
Imperial College of Science, Technology and
Medicine

Final year project report

Testing symbolic execution engines

Timotej Kapus

supervised by

Dr. Cristian Cadar

June 18, 2017

Abstract

Symbolic execution has seen significant interest in the last few years, across a large number of
computer science areas, such as software engineering, systems and security, among many others.
As a result, the availability and correctness of symbolic execution tools is of critical importance
for both researchers and practitioners. In this report, we present two testing technique targeted
towards finding errors in both concrete and symbolic execution modes of symbolic executors. The
first testing technique relies on a novel way to create program versions, which combined with exist-
ing program generation techniques and appropriate oracles, enable differential testing of symbolic
execution engines. Second, the differential approach is extended to enable metamorphic testing,
where we create two equivalent versions of a program, through semantics preserving transforma-
tions. Three innovative ways of comparing two multi-path symbolic executions are then presented,
which provide an effective mechanism for catching bugs in symbolic execution engines. We have
evaluated the techniques via case studies on the KLEE, Crest and FuzzBALL symbolic execution
engines, where it has found more than 20 different bugs, including subtle errors involving struc-
tures, division, modulo, casting, vector instructions and more, as well as issues having to do with
constraint solving and replaying test cases.

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. Cristian Cadar, for his time and effort.
His advice and guidance made this project truly an enjoyable experience. In addition I would like
to thank the entire Software reliability group for listening to my problems and suggesting solutions
every week. I would also like to thanks my second marker, Dr. Alastair F. Donaldson, for early
advice on metamorphic testing. Finally I would like to thank my friends and housemates for their
continuing support, especially Max and Eva, who took their time to read this report.

Contents

1 Background 6
1.1 Symbolic execution . 6

1.1.1 History . 7
1.1.2 Fuzzing vs symbolic execution . 7
1.1.3 Concolic execution . 8
1.1.4 Available symbolic executors . 8

1.2 Compiler testing . 9
1.2.1 Differential testing . 9
1.2.2 Csmith . 10
1.2.3 C-reduce . 10
1.2.4 Symbolic execution engines vs compilers . 11
1.2.5 Metamorphic testing . 11

1.3 Other efforts for testing program analysis tools . 12
1.3.1 Many-Core Compiler Fuzzing . 13
1.3.2 Testing of Clone Detection Tools . 13
1.3.3 Testing Refactoring Tools . 13
1.3.4 Testing Alias Analysis . 14

1.4 Kolmogorov–Smirnov test . 14
1.5 GNU parallel . 15

2 Differential Testing of Symbolic Execution 16
2.1 Testing Approach . 16

2.1.1 Generating random programs . 17
2.1.2 Creating and running versions . 18
2.1.3 Oracles . 20
2.1.4 Reducing bug-inducing programs . 21

2.2 Implementation details . 21
2.2.1 Instrumentation . 21
2.2.2 Implementing constrainers . 22
2.2.3 Testing infrastructure . 23
2.2.4 Oracles . 24
2.2.5 Generating programs . 26
2.2.6 Reducing programs . 27

2.3 Case Studies . 27
2.3.1 KLEE . 27
2.3.2 CREST and FUZZBALL . 33

3 Metamorphic Testing of Symbolic Executors 38
3.1 Generating multi-path programs . 39

3.1.1 Csmith-generated programs path distribution 39
3.1.2 Distributed program generation . 42

3.2 Semantics-preserving source-code transformations 44
3.2.1 Transformation: dead condition injection 44
3.2.2 Transformation: swap branches . 45
3.2.3 Transformation: source obfuscation . 46
3.2.4 Other transformations . 47

2

3.3 Multi path execution testing methods . 48
3.3.1 Direct approach . 48
3.3.2 Crosschecking approach . 52
3.3.3 Path approach . 53

3.4 Evaluation . 55
3.4.1 KLEE bug: CreateZeroConst assertion failure 56
3.4.2 KLEE: Output mismatch . 56
3.4.3 Tigress bug: >= operation dropping . 57
3.4.4 Crest bug: prediction failed . 57
3.4.5 FuzzBALL bug: division by zero . 58
3.4.6 FuzzBALL: Unable to concretize . 58

4 Conclusion 60

5 Bibliography 62

3

Introduction

Symbolic execution is a form of program analysis which systematically explores all the possible
behaviors of the program it is analyzing. In simple terms, symbolic execution marks some program
inputs or variables as "symbolic", which means they can take any value. Then it modifies all the
interactions between the program and those symbolic variables. For example when the program
branches on a symbolic variable, symbolic execution follows both branches, if they are feasible.
This can be used as an automated software testing mechanism. Symbolic execution can be applied
to automated software testing in several ways, from showing two implementations of the same
specification have the same behavior, to automated test case generation. Consequently, symbolic
execution has great potential to ease the burden on human developers when it comes to testing
and writing test cases manually.

Despite establishing itself as an effective testing method with several companies reporting successful
adoption [8], there are still many research groups improving it. Key to this progress has been the
availability of symbolic execution tools, which allows industrialists to use and extend the technique,
and allow researchers to experiment with new ideas. Notable examples include open-source tools
Crest [16], KLEE [5], FuzzBALL [32] and Symbolic JPF [1], and the closed-source tools PEX [44]
and SAGE [23].

The quality of symbolic execution tools is essential for continuous progress in this area; both for
researchers, so they don’t get bogged down with avoidable bugs and for industrialists who want
to improve the testing of their software. The reliability and correctness of symbolic execution is
especially important for the latter use case. As vividly illustrated by Cadar and Donaldson [4],
bugs in program analyzers can go catastrophically wrong, when they give false confidence to their
users. However, despite their importance to the software engineering field and beyond, there is
currently no systematic effort to test symbolic execution engines.

There are several crucial features of modern symbolic execution engines for which this work aims
to develop effective automated testing techniques. For example, mixed concrete-symbolic execu-
tion [22, 6] significantly improves the performance of symbolic executor by running non-symbolic
parts of the program concretely or normally. A reliable tool has to correctly implement both
concrete and symbolic execution modes. On the concrete side, symbolic execution engines either
embed an interpreter for the language they analyze: Java bytecode in the case of Symbolic Java
PathFinder, LLVM IR in the case of KLEE, and x86 code in the case of FuzzBALL and SAGE, or
modify and instrument the code statically: e.g. both Crest and EXE first transform the program
using CIL [37], and instrument it at that level. As shown in Chapter 2, the execution fidelity of the
interpretation or instrumentation can be effectively tested by adapting program generation and
differential and metamorphic testing techniques employed in compiler testing [47, 27].

On the symbolic side, the accuracy of the constraints gathered on each explored path is of critical
importance if symbolic execution tools are to avoid exploring infeasible paths (which report spurious
errors) and generate inputs, that when run natively, follow the same path as during symbolic
execution. The approach presented tests the symbolic execution mode in two ways. First, the
inputs are constrained to follow a single path. The key idea is simple, but effective: starting
from an automatically-generated or real program, program versions are created which produce an
output for one path only (say when x=10) and then symbolic execution is checked to correctly
follow that path and output the expected results. Second, by running small programs symbolically,
and devising clever techniques that verify equivalent symbolic runs.

In both the concrete and symbolic cases, there are two approaches presented based on differential

4

testing (§2) and metamorphic testing (§3). With differential testing the symbolic execution run
is crosschecked against a native run of the same program. Metamorphic testing takes a different
approach by crosschecking a symbolic run of a program with a symbolic run of a transformed
version of the program that behaves equivalently to the original. There are several transformations
presented that achieve this equivalent transformation.

In both cases an effective crosschecking between the two runs needs to employ effective and inex-
pensive oracles. That is, oracles that find important bugs and do not add a significant runtime
cost. Oracles are small programs that monitor the executions and decide whether there might be
a bug present. Broadly speaking there are five different oracles used in this report. First the sym-
bolic execution tool is checked not to crash. Second the two runs are checked to produce identical
outputs. The function call chain oracle ensures the two executions generate the same sequence of
function calls, while coverage oracle establishes whether the two runs achieved the same coverage.
Finally the runtime of the two executions is recorded and any unexpected performance slowdown is
flagged by the performance oracle. In all the cases the approaches also take advantage of advances
in automatic program generation [47], which allows quick creation of small deterministic programs
without undefined and unspecified behavior, which is essential to find useful bugs and perform
experiments on mass scale.

Whenever a generated program finds a bug in a symbolic execution tool, existing program source
code reducing techniques [39] are used in combination with the oracles in order to obtain a small
program (with fewer than 30 lines of code) that forms an easy-to-understand, reproducible bug re-
port. The approach was applied to three symbolic execution engines: KLEE, Crest and FuzzBALL,
where it has found several serious functionality bugs, most of which have already been fixed or
confirmed by the developers.

In summary, the main contributions of this work are:

1. The first adaptation of differential and metamorphic testing techniques targeted towards
finding errors in both the concrete and symbolic execution modes of symbolic execution
engines.

2. A novel way to create program versions, in three different modes, which combined with
existing program generation techniques and appropriate oracles, enables differential testing
within a single symbolic execution engine.

3. A toolkit implementing all the approaches presented together with comprehensive case studies
on three symbolic execution engines—KLEE, Crest and FuzzBALL—implementing different
styles of symbolic execution (e.g. concolic variant vs. keeping all paths in memory, interpre-
tation vs. instrumentation, etc.) and operating at different levels (source, LLVM bitcode
and binary). The approach found over 20 important bugs in these engines.

This report is structured as follows. Chapter 1 gives the background on symbolic execution,
differential and metamorphic testing as well as other related topics. Chapter 2 starts by giving the
fundamentals of the approach presented with a focus on differential testing (§2.1), then moves on to
describing the implementation details of the toolkit used to perform the experiments (§2.2). Finally
Section 2.3 presents the case studies for the differential testing case studies on KLEE, Crest and
FuzzBALL. Chapter 3 then extends the techniques presented by Chapter 2 to metamorphic testing.
It starts of by describing additional challenges with program generation (§3.1), the equivalent
behavior transformations (§3.2) and approaches to dealing with comparing two symbolic executions
(§3.3). Finally Section 3.4 concludes with the evaluation of metamorphic testing techniques on the
case studies of KLEE, Crest and FuzzBALL.

5

Chapter 1

Background

1.1 Symbolic execution

Symbolic execution is a form of dynamic program analysis. It starts by marking some of the
program input (or some program variables) as "symbolic", which initially means it can take any
value. It then runs the program with this symbolic input, replacing all operations depending on
the symbolic data with symbolic expressions i.e. a program expression where program variables
are replaced with symbolic ones. For example, an program expression x + 1, which adds one to
x, would be replaced by a symbolic expression x + 1, where x is a symbolic variable associated
with a program variable x. The symbolic expression does not perform any operation on x, it only
represents a value that is one bigger than x. If a program branches on a symbolic expression,
symbolic execution explores both possible paths, adding the branch condition as a constraint to
the symbolic data on each path appropriately [5, 7].

A simple example of executing a program symbolically can be seen in Figure 1.1. It considers
a small program with one symbolic input int x. Symbolic execution keeps two data structures
in memory: a map(σ) from the program variables to symbolic expressions and symbolic path
constraints(PCs) over those expressions. Initially the map is empty and path constraints are set
to true or empty set(∅) as denoted in the figure. As the symbolic executor runs its course, these
data structures are updated accordingly. For example, the mksymbolic(x) call in Figure 1.1 adds
σ(x) = s to σ, where s is a fresh symbolic variable. When reaching a branch point at line 4 in
Figure 1.1, the execution is split in two cases, one where x is greater than 0 and one where x is
smaller or equal to 0. The path constrains for the two branches are updated accordingly as shown
in Figure 1.1.[9] The execution is then split again at the next branch point at line 10 in a similar
manner. Note that the crossed out path is not explored, as the variable x cannot be both smaller
than 0 and greater than 10. In the case presented in figure the map doesn’t get updated after
line 2, but it is easy to imagine a case where it would. Consider that line 5 would update another
variable as v = x + 1. In this case σ would be updated to include the symbolic expression for v as
σ(v) = σ(x) + 1.

If left to run to completion, symbolic execution will explore all the paths in the program, with the
ranges the symbolic data can have on those paths i.e. constraints. This can be used to check that
the divisor can never be 0, program assertions cannot be broken or whether two different programs
produce the same results for all inputs [5]. Unfortunately symbolic execution is computationally
expensive and often does not terminate in feasible time even for small programs. The problem is
two fold: there might be a huge number of paths to be explored if the program contains loops, and
secondly, constraints have to be checked for satisfiability at each branch point, which is an NP-hard
problem. Therefore most tools do not attempt to fully explore all the paths, but try to focus on
paths that have the highest chance of containing bugs, for example by maximizing coverage [5] or
focusing on testing code introduced by a patch [31]. It should be noted that symbolic execution
is not just limited to software testing. More recently document recovery tools have been proposed
based on symbolic execution [26].

6

Figure 1.1: Illustration of a program and the corresponding paths that are explored by a symbolic
execution engine. The third path is crossed out, due to its constraints being infeasible. A variable
cannot be both smaller than 0 and greater than 10, so this path is not explored.[15]

1.1.1 History

Symbolic execution was first proposed in the mid 1970s [3, 12, 25]. These papers introduced
the concept of running programs symbolically. The systems were severely limited. For example
EFFIGY [25] worked on its own specially designed language whose only data type were integers and
whose operations didn’t go beyond simple arithmetic. SELECT [3] was more advanced because it
operated on a subset of LISP and attempted to aid with automatic test case generation. Despite this
pioneering work, symbolic execution has only recently become practical by advances in satisfiability
(SAT) solvers and mixing concrete and symbolic execution [9].

Mixed concrete-symbolic execution is the concept of running the instructions involving exclusively
concrete operands normally, that is either directly on the machine hardware or using an interpreter.
Concrete operands have only one value and can either be program variables that were never sym-
bolized in the first place or symbolic expressions that resolve to one value and were concretized
by the solver already. The approach was pioneered by EGT [6] and DART [22]. Concretization
of symbolic variables is an important aspect of modern symbolic executors for the work in this
report. For testing symbolic execution, it is important not to let the symbolic executor concretize
the symbolic values as that would not test the symbolic aspects of the executor.

The ideas from EGT and DART were extended by EXE [7] and later KLEE [5], to model the
symbolic variables with bit precision accuracy and purpose-built solvers, which are good at solving
symbolic execution based queries. These have found many subtle, easy to miss bugs in popular
programs, such as coreutil utilities, web servers and file systems. The tools were even applied to
kernel code.

1.1.2 Fuzzing vs symbolic execution

In some respect symbolic execution could be seen as a type of "informed" fuzzing. Fuzzing is a
type of automated software testing where programs are run on random inputs and checked for
crashes. Even in this simplest form, fuzzing has managed to find a large number of crashes, and
therefore bugs, in standard Linux utilities [34, 35]. Fuzzing approaches have proved to be quite
successful, however they suffer a major downside.

Consider fuzzing the program show in Listing 1.1. If the fuzzer throws random numbers at it, it has
an abysmal chance (1 in 4 billion) of getting past the if statement in line 3. This is where symbolic

7

Listing 1.1: A difficult to fuzz program

int x ;
s can f ("%d" , &x) ;
i f (x != MAGIC_NUMBER) ex i t (0) ;
// code we r e a l l y want to t e s t

execution truly shines. It would have no problem determining that there are two paths in the
program, where one exits immediately. Therefore, it will focus solely on the path with interesting
behavior. Symbolic execution breezes through a problem that would cause a naive fuzzer to get
stuck indefinitely, with minimal impact on the runtime. There are solutions for getting around
this problem within fuzzing [36], however they are not relevant to this report. Conversely symbolic
execution is not a silver bullet, i.e. always better than fuzzing. It can also get stuck on different
kind of programs. For example, a long loop where each iterations causes an expensive solver query
could easily stop a symbolic executor dead in its tracks.

1.1.3 Concolic execution

There are several flavors of symbolic execution, most notably concolic execution. Instead of con-
structing symbolic expressions, it picks a random value for the symbolic variable and then executes
normally, still gathering path constraints, by exploring one path. Then it backtracks to one of the
previous branch points and negates a part of the gathered constrains, asking the solver for a
new solution that satisfies these new constraints. It then sets the symbolic variable to this value
and continues normal execution and repeats, until a termination condition is reached or all the
paths have been explored. This flavor of symbolic execution is implemented in DART [22] and
Crest [16].

1.1.4 Available symbolic executors

The purpose of this project is to test symbolic execution engines. Therefore a symbolic execution
engine is needed in the first place. Ideally the approaches should be shown to work on multi-
ple symbolic execution engines. There are several symbolic execution engines readily available:
PathFinder and Symbolic JPF [1] for Java, SymJS for JavaScript, Rubyx for ruby and PEX [44]
for .NET. There are also symbolic executors for C and lower representations of C, that it compiles
down to. Crest [16] and Otter [40] come with their own compilers and could therefore be consid-
ered to operate on C. KLEE [5] works on LLVM bitcode and tools like FuzzBALL [32] operate on
machine code directly.

When choosing which symbolic executors to use for this project the most important factor to
consider is: can the symbolic executor be run easily on interesting programs? In other words can
it be run on programs that are not trivial and similar to programs used everyday. That means
a language needs to be chosen for which the programs, that will become the test cases, can be
generated and manipulated easily. This limits the pool of available symbolic executors to Java and
C based ones. There are usually one maybe two symbolic execution tools for other programming
languages, so there isn’t much space for comparing the approaches over multiple symbolic executors.
The choice between Java and C was made on the basis of how easy it is to automatically generate
programs in the given language. In Csmith [47] (§1.2.2) and C-reduce [39] (§1.2.3), C has well
established tools for automatically testing program analyzers or more specifically compilers. Similar
tools for Java do not seem to exist. Therefore, we decided to focus on testing on symbolic execution
engines targeting some form of C.

Three symbolic executors were chosen for this project: KLEE, Crest and FuzzBALL. They pro-
vide a wide variety of design decisions and operating principles between them. They all operate
at different levels, from C directly with Crest, through LLVM IR with KLEE to machine code
directly with FuzzBALL. They also implement different flavors of symbolic execution: KLEE and
FuzzBALL perform symbolic execution, however KLEE explores multiple paths in parallel, while

8

Figure 1.2: Illustration of differential testing of 3 compilers, using a Csmith generated program as an
input. [47]

FuzzBALL is more lightweight and executes a single path to completion before attempting a new
one. Crest on the other hand implements concolic variant of the symbolic execution and is designed
differently from the other two. It instruments the code to perform symbolic execution using CIL
and then runs the program multiple times natively trapping the symbolic cases and handling them
through a library. KLEE and FuzzBALL on the other hand interpret the code and handle the
symbolic aspects within the interpreter.

1.2 Compiler testing

In general, little work has been done in testing program analysis tools [4], which includes sym-
bolic execution engines. However, compilers correctness has attracted a great deal of attention.
Due to the similarities between compilers and symbolic execution engines as presented in Sec-
tion 1.2.4, some of the work done on testing compilers can be leveraged to test symbolic execution.
Differential testing (§1.2.1) and metamorphic testing (§1.2.5) are especially prominent for testing
symbolic executors. Other more formal techniques such as formally verifying compilers as done
with CompCert[28] are less applicable. While there could be attempts at formally verifying a sym-
bolic executor, the work would not benefit from the previous work based on compilers in significant
manner.

1.2.1 Differential testing

The idea of differentially testing compilers was introduced by McKeeman [33]. It is presented as
a form of random testing that somewhat resolves the problem of an oracle. One of the problems
with random testing is designing an oracle. Given a random string or program, which is fed into
a compiler, how does one know whether the compilation result was wrong? The simplest answers
is to check for crashes, a crash is never the intended result. This is the approach fuzzers take
(§1.1.2). However this is not where the nastiest compiler bugs exist. If a compiler crashes, the
programmer will take notice and change either the program or the compiler. The worst possible
compiler bug is mis-compilation, where the compiler silently produces a program that does not
conform to the language standard and therefore has a different behavior than what the programmer
intended.

Differential testing is a solution for building an oracle that determines whether a program was
miscompiled. Given a program, differential testing compiles it with two or more different compilers.
Then it runs the binaries on the same input and compares their outputs. If the outputs differ, a
bug was found as illustrated in Figure 1.2. For example if out of five compilations, one differs from
the others, the bug is probably in that one. The technique can be used with the same compiler,

9

but using different compilation options, such as optimization levels can make the same compiler
act as two different compilers.

Unfortunately, there is a problem of undefined behavior when applying differential testing in prac-
tice [33]. As discussed in detail by Xi Wang et al. [45], undefined behavior gives the compiler
the freedom to generate programs that behave arbitrarily in the cases where undefined behavior
is exhibited. Therefore, if the program which is used for differential testing contains undefined
behavior, differential testing becomes meaningless as the different compilers have the right to pro-
duce programs with different behavior. This problem is amplified by the fact that the programs
should be interesting, i.e. exhibit interesting behavior that gives the opportunity to find interesting
bugs.

1.2.2 Csmith

The two issues presented by McKeeman [33] have been address by the work of Regehr et al.[47] with
a tool called Csmith. It is a tool for randomly generating C programs, which takes great care to
produce interesting programs without undefined behavior. For example all arithmetic operations
are wrapped in a "safe" library which defines some semantics for otherwise undefined behavior.
The divisor is checked to be non zero and if it is, the result of division is the numerator and if
over-shifting is about to occur the shiftee is returned instead. Unspecified order of evaluation of
function arguments is tackled by only generating programs where order of evaluation does not
change the result of execution. Similar tricks are performed for all possible undefined behaviors as
defined by the C standard making Csmith an ideal tool for compiler testing. The technique proved
extremely fruitful in testing compilers, finding over 200 bugs in LLVM alone [47].

Differential testing of symbolic execution has the same problem with undefined behaviors as com-
piler testing. Therefore Csmith was chosen as the program generation tool for this project, due the
quality of generated programs and its flexibility. Further argumentation for the use of automatically
generated programs, and Csmith in particular, can be found in Section 2.1.1.

Static program analyzers

Interestingly, Regehr et al.[17] have also applied differential testing with random programs to test
static analyzers. They used Csmith to test a popular static analysis framework Frama-C [21].
They argue that despite the fact that static analyzers are either correct by construction or verified
otherwise, they are still compiled by a compiler with possible bugs. Therefore the actual binary
of the tool can still contain bugs. They have found over 40 bugs in Frama-C [21], a popular and
mature static analyzer. This shows that using differential testing with Csmith can be fruitful even
outside of compiler testing, which makes the prospect of applying it to symbolic execution even
more exciting.

1.2.3 C-reduce

Another practical problem with differential testing is that once a bug was found, it is hard to report
it. The randomly generated programs are usually a huge convoluted mess, that no one would want
to debug. The bug is also likely to be exposed by only by a small portion of the program, which
is why it needs to be reduced [33]. In other words the number of lines of code in the program
should be reduced to a point, where the minimal number of lines is still present that exposes the
bug.

A modern example of an automatic reduction tool is C-reduce. At a high-level, C-reduce tries
various source-level transformations to reduce a C program (e.g. deleting a line) and then uses
an oracle (in the form of a bash script) to decide if the transformation was successful and the
transformed program still exposes the bug. If so, C-reduce keeps the reduced program and attempts
to reduce it further, otherwise it rolls back the change and tries other transformations. Integrating
C-reduce in the bug-finding process should be easy, as the same oracle can be used as the one used
to find the bug in the first place. One challenge is that unlike Csmith, C-reduce can introduce

10

undefined behavior. Vu et al. [27] tackle this issue by leveraging Clang warnings and sanitizers
as well as leveraging static analysis tools such as Frama-C [21]. In our experience, making the
compiler reject programs that produce compiler warnings and running the programs with Clang’s
address and memory sanitizers is sufficient for C-reduce to not induce any undefined behavior.
However, should a program arise that would keep reducing to undefined behavior, Frama-C could
become a viable option for strengthening the oracles. Note that all warnings cannot be treated as
errors, as Csmith programs already generate some warnings during compilation.

C-reduce builds on the idea of delta debugging first introduced by Zeller and Hildebrandt [48].
The concept was then further realized by McPeak and Wilkerson in what is referred to as Berkley
Delta [20]. The basic idea is to delete various contiguous areas (ie. lines) of the program and then
test them against an oracle (the oracle is a test script in the context of C-reduce). If the oracle is
still interested in this reduced program, the process is repeated on the reduced program, otherwise
the process backtracks and selects another area for deletion. C-reduce incorporates this approach
as one of its main passes, but it can be seen as a framework that combines it with various other
transformations. For example, it intelligently deletes arguments from functions or eliminates dead
code. Using this technique and others authors report 25x smaller reduced programs than the ones
reduced by Berkley Delta.

1.2.4 Symbolic execution engines vs compilers

Since the approaches presented in this report are based on compiler testing techniques, it is impor-
tant to highlight the similarities and differences between symbolic execution engines and compilers.
On one hand, both take programs as inputs. It will become convenient to later combine compiling
a program and running it as one operation for Csmith generated programs. With this in mind
we could also say that symbolic execution and compilers produce similar outputs. In other words
they take a program and return the output of running the program. Note that Csmith programs
don’t take any input, so combining compiling and running a program as a combined concept makes
sense. This is the reason we believed compiler testing techniques can be leveraged to find bugs in
symbolic execution.

However, despite these similarities they perform very different tasks. While symbolic execution
can leverage a compiler techniques, the two have very different goals and areas of difficulty. Com-
pilation involves parsing and analyzing programs, spotting opportunities for optimization and then
performing them. Whereas symbolic execution does not concern itself with optimizing the pro-
gram, the main goal of symbolic execution is to explore as many interesting paths in the program
as possible in the allocated time. Note that an interesting path might be one where there is higher
likelihood of finding bugs in the context of software testing, for example a yet to be covered piece
of code. There are two main areas of difficulty symbolic execution has to solve: efficient constraint
solving and good path exploration heuristics [7, 5]. The testing approach for symbolic execution
should therefore focus on testing these areas as opposed to testing parsing and optimization passes,
which is what compiler testing focuses on [47].

A more trivial but equally important difference between symbolic executors and compilers is that
compilers are a more mature and widespread technology. Compilers have been around for longer
and their basic theory is quite well understood. Symbolic execution on the other hand is still a
very active area of research with a number of elementary problems such as floating point compu-
tation [14] and array optimizations [38, 7] still being under development. A logical consequence of
this is that there are many more mature compilers to test than symbolic execution engines.

1.2.5 Metamorphic testing

The work of Le et al. [27] demonstrates another approach to compiler validation. Instead of compil-
ing the same program with two different compilers (§1.2.1), it compiles two different programs with
the same compiler. The trick is that the two programs must have the same observable behavior.
More formally they introduce a concept of equivalence modulo inputs(EMI): two programs P,Q are
equivalent modulo inputs (EMI) w.r.t. an input set I common to P and Q iff ∀i ∈ I.P (i) = Q(i),

11

where P (i), denotes the output of running P with the input i [27]. Obviously, if we compile pro-
grams P and Q, run them and observe that they produce different outputs for the same input, a
mis-compilation must have taken place. Le et al. [27] also proposes that EMIs can be adapted to
test program analysis systems in general, but does not solve the particular difficulties in applying
the technique to symbolic execution nor does it evaluate its effectives. Chapter 3 explores how this
approach can be adapted to symbolic execution and how effective it is.

The proposed way of obtaining P and Q is to apply a semantic preserving transformation to P,
to obtain Q. The authors have taken a so called “Profile and Mutate” Strategy for the transfor-
mations. For the "profile" part, they’ve taken programs that either take no inputs (from compiler
test suites) and open source programs with test suites, run them, and collected coverage. The
coverage shows the dead code in the programs when run on those inputs. The "mutation" then
involves randomly selecting dead code and removing it. Different combinations of removed lines
give different programs, therefore it is possible to generate a large number of variants from a sin-
gle program using this approach. Le et al.have implemented the transformations using LLVM’s
LibTooling [30], which is a modern library for source to source transformations. They report that
LibTooling has the capability to mutate the AST, which is why LibTooling was chosen to perform
the transformation in this report.

Le et al.’s paper also shows that the EMI approach found more bugs faster than compiler differential
testing presented by Yang et al.with Csmith [47]. They also argue that it is is more easily extensible
to other languages, such as C++. In addition it is not a random fuzzing approach as they don’t
generate programs, they take existing programs—compiler test suites for example— and generate
variants from them. That means the programs are more similar to those humans are likely to write
as opposed to completely randomly generated programs.

Application to symbolic execution engines

In the context of symbolic execution, dead code is not as interesting as for compilers. A compiler
has to look at the source code as a whole and cannot in general recognize dead code. In contrast a
symbolic execution engine is in general not concerned with dead code as it simply doesn’t execute
it. For most intents and purposes one could say that dead code is invisible to a symbolic execution
engine.

Therefore, other transformations need to be devised in order to apply metamorphic testing. An
equivalent transformation to dead code injection would be "dead condition" injection. The idea is
to add something logically equivalent to "&& true" to a conditional branch. Conditional branches
lie at the heart of symbolic execution and therefore one would expect the described transformation
could expose some bugs. This transformation is discussed in further detail in Section 3.2.1.

Another interesting but harder to implement transformation would be to exploit the commutative
properties of logical operators and switch their order. However to truly preserve semantics of
the program care must be taken to not change the order of execution when the condition short-
circuits.

1.3 Other efforts for testing program analysis tools

To our knowledge, this is the first approach specifically targeted at testing symbolic execution
tools, and the first effort to present the experience of adapting compiler testing techniques to check
mature symbolic execution engines.

More generally however, the research community has started to invest effort into ensuring the
correctness and reliability of program analysis tools. One example is represented by competitions
among tools, which have the important side effect of finding bugs in participating tools: the annual
SV-COMP competition for software verification tools is a prime example of such competitions [2].
This section presents other efforts in the community to test program analysis tools.

12

1.3.1 Many-Core Compiler Fuzzing

The general idea of applying both differential testing and metamorphic testing has also successfully
been applied to compilers for GPU kernels written in OpenCL [29]. They too apply compiler testing
based techniques in a new domain of GPU kernels. However, their contribution is very different
from the one presented in this report. Their main area of difficulty is constructing a program
generator for OpenCL kernels as well as devising a semantics preserving transformation that does
not depend on dead code being present in the program.

Lidbury et al. [29] have built their own program generator called CLsmith, based on Csmith, that
generates OpenCL kernels. They first present an approach for lifting Csmith generated programs
to embarrassingly parallel kernels, by making each thread execute the Csmith generated program
completely independently. Then they present several methods for making those threads commu-
nicate in a deterministic and safe manner. For testing symbolic execution this is obviously not
needed as it happily operates on standard Csmith programs.

Their approach to testing OpenCL compilers with the EMI approach is more interesting. Practical
kernels do not have dead code, hence the “Profile and Mutate” strategy (§1.2.5) from the original
EMI paper [27] cannot be applied. Therefore, they use program snippets generated by CLsmith
to generate dead code. These snippets are then wrapped by an if statement, whose condition can
never evaluate to true so that the code is indeed dead. They also ensure that the condition is not
trivial enough for a compiler to realize the code is dead and remove it. This approach is still not
easily applicable to symbolic execution for the reasons outlined in Section 1.2.5.

The approach was shown to be successful with over 50 OpenCL compiler bugs found. This further
strengthens the case that differential testing and metamorphic testing techniques are well suited
for testing program analysis tools.

1.3.2 Testing of Clone Detection Tools

An example of testing program analysis tools by program generation is the work of Roy and Cordy
work on evaluating clone detection tools [41]. Clone detection tools attempt to find snippets of
code, called code clones, that are very similar to each other, within a larger program. Code clones
are common in real code bases, as programmers tend copy snippets of code. Obviously if a copied
snippet contains a bug, the bug is likely present in all the copies. Clone detection tools attempt
to find and highlight these clones to the programmers. Roy and Cordy’s approach starts from
real programs, which are mutated to artificially contain code clones. Several clone detection tools
are then tasked with finding these newly introduced clones and the performance of the tools is
evaluated.

Although this work is similar at a high level to the approach of testing symbolic execution engines
presented in this report, it is done in a different domain. Therefore, they have faced challenges
unrelated to symbolic execution. Conversely, testing symbolic execution comes with its own set of
challenges that are not resolved by their work. Their main focus is on testing the ability of clone
detection tools to detect slightly modified cloned code fragments, that are likely to be found in
real programs. Examples of mutation range from adding a little white space to replacing for-loops
with equivalent while-loops.

1.3.3 Testing Refactoring Tools

A technique similar in spirit to the approach presented in this report although different in terms of
application domain and techniques used, is Daniel et al.’s [18] work on testing refactoring engines.
They combined program generation and differential testing between refactoring engines. Their
program generation contribution was providing developers with a declarative way of constructing
abstract syntax trees for Java programs using a bounded-exhaustive approach. The differential
testing was performed using a crash oracle as well as several other oracles that take into account
the semantics of the refactoring.

13

Figure 1.3: An illustration of the KS test, the red and blue lines represent empirical distribution functions
of a random variable X, with the black arrows showing the KS statistic. (source: wikipedia)

1.3.4 Testing Alias Analysis

Wu et al.. [46] present a system for checking pointer alias analysis implementations. Pointer alias
analysis attempts to find pointers in the program that can point to the same location. Listing 1.2
shows a snippet that could be analyzed by pointer alias analyzer, to conclude that pointers p1, p2
and p4 all alias each other, whereas p3 does not alias any other pointer.

Listing 1.2: Snippet for demonstrating pointer aliasing.

int a , b ;
int ∗p1 = &a ;
int ∗p2 = &a ;
int ∗p3 = &b ;
int ∗p4 = p1 ;

Wu et al.’s approach validates the results of pointer alias analysis tools against the pointer values
observed at runtime. This is a form of differential testing, between dynamic and static information.
They present an alias analyzer agnostic tool, for testing alias analysis. The tool instruments a
program to track the pointer addresses at runtime, the user then runs the program on a workload.
The pointer alias information gathered during runtime is compared with the result of alias analysis.
If a contradiction is found, i.e. two pointers alias during runtime, when the static analysis reported
that they couldn’t, a mismatch is reported.

1.4 Kolmogorov–Smirnov test

The Kolmogorov-Smirnov test or the KS test is a statistical test of the equality of two distribu-
tions. It can be used as a test of whether two samples of a distribution are taken from the same
distribution. Its null-hypothesis is that the two samples are drawn from the same distribution.
Briefly speaking the KS test works by looking at the greatest divergence between the cumulative
empirical distributions of the two samples as seen in Figure 1.3. [19]

Further details of the KS test are not needed as the scipy implementation [24] of the test was
used. Scipy’s stats.ks_2samp() function implements this version of the test. It takes two lists of
numbers, containing the samples from the two distributions we want to compare. It then returns
the KS-statistic, which we can ignore and a p-value. Since the null hypothesis states that two
distributions are the same, a low p-value indicates that we need to reject the null and therefore
conclude that two distributions are different. This test was found useful in Section 3.1, where it is
necessary to asses if two distributions are the same or not.

14

1.5 GNU parallel

GNU parallel [43] is a command line utility that calls a program with the arguments from its
standard input. It can be used as a drop-in replacement for a more standard xargs utility. GNU
parallel was leveraged heavily in this work to run large scale experiments in parallel. It was
chosen over xargs for its superior parallelization capabilities. For example if xargs runs the jobs
in parallel, their stdout could be jumbled together, whereas GNU parallel makes sure the outputs
of different jobs are not intertwined. In addition, it provides the capability to run the jobs on
multiple machines. Therefore it was easy to scale one of the computationally heavy tasks to
multiple machines (§3.1), which made that approach feasible.

15

Chapter 2

Differential Testing of Symbolic
Execution

In this chapter several techniques for comprehensively testing symbolic executors are presented,
together with case studies that applies them to find bugs in several different symbolic execution
engines KLEE, Crest and FuzzBALL. The techniques are an adaptation of differential testing of
compilers for symbolic execution tools. As introduced in Section 1.2.1, differential testing has
seen tremendous success in revealing important bugs in popular compilers [47]. This gives the
techniques great potential for finding bugs in symbolic executors, as they are in some important
aspects similar to compilers.

More precisely, the techniques are based on program generation and differential testing, adapted
to exercise several key inter-related aspects of symbolic execution tools: execution fidelity and
accuracy of constraint solving—that is, whether the symbolic execution tool correctly follows the
paths it intends to follow, gathering precise constraints in the process—as well as correct forking
behavior and replay—that is, whether the generated inputs execute the same paths as the ones
followed during symbolic execution.

The method is effective for both dynamic symbolic execution tools which keep multiple path
prefixes in memory, as in EXE [7], KLEE [5], Mayhem [10], Symbolic JPF [1] and S2E [11], as
well as for those which implement the concolic variant of symbolic execution, in which paths are
explored one at a time, as in DART [22], Crest [16] and CUTE [42].

The rest of this chapter is structured as follows. Section 2.1 gives an overview of our technique,
showing how we generate random programs (§2.1.1) and create versions of these programs (§2.1.2)
to be crosschecked using four different oracles (§2.1.3), and reduced to produce small bug reports
(§2.1.4). Then we dive into the technical details of the implementation of the testing infrastructure
in §2.2. Finally Section 2.3 presents our case studies on the KLEE, Crest and FuzzBALL systems,
reporting the effectiveness and performance of the technique.

2.1 Testing Approach

Conceptually the main stages of our testing approach are shown in Figure 2.1. The input is
a configuration of the experiment which includes: the symbolic execution engine to be tested,
compiler flags and versions of all the programs involved, i.e. Csmith, constraint solver, symbolic
executor, as well as all other configuration options presented in further sections: generated program
parameters §2.1.1, different modes (§2.1.2), oracles (§2.1.3) and constrainers (Table 2.1).

In the first stage (Generate programs in the figure), random, deterministic programs are generated
with the help of Csmith tool [47] (§1.2.2) and instrumented to support our oracles. In the second
stage (Create & run versions), several different versions of a given generated program are created:
a native version, designed to execute natively; single-path versions, designed to run a single path

16

Figure 2.1: The main stages of the testing approach.

when executed symbolically; and multi-path versions, designed to run multiple paths when exe-
cuted symbolically. These different versions are run and crosschecked using our four oracle types:
crash detection, output, function calls and coverage comparison (Employ oracles). Any programs
exposing mismatches (as flagged by the oracles) between the native and symbolic execution runs
(Gather mismatches) are then reduced using the C-reduce tool [39] (§1.2.3) configured with the
oracles (Reduce programs) and reported to developers.

While the testing approach is general, the infrastructure built is targeted toward testing symbolic
execution engines for C code ecosystem.

2.1.1 Generating random programs

The first step of the approach is to generate small programs using the Csmith [47] tool used in
compiler testing. Csmith is a tool that can generate non-trivial C programs that leverage many
features of the C language and which has been used successfully to find many bugs in mature
compilers [47, 29] (§1.2.2).

Csmith generates programs in a top-down fashion. It starts by creating a single function, which
is called from main. Csmith then picks a structure from its grammar randomly and checks if it is
appropriate for the current context. For example, continue can only appear in loops. Should the
check fail, it makes a different choice until it succeeds. If the chosen structure needs a target (e.g.
a variable to read or a function to call), it randomly chooses between using an existing construct
and generating a new one. Care is taken not to generate constructs with undefined or unspecified
behavior, e.g. by guarding every division operation to ensure the divisor is not zero. Types are
handled in a similar manner.

If the selected structure is a non-terminal, the process repeats. Finally, several safety checks are
performed to ensure there cannot be any undefined or unspecified behaviour. If that fails, the
changes are rolled back and the process starts from the most recent successful stage.

When the process requires a new function to be created, the generation of the current function is
suspended until the new function is generated completely. Thus Csmith terminates once the first
function is completed. At this point main is generated, where the first function is called and after
it returns, the checksum of all global variables is computed and printed out.

The generated programs take no input, perform some deterministic computation and output the
checksum of all global variables, giving an indication of the state of the program upon termination.
The length and complexity of the generated code is highly configurable. By default the Csmith
programs are on average 1600 lines long, containing about 10 functions and 100 global variables.
The global variables can have a wide range of types: signed and unsigned integers of standard
widths, arrays, randomly generated structs and unions, pointers and nested pointers. The functions

17

take varying number of arguments of different types and return a randomly-chosen type. Function
bodies declare several local variables and include if and for statements, which in turn contain
assignments to both local and global variables. The expressions assigned are deep and nested,
reading and writing to multiple global and local variables, performing pointer and arithmetic
operations and calling other functions.

There are several reasons for using Csmith-generated programs as opposed to using real soft-
ware.

1. Csmith programs are valid C programs without undefined or unspecified behavior. This
is important because the compiler used to generate the native version of the program and
the engine used to symbolically execute the program might take advantage of undefined or
unspecified behavior in different ways, which might lead to spurious differences.

2. Csmith programs, by design, have a good coverage of C language features, which a limited
collection of real programs might miss.

3. Most of the language features being used in Csmith programs can be enabled or disabled
via command-line arguments. This is important because once the symbolic execution tool
is found to mishandle a certain feature, we want to be able to continue testing without
repeatedly hitting that same bug.

4. Csmith programs are deterministic and the input and output are easily identifiable: the
input is represented by the set of global variables in the program, and the output consists of
a checksum of its global variables which is printed at the end of the execution.

5. Unlike real programs, Csmith programs are relatively small (or more exactly, Csmith can be
configured to generate small programs), which allows us to perform a large number of runs.

Disadvantages of Csmith programs (and automatically generated programs more generally) are
that they are artificial, hard to read by humans, and not guaranteed to terminate. The second
issue is addressed by automatically reducing the size of the program (§2.1.4), and the last issue by
using timeouts, as recommended by the Csmith authors [47] (§2.3.1).

2.1.2 Creating and running versions

The bug-finding effort could be partitioned into three domains. These domains relate to the three
modes of execution which we imposed on a symbolic executor: interpreter mode, single path
symbolic mode and multi path symbolic mode. Any given Csmith generated program could be run
in any of the three modes, depending on how it was instrumented.

For each generated program, we first create and run an unmodified native binary version of the
program. Then, for each of our three testing modes, we create a modified version of the program
to be run by the symbolic execution engine under test.

Mode A: Concrete mode

This mode is designed to test the concrete execution of the symbolic execution engine. For this
mode, we run the program with the symbolic execution engine without marking any variable as
symbolic. For example, the code would be compiled to LLVM bitcode and then ran with KLEE
directly without any symbolic input.

The symbolic execution run is then validated against the native one, using the oracles (§2.1.3). For
example, the function call chain oracle would check that the native and symbolic runs generate
the same sequence of function calls.

Mode B: Single-path mode

The aim of this mode is to test the accuracy of the constraints gathered by symbolic execution
and its ability to correctly solve them. Essentially, this mode is checking the symbolic execution of
individual paths in the program. For this mode, the code is modified to mark all the integer global

18

Table 2.1: Four ways of constraining a variable x to a constant value v. di is a prime divisor of v.

Type Constraint
< ,> ¬(x < v) ∧ ¬(x > v)
≤, ≥ x ≤ v ∧ x ≥ v
range ¬(x ≤ v − 2) ∧ ¬(x ≥ v + 3)∧

¬(x = v − 1) ∧ ¬(x = v + 1) ∧ ¬(x = v + 2)
divisors ∧i¬(x mod di 6= 0) ∧ x > 1 ∧ x ≤ v

variables of the generated program as symbolic and constraining them to have the unique value
assigned to them in the original program. This essentially forces the symbolic execution engine to
follow the same execution path as in the native version, but also collect and solve constraints on
the way.

Constraining a variable to have a unique value needs to be done in such a way that the symbolic
execution engine does not infer it has a unique value (and reverts to concrete execution for that
variable). In particular, assigning a symbolic variable to have a constant value (e.g. x = 4) or
comparing it with a constant (e.g. if (x == 5)) would typically make the engine treat that variable
as concrete on that path.

Four different ways of constraining a symbolic variable x to a given value v were used. They are
listed in Table 2.1. For example, the second method adds the constraint that x is less than or equal
to v and greater than or equal to v, while the fourth method adds the constraint that x is divisible
by all the prime divisors of v, is greater than 1 and less than or equal to v. At the implementation
level, for each integer global variable initialization such as int x = 5;, we add the following code
at the start of main, should we for example, follow the first constraining method:

Listing 2.1: Snippet showing symbolizing and constraining a variable x.
make_symbolic(&x) ;
i f (x < 5) s i l e n t_ex i t (0) ;
i f (x > 5) s i l e n t_ex i t (0) ;

In this code, the make_symbolic() function is used to mark the given variable as symbolic,
while the silent_exit() function terminates execution without generating a test input on that
path.

Therefore, after executing the code fragment above, the symbolic execution engine will continue
along a single path with the path condition ¬(x < 5) ∧ ¬(x > 5), which effectively constraints x
to value 5.

Once such a version of the program is constructed, its execution can be validated using the oracles,
as for the previous mode A. Note that one oracle that is effective here, as shown in the evaluation,
is to check that the symbolic execution engine executes a single path. However, an explicit oracle
was not added for this, as other oracles, such as the function call oracle, would almost always catch
such a bug.

Mode C: Multi-path mode

While the prior mode tested that the engine correctly performs symbolic execution of a given path,
this final mode checks that it explores multiple paths and generates inputs that exercise exactly
those paths.

For this mode, all integer global variables are simply marked as symbolic, without constraining
them to any value, and let the symbolic execution engine explore multiple execution paths. As a
result, not all oracles are well applicable to this mode. In particular the output oracle was not
used for non-concolic execution engines, as the output could now be a function of some symbolic
variables. This does not work well when comparing it with native execution.

Besides the crash oracle, the function call chain oracle was the only one used, which was the easiest
to adapt for this scenario. The approach was to record the sequence of function calls on each path

19

explored during symbolic execution, and then, for each path, to run natively the generated test
input and check whether it generates the same function call sequence.

2.1.3 Oracles

The five oracles that we used to validate the executions are discussed in detail below.

Crash oracle

The first basic oracle consists in detecting generic errors during symbolic execution runs, such as
segmentation faults, assert violations and other abnormal terminations.

Output oracle

As discussed in Section 2.1.1, Csmith programs are designed to have no undefined or unspecified
behavior and produce deterministic output. More exactly, the programs print at the end a single
value, the checksum of all global variables. For mode A, the checksums printed out by the native
and symbolic execution runs are simply compared.

For mode B, it was found that computing checksums for symbolic variables is very expensive,
resulting in many time-consuming solver queries. The solution was to exclude the symbolic vari-
ables from the checksum computation, and instead simply print out their individual values. For
non-concolic engines, the instrumentation first ask the constraint solver for a solution (which in
this case is unique) before printing out the symbolic value.

Function call chain oracle

The function call chain oracle compares the sequence of function calls executed by the native and
symbolic execution versions. This oracle provides the ability to catch some bugs where symbolic
execution follows the incorrect path, but without having any influence on the output. For modes A
and B, this oracle checks that the unique path followed by the symbolic execution engine produces
the same sequence of function calls as the native execution. For mode C, this oracle checks that
when natively replaying a generated input, the same function call sequence is produced as in the
corresponding path explored during symbolic execution. Because some execution paths may not
be fully explored by non-concolic tools in mode C (due to timeouts), the oracles actually checks
that the function call chain generated during symbolic execution is a prefix of the corresponding
native function call chain.

Note that the function call oracle could lead to false positives if the native and symbolic execution
evaluate function call arguments in different order. We only encountered this in Crest, and we
found this easy to filter out.

Coverage oracle

The coverage oracle was used in a similar way as the function call chain oracle, to ensure that
the native and symbolic execution runs execute the same lines of code, the same number of times.
While we could have used this oracle in mode C as well, to check whether the natively replayed
execution covers the same lines of code as during the corresponding path explored during symbolic
execution, it was more difficult to implement efficiently.

Performance oracle

The last oracle that we used was for finding performance anomalies. We flagged all programs for
which symbolic execution took disproportionately longer to run compared to the corresponding
native execution. More details about this oracle can be found in sections 2.3.1 and 2.2.4.

20

2.1.4 Reducing bug-inducing programs

As indicated before, Csmith generated programs are large and hard to read by human develop-
ers. The code consists of huge nested expressions without any high-level meaning, referring to
mechanically-named variables. Debugging such programs would be highly difficult. Therefore, for
each generated program that exposes a bug, the C-reduce tool [39] (§1.2.3) was used to reduce it
to a manageable size.

2.2 Implementation details

This section focuses on presenting and discussing technical implementation details of the testing
infrastructure used to conduct the experiments presented in this report. The design decisions are
motivated by the following two goals the infrastructure aims to achieve:

• Implement the process described in Section 2.1 to be as automated as possible.

• Aid and benefit from manual experimentation. For example, once a users knows how to
run a symbolic execution engine manually, it should be trivial and natural to use it within
the infrastructure. Conversely, if an experiment is already automated, it should be easy to
manually perform the individual steps of the experiment. This is important for reducing and
reporting the programs with bugs.

We start by talking about the instrumentation stage in Section 2.2.1. It is the heart of the testing
method, preparing the programs for symbolic execution and setting up the oracles. Then the collec-
tion of scripts that slowly builds up to automated experiments is presented in Section 2.2.3. Finally,
generating programs and reducing them is presented in Sections 2.2.5 and 2.2.6 respectively.

2.2.1 Instrumentation

There are two main insights behind the design decisions for the instrumentation implementation.
First, the instrumentation needs to be inserted at source code level to maintain generality. It is
always possible to compile source code to lower representations such as LLVM IR or machine code,
whereas going the other way is much harder and edging impossibility. Some symbolic executors, like
Crest, have their own compilers and therefore cannot execute pre-compiled programs. Whereas for
others like FuzzBALL it is trivial to compile down to machine code, on which FuzzBALL operates.
Note that performing instrumentation on the source code level is the highest abstraction layer
practically possible, since the program generator generates C code. If there existed an even more
general program generator, it would make sense to perform instrumentation there.

Second, the instrumentation should be made as lean as possible. To be more precise, the instru-
mentation should merely provide necessary hooks into the program and not include any logic. The
logic should be put into a library that uses those hooks and can be easily swapped depending
on experiment configuration. In more practical terms, the instrumentation inserts function calls
into a library at appropriate places. To achieve this, a symbolic executor agnostic interface for
symbolizing variables (marking variables as symbolic) and printing symbolic variables was defined.
The instrumentation process then inserts the calls to this interface appropriately. When the in-
strumented program is to be run, an appropriate implementation of the library would be linked in.
For example, the implementation of the library in native runs for symbolizing variables would be
a noop as we cannot perform symbolic execution in native runs. For KLEE it would delegate to
klee_make_symbolic(). The library can also have different implementations for the same symbolic
executor. Different constrainers are implemented this way.

This approach enables running the same instrumented program with different symbolic executors
and even natively. This means programs don’t need to be regenerated and re-instrumented for
each different run paving the way for actually saving the generated and instrumented programs,
thus improving efficiency and reproducibility of experiments.

21

Source level instrumentation

Instrumenting programs on the source level is a significantly less mature idea than instrumenting
at lower abstraction levels, which have the full weight of compiler optimization behind them. This
is perhaps best illustrated within clang, LLVM world. LLVM has a dedicated and well supported
toolkit for instrumentation in LLVM passes. The way to perform source level instrumentation
is with clang’s LibTooling [30]. It is a comprehensive library for tapping into clang front end.
The main use case for LibTooling are refactoring tools and therefore using it for instrumenting
programs is less pleasant compared to an LLVM pass. On the other hand, it is much easier to
write the instrumentation with LibTooling as one can inject C code directly. In contrast one needs
to construct LLVM IR through its C++ API when using an LLVM pass.

LibTooling provides two basic facilities of interest to us that enable us to insert instrumentation:
walking the clang AST and rewriting the source code. In short, we walk the AST for two purposes:
to gather information about the program and mutate it as needed. For example, the AST needs to
be traversed to find all the global variables and the values they are initialized to. Then the rewrite
facility can be used to insert the calls to the symbolizing interface at the start of main(). There
are two kinds of instrumentation inserted:

Function logging instrumentation is straightforward. It first inserts a global variable in-
str_filename, containing the name of the file being instrumented. This is used later on to deter-
mine what file to write the function calls to. Then it visits each function (FunctionDecl clang AST
node) and inserts a call to a logging function, passing in the name of the function. So for function
foo(), logFunction("foo"); is inserted at the beginning of the body of foo(). logFunction is then
implemented separately in the library and linked in. The logFunction implementation uses the
instr_filename to open a file with that name and append the name of the function being passed
in to the end.

Symbolizing global variables is more involved. Initially all global variable declaration are
visited while remembering unsigned integers with initialized values. For each initialized unsigned
integer, a call to the symbolizing interface is added at the start of main() passing in the pointer
to the global variable and the bit width of the variable. The variable name is also passed in for
debugging purposes. For each of these variables, a call to the print symbolic variable interface
is also inserted at the end of main(). Finally, all the calls to transparent_crc() function in main
that have one of the initialized unsigned integers passed in is commented out. transparent_crc()
is a Csmith function that computes the checksum of global variables. If it is executed in symbolic
context, the symbolic execution becomes unfeasibly slow. The solution is to remove all the calls
to transparent_crc() involving symbolic variables. Instead, the symbolic variables are printed out
to still check their values.

2.2.2 Implementing constrainers

Constrainers are implemented as a part of the make_symbolic() function in the library. The <,>
; ≤, ≥ and range constrainers are implemented exactly in the spirit of Listing 2.1. Different
constrainers obviously require different versions of the library, however the symbolizing part of the
function should be shared between the implementations. Therefore, there is a single symbolizing
source file for each symbolic executor. It uses a CONSTRAIN() macro to constrain the variables.
The CONSTRAIN() macro is then defined in a header file. The symbolizing library source file
is than compiled three times, once for each of the three constrainers, with different header files
included to change the constrainers.

Divisor constrainer. The divisor constrainer deviates slightly from this pattern as it is harder
to implement. At library compile time it uses the sieve method to generate the first 10000 primes
and put them in a static array. Given N is the value the constrainer needs to constrain a variable
to, it loops through the static array of primes. For each prime p that divides N , it finds the highest
exponent e of p that still divides N . It then adds the constrain N % pe == 0 to the path condition.
Finally it divides N by pe and repeats. When N reaches 1 it stops and returns. If it runs out
of primes, it adds the final remainder of N as a simple equality constraint. This approach was

22

taken as it enables control over the number of modulo constraints added to the paths, simply by
changing the number of generated primes. This enables controlling the strain on the solver.

2.2.3 Testing infrastructure

The main driver behind the design choices for this implementation of testing infrastructure is the
ability to aid and benefit from manual experimentation. To understand this, let’s take a look at the
process of setting up a new symbolic execution engine. Obviously the very first step after building
the symbolic executor is getting it to execute a small program symbolically, for example the one
shown in Listing 2.2. If the two different messages are printed, we’ve successfully managed to get
the symbolic executor running. In essence the same sequence of bash command should compile and
run symbolically any Csmith program as well. This sequence of command is then put in a script
and called a compileAndRun script. It proved useful to have this script used for both automated
and manual experimentations, as it avoided the need to reinvent compiling and running a program
in a separate automated framework. The compileAndRun script is a elementary operation that is
combined with symbolizing library (§2.2.1) to orchestrate an experiment. These experiments can
then further be combined to run whole batches of experiments.

Listing 2.2: A simple program with two paths

int x ;
make_symbolic(&x) ;
i f (x < 0) p r i n t f (" sma l l e r ␣ than␣ zero ") ;
else p r i n t f (" g r e a t e r ␣ than␣ zero ") ;

An overview of the scripts, and how they combine together can be seen in Figure 2.2. Given a set
of generated programs as further described in Section 2.2.5 and the setup scripts, there is a script
that runs a whole set of experiments, described in Section 2.2.4. It uses a script that runs a single
experiment. For a single experiment a test case is compiled and ran natively and symbolically,
with appropriate instrumentation library, depending on the experiment setup.

Figure 2.2: The collection of the important scripts that make the testing infrastructure and how they
interact

Compile and Run scripts

A compileAndRun script can be seen as a pure function from a C source file of a program to
its output. In most use cases the program will be compiled for every time it is run, therefore
the benefit of compiling once and then running multiple times is non existent. In addition each
symbolic executors wants their program to be compiled differently. KLEE requires LLVM bitcode,

23

Crest has its own compiler and FuzzBALL works on native bytecode. compileAndRun scripts
provide an excellent generalization over the actually symbolic executor used. They hide away most
of the complexity of compilation for a symbolic executor and running a program with it. There
was no case for the whole extent of this work where a need for separating compiling and running
has presented itself.

Listing 2.3: A sketch of a compile and run script

#!/ bin / bash
compi le −c −o tmp1 . o $1 &&\
l i n k −o tmp2 . o tmp1 . o $PATH_TO_SYMBOLIZING/ l i b r a r y . o &&\
symbolic−executor tmp2 . o
rm tmp1 . o tmp2 . o

Listing 2.3 shows a sketch of how a compileAndRun script would be structured. The temporary
files would be obtained with the mktemp utility. It is essential that this script has no visible side
effects so that it can be ran alongside other compileAndRun scripts. In addition it shouldn’t pollute
the folder it runs in, so that no manual cleanup is needed. Note that the similar kind of script can
be used for native execution by replacing line 4 with ./tmp2.

Single experiment script

With the compileAndRun abstraction in hand it is easy to define a general single experiment
we would perform for the majority of this report. It consists of two compileAndRuns and a
transformation between them. The basic outline of the script is shown in Listing 2.4. For Chapter 2
we don’t use the transformation, so we set it to an identity transformation. In other words, we set
the TRANSFORM variable to cp command. It will become apparent later in Chapter 3 why the
transformation is useful, but it is presented now, because the same script can be used there.

Listing 2.4: A sketch of general single experiment script

#!/ bin / bash
$COMPILE_AND_RUN_1 $1 > first_run_output &&\
$TRANSFORM $1 temp0 &&\
$COMPILE_AND_RUN_2 temp0 > second_run_output &&\
d i f f f i rst_run_output second_run_output
pretty_print_the_result
clean_up

To perform the experiment described in §2.1 the COMPILE_AND_RUN_1 variable is set to point
to a native compile and run script. The second compile and run script is then set to one of the
compile and run scripts for the symbolic executor chosen in the experiment configuration.

Similarly to compile and run scripts, this script should also be side effect free and produce no
garbage files after termination for the same reasons as before. It should be able to run with other
instances of itself in parallel as well as keep the working directory clean. The temp files are therefore
also obtained with mktemp utility and removed before the script terminates.

2.2.4 Oracles

There are no explicit oracle scripts as they are implemented implicitly by a combination of the in-
strumentation library, compileAndRun scripts and the single experiment script. ThecompileAndRun
scripts should produce output that enables the oracles to identify mismatches. The diff utility
in the single experiment script then performs the actual comparison. As shown in Listing 2.4, it
takes the output of both runs and compares them. If no difference is found and the compileAn-
dRun scripts follow their obligation, we can conclude that oracles have not found a mismatch. As
a consequence, and perhaps a downside, each compile and run script is uniquely tied to a set of
oracles and should only be used with other compile and run scripts that are tied to the same list
of oracles.

24

To illustrate this, let’s take the output and function call oracle. A compile and run script im-
plementing only the output oracle should just pass the stdout of the program through, without
adding anything else. Comparing the output of two compile and run scripts implementing only
the output oracle with the diff utility will therefore report mismatches in the output of the two
programs if any.

A compile and run script implementing only the function call oracle should discard the stdout of
the program under test. Instead it should dump the function call chain to its stdout. In this case
diff-ing the outputs of two compile and run scripts of this sort will report mismatches of function
call chains. It is now obvious why compile and run scripts can only be run with compile and run
scripts implementing the same list of oracles. Comparing function call chain with the output of a
program is non-nonsensical.

It is also possible to have multiple oracles in the same compile and run script by concatenating
the output. For example, having a compile and run script implementing both output and function
call oracle is just the combination of the two above. First it should pipe the stdout of the program
through and then output the function call chain to stdout. The order is obviously important.

Coverage oracle is of the same nature as the function call oracle and can be seen as a more
precise version of it. However, an interesting challenge was encountered while implementing this
oracle for KLEE. The performance overhead was extremely high even when gathering coverage
information on a single execution path. The problem was that the coverage instrumentation would
generate select instructions to index into an internal buffer used to track coverage, which would
make the symbolic buffer symbolic, leading in turn to expensive constraint solving queries.

In particular, the coverage instrumentation framework used, GCov, uses an internal buffer to count
the number of times an edge in the control flow graph (CFG) was followed. GCov instruments
each edge in the CFG with code that updates this buffer depending on which edge was taken.
Conceptually, the code looks like this, where a and a+1 are constants used to name two edges:

Listing 2.5: A conceptual snippet of a portion of gcov instrumentation

edge_taken = cond i t i on ? a : a+1;
gcov_interna l_buf fe r [edge_taken]++;

The first statement generates a select expression of the form select(condition, a, a + 1). If
the condition expression is symbolic, this symbolic select expression is used to index into the
internal buffer. Once a buffer is indexed by a symbolic expression, symbolic execution must treat
the buffer as symbolic, sending all its values to the constraint solver [7]. Since the internal coverage
buffer is very large (it has one entry for each edge in the CFG), the resulting constraints become
prohibitive to solve.

Once we diagnosed the issue, the solution was simple: the GCov instrumentation was modified
to generate explicit branches instead of select instructions. This made a huge impact on per-
formance, making this oracle usable. More generally, this is an issue that one has to be aware of
during symbolic execution when instrumenting programs with coverage information.

Performance oracle The approach to the performance oracle is slightly different than the other
oracles. In general it is hard to judge when performance oracle should report a mismatch so it is
not included in on the fly reporting. Instead the run time information is stored for later statistical
processing, where potentially interesting programs are found.

There is a problem however in passing the run time information around using the described ar-
chitecture insofar. The run time information is available to the compile and run scripts which
are able to measure it. However it only becomes useful when compared with another compile and
run script in an experiment. Bash doesn’t really provide a facility for passing information around.
Therefore compile and run scripts must break their purity principle a bit by writing the runtime
information in a file unique to the run. For example based on the input name, such as $1.info.
These files can then be collected by the experiment script to report run time information. Other
messages could potentially also be passed around the infrastructure using this method.

25

Running a batch of experiments

With the ability to run an experiment with a single program it becomes easy to run batches of
experiments using standard linux utilities such as GNU parallel [43] or xargs. I have opted for
GNU parallel over xargs for its better parallelization abilities which came in handy later. However
xargs could be used as a drop in replacement.

As alluded to before, experiments within this testing infrastructure aim to be fully described by the
values of certain environment variables: COMPILE_AND_RUN_{1,2} and TRANSFORMER,
to name a couple. The values of these variable for a certain experiment can be put into a file and
sourced before the experiment thus choosing what kind of experiments we want to run. Given
that there is a folder with a set of programs suitable for this infrastructure, running a batch of
experiments is just a map operation of a single experiment script over the files. Listing 2.6 shows
an example of how the map operation can be implemented in bash. It first sources the experiment
setup and then performs the map operation over the programs in the current directory, which are
assumed to be compatible with the infrastructure. How these programs are obtained is described
in Section 2.2.5.

Listing 2.6: Running a batch of experiments sketch

source path/ to / experiment / setup / f i l e
l s | p a r a l l e l −L1 . / genera lS ing l eExper iment . sh

In addition to what is shown in Listing 2.6, the actual script also performs some sorting beforehand
and records information about machine state. In other words, it records the current git commits
of this infrastructure, Csmith, KLEE, Crest, FuzzBALL to name a few. This is done in order to
help keep a better record of the experiments run and their configuration to be able to answer any
potential queries that arise in the future.

2.2.5 Generating programs

The idea behind generating programs is similar to the one for running the experiments described
before. Generation of a single program is automated and then GNU parallel is used to generate
a batch of programs. A naming convention for generated programs was adopted. They would
be numbered with each one having the name of the form: test{sequence number}.c. Listing 2.7
shows a example of how 100 programs would be generated with a script that generates a single
program.

Listing 2.7: Generating multiple programs

seq 1 100 | p a r a l l e l −L1 . / generateProgram . sh

As described before in Section 2.1.1 Csmith was used to actually generate the programs, however
Csmith generated programs are not guaranteed to terminate. Fortunately, it is easy to determine
whether a program terminates by simply running it. Having to deal with programs timeouts due
to Csmith introduces unnecessary noise in the experiments. Therefore it was decided that non-
terminating programs should not be generated within this infrastructure. This was achieved by
re-generating the program until it terminated within a small timeout. The timeout was chosen at
2 seconds, which should be plenty of time for natively executing Csmith programs, which are quite
small by nature.

Finally the Csmith generated terminating program is also instrumented to produce the final re-
sult. The instrumentation providing hooks for symbolizing some global variables and function call
logging is described in more detail in Section 2.2.1. There are several reasons for inserting the
instrumentation at this point. First, the behavior can remain unchanged if the hooks are linked
with noop functions, therefore nothing is lost by inserting the instrumentation here. Second, the
instrumentation is used by most of experiments so it is convenient to insert it at this point. It can
also be a time consuming operation so it was deemed best to pay the price once, upfront. Finally
these scripts should also adhere to the side-effect, garbage free policy so that they can be ran in
parallel with each other.

26

2.2.6 Reducing programs

The testing infrastructure can also aid in designing an oracle for C-reduce. We can provide a
template implementation of the oracle revolving around the single experiment script that should
require minimal programmer intervention to be able to be adapted for a given bug.

The general outline is to compile the program under strict error policies to weed out as much
of possible undefined behavior introduced by C-reduce. Then run it natively to ensure it still
terminates and pass it to the single experiment script to actually expose the bug. The output of
the single experiment script is captured. The user then only needs to capture the essence of the
bug in this output. That usually involves identifying a few snippets of text to be present in the
output and enforcing them with grep. Note that this script must run in the same environment
as the one where the mismatch is reported, so the single experiment is performed in the same
configuration as before.

2.3 Case Studies

This Sectionpresents an account of applying the testing approach to find bugs in the KLEE, Crest
and FuzzBALL symbolic execution engines.

2.3.1 KLEE

KLEE was chosen as the main case study, as it is a popular and well maintained symbolic execution
engine. It is also developed in-house so the access to feedback to our report, was quick and easy.
This enabled many iterations of the testing approach and thus was most successful.

The experimental setup is described first (§2.3.1) followed by the description of the methodology
used (§2.3.1). Then an overview of the experiment runs (§2.3.1) is given as well as a summary of
the bugs found, with a discussion of a few representative bugs (§2.3.1). Finally the experience of
applying the approach to a real application (§2.3.1) is discussed.

Experimental Setup

KLEE commit 637e884bb was used to start the experiments and then patched as needed to get
around some bugs. KLEE was built using LLVM version 3.4.2 and STP commit a74241d5. Initially,
version 1.6 of STP was used in a small number of our experiments. Programs were generated with
Csmith version 2.3.0 and reduced C-reduce commit 49782e718. The experiments were run on an
8-core 3.5GHz Intel Xeon E3-1280 machine with 16GB of memory. Clang-3.4 was used to compile
the Csmith programs and whole-program-llvm1 to compile grep.

To automate most of the experiments, the infrastructure described in Section 2.2 was used. This
gave the ability to consistently repeat a certain configuration of the whole system while also giving
great flexibility should configuration need to change.

Methodology

The experiments were conducted in batches, with essentially one batch for each bug found. In each
batch, the following steps were performed:

1. Configure the experiment (what kind of programs to generate, mode to use options to pass
to KLEE). Initially the default configuration of Csmith and KLEE were used.

2. Run the experiment (typically overnight).

3. Reduce the first program exposing a bug, and sometimes further manually simplify it slightly
to make it more readable.

1https://github.com/travitch/whole-program-llvm

27

Table 2.2: Summary of runs in different modes.

Mode # runs Avg input size (LOC) Avg time per run (s)
Native KLEE

A 520,930 1,622 0.0500 0.808
B < ,> 42,162 1,642 0.0581 1.69
B ≤ , ≥ 42,162 1642 0.0581 1.69
B range 42,162 1,642 0.0581 1.68
B divisors 42,162 1,642 0.0581 2.56
B < , > & coverage 1,992 1,637 0.0726 91.8
C 6,625 1,640 15.821 22.21
1 Combined runtime of all replayed test cases.

4. Report the bug, attaching the reduced program.

5. Find a way to avoid the bug and reconfigure the experiment accordingly.

The reason for the last step is that certain bugs would reappear over and over again, making it
difficult to identify new bugs. Therefore an iterative approach was adopted in which once a bug
was identified, we worked on either fixing it (or incorporating the developers’ fix if available in a
timely manner), or more often reconfiguring our experiment to avoid it. In the latter case, some C
features would be disabled in Csmith so that the bug would not be triggered (for example, once a
bug involving incorrect passing of structures by value was found, passing structures as arguments
was disabled) or changed the KLEE options so that the affected code would not run (for example,
by disabling the counterexample cache [5] which was involved in one of the bugs).

At the end of our experiments the following options were used: no-arg-structs, no-return-structs,
no-arg-unions, no-divs and no-const in Csmith, and check-overshift=false and use-cex-cache=false
in KLEE. For mode C the no-checksum option was used in Csmith to disable the expensive check-
sum computation, since the output oracle was not used.

Optimization levels -O0 or -O1 were used to compile the generated programs, each with equal
probability. Higher optimization levels were also attempted, however every Csmith-generated
program compiled with optimization level -O2 or higher exposes the vector instruction unhandled
bug in KLEE (§2.3.1), and therefore the higher optimization levels were used only for a small
number of runs. The timeout for KLEE in modes B and C was set at 100s, as we accounted for
constraint solving. In mode C, we also set the maximum number of forks (i.e. paths to be explored)
to 200.

Summary of Runs

In total almost 700,000 programs were generated and tested. A summary of all the runs can be
found in Table 2.2. They are divided by the different modes they used. Most runs, around 520,000,
were performed in mode A, which as expected have the shortest average running time. In mode
B around 168,000 runs were conducted, which on average took twice as long as those in mode A.
Finally, 6,625 runs were performed in mode C, which were around 44 times more expensive than
those in mode A. Note that the average runtime for native runs in mode C includes replaying all
generated test cases. Overall, around 124 hours was spent in mode A, around 140 hours in mode
B, and around 70 hours in mode C. The technique found the bugs within the first 5000 runs of
each batch. This means that the batches could have been configured to run for only 2.5h, but it
was convenient to do longer overnight runs.

For mode B, Table 2.2 also shows the number of runs performed with each way of constraining
inputs to a single value. The runs involving inequalities and ranges took a similar amount of
time, while those involving divisors took longer, as they involved more difficult constraints. The
expensive coverage oracle was excluded in all runs, except 1,992 mode B runs with <, > constraints,
which took around 92 seconds per run on average. Using the coverage oracle was observed to
involve about 10 times more instructions (as the instrumentation also uses code from libc), and a

28

Table 2.3: Summary of bugs found in KLEE, including the mode used, the oracle(s) that detected
them, and the size of the reduced program used in the bug report. Issues in bold have been fixed.
We omit links to the bug reports in this version of the paper, to preserve double-blind reviewing.

Bug description Mode Oracle
Reduced

size
(LOC)

Some unions not retaining values A output 11
Incorrect by value structure passing A output 18
Overshift error triggered by -01 optimisations1 A output 5
Vector instructions unhandled, caused by -O2
optimisations A output 6

Floating point exception A crash 14

Incorrect handling of division by 1 B
function
calls &
output

17

Execution forks unexpectedly B function
calls 14

Segmentation fault due to % operator B crash 12
Incorrect casting from signed to unsigned
short3 B output 27

Abnormal termination in STP solver B, C crash 10
Assertion failure in STP solver 1.62 B, C crash –2

Replaying read-only variables not handled C crash 8
Unexpected interaction between file system model and
replay library C function

calls 9

Divergence b/w test generating path and test
replay path3 C function

calls 21
1 Remains unclear whether this is a KLEE or compiler optimization bug.
2 Not explored further as the bug seems to have been fixed in the newest release of STP.
3 Fixed prior to reporting as the side effect of what looks to be an unrelated patch.

significant number of extra I/O operations, all of which contribute to the significantly higher cost
per run.

Finally, note that individual runs in modes B and C varied considerably, depending on the con-
straint solving queries generated in each run. For instance, mode B runs ranged between 0.01s to
99.6s (remember our mode B timeout was 100s). The reason some runs were very quick was that
only a small part of the code was executed at runtime.

To reduce bug-inducing programs, C-reduce usually took a few hours. The most expensive reducing
job was for the performance anomalies, where the reducing process took more than 24 hours.
However, C-reduce only need to be run a few times, once for each bug found.

Bugs found

Table 2.3 summarizes the 14 bugs found using the approach. All bugs were reported to the
developers, except one which had already been reported and another three which had already been
fixed before we managed to report them. At the time of writing, the bugs in bold had already
been fixed.

As can be seen from Table 2.3, a variety of bugs have been found, involving the handling of
structures, division, modulo, casting, vector instructions and more, as well as issues having to do
with constraint solving and replaying test cases. These bugs were revealed by different modes and
oracles. 5 bugs were found in Mode A, 6 bugs in mode B and 5 bugs in mode C, with 2 bugs found
in both modes B and C. In terms of oracles, the crash oracle found 5 bugs, the output oracle 6 and
the function call chain oracle 4, with 1 bug found by both the output and the function call chain
oracles.

29

Listing 2.8: Reduced program exposing a bug where union fields are not updated correctly. The native
run correctly prints f3 534, while the KLEE run prints f3 22.

1 union U0 {
2 s i gned f 3 : 1 8 ;
3 } ;
4
5 s t a t i c un ion U0 g_988 = { 0UL } ;
6
7 i n t main (i n t argc , char ∗ a rgv []) {
8 g_988 . f 3 = 534 ;
9 p r i n t f (" f 3 ␣%d␣\n" , g_988 . f 3) ;

10 r e t u r n 0 ;
11 }

Listing 2.9: Bug in which execution forks unexpectedly. Should be printed once gets printed twice in
KLEE.

1 s t a t i c i n t g_10 = 0x923607A9L ;
2
3 i n t main (i n t argc , char ∗ a rgv []) {
4 klee_make_symbol ic(&g_10 , s i z e o f (g_10) , "g_10") ;
5 i f (g_10 < (i n t) 0x923607A9L)
6 k l e e_ s i l e n t_ e x i t (0) ;
7 i f (g_10 > (i n t) 0x923607A9L)
8 k l e e_ s i l e n t_ e x i t (0) ;
9

10 i n t b = 2 ;
11 i n t i = g_10 % (1 % g_10) ;
12 i | | b ;
13 p r i n t f (" Should ␣be␣ p r i n t e d ␣ once \n") ;
14 }

As mentioned before, the size of the Csmith programs we generated is on average 1600 lines of
code. The last column of Table 2.3 shows the size of the reduced programs. In all cases, C-reduce
managed to reduce the bugs substantially, to fewer than 30 lines of code, with most bugs at 14
lines of code or fewer.

Below, some examples of the bugs found by the approach are given, including the reduced programs
that were reported to developers.

Bug: Some unions not retaining values. Listing 2.8 shows an example of a bug found in
Mode A. The program initializes a union containing a signed field of non standard length, and
then writes 534 to that field and prints it. Running the program natively correctly prints out 534,
while running it with KLEE prints out 22 (which represents the lower 9 bits of 534).

The root cause of this bug is an optimization in KLEE which uses faster functions for memory
writes of size 1, 8, 16, 32 or 64 bits. The code contained a check which enabled the optimization
only if the write in question was less than or equal to 64 bits. If this was not the case, the slower
general approach was used.

Of course, this check was incomplete, which caused the program in Listing 2.8 (for which LLVM
3.4 generates a memory access of size 24) to incorrectly run the optimization path, and thus behave
incorrectly. Interestingly this bug was only introduced when KLEE moved to LLVM version 3.4
as it is not present in LLVM version 2.9. The bug has now been fixed.

Bug: Execution forks unexpectedly. Listing 2.9 shows a bug found in mode B. It is an
interesting bug, as it causes KLEE to fork on line 12 and explore two paths for no obvious reason.
Unfortunately, it has not been debugged yet, so the root cause is still unknown. (Note that the
text Should be printed once is added manually by us to the reduced program for clarity).

30

Listing 2.10: Program exposing division by 1 bug in KLEE.
1 #in c l u d e <s t d i n t . h>
2 s t a t i c i n t32_t g_976 ;
3 i n t32_t func_46 () {
4 p r i n t f (" f u n c t i o n ␣ c a l l \n") ;
5 r e t u r n 0 ;
6 }
7
8 vo id main () {
9 klee_make_symbol ic(&g_976 , s i z e o f g_976) ;

10 i n t32_t ∗ l_1985 = &g_976 ;
11 l b l_2550 :
12 func_46 () ;
13 ∗ l_1985 &= 2 ;
14 i f ((3 ^ ∗ l_1985) / 1)
15 goto l b l_2550 ;
16 }

Listing 2.11: Segmentation fault bug in KLEE due to incorrect handling of some modulo expressions.
1 i n t a , b ;
2 sa fe_lsh i f t_func_int16_t_s_u (s ho r t p1 , p2) {
3 p1 < 0 | | p1 ? p1 : p2 ;
4 }
5
6 main () {
7 klee_make_symbol ic(&a , s i z e o f a) ;
8 i f (a > (i n t) 2453014441)
9 k l e e_ s i l e n t_ e x i t () ;

10 i n t i = a % (1 % a) ;
11 sa fe_lsh i f t_func_int16_t_s_u (i , i | | b) ;
12 }

The native version of the program omits lines 4–8, thus executing the program with g_10 =
0x923607A9L.2 The extra instrumentation run by KLEE marks the global variable g_10 as sym-
bolic and constrains it to have the unique value 0x923607A9L, using less than and greater than
constraints, as discussed in Section 2.1.2.

This bug is caught by the function call chain oracle, which shows additional function calls in
the KLEE execution, which are caused by KLEE incorrectly exploring an additional infeasible
path.

Bug: Incorrect handling of division by 1. When executed natively, the code in Listing 2.10
loops indefinitely. The if statement at line 14 keeps evaluating to true and therefore the execution
jumps back to line 11. In KLEE, the if statement evaluates to false, so KLEE terminates after a
single iteration. This bug was caught by both the output and function call chain oracles. The bug
was found in mode B, but the reported program does not constrain the symbolic variable to have
a single value, as we realized this is not needed to expose the bug (so the automatically reduced
program was several lines longer). It should also be noted that prior to running C-reduce, the
Csmith program exposed the bug without containing an infinite loop.

This bug was initially avoided bug by disabling division expression generation in Csmith, but the
bug was later debugged and fixed by the developers. The problem was that division by a constant
is optimized prior to invoking the solver using multiplication and shift operations. However, the
optimization is incorrect for constants 1 and -1. The fix was to disable this optimization for these
special cases.

2In practice, the native program is linked against a library that defines the klee_* functions to do nothing. This
has the advantage of ensuring that exactly the same code is run both in native mode and with KLEE.

31

Figure 2.3: Distribution of the slowdown introduced by KLEE for the runs in mode A. Note that the
y axis is logarithmic. There are 28 values larger than 8000 (with the highest one being 14,991) which
are not shown for readability purposes.

Bug: Segmentation fault due to % operator. The code in Listing 2.11 causes a segmentation
fault in KLEE. The bug was found in mode B and diagnosed by the developers to be caused by an
incorrect semantics assigned to the % operator when negative numbers were used as divisors. The
second part of the code that constrained variable a to have a single value was manually removed
prior to reporting the bug, as it was not needed to expose this bug.

Performance analysis

For each random program generated and run, its native runtime and the time KLEE took to
execute it were recorded. The ratio between the two runs (i.e. the slowdown added by KLEE) was
then computed thus flagging any potential anomalies. The focus was on the runs performed in
mode A, although in the future mode B runs could also be analyzed to identify difficult constraint
solving queries.

Figure 2.3 shows the distribution of the slowdowns observed in mode A runs. The mean of the
distribution is 120 with a standard deviation of 228. There are 28 values larger than 8000 (with
the highest one being 14,991) which are not shown for readability purposes.

We believe such outliers could be considered performance bugs, or at least examples of features
for which symbolic execution tools have a good reason to introduce a disproportionately high
slowdown. Two such cases were reported to the KLEE developers, one which performs a large
number of function calls, and the other in which a large number of memory objects are allocated
on the stack.

The former program is shown in Listing 2.12. The program increases the value of g_647 in
increments of 7 until it’s equal to 37. Note that for the condition to be satisfied g_647 needs to
overflow multiple times, meaning that the program has to run a total of 56,179 iterations. In this
example, the addition is done using a function call which is performed at every iteration and is the
likely cause of the performance anomaly.

32

Listing 2.12: Performance anomaly due to large number of function calls.
1 uns igned sho r t safe_add (i n t ui1 , i n t u i 2) {
2 r e t u r n u i 1 + u i 2 ;
3 }
4
5 s t a t i c i n t g_647 = 0 ;
6 i n t main () {
7 f o r (; (g_647 != 37) ;
8 g_647 = safe_add (g_647 , 7)) {}
9 }

Table 2.4: Function call divergence in grep.

KLEE Native
epsclosure epsclosure
state_index state_index
dfamusts dfamusts
kwsinit kwsinit
kwsincr kwsincr
dfamusts dfamusts
kwsprep kwsprep
grepfile grepfile
fillbuf fillbuf
fillbuf fillbuf
grepbuf

EGexecute
kwsexec

close_stdout close_stdout
close_stream close_stream

Grep case study

Applying the techniques presented in this chapter to real programs was also considered. For this
purpose, a popular UNIX utility grep was used, which finds lines of text matching a certain string
pattern.

We found several mismatches in mode C, which were caught by the function call chain oracle. An
example of the difference between the function call chain executed on one path explored by KLEE
and the corresponding native run can be seen in Table 2.4. This bug has not been reported yet,
as it was found difficult to reduce (C-reduce works on a single C file) and debug (given the much
larger size of grep). Overall, this experience has reinforced initial preference for using generated
programs, which present the advantages discussed in §2.1.1. However, with more engineering work,
the approach could be applicable to real programs too.

2.3.2 CREST and FUZZBALL

To show the generality of the technique, it has also been applied to two other symbolic execution
engines. Crest [16] and FuzzBALL [32] were chosen, because they are different from KLEE in
important ways: Crest is a concolic execution tool [22, 42], a variant of symbolic execution which
differs significantly at the implementation level from the one used by KLEE, while FuzzBALL is
a symbolic execution for binary code, which again results in significant differences in the way the
tool is implemented.

At the implementation level, to apply the testing infrastructure to a new tool, one obviously
has to be aware of the way the code is compiled and run with each new symbolic executor. As
further described in §2.2.3 one needs to know the API the tool uses to mark inputs as symbolic. As
described before the interface for creating and constraining variables is symbolic executor agnostic,
which enables the use of multiple symbolic execution engines by simply changing the library linked
appropriately.

33

Table 2.5: Summary of bugs found in Crest, including the mode used, the
oracle(s) that detected them, and the size of the reduced program used in
the bug report. Issues in bold have been fixed.
Bug description Mode Oracle Reduced size (LOC)

Crest
Return struct errror A crash 8
Big integer in expression B output 9
Exploring a branch twice B output 9
Non 32-bit wide bitfields B output 9

FuzzBALL
STP div by zero failure1 B crash 15
Strange term failure B crash 11
Wrong behaviour B output 12
1 Fixed in the upstream version of STP.

Listing 2.13: Crest explores two branches in both of which a is smaller than 2 billion.
1 uns igned i n t a ;
2 i n t main () {
3 __CrestUInt(&a) ;
4 p r i n t f ("a : ␣%d\n" , a) ;
5 i f (a < 2294967295) {
6 e x i t (0) ;
7 }
8 }

Crest

Crest implements the concolic form of symbolic execution [22, 42], in which the code is executed on
concrete values and constraints are gathered on the side. To generate a new path, one constraint is
negated, a new concrete input is generated and the process is repeated. Therefore, one important
difference with KLEE is that paths are explored one at a time. A second important difference (but
orthogonal to the first) is that Crest instruments programs for symbolic execution (using CIL) as
opposed to interpreting them like KLEE.

There were several practical difficulties faced when applying this approach to Crest. First, Crest
is less feature-complete than KLEE. For example, it does not support symbolic 64-bit integers and
its solver does not support some arithmetic operations such as modulo. However, a workaround
was devised to avoid this issues. We simply ignored the 64-bit integers in the symbolizing library
and passed no-modulo flag to Csmith, to alleviate these issues.

Second and more importantly, Crest is not an actively developed project, and the tool does not seem
to expose many options to enable or disable various sub-components, like KLEE does. Therefore
it was difficult to find ways around the bugs we discovered, in order to find new bugs.

In spite of these difficulties, the approach found four bugs in Crest within 1000 runs or about 2

Listing 2.14: Crest explores the branch where a = 1 twice and then fails with Prediction failed! message.
1 uns igned i n t a , b ;
2 i n t main () {
3 __CrestUInt(&a) ;
4 i f (a < 1 | | a > 1) {
5 e x i t (0) ;
6 }
7 (−1 > a) | | b ;
8 p r i n t f ("a : ␣%d\n" , a) ;
9 }

34

Listing 2.15: FuzzBALL crashes prematurely with Strange term cast(cast(t2:reg32t)L:reg8t)U:reg32t ^
0xbc84814c:reg32t in address failure.

1 uns igned i n t g_54 = 0 ;
2 uns igned i n t g_56 = 3162800460;
3 //marked s ymbo l i c a t runt ime
4 uns igned i n t magic_symbols [1] = {0} ;
5
6 vo id main (vo id) {
7 g_54 = ∗magic_symbols ;
8 i f (g_54 < 0 | | g_54 > 0) e x i t (0) ;
9 g_56 ^= 0 < g_54 ;

10 p r i n t f ("g_56 : ␣%u\n" , ∗(&g_56)) ;
11 }

Listing 2.16: FuzzBALL symbolic run prints out 1, whereas native run with g_893 = 124 prints 0.
1 uns igned i n t g_893 = 124 ;
2 i n t safe_sub (l ong long p1 , i n t p2) {
3 r e t u r n (p1 ^ ~9223372036854775807LL) − p2 < 0 ? 0 : p2 ;
4 }
5 s t a t i c uns igned i n t magic_symbols [1] = {0} ;
6
7 i n t main () {
8 g_893 = ∗magic_symbols ;
9 i f (g_893 > 124) e x i t (0) ;

10 i f (g_893 < 124) e x i t (0) ;
11 p r i n t f ("%u\n" , safe_sub (1UL ^ g_893 , 1)) ;
12 }

hours worth of computation time. The bugs were then reported to developers. A summary of the
bugs found and reported is shown in Table 2.5.

The first bug is exposed by a program with functions that return structs or unions. Here the Crest
compiler throws an error when given such programs as input. Interestingly, KLEE had similar
problem with struts and function calls.

The other three bugs are exposed in mode B. For instance, the code in Listing 2.14 triggers a
problem similar to the one triggered by the code in Listing 2.9 in KLEE. Here Crest explores the
else side of the branch at line 4 twice, failing the second time with a “Prediction failed” error. This
bug was not debugged, but it disappeared, once the fix for handling big unsigned integers was
merged in.

Listing 2.13 shows a bug that looks like a trivial example, but it was still not behaving correctly in
Crest. The bug was debugged by the developers to be the interaction between Crest and its solver.
The values were passed to the solver as a C int type, which meant that unsigned integers bigger
than 2 billion, as in the example, would overflow and become negative. This obviously caused
the error. The developers proposed a fix in which the interaction with the solver would be done
through other integer representations such as GMP3 integer or a string. I implemented this fix
which was later merged in.

FuzzBALL

FuzzBALL is similar to KLEE in that it implements the non-concolic style of symbolic execution,
where execution starts with unconstrained symbolic variables. On the other hand, like Crest,
FuzzBALL executes paths one at a time, keeping only a lightweight execution tree in memory.
Finally, like KLEE, FuzzBALL interprets the code rather than instrument it for symbolic execution,

3https://gmplib.org

35

but does this at the binary rather than LLVM bitcode level. These design decisions make FuzzBALL
an interesting complement to KLEE and Crest for the technique.

The only major engineering challenge that needed to be addressed to use the technique on FuzzBALL
was related to the fact that unlike KLEE and Crest, FuzzBALL does not provide an API for mark-
ing variables as symbolic. Instead, one has to specify on the command line the address range(s) that
the tool should mark as symbolic (e.g. 16 bytes starting with 0xdeadbeef). Therefore, the library
created for FuzzBALL defines a large static array which is marked as symbolic from the command
line. At runtime, when a variable is supposed to be marked as symbolic, unused bytes from the
static array are obtained and copied to the variable to emulate the behaviour of make_symbolic
functions that higher level symbolic execution engines like Crest and KLEE provide.

Within 2000 runs or about a day worth of computation time the approach has found three bugs in
FuzzBALL, all of which have been fixed. A summary of the bugs found is shown in Table 2.5. Like
KLEE, FuzzBALL uses STP as its main constraint solver, and the technique managed to trigger
the same STP bug while testing FuzzBALL. The other two bugs caused FuzzBALL either to crash
or to compute the wrong results. The program triggering the latter is shown in Listings 2.16. The
problem was debugged down to an incorrect simplification rule, which worked for small integers,
but caused this problem when there was a signed overflow. The developers fixed this by removing
the rule.

The bug caused by Listing 2.15 proved to be a lot harder to debug. As per developer response4
it seems that the problem stems from the fact that FuzzBALL is unable to distinguish between
pointers and integers well, due to the nature of machine code at which it operates. However it
still finds this distinction useful for various reasons, therefore it employs some heuristics to classify
words either into integers or pointers. This heuristics fails for this particular example, interestingly
enough somewhere in the printf part of code. The fix was adding some more simplification rules
and implement another option for FuzzBALL that helps better control the execution thus avoiding
this issue.

Performance

Figure 2.4: Distribution of the slowdown introduced by FuzzBALL. Note that the y-axis is logarithmic

As another intriguing experiment the distribution of the slowdown incurred by FuzzBALL was also
plotted in similar fashion than KLEE in Section 2.3.1. Note that this analysis is not interesting for
Crest as Crest executes the code natively. The most interesting feature of this distribution is the
hump, indicating a bi-modal distribution, a phenomenon not observed in KLEE’s case. The mean

4https://github.com/bitblaze-fuzzball/fuzzball/issues/20

36

slowdown for FuzzBALL is 7000x with standard deviation of 5000x. The slowdown is significantly
worse than in KLEE’s case, which can be attributed to FuzzBALL executing more instructions
symbolically. It symbolically interprets libc as well as the system calls, something KLEE does
not do. In addition it starts the symbolic interpretation before main. For example, it interprets
the dynamic linker, which accounts to a slow startup time. There are options to disable symbolic
interpretation of code before start of main, but the experiments were run without them.

There were only 17 runs with slowdown larger than 30000x, with the highest one at 39700x slow-
down. This could suggest that FuzzBALL has less large outliers than KLEE, however it is rea-
sonable to assume that the tail end of the distribution was cut of by timeouts. In either case it
would appear the performance oracle is less suited for flagging performance issues in FuzzBALL
than KLEE, either because FuzzBALL has more consistent runtime slowdown or because it is too
slow to catch programs with outlining slowdowns due to timeouts.

37

Chapter 3

Metamorphic Testing of Symbolic
Executors

This chapter builds on the infrastructure presented in Chapter 2 and extends it to perform meta-
morphic testing. It borrows the idea of metamorphic testing (§1.2.5) and applies it to symbolic
execution engines in a similar fashion Chapter 2 applied differential testing to symbolic execution.
The infrastructure largely remains the same, as many of the concepts translate well between the
two approaches. However metamorphic testing presents additional challenges and opportunities
for testing symbolic execution.

More precisely, metamorphic testing enables easy comparison of symbolic execution with ... sym-
bolic execution. Previously the testing technique was mostly focused on constraining the execution
to a single path, however metamorphic testing gives the ability to explore the difference of execution
over multiple paths. Therefore, this chapter focuses heavily on testing multi path execution (mode
C in the terminology of Chapter 2), where metamorphic testing should provide the main benefit.
Firstly the generation of programs in which the symbolic execution can exhaustively explore all
the paths within a relatively short timeout is described in Section 3.1. This process turned out
to be computationally intensive, therefore only a relatively small opus of thousand programs was
generated on which the experiments were ran.

The main difficulty faced was the interaction of symbolic data with the outside world. In general,
to achieve multi-path symbolic execution some symbolic variables must take more than one value.
Therefore it becomes very likely that a certain symbolic variable will take more than one value
within a single execution path. For example consider a simple two path program, which branches
on a 32 bit int value. The range of possible values that integer could have on one of the branches
is at least two billion! This becomes a problem once the output oracle is used as the solver needs
to be consulted to get a concrete solution for that variable. Of course the solver is free to chose
any value within the constrains. The output oracle requires the solution to be unique. Otherwise
a spurious output mismatch could be detected for equivalent symbolic executions due to the solver
choosing different values for logically equivalent sets of constraints.

Three different approaches are presented to solve this problem. Firstly clever tricks are used to
force the solver to always give the highest possible value for the given set of constrains (§3.3.1).
Then a crosschecking approach is presented in Section 3.3.2, where the two version are ran within
a single execution. Then asserts are used to ensure the symbolic values are the same. In a
sense the variables are compared symbolically instead of concretely. Finally, in Section 3.3.3, the
output oracle is replaced by a more detailed control flow checking oracle to remove the issue of
concertizing symbolic variables altogether. These approaches are then evaluated on KLEE, Crest
and FuzzBALL accompanied with a detailed description of the bugs found in Section 3.4.

38

3.1 Generating multi-path programs

By picking a program generated by the infrastructure described in Section 2.2.5 at random, there
is a high likelihood of getting a program with a single path. To be more precise, it is a program
where symbolic data is not present on any branch point. Therefore a symbolic executor follows
just a single path. As said in the chapter introduction it would be desirable to have multi path
programs, where a symbolic executor can feasibly explore all the paths in the program.

Multi path programs present several advantages over single path programs when testing symbolic
execution. They leverage a larger portion of symbolic executor’s code, as they non trivially explore
multiple paths. Depending on the type of symbolic executor used, they can test the fidelity of
keeping multiple path prefixes in memory for tools like KLEE. Or rolling the state back to the
previous branch point for concolic tools like Crest. Additionally they can stress the path exploration
heuristics and algorithms as well as constraint caching, across multiple paths.

To generate multi-path programs, a simple but effective algorithm was devised. It builds upon the
previous program generation tooling, by simply regenerating programs until it finds one meeting
the requirements. Initially, the requirements were set so symbolic execution would terminate
within the timeout while exploring more than one path. Note that symbolic execution terminating
indicates that there is no possibility of further exploration as all the paths have been explored
already. KLEE was chosen as the symbolic executor for this task as we deem it the most reliable
of the ones used. The outline of the script for generating multi-path program is given in Listing
3.1:

Listing 3.1: Pseudo code for generating multiple paths programs, where symbolic execution terminates,
exploring all paths. generateProgram is the process described in Section 2.2.5

do {
p = generateProgram

} while (symbol ic execut ion t imes out | | number o f exp lored paths < 2)

At implementation level very little modifications were needed. There was no need to change the
instrumentation of the programs. A dedicated version of the symbolizing library was written for this
task. Instead of symbolizing and constraining the variables it just symbolized them. Additionally
it kept a count of how many variables it had symbolized already and would stop symbolizing them
after a certain threshold. In other words, after a threshold number of calls to the symbolizing
function, the function would just return, without symbolizing anything. Controlling how many
variables are symbolized was found important when exploring the relation between the amount of
symbolic data and the number of paths in Csmith programs. Initially the threshold was set to
2.

3.1.1 Csmith-generated programs path distribution

The algorithm above does successfully find Csmith programs with multiple paths. However, the
number of paths in a typical resulting program would be 2, which is not ideal for testing symbolic
execution. We theorized that increasing the number of symbolized variables and removing loops
could be two contributing factors to the number of explored paths. Symbolizing more variables
should make it more likely that more branches in the execution of the program depend on the
symbolized variable. Whereas removing loops should prevent path explosion and therefore make
it more likely that symbolic executor terminates.

We decided to perform a more thorough experiment to explore the effects of symbolizing more
variables and loops on the number of paths generated by the process. Several experiments with
different parameters were ran. A summary can be found in Figure 3.1. For each experiment,
a batch of 1000 programs were generated using the algorithm in Listing 3.1. Different numbers
of symbolic variables and different configurations of Csmith with respect to loops were used for
each experiment. The number of paths explored was then plotted against the number of programs
with that number of paths to obtain histograms. Programs with one path were ignored in this
experiment because preliminary experiments showed that they dominate and would therefore make

39

(a) Default (b) No loops

(c) No loops, no goto (d) 8 symbolic variables

(e) No loops/goto, 8 variables (f) No loops/goto, 100 variables

Figure 3.1: Number of completed paths distributions for various setups of generated Csmith programs.
Unless otherwise noted default Csmith settings are used, with 2 variables being symbolized. The x-axis
is limited to values between 2 and 70.

40

the result less clear. The batch sizes would need to be increased to get interesting results, which
was found undesirable, due to resource limitations.

To get a good grasp of the behavior of number of paths in Csmith program with respect to loops
and the amount of symbolic data, 6 experiments were run. A default Csmith configuration with
2 global variables symbolized showed in Figure 3.1a. Then Csmith probability of emitting loops
was set to 0, and experiment repeated resulting in Figure 3.1b. For Figure 3.1c Csmith was
also prevented from emitting goto-s, to further remove possibility of loops from the programs.
The Csmith configuration was then reset back to default, but the number of symbolized variables
increased from 2 to 8 resulting in Figure 3.1d. Csmith was then again prevented from emitting
loops and goto-s and experiments were ran with 8 and 100 symbolic variables, resulting in Figures
3.1e and 3.1f respectively.

By manually inspecting the distributions in Figure 3.1, we concluded that the distribution seems
to be exponential regardless of the experiment setup. This is not a particularly surprising result
as programs with smaller number of paths are more likely to terminate within the timeout and
are therefore more abundant. It can also be seen that removing loops seems to have little impact
on the distribution, whereas increasing the number of symbolized variables does produce more
favorable distributions, i.e. distributions where more programs produced have higher number of
paths explored.

On the other hand, some graphs look very similar and it is impossible to answer some questions.
For example is there a difference between keeping and removing loops? Or does increasing the
number of symbolized variables from 8 to 100 make a difference? To answer these question KS-test
was used. Its null hypothesis states that the two distributions under test are the same. Therefore
a low p-value means that the distributions are different. A more detailed and precise description
can be found in Section 1.4.

The KS-test p-value between the default and no loop distributions is 0.02. That means the null
hypothesis would be accepted on some confidence levels and rejected on others. In other words it’s
inconclusive whether removing loops does anything useful in this context. The difference between
the default and no loop, no goto configuration seems more significant with p-value of 0.003. There-
fore, it can be concluded that completely removing loops does make some difference. The KS-test
also confirms the difference between 2 and 8 symbolized variables in default Csmith configuration.
There seems to be absolutely no statistically significant improvement between symbolizing 8 and
100 variables, since the p-value is 0.40 between the two distributions. Note that most Csmith pro-
grams do not have 100 variables to be symbolized, so symbolizing 100 variables means symbolizing
all variables in most cases, which makes this result less surprising. Finally, the difference between
loops and no loops does seem to be more pronounced in 8 symbolic variables case as opposed to
two symbolic variables case with the KS-test giving a small p-value.

This information was used to decide how to configure the generation of the opus of tests that is
used in the rest of this chapter. It was concluded that having 8 global variables symbolized is
sufficient to generate programs with good amount of paths. It should also strain the symbolic
execution less than having all of them symbolized, which is important to run the experiments
as fast as possible. The loops were to be kept in as they don’t seem to impact the distribution
in a significant manner. Having Csmith as close as possible to the default is also desirable so
keeping the loops in the programs seemed best. Default Csmith configuration is closer to real
world programs and therefore more likely to find meaningful bugs. Finally it was decided that
programs with small number of paths are not interesting enough to generate and they should
have as many paths as possible. Unfortunately, due to exponential nature of the distribution,
increasing the minimal acceptable number of paths significantly increases the amount of time it
takes to generate a program. Therefore, the lowest number of acceptable paths was set at 30 for
the final configuration, which was deemed a good trade-off between feasibility of generation and
interestingness. That still increased the run time multiple times, which was solved by distributing
program generation over a cluster of machines.

41

3.1.2 Distributed program generation

The problem of program generation is well suited for distributed computation. There is no need
to distribute the inputs as the input is in essence a random seed and can be obtained locally. The
result is just a single program of a couple kilobytes. The computation itself involves a significant
amount of IO operations for generating programs, which importantly are not a part of the result
and can therefore be done locally. It also includes symbolic execution where constraint solving
pushes the CPU to its limits. This indicates that large gains can be made by distributing program
generation and some might even call the problem embarrassingly parallel. Due to the design of
the testing infrastructure it should be easy to make program generation distributed. The work
involved can be broadly split into two tasks: getting the programs to run in distributed fashion
and obtaining the machines to run it on.

The first problem of generating programs in distributed fashion has largely been solved by the
design of the testing infrastructure. The existing infrastructure already leverages GNU parallel [43]
heavily to execute multiple runs or generate programs in parallel. It is a map operator for the testing
infrastructure’s scripts, akin to Haskell’s map function. For example, the program generation script
can be seen as a function from a number to a program, where the number represents the name of
the generated program. To generate a whole batch of programs, the script just needs to be map-ed
over a list of numbers, which is exactly what GNU parallel (or xargs for that matter) does. Due to
careful design of the scripts, so that they are effectively side effect free and can run alongside each
other, GNU parallel’s innate ability to distribute jobs across CPU cores can be used. In addition,
it can also run the task across multiple machines by only flipping a switch, which is how distributed
program generation was achieved. This does come with its own set of little challenges described in
more detail further below.

The second problem of obtaining machines to generate the programs on was solved by Microsoft’s
kind sponsorship of the department by giving us Azure credits to use on our individual projects.
Conveniently, all of my development was also done in a virtual machine. So the idea was to upload
the VM to Azure, spawn many copies of it and generate program in a distributive manner.

Going to the cloud

The migration from a VirtualBox VM, which is what I’ve been using, to Azure cloud is easy once
you know all the tricks. It involves changing the format of the virtual disk and installing a couple
of Azure related utilities to the guest OS. The biggest issue here were relatively large file sizes,
which quickly consumed all the disk space on my machine and also caused the upload to take a
couple of days. Once the disk was uploaded in the correct format, I was able to boot up an exact
copy of my VM in the Azure cloud.

The migration turned out differently from what I imagined. What I thought I would get is a
virtual machine image from which I would be able to spawn VMs, but what I got was a virtual
disk image, which I could copy around and attach to VMs. The difference is subtle but important:
the disk image retains everything. The best example perhaps is the name of the machine. By
attaching different copies of the disk to different VMs, all of the VMs have the same name. If
I were to have a VM image, Azure would be able to change them in accordance to what you
see on the Azure dashboard. The reason for not going with the image approach was that my
infrastructure was installed under home/user folder which would get deleted. The point of VM
images is to have no user and user gets created once the machine is provisioned, so converting my
VM to be compatible with VM image would mean deleting all users (so Azure could create new
ones as needed), but that would mean losing my infrastructure and thus defeat the point of this
process. In hindsight, I should have setup my infrastructure elsewhere, but the result I got was
good enough for my purpose. I was able to spawn machines with relative ease, but it was still a
manual process. Perhaps the other approach would automate the task of spawning machines even
further and thus enhance the scalability of program generation.

42

Figure 3.2: Architecture of the distributed program generation

GNU parallel over multiple machines

Getting GNU parallel to split the task over multiple machines is as easy as providing it with a file
of network locations of other workers. GNU parallel will then periodically read the file to see if
any workers went down or new ones were added. Then it will SSH into a worker which has a slot
for the task and run it. The catch is that GNU parallel needs to be able to SSH into the workers
without a password. Obviously the command that performs that task must be able to be executed
on any of the workers. Both of these problems were resolved by having copies of the exact same
VM. They were set in such a way that they could SSH into themselves without a password and
they were obviously able to execute the same commands, because they were the same.

The result collection, i.e. writing of the generated files was done on a shared network drive.The IO
traffic to the shared drive is very low compared to the computation each node has to perform, so this
mechanism of result collection scales well for this particular problem and reduces the complexity
of distributing program generation.

Another problem faced were environmental variables. The infrastructure relies heavily on environ-
ment variables to carry the current configuration of the experiment or even more simply just the
current directory (PWD), where the results are written. In this case PWD would be set to the
location of the mounted network drive. These environmental variables obviously have to be shared
among the nodes, so that each node writes to the same location. Otherwise all the workers would
write to their home directory, making the results dispersed across the workers. GNU parallel does
provide a facility to copy over the environment variables, but unfortunately that does not cover
the current directory. This was solved by making the command run by GNU parallel spawn a
sub-shell which cd -ed into the current directory as passed in by the master and then calling the
script.

The other scripts in the infrastructure, such as actually running the experiments, could also be
distributed using this method. However, the experiments were fast enough, only taking a couple
of hours, that I was not motivated to do so. The approach would work out of the box, however the
problem arises when all the scripts need to be synced between the workers. This is a very frequent
operation when running the experiments as opposed to program generation. In the current setup
it would involve shutting down all the machines (all the workers as well as the master), making

43

a snapshot of the master, and then spawn all the workers again. This process can easily take a
better part of the hour, even when scripted, so it’s not practical. A solution would be to move the
infrastructure to the network drive, but this is a step I was not motivated enough to take, as the
experiments were running fast enough.

3.2 Semantics-preserving source-code transformations

Semantics-preserving program transformations are the core of our approach. They provide the
opportunities for bugs to present themselves, by changing the program in a meaningful way, while
still keeping the behavior the same. It is vital that the behavior of the program does not change,
since equivalent behavior is the basis for the oracles to find mismatches. Should the original and the
transformed program not have the same behavior, comparing them would be meaningless.

The transformations should also exercise parts of the symbolic executor where one would expect to
find bugs. For example, injecting dead code has proven to be very successful in compiler testing[27],
since compilers cannot know what code is dead at least until inspecting it, at which point interest-
ing bugs can already emerge. On the other hand, symbolic executors run the program, therefore
detecting dead code is trivial, symbolic execution simply never reaches it. Consequently, dead
code injection is not an interesting transformation for testing symbolic execution. Therefore two
transformation were devised specifically targeting symbolic execution: dead condition injection
(§3.2.1) and swapping branches (§3.2.2). In addition, off the shelf solutions for semantic preserv-
ing transformations were also used. In particular non trivial source code obfuscation tools are
semantic preserving transformations. The application of one such tool—tigress [13]—is described
in Section 3.2.3. Finally q non realized transformations is discussed in Section 3.2.4.

3.2.1 Transformation: dead condition injection

Dead condition injection is a simple but effective transformation. It is inspired by the dead code
injection transformation put in the context of symbolic execution. The idea is to inject a logical
tautology to the branching conditions. An example of this transformation can be seen in Listings
3.2 and 3.3, where a tautology about a global variable (g_2) is inserted. Note this transformation
increases the number of paths symbolic execution explore, because the tautology might include
symbolic variables. Looking at Listing 3.3, the variable g_2 is an integer variable, which are sym-
bolized by the infrastructure. Therefore symbolic execution has to explore the if statement twice,
corresponding to the or expression. At least one of the two paths should have the same behavior
as the original program, the other path is irrelevant as it is a byproduct of the transformation.
Therefore, a subset type of oracle (§3.3.1) needs to be used with this transformation.

Listing 3.2: Dead condition injection original
snippet

i f (g_345 < 34283) {
// o ther code

}

Listing 3.3: Dead condition injection trans-
formed snippet

i f (g_345 < 34283
&& (g_2 < 3 | | g_2 >= 3)) {

// o ther code
}

The rationale behind this transformation is to add additional constraints on the paths. In essence it
is a dead code injection transformation, but on the level of gathered path constraints. It is designed
to stress the solver further, both in accuracy of constraint solving and expression construction. In
other words, can the symbolic executor construct expressions to represent new path constraints?
In addition this transformation also affects query optimizations such as constraint independence
and caching [5].

44

Implementation

The transformation operates on conditional branch points in the program, such as the one shown
in listing 3.2. It shows a conditional statement on a global integer variable g_345. After finding
such points in the program, the transformation injects an expression that should always evaluate
to true, exploiting the fact that a ∧ true ⇐⇒ a. The expression that should always evaluate to
true was of the form gv ≤ c ∨ gv > c ⇐⇒ true, where gv is another randomly picked global
variable and c is a random constant.

At the implementation level this transformation uses clang’s LibASTMatchers and Rewriter utili-
ties. It finds all the if statements in the program using LibASTMatchers. It then gets an expression
that always evaluates to true from a "FactGenerator" and inserts it at the end of the if condition.
Currently there are only two FactGenerators implemented: a trivial one that simply returns 1 ==
1 and the one that returns expressions seen in Listing 3.3.

Extensions

Extensions and variants of dead condition transformation could easily be devised. For example,
other tautologies could be used such as gv = c ∨ gv 6= c or gv > 2 =⇒ gv − 1 > 1 to name a
couple. Alternatively and perhaps more interestingly static analysis could be performed to learn
interesting facts, which could then be used to create expressions that are always true for a particular
program, but not necessarily always true. However, the lack of tools that perform meaningful static
analysis of the source code makes this sort of extension out of scope of this work. Additionally,
in my experience static analysis performs very poorly on Csmith programs, therefore the practical
use of this approach is limited. Finally the form of conditions injection could exploit the fact
a ∨ false ⇐⇒ a, which would extend the range of tautologies that can be used to the ones that
always evaluate to false.

3.2.2 Transformation: swap branches

Swap branches is a simple but effective transformation that swaps the order of if /else statements
as shown in Listings 3.4 and 3.5. Its main goal is to change the Control Flow Graph, however
as can be seen for the Listings some of the path constrains get negated to preserve the original
behavior.

Listing 3.4: Swap branches original snippet

i f (cond i t i on) {
// code A

} else {
// code B

}

Listing 3.5: The transformed snippet

i f (! c ond i t i on) {
// code B

} else {
// code A

}

This transformation is meant as the tiniest meaningful transformation that can affect symbolic
execution. It can change the order in which the paths are explored, by changing the CFG as well
as change the path constraints slightly. Changing path constraints is important to test the accuracy
of constraint solving as well as solver expression construction as outlined in Section 3.2.1. The
path constraints modifications in swap branch transformation are different from the dead condition
injection one in two ways. First, the constrains are changed significantly less aggressively and do
not increase the load on the solver. This is important both for performance as well as debugging
the bugs once they are found. Second, this transformation does not change the number of paths
it explores. It is unique in this respect among the transformations that were used in this chapter.
Having the number of explored paths the same for original and transformed version of the programs
is convenient as it strengthens the output oracle. In addition, it also introduces the opportunity
for explored paths oracle, which simply checks that the number of explored paths is the same for
both versions of the program.

45

Implementation

Implementing this transformation with LibTooling proved tricky, with the final implementation
limited to only swapping the top nested if /else statements. In principle, the task should be
easy: find all the if /else statements, swap the two bodies and negate the condition. Finding
the statements is indeed easy with LibASTMatchers as shown in §3.2.1 as well as negating the
condition by simply bracketing it and inserting a ! in-front. However swapping the two bodies
proved difficult.

Changing the code with LibTooling does not change the AST, it only manipulates the textual
representation of the source code. In other words it uses the AST as a read-only source of informa-
tion, based on which the textual representation can be manipulated. Naturally, this means a nice
recursive tree-based algorithms cannot be used to manipulate the code. Consequently LibTooling
is of no help when dealing with changing nested structures. For example, when traversing the AST
consider encountering the top level if statement and swapping it. If then a nested statement is en-
countered, its location will still point to pre-swap location, so swapping it will completely ruin the
code. There are similar problems when traversing the AST in a different order. This problem was
simply avoided by only swapping the top level statement. Of course, solutions could be engineered
to get around this problem, however they fall outside the scope of this project. Alternately, CIL
could be used, but this problem was encountered late in the project so the move was not deemed
worth it, especially due to OCaml being unfamiliar to me.

3.2.3 Transformation: source obfuscation

Source code obfuscation is a metamorphic transformation, which is performed off the shelf by
certain tools. Some of them perform very basic and meaningless transformations, such as removing
whitespace and renaming variables. They are of no interest to us, as these kind of changes do
not trickle down to the execution of the program. More sophisticated tools however perform
massive changes to the CFG, inject dead code and even come up with their own specially designed
instruction set for a particular function, to name a few. Tigress is a freely available, highly
configurable example of such tool, which is why it was used for this work.

Integrating Tigress into the infrastructure is as easy as writing a wrapper script that calls tigress
with appropriate options. From a wide variety of transformations offered by tigress, two were used:
flatten and virtualize transformations. There are several caveats to configuring tigress, to work
with the symbolizing library. For example, the names of the function must not be obfuscated.
In addition, the main function should be kept intact to ease debugging. Note that in Csmith
programs, nothing interesting happens in the main function. Luckily, tigress provides a facility
for excluding functions from being obfuscated, which we did for main and symbolizing library
functions.

46

Flatten transformation

The flatten transformation removes most of the control flow from the program. It can be best
summed by Figure 3.3. It flattens the CFG to one level, with a dispatch block on top. The
dispatch blocks implements a state machine that captures the original control flow graph. There
are several possible dispatch block offered by tigress. The default one is a switch statement, which
is what was used. Tigress also offers other alternatives, such as gotos, jump tables or wrapping
each basic block into a function.

Figure 3.3: Tigress flatten transformation outline (source: tigress website1)

Virtualize transformation

Virtualize transformation is a heavyweight transformation that takes a function and turns it into an
interpreter for a specially on-the fly randomly designed architecture, that has equivalent behavior
to the original function. The details are not important for us, but this transformation changes the
control flow beyond any recognition.

This, combined with the flatten transformation and the swap branches transformation, gives us a
scale of various degrees of CFG changes. The swap branches transformation, performs the tiniest
possible change. The flatten transformation transforms the program in quite a severe way, but
there are still some resemblances to the original program. Finally the virtualize transformation
goes completely crazy, removing any trace of the original from the CFG.

3.2.4 Other transformations

There was another transformation considered and implemented to an extent. However, it wasn’t
stable enough to be used for testing with Csmith programs in part due to problems relating to
changing nested structures with LibTooling described in Section 3.2.2. The idea was to execute
both conditional branches and store their result in temporary variables. Then the original variable
would be assigned one of the temporaries depending on the condition. The simplest example of
this transformation can be seen in Listings 3.6 and 3.7.

1http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

47

Listing 3.6: Original snippet

a = func1 () ;
i f (cond i t i on)

a = func2 () ;

Listing 3.7: The transformed snippet

t1 = func1 () ;
t2 = func2 () ;
a = cond i t i on ? t2 : t1 ;

There is an even another bigger problem with this transformation. Functions func1 and func2,
might have side effects on global state. Therefore the modset of both functions needs to be captured
into temporaries and written back depending on the condition. Unfortunately, Csmith programs are
too convoluted and pointer based for static analysis tool available to be able to accurately determine
the modset of the functions. This problem is exacerbated by the fact that the transformation is
performed on the source level. The tooling for these sort of analysis usually operates on some
compiler intermediate representation, which makes this an even less well supported problem. These
are the reasons this transformation was not pursued further.

3.3 Multi path execution testing methods

As alluded to before there are additional challenges in using the oracles (§2.1.3) when applied
to symbolic execution that explores multiple paths. This section presents three approaches for
dealing with this problem. Firstly, an approach that directly builds upon the work from Chapter 2
is presented in Section 3.3.1. The main difficulty there is the nondeterminism of the constraint
solver. Then the concrete output oracle is replaced by a "symbolic" output oracle in Section 3.3.2.
The idea is based on the program crosschecking approach from the original KLEE paper [5]. Finally,
the output oracle is abandoned altogether. Instead of the output oracle, Section 3.3.3 presents an
approach where the values of symbolic values are recorded for each path on one version of the
program and are then replayed on the other, checking that the same paths are followed.

3.3.1 Direct approach

This approach starts where Chapter 2 left off. In chapter 2 we compiled the program in Listing 3.8
and execute it both natively and symbolically, with x constrained to 5. The output in both cases
should be #1 x:5. If symbolic executor prints anything else, a mismatch would be reported.

Listing 3.8: A minimal example of a program that can test symbolic execution.

unsigned x = 5 ;
void main () {

make_symbolic(&x) ;
i f (x < 10) p r i n t f ("#1␣x:%u" , x) ;
else p r i n t f ("#2␣x:%u" , x) ;

}

Due to the design of the testing infrastructure, it is easy to switch over to metamorphic testing.
The program in Listing 3.8 is compiled and run symbolically as before. Then it is transformed
using one of the transformers further described in Section 3.2. The transformed program is then
compiled and run again symbolically in the same way as the original program was. The result
of both executions should again be #1 x:5, since the runs are still constrained to 5. A mismatch
either indicates a bug in symbolic executor or that the transformation isn’t semantics preserving.
Luckily, it is easy to see if there is a bug in the transformation by simply running the program
natively instead of symbolically. If there is a mismatch found in the native run, the transformation
contains a bug, otherwise a bug in the symbolic executor was found.

Within the infrastructure this is as easy as setting the two COMPILE_AND_RUN variables to the
desired symbolic execution runs script and setting the TRANSFORM to one of the transformers
from Section 3.2. Further details about this can be found in Section 2.2.3.

This setup replicates mode B (§2.1.2) from the differential testing chapter but in the context of
metamorphic testing. Note that mode A can easily be achieved as well by linking in a symbolizing

48

library, which makes the call to make_symbolic a noop. I believe that this setup has a similar
bug catching potential as the differential testing approach, which has an extensive evaluation in
chapter 2. Therefore it wasn’t used to run at large scale with the aim of catching bugs. Instead,
the efforts were directed at making it applicable to multi path case.

Multi-path case

The advantage metamorphic testing gives us over differential testing is that both executions can
be symbolic. That means both can explore multiple paths and enables the comparison between
two full symbolic executions. At implementation level this is achieved by taking the mode B setup
and using a symbolizing library that solely makes the variable symbolic and does not constrain
them. The execution could now for example print #1 x:5#2 x:15. If we are lucky the transformed
program might also print the same output. However, even assuming bug-free symbolic execution,
it might print #2 x:15#1 x:5 or #2 x:345345#1 x:2 etc. as well, thus causing a report of spurious
mismatch. Note there are two things that can differ in the output even when symbolic execu,tion
is correct. Firstly, the order at which the statements are printed can differ and secondly the
symbolic variables are nondeterministically concretized by the solver. Also note that we assume
symbolic execution explored all the paths fully, which is why we only generate programs where full
exploration of all paths happens within a short amount of time as described in Section 3.1.

Different order of output

Different order of output has two remedies, depending on the transformation used. First, depth first
search path exploration strategy is used. DFS path exploration is useful first and foremost because
it is a deterministic strategy that is easy to understand and control. Therefore, all runs of the same
program should have the same order of statements printed out. For transformation that do not
change the CFG too much setting the DFS search strategy is even sufficient to remove spurious
mismatches due to order. It is also the strategy that is present in all the symbolic executors used
i.e. KLEE, Crest and FuzzBALL. Note that there is no guarantee order would be the same when
two different symbolic executors are compared, as the compiled binaries might have differently
ordered CFG due to different compilations. A downside of setting the search strategy to DFS is
that the parts of symbolic executor dealing with more interesting and useful search strategies are
not tested, but for this part of the work DFS is absolutely necessary.

If despite setting the path exploration strategy to DFS, the order of output is still not the same,
it means the CFG is changed too much and an order sensitive output oracle must be dropped.
However, by relaxing the order sensitivity, the output can still be used. In particular, the com-
parison of sorted output should still be able to detect mismatch. A downside of sorting is that
the order information is lost, which gives more space for bugs to pass through undetected. On
implementation level this approach is as easy as piping the output of the compile and run script
through the Linux sort utility.

Subset output oracle

Another problem with the multi-path case is that some transformations—like dead-condition
injection— might introduce new paths for symbolic execution to explore. These paths arise be-
cause additional conditions were added to the branching conditions. They force symbolic executor
to explore more paths. However, by design of the transformation these new paths should behave
exactly the same as the original paths. Therefore when comparing the transformed programs to the
original one, the additional paths that are explored can be safely ignored. This was done simply by
ignoring the diffs from the transformed side of the program, essentially making the output oracle
check that the output of the original program is a subset of the transformed one.

49

Figure 3.4: Given a variable x with constrain x > 6 ∧ x < 11 ∨ x > 23 ∧ x < 26 to printing function,
the conceptual path tree the print symbolic function should make in the symbolic executor. The shaded
triangles represent unfeasible paths.

Nondeterministic concretization

Even with the above modifications to the oracles, half of the programs under test were still reporting
mismatches. Even worse, a test case would sometimes report a mismatch and sometimes pass
without a hitch. This was due to the solver concretizing symbolic variables differently, within the
range of its constraints. An innovative, symbolic executor independent solution was devised to get
around this problem. The idea was to force the constraint solver to always pick the lowest value
(or highest) in the range of possible values the symbolic variable could have. The catch was to do
it inside the symbolizing library, without modifying the solver or the symbolic executor!

The basic idea is simple. Let’s consider a variable x with constraints (x > 6∧x < 11)∨(x > 23∧x <
26) hitting the print_symbolic function. The conceptual idea is that inside the printing function
we branch on x for each possible unsigned integer value like shown in Figure 3.4. It is important
that the order of branching is exactly the same as in Figure 3.4. The unfeasible paths, represented
by shaded triangles, are not explored. Therefore under depth first search the path where x equals
7 is explored first. The print_symbolic function can have the same behavior as before on this
path and print the value of x. However all other feasible paths now need to be pruned, so not
all possible values of x are output. Conceptually, print_symbolic needs to remember that it has
already output the variable and silently exit if it has. This requires some shared memory between
branches within the symbolic executor. As the solution needed to be symbolic executor agnostic,
the filesystem was used as this shared memory. Before outputting the value, print_symbolic tries
to write an identifier to a file. If that identifier is present before writing, it simply silently exits thus
pruning the branch. Using this trick it is possible to have deterministic constraint containerization
to the lowest value within the range, that works without modifying the symbolic executor or the
solver. An example of implementing this is shown in Listing 3.9. Of course it is assumed that the
for loop gets unfolded in such a fashion that lowest is are explored first.

It is obvious from Listing 3.9 that this naive approach is very slow. The symbolic execution needs
to explore over 4 billion paths for each integer variable that needs to be printed. Note that for
each of the branches the symbolic executor needs to determine if the path is feasible. If it is it
needs to perform file system IO, thus making each path quite expensive. Luckily, this problem is
easily avoidable by performing a binary search over the integer range, instead of a simple scan.
This makes the implementation more complicated but brings the number of paths that need to be
explored for each symbolic variable under 100, which is entirely feasible.

50

Listing 3.9: A naive implementation of printing symbolic variables with deterministic concretization.
firstBranch() is a function that returns true if it hasn’t been called with branchId on a different path.

void print_symbol ic (unsigned h) {
int branchId = rand () ;
for (int i = 0 ; i < MAX_INT; i++) {

i f (h == i && f i r s tBranch (branchId)) p r i n t f ("h:%u" , h) ;
else e x i t (0) ;

}
}

Figure 3.5: The path tree that symbolic execution would explore when printing a variable x with
constrain x > 6 ∧ x < 11 ∨ x > 23 ∧ x < 26, based on the binary search based algorithm. Note that
exploring the graph in a DFS fashion by taking the true (T) branches first, the state where x = 7
is reached first, which achieves the goal of reaching the state with the lowest value in the constraint
range.

51

Listing 3.10: A binary search based implementation of printing symbolic variables with deterministic
concretization. h is the symbolic variable that needs to be printed out. firstBranch() is a function that
returns true if it hasn’t been called with branchId on a different path.

lb = 0 ;
up = MAX_INT;
prev = ub ;
lbForUb = lb ;
while ((prev − ub > 0) && is_f i r s t_branch (branchId)){

i f (h < ub){
prev = ub ;
ub = ub − (ub − lbForUb) / 2 ;

}
// at t h i s po in t ub i s sma l l e r than h can be ,
//and prev i s ub t ha t can s t i l l s h r ink
else {

lbForUb = ub ;
ub = prev ;
prev = ub + 2 ;

}
}

The binary search implementation is demonstrated by Figure 3.5 and Listing 3.10. Consider a
variable x, constrained to (x > 6∧x < 11)||(x > 23∧x < 26), hitting the print_symbolic function,
where it needs to be deterministically concretized. The path exploration tree we would want to
insert is shown in Figure 3.5. Note that assuming depth first search path exploration strategy,
which takes the true (T) branch first, the state where x = 7 is reached first. At which point the
value of x is output and the other branches get pruned, as described before.

At implementation level shown in Listing 3.10, the while loop tries to reduce the value of ub while
it is still larger than a possible value of h. When ub goes lower than h can go, it rolls back and
tries a smaller reduction. This is repeated until ub precisely narrows down to the lowest value of
h. The is_first_branch function is called every iteration of the loop to prune the branches where
the lowest value has be found already early.

Using this implementation of the symbolizing library the number of mismatches reported on the
1000 program benchmark fell drastically, to manageable levels. Unfortunately, this print_symbolic
implementation makes reducing the programs and reporting bugs difficult. Despite numerous
attempts we were unable to get a good reduced program out of the mismatches. The difficulties
revolve around inlining this print_symbolic function in the programs with mismatches and reducing
them. Since the function makes a significant impact on the symbolic execution, reducing without
it was shown to be meaningless. Therefore the practical usability of this approach remains to be
determined as part of possible future work.

3.3.2 Crosschecking approach

The second "crosschecking" approach is based on checking tool equivalence in the original KLEE
paper [5]. The idea is to have the original and the transformed programs in the same binary.
Then the input of each of the programs is made symbolic, the two programs are run. The process
concludes by asserting that the results of the two programs are the same. A tiny example of this
can be seen in Listing 3.11.

Csmith generated programs are well suited for this sort of transformations. Prefixing of identifiers
can easily and reliably be done using simple text replacement. A standard Linux utility sed was
used in this case to perform the replacement. Csmith programs also do not use the main function
for any of the computation, so the main function can safely be removed. They have a different
entry point which is always a void function that takes no arguments called func_1. So the process

52

Listing 3.11: Crosschecking outline, func_1 represents the original program, prefix_func_1() represents
the transformed program, where all the identifiers have been prefixed with "prefix_" to avoid name
clashes. The main function is a newly generated program that serves as the oracle.

int g , pre f ix_g ;
void func_1 () {

g = g + 1 ;
}
void prefix_func_1 () {

pre f ix_g = (pref ix_g ∗ 2 + 2)/2 ;
}
void main () {

make_symbolic(&g) ;
make_symbolic(&pref ix_g) ;
i f (g != pref ix_g) e x i t (0) ;
func_1 () ;
pref ix_func_1 () ;
a s s e r t (g == pref ix_g) ;

}

of combining two Csmith programs is as easy as prefixing one of them, removing the main function
and concatenating the text of the two files together, for example using the cat utility.

Removing the main function can also be performed with sed to a limited extent, by simply dis-
carding anything that comes after the pattern matching the start of main. This was the initial
implementation of removing main, since in original Csmith programs, swap branches and dead
condition injected programs main always comes as the last function. However, tigress transformed
programs don’t have main as the last function, so a more robust method was needed. Removing
whole functions with LibTooling is easy so a small transformation that removes the main function
was written instead of the sed script.

Finally the main function of the combined program needs to be generated. This was done by
running the original program natively, with a specially designed symbolizing library. This imple-
mentation of the symbolizing library would generate the main function on the fly as the calls to
it are being made. This newly generated main would then be added to the concatenation of the
original and the transformed program. Resulting in a program, similar in structure to the one seen
in Listing 3.11.

To sum the approach up, a new program is created that combines the original and the transformer
program. The combined program ensures that given the two symbolic inputs to the two versions of
the program are the same, their results must also be the same. Symbolic execution is then tasked
with the job of finding an example where that is true. If such a case is found, there is either a bug
in the symbolic executor or the transformation. In a sense this approach checks symbolic execution
with symbolic execution.

3.3.3 Path approach

An overview of the path approach is given in Figure 3.6. As shown in the figure, the original
program is first transformed. The transformed program is then run with a symbolic execution
engine, which records a test case for each explored path. The test cases are then replayed on
the original program natively. The original program (and consequently the transformed one) are
instrumented to track the path the execution has taken. Therefore both the symbolic execution and
the replayed test cases output a traces of the paths explored, which are compared and mismatches
reported. This approach is similar in spirit to mode C in Chapter 2, but with the added benefit of
the possibility of finding bugs in the transformation.

The output oracle cannot be applied in this case, as the symbolic executor is free to choose which
values it will pick for the test case. Instead, the path oracle ensures that a path followed by the

53

Figure 3.6: An overview of the path approach

symbolic executor when generating a particular test case, is also followed when replaying that test
case. The path oracle is similar to function call chain and coverage oracles, but sits somewhere in
between them when it comes to strength of the oracle and cost. They all compare information on
the path of execution, but at various levels of detail.

At the implementation level, the path oracle piggybacked on the infrastructure for the function
call oracle. A call to logFunction was added at the start of every branch, with an unique identifier
for that branch. In particular the call was inserted after every for, if and else, since those are the
only branching structures present in the Csmith generated programs we used. Note that ternary
operator is also present but was ignored, because it usually results in a select instruction and not
a branch. Ignoring it also made the implementation of the path oracle far easier. In addition the
calls were also wrapped in ifdef s so the path oracle could be toggled on and off as needed.

While test case recording and replaying infrastructure is present in some symbolic executors, like
KLEE, it is not present in others like FuzzBALL and Crest. Therefore it was decided to design
a symbolic executor agnostic version of path recording/replaying infrastructure. The implemen-
tation was based on symbolizing library by re-implementing print_symbolic on the record side,
make_symbolic on the replay side and assuming a path exploration strategy that does not inter-
twine the paths for example depth first search. The print_symbolic function can then write the
bytes of the integer it is printing to a file, resulting in a file where all integers across all paths
are written in order. Given a program with 2 symbolic variables a, b and 3 paths where a = 1,
b = 2 on the first one, a = 1, b = 3 on the second one and a = 1, b = 4 on the last one, t he file
containing the recording of the symbolic execution would look like 121314 in decimal notation,
assuming both symbolic variables have the same size.

The replaying is then performed by running the transformed program natively with a special
implementation of the make_symbolic function. Both make_symbolic and print_symbolic have the
size of the integer they are operating on passed to them as a parameter. In addition, they are called
in the same order with respect to the variables they are operating on. Therefore make_symbolic
simply reads however many bytes it is told to from the file containing the recording (which is passed
in via environment variables) and assigns them the variable that was meant to be made symbolic.
This essentially replays the first path recorded in the file, which is half way to replaying all the

54

Table 3.1: Summary of bugs found in Crest, KLEE and FuzzBALL using the methods described in this
chapter. The table contains a short name for the bug, the approach (§3.3) where the bug was found,
the oracle that found it and reduced size of the program.

Bug description Approach Transformation
Reduced

size
(LOC)

KLEE
CreateZeroConst assertion failure crosscheck swap branch, dead condition 17
Output mismatch direct dead condition n/a1

Independent solver fail direct dead condition, tigress flatten n/a2

Crest
Prediction failed all all 11

FuzzBALL
STP division by zero crosscheck dead condition 20
Unable to concretize direct, path all 14

Tigress
>= operation dropping crosscheck flatten 10
Assigning to read only variable crosscheck virtualize n/a
1 Failed to reduce and therefore not reported
2 Found in an older version of KLEE (f5cc1a11f8), fixed prior to reporting

paths. To replay any further paths, the program only needs to restart itself with the file offset
from the previous execution. This is achieved by forking on the very first call to make_symbolic,
the child then proceeds as before, while the parent waits for it. When the child finishes, the parent
checks if there are further bytes in the file and if so, forks again thus repeating the process. Because
forked process share the file descriptors, the read offset is preserved between them, thus achieving
a restart of the process with the file offset preserved.

3.4 Evaluation

The evaluation of the methods presented in this chapter was performed on the opus of 1000
multi path programs as presented in Section 3.1. Table 3.2 shows the number of mismatches the
infrastructure reported for each approach for each symbolic executor. Unless otherwise noted,
all the runs were performed with KLEE git commit: 82778651702 built with STP version 2.1.2.
Some initial runs were performed with an older version of KLEE, so bugs found in that version are
marked. The version was updated as we wanted to find relevant bugs in the most recent version,
whereas some development was done using older versions of KLEE, which is when some of the
bugs were found with these approaches.

Table 3.1 is a summary of the bugs that were found with metamorphic testing. The bugs found
are discussed in further detail below. By comparing Tables 3.1 and 2.3, 2.5 it might be reasonable
to conclude that less meaningful bugs were found with the approaches presented in this chapter.
However several things should be considered before making that conclusion.

First and foremost the aims of the work were different. When working on approaches in Chapter 2,
my goal was to find bugs, whereas for the work in this chapter I focused on developing and
comparing the different approaches. Consequently, the bugs found in this chapter are a result of
only one iteration of the whole process. In other words, the bugs presented in Table 3.1 have not
been fixed/worked around and the process was then not repeated to find new bugs.

Secondly there were far bigger show stoppers encountered in the less mature symbolic executors
with these approaches as they stress the symbolic executor more. For example, Crest failed to run
any of the Csmith generated programs with unconstrained symbolic variables due to the prediction
failed bug (§3.4.4). Similarly as discussed in Section 3.4.6, FuzzBALL does not provide facilities to
concretize unconstrained symbolic, thus disabling the use of any output based approaches.

Finally most of the work in this chapter was done on version where all the previously found bugs

55

Approach: Direct Crosscheck Path
KLEE 43 1 23
Crest all all n/a
FuzzBALL n/a 61 n/a

(a) Swap branches

Approach: Direct Crosscheck Path
KLEE 34 18 13
Crest all all n/a
FuzzBALL n/a 61 n/a

(b) Dead condition injection
Approach: Direct Crosscheck Path
KLEE 270 10 53
Crest all all n/a
FuzzBALL n/a 49 n/a

(c) Tigress Flatten

Approach: Direct Crosscheck Path
KLEE 496 333 212
Crest all all n/a
FuzzBALL n/a 362 n/a

(d) Tigress Virtualize

Table 3.2: Number of mismatches reporting by our infrastructure, with respect to the transformation
used, the symbolic executor and the approach used. All Experiments were ran on the opus of 1000
programs.

were fixed with the goal of finding bugs that developers would want to fix. Therefore it cannot be
concluded that these approaches are unable to find the bugs found in Chapter 2.

3.4.1 KLEE bug: CreateZeroConst assertion failure

The manifestation of this bug is an assertion failure somewhere in the STP code and can be
reproduced by running program shown in Listing 3.12 with KLEE. The bug was found both in
swap branch and dead condition transformations when the crosschecking approach was used. For
the swap branches transformation it was also the only mismatch reported, which indicates that
swap branch has very little noise.

Listing 3.12: Causes KLEE to crash due to an assertion failure in STP.
1 char a , g ;
2 i n t b = 7 ;
3 l ong c , e , f ;
4 l ong ∗d = &c ;
5 s ho r t h ;
6 vo id main () {
7 klee_make_symbol ic(&b , s i z e o f b) ;
8 klee_make_symbol ic(&c , s i z e o f c) ;
9 uns igned i = b ;

10 f = −−∗d ;
11 g = f + (4 != 0) ;
12 e = g % i ;
13 i f (e)
14 i ;
15 h = i ∗ 8 ;
16 (h != 2) + ∗d | | a >> i ;
17 }

Unfortunately, it is hard to pin down whether this is a KLEE or STP bug. The assertion failure
is clearly in the STP code, therefore KLEE developers are reluctant to fix it. The bug can’t easily
be reported to the STP developers either, as the bug is not present when running the offending
query through STP’s command line interface.

3.4.2 KLEE: Output mismatch

This is a category of mismatches that are found with the direct approach(§3.3.1). It prints out
different values for two symbolic variables on what appears to be the same branch. Unfortu-

56

nately more details on the bug itself are hard to determine since a reduced version could not be
obtained.

The problem with the reduction is the fragility of the direct approach. It is possible to reduce a
test case to manageable sizes. This reduction is performed with symbolizing library being linked
in outside the reduction. In other words, a second reduction needs to be performed after the initial
one. In this reduction step the code for symbolizing library needs to be included in the same
file as the program. For all the attempted initial reductions, the mismatches disappear once the
symbolizing library code is copied in. Therefore the question arises whether the implementation
of the symbolizing library for the direct approach might be incorrect. Unfortunately, as of writing
of this report this bug has not been found, so the usefulness of the direct approach remains
inconclusive.

3.4.3 Tigress bug: >= operation dropping

Using the metamorphic testing approaches of this chapter, bugs in the transformations can also be
found. Listings 3.13 and 3.14 show an example of such bug. The bug was reported to the tigress
developers, who confirmed they will look into it. However as of writing of this report, they haven’t
come back with an explanation or a fix.

Listing 3.13: Original program that is trans-
formed using the Tigress flatten transforma-
tion. Note that *a = 0.

uint32_t g_65 , b , g_158 ;
uint32_t g_100 , g_82 ;
uint32_t func_1 () {

uint32_t ∗a = &g_158 ;
∗a = 1LL >= 184467440701615;
return 0 ;

}
int main () {

func_1 () ;
}

Listing 3.14: The transformed snippet, showing
the functional bit of code. Note that the whole
transformed program is over 100 lines long and
includes a lot of unimportant boilerplate. Note
that *a = 1.

. . .
switch (_1_func_1_next) {

case 1 :
∗a = (uint32_t) 1 ;
_1_func_1_next = 0 ; break ;
case 0 : ;
return ((uint32_t) 0) ;

. . .

The problem seems to arise when transforming the program in Listing 3.13, using tigress flatten
transformation. The transformed program is quite long as tigress preprocesses all the headers,
defines initialization functions, etc. , so it is not shown here in its entirety. The code snippet that
implements func_1 in the original program is shown in Listing 3.14. The important thing to note
is the assignment to *a in both programs. In the transformed program it gets assigned simply a
constant 1. However the original program assigns 1LL >= 184467440701615 to *a, which should
evaluate to 0. It appears as if tigress dropped the >= or evaluated the constant expression to the
wrong value.

Listing 3.14 also shows quite well how flatten transformation with switch statement works. It
builds a state machine out of the basic blocks of the function and puts each one as a separate case
in the switch statement. The current state is tracked with the _1_func_1_next variable. Finally
the switch statement is wrapped in an infinite loop. In this sample case there is no control flow in
the function so there are just two blocks, the main one and an exit block.

3.4.4 Crest bug: prediction failed

A Crest prediction failed bug is a large class of errors reported by Crest. The high level cause for
it stems from the inner workings of concolic execution. Once Crest finishes exploring a branch, it
chooses a branch point and negates it, asking the constraint solver for a new concrete solution. It
then runs the program with the symbolic value set to that solution. Based on what branch was
negated, it predicts which branches will be taken. If the actual execution does not follow those
branches, it prints a Prediction failed! message.

57

Listing 3.15: A program which makes crest explore 4 branches and causes prediction failure on two of
them.

unsigned short a = 0 ;
unsigned char b = 1 ;

void main () {
__CrestUShort(&a) ;
__CrestUChar(&b) ;
int ak = −−b ;
a && 0 ;
ak >= 2 | | 0 ;

}

The underlying cause for a prediction failure can be very varied. For example, one was found in
2.3.2, where the cause was a mishandling of big int values. That bug was fixed and is not present in
the Crest runs in this chapter. However, every single Csmith program I have run with Crest, where
the symbolic values were not constrained printed a prediction failed message. One of them was
reduced to a program shown in Listing 3.15 and reported to developers. Unfortunately, that meant
that no further bugs could be found in Crest as every other potential bug was overshadowed by the
prediction failed error. Note that the approaches were applied to simple toy programs and run with
Crest, where it didn’t report any prediction failures i.e. behaved as expected. Therefore I don’t
believe there is an underlying issue in the approach that prevents it from being applied to a version
of Crest that is able to handle unconstrained symbolic execution of Csmith programs.

3.4.5 FuzzBALL bug: division by zero

This is a bug where FuzzBALL terminates due to a division where the divisor can be zero. As
can be seen from Table 2.5, this bug has been found before in Chapter 2. Developers shifted the
problem to an old version of STP, which was indeed unable to handle division by zero, upgrading
the version did fix that bug. However the bug reappeared again when running the crosscheck
experiments with FuzzBALL even with the newest version of STP, which handles division by zero
well.

I believe the problem is that FuzzBALL gives up on division by zero too quickly. Listing 3.16
shows an example of two functions being checked to have the same behavior using the crosscheck
approach. They both obviously have a division by zero problem, but are still equivalent, because
they both fail for the same input of x. Unfortunately FuzzBALL still reports a division by zero
error in this case, whereas KLEE for example works fine for this case. The bug or perhaps a feature
request was reported to the developers.

3.4.6 FuzzBALL: Unable to concretize

An interesting aspect of FuzzBALL is that it symbolic executes all the code, including libc and
system calls. An unfortunate consequence of this which was realized too late in the course of this
work, is that it is impossible to concretize a symbolic variable to a single value.

Listing 3.17 shows a program with two branches. In the exact form shown, it does what one would
expect, printing the value of g_56 twice, once for each branch. If the printing of g_54 is included,
it explores and prints 256 branches, one for each possible symbolic value of g_54. Unfortunately
it is still unclear to me if this is a bug or not. Printing of each possible value of g_54 can be
explained by symbolic execution of printf and write system call, which I assume branch on each
bit of the value being printed at some point. However why this does not happen when only g_56
is printed is unclear and awaiting developer response.

58

Listing 3.16: A program which illustrates the division by zero problem in FuzzBALL. Note that
magic_symbols are set to be symbolic at runtime.

#include <a s s e r t . h>
int g_279 = 1 ;
int a = 0 ;
int g_34 = 1 ;
stat ic int magic_symbols [4] = {1 , 0 , 0 , 4} ;

int func (int x) {
return 100 / x ;

}

int func1 (int x) {
return 100 / (x + 2 − 2) ;

}

int main () {
g_279 = ∗magic_symbols ;
g_34 = ∗(magic_symbols +1);
i f (g_34 != g_279) e x i t (0) ;
a s s e r t (func (g_279) == func (g_34)) ;
return 0 ;

}

Listing 3.17: A program which illustrates the concretization problem in FuzzBALL. Note that
magic_symbols are set to be symbolic at runtime.

uint32_t g_54 = 0 ;
uint32_t g_56 = 3162800460;

stat ic uint32_t magic_symbols [4] = {0 , 0 , 0 , 3} ;

void main (void) {
g_54 = ∗(uint8_t ∗)magic_symbols ;

g_56 ^= 1 < g_54 ;
p r i n t f ("g_56 : ␣%X\n" , ∗(&g_56)) ;

// p r i n t f ("g_54 : %X\n" , ∗(&g_54)) ;
}

59

Chapter 4

Conclusion

Symbolic execution has seen significant interest in the last few years across a large number of
computer science areas, such as software engineering, systems and security, among many others.
As a result, the availability and correctness of symbolic execution tools is of critical importance for
both researchers and practitioners. This report has presented two compiler testing based techniques
for testing symbolic execution engines. Firstly, the concept of differential testing was applied to
three symbolic execution engines: KLEE, Crest and FuzzBALL. In the process, a toolkit for testing
symbolic executors was developed, capable of performing both differential and metamorphic testing
of symbolic executors. The toolkit was developed with KLEE, Crest and FuzzBALL in mind, but
due to their differences could be extended to any other symbolic executors that run C code with
minimal additions. Applying compiler based differential testing to symbolic executors required
a novel way of creating program versions, where symbolic execution is constrained to a single
path. In addition, an attempt was made to extend the differential testing approach to multi path
symbolic execution. It was limited by test generation and replay capabilities of KLEE and therefore
not extended to other symbolic executors. A comprehensive evaluation of these approaches was
performed with the case studies on the three symbolic execution engines. It has found 21 bugs over
the three symbolic executors, 12 of which have been fixed by the developers already. This shows
the capability of differential testing to find real and important bugs in symbolic executors.

Differential testing has shown a lack of capability to effectively test multi path symbolic execution.
Therefore a metamorphic testing approach was developed to tackle the challenge of testing sym-
bolic execution engines. Four transformations were used for metamorphic testing, two specifically
developed for this purpose and two based on a C obfuscation tool. The design of the toolkit enabled
easy transition from differential testing to metamorphic testing in both single and multi path mode.
The evaluation of metamorphic testing for single path mode did not go beyond demonstrating that
it works. We believed that metamorphic testing has a similar bug catching potential to differential
testing and therefore not explore it further. However, future work could include a comprehensive
study of relative strengths and weaknesses of differential and metamorphic testing for symbolic
execution.

For testing multi path execution with metamorphic testing, it proved essential to generate an opus
of Csmith programs where symbolic execution can completely explore multiple paths within a
short timeout. These programs were significantly more predictable when executed symbolically,
because the number of paths explored was fixed. This combined with depth first search path
exploration strategy enabled development of three approaches for comparing multi path symbolic
execution. The first "direct" approach relied on concretization to be deterministic, which added
huge complexity to the process. This complexity prevented producing good and meaningful bug
reports thus limiting the usability of this technique. However with further work, it might be
possible for this approach to mature and start producing better bug reports. The crosschecking
approach is arguably the best of the three. It is easily applicable to multiple symbolic executors
and has managed to highlight several bugs. Finally the path approach also successfully managed
to flag potential bugs.

The experience in testing symbolic executors also varied greatly between KLEE, Crest and FuzzBALL.

60

KLEE was the easiest to work with, being the most reliable and feature complete of the three,
therefore all of the approaches presented were applicable to it. The debugged bugs in KLEE were
various edge cases such as incorrect optimization for division by 1. FuzzBALL has also been a reli-
able symbolic executor albeit less easy to work with than KLEE. FuzzBALL’s symbolizing interface
is less pleasant to work with as it requires disassembling of binaries and looking up addresses. But
more importantly most pain points come from the fact that it symbolically executes both libc and
Linux system calls. That meant the direct and path approach could not be applied to it, as they
require concretization of the output. In addition, it lead to some hard to debug bugs, where the
bug is in the implementation of printf as opposed to the code calling the printf function. Finally,
in our experience Crest has been the most fragile of the three. The bugs found in Crest included
simple features like not being able to handle large unsigned integers and lack of support for divi-
sion. While by limiting the features Csmith generates experiments could be run in the single path
case, Crest failed in the multi path case. It failed to correctly execute any of the programs in the
opus with all three approaches.

In addition to minor future work already mentioned there are still other possibilities of extending
this work. A glaring feature of symbolic executors that is not tested by any of this work are
path exploration strategies of symbolic executors. Other approaches need to be developed to
effectively test those. Additionally, generation of programs that test symbolic execution well could
also be improved. The time it takes to generate a small path Csmith program severely limits the
applicability of the multi path approach. It took 2 days on a cluster of 8 computers to generate the
opus used. However, it takes only about half a day to run a typical experiment on the opus on a
single computer. The generation is therefore slower than running the experiments, which limits the
ability to do them at mass scale. A symbolic execution targeted program generator could do better
at trying to generate program that test symbolic execution well and are generated quickly.

61

Chapter 5

Bibliography

[1] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: A Symbolic Execution Extension to Java
PathFinder. In Proc. of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’07), Mar.-Apr. 2007.

[2] D. Beyer. Software verification and verifiable witnesses (Report on SV-COMP 2015). In
Proc. of the 21st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’15), Apr. 2015.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – a formal system for testing and debugging
programs by symbolic execution. ACM SIGPLAN Notices, 10(6):234–245, 1975.

[4] C. Cadar and A. F. Donaldson. Analysing the program analyser. In Proceedings of the 38th
International Conference on Software Engineering Companion, ICSE ’16, pages 765–768, New
York, NY, USA, 2016. ACM.

[5] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In Proc. of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’08), Dec. 2008.

[6] C. Cadar and D. Engler. Execution generated test cases: How to make systems code crash
itself (invited paper). In Proc. of the 12th International SPIN Workshop on Model Checking
of Software (SPIN’05), Aug. 2005.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: Automatically Generating
Inputs of Death. In Proc. of the 13th ACM Conference on Computer and Communications
Security (CCS’06), Oct.-Nov. 2006.

[8] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann, and W. Visser.
Symbolic Execution for Software Testing in Practice—Preliminary Assessment. In Proc. of
the 33rd International Conference on Software Engineering, Impact Track (ICSE Impact’11),
May 2011.

[9] C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades Later. Com-
munications of the Association for Computing Machinery (CACM), 56(2):82–90, 2013.

[10] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleashing Mayhem on binary code. In
Proc. of the IEEE Symposium on Security and Privacy (IEEE S&P’12), May 2012.

[11] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective symbolic execution. In
Proc. of the 5th Workshop on Hot Topics in Operating Systems (HotDep’09), June 2009.

[12] L. A. Clarke. A system to generate test data and symbolically execute programs. IEEE
Transactions on Software Engineering (TSE), 2(3):215–222, 1976.

[13] C. Collberg, S. Martin, J. Myers, and J. Nagra. Distributed application tamper detection via
continuous software updates. In Proceedings of the 28th Annual Computer Security Applica-
tions Conference, ACSAC ’12, pages 319–328, New York, NY, USA, 2012. ACM.

62

[14] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking of floating-point and
SIMD code. In Proc. of the 6th European Conference on Computer Systems (EuroSys’11),
Apr. 2011.

[15] P. Collingbourne, C. Cadar, and P. H. Kelly. Symbolic crosschecking of data-parallel floating-
point code. IEEE Transactions on Software Engineering (TSE), 40(7):710–737, 2014.

[16] CREST: Automatic Test Generation Tool for C. http://code.google.com/p/crest/.

[17] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr, B. Yakobowski, and X. Yang. Testing
static analyzers with randomly generated programs. In Proceedings of the 4th International
Conference on NASA Formal Methods, NFM’12, pages 120–125, Berlin, Heidelberg, 2012.
Springer-Verlag.

[18] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring engines. In
Proc. of the joint meeting of the European Software Engineering Conference and the ACM
Symposium on the Foundations of Software Engineering (ESEC/FSE’07), Sept. 2007.

[19] W. Daniel. Applied nonparametric statistics, page 319–330. The Duxbury advanced series in
statistics and decision sciences. PWS-Kent Publ., 1990.

[20] Delta. http://delta.tigris.org/.

[21] Frama-c. http://frama-c.com/index.html.

[22] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. In Proc.
of the Conference on Programing Language Design and Implementation (PLDI’05), June 2005.

[23] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz testing. In Proc. of
the 15th Network and Distributed System Security Symposium (NDSS’08), Feb. 2008.

[24] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,
2001–.

[25] J. C. King. Symbolic execution and program testing. Communications of the Association for
Computing Machinery (CACM), 19(7):385–394, 1976.

[26] T. Kuchta, C. Cadar, M. Castro, and M. Costa. Docovery: toward generic automatic docu-
ment recovery. In Proc. of the 29th IEEE International Conference on Automated Software
Engineering (ASE’14), Sept. 2014.

[27] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence modulo inputs. In Proc. of
the Conference on Programing Language Design and Implementation (PLDI’14), June 2014.

[28] X. Leroy. Formal verification of a realistic compiler. Communications of the Association for
Computing Machinery (CACM), 52(7):107–115, 2009.

[29] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson. Many-core compiler fuzzing. In Proc. of
the Conference on Programing Language Design and Implementation (PLDI’15), June 2015.

[30] Llvm 3.9 documentation: Libtooling. http://releases.llvm.org/3.9.0/tools/clang/docs/LibTooling.html.

[31] P. D. Marinescu and C. Cadar. KATCH: High-coverage testing of software patches. In Proc. of
the joint meeting of the European Software Engineering Conference and the ACM Symposium
on the Foundations of Software Engineering (ESEC/FSE’13), Aug. 2013.

[32] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis. Path-exploration lift-
ing: Hi-fi tests for lo-fi emulators. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,
pages 337–348, New York, NY, USA, 2012. ACM.

[33] W. M. McKeeman. Differential testing for software. Digital Technical Journal, 10:100–107,
1998.

[34] B. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl. Fuzz
revisited: A re-examination of the reliability of UNIX utilities and services. Technical report,
University of Wisconsin???Madison, 1995.

63

http://code.google.com/p/crest/

[35] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the reliability of UNIX utilities.
Communications of the Association for Computing Machinery (CACM), 33(12):32–44, 1990.

[36] C. Miller and Z. N. Peterson. Analysis of mutation and generation-based fuzzing. Independent
Security Evaluators, Tech. Rep, 2007.

[37] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In Proc. of the 11th International Conference
on Compiler Construction (CC’02), Mar. 2002.

[38] D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar. Accelerating array constraints in symbolic
execution. In International Symposium on Software Testing and Analysis (ISSTA 2017), 7
2017.

[39] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. Test-case reduction for C com-
piler bugs. In Proc. of the Conference on Programing Language Design and Implementation
(PLDI’12), June 2012.

[40] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using symbolic evaluation to
understand behavior in configurable software systems. In Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, pages 445–454.

[41] C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating code
clone detection tools. In Proc. of the 4th International Workshop on Mutation Analysis (Mu-
tation’09).

[42] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proc. of
the joint meeting of the European Software Engineering Conference and the ACM Symposium
on the Foundations of Software Engineering (ESEC/FSE’05), Sept. 2005.

[43] O. Tange. Gnu parallel - the command-line power tool. ;login: The USENIX Magazine,
36(1):42–47, Feb 2011.

[44] N. Tillmann and J. De Halleux. Pex: white box test generation for .NET. In Proc. of the 2nd
International Conference on Tests and Proofs (TAP’08), Apr. 2008.

[45] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama. Towards optimization-safe
systems: Analyzing the impact of undefined behavior. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 260–275, New York, NY,
USA, 2013. ACM.

[46] J. Wu, G. Hu, Y. Tang, and J. Yang. Effective dynamic detection of alias analysis errors.
In Proc. of the joint meeting of the European Software Engineering Conference and the ACM
Symposium on the Foundations of Software Engineering (ESEC/FSE’13), Aug. 2013.

[47] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs in C compilers.
In Proc. of the Conference on Programing Language Design and Implementation (PLDI’11),
June 2011.

[48] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input. IEEE Trans-
actions on Software Engineering (TSE), 28(2):183–200, 2002.

64

	Background
	Symbolic execution
	History
	Fuzzing vs symbolic execution
	Concolic execution
	Available symbolic executors

	Compiler testing
	Differential testing
	Csmith
	C-reduce
	Symbolic execution engines vs compilers
	Metamorphic testing

	Other efforts for testing program analysis tools
	Many-Core Compiler Fuzzing
	Testing of Clone Detection Tools
	Testing Refactoring Tools
	Testing Alias Analysis

	Kolmogorov–Smirnov test
	GNU parallel

	Differential Testing of Symbolic Execution
	Testing Approach
	Generating random programs
	Creating and running versions
	Oracles
	Reducing bug-inducing programs

	Implementation details
	Instrumentation
	Implementing constrainers
	Testing infrastructure
	Oracles
	Generating programs
	Reducing programs

	Case Studies
	KLEE
	CREST and FUZZBALL

	Metamorphic Testing of Symbolic Executors
	Generating multi-path programs
	Csmith-generated programs path distribution
	Distributed program generation

	Semantics-preserving source-code transformations
	Transformation: dead condition injection
	Transformation: swap branches
	Transformation: source obfuscation
	Other transformations

	Multi path execution testing methods
	Direct approach
	Crosschecking approach
	Path approach

	Evaluation
	KLEE bug: CreateZeroConst assertion failure
	KLEE: Output mismatch
	Tigress bug: >= operation dropping
	Crest bug: prediction failed
	FuzzBALL bug: division by zero
	FuzzBALL: Unable to concretize

	Conclusion
	Bibliography

