figure 3.6, which focuses on the process of
intersecting one pair of arcs, represented by the top two horizontal lines. We
can see how the label sets of overlapping regions are intersected and a new
labeling is obtained for the edge.

38 Chapter 3. Feature tracking

FIGURE 3.6: The operation of intersecting the labels of two con-
tour tree arcs.

3.1.3 Implementation

In order to compute the tracking information between the features of two
scalar fields, our implementation consists of the following sequence of events:

1. Build the two contour trees of the scalar fields, achieved using the lib-
tourtre library.

2. Simplify the two contour trees, as described in Section 2.6. Then update
the scalar values associated to pruned regions of the fields, in order to
reflect the contour trees simplification.

3. Sort the mesh vertices according to the updated scalars.

4. Construct two join trees, JT t for CT t and JT t+1
1 for CT t+1, with labeled

edges, using our own implementation of the step described in 3.1.2.

5. Construct another join tree, JT t+1
2 for CT t+1, having its edges labeled

with edges of CT t, using our implementation of the step described in
3.1.2.

6. Label the contours of CT t+1 with edges of CT t, as described in 3.1.2, to
obtain CTUppert+1.

7. Reverse the traverse order of the mesh vertices, and repeat steps 4-6 to
obtain CTLowert+1.

8. Intersect the contour labeling of CTUppert+1 and CTLowert+1, as de-
scribed in 3.1.2, in order to obtain the actual contour correspondence
information, reflecting significant overlaps between both upper and
lower objects.

Note that the join and split trees are computed twice for each field: once
in step 2 (done by libtourtre) and once in step 4. Their total recomputation
in step 4 is required because of the contour tree simplifications happening in
step 2.

3.1. Computing contour correspondences 39

Moreover, in our implementation for the construction of upper object
trees in steps 4 and 5 we had to accord special consideration to the pruned re-
gions. This was because these trees produced using the processes described
in 3.1.2 and 3.1.2 were expected to have nodes for the same critical vertices as
the pruned version of the contour tree. Therefore, in addition to producing
upper object trees compatible to the pruned field, we also required them to
be compatible to the pruned contour tree. Otherwise, the rest of the opera-
tions for computing the contour correspondences would not have been well
defined. When we flatten the field according to the pruning, the scalar of a
pruned mesh vertex will be set to the value of the hierarchically closest node
remaining in the tree. This means that we will now have connected mesh
regions with the same value. Among these, only one voxel will have a cor-
respondent node in the contour tree, and we would ideally like the same to
happen in the upper objects trees. Since we sort the vertices by value prior
to building trees, the behaviour of the sort function will influence the tree
structure corresponding to the mesh region, as explained in Figure 3.7. The
Figure contains a mesh laid out according to the vertices values, with nodes
2, 3 and 4 having the same scalar. Different valid ordered sequences can lead
to the creation of different contour trees. CT1 is produced if the nodes are
sorted in the order 1, 5, 2, 4, 3, while CT2 is produced by the ordering 1, 5, 3,
2, 4.

FIGURE 3.7: Possible contour trees built from a mesh with equal
values, as a result of pruning.

By considering additional ordering criteria that would make the sort out-
put predictable, we realized that, in general, there is no characterization for
the orderings that would produce the expected upper object trees by just fol-
lowing the construction algorithms as described earlier in the chapter.

The first alternative we considered was to compute a new contour tree,
according to the new join and split trees. Naturally, the contour tree would be
compatible with the upper object trees, and it would reflect the pruned scalar
field. However, we are unable to control its structure, and partially lose the
value obtained by pruning. As an example, depending on the ordering used,

40 Chapter 3. Feature tracking

the subtree corresponding to an upper leaf in the first pruned contour tree
could now consist of a more complicated structure with upper leaves and
joins, all happening at the isovalue of the pruned region. We aimed to avoid
this kind of artificial clutter in the structure of the contour tree.

We decided to adapt the algorithms for building upper object trees to treat
the pruned nodes differently. This way, during the flattening process, we
stored for each pruned voxel the contour tree node it was collapsed into (the
node that also defined its post-pruning value). While traversing the ordered
mesh vertices in order to build the join and split trees, we use this information
as follows:

• When we reach a vertex v, where other vertices were pruned, add these
as well to the object v belongs to.

• If the current vertex was pruned, ignore it and continue with the next
vertex.

• The management of the collisions, done in step 5, is slightly changed:
when vertex v is processed, it may now be the case that more than one
collision are now created or updated. This is because multiple vertices
are added, at once, which may belong to different objects in the other
time step.

Steps 4 and 5 require the usage of union-find data structures. They were
implemented as tree forests, with the path compression and union by rank heuris-
tics, as described in 2.7. This way, the complexity of the operations involving
the union-find structures in steps 4 and 5 is O(vα(v)), where v is the number
of field voxels.

In step 5, updating the collisions between objects after a vertex is pro-
cessed is one of the expensive parts of the algorithm. Therefore, we carefully
considered how the collisions should be stored. We decided to store them
in two hashmaps, one indexed by the objects in the first time step, and one
indexed by the ones in the second time step. The downside of this is that the
information is duplicated, so each update has to be performed twice. On the
other hand, this enables to iterate efficiently through all the overlaps of an
object, regardless what time step it belongs to.

The time complexity of step 1, the construction of the contour trees, is
O(v log v+eα(e)), with v being the number of mesh voxels, and e the number
of mesh cells. The step 2 is performed in time linear to the size of the mesh,
while the sorting in step 3 has complexity O(v log v). Step 4, the construction
of the upper object trees, has complexityO(eα(e)). Step 5, where we also have
to keep track of the collisions between objects, has complexityO((v+e)(α(e)+
n)), where n denotes the number of contour tree nodes. Step 6 has complexity
O(nv), as v is the upper bound for the number of regions with different labels,
while n is the limit for the size of the label sets. The intersection between the
two labeled contour trees, in step 7, has again complexity O(nv) since the
regions are already sorted prior to computing the intersections.

3.2. Computing arc correspondences 41

3.2 Computing arc correspondences

Once the correspondences between contours are computed, the next step is
to aggregate these into arc correspondences. This is a non trivial task, as a
consequence of the following:

• The unsteady nature of the scalar values in fields originating from real
or simulated environments. This means that an arc of a contour tree
will not span the same scalar range as its correspondent from the next
contour tree.

• The effects of the simplification process on the two trees. Pruning by
volume, as an example, can lead to the sudden appearance of arcs cor-
responding to significantly large objects, that had been pruned in the
previous snapshots. Simplifying to achieve a fixed contour tree size
can lead to even more unpredictable results: when the pruning priori-
ties of nodes are close, we may see important difference in the pruned
trees across time steps, even when the actual changes in the values of
the field are small.

FIGURE 3.8: Possible contour correspondences between two
contour trees.

Figure 3.8 shows how the two contour trees have a similar structure, al-
though the scalar values of the nodes are modified. The edge correspon-
dences expected in this example are the intuitive ones. We can see how the
{e1, e2} label on the root arc could mislead a naive approach to assign all
{e1, e2, e3} to it. In Figure 3.9 we can see how the pruning can determine the
sudden appearance of two upper leaves from e2 in the second time step. We
would like to conclude that all the three edges (the two upper leaves and
their joining arc) correspond to the initial e2.

The above examples suggest that obtaining the edge correspondences for
an arc is difficult if we only use the arc’s own contour correspondences infor-
mation. Therefore, we realized that also considering the contour correspon-
dences of other relevant edges will be required in order to obtain a robust
labeling algorithm.

42 Chapter 3. Feature tracking

FIGURE 3.9: Possible contour correspondences between two
contour trees.

We decided to use the nesting relationship of the contour tree features
in order to compute the correspondences between arcs. For each arc et+1 of
the second contour tree which has a contour labeled with an edge et of the
first contour tree, we are going to assign the et label to et+1 only if the label
sets in the leaves of their upper trees coincide. Therefore, we combine the
overlap knowledge given by the contour correspondence with the topology
information given by the contour tree structure.

The algorithm we propose for obtaining the arc correspondences between
two contour trees, CT t and CT t+1, can be summarized as follows:

1. For each arc et ofCT t, compute leavest(et), representing the set of upper
leaf arcs in the upper subtree of et. If et is an upper leaf arc, leavest(et) =
{et}.

2. Sort the nodes of CT t+1 by their scalar value.

3. Traverse the nodes in decreasing order by value. For the current node
n, traverse its down arcs and compute their correspondents from CT t,
as described in the next steps.

4. For a fixed arc et+1, compute the set leavest+1(et+1) by appending the
similar sets of the adjacent up arcs.

5. For et+1, consider the set E1 containing the edges of CT t with contours
that evolve into et+1. We consider the upper leaf arcs and non-upper
leaf arcs of E1 separately. For upper leaf arcs et, we say that et+1 cor-
responds to et if leavest+1(et+1) ⊆ {et}. After processing all the upper
leaf arcs, we augment the set leavest+1(et+1) with the obtained corre-
spondences from CT t, and then proceed by considering the non-upper
leaf arcs of the set. For arc et, we now say that et+1 corresponds to e1 if
leavest+1(et+1) = leavest(et).

3.3. Summary 43

The algorithm is able to compute the desired correspondences in the two
examples given earlier in this section. It can be noticed that we are not us-
ing the size of the contour correspondence range between two arcs, but only
the fact that at least one contour corresponds. We chose to do this, as the
length of a scalar range on an arc is not generally correlated with the size of
the associated mesh region. Therefore, it cannot be reliably used as a good
measurement for the significance of spatial overlap.

3.3 Summary

This chapter presented the feature tracking algorithm developed as part of
this project. We described how the algorithm for computing correspondences
between contours was implemented, and how it was improved to support
the prior application of contour tree simplification techniques. Then, we fo-
cused on how the contour correspondences were translated to correspon-
dences between arcs.

In Chapter 4, we will present a tool that uses this algorithm in order to
track features visually in scalar fields. In Chapter 5, we will evaluate the
effectiveness of the algorithm against test cases of increasing difficulty.

44

Chapter 4

Tool implementation

As part of the project, we aimed to develop a novel way in which researchers
are able to understand time dependent scalar fields, motivated by examples
from aeronautics fluid flow simulations. We decided to wrap our feature
tracking algorithm in a software tool, that would integrate the visualization
of the features of such fields with their contour tree representation.

4.1 Functionality overview

The graphical interface of the tool, illustrated in Figure 4.1, provides the fol-
lowing functionality:

• A visualization of the contour tree of a field, supporting the process of
understanding its topology.

• The ability to interactively select subtrees of the contour tree, and vi-
sualize their representative local isosurfaces. This way, a researcher is
able to observe the field’s interesting features, by using the contour tree
as an index into the data. Multiple contour tree regions can be selected
at once: they are assigned tags of different colors, visible both in the
contour tree and in the field visualization component.

• Feature tracking capabilities. Using the keyboard arrows, we are able to
move forwards or backwards in time throughout the loaded field, while
the tags are updated to reflect the correspondence between features of
the consecutive time steps.

• Functionality improving the data analysis experience, such as display-
ing the value of a contour tree node while hovering over it, or the ability
to change the aspect ratio of the contour tree layout.

4.2 Data manipulation pipeline

The main steps we perform before being able to obtain the above visualiza-
tion can be summarized as follows:

1. Converting the raw output of PyFR into an appropriate input for our
tool.

4.2. Data manipulation pipeline 45

FIGURE 4.1: Graphical interface of the tool

2. Building the contour trees for all the temporal snapshots.

3. Simplifying the contour trees.

4. Using the structure of the simplified contour to build the local grids
that will be used to render local isosurfaces.

5. Computing the feature tracking information as described in the previ-
ous chapter.

6. Optionally, running a strategy for automatically identifying features of
interest in the start field.

7. Launching the user interface described in the previous section.

The rest of the section aims to give further details about each of the above
steps.

4.2.1 Preprocessing the data

The raw output of a PyFR simulation is represented by a sequence of .pyfrm
and .pyfrs files, corresponding to a sequence of snapshots in time. In order to
be able to manipulate them efficiently, we firstly export them in .vtu files, a
standard format for unstructured meshes. This is achieved using the Python
export script provided by PyFR.

Our tool was designed to be generally usable for any sequence of meshes
that have a scalar field associated, regardless the semantics of the scalar.
However, throughout the project we used the Q-criteria for testing and as-
sessing the efficiency of the product. The Q-criteria is not included in the
output of PyFR, but it can be easily calculated from the gradients of the ve-
locity field. We performed this using a Paraview Calculator filter, and added
it as an additional scalar in the .vtu files.

46 Chapter 4. Tool implementation

A further preprocessing step consisted of applying a Clean to Grid filter,
available in Paraview as well, that improves the quality of the grid by solving
potential connectivity issues in the output of PyFR. For example, this filter
unifies the grid vertices that share the same position in space.

These data preprocessing steps have to be done before starting the tool,
which assumes the input files are in the .vtu format, clean and with no further
field values calculation required. We decided to keep these preprocessing
steps out of the main program, due to a number of reasons:

• Performing them inside the tool would restrict its generality. We would
be bounded to the PyFR file format, so the tool would lose its value
in the context of other CFD solvers; in contrast, .vtu is a much more
general format. We would also be bounded to use the Q-criteria for
analysis.

• Calculating fields such as the Q-criteria is done using methods well-
known by the community, so including this step in the tool would not
produce any extra value.

• Depending on the size of the simulations, the preprocessing steps may
take very long to compute. This is clearly undesirable for a data analy-
sis tool.

Note that we used Paraview’s Python scripting capabilities in order to
automate the data preprocessing step, since doing them using the Paraview
graphical interface would have been clearly unfeasible for simulations con-
sisting of hundreds of snapshots.

4.2.2 Building the contour trees for feature extraction

We proceed by loading the unstructured grids in memory, each having a
number of scalar fields associated. In order to save memory, we filter out the
fields that are not important for the analysis. The relevant fields, as well as
the one used for building the contour trees, have to be passed as command
line arguments. Note that we may be interested in storing more than one
field in order to combine the analysis of multiple fields, as we demonstrate
in Chapter 6.

We continue by building the contour trees using the libtourtre library. The
interaction with the library is done by just passing the following information:

• A function that takes a vertex as argument, and returns a list contain-
ing the mesh neighbours of the vertex. In order to implement this ef-
ficiently, we have to build the connectivity graph of the mesh before-
hand, and store it as adjacency lists. Otherwise, the VTK format for
unstructured grids is not indexing edges by nodes, so retrieving the
neighbours of a vertex would require to traverse all the graph edges.

• A list containing the mesh vertices in ascending order by value. There-
fore, it is our responsibility to resolve any value equality in the field.

4.2. Data manipulation pipeline 47

At this stage, we accepted any ascending ordering offered by the sort
function we used, since any ordering would produce a valid contour
tree.

The contour trees built for large-scale data are huge at this point. There-
fore, we continue by applying certain simplification techniques to reduce
their size. Since we usually used the Q-criteria scalar, we massively pruned
the bottom part of the tree that contained negative values, as they repre-
sented noise. Also, we generally pruned by volume, with various thresholds,
in order to filter insignificant field features.

As mentioned before, the tool is able to render local isosurfaces, corre-
sponding to subtrees of the contour tree. This is achieved using VTK Contour
Filters, which are able to draw fixed isovalue contours for a grid passed as a
parameter. We could obtain a global isosurface of the field at a fixed value
by contouring the entire grid that we read from a file. However, in order to
generate local isosurfaces, which correspond to individual features, the idea
is to use a Contour Filter on subregions of the initial grid. For each contour
tree arc, we generate a grid subregion, which contains all the cells adjacent to
at least one point on that arc. Remember that each mesh vertex is associated
to exactly one contour tree arc, which contains a contour that passes through
the vertex. We therefore use this vertex-arc mapping obtained from libtourtre,
and updated during the pruning process, to build the local grid for each arc.
In order to obtain the subregion corresponding to a contour tree subtree, we
are using a VTK Append Filter, which appends the grids corresponding to the
arcs belonging to the subtree.

To perform these steps, we adapted the code developed by Daniel Simig
in [38]. His document contains more details about the interactions with lib-
tourtre and the tree simplification process, as well as an attempt to mediate
the memory usage overhead caused by the storage of the arcs local grids.

4.2.3 Detecting features of interest

Step 6 of the data manipulation pipeline refers to the process of preselecting
the field features that have certain properties. As a basic example, in many
scenarios included in the Evaluation chapter, we wanted to preselect the el-
ementary vortex features corresponding to the upper leaves of the tree. On
the other hand, in Chapter 6, we will see an example of how the tool can be
extended with more advanced filters, that look at other properties of features,
such as their shape or position within the field.

The initial version of the tool only includes upper leaves filtering, spheres
filtering (described in the end of the current section), and streamwise low-
velocity streak vortices filtering (addressed in Chapter 6). However, adding
more filters in the future, according to the specific needs of researchers, can
be done by just providing new implementations of the FeatureFilter abstract
class. Note that this step is optional: the tool can be launched without any
preselected feature, and the user can proceed by finding the features of inter-
est manually.

48 Chapter 4. Tool implementation

Filtering spheres

Although a spherical shape is not typical for vortex structures existing in
fields from aeronautical simulations, we decided to implement this filter for
demonstration purposes. It is going to be used later, in the Evaluation chap-
ter.

In [43], Wadell et al. introduce the sphericity metric, a scalar defining
how close the shape of an object is to a mathematically perfect sphere. The
sphericity, Ψ, of an object, is defined as follows:

Ψ =
π

1
3 (6Vp)

2
3

Ap

where Vp and Ap represent the volume and the area, respectively, of the in-
spected object.

In our implementation, we used a VTK vtkMassProperties calculator to
compute the required properties (i.e. volume and surface area) of the features
we extracted from the contour tree. In order to classify objects as spheres and
non-spheres, we established a threshold Tsphericity for the sphericity metric.
All features with the sphericity greater than the threshold were then consid-
ered to be close enough to the shape of a perfect sphere. In order to select the
sphere-like features in Section 5.1, we were able to set a high value, 0.9, for
Tsphericity.

4.3 The graphical interface

The graphical interface was realized using the built-in capabilities of VTK,
and it contains two major components: the field where a number of isosur-
faces are displayed, and the contour tree of the field. Note that the contour
tree is laid out such that the nodes are vertically following a linear scale, us-
ing the approach described in [38]. This layout strategy guarantees that, in
contour trees without splits, there will be no crossing between arcs.

As mentioned before, tagging can be done manually or by the initial fil-
tering. Each tag will correspond to a different color, but multiple features
can have the same tag: this happens when selecting non-upper leaf nodes, or
when splits happen during the tracking process. The colors assigned to the
tags were imported from a dictionary of distinguishable colors, available at
[40]. The dictionary consists of a total of 191 colors. If the number of tags is
larger than this number, the tool is going to assign random colors to as few
tags as possible.

Only the tagged features will be displayed as isosurfaces in the field. The
isovalue chosen for the contour of an arc is computed by a simple linear
interpolation formula: 0.9 ∗ LOW + 0.1 ∗ AV G, where LOW represents the
value of the bottom node of the arc and AVG denotes the average of the
values of voxel associated to the arc. Therefore, the isovalue is close to the
bottom node, where the contours are usually more pronounced. On the other
hand, this formula may lead to choosing an isovalue out of the value range

4.4. Summary 49

of an arc, when the tree structure above the arc has been pruned. If this
happens, we contour at the isovalue 0.9 ∗ LOW + 0.1 ∗ HI (where HI is the
value of the upper node of the arc) instead, which is guaranteed to be within
the range. The reason for not using this as standard is that the movement
of pruned features can significantly change the highest value of the arc they
are pruned into. Therefore, the appearance of the isosurface displayed for
a tracked object could change too much relatively to the actual position and
values change suffered by the object.

The tool allows the tracking of the tagged features along the temporal
axis. When moving from a time step to the next one, we are going to use
the correspondence information in order to propagate the current tags: if tag
t corresponds to the set of edges E, when we switch to the next time step
we will assign t to all edges that correspond to edges in E. In this way, the
tool is able to track features of interest as they move, split, or join with other
features.

4.4 Summary

This chapter presented the visualization tool for time-varying fields that was
implemented as part of this project. The focus was, alternatively, on the
graphical interface and its functionality, as well as on the pipeline of events
happening before the graphical interface is launched. In Chapter 5, we will
evaluate the tool, looking at both its correctness and its functionality.

50

Chapter 5

Evaluation

In this chapter we aim to demonstrate the correctness of the feature tracking
tool developed, by running it on examples of increasing difficulty. Later, in
Sections 5.3 and 5.4, we further analyse the feature tracking algorithm, while
in Section 5.5 we briefly compare it with similar techniques existing in the
literature. Lastly, Section 5.6 performs a succinct evaluation of the tool.

5.1 Tracking features in artificial fields

In this section we apply the developed tool on small scale data, in order to
prove the correctness of the feature tracking algorithm against test cases with
known correct behaviour.

5.1.1 Generating small scale meshes with features

In order to evaluate the expected behaviour of the software on data of smaller
scale, we proceeded by generating 3D meshes with artificially introduced
geometrical shapes that would imitate the vortex structures usually observed
in fluid dynamics flows.

The trivial method used for obtaining smaller but still highly relevant
3D meshes was to extract subregions of two existing simulations: the Tay-
lor Green Vortex and the plane Couette flow, which are described in Ap-
pendix A. The subregions were obtained by clipping these meshes using cer-
tain bounds to produce rectangular boxes having the desired dimensions.

The vertices in the obtained meshes were then assigned small random
negative scalar values: this was to reproduce the case of fluid flows, where
regions with no vortices are characterised by negative Q values, which do not
have any physical meaning. Therefore, we have now obtained 3D meshes full
of noise. We are now going to introduce different shapes defined by positive
scalar values, that will correspond to features in the scalar field:

• Spheres. They are characterised by an (x, y, z) origin, a radius r and
a scalar range (min,max). We are going to traverse all mesh vertices
within distance r of origin, and assign them a scalar which is inverse
proportional to the distance, normalized in the range (min,max). This
ensures that the vertex closest to (x, y, z) will have the maximum value
(still lower than max) compared to the rest of the sphere, and it will
correspond to an upper leaf in the contour tree.

5.1. Tracking features in artificial fields 51

(A) Isovalue 3.5 (B) Isovalue 2.2

FIGURE 5.1: Isosurfaces of a field containing a sphere feature,
taken at two different isovalues. Entire sphere value range: [0.0,

4.0]

A sphere produced using this method can be seen in Figures 5.1a and
5.1b. The figures were produced using Paraview contours at two dif-
ferent isovalues. However, very similar isosurfaces would have been
obtained using our software, as we are going to see below. One thing
to notice is the larger size of the sphere when it is plotted at the lower
isovalue, due to the fact that the radius of the spherical contour has
increased.

• Bananas. We mathematically modeled them to be sections of toruses.
The standard shape of a torus is included in Figure 5.2. A torus around
the origin and the z-axis of the 3D Euclidean space is defined by the
following equation:

z2 ≤ r2 − (R−
√
x2 + y2)2

Here r is the radius of the torus body, whereas R is the distance from
the centre of the torus body to the centre of the shape. Both r and R
are parameters of the banana, along with the central point (the origin)
of the shape. Note that the equation also includes the points inside the
shape, not only the border. Similarly to the spheres case, we traversed
the mesh vertices, and, for a vertex (x, y, z), we computed the (z1, z2)
range of z coordinates belonging to the torus for the fixed x and y, by
solving the above equation. Then, if z was in the range, we would
assign a positive scalar to the vertex, inverse proportionally to the value
z − z1 in order to obtain the expected contour behaviour. Since the
equation assumes the origin is (0, 0, 0) we also had to translate each
(x, y, z) by the fixed origin of the banana before doing the test. In order
to obtain the banana shape, we partially discarded the points of the
banana that had the y coordinate greater that a certain value. A banana
obtained this way can be seen in Figures 5.3a and 5.3b. These were
again produced using Paraview, at two different isovalues.

Note that in order to obtain rotated bananas, one additional step has to
be done: after translating (x, y, z) to be relative to (0, 0, 0), we will also

52 Chapter 5. Evaluation

FIGURE 5.2: Shape of a 3D torus

(A) Isovalue 2.5 (B) Isovalue 1.5

FIGURE 5.3: Isosurfaces of a field containing a banana feature,
taken at two different isovalues. Entire banana value range:

[0.0, 4.0]

multiply the point with a rotation matrix.

5.1.2 Tracking moving spheres

Figure 5.4 shows a scalar field containing two spheres, and its corresponding
contour tree, which is laid out such that the vertical positions of the nodes
follow a linear axis, according to their values. The picture was taken using
the tool developed as part of this project, and manually annotated with the
isovalues marking significant events for the purpose of this explanation. The
isovalue used for contouring is 0.4, with the value range of the spheres being
again [0.0, 4.0]. Note that for isovalues greater than 4.0 no isosurface would
have been visible. This is also the case for isovalues lower than the minimum
noise value. In contrast, for an isovalue in the range of the contour tree root
arc, we can distinguish both spheres, but also a significant amount of noise
as well, as seen in Figure 5.5 produced using Paraview. An interesting aspect
is why the spheres are still distinguishable, even when taking isosurfaces at
values out of the range used during their construction. This happens because
of the existance of certain cells in the mesh that connect sphere voxels with
noise voxels. Since linear interpolation is used to compute the values inside
the cells, there will still be sphere-like contours to be rendered at those iso-
values.

5.1. Tracking features in artificial fields 53

FIGURE 5.4: An isosurface and the contour tree of a scalar field
containing two spheres. Isosurface taken at 0.4.

FIGURE 5.5: Contour of the field at isovalue -0.1

54 Chapter 5. Evaluation

The two upper leaves of the contour trees are on the same horizontal line,
and represent the creation of the two spheres at the isovalue 4.0, correspond-
ing to the centers of the spheres. Going down, each intersection of a horizon-
tal line with the tree will yield two points, representing particular contours
of the spheres. As the horizontal line isovalue is decreased, the sphere-like
contours are growing. We can see that they eventually join at isovalue -0.152.
This happens slightly below 0 since the two spheres will join using mesh ver-
tices associated to noise scalars, as they otherwise do not share any vertex.
All the voxels with scalar values lower than 0.0 belong to the root edge. Al-
though this encapsulates a complex subtree structure built during the initial
contour tree construction, it was reduced to a single edge during the prun-
ing step. This is to avoid cluttering the contour tree structure with complex
subtree structures corresponding to noise.

Figure 5.6 highlights the time evolution of the scalar field over four snap-
shots. The two spheres are only moving in the positive x direction, and the
contour tree remains the same. The scenario is testing the ability to track
two moving objects which do not overlap or split. Here the difficulty was
to propagate the green and red tags assigned to the two initial structures. In
the second step we see that the order of the two tagged edges is changing.
This happens since the contour tree horizontal layout is arbitrary, and does
not account for any correspondence information. We are able to maintain
the appropriate tags, as highlighted by the coloring of the spheres and of the
contour tree edges.

5.1.3 Spheres that join and split

The setup (Figure 5.7) is similar to the previous one, but a third, smaller
sphere has been added, with the range of values [0.0, 2.0]. This smaller range
is highlighted in the contour tree, by the blue arc starting later than the other
two features.

Apart from movement, the algorithm should identify the joins and splits
of structures. In Figures 5.7b, 5.7c and 5.7d we can see how the red and blue
spheres are getting closer and closer, merging at step 3 in a purple object
(the result of mixing blue and red). The initially distinct features are now
combined into only one, reflected in the contour tree, by the purple arc. At
the next step the two spheres bounce, so they split again, but now both are
purple since the initially distinct identity of the objects was lost. Note that
the join arc of the two objects is purple now, since it also corresponds to the
unique arc representing the two features at the previous step.

The simulation can also be done backwards. At step 4, we can assign
color tags to the features defined by the upper leaves of the tree (as we have
done for all the examples presented so far). Then we move to the left in the
temporal direction. This produces the simulation shown in Figure 5.8. The
noticeable thing here is that after the split happening between steps 2 and 3,
there will be no join arc that only connects cyan objects, so there will be no
cyan join arc.

5.1. Tracking features in artificial fields 55

(A) Step 1 (B) Step 2

(C) Step 3 (D) Step 4

FIGURE 5.6: The successful tracking of two spheres moving in
the positive x direction.

56 Chapter 5. Evaluation

(A) Step 1 (B) Step 2

(C) Step 3 (D) Step 4

FIGURE 5.7: The successful tracking of three spheres that move
and interact.

5.1. Tracking features in artificial fields 57

(A) Step 1 (B) Step 2

(C) Step 3 (D) Step 4

FIGURE 5.8: The successful backwards tracking of three
spheres that move and interact.

58 Chapter 5. Evaluation

5.1.4 Identifying and tracking a banana

In the current scenario (Figures 5.9) we are looking at one sphere and one
banana. The isovalue used for contouring is 1.2. The contour tree structure
is the same as in Figures 5.6, since contour trees are not aware of the shapes
of the features. This example demonstrates two aspects:

• The tracking algorithm is not limited to tracking spheres.

• We are able to track edges selectively. Here we distinguish between the
banana and the sphere by using the method described in 4.2.3, and we
assign it the yellow color, while everything else is left in dark gray. We
then track the banana over the next three snapshots. We are able to do
this without running again the non-sphere identification algorithm.

5.1.5 Tracking a banana that rotates

The initial setup in Figure 5.10 is identical to the one in the previous example
and we are again able to distinguish the banana from the sphere. However,
the feature is now rotating rather than moving. We can see that even if the
banana is rotated by 90 degrees along the OZ axis, the algorithm is able to
find the correspondence for a certain tolerant threshold. In this particular
example, the choice of the threshold was related to the ratio between the
radius of the banana and its "length". If we decrease this ratio (so the banana
becomes thinner and longer), for the same threshold we are going to consider
the overlap insignificant and will lose the tag between the snapshots, as seen
in Figure 5.11.

Note again that successfully detecting a correspondence is dependent on
the value set for the significance threshold. This means that, for any corre-
spondence found using threshold t1, there exists another threshold t2 with
t2 > t1 such that the same correspondence is no longer identified. In the case
of Figure 5.10 we used the threshold 0.2, a relatively small threshold in prac-
tice, in order to be able to detect the correspondence. However, if we set the
threshold to be 0.4, the correspondence is no longer detected, as shown in
Figure 5.12.

5.1. Tracking features in artificial fields 59

(A) Step 1 (B) Step 2

(C) Step 3 (D) Step 4

FIGURE 5.9: Tracking a banana that moves in the positive x
direction.

60 Chapter 5. Evaluation

(A) Step 1 (B) Step 2

FIGURE 5.10: Successful tracking a banana that rotates 90◦

along the OZ axis.

(A) Step 1 (B) Step 2

FIGURE 5.11: Failing to track the banana when the significance
threshold is too high compared to the degree of overlap.

5.1. Tracking features in artificial fields 61

(A) Step 1 (B) Step 2

FIGURE 5.12: Failing to track a banana when the threshold is
too high compared to the degree of overlap.

62 Chapter 5. Evaluation

FIGURE 5.13: Spheres plotted at different isovalues

5.1.6 Plotting contours with different isovalues

All the contours plotted so far were taken at unique, global isovalues. How-
ever, in the general case this may not be possible: there may be no horizontal
line that intersects all the tagged edges of the contour tree. Therefore, we im-
proved the tool with the ability of isocontouring local contexts with different
values, such that features at disjoint ranges of values are visible at the same
time. This adopts the flexible isosurfaces idea described in [8]. In addition,
we are not going to contour every single feature anymore, but only the ones
that are tagged. Hence, the gray isocontours will not be visible anymore.

Figure 5.13 contains three spheres:

• One tagged green, with the value range [2.1, 4.0]. The contour shown
for this feature is taken at the isovalue 2.7.

• One tagged red, with the value range [0.1, 2.0]. The contour shown for
this feature is taken at the isovalue 0.7.

• One untagged. This is not shown since its local context is distinct from
the local context of the green sphere, although they have identical iso-
value ranges.

5.1.7 Larger example with bananas and spheres

The steps starting with Figure 5.14a correspond to an initial scalar field con-
taining three bananas and four spheres. There are a number of aspects to be
highlighted in this scenario:

5.1. Tracking features in artificial fields 63

• Detecting joins between features is not shape dependent: in step 2 we
can see how the blue and the pink bananas are joining in a bigger struc-
ture. In step 3 this structure will join with the yellow banana, resulting
in a horseshoe-like feature tagged gray from now on.

• In step 4, the horseshoe feature is split again in the three initial bananas
that are moving away from each other. However, now we also see a cer-
tain amount of noise, caused by the fact that the join arc of the bananas
is tagged as well. Therefore, a contour will be rendered for it.

• Two pairs of spheres (the pink and the orange one, and the purple and
the green one) are approaching each other and intersecting. In steps 2
and 3 they are merging and considered unique features, fact reflected
in the topology of the contour tree. In step 6 these features are splitting,
after the spheres passed one through the other. Note that here, since
the spheres have the same radius, one passing through the other would
be equivalent to bouncing back after joining. Similarly, after the two
splits, one red and one blue tagged structures are now approaching
and joining in step 8.

• The red and blue spheres are getting closer between steps 7 and 8. It
also appears that both of them become smaller, and indeed the radius of
the two contours is smaller. However, this is not because the radius of
the spheres was indeed decreased, but due to the fact that the contour
value used was increased for both of them. For one sphere the local
contour value is given by a horizontal line intersecting its edge, above
the join point between the intersection with the other feature. The join
point of the red and the blue spheres is high in step 7 because the two
spheres now share non-noise vertices on the mesh, and their contours
are therefore unified early.

64 Chapter 5. Evaluation

(A
)S

te
p

1
(B

)S
te

p
2

(C
)S

te
p

3
(D

)S
te

p
4

5.1. Tracking features in artificial fields 65

(E
)S

te
p

5
(F

)S
te

p
6

(G
)S

te
p

7
(H

)S
te

p
8

66 Chapter 5. Evaluation

5.2 Tracking features in fields from aeronautical
simulations

In this section, we want to prove the applicability of our algorithm on re-
search and industry sized data, using a number of fluid simulations per-
formed using PyFR. The large size of the fields is reflected in the size of the
associated contour trees. These have been simplified using volume pruning
and the pruning of negative values, such that the remaining contour tree arcs
correspond to sensible vortex structures.

5.2.1 The fully developed stage of the Taylor Green Vortex

We are going to demonstrate the capability of the tool to track features in
the fully developed stages of the Taylor Green Vortex simulation, described
in Appendix A. This stage of the fluid flow is associated to large values of
the Q-criteria, and to the presence of the largest number of vortex structures
during the flow evolution.

In order to be able to visually observe the vortex structures included in the
field, we decided to extract a fixed subregion from consecutive meshes. The
subregion represents approximately 0.8% of the entire field. The sequence
of figures starting at 5.15a shows the evolution in time of the vortex features
existing in the selected region. The initial choice of features was done again
by assigning different tags to the upper leaves.

Using our tool, we are also able to track features selected manually. We
are now going to focus on a particular vortex structure, which we observed
to suffer a split during the visualized time steps. This is shown in Figures
starting at 5.16a, where we included the steps relevant for the split event. We
can see how in step 4 the selected (red) arc becomes two upper leaves (that
were not visible before because of the volume pruning) joined by an arc. In
step 7, the two upper leaves are no longer connected by an immediate join
arc, and the feature is splitting.

5.2. Tracking features in fields from aeronautical simulations 67

(A) Step 1

(B) Step 2

68 Chapter 5. Evaluation

(C) Step 3

(D) Step 4

5.2. Tracking features in fields from aeronautical simulations 69

(E) Step 5

(F) Step 6

70 Chapter 5. Evaluation

(G) Step 7

(H) Step 8

5.2. Tracking features in fields from aeronautical simulations 71

(I) Step 9

(J) Step 10

72 Chapter 5. Evaluation

(A) Step 1

(B) Step 4

5.2. Tracking features in fields from aeronautical simulations 73

(C) Step 7

74 Chapter 5. Evaluation

5.2.2 The developing stage of the Taylor Green Vortex

We are now going to visualize the evolution of the Taylor Green Vortex dur-
ing its incipient stage. This stage of the simulation has very small Q-criteria
values, in the range [-0.03, 0.008]. In contrast, the Q-criteria values in the fully
developed fields from the previous subsection fall in the range [-2.5, 2.5].

The field contains much noise as a consequence of the small range of Q-
criteria, but the interesting features are large, and at small positive values.
This enabled us to prune the resulting contour tree more aggressively, as
much of its upper portion was associated to noise. This way, although we
now consider the entire mesh for analysis (in contrast to the previous sce-
nario, where a mesh subregion was extracted), the structure of the contour
tree is simpler. We can see how the flow evolves, and how its features are
successfully tracked in Figure 5.17.

Again, choosing the initial features was done by assigning different tags
to the upper leaves. We notice that in step 5 (Figure 5.17e) the arcs repre-
senting the middle structures are becoming a join. This is due to the fact that
the currently joined structures had been pruned in the first four steps, but
are not anymore now since they grew and their size became significant. We
are able to focus on these small structures by running the analysis backwards
(Figure 5.18). We see how they lose significance, and are eventually pruned
from the contour tree, causing their tags to be joint. Once the tags are joint,
we omit the rest of the steps as the evolution of the feature can be seen in the
first three steps of the forward simulation.

5.2. Tracking features in fields from aeronautical simulations 75

(A) Step 1

(B) Step 2

76 Chapter 5. Evaluation

(C) Step 3

(D) Step 4

5.2. Tracking features in fields from aeronautical simulations 77

(E) Step 5

(F) Step 6

78 Chapter 5. Evaluation

(G) Step 7

(H) Step 8

5.2. Tracking features in fields from aeronautical simulations 79

(I) Step 9

(J) Step 10

FIGURE 5.17: Tracking features in the incipient stage of the Tay-
lor Green Vortex.

80 Chapter 5. Evaluation

(A) Step 10

(B) Step 9

5.2. Tracking features in fields from aeronautical simulations 81

(C) Step 8

(D) Step 7

82 Chapter 5. Evaluation

(E) Step 6

(F) Step 5

5.2. Tracking features in fields from aeronautical simulations 83

(G) Step 4

FIGURE 5.18: Backwards tracking of features in the incipient
stage of the Taylor Green Vortex.

84 Chapter 5. Evaluation

5.2.3 Selected features in the fully-developed stage of the tur-
bulent plane Couette flow

We are going to visualize the plane Couette flow at its fully developed stage.
Figure 5.19 contains an image produced using our tool, which displays the
contour tree of the field, as well as all the vortex structures corresponding to
upper arcs in the tree. We can see the increased number of features and arcs
in the contour tree.

Since it is difficult to observe the temporal evolution of the entire field, we
are going to focus on a few vortex structures that we selected manually. Also,
we are going to omit the contour trees from the pictures. The time evolution
of the visualized features is included in Figure 5.22, where the viewpoint is
normal on the XY plane. This way, we can observe how vortex structures
in the top half of the field have a motion tendency towards the negative x
direction, while the bottom half features are moving towards the positive x
direction. This opposite movement behavior is associated to the opposite
directions of the two moving walls bounding the flow, as explained in Ap-
pendix A.

5.2. Tracking features in fields from aeronautical simulations 85

FI
G

U
R

E
5.

19
:V

or
te

x
st

ru
ct

ur
es

ob
se

rv
ed

in
th

e
tu

rb
ul

en
tp

la
ne

C
ou

et
te

flo
w

.

86 Chapter 5. Evaluation

(A
)S

te
p

1

(B
)S

te
p

2

(C
)S

te
p

3

5.2. Tracking features in fields from aeronautical simulations 87

(A
)S

te
p

4

(B
)S

te
p

5

(C
)S

te
p

6

88 Chapter 5. Evaluation

(A
)S

te
p

7

(B
)S

te
p

8

(C
)S

te
p

9

FI
G

U
R

E
5.

22
:T

ra
ck

in
g

of
se

le
ct

ed
fe

at
ur

es
in

th
e

tu
rb

ul
en

tp
la

ne
C

ou
et

te
flo

w
.

5.2. Tracking features in fields from aeronautical simulations 89

5.2.4 Selected features in the fully-developed stage of the Tay-
lor Green Vortex

We are going to consider again the time evolution of the TGV field at the
fully-developed stage. In contrast to Subsection 5.2.1, we will now visual-
ize the entire field, instead of a clipped version of it. Figure 5.23 contains
the contour tree of a time snapshot, along with the field where vortex struc-
tures corresponding to upper leaf arcs are displayed. Figures 5.24 show the
temporal evolution of randomly chosen features of the field. An apparently
arbitrary movement behavior can be observed for all features. In addition,
in step 5, we can see how the black, beige, brown and magenta vortex struc-
tures are integrated in larger x-shaped features. This happens because their
corresponding contour tree regions are pruned, so their individual identity
is lost. We observe how the x-shaped structures are successfully tracked over
the next steps.

90 Chapter 5. Evaluation

FI
G

U
R

E
5.

23
:V

or
te

x
st

ru
ct

ur
es

ob
se

rv
ed

in
th

e
Ta

yl
or

G
re

en
Vo

rt
ex

flo
w

.

5.2. Tracking features in fields from aeronautical simulations 91

(A) Step 1

(B) Step 2

92 Chapter 5. Evaluation

(C) Step 3

(D) Step 4

5.2. Tracking features in fields from aeronautical simulations 93

(E) Step 5

(F) Step 6

94 Chapter 5. Evaluation

(G) Step 7

(H) Step 8

FIGURE 5.24: Tracking selected features at the Taylor Green
Vortex fully-developed stage.

5.3. Feature tracking metrics 95

5.3 Feature tracking metrics

In this section, we are going to statistically present a number of metrics re-
lated to the feature tracking algorithm. We will also consider the impact
of parameters such as the time distance between fields, or the value of the
threshold used to define the significance of the spatial overlap between fea-
tures. As testing data, a sequence of consecutive steps of the turbulent plane
Couette flow was used.

We start by an analysis of the number of contour tree arc regions with
different labellings that exist in the output of the contour correspondences
calculation step. In theory, each voxel added to an object on an arc could
change the set of labels, so in the worst case the total number of arc divisions
could be similar to the number of vortices in the mesh. Figure 5.25 presents
a histogram showing the frequency distribution of arcs with respect to the
number of labeling regions they are divided into. Note that only regions with
at least one label are counted for an arc. The figure was obtained for two
consecutive fields, using a match threshold value of 0.7, where the second
contour tree contains 617 arcs. We can see that most of the arcs are divided
in very few regions, due to the coherency of the analyzed data (on average,
each arc contains 2.184 regions). Also, interestingly, it can be observed that
there is no arc which has no labeled contour. In contrast, when the contour
correspondences were computed between two fields with 10 intermediate
steps skipped, at the same match threshold, 3 unlabeled arcs appeared.

FIGURE 5.25: The frequency distribution of arcs with respect to
the number of regions labeled differently.

We are now going to focus on metrics around the number of edge cor-
respondences identified between time snapshots. Again, the Couette flow
simulation was used. We started by looking at the percent of edges from
the first contour tree which are continued in the next time step, in the sense

96 Chapter 5. Evaluation

that they have at least one correspondent edge in the second contour tree.
For consecutive time steps of the simulation, the average continuation rate
was 71.83% for all arcs, and 97.41% for upper leaf arcs, for the significance
threshold value set to 0.8. Although the upper leaves are almost perfectly
matched, we can see that the percentage of join arcs matched is significantly
lower. This is a consequence of the sensitivity of the contour tree structure to
the motion of features inside the field. If two features are currently having
a direct join arc, but at the next step they are joining with other arcs instead,
the track of their joining feature will be lost.

We have seen that the upper leaves are almost perfectly matched between
consecutive time steps. We are going to analyze the same metric when the
temporal distance between the snapshots considered for analysis is larger.
In order to simulate a larger temporal gap between consecutive fields, we
are going to skip a number of intermediate available steps. The influence of
the number of skipped steps on the percent of continued arcs can be seen in
Figure 5.26. It can be observed that the continuation rate is relatively high
(0.853 for upper leaves), even when 19 steps are skipped. However, skipping
more steps leads to a steep decrease in the continuation rate.

FIGURE 5.26: The continuation rate of the arcs against the tem-
poral gap.

Naturally, the number of arc correspondences identified is dependent on
the value of the match threshold used. We used consecutive time steps at dis-
tance of 20, belonging to the plane Couette flow, in order to assess the impact
of the significance threshold value on the same continuation rate metric. The
resulting plot is included in Figure 5.27. We can see how the continuation
rate is quickly decreasing between the match thresholds 0.8 and 0.9.

5.4. Performance analysis 97

FIGURE 5.27: The continuation rate of the arcs against the
match threshold.

5.4 Performance analysis

In this section, we are going to focus on the time and memory requirements
of the implemented feature tracking algorithm. The used test data is a se-
quence of 25 consecutive steps of the turbulent plane Couette flow, whose
mesh contains 1010101 voxels and 979200 cells. The obtained results rep-
resent averages of 24 runs of the feature tracking algorithm, one for every
pair of consecutive snapshots in the considered sequence. The benchmarks
included in this section were run on a MacBook Pro laptop running macOS
Sierra. The laptop had a 2.5 GHz Intel Core i7 quad-core processor, and 16GB
DDR3 RAM. The code was compiled with g++, with the O3 level of optimiza-
tions enabled.

We start by looking at the run time of the algorithm against meshes of dif-
ferent sizes. In order to ensure the coherency between the tests used, fields
of different sizes were generated by taking subregions of the plane Couette
flow mesh. With respect to the number of initial vertices in the mesh, the 5
different subfields generated represent 20%, 40%, 60%, 80% and 100%. The
resulting plot can be seen in Figure 5.28. We can observe a non-linear ten-
dency in the run time, which is expected as a consequence of the operations
with quadratic complexity performed in the algorithm for computing con-
tour correspondences.

Table 5.1 illustrates the time spent for each operation of the algorithm
in the case of the entire Couette flow, leading to an averaged total of 20.99
seconds for one computation of arcs correspondences which is also visible
in the previous plot. We can see that the step of building an upper objects
tree that reflects the significant overlaps between the objects of two fields is
the most expensive part of the algorithm, representing 66% of the total run
time. It can also be observed that, in the case of the first three operations, the

98 Chapter 5. Evaluation

FIGURE 5.28: The run time of the algorithm against meshes of
different sizes.

differences between the maximum and the minimum times are significant.
This is explained by the much larger number of objects that are handled in
the operations concerned with join trees, compared to the ones on split trees.
The difference in the number of upper objects between the two symmetric
cases is a consequence of the join tree dominating the contour tree for positive
Q-criteria in the case of the plane Couette flow.

All the above results were obtained after applying two pruning criteria:
pruning the leaves with volumes smaller than 150, and pruning the negative
values. When the entire mesh of the plane Couette flow was considered, the
obtained contour trees of the sequence had, on average, 406 nodes. However,
in general, the amount of pruning we apply to the field has the potential
to significantly influence the algorithm runtime. Figure 5.29 illustrates this
aspect, by showing the total runtime of the algorithm against the number of
nodes remaining in the contour tree after this is pruned. Therefore, the total
number of vertices is constant (1010101), but the size of the contour tree and
the number of pruned vertices are varied.

In order to analyse the memory usage of the algorithm, we used the Val-
grind Massif [30] heap profiler. We measured the memory usage of a pro-
gram run consisting of the following sequence of events: reading the contour
trees from files, constructing the local grids for each arc, and computing the
feature tracking correspondences. Therefore, the step of building and sim-
plifying contour trees was skipped, in order to focus on the performance of
the steps related to feature extraction and correspondences calculation. The
program flow considered 5 consecutive steps belonging to the plane Couette

5.4. Performance analysis 99

TABLE 5.1: Time spent to compute the feature correspondences
between a pair of time steps of the plane Couette flow. Time is

in seconds. Averaged across 24 steps.

Operation
Execu-

tions per
time step

Average
time

Minimum
time

Maximum
time

Total
time

Upper objects tree
construction 4 0.807 0.727 1.240 3.231

Upper objects tree
construction with

collisions
2 6.943 6.688 7.154 13.887

Labelling contour
trees from upper

object trees
2 0.161 0.015 0.323 0.323

Intersecting the join
and split contour

trees labels
1 3.426 3.379 3.473 3.426

Obtaining arc
correspondences 1 0.132 0.117 0.153 0.132

flow, each .vtu file having the size of 141MB. The output of the profiler is in-
cluded in Figure 5.30a. Figure 5.30b includes the graph corresponding to a
second run of the algorithm, where the step of building the local grid for arcs
was also skipped.

We can see how skipping the local grids construction reduced the peak
memory usage from 2.798GB to 1.151GB. The two graphs show a steep mem-
ory usage increase while the contour trees, the field values, and the connec-
tivity graph between vertices are read, and, in the first graph, while the local
grids for arcs are computed. They represent the memory defining the base-
line for the evaluation of the feature tracking algorithm. It can be seen that
the peak memory usage indeed occurs during the calculation of the corre-
spondences between the 4 pairs of consecutive fields, due to the fact that
the baseline memory will only be deallocated at the end of the program.
The memory usage during the execution of the feature tracking algorithms
is fluctuating, as a result of memory being constantly deallocated after the
operations complete. In both graphs, the peak memory usage of the feature
tracking algorithm appears to be around 200MB, and the rest of the profil-
ing information shows that it occurs during a construction of one join tree
that reflects significant overlaps, the algorithm’s operation that involves the
largest number of data structures.

100 Chapter 5. Evaluation

FIGURE 5.29: The run time of the algorithm against different
contour tree sizes.

5.4. Performance analysis 101

(A)

(B)

FIGURE 5.30

102 Chapter 5. Evaluation

5.5 Comparison to other feature tracking methods

In this section, we provide a high-level comparison of the developed fea-
ture tracking algorithm with other methods existing in the literature. Our
approach is based on the algorithm for computing isosurfaces proposed by
Sohn et al. in [39], which we improve to support field simplification pro-
cedures, and extend with a way of converting the contour correspondences
to correspondences between contour tree arcs. Therefore, the algorithm we
propose is based on spatial and field value ranges overlap, as well as on the
nesting relationship of the features.

The region-based approaches, such as the ones described in [34] and [37],
are effective in detecting the continuation of features across fields. However,
as described in Subsection 2.9.1, detecting splits and joins between features
(i.e. bifurcations and amalgamations) comes with extra complexity. In the-
ory, an exponential number of combinations have to be considered in order
to detect these events. However, in practice, certain heuristics can be applied
in order to limit the search space. In contrast, our algorithm has a guaran-
teed polynomial complexity. Also, due to the nesting knowledge given by
the contour tree, we produce tracking information for the entire field, while
these approaches only focus on the flat hierarchy of features. On the other
hand, in contrast to the region-based approaches, the current algorithm is not
able to detect continuation of features whose scalar value ranges are disjoint
in two consecutive time steps. Although representing an additional restric-
tion, this is not an issue under the assumption that the temporal sampling is
sufficient. Moreover, if this assumption holds, a drastic change in the value
range should not occur for one feature, so this could lead to the conclusion
that two features should not be matched. Another overlap based approach
is described in [45], where contour trees are used for feature extraction. The
features corresponding to contour tree arcs are then pairwise tested for spa-
tial overlap, and the correspondence information is accumulated down the
contour tree.

In [18], the idea proposed is to use 4D isosurfacing for tracking field fea-
tures, where one dimension is the time. In [32], the correspondences between
consecutive time steps are calculated using the global knowledge provided
by all available field snapshots. Due to their static nature, these approaches
lack the capability of being integrated in-situ. In contrast, we are going to
demonstrate the feasibility of integrating our tool in-situ, in Section 7.3.1.

In [32], Saikia et al. highlight the sensitivity to noise of the approaches
based on Feature Flow Fields, proposed in [41] and [44]. Although topologi-
cal simplifications of the input fields are feasible, there is currently no work
evaluating this idea. We demonstrated how our feature tracking algorithm
can be applied on data sets simplified by the means of contour tree pruning.

5.6 Tool evaluation

Sections 5.1 and 5.2 have demonstrated the capability of the tool to visual-
ize and track features across multiple snapshots of a time-dependent scalar

5.7. Summary 103

field. Also, in Section 5.4, we have seen the memory usage graph of one of
the common flows of the tool - reading the contour trees and the scalar val-
ues, building the local grids for the contour tree arcs, computing the feature
tracking information, and launching the graphical interface.

From the perspective of the user, the graphical interface has the following
capabilities:

• The ability to interact with the contour tree, and to select the desired
features for visualization.

• The ability to hover over contour tree nodes, in order to see their asso-
ciated scalar value.

• The ability to resize the two screen regions containing the field visual-
ization and the contour tree, respectively, by dragging.

• The ability to change the aspect ratio of the contour tree, by a key press.

On the other hand, it can be seen that the tool lacks other data manipu-
lation features, such as displaying cutting planes, coloring features by field
properties, etc. However, during this project, we decided to focus more on
the feature tracking algorithm behind the visualization, while the addition
of further functionality in the tool’s user interface could be the subject of an-
other project.

5.7 Summary

This chapter presented an analysis focused on the feature tracking algorithm
and on the tool implemented as part of this project.

Evaluating the tracking algorithm was done using a number of demos
of increasing difficulty, representing both artificial test data and fluid flows
corresponding to CFD simulations. In addition, we presented a number of
metrics, which quantify the impact of the temporal sampling of the data,
as well as the impact of the overlap significance constant threshold set. A
performance analysis of the algorithm was also conducted on test data of
different sizes. Section 5.5 concluded the analysis of the tracking algorithm,
by presenting a high-level comparison of it with other techniques existing in
the literature.

104

Chapter 6

Analyzing streaks in the turbulent
plane Couette flow

6.1 Motivation

The analysis of turbulent flows in the presence of walls represents an im-
portant aspect in the field of fluid dynamics, as this kind of environments
are highly relevant for practical engineering problems: designing quieter air-
crafts with lower fuel consumption [17] or optimizing the shape of a wind
turbine blade [48] are examples of industry problems which frequently in-
volve well-developed turbulent flows. In order to make progress in under-
standing these environments, researchers proposed a number of canonical
flows that are subject to relatively simple boundary conditions. Examples of
canonical wall bounded flows include the Couette flow, the pressure driven
channel flow, and the Poiseuille flow.

The formation of turbulence in these flows has been an elusive problem
for a long time and extensive studies have been performed in order to under-
stand the transition process from the laminar boundary layer to the turbulent
boundary layer, as well as turbulent statistics associated with well-developed
turbulent flows.

One of the distinctive features observed in turbulent wall-bounded flows
is the formation of streaky patterns in the streamwise velocity component in
the near-wall region. Some of the earliest observations about these motions
were made by Kline et al. in [20], but have been confirmed by multiple fur-
ther studies [7]. Streaks represent an alternating pattern of regions with high
or low streamwise velocity: an example can be seen in Figure 6.1. The forma-
tion of streaks is considered to be the result of the lift-up tendency of vortices
after they appear in the immediate proximity of the wall, tendency explained
by the energy transfer between the vortices and the base flow [16]. In [20],
Kline et al. demonstrate the contribution of low-velocity streaks in the pro-
duction of turbulent kinetic energy. They observe the violent ejection of fluid
with low streamwise velocity from the regions very near to the wall. They
then suggest that the instability produced by these fluid bursts (i.e. burst-
ing process) is essential for the transportation of kinetic energy to the outer
regions of the boundary layer, producing turbulence.

Another important research aspect in turbulent flows are coherent vortex

6.1. Motivation 105

FIGURE 6.1: Visualization of the streamwise velocity field in a
channel flow [16]

structures which can be identified across wider ranges of flows. The identifi-
cation of coherent vortex structures represents an attempt of the researchers
to break down the chaotic motion that characterizes turbulence into more el-
ementary, organized motion. Two important examples of coherent structures
are hairpin vortices and (quasi)streamwise vortices [1]. The former are char-
acterized by their hairpin (or horseshoe) shape, and are often easily observed
during the transition stage of the flow from the laminar to the turbulent state.
The streamwise vortices are characterized to be long and thin structures, that
are moving in the direction of the mean flow. Although coherent structures
play a key role in the theoretical understanding of many flows, in practice
they are easily disrupted by noise, and often absent from actual flows. More-
over, in [1], Adrian et al. state that "only motions that live long enough to
catch our eye in a flow vizualization and/or contribute significantly to time-
averaged statistics of the flow merit the study and attention we apply to or-
ganized structures".

The analysis of streaks has been conducted using the method of spa-
tial filtering [5], which supports the understanding of the flow motions us-
ing global statistics. One such study is [23], where Lee et al. explore the
population-level properties of large- and very large-scale motions in streaks.
In [6], Brandt et al. analyse the streak interactions by the means of conditional
sampling, also by looking at their statistical properties. However, none of
these methods focuses on individual vortex structures, but rather on spatial
or temporal global averages. On the other hand, in a context different from
streak analysis, Choi et al. compute in [12] Lagrangian statistics of a tur-
bulent channel flow by tracking a number of particles in a direct numerical
simulation. They release many particles at several wall-normal locations and
track them spatially and temporally, quantifying the evolution of properties
associated with each fluid particle.

This chapter aims to highlight the value of tracking flow features for
streak analysis. Motivated by the Lagrangian statistical analysis in [12], we
will consider vortex structures instead of fluid particles. We will focus on
observing how the motions of individual vortices contribute to maintain the
streak phenomena in the turbulent flow. This provides additional insight
into the mechanism of maintenance and evolution of the streak structure, in
comparison to the global statistical methods employed by [23] and [6]. We

106 Chapter 6. Analyzing streaks in the turbulent plane Couette flow

demonstrate the capability of tracking the motion of vortices that have cer-
tain spatial properties, with the streamwise vortices being focused through-
out the chapter. The tool we propose can be used to investigate the contribu-
tion of streamwise vortices included in low streamwise velocity streaks to the
evolution of the turbulent plane Couette flow. The first question we would
like to answer is the existence of streamwise vortices in low-velocity streaks.
Then, we would be interested in observing the motion of these structures.
From the best of our knowledge, no researcher previously looked at the indi-
vidual contribution of each streamwise streak vortex to the evolution of the
streaks and to the enhancement of turbulence in flows.

We chose to focus on streamwise vortices, as they usually preserve their
shape better than hairpins in the fully developed stages of turbulent flows.
Detecting features with other specific shapes or properties (such as hairpins)
could be the subject of a different project. Here we want to highlight how
tracking vortex structures with different properties can potentially lead to a
better understanding of certain flows.

In the rest of the chapter, section 6.2 aims to explain the filtering method
used to detect the features of interest, while section 6.3 presents the results
of running the tool on a sequence of steps from the turbulent plane Couette
flow. Note that details about the Couette flow are given in Appendix A.

6.2 Filtering vortices

As mentioned above, the vortex structures chosen for analysis are charac-
terized by their velocity vector values, orientation and elongated shape. In
order to assess this, we propose a FeatureFilter that performs the following
steps:

1. Compute the centroid of the local grid defining the feature. The dis-
tance from the centroid to the closest moving wall should be between a
lower and an upper bound. This ensures that the feature is in the flow
region where the streaky pattern is visible (see Figure 6.1).

2. Average the velocity vector x (i.e. streamwise direction) components of
the voxels belonging to the mesh region defining the feature, in order to
obtain a characteristic velocity representing the streamwise speed of the
vortex structure. In order to remove features belonging to high velocity
streaks, the absolute value of this velocity should be large. This is be-
cause the low-velocity condition for flow regions considers the stream-
wise velocity relative (not absolute) to the mean velocity profile of the
flow [16], which, for simplicity, we assume to be the linear (laminar)
profile. Since the velocity of the features is high in the proximity of the
wall, the absolute velocity of the current feature is expected to be large
as well. In other words, the large streamwise velocity in the present
flow field is corresponding to the low speed streaks based on the refer-
ence frame associated with the moving wall.

6.2. Filtering vortices 107

3. Extract the surface of the vortex, using a VTK ContourFilter. This is
done because, when assessing the spatial properties of the features, we
want to consider the shape of one isosurface that defines it, rather than
its entire corresponding mesh region.

4. Perform a 3D orthogonal distance regression on the points belonging to
the surface, in order to obtain the 3D line which minimizes the sum of
the squared distances from the points to the line. Intuitively, in the case
of an ideal streamwise vortex, this line should pass through the center
of the shape.

5. Compute the projections from the points defining the surface on the
regression line just computed. Using the projections, also compute the
distances from the points to the line. After computing the distances:

• Compute their average, distavg. Also compute the distance be-
tween the furthest two projections distmax. In order to enforce the
elongated shape of the vortex, we want the ratio distmax

distavg
to be large.

• Compute their standard deviation, distsd. In order to enforce a
regular shape of the surface, we want the ratio distsd

distavg
to be small.

6. Consider the normalized direction vector d of the line. In order to en-
force the bulk flow orientation of the feature, we check that the dy and
dz vector components are close to 0.

6.2.1 Performing an orthogonal distance regression

An orthogonal distance regression computes the best-fit line which mini-
mizes the sum of the squared distances from the input points to it. Therefore,
given a set of points in space of the form {p1, p2, ..., pn} where the elements
pi = (xi, yi, zi) are 3D points, the computed line l minimizes the value of the
following expression:

n∑
i=1

distance2(pi, l)

where distance refers to the 3D orthogonal distance between a point and a
line.

The computation of the best-fit line is done using the idea presented in
[27] and consists of the following steps:

1. Compute the centroid of the set of points. The best-fit line will pass
through the centroid.

2. Subtract the centroid from the points, and with the resulting points
build the 3 x N matrix where each column corresponds to one of the
points.

3. Calculate the singular value decomposition of this matrix. The least
singular value will correspond to the normal on the best-fitting plane.

108 Chapter 6. Analyzing streaks in the turbulent plane Couette flow

By taking the perpendicular vector on this direction, we obtain the di-
rection of the best-fit line.

4. We know a point on the line (the centroid), and its direction vector.
Therefore, we managed to express the 3D regression line.

In our implementation, we used the singular value decomposition imple-
mentation available in the NumPy library [14]. This was used from our C++
code using a system call.

6.2.2 Choosing the thresholds

Most of the filtering conditions included earlier in the section are expressed
in terms of specific thresholds. These were computed using a trial and error
approach in order to obtain sensible results, as in the literature there was no
attempt to strictly define the shape parameters of coherent structures.

The results presented in the next section use the following thresholds, for
each filtering step:

• Step 1: The centroid should be between 0.15 and 0.25. This is the wall-
distance interval where the streaky pattern is visible. In addition, we
only consider the streaks from the bottom part of the flow. Similar re-
sults would be obtained if we considered the regions at the same wall-
normal distance to the other moving wall.

• Step 2: The absolute average velocity of the features should be larger
than 0.1.

• Step 5: The ratio distmax

distavg
should be larger than 15, and the ratio distsd

distavg

should be lower than 0.5.

• The absolute value of dy and dz in the normalized direction vector should
be lower than 0.1.

6.3 Results

The first step was to select features satisfying the first two filtering steps
described in 6.2. Therefore, all vortex structures belonging to low-velocity
streaks should be detected. The result of this experiment is shown in Fig-
ure 6.2. A visualization of the streamwise velocity in the same snapshot,
obtained using Paraview at a clipping plane parallel to the wall and within
the range used to bound the position of the vortex centroid can be seen in
Figure 6.3. We can see how features are predominant within the low-velocity
streaks, colored blue in the Paraview visualization. Note that a low-velocity
region is not necessarily correlated with the presence of strong vortices, as
observed in the bottom right part of the flow: from that low-velocity region
no vortex structure was extracted. This indicates that the vortex structures
with the above filtering properties (i.e. convecting with low velocity) are not
dominant in the present low-speed streaky region.

6.3. Results 109

FIGURE 6.2: Visualization of low-velocity streaks features be-
longing to a time snapshot of a fully developed plane Couette

flow

We continued by enabling the shape filtering steps, that enforce the se-
lected features to be ideal streamwise vortices (steps 3-6). The resulting visu-
alization is included in Figure 6.4.

We see that a number of 10 streamwise vortex structures belonging to
low-velocity streaks are detected in the used snapshot from the plane Cou-
ette flow. Therefore, the number of vortex structures that also satisfy the
shape condition is significantly decreased. This indicates that most of the
vortex structures appearing in the low-speed streaks do not have an ideal
streamwise vortex shape, and appear distorted in the field. By refining the
thresholds used, the feature filtering rigidity could be modified.

The motion of the selected features can now be tracked temporally. This is
included in Figures 6.5. We can see how the vortex structures have a motion
tendency in the streamwise direction. Also, in steps 2 and 4 we can see how
two pairs of streamwise vortices join (the magenta and the light blue vortices,
as well as the pink and green ones). Their streamwise shape is however still
visible in the later time steps.

Apart from tracking the features visually, in future the tool could be used
to support the statistical analysis of flows, by taking averages of individual
vortex properties such as velocity fluctuations and Reynolds stress. Com-
pared to the existing studies, we would be able to quantify the contribution
of each individual vortex structure to the global properties, as well as to filter
the vortices with specific properties.

110 Chapter 6. Analyzing streaks in the turbulent plane Couette flow

FIGURE 6.3: Paraview visualization of low-velocity streaks in a
time snapshot of a fully developed plane Couette flow

6.4 Summary

The important results of this chapter are the following:

• We have demonstrated how the developed tool can be used to obtain
better insights into flows. We use the ability of tracking individual fea-
tures to solve real problems in the field of computational fluid dynam-
ics.

• We have exemplified how the tool could be extended with feature fil-
tering capabilities and, for the specific example of streamwise vortices
in low-velocity streaks, motivated its relevance to the fluid dynamics
research.

• We proved that ideal streamwise vortex structures exist in the plane
Couette flow.

• We demonstrate the usefulness of including more than one scalar in the
analysis of flow fields. While so far we only considered one scalar of
the field (usually the Q-criteria), we now combine the Q-criteria with
the velocity information.

6.4. Summary 111

FIGURE 6.4: Visualization of low-velocity streaks features be-
longing to a time snapshot of a fully developed plane Couette

flow

112 Chapter 6. Analyzing streaks in the turbulent plane Couette flow

(A) Step 1

(B) Step 2

6.4. Summary 113

(C) Step 3

(D) Step 4

114 Chapter 6. Analyzing streaks in the turbulent plane Couette flow

(E) Step 5

(F) Step 6

6.4. Summary 115

(G) Step 7

FIGURE 6.5: Temporal tracking of streamwise vortices belong-
ing to low-velocity streaks.

116

Chapter 7

Conclusions

In this project, we proposed a new algorithm for tracking features in scalar
field, described in Chapter 3. Chapter 4 describes the tool we implemented
in order to enable the temporal visualization of features in time-dependent
fields. The efficiency of the algorithm and of the wrapping tool was then
evaluated in Chapter 5. In Chapter 6, we demonstrate how the implemented
tool can be used to facilitate the understanding of the streak phenomena in
turbulent wall-bounded flows. Finally, in Section 7.3, we present a plan de-
scribing how the feature tracking algorithm could be integrated in an in-situ
pipeline.

7.1 Reflection

The project combined knowledge from a wide range of fields, including graph
algorithms, data visualization, geometry or statistics. In some of them, much
research effort has been put in order to understand the current state of the
literature. A thorough understanding of the existing algorithms for feature
tracking was required in order to objectively classify their advantages or
drawbacks. The proposed tool was evaluated in the context of computa-
tional fluid dynamics simulations, so the project involved the understand-
ing of many specific concepts and problems existing in the field; from this
point of view, the chapter concerned with the analysis of streaks in the plane
Couette flow was particularly challenging to realize. In addition, the perfor-
mance of the tool developed was also an important aspect in the perspective
of integrating it in-situ, but also in the context of the large-sized test data we
used for evaluation.

7.2 Deliverables

The main achievement of this project is the proposal and implementation of
an algorithm for detecting correspondences between features extracted us-
ing contour trees, in time-varying fields. We demonstrated its efficiency in
tracking vortex structures in fields belonging to fluid dynamics simulations,
such as the Taylor Green Vortex or the turbulent plane Couette flow.

7.3. Future Work 117

The algorithm was included in a novel visualization tool, which supports
the understanding of time-varying fields with the support of their corre-
sponding contour trees. We demonstrate the usability of the tool in the con-
text of real fluid dynamics problems, using a case study about how it sup-
ports the understanding of the streak phenomena maintenance and evolu-
tion in the turbulent plane Couette flow. In addition, we present a discussion
about how the algorithm could be integrated in an in-situ environment, par-
ticularly relevant as a result of the impossibility to store the huge amounts of
data produced by the CFD solvers.

7.3 Future Work

7.3.1 In-situ feature tracking

The main purpose of the project was to implement a feature tracking algo-
rithm, having in mind its eventual applicability for tracking features in-situ.
In this section we analyse the feasibility of the developed algorithm for this
task, from the perspective of potentially integrating it into PyFR, and antici-
pate some of the challenges associated to performing the tracking at the time
of the simulation.

Scalability and hardware

PyFR solves the equations describing the dynamics of fluids on unstructured
meshes, supporting a variety of hardware platforms. The sizes of the meshes
used to describe the space of the simulations are sometimes of the order of
hundreds of millions of cells, so scalability becomes an essential aspect for
the value of the software. The scalability of PyFR is analysed in [42], where
the benchmarks are using a large scale simulation of flow over a low-pressure
turbine blade cascade. The simulations were hosted by the Piz Daint and Ti-
tan supercomputers available in the Swiss National Supercomputing Centre
and the Oak Ridge National Laboratory, respectively. The largest benchmark
included in the paper used a mesh containing 180331250 elements, and ran
on 15000 GPUs.

The scalability of PyFR is due to its parallelism capabilities. A simulation
can be performed in parallel, by dividing the mesh into connected subregions
of cells, and assigning them to different computation nodes. For a mesh con-
sisting of Ne elements and for Np processing units available, the mesh is go-
ing to be divided into regions of size Ne/Np. The neighboring nodes then
have to communicate between them in order to manage flow regions close to
the common boundaries.

The complex mathematical systems defining flows are heavily based on
matrix multiplications and other algorithms that involve many Single In-
struction Multiple Data (SIMD) operations. This fact makes it an ideal can-
didate to be run on GPUs and, in many simulations (including the one de-
scribed in [42]), the CUDA backend of PyFR is used to exclusively target the
GPUs of the system. Therefore, in the case of heterogeneous architectures

118 Chapter 7. Conclusions

(architectures that pair CPUs with GPUs), the CPUs are going to remain idle
for the majority of the simulation time [42].

Tracking features in distributed memory

Naturally, the sequence of snapshots produced by PyFR as part of a simu-
lation has a very high temporal sampling. Running the tracking algorithm
between every pair of consecutive fields would result in a very high track-
ing accuracy. On the other hand, this may not be feasible, depending on
the computational cost of the feature tracking. In addition, this may not be
even needed, since the feature tracking algorithm can still have a very high
accuracy even if a fixed number of time steps are skipped between any two
snapshots we compute the correspondence information for. Therefore, there
is a fundamental trade-off between the accuracy of the tracking (reflected into
how often we compute the correspondences), and the computational cost in-
curred by the runs of the algorithm.

One difficulty in visualizing the feature tracking in-situ comes from the
computational nodes performing their simulation parts locally, using dis-
tributed memory. Therefore, a global copy of the state of the flow does not
exist. One facile way to overcome this would be to use a central machine that
has this knowledge: if this machine was available, we would then be able to
obtain the desired visualization and feature tracking by just running the tool
we proposed as part of this project. However, this approach comes with a
number of problems:

• The I/O problem of transferring the entire scalar field often enough to
the central machine is unfeasible. As an example, during the simula-
tions described in [42], global copies of the field were only written 9
times to disk, and each write took around 7 minutes. Although, de-
pending on the performance of the communication channel, sending
the entire mesh to the central machine is likely to take less, this is still
unfeasible, as even a few seconds of copying would be too much for
ensuring a good tracking accuracy.

• The run time of the feature tracking algorithm will be of the order of
tens of minutes for meshes with hundreds of millions of cells.

• The approach lacks scalability. While the size of CFD simulations is
likely to break the barrier of petabyte-sized data, this way of obtaining
the visualization remains a purely theoretical idea.

We clearly need to exploit the simulation’s computation parallelism in
order to design a scalable way of tracking and visualizing features in-situ.
In addition, we mentioned before that, in heterogeneous architectures, the
CPUs are mostly idle while the GPUs are carrying out the simulation. A
valuable idea is to use this available CPU power to perform the data visual-
ization since:

• The memory used by the CPU and its pairing GPU is shared between
the two units. Therefore, the CPU can read the local simulation without
any data copying overhead.

7.3. Future Work 119

• The feature tracking algorithm is better suited for CPUs rather than
GPUs.

• The interference between the visualization and the simulation itself
would be minimal.

Since a computational node (a CPU) will be responsible for the same mesh
portion during the entire run of the simulation, the problem of tracking fea-
tures inside this region can be solved using the implementation we devel-
oped as part of this project. However, the additional difficulty is represented
by the preservation of tags for features that cross boundaries between mesh
regions owned by different machines. In order to handle this case, we pro-
pose the following alternatives:

• Each process would compute and prune its local contour trees, and
would conduct the calculations of correspondences between subsequent
trees locally. Processes sharing boundaries should then communicate
to share their information about the features on the boundaries of their
mesh subregions. For example, in order to propagate colored feature
tags for a real time visualization, when a tagged feature hits a bound-
ary we have two cases:

1. The feature continuation was pruned from the contour tree of the
neighbouring computation machine.

2. There is a contour tree region which corresponds to the continua-
tion of the current feature. In this case, we want to assign the same
tag to the arcs in that contour tree region.

Note that the pruning criteria should be adjusted such that features of
interest are not pruned from both contour trees while moving across
boundaries. Otherwise, their trace can be lost. Also, it is useful to note
that, due to the contour tree based nature of the feature tracking algo-
rithm, the features that join or split do not represent special cases. An-
other aspect is that the fields will often contain features that span the
subregions corresponding to more than two processes; therefore shar-
ing the knowledge about tags in a second communication step could
be necessary. The total size of the messages between neighbouring ma-
chines is proportional to the number of features in the field, so to the
total size of the locally computed contour trees. Compared to the di-
mension of the field, this is much smaller assuming that the trees have
been sensibly simplified.

• In the literature, there are several proposals of methods to compute con-
tour trees in parallel, an example being the divide and conquer method
proposed in [31] by Pascucci et al.. They make use of a procedure for
merging two upper object trees, included in Figure 7.1, which runs in
time proportional to the size of the boundary between the regions defin-
ing the two trees. For each pair of neighbouring regions, we could as-
sign one of the processes to compute a combined contour tree after the

120 Chapter 7. Conclusions

join and split trees are locally computed by each machine. The issue
here is that the size of the (unpruned) upper object trees communicated
over a boundary can be close to the size of the subregion defining them.
Whether this is acceptable or not depends on the in-situ configuration.
If it is not acceptable, the merging procedure in Figure 7.1 should be
adapted to support the prior pruning of the upper object trees.

FIGURE 7.1: An algorithm for merging two join trees [31]

Computing a shared contour tree for each pair of adjacent processes
would inherently solve the discussion about features hitting bound-
aries presented at the previous point. However, we can see that it comes
at a higher computational cost. Also, handling features that span more
than two subregions brings additional complexity, as multiple contour
trees computed for pairs of adjacent machines have to be considered in
order to temporally track these features.

These approaches involve the computation of feature tracking correspon-
dences between fields of the size of one or two mesh subregions, since every
mesh subregion is assigned to a different process. Considering the bench-
marks described in [42], we can see that the size of the subregions assigned
to the GPUs is around 12000. On fields of these sizes, the runtime of the pro-
posed feature tracking algorithm is usually below 0.2 seconds. Combining it
with the cost of computing contour trees, the communication delay between
processes, and other data processing overhead, we expect the total to be be-
low 1 second. Since PyFR does not generate new snapshots more often than
once every 0.1 seconds, in the currently assumed environment we are able to
compute correspondences once every 10 snapshots. Due to PyFr’s high tem-
poral sampling, the feature tracking is usually accurate enough even when
run once every 100 time snapshots, aspect which we tested for the turbulent

7.3. Future Work 121

plane Couette flow. Therefore, we consider that, by using the fundamental
simulation parallelism of PyFr, the feature tracking algorithm developed as
part of this project is feasible to be run in-situ, as long as it is improved with
the techniques for handling boundaries described above.

Making the tracking information valuable

So far, we have analysed the feasibility of tracking features in-situ. Although
possible, simply storing the tracking information on disk is not valuable in
the absence of the flow fields. These cannot be easily saved due to them
being generated orders of magnitude faster than the time taken to be written
on disk. We are going to mention a number of other opportunities generated
by the ability to track features at the time of the simulation:

1. Visualize how selected features evolve in real time. Paraview Catalyst
[3] represents a library for in-situ data analysis, which allows visual-
ization tasks on distributed memory. The library is based on VTK, so
its integration with our code may be easier than expected. This way,
we could obtain a tool similar to the one we developed as part of this
project, but which runs in real time.

2. Obtain spatial and temporal statistics for specific classes of features
without storing the simulation on disk. As an example related to Chap-
ter 6, statistics can be obtained for streamwise vortex structures belong-
ing to low-velocity streaks, if they are automatically detected in-situ.
Note that the code we developed for detecting them is not immediately
applicable to distributed meshes.

3. Mediate the I/O bottleneck of storing CFD simulations. During an in-
situ simulation, we could track the evolution of features, highlighting
what regions of the field are indeed useful for understanding the flow.
This information could be then used during a second run of the simu-
lation in order to only write to disk the interesting regions of the fields.

7.3.2 Dealing with data periodicity

In computational fluid dynamics, the unbounded flows are usually reduced
to a (bounded) simulation space, which is then assumed to be periodic with
respect to the infinite dimensions. This aspect is further exemplified in Ap-
pendix A.

At the moment, we ignore the periodicity of the fields. Therefore, in the
case of a feature crossing boundaries of a periodic simulation space, we will
wrongly treat it as more than one, independent, features. This is also going
to be reflected in the structure of the contour tree, which will have multiple
arcs corresponding to one real feature.

To address this, the brief idea we propose is to update the contour tree of
the field after it is constructed by ignoring periodicity. We can look at pairs
of upper leaf arcs which are attached to the same simulation space boundary

122 Chapter 7. Conclusions

(with regards to periodicity). For a match found (according to the signif-
icance of the boundary overlap), we are going to remove one of the arcs,
and add its associated voxels in the list of the remaining arc. The procedure
should be applied repeatedly, to allow to removal of arcs that initially were
not leaves in the contour tree. This approach is appealing in the context of
feature tracking, as the feature tracking algorithm we developed would be
immediately applicable on the contour trees updated this way.

7.3.3 Paraview plug-in

As mentioned before, with Paraview researchers are only able to visualize
global isosurfaces, while temporal tracking of features has to be done by eye.

An idea would be to integrate our work in the widely used Paraview tool,
by writing a plug-in for it that enables our additional functionality. There are
already many plug-ins for Paraview that add new features to the tool, many
of them specific to certain research fields. The main advantage of including
our work in a Paraview plug-in would be its integration in more advanced
pipelines that include other Paraview filters. For example, colouring the vor-
tex structures we extract by field properties, or displaying clipping planes
through our current visualization would represent immediate functionality
offered by Paraview.

7.3.4 Designing a domain specific language for feature detec-
tion

We have seen how our tool can be extended with automatic feature detection
logic. However, for every feature type we want to detect, a new C++ class
has to be added to the project.

An idea would be to design a domain specific language that would facil-
itate the process of describing field features. A researcher could then write
specifications in this language, while the tool would interpret this kind of
descriptions and perform the feature detection accordingly. This way, the
process of describing features will be much more concise, and not limited to
the researcher’s C++ knowledge.

In the particular example of stremwise vortices, we used the distances
from the feature’s surface points to their linear regression line, as a test for
its shape. However, this is not generally applicable for other shapes. A more
applicable test would be to consider the histogram of the distances from sur-
face points to the centroid of the feature. By providing an example histogram
of the distances, the similarity between it and the histograms of the field’s
features can be used as a shape test. This idea for detecting features with a
specific shape is described in [32].

123

Appendix A

Fluid flows used

This appendix aims to introduce the reader to two types of flows investigated
in the present report, which were used as testing data during the realization
of the project.

Throughout this document, the governing equations of fluids are the com-
pressible Navier-Stokes equations. In both flow simulations described, the
Mach number is, however, set to be low (Ma = 0.1) in order to realize nearly
incompressible conditions. Fluid flows simulations are uniquely determined
by initial conditions and boundary conditions, which drive the evolution of the
flows. The initial conditions are used to determine the state of the simulation
space when it begins. On the other hand, the boundary conditions are used
to model the state of the fluid in the immediate proximity of the boundaries.
Another important aspect is that, in practice, certain dimensions of the simu-
lation space can be regarded to be infinite (i.e. homogeneous), in the absence
of bounding surfaces. To make this computationally feasible, simulations are
considered to be periodic with regards to the infinite dimensions.

A.1 Taylor Green Vortex

The simulation space of the Taylor Green Vortex (TGV) is a cube, with the
length of the edges L representing the characteristic length scale used in the
expression of the Reynolds number Re (described in Section 2.2). The peri-
odic boundary conditions are adopted in each spatial directions (x, y and z).
Figure A.1 contains the isovalue at Q-criteria 0.001 taken in the initial stage
of the TGV. Although 12 features are observed, in reality the field contains
only 8 features, as a consequence of the periodicity of the cube.

The simulation we used was performed atRe = 1600, with the initial flow
condition given by:

u = V0sin(
x

L
)cos(

y

L
)cos(

z

L
)

v = −V0cos(
x

L
)sin(

y

L
)cos(

z

L
)

w = 0

p = p0 +
ρ0V

2
0

16
(cos(

2x

L
) + cos(

2y

L
))(cos(

2z

L
) + 2)

124 Appendix A. Fluid flows used

FIGURE A.1: A global isosurface at 0.001 generated using Par-
aview for the laminar stage of the Taylor Green Vortex simula-

tion

A.2 Turbulent plane Couette flow

The turbulent plane Couette flow represents a canonical example of a wall-
bounded flow. The flow simulated is bounded by two parallel walls, that are
moving in opposite directions with constant velocity. Here the characteristic
dimension used to express Re is given by h, half of the distance between the
two moving walls. At the two walls a viscous wall condition is used. In the
other two dimensions, the periodic boundary conditions are adopted. The
initial condition is given by the mean velocity profile, perturbed by some
noise to trigger the turbulent transition. A global isosurface of a snapshot
belonging to the plane Couette flow can be seen in Figure A.2.

FIGURE A.2: A global isosurface at 0.3 generated using Par-
aview for a fully developed stage snapshot of the plane Couette

flow

125

Bibliography

[1] R. J. Adrian and Z. C. Liu. “Observation of vortex packets in direct
numerical simulation of fully turbulent channel flow”. In: Journal of Vi-
sualization 5.1 (2002), 9–19. DOI: 10.1007/bf03182598.

[2] James Ahrens, Berk Geveci, and Charles Law. “ParaView: An End-User
Tool for Large-Data Visualization”. In: Visualization Handbook (2005),
717–731. DOI: 10.1016/b978-012387582-2/50038-1.

[3] Utkarsh Ayachit et al. “ParaView Catalyst: Enabling In Situ Data Anal-
ysis and Visualization”. In: Proceedings of the First Workshop on In Situ In-
frastructures for Enabling Extreme-Scale Analysis and Visualization. ISAV2015.
Austin, TX, USA: ACM, 2015, pp. 25–29. ISBN: 978-1-4503-4003-8. DOI:
10.1145/2828612.2828624. URL: http://doi.acm.org/10.
1145/2828612.2828624.

[4] C.l. Bajaj, V. Pascucci, and D.r. Schikore. “The contour spectrum”. In:
Proceedings. Visualization ’97 (Cat. No. 97CB36155) (). DOI: 10.1109/
visual.1997.663875.

[5] A. Bez Vidal et al. “On the Properties of Discrete Spatial Filters for
CFD”. In: J. Comput. Phys. 326.C (Dec. 2016), pp. 474–498. ISSN: 0021-
9991. DOI: 10.1016/j.jcp.2016.09.002. URL: https://doi.
org/10.1016/j.jcp.2016.09.002.

[6] Luca Brandt and H. C. De Lange. “Streak interactions and breakdown
in boundary layer flows”. In: Physics of Fluids 20.2 (2008), p. 024107.
DOI: 10.1063/1.2838594.

[7] G. J. Brereton and J.-L. Hwang. “The spacing of streaks in unsteady tur-
bulent wall-bounded flow”. In: Physics of Fluids 6.7 (1994), 2446–2454.
DOI: 10.1063/1.868192.

[8] H. Carr, J. Snoeyink, and M. Van De Panne. “Simplifying flexible iso-
surfaces using local geometric measures”. In: IEEE Visualization 2004 ().
DOI: 10.1109/visual.2004.96.

[9] Hamish Carr, Jack Snoeyink, and Ulrike Axen. “Computing contour
trees in all dimensions”. In: Computational Geometry 24.2 (2003), 75–94.
DOI: 10.1016/s0925-7721(02)00093-7.

[10] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. “Flexible iso-
surfaces: Simplifying and displaying scalar topology using the con-
tour tree”. In: Computational Geometry 43.1 (Jan. 2010), pp. 42–58. DOI:
http://dx.doi.org/10.1016/j.comgeo.2006.05.009.
URL: //www.sciencedirect.com/science/article/pii/
S0925772109000455.

http://dx.doi.org/10.1007/bf03182598
http://dx.doi.org/10.1016/b978-012387582-2/50038-1
http://dx.doi.org/10.1145/2828612.2828624
http://doi.acm.org/10.1145/2828612.2828624
http://doi.acm.org/10.1145/2828612.2828624
http://dx.doi.org/10.1109/visual.1997.663875
http://dx.doi.org/10.1109/visual.1997.663875
http://dx.doi.org/10.1016/j.jcp.2016.09.002
https://doi.org/10.1016/j.jcp.2016.09.002
https://doi.org/10.1016/j.jcp.2016.09.002
http://dx.doi.org/10.1063/1.2838594
http://dx.doi.org/10.1063/1.868192
http://dx.doi.org/10.1109/visual.2004.96
http://dx.doi.org/10.1016/s0925-7721(02)00093-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2006.05.009
//www.sciencedirect.com/science/article/pii/S0925772109000455
//www.sciencedirect.com/science/article/pii/S0925772109000455

126 BIBLIOGRAPHY

[11] Pinaki Chakraborty, S. Balachandar, and Ronald J. Adrian. “On the re-
lationships between local vortex identification schemes”. In: Journal of
Fluid Mechanics 535 (2005), 189–214. DOI: 10.1017/s0022112005004726.

[12] J.-I. Choi, K. Yeo, and C. Lee. “Lagrangian statistics in turbulent chan-
nel flow”. In: Physics of Fluids 16 (Mar. 2004), pp. 779–793. DOI: 10.
1063/1.1644576.

[13] G. Haller. “An objective definition of a vortex”. In: Journal of Fluid Me-
chanics 525 (2005), 1–26. DOI: 10.1017/s0022112004002526.

[14] Christian Hill. “NumPy”. In: Learning Scientific Programming with Python
(), 184–279. DOI: 10.1017/cbo9781139871754.006.

[15] H. T. Huynh. “A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods”. In: 18th AIAA Computa-
tional Fluid Dynamics Conference (2007). DOI: 10.2514/6.2007-4079.

[16] Yongyun Hwang. “Large-scale streaks in wall-bounded turbulent flows:
amplication, instability, self-sustaining process and control”. Theses.
Ecole Polytechnique X, Dec. 2010. URL: https://pastel.archives-
ouvertes.fr/pastel-00564901.

[17] Jaiwant Jayakaran et al. “Computational Fluid Dynamics (CFD) Based
Combustion Modeling”. In: Industrial Combustion The John Zink Com-
bustion Handbook (2001), 287–325. DOI: 10.1201/9781420038699.
ch9.

[18] Guangfeng Ji and Han wei Shen. Feature Tracking Using Earth Mover’s
Distance and Global Optimization,” Pacific Graphics 2006.

[19] Guangfeng Ji, Han-Wei Shen, and R. Wenger. “Volume tracking using
higher dimensional isosurfacing”. In: IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control (). DOI: 10.1109/visual.2003.
1250374.

[20] S. J. Kline et al. “The structure of turbulent boundary layers”. In: Journal
of Fluid Mechanics 30.4 (1967), 741–773. DOI: 10.1017/S0022112067001740.

[21] Marc Van Kreveld et al. “Contour trees and small seed sets for isosur-
face traversal”. In: Proceedings of the thirteenth annual symposium on Com-
putational geometry - SCG ’97 (1997). DOI: 10.1145/262839.269238.

[22] Ailsa H. Land and Alison G. Doig. “An Automatic Method for Solving
Discrete Programming Problems”. In: 50 Years of Integer Programming
1958-2008 (2009), 105–132. DOI: 10.1007/978-3-540-68279-0_5.

[23] Jin Lee et al. “Spatial organization of large- and very-large-scale mo-
tions in a turbulent channel flow”. In: Journal of Fluid Mechanics 749
(2014), 818–840. DOI: 10.1017/jfm.2014.249.

[24] libtourtre. A Contour Tree library. 2015. URL: https://github.com/
sedillard/libtourtre (visited on 01/25/2017).

[25] William E. Lorensen and Harvey E. Cline. “Marching cubes: A high res-
olution 3D surface construction algorithm”. In: ACM SIGGRAPH Com-
puter Graphics 21.4 (1987), 163–169. DOI: 10.1145/37402.37422.

http://dx.doi.org/10.1017/s0022112005004726
http://dx.doi.org/10.1063/1.1644576
http://dx.doi.org/10.1063/1.1644576
http://dx.doi.org/10.1017/s0022112004002526
http://dx.doi.org/10.1017/cbo9781139871754.006
http://dx.doi.org/10.2514/6.2007-4079
https://pastel.archives-ouvertes.fr/pastel-00564901
https://pastel.archives-ouvertes.fr/pastel-00564901
http://dx.doi.org/10.1201/9781420038699.ch9
http://dx.doi.org/10.1201/9781420038699.ch9
http://dx.doi.org/10.1109/visual.2003.1250374
http://dx.doi.org/10.1109/visual.2003.1250374
http://dx.doi.org/10.1017/S0022112067001740
http://dx.doi.org/10.1145/262839.269238
http://dx.doi.org/10.1007/978-3-540-68279-0_5
http://dx.doi.org/10.1017/jfm.2014.249
https://github.com/sedillard/libtourtre
https://github.com/sedillard/libtourtre
http://dx.doi.org/10.1145/37402.37422

BIBLIOGRAPHY 127

[26] Subha Parvathy Mahaadevan. “Isosurface extraction in the visualiza-
tion toolkit using the Extrema Skeleton algorithm”. PhD thesis. 2003.

[27] John Mandel. “Use of the Singular Value Decomposition in Regres-
sion Analysis”. In: The American Statistician 36.1 (1982), pp. 15–24. DOI:
10 . 1080 / 00031305 . 1982 . 10482771. eprint: http : / / www .
tandfonline.com/doi/pdf/10.1080/00031305.1982.10482771.
URL: http://www.tandfonline.com/doi/abs/10.1080/
00031305.1982.10482771.

[28] Chris Muelder and Kwan-Liu Ma. “Interactive feature extraction and
tracking by utilizing region coherency”. In: 2009 IEEE Pacific Visualiza-
tion Symposium (2009). DOI: 10.1109/pacificvis.2009.4906833.

[29] J. Munkres. “Algorithms for the Assignment and Transportation Prob-
lems”. In: Journal of the Society of Industrial and Applied Mathematics 5.1
(1957), pp. 32–38.

[30] Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge. “"Build-
ing Workload Characterization Tools with Valgrind"”. In: 2006 IEEE
International Symposium on Workload Characterization (2006). DOI: 10.
1109/iiswc.2006.302723.

[31] Valerio Pascucci and Kree Cole-Mclaughlin. “Parallel Computation of
the Topology of Level Sets”. In: Algorithmica 38.1 (2003), 249–268. DOI:
10.1007/s00453-003-1052-3.

[32] H Saikia and T Weinkauf. “Global Feature Tracking and Similarity Esti-
mation in Time-Dependent Scalar Fields”. In: Computer Graphics Forum
(Proc. EuroVis) 35.3 (2017), accepted.

[33] Hanan Samet. The Design and Analysis of Spatial Data Structures. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990. ISBN:
0-201-50255-0.

[34] R. Samtaney et al. “Visualizing features and tracking their evolution”.
In: Computer 27.7 (1994), 20–27. DOI: 10.1109/2.299407.

[35] D. Schneider et al. “Interactive Comparison of Scalar Fields Based on
Largest Contours with Applications to Flow Visualization”. In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), 1475–1482.
DOI: 10.1109/tvcg.2008.143.

[36] William J. Schroeder and Kenneth M. Martin. “The Visualization Toolkit”.
In: Visualization Handbook (2005), 593–614. DOI: 10.1016/b978-012387582-
2/50032-0.

[37] D. Silver and Xin Wang. “Tracking and visualizing turbulent 3D fea-
tures”. In: IEEE Transactions on Visualization and Computer Graphics 3.2
(1997), 129–141. DOI: 10.1109/2945.597796.

[38] Daniel Simig. “Turning Flows into Trees: Graph Analytics for Aerody-
namic Flows”. MA thesis. Imperial College London, 2016.

[39] B.-S. Sohn and Chandrajit Bajaj. “Time-varying contour topology”. In:
IEEE Transactions on Visualization and Computer Graphics 12.1 (2006),
14–25. DOI: 10.1109/tvcg.2006.16.

http://dx.doi.org/10.1080/00031305.1982.10482771
http://www.tandfonline.com/doi/pdf/10.1080/00031305.1982.10482771
http://www.tandfonline.com/doi/pdf/10.1080/00031305.1982.10482771
http://www.tandfonline.com/doi/abs/10.1080/00031305.1982.10482771
http://www.tandfonline.com/doi/abs/10.1080/00031305.1982.10482771
http://dx.doi.org/10.1109/pacificvis.2009.4906833
http://dx.doi.org/10.1109/iiswc.2006.302723
http://dx.doi.org/10.1109/iiswc.2006.302723
http://dx.doi.org/10.1007/s00453-003-1052-3
http://dx.doi.org/10.1109/2.299407
http://dx.doi.org/10.1109/tvcg.2008.143
http://dx.doi.org/10.1016/b978-012387582-2/50032-0
http://dx.doi.org/10.1016/b978-012387582-2/50032-0
http://dx.doi.org/10.1109/2945.597796
http://dx.doi.org/10.1109/tvcg.2006.16

128 BIBLIOGRAPHY

[40] Steve Hollasch’s Web Pages. URL: http://steve.hollasch.net/
cgindex/color/colors.txt.

[41] H. Theisel and H.-P. Seidel. “Feature Flow Fields”. In: Proceedings of the
Symposium on Data Visualisation 2003. VISSYM ’03. Grenoble, France:
Eurographics Association, 2003, pp. 141–148. ISBN: 1-58113-698-6. URL:
http://dl.acm.org/citation.cfm?id=769922.769938.

[42] Peter Vincent et al. “Towards Green Aviation with Python at Petas-
cale”. In: SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis (2016). DOI: 10.1109/sc.2016.1.

[43] Hakon Wadell. “Volume, Shape, and Roundness of Quartz Particles”.
In: The Journal of Geology 43.3 (1935), 250–280. DOI: 10.1086/624298.

[44] T Weinkauf et al. “Stable Feature Flow Fields”. In: IEEE Transactions
on Visualization and Computer Graphics 17.6 (2011), 770–780. DOI: 10.
1109/tvcg.2010.93.

[45] W. Widanagamaachchi et al. “Interactive exploration of large-scale time-
varying data using dynamic tracking graphs”. In: IEEE Symposium on
Large Data Analysis and Visualization (LDAV) (2012). DOI: 10.1109/
ldav.2012.6378962.

[46] Jane Wilhelms and Allen Van Gelder. “Octrees for faster isosurface
generation”. In: ACM SIGGRAPH Computer Graphics 24.5 (1990), 57–62.
DOI: 10.1145/99308.99321.

[47] F.d. Witherden, A.m. Farrington, and P.e. Vincent. “PyFR: An open
source framework for solving advection–diffusion type problems on
streaming architectures using the flux reconstruction approach”. In:
Computer Physics Communications 185.11 (2014), 3028–3040. DOI: 10.
1016/j.cpc.2014.07.011.

[48] Wang Xudong et al. “Shape optimization of wind turbine blades”. In:
Wind Energy 12.8 (2009), 781–803. DOI: 10.1002/we.335.

http://steve.hollasch.net/cgindex/color/colors.txt
http://steve.hollasch.net/cgindex/color/colors.txt
http://dl.acm.org/citation.cfm?id=769922.769938
http://dx.doi.org/10.1109/sc.2016.1
http://dx.doi.org/10.1086/624298
http://dx.doi.org/10.1109/tvcg.2010.93
http://dx.doi.org/10.1109/tvcg.2010.93
http://dx.doi.org/10.1109/ldav.2012.6378962
http://dx.doi.org/10.1109/ldav.2012.6378962
http://dx.doi.org/10.1145/99308.99321
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://dx.doi.org/10.1002/we.335

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Contributions
	Report outline

	Background and Related Work
	Computational Fluid Dynamics
	Turbulence and vortex detection
	PyFR
	Data analysis
	Paraview
	The Contour Spectrum

	Contour Trees
	Definitions and properties
	Construction
	Building an object tree

	Using Contour Trees to understand flows
	Union-find data structure
	Extracting isosurfaces
	Tracking features
	Region-based tracking
	Tracking as a global optimization problem
	Based on critical points
	Based on contour trees

	Existing work
	Summary

	Feature tracking
	Computing contour correspondences
	Contour correspondence definition
	The algorithm
	Building a labeled object tree
	Building a join tree reflecting overlaps
	Labeling a contour tree from a join tree
	Intersecting two labeled contour trees

	Implementation

	Computing arc correspondences
	Summary

	Tool implementation
	Functionality overview
	Data manipulation pipeline
	Preprocessing the data
	Building the contour trees for feature extraction
	Detecting features of interest
	Filtering spheres

	The graphical interface
	Summary

	Evaluation
	Tracking features in artificial fields
	Generating small scale meshes with features
	Tracking moving spheres
	Spheres that join and split
	Identifying and tracking a banana
	Tracking a banana that rotates
	Plotting contours with different isovalues
	Larger example with bananas and spheres

	Tracking features in fields from aeronautical simulations
	The fully developed stage of the Taylor Green Vortex
	The developing stage of the Taylor Green Vortex
	Selected features in the fully-developed stage of the turbulent plane Couette flow
	Selected features in the fully-developed stage of the Taylor Green Vortex

	Feature tracking metrics
	Performance analysis
	Comparison to other feature tracking methods
	Tool evaluation
	Summary

	Analyzing streaks in the turbulent plane Couette flow
	Motivation
	Filtering vortices
	Performing an orthogonal distance regression
	Choosing the thresholds

	Results
	Summary

	Conclusions
	Reflection
	Deliverables
	Future Work
	In-situ feature tracking
	Scalability and hardware
	Tracking features in distributed memory
	Making the tracking information valuable

	Dealing with data periodicity
	Paraview plug-in
	Designing a domain specific language for feature detection

	Fluid flows used
	Taylor Green Vortex
	Turbulent plane Couette flow

	Bibliography

