
§¥¥§

Learning Player Strategies
Using Weak Constraints

Author
elliot greenwood

Supervisor
dr. krysia broda

Co-Supervisor
mark law

Second Marker
prof. alessandra russo

imperial college london
department of computing

18th June 2018

ABSTRACT

Computer programs are now able to easily beat human world champions at complex
games like Chess and Go, but the reasoning behind how these programs choose their
moves remains relatively obscure. This is due to popular methods using neural networks,
which are difficult to interpret without heavy analysis.

In this work we explore an alternative method of learning strategies from gameplay
using Inductive Logic Programming (ilp), a logical learning framework that has been
extended to the Answer Set Programming (asp) paradigm. Specifically, we use weak con-
straints from asp to learn preferences between board states based on human-driven ex-
amples. Learning weak constraints is a novel technique that has recently been introduced
into ilasp, a learning system created at Imperial College London.

We discuss and show through experimentation ilasp’s suitability to learning strategies
through weak constraints. We provide a methodology for describing, abstractly, game
mechanics using theGameDescriptionLanguage, learning the rules of the game, strategies
to use, and employing the learnt strategies with the aid of a planner. In game theory,
search trees are used to employ minimax, a way of expressing optimal play by reason-
ing about the value of moves in the future. We take this notion and extend existing ilp
frameworks to rank moves with respect to game trees.

iii

v

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Krysia Broda for her guidance, advice and enthu-
siasm throughout the project. I wish to express my gratitude to Mark Law for the time
and help he has dedicated towards this project and allowing me to use ilasp, he has also
given me countless ideas during the last year.

I alsowish to thankLottie, for her incredible support andpatience over the past few years.
Thank you to Jack and Dan, for all your help and making me laugh. For playing hours

of games against me, I would like to say thank you to James, Michael, Florian, Jonathan.
Finally, thank you to my parents, my sister, and my friends for their encouragement

during my time at Imperial.

CONTENTS

i preliminaries 1
1 introduction 3

1.1 Motivation . 3
1.2 Objectives . 4
1.3 Contributions . 4

2 games under study 7
2.1 Onitama . 7

2.1.1 Rules . 7
2.1.2 Three Card Variation . 8
2.1.3 Example Game . 9

2.2 Five Field Kono . 14
2.2.1 Rules . 14

2.3 Cross-Dot Game . 15
2.3.1 Rules . 15

3 background 17
3.1 Normal Logic Programs . 17

3.1.1 Syntax . 17
3.1.2 Herbrand Models . 19
3.1.3 Stable Model Semantics . 20

3.2 Answer Set Programming . 22
3.2.1 Choice Rules . 22
3.2.2 Weak Constraints . 23

3.3 Inductive Logic Programming . 24
3.4 Inductive Learning of Answer Set Programs 25

3.4.1 Learning from Answer Sets . 25
3.4.2 Learning Weak Constraints . 28
3.4.3 Context Dependent Examples 30
3.4.4 Learning from Noisy Examples 32
3.4.5 Constraining the Hypothesis Space with Bias Constraints 33
3.4.6 ilasp Meta-Level Representation 34

3.5 Game Theory . 35
3.5.1 Game Types . 35
3.5.2 Utility Functions . 35
3.5.3 Minimax Theorem . 35

4 related work 39
4.1 Knowledge Representation . 39
4.2 Representing Games in Formal Logics 39
4.3 Learning Answer Set Programs . 40
4.4 Machine Learning and Games . 40
4.5 Explainable AI . 40

vii

viii contents

ii implementation 43
5 game model 45

5.1 Intuition . 45
5.2 Game Description Language . 46

5.2.1 Specification . 46
5.2.2 Translation into asp . 50

5.3 Simplifications . 52
6 digitised game & planner 53

6.1 Program Flow . 53
6.1.1 Example Collection . 54
6.1.2 Minimax Planner . 54
6.1.3 Assistive Movement . 55

6.2 Extensibility . 57
6.2.1 Adding new games . 57

7 learning preferences from game trees 59
7.1 Motivation . 59
7.2 Inductive Learning Programs with Deep Orderings 60
7.3 Implementation . 65

7.3.1 ilasp with Meta-Program Injection 65
7.4 Translation to Context Dependent loas Task with Meta-Program Injection 65
7.5 Automatically Generating the Game Trees 68

8 case study: cross-dot game 73
8.1 The Game . 73

8.1.1 Representation . 73
8.2 Learning Strategies . 74

8.2.1 Simple Strategies . 74
8.2.2 Combined Strategies . 75
8.2.3 Forward-Thinking Strategies . 77

8.3 Comparison . 78

iii evaluation 81
9 learning the game rules 83

9.1 Process . 83
9.2 Learning . 83

10 learning and expressing strategies 87
10.1 Immediate Strategies . 87

10.1.1 Winning . 87
10.1.2 Capturing Piece . 88
10.1.3 Space Advantage . 90

10.2 Complex Strategies . 92
10.3 Tournaments . 94
10.4 Summary . 94

11 conclusion 99
11.1 Achievements . 99
11.2 Future Work . 100

11.2.1 Performing Quiescent Search with Weak Constraints 100
11.2.2 Identifying Examples with Strong Strategic Choices 101

contents ix

iv appendix 103
a logic programs 105
b ilasp learning examples 111

b.1 Onitama . 111
b.1.1 Experiment 9.1: Onitama Rules 111
b.1.2 Experiment 10.7: Defend Pawns 113

b.2 Five Field Kono . 121
b.2.1 Experiment 9.2: Five Field Kono Rules 121

b.3 Cross-Dot . 123
b.3.1 Experiment 9.3: Cross-Dot Rules 123

bibliography 125

L I ST OF F IGURES

Figure 2.1 Onitama setup configuration, with the cards ox, monkey, crane,
rabbit, cobra. 7

Figure 2.2 Use of the rabbit card . 8
Figure 2.3 Use of the rabbit card with the opposite player 9
Figure 2.4 Move Cards featured in the Game 10
Figure 2.5 Example game following the moves from Example 2.1.3 10
Figure 2.6 Example game following the moves from Example 2.1.3 (cont.) . 11
Figure 2.7 Example game following the moves from Example 2.1.3 (cont.) . 12
Figure 2.8 Example game following the moves from Example 2.1.3 (cont.) . 13
Figure 2.9 Legal moves for the red player 14
Figure 2.10 The initial state of the game of Five Field Kono alongside some

winning states . 14
Figure 2.11 Some example states of the Cross-Dot Game (m = 6, k = 2) . . 15
Figure 3.1 Graphical representation of X in Example 3.1.5 21
Figure 3.2 Simplified graphical representation of the background facts of

B in Example 3.4.2 . 27
Figure 3.3 Examples e1, e2, e3, e4 in their respective contexts with the pre-

ferred action shown by the highlighted move. 31
Figure 3.4 Some of Alan’s moves from a particular game against Betty . . . 32
Figure 3.4 Some of Alan’s moves from a particular game against Betty (cont.) 32
Figure 3.5 Decision tree of Nim with backpropagation 36
Figure 3.6 α-β pruning tree, dashed lines denote the pruned branches. . . 37
Figure 3.7 Result of using an insufficient quiescent search 38
Figure 4.1 Performance vs. Explainability (adapted from Gunning (2016)) . 41
Figure 4.2 Visualisations of neurons from Layer 4c. Figure fromOlah et al.

(2018) . 41
Figure 5.1 Game Description Language (gdl) Current State 47
Figure 5.2 Game Description Language (gdl) Initial State 47
Figure 5.3 Game Description Language (gdl) Next State 48
Figure 5.3 Game Description Language (gdl) Next State 48
Figure 5.4 Game Description Language (gdl) Legal and Chosen Moves . . 49
Figure 5.5 Game Description Language (gdl) Goal Relation 49
Figure 5.6 Translation of Tic-Tac-Toe program 51
Figure 6.1 User flow through the digital game 53
Figure 6.2 Current board state midway through a game 55
Figure 6.3 Possible leaf nodes of the game tree pruned to depth 2 56
Figure 6.3 Possible leaf nodes of the game tree pruned to depth 2 (cont.) . . 56
Figure 6.4 Example of a user correcting amove to amore defensive alternative 57
Figure 7.1 Possibility of an exchange . 59
Figure 7.2 Play is considered to depth 0 . 60
Figure 7.4 Play is considered to depth 2 . 61
Figure 7.3 Play is considered to depth 1 . 61
Figure 7.5 Cross-Dot defence game tree generated from mid-game state . . 70

x

Figure 8.1 Cross-Dot defence game tree generated from mid-game state . . 78
Figure 10.1 Illustrations of how valuing different areas of the board affects

strategy . 91
Figure 10.2 Illustrations of how controlling space on a board can give be

advantageous. Grey areas represent spaces that the cards allow
each player to move to. The strategies learnt in Experiment 10.5
and Experiment 10.7 both have this concept in their mode de-
clarations (valid_translation(·, ·, ·, ·)) 91

Figure 10.3 Guaranteed win by following the moves shown 92

L I ST OF TABLES

Table 3.1 Wrapper predicates to indicate structural elements of rules in the
hypothesis space . 33

Table 5.1 Game Description Language (gdl) Keywords 46
Table 5.2 Rules generated for normal/simplified rules with different para-

meters . 52
Table 8.1 Categorised strategy rules from Zhang and Thielscher (2015) . . 74
Table 10.1 Hypothesis tests between various strategies,⋆ represents a signi-

ficant value . 95
Table 10.2 Summary of experiments performed throughout the report . . . 96

L I ST OF LOGIC PROGRAMS

Logic Program A.1 Onitama Background Knowledge 105
Logic Program A.2 Five Field Kono . 107
Logic Program A.3 Cross-Dot Game . 108
Logic Program B.1 Examples of legal and illegal moves in Onitama 111
Logic Program B.2 Deep Ordering Translation for the Defend Task 114
Logic Program B.3 Examples of legal and illegal moves in Five Field Kono 121
Logic Program B.4 Examples of legal and illegal moves in Cross-Dot . . . 123

L I ST OF ALGORITHMS

Algorithm 7.1 Branch Generation . 69
Algorithm 7.2 Children Generation . 69

L I ST OF DEF IN IT IONS

3.1.1 Definition (literal) . 17
3.1.2 Definition (rule) . 17
3.1.3 Definition (logic program) . 18
3.1.4 Definition (variable safety) . 19

xi

xii List of Definitions

3.1.5 Definition (Herbrand Base) . 19
3.1.6 Definition (Herbrand Interpretation) . 19
3.1.7 Definition (Herbrand Model) . 19
3.1.8 Definition (Least Herbrand Model) . 19
3.1.9 Definition (reduct) . 20
3.2.1 Definition (choice rule) . 22
3.2.2 Definition (weak constraint) . 23
3.4.1 Definition (language bias) . 25
3.4.2 Definition (partial interpretation) . 26
3.4.3 Definition (Learning from Answer Sets task) 26
3.4.4 Definition (hypothesis length) . 28
3.4.5 Definition (language bias) . 29
3.4.6 Definition (ordering example) . 29
3.4.7 Definition (Learning from Ordered Answer Sets task) 29
3.4.8 Definition (Context Dependent Partial Interpretation) 30
3.4.9 Definition (Context Dependent Ordering Example) 30
3.4.10Definition (ContextDependent Learning fromOrderedAnswer Sets (loas)

task) . 30
3.4.11Definition (reify) . 34
3.4.12Definition (append) . 34

7.2.1 Definition (Minimax Phases) . 61
7.2.2 Definition (Explanation Condition) . 62
7.2.3 Definition (Deep Context Dependent Ordering Example) 64
7.2.4 Definition (Deep, Context Dependent loas task) 64
7.3.1 Definition (Meta-Program Injection) . 65

ACRONYMS

ai Artificial Intelligence

asp Answer Set Programming

cdoe Context Dependent Ordering Example

cdpi Context Dependent Partial Interpretation

gdl Game Description Language

ggp General Game Playing

ilasp Inductive Learning of Answer Set Programs

ilp Inductive Logic Programming

kif Knowledge Interchange Format

las Learning from Answer Sets

loas Learning from Ordered Answer Sets

naf Negation as Failure

pgn Portable Game Notation

xiii

Part I

PREL IMINAR IES

1 INTRODUCTION

Humans have been playing and mastering games for thousands of years. The earliest
games date back to the ancient Egyptian and Mesopotamian era, with games such as
Senet1 and the Royal Game of Ur2. Nowadays, people all over the world compete in fierce
championships to prove themselves to be the bestChess andGo players, but in recent years
computers have begun to surpass human level skill in many games (Mnih et al., 2013; Sil-
ver et al., 2017b). The rate at which these programs are learning is incredible, with world
champions describing the games they play as alien (Peter Heine Nielsen, 2017). However,
the moves that the programs make appear counter-intuitive or simply inexplicable even
by masters in the field, such as Michael Redmond3.

In this project we explore learning game strategies using a Inductive Logic Program-
ming (ilp) system, ilasp (Law, Russo and Broda, 2014), built on top of a logical paradigm
known as Answer Set Programming (asp). We utilise weak constraints as the method of
comparing board states and explore what strategies, if any, can be expressed using them.
The advantages of using a logical framework is that they are explainable. Strategies that
can be learnt in an ilp system can be conveyed in English.

1.1 motivation

Inductive Learning of Answer Set Programs (ilasp) has recently been extended to learn
preferences through weak constraints (Law, Russo and Broda, 2015a). By specifying an
ordering over particular concrete examples it learns generic rules that can be used to
score future examples. Whilst it has been used in some small cases to learn very guided
hypotheses (Law, Russo and Broda, 2015b), in this project we aim to use ilasp to learn
about more open ended, practical problems.

Board games have long been used in the field of machine learning as a way of demon-
strating the power of a particular system, e. g. Reinforcement Learning in AlphaZero to
learn the game Go. Games are a convenient way of demonstrating machine learning for
several reasons:

• they are easy to follow,

• it is easy to determine the success or failure of the agent,

• the environment is self-contained and therefore fairly simple.

Learning strategies in board games is a domain specific view of themore general problem
of preference learning. When a player chooses a move to play they are expressing their
preference for that move over other possible options. Preference learning is a problem
that has been attempted in many fields for other purposes (e. g. PageRank Algorithms,
Liu (2007)). Preference learning in ilasp tries to find a minimal hypothesis that exactly

1 https://www.boardgamegeek.com/boardgame/2399/senet
2 http://www.britishmuseum.org/research/collection_online/collection_object_
details.aspx?objectId=8817&partId=1

3 When talking about move 37 of game 2, AlphaGo vs. Lee Sedol

3

https://www.boardgamegeek.com/boardgame/2399/senet
http://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=8817&partId=1
http://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=8817&partId=1

4 introduction

describes the non-noisy examples, the hypotheses can contain variables, allowing them to
generalise over other examples. We explore the effectiveness and suitability of using ilasp,
developed by Law, Russo and Broda (2014) at Imperial College London, as a solution to
this problem.

In this project we primarily use the strategy game Onitama to test and explore ilasp.
Onitama was chosen as it has not been solved but is not as complex as Chess. The game
also is a little different to traditional abstract strategy games. Specifically, the movement
of the pieces changes every turn (in a predictable manner) through the use of a set of
cards and so having a strategy that prefers a particular piece is not viable (cf. the Queen
in Chess), instead ilasp will need to learn higher level movement features. Additionally,
Onitama has a random set up and so there is no similar notion of standard opening theory
that exists in Chess.

1.2 objectives

The objectives for this project are:

• formulate a methodology of learning a game from rules to winning;

• learn the rules of various games from incomplete examples of legal and illegal
moves, for completeness of the methodology;

• explore what strategies can be expressed using weak constraints and potential ex-
tensions to current ilasp tasks in order to cover a larger space;

• evaluate the effectiveness of the strategies learnt by ilasp against various hard-
coded strategies.

1.3 contributions

There are four main contributions in this project. Firstly, we provide an exploration of
ilasp’s ability to learn immediate strategies, starting with choosing an appropriate repres-
entation for the game in logic (Chapter 5). Strategies such as capturing, evading capture,
and controlling space are explored in Chapter 10. In order to complete the study of learn-
ing games, Chapter 9 shows ilasps ability to learn the rules of the game after being shown
some, but not all, legal and illegal moves in only a handful of board states.

Wehave implemented a planner that can run in twomodes, training-mode and tournament-
mode, which collect different types of examples to use when learning (Chapter 6). It inter-
faces directly with Clingo (Kaminski, 2014), an answer set solver, in an intelligentmanner
in order to batch evaluate many states.

We present experimentation into learning game strategies using two techniques in
Chapter 10. Thefirst is to observe themoves of thewinner of a game in order to learn their
strategy, the second involves having a player critique the ai whilst playing and suggesting
better moves and learning solely from these counter examples.

Finally, we present an extension to the Learning from Answer Sets (las) framework,
ILPdeep

loas , that is capable of learning strategies that reason into the future (Chapter 7 and
Section 10.2), by not comparing examples of the same board state, but by incorporating
the minimax theorem into the search of the game tree in order to find learning examples

1.3 contributions 5

that express the strategy further down the tree. An example of a strategy that would need
this technique is learning to exchange pieces on the board. Along with this extension, we
present a proof of the correspondence between the set of orderings chosen by the system
and the minimax theorem. The creation of the additional examples can be achieved in a
partially automatedmanner given the representation of the games described in Chapter 5.

2 GAMES UNDER STUDY

2.1 onitama

Onitama is a two-player, perfect information, abstract strategy game. Unlike traditional
strategy games such as chess,Onitama has a random starting configuration. Additionally,
the players’ possible moves are determined bymove cards, which vary from game to game.

Each player has two types of pawns: one master (¥) and four student (§) pawns. The
master starts on the respective players’ temple squares.

2.1.1 rules

objective

There are two winning conditions in the game, achieved either by capturing the oppon-
ent’s master pawn, or by moving one’s master pawn to the opponent’s temple square.

setup

The game is played on a 5-by-5 grid, with each player starting with one master and four
student pawns.

Fivemove cards are then drawn and each player is given two, with the last placed in the
middle.

Remark. The centre card denotes who will start by means of a coloured icon on the card;
in diagrams I use the side of the board to denote this. The right side of the board is blue,
the left is red, i. e. the card is always on the players’ right. In Figure 2.1 the blue player is
starting.

5
oovoo

4

3

2

1
oovoo

1 2 3 4 5

ox monkey

cobra rabbit

crane

Figure 2.1. Onitama setup configuration, with the cards ox, monkey,
crane, rabbit, cobra.

7

8 games under study

moving

Move cards show how a piece can move; a player may move any of their pieces according
to the cards. A pawn may jump over other pawns and a player may capture an opponent’s
pawn only by moving on to the space that it occupies. Once amove card has been used it
is swapped with the move card in the centre.

A move card shows a 5× 5 grid, a central dark grey square representing the pawn’s
starting location, lighter grey squares representing valid moves for that pawn (these are
relative to the start location). Example 2.1.1 shows all valid moves from the rabbit
card.

Remark. The location of a pawn is denoted by the pawn’s symbol followed by a tuple
(Row, Column) where (1, 1) is the bottom-left, e. g. ¥ (2, 3) means the red master at row
2, column 3, and § (5, 5) means a blue student at row 5, column 5 (i. e. the top-right
corner).

Example 2.1.1. Figure 2.2 below shows the use of the rabbit card on the blue player’s turn.
It depicts several key points:

• The move card is being used by both § and ¥ pawns

• Pawns may jump over pawns, e. g. ¥ (3, 1) jumping over § (3, 2)

• Pawns cannotmove to a position occupied by a pawn of the same team, e. g. § (2, 2)
cannot move to (2, 4)

• Pawns cannot move off the board, nor does it wrap, e. g. ¥ (3, 1) and § (2, 4)

• Pawns can capture opponent pawns, e. g. ¥ (3, 1) captures § (4, 2)

rabbit

5
v

4
o

3
vo

2
o o

1

1 2 3 4 5

Figure 2.2. Use of the rabbit card

Example 2.1.2. Figure 2.3 shows the rabbit card being used by the red player. The only
point of note here is that the card has been rotated 180° to face the red player.

2.1.2 three card variation

A game of Onitama normally uses five cards, offering players a maximum of 8 moves
per pawn to choose from, and allowing players to selectively withhold cards from their

2.1 onitama 9

rabbit 5

4

3
v

2

1

1 2 3 4 5

Figure 2.3. Use of the rabbit card with the opposite player

opponent. This creates amuch larger state space and invites highly complex strategies. To
simplify the problem whilst learning, I used just three cards; one per player and a centre
card. It follows that players can now deterministically calculate the cards they will receive
and therefore have certainty over which moves will be available to them in the future.

2.1.3 example game

Games of Onitama can be expressed in a modified Portable Game Notation (pgn) (Ed-
wards, 1994). A halfmove is denoted in a similar way to a pawn’s location: the pawn’s
symbol, starting and ending location, and the card name used. A full move is denoted by
the move number, followed by the halfmove of each player. A capture is denoted using a
× between the starting and ending locations.

Example 2.1.3. The following is a short example of a full game ofOnitama, with the board
states depicted in Figure 2.8. The cards used in this game can be found in Figure 2.4.

1. § (1, 2)(2, 2) mouse § (5, 4)(4, 4) boar
2. ¥ (1, 3)(2, 3) panda § (5, 5)(4, 5) mouse
3. § (1, 4)(2, 4) boar § (4, 4)(3, 3) panda
4. ¥ (2, 3) × (3, 3) mouse § (5, 2)(4, 2) boar
5. § (1, 5)(2, 5) panda § (4, 5)(4, 4) mouse
6. ¥ (3, 3)(3, 4) boar § (4, 4) × (3, 4) panda

10 games under study

boar mouse panda

Figure 2.4. Move Cards featured in the Game

5
oovoo

4

3

2

1
oovoo

1 2 3 4 5

boar

mouse

panda

(a) Initial Board

Figure 2.5. Example game following the moves from Example 2.1.3

2.1 onitama 11

boar mouse panda

Figure 2.4. Move Cards featured in the Game (repeated from page 10)

5
oovoo

4

3

2
o

1
o voo

1 2 3 4 5

boar

mouse

panda

(a) 1. § (1, 2)(2, 2) mouse

5
oov o

4
o

3

2
o

1
o voo

1 2 3 4 5

mouse

panda

boar

(b) 1. § (5, 4)(4, 4) boar

5
oov o

4
o

3

2
ov

1
o oo

1 2 3 4 5

mouse

panda

boar

(c) 2. ¥ (1, 3)(2, 3) panda

5
oov

4
oo

3

2
ov

1
o oo

1 2 3 4 5

panda

boar

mouse

(d) 2. § (5, 5)(4, 5) mouse

Figure 2.6. Example game following the moves from Example 2.1.3 (cont.)

12 games under study

boar mouse panda

Figure 2.4. Move Cards featured in the Game (repeated from page 10)

5
oov

4
oo

3

2
ovo

1
o o

1 2 3 4 5

panda

boar

mouse

(a) 3. § (1, 4)(2, 4) boar

5
oov

4
o

3
o

2
ovo

1
o o

1 2 3 4 5

boar

mouse

panda

(b) 3. § (4, 4)(3, 3) panda

5
oov

4
o

3
v

2
o o

1
o o

1 2 3 4 5

boar

mouse

panda

(c) 4. § (2, 3) × (3, 3) mouse

5
o v

4
o o

3
v

2
o o

1
o o

1 2 3 4 5

mouse

panda

boar

(d) 4. § (5, 2)(4, 2) boar

Figure 2.7. Example game following the moves from Example 2.1.3 (cont.)

2.1 onitama 13

boar mouse panda

Figure 2.4. Move Cards featured in the Game (repeated from page 10)

5
o v

4
o o

3
v

2
o oo

1
o

1 2 3 4 5

mouse

panda

boar

(a) 5. § (1, 5)(2, 5) panda

5
o v

4
o o

3
v

2
o oo

1
o

1 2 3 4 5

panda

boar

mouse

(b) 5. § (4, 5)(4, 4) mouse

5
o v

4
o o

3
v

2
o oo

1
o

1 2 3 4 5

panda

boar

mouse

(c) 6. § (3, 3)(3, 4) boar

5
o v

4
o

3
o

2
o oo

1
o

1 2 3 4 5

boar

mouse

panda

(d) 6. § (4, 4) × (3, 4) boar

Figure 2.8. Example game following the moves from Example 2.1.3 (cont.)

14 games under study

2.2 five field kono

Five Field Kono is a checkers-like strategy game originating in Korea. Two players try
to block and out manoeuvre each other in order to occupy the starting spaces of their
opponent. All counters move in the same fashion, diagonally, and there are no captures
in the game.

In this report I use Five Field Kono to demonstrate the techniques used throughout in
the setting of a different game.

2.2.1 rules

moves

All counters can move one space along any diagonal, but cannot jump pieces and cannot
occupy the same space as another counter, as illustrated in Figure 2.9.

Figure 2.9. Legal moves for the red player

objective

Aplayer is trying tomove from their starting position to their opponent’s starting position
before their opponent does the same. If a player leaves counters in their starting position
they count in their opponent’s favour, thus their opponent only has to occupy the vacated
spaces. A player must have at least one of their counters in their opponent’s starting posi-
tions in order to win. Figure 2.10 shows the starting and some winning conditions of the
game.

(a) Initial state of the board (b) Winning state for blue by
occupying all of red’s
initial spaces

(c) Winning state for red by
occupying all of blue’s
vacated initial spaces

Figure 2.10. The initial state of the game of Five Field Kono alongside some
winning states

2.3 cross-dot game 15

2.3 cross-dot game

The Cross-Dot game is a variation of Tic-Tac-Toe which I have taken from the literat-
ure (Zhang and Thielscher, 2015). The Cross-Dot game, another name for an m–k game,
where players aim to get k boxes in a rowmarkedwith their player symbol (from a possible
m boxes).

2.3.1 rules

The rules of the game are very straight-forward, on your turn you may mark any empty
box with your marker (× or ·). The board is initially completely empty, and the game
ends when one of the players achieves k contiguous boxes for the win, or when all of the
boxes are filled. The× player starts the game.

□ □ □ □ □ □
(a) Initial state of the board

□ ⊠ ⊡ □ □ □
(b) Example of some moves

⊠ ⊠ ⊡ □ □ □
(c) A winning state for×

Figure 2.11. Some example states of the Cross-Dot Game (m = 6, k = 2)

3 BACKGROUND

3.1 normal logic programs

Normal logic programs extend definite logic programs to include the notion of Negation
as Failure (naf). Negation as Failure, denoted by the operator not, differs from classical
negation (¬). Informally, not p means that it cannot be proven that p holds. Below is an
example of naf to illustrate its semantics.

Example 3.1.1. Below is an example game state of Onitama in which the blue player has
just won.

5

4
o

3
v o

2
o

1

1 2 3 4 5

viper

frog

rabbit


master_on_board(blue)

students_on_board(blue, 1)

students_on_board(red, 2)

On the right is a set of predicates that we know to be facts about the board. Below is a
rule about the master being captured.

master_captured(P)← player(P), not master_on_board(P).

From this rule we can deduce that master_captured(red), because it cannot be shown
that master_on_board(red) is true. However, master_captured(blue) cannot be deduced
because, by the set of facts above, the blue master is on the board.

3.1.1 syntax

Logic programs are constructed from terms, which consist of variables, constants, and n-
ary function symbols, atoms, which are n-ary predicates defined over terms, and literals
and clauses (defined below).

Definition 3.1.1 (literal). A literal is an expression of the form A, a positive literal, or
not A, a negative literal, where A is an atom.

Definition 3.1.2 (rule). Clauses, or rules, are formulæ of the form

h← b1, . . . , bm, not c1, . . . , not cn (r)

where h, each bi, i ∈ [1, m] and cj, j ∈ [1, n] are atoms, m ≥ 0, n ≥ 0.
head(r) = h, is the head of the rule, body+(r) = {b1, . . . , bm} are the positive body

literals, and body−(r) = {c1, . . . , cn} are the negative body literals.

17

18 background

A fact is a rule, r, with no body literals, i. e. body+(r) ∪ body−(r) = ∅. A constraint,
or hard constraint, is a rule, r, with no head, i. e. head(r) = ⊥.

A ground rule is one which contains no variables, i. e. all terms that appear in the clause
are constants. The set of ground rules created by substituting all variables with all com-
binations of atoms from the language is known as the ground instances. For example, the
ground instances1 ofmaster_on_board(Player)← location(pawn(master, Player), Cell)
are:



master_on_board(red)← player(red), location(pawn(master, red), cell(1, 1))

master_on_board(blue)← player(blue), location(pawn(master, blue), cell(1, 1))

master_on_board(red)← player(red), location(pawn(master, red), cell(1, 2))

master_on_board(blue)← player(blue), location(pawn(master, blue), cell(1, 2))

· · ·
master_on_board(red)← player(red), location(pawn(master, red), cell(3, 3))

master_on_board(blue)← player(blue), location(pawn(master, blue), cell(3, 3))

· · ·
master_on_board(red)← player(red), location(pawn(master, red), cell(5, 5))

master_on_board(blue)← player(blue), location(pawn(master, blue), cell(5, 5))

Definition 3.1.3 (logic program). A logic program is a set of rules. The grounding of the
logic program is the union of the sets of ground instances of each rule.

Example 3.1.2. Let the followingnormal logic program2, Πlocation, representwhere pawns
are on the board.

location(pawn(master, red), cell(2, 1)). (3.1)
location(pawn(master, blue), cell(3, 2)). (3.2)

next(location(pawn(Rank, Player), Cell)) (3.3)
← location(pawn(Rank, Player), Cell),

not does(_, move(_, Cell, _)),
not does(Player, move(Cell, _, _)).

next(location(pawn(Rank, Player), To)) (3.4)
← location(pawn(Rank, Player), From),

does(Player, move(From, To, _)).

← location(P1, Cell, T), location(P2, Cell, T), P1 < P2. (3.5)

Rules 3.1 and 3.2 are facts, they represent where the two master pawns are currently.
Rules 3.3–3.4 are normal rules. They describe where a pawn is at the next time step.
Rule 3.3 says a pawn will be in a cell if it is currently in that cell, nothing has been moved

1 For ease of reading I have only included groundings that make semantic sense, i. e. not substituting the Cell
variable with red, although they are a part of the set of ground instances

2 _ is an anonymous variable, meaning we do not care about its value

3.1 normal logic programs 19

there, and it has not been moved (i. e. a pawn is in the same location as before and it has
not been captured or moved). When a pawn is moved rule 3.4 says that it will be in the
new location at the next time step. There is a subtle difference between the use of the
anonymous variables used in rule 3.3 and those in rule 3.4. In rule 3.3 they create a pro-
jection of the does predicate, and the meaning becomes “there is not a move that ends in
this location”. If the anonymous variables were actual variables3 then even if there was a
move that ended in Cell, you could satisfy the naf literal with any other player, or card, for
example. On the other hand, in rule 3.4 the anonymous variable can be substituted with
a variable as the meaning simply means “for some card”. Finally, rule 3.5 is a constraint
saying that only one piece can be in a square at any given time.

Note. Rule 3.5 uses < for inequality instead of ̸=. This is because using ̸= means the
constraint is symmetric, doubling its grounding. All terms are totally ordered and so
these are equivalent.

Definition 3.1.4 (variable safety). A variable is safewithin a rule iff it appears in a positive
body literal. A rule is safe iff all of its variables are safe.

Example 3.1.3. The following rule are not safe.

opponent(pawn(Rank1, red), pawn(Rank2, blue)). (3.6)
center_card(Card)← not in_hand(red, Card),

not in_hand(blue, Card).

(3.7)

Rule 3.6 has variables (Rank1, Rank2) in the head of a rule with no body, therefore they
appear in no positive body literal. In rule 3.7 the variable Card only appears in negative
body literals.

3.1.2 herbrand models

Definition 3.1.5 (Herbrand Base). The Herbrand Base of a program, Π, is the set of all
ground atoms that can be constructed from predicates in Π and the ground terms that
can be constructed using the terms and function symbols that occur in Π. It is denoted
by atoms(Π).

Definition 3.1.6 (Herbrand Interpretation). Let Π be a definite logic program (i. e. one
withoutNegation as Failure), which is written in languageL. AHerbrand Interpretation is
created by assigning every α ∈ atoms(Π) either true (⊤) or false (⊥). The interpretation
is usually written as the set of atoms that have been assigned to true, everything else is
false.

Definition 3.1.7 (Herbrand Model). A Herbrand Model is a Herbrand Interpretation, I,
which satisfies every rule in Π, that is to say for every rule R ∈ Π if body+(R) ⊆ I and
body−(R) ∩ I = ∅ then head(R) ∈ I.

Definition 3.1.8 (Least Herbrand Model). A least Herbrand Model is a Herbrand Model
which has a ⊆-minimal set of true ground atoms, which for definite logic programs is
always unique. The least Herbrand Model of Π is denoted M(Π).

3 You would also need to make the rule safe with types for the new variables

20 background

Example 3.1.4. Take the following logic program Π:

opponent(red, blue) (3.8)
opponent(blue, red) (3.9)

control(red) (3.10)
next(control(Player))← control(Opp), opponent(Player, Opp). (3.11)

and the set atoms(Π)4:{
opponent(red, blue), opponent(blue, red), control(blue), control(red),

next(control(red)), next(control(blue))

One possible Herbrand Interpretation is:{
opponent(blue, red), control(red),

next(control(red)), next(control(blue))

However this is not a model as opponent(red, blue) is not true and neither is the rule 3.11.
Another Herbrand Interpretation is:{

opponent(red, blue), opponent(blue, red),

control(red), next(control(blue))

this interpretation is a Herbrand Model. Further, it is a Least Herbrand Model.

3.1.3 stable model semantics

The stable model semantics shown below is based on that presented by Gelfond and Lif-
schitz (1988).

Definition 3.1.9 (reduct). Let Π be any ground normal logic program. Let atoms(Π) be
the Herbrand Base. Let X ⊆ atoms(Π) be a set of atoms. The reduct ΠX is the set of
clauses obtained from Π as follows:

(i) delete any clause in Π that has a formula not A such that A ∈ X

(ii) delete all remaining formulæ of the form not A in the bodies of the remaining
clauses

or equivalently:

ΠX ≜
{

head(r)← body+(r) | r ∈ Π, body−(r) ∩ X = ∅
}

(3.12)

X is a stable model, or answer set, of Π iff X = M(ΠX).

4 For convenience, we only show the subset of the Herbrand Base that needs to be constructed, other atoms
such as next(control(control(blue))) would also be in the Herbrand Base

3.1 normal logic programs 21

Example 3.1.5. Let Π be the grounding of a subset of the logic program fromExample 3.1.2,
with an extra fact denoting the ¥master’s move:

Π = ground





location(pawn(master, blue), cell(3, 2)).

next(location(pawn(Rank, Player), Cell))

← location(pawn(Rank, Player), Cell),

not does(_, move(_, Cell, _)),
not does(Player, move(Cell, _, _)).

next(location(pawn(Rank, Player), To))

← location(pawn(Rank, Player), From),

does(Player, move(From, To, _)).

does(blue, move(cell(3, 2), cell(2, 1), monkey)).




Let X be the following set of atoms:

location(piece(master, blue), cell(3, 2))

next(location(piece(master, blue), cell(2, 1)))

does(blue, move(cell(3, 2), cell(2, 1), monkey))

5

4

3
v

2

1

1 2 3 4 5
monkey

Figure 3.1. Graphical representation of X in Example 3.1.5

22 background

Constructing ΠX gives us:

location(piece(master, blue), cell(3, 2))

does(blue, move(cell(3, 2), cell(2, 1), monkey))

next(location(pawn(master, blue), cell(3, 2)))

← location(pawn(master, blue), cell(3, 2)),

does(blue, move(cell(3, 2), cell(3, 2), monkey)).

next(location(pawn(master, blue), cell(2, 1)))

← location(pawn(master, blue), cell(3, 2)),

does(blue, move(cell(3, 2), cell(2, 1), monkey)).

next(location(pawn(master, blue), cell(3, 2)))

← location(pawn(master, blue), cell(2, 1)),

does(blue, move(cell(2, 1), cell(3, 2), monkey)).

next(location(pawn(master, blue), cell(2, 1)))

← location(pawn(master, blue), cell(2, 1)),

does(blue, move(cell(2, 1), cell(2, 1), monkey)).

When we compute the least Herbrand model of ΠX we get:
location(pawn(master, blue), cell(3, 2))

next(location(pawn(master, blue), cell(2, 1)))

does(blue, move(cell(3, 2), cell(2, 1), monkey))

which is X, and therefore X is an answer set.

3.2 answer set programming

Answer Set Programming (asp) is a form of declarative programming oriented towards
difficult search problems (Lifschitz, 2008). It introduces new concepts such as choice rules
and weak constraints (Calimeri et al., 2013), described below. Throughout this report I
will be using the answer set solver Clingo.

3.2.1 choice rules

Definition 3.2.1 (choice rule). A choice rule is a rulewith an aggregated head. It is of the
form

l {L1, . . . , Lh} u← B1, . . . , Bm (3.13)

where l, u ∈ N are the lower and upper bound, respectively, and Li where i ∈ [1, h] is
a literal. This aggregated head creates between l and u new rules where the head L ∈
{L1, . . . , Lh} and the body is B1, . . . , Bm. Due to the fact there can be many ways of
satisfying these conditions choices rules provide a way of generating multiple answer sets.

3.2 answer set programming 23

Example 3.2.1. This example gives the background knowledge for the moves that can be
made on a turn T.

0 {does(Player, Action)} 1← legal(Player, Action), not terminal. (3.14)
← does(Player, move(From1, To1, Card1)),

does(Player, move(From2, To2, Card2)),

neq(From1, To1, Card1) < neq(From2, To2, Card2).

(3.15)

← legal(_, _), not does(_, _), not terminal. (3.16)

Rules 3.14–3.16 describe what is allowed to be a move within the game. Rule 3.14 is a
choice rule with an lower bound of 0 and an upper bound of 1. It states that for each
grounding of a valid move we can either choose to make a move or not. Rules 3.15
and 3.16 together enforce that there is at least one unique move at any given time, so
long as there is a valid move that can be made. The case when there is no valid move is
dealt with separately.

Remark. If Rule 3.14 was a normal rule the program would be unsatisfiable because it
would force all valid moves to be chosen moves, violating the uniqueness constraint.

3.2.2 weak constraints

Weak constraints were originally introduced in Disjunctive Datalog (Buccafurri, Leone
and Rullo, 1997) in order to specify integrity constraints that should be satisfied if possible.
They were used to express optimisation ideas such as “ensure there are as few timetable
clashes as possible”. In this report we are trying to optimise a player’s performance in a
game. ,Thus, we can harness weak constraints to represent tactics in a game that build
upon each other in order to describe a strategy.

Definition 3.2.2 (weak constraint). Weak constraints create an ordering over AS(Π),
specifying which answer sets are “better” than others. Unlike hard constraints, weak con-
straints do not affect what is or is not in an answer set of a program Π (Law, Russo and
Broda, 2015a).

A weak constraint is of the form

⇝b1, . . . , bm, not c1, . . . , not cn.[w@l, t1, . . . , to] (3.17)

where b1, . . . , bm, c1, . . . , cn are atoms from LH , w and l are terms specifying the weight
and level, and t1, . . . , to are terms. All variables in weak constraint 3.17 must be safe,
i. e. all variables that appear in t1, . . . , to must appear in the positive body literals.

When a weak constraint’s body is satisfied a tuple (w, l, t1, . . . , to) is generated, where
ti are the ground terms in the weak constraint. For any asp program Π and answer set
A ∈ AS(Π) there is a set weak(Π, A) of tuples (w, l, t1, . . . , to) corresponding to weak
constraints whose body is satisfied.

Example 3.2.2. The following weak constraints are one possible way of expressing that a
player wishes to win first and foremost, and capture pieces whilst maintaining their own

24 background

if possible. The goal(·, ·) predicate5 is which denotes that a player has received some
reward for meeting some game condition (e. g. winning).

⇝not goal(red, 100).[5@2] (3.18)
⇝location(pawn(student, blue), Cell)[1@1, Cell] (3.19)
⇝location(pawn(student, red), Cell)[−1@1, Cell] (3.20)

Weak Constraint 3.18 says that if we cannot show that red has won then we incur a pen-
alty of 5. The priority level 2 means that this constraint will be minimised first. Weak
constraint 3.19 says that if we find a blue student (§) on the board then we incur a penalty
of 1. The variable Cell means we incur this penalty for each unique grounding of these
variables, i. e. each blue student on the board. Weak constraint 3.20 says we gain a reward
for each red student (§) on the board. Both weak constraint 3.19 and 3.20 are at priority
level 1 and so the penalties are added (e. g. if there were 2×§ and 1×§ on the board, and
it is not a winning state for red, the score would be 5 at level 2, and 1 at level 1).

The semantics for weak constraints presented below are based on those in Calimeri et
al. (2013) and Law, Russo and Broda (2015a). For any level l ∈N, A ∈ AS(Π) let

PA
l = ∑

w∈W l
A

w

denote the penalty of the answer set A ∈ AS(Π), at level l whereWA
l = {w | (w, l, t1, . . . , to) ∈

weak(Π, A)}. A1 dominates A2 (A1 ≻Π A2) iff ∃l such that PA1
l < PA2

l and ∀l′ >
l ⇒ PA1

l′ = PA2
l′

Example 3.2.3. Given some program Π containing weak constraints 3.18–3.20 such that
the only answer sets areAS(Π) = {A1, A2}, let

weak(Π, A1) = {(5, 2), (1, 1, cell(3, 2)), (1, 1, cell(2, 4)), (−1, 1, cell(2, 3))}
weak(Π, A2) = {(5, 2), (1, 1, cell(5, 4)), (−1, 1, cell(3, 4))}

P2
A1

= 5

P1
A1

= 1 + 1− 1 = 1

P2
A2

= 5

P1
A2

= 1− 1 = 0

therefore A2 ≻Π A1 as the penalties at level 2 are equal and P1
A2

< P1
A1

. Additionally as
no answer set dominates A2 it is optimal.

Remark. Clingo uses the notation :- in place of←, and : ̃ in place of ⇝.

3.3 inductive logic programming

The field of Inductive Logic Programming (ilp) essentially combines Machine Learning
with logical knowledge representation (Muggleton et al., 2011). The definition of a in-
ductive learning problem is given in Muggleton (1991) and Muggleton and Raedt (1994).
The general setting for a inductive logic program has three languages:

5 We will later see in Chapter 5 that this predicate is defined by a game description language

3.4 inductive learning of answer set programs 25

LE: The language of the examples

LB: The language of the background knowledge

LH : The language of the hypotheses

The general induction learning problem is then defined as follows: given a set of ground,
atomic examples or observations E+ ⊆ LE, a background knowledge B ⊆ LB, both
consistent, find a hypothesis H ⊆ LH such that B ∪ H ⊨ E+, that is, the background
knowledge together with the learnt hypothesis entail, or cover, the observations.

A set of negative examples E− ⊆ LE can also be given (Muggleton and Raedt, 1994), it
is then required that the background knowledge together with the hypothesis is consistent
with respect to the negative examples, ∀e− ∈ E− . B ∪ H ∪ e− ⊨ □.

3.4 inductive learning of answer set programs

In Law, Russo and Broda (2014) the concept of ilasp was introduced. This expanded
on previous work in the ilp field such as Progol, Metagol and hail (Muggleton, 1995;
Muggleton et al., 2014, and; Ray, Broda and Russo, 2003). The previous work mainly
focussed on definite and normal logic programs, whereas ilasp looks at a different class of
programs; Answer Set Programs (Law, Russo and Broda, 2014). In this section I will look
into the first version of ilasp. I also explore further advances, for example, learning from
weak constraints (Law, Russo and Broda, 2015a) and learning from context dependent
examples (Law, Russo and Broda, 2016).

The problem is structured in a similar manner to the general inductive problem. How-
ever the sets of examples, E+, E−, are now no longer individual atoms, but instead partial
interpretations, meaning a problem from Progol, for example, could be constructed with
a single example.

In this section, it is assumed that background knowledge and hypotheses are asp pro-
grams, as defined in Section 3.2.

3.4.1 learning from answer sets

In this section, I define the ilasp paradigm based on Law, Russo and Broda (2014).
In an ilp task the hypothesis space is defined by a language bias, which specifies how
LH is built.

Definition 3.4.1 (language bias). A Learning from Answer Sets (las) language bias is
defined as a pair of mode declarations Mlas = ⟨Mh, Mb⟩, where Mh and Mb are the head
and body mode declarations, respectively. Both Mh and Mb are sets of literals with their
arguments replaced with vtype and ctype denoting ‘variable’ and ‘constant’, respectively,
where type is the type of the variable or constant.

Given a language bias Mlas, a rule, r, of the form Lh ← L1, . . . , Lm,
not Lm+1, . . . , not Ln such that n ≥ m ≥ 0 is in the search space Slas

M iff

(i) either

a) Lh is empty or

b) Lh is compatible with Mh or

26 background

c) Lh is an aggregate l {h1, . . . , hk} u such that 0 ≤ l ≤ u ≤ k and ∀i ∈ [0, k]
hi is compatible with Mh

(ii) ∀i ∈ [1, n] Li is compatible with Mb

(iii) All variables are safe

Finally, each rule r ∈ Slas
M is given a unique identifier rid.

Remark. Informally, a literal is compatible with a mode declaration m if there exists an
instance of v (resp. c) that can be replaced by a variable (resp. constant).

Example 3.4.1. Let Mlas = ⟨{goal(vrole, creward)}, {opponent(vrole, vrole), temple(vrole, vcell),
location(pawn(crank, vrole), vcell)}⟩. Then the following rules are in Slas

M :

goal(Player, 100)← opponent(Player, Enemy),

temple(Enemy, Temple),

location(pawn(master, Player), Temple).

← not opponent(Player, Enemy),

temple(Enemy, Cell),

location(pawn(master, Player), Cell).

However the following is not:

goal(red, Reward)← opponent(red, Enemy),

temple(Enemy, Cell),

location(pawn(master, red), Cell).

because there is no head mode declaration that allows the goal predicate with this com-
bination of variables and constants, similarly for the body literal opponent, and because
the second argument in pawn should be a variable according to the language bias.

Definition 3.4.2 (partial interpretation). A partial interpretation E is a pair
⟨Einc, Eexc⟩ of sets of ground atoms fromLE, called the inclusions and exclusions, respect-
ively. An Answer Set A extends ⟨Einc, Eexc⟩ iff Einc ⊆ A and Eexc ∩ A = ∅.

A partial interpretation E is bravely entailed by a program Π iff there exists A ∈
AS(Π) such that A extends E. E is cautiously entailed by Π iff for every A ∈ AS(Π)

A extends E.

Definition 3.4.3 (Learning from Answer Sets task). A Learning from Answer Sets task is
a tuple T = ⟨B, Slas

M , E+, E−⟩ where B is the background knowledge, Slas
M is the search

space defined by the language bias Mlas, and E+ and E− are partial interpretations called,
respectively, the positive and negative examples.

A hypothesis H is an inductive solution of T (H ∈ ILPlas(T)) iff:

(i) H ⊆ Slas
M

(ii) ∀e+ ∈ E+ ∃A ∈ AS(B ∪ H) such that A extends e+

(iii) ∀e− ∈ E− ¬∃A ∈ AS(B ∪ H) such that A extends e−

3.4 inductive learning of answer set programs 27

Example 3.4.2. In this example we try to learn who the start player of a game of onitama
is. Recall from Section 2.1 that all the move cards have a icon depicting either the red or
the blue player, here this is represented by icon(·, ·). does(·, ·) denotes an action taken
by a player, control(·) denotes whose turn it is, other predicates have their intuitive
meaning.

Let T = ⟨B, Slas
M , E+, E−⟩ be a learning task where B is the following logic program:6 7

in_play(panda; mouse; fox). (3.21)
in_hand(red, panda). (3.22)
in_hand(blue, mouse). (3.23)
does(red, move(cell(4, 2), cell(3, 2), panda)). (3.24)
icon(panda, red). (3.25)
icon(mouse, blue). (3.26)
icon(fox, red). (3.27)
icon(viper, red). (3.28)

control(Player)← init(control(Player)), not control(_)). (3.29)
next(control(red))← control(blue). (3.30)
next(control(blue))← control(red). (3.31)

next(in_hand(Player, Card))← in_hand(Player, Card),

not control(Player).

(3.32)

next(in_hand(Player, Card))← center_card(Card), control(Player). (3.33)

5

4
o

3

2

1

1 2 3 4 5

panda

fox

mouse

Figure 3.2. Simplified graphical representation of the background facts of B
in Example 3.4.2

Mlas =

⟨
{init(control(vrole)), center_card(vcard)} ,

{in_play(vcard), in_hand(crole, vcard), icon(vcard, vrole), center_card(vcard)}

⟩

6 Some types have been omitted for brevity
7 ; is used to abbreviate atoms e. g. a(b; c). ≡ a(b).a(c).

28 background

Then the following set of positive examples say that on the second turn the red player
must be in possession of the fox card, and that neither mouse nor panda are the initial
centre card.

E+ = {⟨{next(in_hand(red, fox))}, {center_card(mouse), center_card(panda)}⟩}

Additionally, the negative examples below say that in no answer set can both players start,
and that the viper is never the centre card.

E− = {⟨{init(control(red)), init(control(blue))}, ∅⟩, ⟨{center_card(viper)}, ∅⟩}

The learnt hypothesis H is:

init(control(Player))← center_card(Card), icon(Card, Player). (3.34)
center_card(Card)← in_play(Card),

not in_hand(blue, Card),

not in_hand(red, Card).

(3.35)

Rule 3.34 says that the first player is given by the player icon on the centre card. Rule 3.35
says that the centre card is the card in play that is in neither player’s hand.

It is possible that several hypotheses will cover the examples, ilasp will choose one of
the shortest length, defined below.

Definition 3.4.4 (hypothesis length). Given a hypothesis H, the length of the hypothesis
|H| is the number of literals in HD where HD is obtained from H by replacing all the
aggregates by their disjunctive normal form. For example, hypothesis H above (rules 3.34
and 3.35) is length 7.

3.4.2 learning weak constraints

So far we have seen that answer sets can represent states of the board (i. e. Figure 3.2) and
that multiple moves can generate several answer sets using choice rules (Definition 3.2.1),
which can be used to represent small expanded sections of a game tree. When learning
strategies we need some notion of preference over these answer sets, and by extension
the moves. In commonly used machine learning methods for playing games, such as
reinforcement learning, a state-action value function can be used to estimate the reward
of taking an action in a certain state. Answer Set Programming provides us with weak
constraints (Definition 3.2.2) which can assign penalties8 to answer sets, acting as a form
of state-action value function. Law, Russo and Broda (2015a) introduces loas, a system
that extends las to learn these weak constraints.

In previous ilp systems such as tilde (Blockeel andDeRaedt, 1998), preferential learn-
ing was approached as a classification problem (Dastani et al., 2005), with each labelled as
‘good’ or ‘bad’. The drawback is that it offers no relative preference between two examples
classified as ‘good’ (or ‘bad’).

In order to learn weak constraints we need to extend the notion of mode declaration
to be able to generate a language bias that includes weak constraints. Therefore two new
mode declarations are added: Mo which specifies what can appear in the body of a weak

8 or negative penalties, i. e. rewards

3.4 inductive learning of answer set programs 29

constraint, and Mw which specifies what can appear as a weight. We also give lmax ∈ N

as the maximum level that can appear in H.
Weak constraints are the crux of learning the strategies of a player. They encode why a

player perceives one move to be better than the other possible moves. We use the weight
of the weak constraint as a penalty and the best move is the answer set that receives the
lowest penalty.

Definitions 3.4.5, 3.4.6 and 3.4.7 are from Law, Russo and Broda (2015a), and extend
definitions seen in previous sections.

Definition 3.4.5 (language bias). This definition extends Definition 3.4.1. In a loas task
the language bias is defined by the mode declaration M = ⟨Mh, Mb, Mo, Mw, lmax⟩. The
search space SM is the set of rules such that r ∈ SM satisfies one of the following condi-
tions:

(i) r ∈ Slas
M , where Mlas = ⟨Mh, Mb⟩

(ii) r is a weak constraint ⇝b1, . . . , bm, not c1, . . . , not cn.[w@l, t1, . . . , to] such
that w ∈ Mw, l ∈ [0, lmax], t1, . . . , to is the set of terms in body+(r) ∪ body−(r)
and each bi, cj is compatible with Mo where i ∈ [0, m], j ∈ [0, n].

Remark. Because weak constraints do not alter what is contained in an answer set one
could always remove theweak constraints fromahypothesis and itwould bemore optimal
and still cover the examples. To solve this we need to introduce the notion of preferred
examples to the learning task, the weak constraints are then used to cover this type of
example.

Definition 3.4.6 (ordering example). An ordering example is a pair o = ⟨e1, e2⟩ where
e1, e2 are partial interpretations. An asp program Π bravely respects o iff ∃A1, A2 ∈
AS(Π) such that A1 extends e1, A2 extends e2 and A1 ≻Π A2. An asp program cau-
tiously respects o iff ∀A1, A2 ∈ AS(Π) such that A1 extends e1, A2 extends e2, it is the
case that A1 ≻Π A2.

Definition 3.4.7 (Learning from Ordered Answer Sets task). A Learning from Ordered
Answer Sets task is a tuple T = ⟨B, SM, E+, E−, Ob, Oc⟩, where

(i) B is the background knowledge,

(ii) SM is the search space defined by the mode declaration,

(iii) M = ⟨Mh, Mb, Mo, Mw, lmax⟩,

(iv) E+, E− are the positive and negative examples, respectively,

(v) Ob, Oc are sets of ordering examples over E+ called the brave and cautious order-
ings, respectively.

A hypothesis H ⊆ SM is in ILPloas(T), the inductive solutions of T, iff:

(i) H′ ∈ ILPlas(⟨B, Slas
M , E+, E−⟩), where H′ is the subset of H with no weak con-

straints, Mlas = ⟨Mh, Mb⟩.

(ii) ∀o ∈ Ob, such that B ∪ H bravely respects o

(iii) ∀o ∈ Oc, such that B ∪ H cautiously respects o

30 background

3.4.3 context dependent examples

When learning strategies and rules of a game it is very likely that one board state will
not encapsulate the full rules or nuances of the strategy. For example, preferring to win
than capture a student pawn in Onitama cannot be inferred from one state in which it is
possible to win but not capture, or for that matter one in which it is not possible to win!
Therefore, when providing an example we wish to couple it to the state of the board when
the move was being made (the context of the move).

To take this into account I present extensions of Definitions 3.4.2, 3.4.6, and 3.4.7, in ac-
cordance with Law, Russo and Broda (2016), where the concept of coupling each example
with its context was introduced.

Definition3.4.8 (ContextDependent Partial Interpretation). Thisdefinition extendsDefin-
ition 3.4.2. A Context Dependent Partial Interpretation (cdpi) is a tuple ⟨e, C⟩ where e
is a partial interpretation and C is an asp program without weak constraints, called the
context.

Definition 3.4.9 (Context Dependent Ordering Example). This definition extends Defin-
ition 3.4.6. The only difference is that the answer sets include the contexts of their re-
spective cdpi. A Context Dependent Ordering Example (cdoe) o is a tuple of cdpis
⟨⟨e1, C1⟩, ⟨e2, C2⟩⟩. An asp program Π bravely respects o iff ∃A1 ∈ AS(Π∪C1), A2 ∈
AS(Π ∪ C2) such that A1 extends e1, A2 extends e2 and A1 ≻Π A2. An asp program
cautiously respects o iff ∀A1 ∈ AS(Π ∪ C1), A2 ∈ AS(Π ∪ C2) such that A1 extends
e1, A2 extends e2, it is the case that A1 ≻Π A2.

Definition3.4.10 (ContextDependent loas task). Thisdefinition extendsDefinition 3.4.7.
A Context Dependent Learning from Ordered Answer Sets task is a tuple
T = ⟨B, SM, E+, E−, Ob, Oc⟩ where the examples are now cdpis and the orderings are
cdoes. A hypothesis H is an inductive solution of T, H ∈ ILPcontext

LOAS (T) iff:

(i) H ⊆ SM,

(ii) ∀⟨e, C⟩ ∈ E+, ∃A ∈ AS(B ∪ C ∪ H) such that A extends e,

(iii) ∀⟨e, C⟩ ∈ E−,¬∃A ∈ AS(B ∪ C ∪ H) such that A extends e,

(iv) ∀o ∈ Ob, such that B ∪ H bravely respects o,

(v) ∀o ∈ Oc, such that B ∪ H cautiously respects o.

3.4 inductive learning of answer set programs 31

Example 3.4.3. Let T = ⟨B, SM, E+, E−, Ob, Oc⟩ be a ILPcontext
LOAS task where B is the

background knowledge from Logic Program A.1, together with the facts
{in_play(mouse; boar; bear); control(red)},

M = ⟨∅, ∅, {goal(crole, 100)} , {−1, 1} , 2⟩ ,

C1 =



location(pawn(student, blue), cell(1, 2)).

location(pawn(master, blue), cell(2, 3)).

location(pawn(student, red), cell(2, 4)).

location(pawn(master, red), cell(3, 4)).

in_hand(red, mouse).

in_hand(blue, boar).

C2 =



location(pawn(master, blue), cell(1, 3)).

location(pawn(student, red), cell(2, 2)).

location(pawn(master, red), cell(5, 3)).

in_hand(red, bear).

in_hand(blue, mouse).

e1 = ⟨{does(red, move(cell(2, 4), cell(2, 3), mouse))}, ∅, C1⟩
e2 = ⟨{does(red, move(cell(2, 4), cell(1, 4), mouse))}, ∅, C1⟩
e3 = ⟨{does(red, move(cell(2, 2), cell(1, 3), bear))}, ∅, C2⟩
e4 = ⟨{does(red, move(cell(2, 2), cell(1, 2), bear))}, ∅, C2⟩
E+ = {e1, e2, e3, e4} , E− = ∅,

Ob = {⟨e1, e2⟩ , ⟨e3, e4⟩} , Oc = ∅.

The examples are shown in Figure 3.3.

5

4

3
v

2
vo

1
o

1 2 3 4 5

mouse

bear

boar

(a) State of the board C1 showing examples
e1 and e2

5
v

4

3

2
o

1
v

1 2 3 4 5

bear

boar

mouse

(b) State of the board C2 showing examples
e3 and e4

Figure 3.3. Examples e1, e2, e3, e4 in their respective contexts with the
preferred action shown by the highlighted move.

The hypothesis H = { ⇝not goal(red, 100).[1@1]} is the inductive hypothesis for T,
alternatively you could have H′ = { ⇝goal(red, 100).[−1@1]}.

32 background

3.4.4 learning from noisy examples

In complex games a player’s strategy will not always be strictly enforced; the player might
deviate ormake amistake. When this happens themoves in the gamewill not all conform
to a consistent strategy that can be learnt. To account for this we use a feature of ilasp
called noise. Examples or ordering examples can be assigned a noise weight, w ∈ N,
which will be accounted for when learning a hypothesis.

Normally, the length of a hypothesis (Definition 3.4.4) is used to choose the optimal
hypothesis for a task. When noise is involved the heuristic is |H|+ W, where W is the
sum of all noise weights of the uncovered examples.

Example 3.4.4. Let us assume Alan is using the strategy “win if possible, otherwise cap-
ture a piece, otherwise move randomly”. Some example moves may look like those in
Figure 3.4a–3.4c. However in Figure 3.4d we can see a noisy example from earlier in the
game.

Recall Πlocation from Example 3.1.2: B is created by removing the facts from Πlocation;
M = ⟨∅, ∅, {next(location(pawn(vrank, crole), vcell)), goal(crole, 100)}, {−1, 1}, 2⟩;
E+ is the set of examples created with empty inclusions and exclusions, using the four
states in Figure 3.4a–3.4d and all possible moves from each board position as the context;
and Ob is the set of orderings created by comparing the moves shown in Figure 3.4a–3.4d
to all other moves from that state.

5
vo

4
v

3
oo

2

1

1 2 3 4 5

viper

fox

dragon

(a) Alan captures one of
Betty’s student pawns

5
o

4
v v

3
o

2

1

1 2 3 4 5

fox

dragon

viper

(b) Alan moves randomly as
is unable to win or
capture

5

4
vv o

3

2
o

1

1 2 3 4 5

viper

fox

dragon

(c) Alan wins the game
(some turns later)

Figure 3.4. Some of Alan’s moves from a particular game against Betty

5
o

4
ov v

3
o

2

1
o

1 2 3 4 5

fox

dragon

viper

(d) Alan ignores the student pawn on (3, 2) in favour of
moving a piece up the board.

Figure 3.4. Some of Alan’s moves from a particular game against Betty (cont.)

ilasp is able to learn the following strategy, treating Figure 3.4d as noise:

3.4 inductive learning of answer set programs 33

⇝goal(blue, 100).[−1@1] (3.36)
⇝next(location(pawn(Rank, red), Cell).[1@1, Rank, Cell] (3.37)

Weak constraint 3.36 provides a reward for winning, and weak constraint 3.37 says
minimise the number of red pawns on the board. This is thus akin to Alan’s strategy.

Remark. As there is no example inwhich there is a choice betweenwinning and capturing
they have been learnt at the same level.

3.4.5 constraining the hypothesis space with bias constraints

When the mode bias grows with numerous heads and bodies the number of potential
rules in the hypothesis space becomes vast. This effect is magnified when there are a lot
of common variables and the maximum number of variables is greater than 7-8.9 A large
proportion of these rules can be considered nonsense semantically, or represent some-
thing you know is uninteresting (e. g. you may wish for a series of variables of the same
type to be distinct). In order to filter these rules from the hypothesis space bias constraints
are used. They are a set of meta rules that are applied to the hypothesis space, clause by
clause (i. e. not globally), a series of predicates have been defined to aid in filtering. They
can be found in Table 3.1.

logic description

head(·) The predicate is in the head of the rule
body(·) The predicate is in the body of the rule

constraint The rule is a (hard) constraint
weak_constraint The rule is a weak constraint

weight(·) The weight of the weak constraint, vari-
ables are made lower case

term(·, ·) The index and lower case version of a
term in the weak constraint

naf(·) The literal is a naf literal

Table 3.1. Wrapper predicates to indicate structural elements of rules in the
hypothesis space

Example 3.4.5. Take the following mode declarations:

M =

⟨
{does(vrole, move((vindex, vindex), (vindex, vindex)))},
{cell(vindex, vindex), role(vrole)}

⟩

9 Based on empirical evidence of running various ilasp tasks with -s

34 background

ilasp produces 1062 rules from this mode bias. This can be made much smaller using
the following bias constraints.

← constraint. (3.38)
← body(naf (cell(_, _))). (3.39)
← body(naf (role(_))). (3.40)
← head(does(_, move((V, V), (_, _)))). (3.41)
← head(does(_, move((_, _), (V, V)))). (3.42)
← head(does(_, move((V, _), (V, _)))). (3.43)
← head(does(_, move((_, V), (_, V)))). (3.44)
← head(does(_, move((V, V), (_, _)))). (3.45)
← head(does(_, move((V, V), (_, _)))). (3.46)
← head(does(_, move((V, _), (_, V)))). (3.47)
← head(does(_, move((_, V), (V, _)))). (3.48)

Equation 3.38 means that there can be no constraints.10 Equation 3.39–3.40 express
that we do not want the types to be naf literals.11 Equation 3.41–3.48 express that no two
indices in the head should be forced to be identical.

With the addition of these bias constraints into the program the search space reduces
to only 24 rules.

3.4.6 ilasp meta-level representation

ilasp uses a meta-level representation of the learning task that is solved in Clingo. It
does so by manipulating the predicates in the program and ‘tagging’ examples, there are
notions of encoding the weights which translate into summing aggregates for each level,
and checking for a violating reason can be done with the parity of the single-level penalty.
The full encoding is not important for this project, however it is important to note its ex-
istence as the grounding of the task is not only dependent on the background knowledge
but also the meta-level representation, and there can be repercussions if it is not carefully
considered. The complete translation and the definitions of some functions that are used
in this report can be found in Law, Russo and Broda (2015a).

meta-level functions

The following two definitions are taken from Law, Russo and Broda (2015a). They are
functions that allow themanipulation of predicates in a program, they are used inChapters 6
and 7 to enable batching and encoding searches.

Definition 3.4.11 (reify). Given a program, Π, a predicate, pred(·), and a term, term,
reify(Π, pred, term) is the program created by replacing all atoms α ∈ atoms(Π) with
pred(a, term).

10 ilasp actually provides a command line flag -nc for this feature, I am expressing it here as a bias constraint
for the purpose of example

11 ilasp also has a flag for a mode declaration (positive), stating that a literal can only appear positively

3.5 game theory 35

Definition 3.4.12 (append). Given a program, Π, and an atom α, append(Π, α) ≜{
head(r)← body+(r), body−(r), α|r ∈ Π

}
.

3.5 game theory

Within this report references will be made to occasional game theoretic concepts.

3.5.1 game types

zero-sum The reward of a player is the loss of another.

non-cooperative Players are competing against each other.

extensive-form Games are played with sequential turns according to some turn
function, for example “trailing player goes first” (see the game
Glen More12) or simply “clockwise around the table”.

Note. All of the games that are considered in this report are two-person, zero-sum, non-
cooperative, extensive-form games.

3.5.2 utility functions

A utility function up : S 7→N is a function from states to natural numbers, with a higher
utility indicating that player p prefers this state.

Remark. In zero-sum games there is a single utility function u which is used by all players.
Any other player in the game receives the negation of the utility as a reward.

3.5.3 minimax theorem

Extensive-form games can be visualised using decision trees, with each node representing
a game state and each edge being a legal action from one state to another. The minimax
algorithm is a method of selecting an action at a node by assuming what would happen if
one’s opponent plays optimally, i. e. you choose the move that maximises the utility given
the fact your opponent minimises it.

In simple games such as Nim and Tic-Tac-Toe the tree can be exhaustively searched.
Backwards reasoning can be used in order to calculate the exact move to make. Take the
example below which describes using the minimax theorem to compute optimal play for
the game of Nim13.

Example 3.5.1. Below is a decision tree for the game of Nim a game where a player can
split any number into two, unless the number is 1 or 2. A player loses if they cannot make
a legal move, i. e. left with only 1s and 2s. Figure 3.5 starts the game at the value of 7, leaf
nodes are scored with +1 for a win and−1 for a loss.

12 https://boardgamegeek.com/boardgame/66362/glen-more
13 https://wikipedia.com/nim

https://boardgamegeek.com/boardgame/66362/glen-more
https://wikipedia.com/nim

36 background

7

6 1 5 2 4 3

5 1 1 4 2 1 3 2 2 3 3 1

4 1 1 1 3 2 1 1

3 1 1 1 1

2 2 2 1

2 2 1 1 1

2 1 1 1 1 1

Max

Min

Max

Min

Max

†

∗

+1

+1

+1

+1

+1

+1

+1

−1

−1

−1

−1

−1 −1

−1

Figure 3.5. Decision tree of Nim with backpropagation. Bold arrows denote the
backwards propagation of the values in the tree. Coloured nodes
represent the player’s choice from it’s children. White nodes are terminal
states. Based on the highlighted arrows the red player should choose the
middle (∗) move as the reward will be +1 which is the greatest of the
three options {+1,−1,−1}. (†) shows a min step, the opponent wishes
to minimise the proponent’s reward and so chooses the−1 action.

However in more complex games, such as Chess, Go or Onitama, the tree is too large
and the search would be too computationally intensive. Therefore, the search is only con-
sidered up to a certain depth and the states are compared based on the player’s utility
function.

α-β pruning

α-β pruning is an optimisation technique that can be applied to minimax (Heineman,
Pollice and Selkow, 2008). It yields exactly the same result, but examines fewer nodes.
During the search the algorithm keeps track of two values α and β which denote the
highest min score and the lowest max score, respectively. This way if you find something
outside of these bounds you need not examine the branch further. This technique is used
in the minimax planner in Section 6.1.2. α-β pruning is one of the optimisation tech-
niques applied to Romstad et al. (Stockfish), one of the best Chess engines.

Take the following example depicted in Figure 3.6. The algorithm starts by setting
α = −∞, β = ∞, and then visits state a and so α = 6. Next state b is visited, 3 < 6 so
α stays the same, the maximum of these values, 6, is assigned to state c and β = 6. The
algorithm the traverses the f branch (α = −∞, β = 6) by visiting d, updating α = 7,
as β ≤ α the rest of the branch e is pruned. Using similar logic for the rest of the tree (∗)
is also pruned.

3.5 game theory 37

6

6

6

6 3

7

7 6

5

5

5 4

8

6 8

∗

a b

c

d e

f

Figure 3.6. α-β pruning tree, dashed lines denote the pruned branches.

horizon effect

One common issue with theminimax theorem is the horizon effect, named after the leaves
of the tree which make up the horizon. Informally, it is the lack of knowing what would
happen if you evaluated the tree to the next depth, and how that would affect the result. In
practice it means that youmaymake amove that you thought left you in a strong position
but five moves later you realise that if you had thought ahead another move it would have
turned out to be a badmove. In this report I ignore this effect, though it is something that
could be used in the planning phase (Section 6.1.2) in order to create a more formidable
and robust Artificial Intelligence (ai). One method of overcoming the effect is using qui-
escent search is a selective search that looks into tactical play. “Programs with a poor or
inadequate quiescence search suffer more from the horizon effect” (Marsland, 1986). In
many Chess engines this is used applied after some minimax lookahead, commonly it is
used to look for checks and captures (creating ‘capture trees’). In Chapter 10 we look at
defending pieces and exchanges using minimax lookahead. The following chess position
studied by Marsland (1986).

38 background

8 0Z0Z0s0j
7 Z0Z0Lpl0
6 0Z0ZpZ0Z
5 ZpZpZ0O0
4 0ZpZ0O0Z
3 ZpZ0O0Z0
2 0Z0O0Z0Z
1 AKZ0Z0Z0

a b c d e f g h

Figure 3.7. Using insufficient quiescent search could result in
1…b2!fBlocking the bishop’s attack on the Queen . However,
this just delays the Queen’s capture — this is missed by an 8-ply
search (1…b2 2 BXb2 c3 3 BXc3 d4 4 BXd4 e5 5 BXe5). A
better variation would be 1…f6, leading to a draw. fen:
5r1k/4Qpq1/4p3/1p1p2P1/2p2P2/1p2P3/3P4/BK6 b --

4 RELATED WORK

Learning strategies in Inductive Logic Programming touches on many areas of computer
science such as Logic, Machine Learning, and Game Theory. This diverse background
leads to many interesting bodies of work being produced on the topic. Ranging from
formal logics to experimental work. I will be looking into areas of Knowledge Represent-
ation, use of asp in planning problems (specifically single-player games), formal logic for
describing and verifying properties of strategies, and finally, explainable ais and ‘black
box’ models.

4.1 knowledge representation

There are many considerations to make when choosing how to represent an environment
in an asp logic program. Opting for a more terse representation may mean that you lose
some useful information. Conversely, a verbose representation can greatly increase the
grounding of the program making the learning task infeasible.

There are several formalisations that can be used to represent games. There exist a series
of Action Languages (Gelfond and Lifschitz, 1998) that represent transition systems that
are very general (e. g. Fangzhen Lin’s suitcase). Some of the languages have translations
into asp (Gebser, Grote and Schaub, 2010; Lee, 2012). However these languages are too
general for the simple games. Most games follow similar patterns and can be described us-
ing some common features, such as players and actions. These concepts can be expressed
in the Action Languages, but there is nothing guiding the representation. This can lead to
two games have vastly different representations and therefore varying results when trying
to use them in learning tasks.

To avoid this we have chosen to use a language that has been designed for expressing
games and is studied and used throughout the General Game Playing (ggp) community
to express games. It is simple language that is specific to games, called the Game Descrip-
tion Language (gdl), the specification of which is given in Section 5.2. The basic version
covers single player games, later iterations incorporating multi-player games (Love et al.,
2006), and incomplete information (Thielscher, 2010). It includes concepts that are spe-
cific to games (e. g. goal and role) which make the logic program more intuitive to
read. Translations from gdl to asp exist (Cerexhe, Sabuncu and Thielscher, 2013) with
an initial state, and with timestamped states (defined in terms of the current timestep and
actions). A slightly modified version of this translation will be defined in Section 5.2.2
that does away with the time stamps as we are only interested in the current and next
state.

4.2 representing games in formal logics

Using the gdl as a basis for further work was completed by Zhang and Thielscher (2015).
They formalised the language, allowing them to prove interesting properties of games
and extending it to represent strategies of games. The language proposed by Zhang et al.
is a modal logic encoding the gdl specification, which intuitively fits the nature of gdl.

39

40 related work

The extension of introducing strategies as a subset of the legal moves given some logical
“strategy rule” is particularly interesting. Strategy rules can be composed to express prior-
ities using two new logical operators defined in the paper, a prioritised conjunction and
a prioritised disjunction.

In their paper, Zhang et al. study various strategies of a simple game, building in com-
plexity. Later, in Chapter 8, I look at learning the presented strategies, comparing ilasp’s
representation with their own. I also look at applying some of the techniques I describe
in Chapter 7 to learn strategies involving their modal operator, which in their paper they
are unable to encode strategies for in asp.

Kaiser (2012) presents a game learning system that learns first order sentences describ-
ing the rules (legal moves and outcomes) of several games, including Connect4,Gomoku1

and Tic-Tac-Toe, by watching videos of the games being played. The system uses a similar
structure to the ilp tasks used here, defining relational structures to represent the board
state. Kaiser’s program successfully learns five games, with the longest learning task tak-
ing 906 seconds (excluding video processing). Despite the main objective of the study
being to improve upon state-of-the-art visual learning, the use of first order logic and
Inductive Logic Programming to describe the games is interesting.

4.3 learning answer set programs

asp has had success in many constraint and planning problems, however little work has
been done using asp to learn rules, or preferences (as we do in this report). For example
(Grasso, Leone and Ricca, 2013) outlines a real world example of a travel website that uses
an asp program to suggest places to go. This program could be improved by learning user
preferences of locations and times of year based on previous examples.

4.4 machine learning and games

Early developments in machine learning systems playing board and video games include
Temporal-Difference Backgammon programs (Tesauro, 1995), and Atari video games
(Mnih et al., 2013). Artificial intelligence has been prominent in the media recently with
AlphaZero (Silver et al., 2017a) defeating Stockfish in Chess, Elmo in Shogi, and its prede-
cessor, AlphaGo Zero, (Silver et al., 2017b) in Go. As well as current work looking into
playing StarCraft II, a 3-D real-time strategy game (Vinyals et al., 2017).

Many of the examples that have seen public success have been based on deep reinforce-
ment learning, and other statistical methods. The downside of this approach is that they
cannot explain the reasoning behind the move. In the case ofAlphaGo Lee, the version of
AlphaGo that beat master Go player Lee Sedol, some moves played by AlphaGo Lee were
beyond the comprehension of expert human players (e. g. game 2 move 372).

4.5 explainable ai

In recent decades we have begun to see an increase in the number of artificially intelligent
systems that are equal to or better than human level at complex tasks, e. g. AlphaZero,My-

1 https://boardgamegeek.com/boardgame/11929/go-moku
2 https://youtu.be/JNrXgpSEEIE

https://boardgamegeek.com/boardgame/11929/go-moku
https://youtu.be/JNrXgpSEEIE

4.5 explainable ai 41

cin (Shortliffe, 1977). These complex models are essentially black boxes as far as human
interpretation is concerned.
Mycin (Shortliffe, 1977), a medical diagnosis system created in the 1970s by Edward

Shortliffe. The program was not rolled out to hospitals due to legal and ethical debates,
despite achieving higher accuracy than physicians. Themain issue was accountability; no
one knew how the algorithm came to its conclusions.

A study by darpa (a research branch of us defense agency) compared different ma-
chine learning methods and how ‘explainable’ each method is. Figure 4.1 shows a sum-
mary of this. Clearly they believe we have some way to go before we can consider our
machine learning methods to be fully explainable, having said this ilasp is not an ap-
proximation (without noise) of the examples and interpreting the predicates can be done
by people with relative ease.

Figure 4.1. Performance vs. Explainability (adapted from Gunning (2016))

Google, in collaboration with Carnegie Mellon University, have looked into explaining
how features are perceived by neural networks and visualising neurons to achieve some
quite bizarre results (Olah et al., 2018); some examples of the visualisations can be seen
in Figure 4.2. Their work also shows key areas of the image that are important in the
classification process. For example, a picture of a cottage may be classified as such and

Figure 4.2. Visualisations of neurons from Layer 4c. Figure from Olah et al.
(2018)

the reason is that the neuron for ‘house’ from Figure 4.2 was highly activated along with a
‘thatch’ neuron, thereby justifying its decision. Similar work has also been done by others,
see Samek, Wiegand and Müller (2017).

Part II

IMPLEMENTAT ION

5 GAME MODEL

All learning tasks require a set of background knowledge, which may be empty.1 Each
context dependent example will also contain some background knowledge specific to the
example, i. e. state of the board, at that time. Asmentioned in Section 4.1 there is a balance
to be struck between preserving information and achieving concision. Section 4.1 also
introduced a framework for games; this language is formally introduced here alongside a
translation into asp, the format used by ilasp.

Throughout this sectionOnitama is used as a running example. The other games stud-
ied throughout this report (Chapter 2) can be represented similarly, and their full repres-
entations can be found in Appendix A.

5.1 intuition

In order to represent the state of the board the game’s components must be encoded as a
series of predicates and function symbols. Outlined below is a list of steps I considered
when encoding the game.

1. create types These are simple predicates to define the types of variables later
in the program; these are mostly used to ensure that all variables are safe. They
could be more rigorous to ensure the rules will make sense if a bad context is given,
for example checking a card name is valid, but this is not necessary.

2. create components

board The board is broken up into a 2-dimensional grid of spaces (or cells).

pawns Pawns are represented as a tuple of their rank and associated player.

cards Cards have a name, a set ofmoves, and a starting colour associatedwith them.

3. game state There are two commonways of representing boards in games: (1) de-
scribing what is in each space of the board, (2) describing where each pawn is on
the board. In my model of Onitama I opted for the latter. This is because there are
25 spaces on the board but only a maximum of 10 pawns that can be on the board,
therefore reducing the state space. This is because Clingo computes a subset of the
grounding based on the facts in the program. All other spaces are assumed to be
empty.

I also provide what cards players are holding in this state, and the card in play that
is not held is the centre card.

4. rules The predicate legal(·) is learnt using examples of legal and illegal moves
in different board states. I provide thewinning conditions in the background know-
ledge, though these could also be learnt.

1 Though in all examples presented here this is not the case

45

46 game model

5.2 game description language

The Game Description Language (gdl) is a language used in ggp to specify game states
and rules. The language is a variant of Datalog with function constants, negation and
recursion (Love et al., 2006), though in practice the language Knowledge Interchange
Format (kif) is used, which can very easily be translated into asp (Section 5.2.2). The
advantages of writing the background and examples of the game in this manner are that
(a) the system can easily be used in a ggp competition or using past ggp games, (b) as seen
in Section 4.2, other work has been done on languages for games derived from gdl, and
finally, (c) it is easy to generate the future possible states of the game from the next rela-
tion which is useful in Chapter 7. The other style that has been used when writing games
in asp is a time based model, allowing answer sets to be paths down the tree. In the end
I decided not to use this approach for numerous reasons. The grounding becomes much
larger when you increase the number of time steps into the future the game is simulated.
The evaluation function evaluates a single state not paths from the current state.

5.2.1 specification

Here I outline the specification as given in Love et al. (2006). kif statements are written in
prefixnotation, e. g. (cell 1 3) is a functioncell applied to arguments1 and3. Variables
start with questionmarks, e. g. (pawn ?rank red)matches any red pawn. Once again I will
use Onitama (Section 2.1) as the running example.

gdl defines several keywords that are used as a commonway to represent the states and
actions within a game, listed in Table 5.1. The second section of the table lists keywords
that are not part of the structure of the game.

keyword description

(role ?r) ?r is a player
(init ?p) ?p is a predicate true in the initial state of the

game
(true ?p) ?p is a predicate true in the current state of

the game
(next ?p) ?p is a predicate true in the next state of the

game, i. e. after an action has been made
(does ?r ?a) ?r does action ?a
(legal ?r ?a) ?r can make action ?a
(goal ?r ?v) ?r gets payoff ?v

terminal This is a terminal state

(distinct ?a ?b) ?a and ?b are different
(not ?p) The negation of ?p

(<= head body1 body2 ... bodyN) Construction of a logical rule

Table 5.1. gdl Keywords

5.2 game description language 47

players: role relation

The role relation specifies the players in the game, control is used to show whose turn
it is. In Onitama the roles are (role red) and (role blue).

game state: true relation

The true relation describes what is true before an action is made, i. e. the state of the
game. Figure 5.1 shows a game state and its corresponding true relation.

5
v o

4
o o

3
o o

2
o vo

1
o

1 2 3 4 5

mouse

panda

boar

(a) Board state

(true (in_play red (card mouse))
(true (in_play blue (card boar))

(true (location (pawn master red) (cell 5 3))
(true (location (pawn student red) (cell 4 1))
(true (location (pawn student red) (cell 3 1))
(true (location (pawn student red) (cell 4 4))
(true (location (pawn student red) (cell 5 5))
(true (location (pawn master blue) (cell 2 3))
(true (location (pawn student blue) (cell 2 1))
(true (location (pawn student blue) (cell 1 2))
(true (location (pawn student blue) (cell 2 4))
(true (location (pawn student blue) (cell 3 5))

(true (control red))

(b) true Relation

Figure 5.1. gdl Current State

initial state: init relation

init is similar to true, but specific to the initial state of the game. Figure 5.2 shows an
example for Onitama.

5
oovoo

4

3

2

1
oovoo

1 2 3 4 5

mouse

panda

boar

(a) Initial state

(init (in_play red mouse))
(init (in_play blue boar))

(init (location (pawn master red) (cell 5 3)))
(init (location (pawn student red) (cell 5 1)))
(init (location (pawn student red) (cell 5 2)))
(init (location (pawn student red) (cell 5 4)))
(init (location (pawn student red) (cell 5 5)))
(init (location (pawn master blue) (cell 1 3)))
(init (location (pawn student blue) (cell 1 1)))
(init (location (pawn student blue) (cell 1 2)))
(init (location (pawn student blue) (cell 1 4)))
(init (location (pawn student blue) (cell 1 5)))

(b) true Relation

Figure 5.2. gdl Initial State

48 game model

game state update: next relation

The next relation represents the updates to the game state after an action has been made.
This is usually defined as a set of rules, as seen in Figure 5.3c. Figure 5.3 shows an example
of this update, where Figure 5.3a shows the current position and the move that is to be
made and Figure 5.3b shows the board after the update.

The rules in Figure 5.3c say that if red is in control now, blue will be in control in the
next state and vice versa, i. e. play alternates between the players. The other rule states that
a players piece will be at a new location after being moved, (see moves: does rela-
tion on page 49). Several rules have been omitted here for simplicity, such as persistence
rules and rules regarding the cards.

5
v o

4
o o

3
o o

2
o vo

1
o

1 2 3 4 5

mouse

panda

boar

(a) Board state with move

5
o

4
o vo

3
o o

2
o vo

1
o

1 2 3 4 5

panda

boar

mouse

(b) Next state

Figure 5.3. gdl Next State

(<= (next (control blue)) (true (control red)))
(<= (next (control red)) (true (control blue)))

(<= (next (location (pawn ?rank ?role) ?to))
(does ?role (move ?from ?to ?card))
(true location (pawn ?rank ?role) ?from)

)

(c) next Relation

Figure 5.3. gdl Next State

legal moves: legal relation

The legal moves relation maps players onto moves that can be made in this state. It is
quite common to use the atom noop to represent that no action has beenmade, especially
in turn based games. Figure 5.4 shows some examples of the legal relation in Onitama.

5.2 game description language 49

5

4

3
v

2
o

1
ov

1 2 3 4 5

mouse

panda

boar

(a) Board state with legal moves

(<= (legal red noop) (true (control blue)))
(<= (legal blue noop) (true (control red)))

(<= (legal ?role (move ?from ?to ?card))
(true (adj ?from ?to ?card))
(true (location (pawn ?rank ?role) ?from))
(not (true (location (pawn ?rank2 ?role) ?to)))

)

(b) legal Relation

Figure 5.4. gdl Legal and Chosen Moves

moves: does relation

The does relation maps players to chosen actions, which will be a subset of the legal
relation.

Note. Some games allow simultaneousmoves by players and some games allow players to
make multiple moves, therefore the does relation does not necessarily map one player to
one action. However, without loss of generality, we can model a player making multiple
actions as one combined action.

For example, from Figure 5.4 red could choose (does red (move (cell 2 1) (cell 1
2) mouse)), and blue is forced to choose (does blue noop).

goal states: goal relation

(<= (goal ?role 100) (win ?role))
(<= (goal ?role 0) (lose ?role))

(<= (lose red) (win blue))
(<= (lose blue) (win red))

; Winning conditions from Section 2.1.1
(<= (win red) (not (true (location (pawn master blue) ?cell))))
(<= (win blue) (not (true (location (pawn master red) ?cell))))
(<= (win red) (true (location (pawn ?rank red) (cell 5 3)))))
(<= (win blue) (true (location (pawn ?rank blue) (cell 1 3)))))

Figure 5.5. gdl Goal Relation

terminal states: terminal relation

The terminal atom is a nullary predicate that indicates that a state has no actions from
this point. This could be due to a winning condition being triggered, a round limit being
reached, or lack of available options, for example.

In Onitama the game is over if a player wins, the rules do not state what happens if
neither player can move, nor is there a condition where players draw if a certain number
ofmoves have passed without capture (cf. chess). In gdl this would be (<= terminal (win
?role)).

50 game model

5.2.2 translation into asp

Here I describe a translation into asp that maintains the instantaneous nature of gdl (cf.
time series models Cerexhe, Sabuncu and Thielscher (2013)). Given the set of gdl rules
G , JGK = Π, where Π is the equivalent logic program.

JGK = ∪
r∈G

JrK∪ generator (5.1)

J(<= h b1 ... bn)K = JhK← Jb1K . . . , JbnK (5.2)J(distinct t1 t2)K = Jt1K ̸= Jt2K (5.3)J(not a)K = not JaK (5.4)J(true (p t1 ... tn))K = p(Jt1K, . . . , JtnK) (5.5)J(p t1 ... tn)K = p(Jt1K, . . . , JtnK) (5.6)J?vK = V (5.7)JaK = a (5.8)

where

generator =

{
0{does(Role, A)}1← legal(Role, A)

← role(Role), not does(Role, _), not terminal

}
(5.9)

The generator set encapsulates the choice of actions and ensures that an action is made
at each non-terminal state.

Example 5.2.1. Figure 5.6 shows the translation of Tic-Tac-Toe from gdl into asp2.

2 A few rules have been omitted for brevity

5.2 game description language 51

1 (role x)
2 (role o)
3

4 (init (cell 1 1 b))
5 (init (cell 1 2 b))
6 (init (cell 1 3 b))
7 (init (cell 2 1 b))
8 (init (cell 2 2 b))
9 (init (cell 2 3 b))

10 (init (cell 3 1 b))
11 (init (cell 3 2 b))
12 (init (cell 3 3 b))
13 (init (control x))
14

15 (<= (next (cell ?m ?n ?role))
16 (does ?role (mark ?m ?n))
17 (true (cell ?m ?n b)))
18 (<= (next (cell ?m ?n ?role))
19 (true (cell ?m ?n ?role))
20 (distinct ?role b))
21 (<= (next (cell ?m ?n b))
22 (does ?role (mark ?j ?k))
23 (true (cell ?m ?n b))
24 (distinct ?m ?j))
25 (<= (next (cell ?m ?n b))

26 (does ?role (mark ?j ?k))
27 (true (cell ?m ?n b))
28 (distinct ?n ?k))
29 (<= (next (control x)) (true (control o)))
30 (<= (next (control o)) (true (control x)))
31

32 (<= open (true (cell ?m ?n b)))
33

34 (<= (legal ?role (mark ?x ?y))
35 (true (cell ?x ?y b))
36 (true (control ?role)))
37 (<= (legal x noop) (true (control o)))
38 (<= (legal o noop) (true (control x)))
39

40 (<= (goal x 100) (line x))
41 (<= (goal x 0) (line o))
42 (<= (goal o 100) (line o))
43 (<= (goal o 0) (line x))
44 (<= (goal ?role 50)
45 (role ?role) (not open)
46 (not (line x)) (not (line o)))
47

48 (<= terminal (line ?role))
49 (<= terminal (not open))

(a) Tic-Tac-Toe in kif adapted from Love et al. (2006)

1 role(x).
2 role(o).
3

4 init(cell(1, 1, b)).
5 init(cell(1, 2, b)).
6 init(cell(1, 3, b)).
7 init(cell(2, 1, b)).
8 init(cell(2, 2, b)).
9 init(cell(2, 3, b)).

10 init(cell(3, 1, b)).
11 init(cell(3, 2, b)).
12 init(cell(3, 3, b)).
13 init(control(x)).
14

15 next(cell(M, N, Role) :-
16 does(Role, mark(M, N)),
17 true(cell(M, N, b)).
18 next(cell(M, N, Role) :-
19 true(cell(M, N, Role)), Role != b.
20 next(cell(M, N, b) :-
21 does(Role, cell(J, K)),
22 true(cell(M, N, b), M != J.
23 next(cell(M, N, b) :-
24 does(Role, cell(J, K)),
25 true(cell(M, N, b), N != K.

26 next(control(x)) :- true(control(o)).
27 next(control(o)) :- true(control(x)).
28

29 open :- true(cell(M, N, b)).
30

31 0 { does(Role, A) } 1 :- legal(Role, A).
32 :- role(Role), not does(Role, _),
33 not terminal.
34

35 legal(Role, mark(X, Y)) :-
36 true(cell(X, Y, b)), true(control(Role)).
37 legal(x, noop) :- true(control(o)).
38 legal(o, noop) :- true(control(x)).
39

40 goal(Role, 100) :- line(Role).
41 goal(x, 0) :- line(o).
42 goal(o, 0) :- line(x).
43

44 goal(Role, 50) :-
45 role(Role), not open,
46 not line(x), not line(o).
47

48 terminal :- line(Role).
49 terminal :- not open.

(b) Translation of Tic-Tac-Toe into asp

Figure 5.6. Translation of Tic-Tac-Toe program

52 game model

5.3 simplifications

The representation described in the previous section can become quite large, with many
untied3 variables and a large grounding because of some of the predicates used.

Untied variables are much easier to simplify, clingo and ilasp both have support for
anonymous variables (_) which are projected away by the grounder (gringo). This means
that, for example, if the following card predicate is used to check ownership of the card the
translation would not be needed, allowing us to replace them with anonymous variables.

card(Name, DR, DC)⇒ card(Name, _, _)

By the grounder this is then treated as card(Name) and the arity 3 predicate is now only 1.
Arithmetic expressions can be calculated at ground time by gringo, but when generat-

ing mode declarations For example take the following rule for adjacency:

adj((Row1, Col1), (Row2, Col2))← cell((Row1, Col1)),

cell((Row2, Col2)),

Row2 == Row1 + 1,

Col2 == Col1 + 1.

(5.10)

Thismeans that two squares of the form □□ are adjacent to each other. However, because
the variables cannot be free we must bind the variables by ensuring they are valid cells.
On a 5-by-5 board this generates 25 unique cells.

This can be simplified by substituting arithmetic expressions into the head of the equa-
tion (where applicable), however the types are still needed.

adj((Row1, Col1), (Row1 + 1, Col1 + 1))← cell((Row1, Col1)),

cell((Row1 + 1, Col1 + 1))

(5.11)

Clingo is optimised so that these are equivalent when grouding. However when gen-
erating the mode declarations in ilasp using the second format is better providing you
restrict the maximum length of the body and the number of variables needed. Table 5.2
shows the number of rules generated for the two formats and different parameters passed
to ilasp, the (∗) indicates that the correct rule does not appear in this set of rules.

Max Variables Max Weak Constraint Length Format for rule 5.10 Format for rule 5.11

2 2 1∗ 6

4 4 591 2238

Table 5.2. Rules generated for normal/simplified rules with different
parameters

3 A word which here means that a variable occurs in the body of a rule only once

6 DIGIT I SED GAME & PLANNER

In order to collect examples to learn from I created some digital versions of the games
that can record different sorts of moves depending on what I was interested in. I created
a multi-purpose digital version of each game I was studying: (1) they collect examples
from recorded games, (2) they utilised learnt strategies to play games in conjunction with
a minimax planner, (3) and finally they could be used to help the ai learn from it’s mis-
takes with assistive movement. The digital games have two running modes and can be
configured for human vs. human games, human vs. ai play, and ai vs. ai self-play. When
playing a game involving an ai it is possible to run it in tournament-mode or training-
mode. Tournament-mode is just like a normal game where the ais will play the moves
they choose based on their current strategy. In training-mode the ai will ask the human
whether or not their chosen move is a good one and ask for a suggestion if the human
disagrees.

I chose to write the planning library in Haskell as the games can be easily described
succinctly using the language’s type system. Each game needs a way of getting legalmoves,
validating if a move is legal, and an update function for moves; I utilised Haskell’s Type-
Classes in order to make the ai player agnostic to the game.

6.1 program flow

The main flow of the program is presented in Figure 6.1, the red (), green () and
yellow () nodes refer to Sections 6.1.1, 6.1.2 and 6.1.3, respectively.

78

4 5

6

0
3

11

1

2

9

10

Figure 6.1. User flow through the digital game. Blue states represent intermediate
nodes between the sections discussed in this chapter. The red state is the
step in which examples are collected, this is at the end of the program
after the game has been played. Green states represent the steps made by
the minimax planner. Finally, the yellow state is the assistive move step
where the user can provide a counter example to the ais move if needed.

53

54 digitised game & planner

0 Select game
1 Choose player configurations (human or ai)
2 Start Game
3 Human plays move (if applicable)
4 ai generates the game tree to a given depth
5 Clingo rules are generated to represent the leaves of the tree, and example is given

below (Example 6.1.1)
6 Clingo is run in batches of 20,000 to evaluate the scores of the leaves
7 The game tree is re-mapped so that leaves now contain scores instead of board

states
8 The minimax algorithm is run over the tree in order to select the best move
9 If in tournament-mode the move is played and it is the next players turn
10 If in training-mode the move is presented to the user, if accepted the move is

played otherwise the player’s chosen move is played and the ordering is saved as
a counter example

11 If the game is in a terminal state the game is over and (optionally) the winners
orderings are saved as described in Section 6.1.1

6.1.1 example collection

Digital versions of the games can be played by two players and the winner’s moves are
chosen as examples. We make the assumption that a player has played as well as they
could according to their chosen strategy, and that when facing a competent opponent
some strategic choices will be made by the winner in order to beat their opposition. The
moves they made are then turned into ordering examples in the following way:

1. Create the positive example for their chosen move, mi
pref where i is the turn num-

ber, the context is the board state and the inclusions is the single fact does(·, ·)
detailing the move.

2. From the given board state generate all possible alternative moves (i. e. ignoring
the move they made).

3. Create the positive examples for alternativemoves, mi
altj

where i is the turn number
and j is an index for the move.

4. Create the brave orderings ⟨n, mi
pref , mi

altj
⟩ ∀i ∀j for some noise weight n.

6.1.2 minimax planner

When calculating which move to make the ai uses Clingo as a scoring mechanism and
minimax (Section 3.5.3) as an adversarial search method for looking ahead in the tree of
possibilities to better estimate the optimal move.

Example 6.1.1. Given we start in the state pictured in Figure 6.2, and we generate a game
tree to depth 2 we could end up in any of the board states pictured in Figure 6.3. In

6.1 program flow 55

order to score these board states we need Clingo to evaluate the penalty given by the weak
constraints that encode the current strategy. Whilst it is possible to do using a single state
of the board and getting the score of the single answer set, this method becomes very slow
when computing the scores of leaves from a depth 4 or more game tree. The bottleneck
of this computation is the i/o that must be performed. Therefore, to combat this, the
board states can be batched together in the following manner: let B be the background
knowledge from Logic Program A.1 excluding the predicates next(·) and the action
generator, Π1, Π2 be two programs representing two board states from Figure 6.3

Π1 =



location(pawn(master, red), cell(5, 3))

location(pawn(student, red), cell(4, 3))

location(pawn(student, red), cell(4, 5))

location(pawn(master, blue), cell(1, 3))

location(pawn(student, blue), cell(3, 2))

location(pawn(student, blue), cell(1, 2))

control(red)

in_hand(goose, red)

in_hand(monkey, blue)

Π2 =



location(pawn(student, red), cell(5, 4))

location(pawn(student, red), cell(4, 5))

location(pawn(master, blue), cell(1, 3))

location(pawn(student, blue), cell(4, 2))

location(pawn(student, blue), cell(3, 3))

location(pawn(student, blue), cell(1, 2))

control(red)

in_hand(goose, red)

in_hand(monkey, blue)

Recall the meta-function append from Section 3.4.6. We use it here to create the pro-
gram Π = B∪ append(Π1, option(1))∪ append(Π2, option(2)) which encodes each
board state as a different option that Clingo must score.

5
vo

4
o o

3
o

2

1
ov

1 2 3 4 5

monkey

goose

goat

Figure 6.2. Current board state midway through a game

6.1.3 assistive movement

The assistive movement feature was implemented to replicate the style of learning that a
parent might take on with their child, or an experienced player with a beginner. When
a less experienced player makes a blunder the more experienced player may offer an al-
ternative move and allow them to try to figure out why that move is better. This is what is
offered in the training-mode, which when in use, diverts the flow of the program through
the yellow () node in Figure 6.1. After the ai player has selected a move the user is

56 digitised game & planner

5
v

4
o o

3
o

2

1
ov

1 2 3 4 5

goose

goat

monkey

(a) Figure 6.2 after the moves
§(5, 4) × (4, 3) monkey.
§(3, 3) (3, 2) goat.

5
vo

4
o

3
oo

2
o

1
v

1 2 3 4 5

goose

goat

monkey

(b) Figure 6.2 after the moves
§(4, 5) (3, 4) monkey.
§(1, 2) (2, 3) goat.

Figure 6.3. Possible leaf nodes of the game tree pruned to depth 2

5
o

4
o o

3
o

2

1
ov

1 2 3 4 5

goose

goat

monkey

(c) Figure 6.2 after the moves
¥(5, 3) (4, 2) monkey.
§(4, 3) × (4, 2) goat.

5
v

4
o o

3
o

2
v

1
o

1 2 3 4 5

goose

goat

monkey

(d) Figure 6.2 after the moves
§(5, 4) × (4, 3) monkey.
¥(1, 3) (2, 4) goat.

Figure 6.3. Possible leaf nodes of the game tree pruned to depth 2 (cont.)

offered the opportunity to select a correction, Figure 6.4 shows an example of this, the
brave ordering created in this example would be:

e1 = ⟨{does(blue, move(cell(4, 2), cell(3, 1), dog))}, ∅, C⟩
e2 = ⟨{does(blue, move(cell(5, 3), cell(5, 2), dog))}, ∅, C⟩
o = ⟨e1, e2⟩

where C is the context of the board:

C =



location(pawn(student, red), cell(2, 2)) location(pawn(student, blue), cell(5, 1))

location(pawn(student, red), cell(2, 3)) location(pawn(student, blue), cell(4, 2))

location(pawn(student, red), cell(2, 5)) location(pawn(student, blue), cell(4, 3))

location(pawn(student, red), cell(1, 5)) location(pawn(student, blue), cell(4, 4))

location(pawn(master, red), cell(1, 3)) location(pawn(master, blue), cell(5, 3))

6.2 extensibility 57

Figure 6.4. Example of a user correcting a move (which directly puts an
undefended student in danger) to a more defensive alternative

6.2 extensibility

The digital games and minimax planner have been designed to allow new games to be ad-
ded easily. The games are implemented as a package within the Planner.Games.Data
package and a Main file responsible for running the game loop and asking for user moves.
Newai tactics can be addedunder thePlanner.Games.AIpackage. There are a few addi-
tional packages such asPlanner.Games.Data.Tree, Planner.Logic, andPlanner.Minimax
responsible for game trees, translation into (gringo) logic programs, and minimax, re-
spectively.

6.2.1 adding new games

In addition to Onitama I have implemented Five Field Kono, and Cross-Dot. This can be
done by simply describing the games using Haskell’s type system and writing a data type
that conforms to the GameState s type class that is parameterised on a game state, the
class uses type families1 in order to couple the game state type with the types of moves,
players, and pieces. The type class is presented below, some methods are necessary for
gameplay (e. g. getBoardArray and makeMove) and some are solely for example collection

1 https://wiki.haskell.org/GHC/Type_families

https://wiki.haskell.org/GHC/Type_families

58 digitised game & planner

(e. g. lastMove and relevantMoves). This type class is the used by the game trees, game
loop and the ai players to be able to interface with the different game states.

1 class
2 (Eq (Player s), Eq (Piece s), Eq (Move s), Show s, Show (Move s), Translate s,

Translate (Move s,s), Translate (Player s, Move s), Translate (Player s),
Translate (Piece s))

↪→

↪→

3 => GameState s where
4 type Move s
5 type Player s
6 type Piece s
7 getBoardArray :: s -> Board (Piece s)
8 getPossibleMoves :: s -> [Move s]
9 getResult :: s -> Maybe (Result (Player s))

10 makeMove :: Move s -> s -> s
11 whoseTurn :: s -> (Player s)
12 legalmove :: Move s -> s -> Bool
13 lastMove :: s -> Maybe (Move s)
14 relevantMoves :: s -> [(Move s, Move s)]

Haskell’s expressive types mean that lots of parameterised data types could be created
that many games can utilise. Below are the types that are used throughout all three games
implemented so far.

1 type Location = (Int, Int)
2 data Position p = Empty | Filled p deriving (Eq, Ord, Show)
3 type Board p = Array Location (Position p)
4 data Result p = Draw | Win p
5 deriving (Eq, Show)

Most abstract strategy games have the notion of a board or grid on which the game is
player (e. g. Chess, Go, Onitama, Tak2 etc.). Here the board is represented by an array
indexed by a Location tuple. Each location might contain a piece, which can be anything
at all. In Five Field Kono and Cross-Dot a piece can be simply denoted by the player. More
complex games such as Chess and Onitama must use a custom piece data type to repres-
ent the difference between pieces (e. g. Knights and Rooks or Masters and Students). A
game such as Tak can even have stacks of different types of pieces, yet here we can still
easily represent this, perhaps using Data.Stack3. The fact that a space might contain a
piece suggests that the Maybe4 data type could be used. Instead we defined the data type
Position with two constructors Empty and Filled p, which is in fact isomorphic to
the Maybe data type but affording us more clarity when reading the type signatures.

Whilst this framework does not cover all games, it covers most games based around a
grid that pieces move on — even the cards in Onitama can still be represented and used.
This could be abstracted further by allowing the game to represent the indexing into the
board array or the result, but the extra generality covers a set of games that are not yet
being looked at by the learning tasks presented in this report.

2 https://boardgamegeek.com/boardgame/197405/tak
3 http://hackage.haskell.org/package/Stack-0.3.2/docs/Data-Stack.html
4 http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Maybe.html

https://boardgamegeek.com/boardgame/197405/tak
http://hackage.haskell.org/package/Stack-0.3.2/docs/Data-Stack.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Maybe.html

7 LEARNING PREFERENCES FROM
GAME TREES

7.1 motivation

In many games a player can gain a strategic advantage by considering possible moves in
the future, consider chess where Grand Masters are often calculating games 5–10 steps
into the future in their head at any time. In some games it is very easy to think ahead due
to, say, only a few moving pieces on the board. Whereas others can quickly branch and
it is difficult to consider all possibilities, so you may choose just a few likely options to
consider. Take, for example, this situation in Onitama:

5
v

4
o

3
o o o

2
o

1
v

1 2 3 4 5

panda

phoenix

mouse

(a) Chosen move in dark grey and
alternative move in light grey.

5
v

4

3
o o

2
o

1
v

1 2 3 4 5

phoenix

mouse

panda

(b) Blue to move following the exchange
§(5, 3)× (3, 3), §(3, 4)× (3, 3)

(c) mouse (d) phoenix (e) panda

Figure 7.1. Possibility of an exchange

Example 7.1.1. Figure 7.1a depicts blue’s turn with the phoenix card. If blue’s strategy
was to “capture a piece if possible, otherwise move randomly” then blue would pick one
of the three moves shown. Suppose blue chooses §(5, 3)× (3, 3), one possible series of
(unfortunate) events that could unfold for blue is shown in Figure 7.1b. From this position
blue cannot capture red, and has few pawns, thus few options. Furthermore, no matter
what move blue makes red is able to take a piece weakening blue’s position, this tactic is
known as a fork. However, if we consider the move again but looking a few steps into the
future we can see that even though that pawn is in danger, it is possible to pick a move
that avoids this scenario and puts the blue player into a good position.

59

60 learning preferences from game trees

Note. When reasoning like this using minimax you can suffer from the horizon effect
(Section 3.5.3), imagine that this was in fact the state we got to after look several moves
into the future and was the best option. If we had looked just one more level further we
would have seen a different result. Thus, looking further down the tree is not guaranteed
to always give better results.

Looking into this effect is not in the scope of this project, but is an interesting area for
further work (see Section 11.2.1).

7.2 inductive learning programs with deep orderings

In this section we define a new ordering type that extends Context Dependent Ordering
Example (cdoe) to take this tree structure of games into account when learning. In all the
learning tasks we have seen up to this point all the examples have been independent from
each other. In order to reason in the future it is important to consider possible outcomes at
future states, and sowemaywish to look for certain preferenceswithin groups of examples
that represent states in the future. In order to define these groupswemust create a relation
between a subset of the examples. The new orderings use minimax trees to work out the
best strategy for the player. We can then say that a player prefers a move to another iff it
is the best action to take given the minimax tree from this state. These trees will define
the relationship between certain examples.

Note. We make the assumption that both players are rational and using the same utility.

A deep ordering takes two states and looks down the game tree to a certain depth. In
order to illustrate this consider the following trees in Figures 7.2, 7.3 and 7.4. The root
node is the game board in Figure 7.1. Dashed lines represent a choice, where only one
node is needed as part of the requirement, solid lines mean that all nodes are considered.

7

7 6

≻
Figure 7.2. Play is considered to depth 0

Suppose Alan is playing a game and
chooses the left action, assuming Alan is
rational and playing optimally we can de-
duce that the action leftwas a better choice
than action right. Figure 7.2 illustrates this
choice, with the numbers in the nodes rep-
resenting the utility Alan gains for choos-
ing that action. Here we see that the
utility of left is greater than that of right.

For Alan to have known what the util-
ity of left was he would have had to con-
sidered possiblemoves his opponent, Betty, could havemade. Alan can then reason about
which action to take assuming Betty is trying to make him lose and she is also rational
and playing optimally. For the left action to be the optimal choice it must be the case that
nomatter what Betty chooses to do it cannot be worse for him than one of the options she
would have, had he chosen the right action. Figure 7.4 illustrates what thismight look like.
We see that the left action has expanded into two actions, l-left and l-right, from which
Betty can choose between. Further, we can observe that all options reachable from left
are better (i. e. have a higher utility) than the single option, r-only, reachable from right.

7.2 inductive learning programs with deep orderings 61

7

7

7

-4 6 7

11

11

6

6

6 -1

≻
≻

≻
≻

Figure 7.4. Play is considered to depth 2

7

7

7 11

6

6

≻
≻

Figure 7.3. Play is considered to depth 1

However, notice that this can now be
broken into two sub games, one for the
game after Alan selects left and one after
Alan selects right. Betty, in both cases,
can do as Alan did and consider possible
moves that Alan can respond with. This
leads us onto Figure 7.4.

In Figure 7.4 we once again unfold the
tree down onemore level. This now shows
the choices Alan has. GivenAlan chose ac-
tion left, and assuming Betty selected the
l-left, Alan can choose between l-l-left, l-l-
middle, and l-l-right. As Alan is rational
we know that Alan will choose the option
that is better than any of the options he

would be faced with given the action Betty could have chosen if he had originally selected
right. In other words, one of l-l-left, l-l-middle, and l-l-right, must be better than both r-o-
left and r-o-right (the actions highlighted with a solid line in Figure 7.4). However, this
must also hold if Betty had chosen action l-right! Therefore, l-r-only must also be better
than both r-o-left and r-o-right.

We can clearly from the diagram that this holds, and so the action left that Alan origin-
ally selected was the optimal move (considering up to a depth of two). It is also appar-
ent how this recursive structure can be generalised to an arbitrary depth, and arbitrary
branching factors.

Formally, we represent the game trees, T , as a tuple (e,◁) where e ∈ S is the root of
the tree, a state of the game board, and ◁ : S × S the child relation (c◁ p reads “c is a
child of p”) which is a partial ordering over S , where S is the set of all states of the game
board. Let u : S 7→N be the utility function of the game.

62 learning preferences from game trees

Definition7.2.1 (MinimaxPhases). Theminimax algorithm is brokenup into amax_phase
and a min_phase, where max_phase, min_phase are functions with signature T 7→N.

max_phase((e,◁), d) ≜
{

u(e) if d = 0

max
{

min_phase(e′, d− 1) | e′ ◁ e
}

otherwise

min_phase((e,◁), d) ≜
{

u(e) if d = 0

min
{

max_phase(e′, d− 1) | e′ ◁ e
}

otherwise

A variation of the minimax algorithm that selects between just two children of a node
is defined as:

minimax : T × T ×N 7→ T

minimax((e1,◁), (e2,◁), d) ≜ arg max

{
min_phase((e1,◁), d),

min_phase((e2,◁), d)

}
,

where d ≥ 0.

Definition 7.2.2 (Explanation Condition). The following explanation condition is a pre-
dicate that takes a utility function, two trees and a depth and will be true if there are paths
in the left tree that explain why the left branch is preferred to the right branch. This is
done by alternating quantifiers at each depth, following the intuition given previously.

explanation : (S 7→N)× T × T ×N 7→ Bool

explanation(u, (e1,◁), (e2,◁), d)

≜ (∀e1
1 ◁ e1)(∃e2

1 ◁ e1
1)(∀e3

1 ◁ e2
1) · · · (∀ed−1

1 ◁ ed−2
1)(∃ed

1 ◁ ed−1
1)

(∃e1
2 ◁ e2)(∀e2

2 ◁ e1
2)(∃e3

2 ◁ e2
2) · · · (∃ed−1

2 ◁ ed−2
2)(∀ed

2 ◁ ed−1
2)

u(ed
1) > u(ed

2)

Proposition 1. Given two trees (e1,◁), (e2,◁), a depth, d, and a utility function, u,

min_phase((e1,◁), d) > min_phase((e2,◁), d)⇐⇒ explanation(u, (e1,◁), (e2,◁), d)

Proof.
Case 1 (Base Case).
Case 1.1 (d = 0). To show:

min_phase((e1,◁), 0) > min_phase((e2,◁), 0)⇐⇒ explanation(u, (e1,◁), (e2,◁), 0)

From the definition of min_phase we get that u(e1) > u(e2), which is the definition
of explanation(u, (e1,◁), (e2,◁), 0), as when d = 0 there are no quantifiers.
Case 1.2 (d = 1). To show:

min_phase((e1,◁), 1) > min_phase((e2,◁), 1)

⇐⇒ (∀e1
1 ◁ e1)(∃e1

2 ◁ e2)u(ed
1) > u(ed

2)

7.2 inductive learning programs with deep orderings 63

min_phase((e1,◁), 1) > min_phase((e2,◁), 1) (7.1)

⇐⇒min
e1

1◁e1

(
max_phase(e1

1, 0)
)
> min

e1
2◁e2

(
max_phase(e1

2, 0)
)

⇐⇒(∀e1
1 ◁ e1)(∃e1

2 ◁ e2) max_phase(e1
1, 0) > max_phase(e1

2, 0)

This follows from being able to select any child of e1 as it is true for the minimum and the
fact that one can select the child of e2 that yields the minimum

⇐⇒(∀e1
1 ◁ e1)(∃e1

2 ◁ e2) u(e1
1) > u(e1

2) (from definition max_phase)
(7.2)

Case 2 (Inductive Step, d ≥ 2). For any trees (f1,◁) and (f2,◁) let the inductive hypo-
thesis be:

IH ≜min_phase((f1,◁), d− 2) > min_phase((f2,◁), d− 2)

⇐⇒ (∀ f 1
1 ◁ f1)(∃ f 2

1 ◁ f 1
1)(∀ f 3

1 ◁ f 2
1) · · · (∀ f d−3

1 ◁ f d−4
1)(∃ f d−2

1 ◁ f d−3
1)

(∃ f 1
2 ◁ f2)(∀ f 2

2 ◁ f 1
2)(∃ f 3

2 ◁ f 2
2) · · · (∃ f d−3

2 ◁ f d−4
2)(∀ f d−2

2 ◁ f d−3
2)

u(f d−2
1) > u(f d−2

2)

To show:

min_phase((e1,◁), d) > min_phase((e2,◁), d)

⇐⇒ (∀e1
1 ◁ e1)(∃e2

1 ◁ e1
1)(∀e3

1 ◁ e2
1) · · · (∀ed−1

1 ◁ ed−2
1)(∃ed

1 ◁ ed−1
1)

(∃e1
2 ◁ e2)(∀e2

2 ◁ e1
2)(∃e3

2 ◁ e2
2) · · · (∃ed−1

2 ◁ ed−2
2)(∀ed

2 ◁ ed−1
2)

u(ed
1) > u(ed

2)

min_phase((e1,◁), d) > min_phase((e2,◁), d) (7.3)

⇐⇒ min
e1

1◁e1

(
max_phase(e1

1, d− 1)
)
> min

e1
2◁e2

(
max_phase(e1

2, d− 1)
)

(7.4)

⇐⇒ (∀e1
1 ◁ e1)(∃e1

2 ◁ e2)

max_phase(e1
1, d− 1) > max_phase(e1

2, d− 1)

(7.5)

⇐⇒ (∀e1
1 ◁ e1

1)(∃e1
2 ◁ e2)

max
e2

1◁e1
1

(
min_phase(e1

1, d− 2)
)
> max

e2
2◁e1

2

(
min_phase(e2

2, d− 2)
)

(7.6)

64 learning preferences from game trees

⇐⇒ (∀e1
1 ◁ e1)(∃e1

2 ◁ e2)(∃e2
1 ◁ e1

1)(∀e2
2 ◁ e1

2)

min_phase(e2
1, d− 2) > min_phase(e2

2, d− 2)

(7.7)

Using the inductive hypothesis, where (f1,◁) = (e2
1,◁) and (f2,◁) = (e2

2,◁), yields:

⇐⇒ (∀e1
1 ◁ e1) (∃e1

2 ◁ e2) (∃e2
1 ◁ e1

1) (∀e2
2 ◁ e1

2)

(∀e3
1 ◁ e2

1)(∃e4
1 ◁ e3

1)(∀e5
1 ◁ e4

1) · · · (∀ed−1
1 ◁ ed−2

1)(∃ed
1 ◁ ed−1

1)

(∃e3
2 ◁ e2

2)(∀e3
2 ◁ e2

2)(∃e4
2 ◁ e3

2) · · · (∃ed−1
2 ◁ ed−2

2)(∀ed
2 ◁ ed−1

2)

u(ed
1) > u(ed

2)

(7.8)

⇐⇒ (∀e1
1 ◁ e1)(∃e2

1 ◁ e1
1)(∀e3

1 ◁ e2
1) · · · (∀ed−1

1 ◁ ed−2
1)(∃ed

1 ◁ ed−1
1)

(∃e1
2 ◁ e2) (∀e2

2 ◁ e1
2) (∃e3

2 ◁ e2
2) · · · (∃ed−1

2 ◁ ed−2
2)(∀ed

2 ◁ ed−1
2)

u(ed
1) > u(ed

2)

(7.9)

Equation 7.9 follows from the fact you can always choose the child that produces the
maximum/minimumand (∀a)(∀b) P(a, b) ≡ (∀b)(∀a) P(a, b) and (∃a)(∃b) P(a, b) ≡
(∃b)(∃a) P(a, b).

Now, let the states be Context Dependent Partial Interpretations and we can define a
new ILPdeep

loas task that uses the explanation condition to select a subset of the leaves of a
game tree to bravely respect, these preferences explain why at the root of the tree there
is a preference, according to the minimax theorem. In order to define this new task we
must first define a new ordering type that incorporates explanation. To do so we must
first alter the definition of explanation – in a manner that preserves Proposition 1 – by
replacing the comparison of utilities u(ed

1) > u(ed
2) with B∪ H bravely respects ⟨ed

1, ed
2⟩,

where B ∪ H are given. This can be done as there is a mapping from the penalties given
by the weak constraints to the natural numbers.

Definition7.2.3 (DeepContextDependentOrderingExample). Thisdefinition extendsDefin-
ition 3.4.9. A deep cdoe, o, is a tuple ⟨e1, e2, d,◁⟩ of two trees, (e1,◁) and (e2,◁), where
e1, e2 are cdpis, ◁ is a child relation over the cdpis, and a depth d. An asp program Π
deeply respects o iff explanation(Π, (e1,◁), (e2,◁), d).

Definition 7.2.4 (Deep, Context Dependent loas task). This definition extends Defin-
ition 3.4.10. A deep, context dependent Learning from Ordered Answer Sets task is a
tuple T = ⟨B, SM, E, O,◁⟩ where B, SM, E are as before in Definition 3.4.10. O =

⟨Ob, Oc, Od⟩ where Od is the set of deep orderings over S ⊆ E+, S is the set of all board

7.3 implementation 65

states.1 ◁ is a partial ordering over S denoting the child relation. A hypothesis H is an
inductive solution of T, H ∈ ILPdeep

loas iff:

(i) H′ ∈ ILPcontext
las (⟨B, SLAS

M , E+, E−⟩), where H′ is the subset of H with no weak
constraints, MLAS = ⟨Mh, Mb⟩.

(ii) ∀o ∈ Ob, such that B ∪ H bravely respects o

(iii) ∀o ∈ Oc, such that B ∪ H cautiously respects o

(iv) ∀o ∈ Od, such that B ∪ H deeply respects o.

7.3 implementation

The implementation of the new ILPdeep
loas task is detailed below. Firstly we describe an

experimental feature of ilasp 3.2 (meta-program injection), This feature allows certain
examples to be activated, through the custom definition of the example_active(·) pre-
dicate. Fromherewe present the injectedmeta-programweuse to encode the explanation
condition, and prove that this is equivalent to the ILPdeep

loas task. We also present a method
of generating the child relation, and board states from the gdl specification.

7.3.1 ilasp with meta-program injection

In order to be able tomodify themeta-level representationwemust use themeta-program
injection feature of ilasp. The following definition of the feature is from (Law, Russo and
Broda, 2018):

Definition 7.3.1 (Meta-Program Injection). Let T = ⟨B, SM, ⟨E+, E−, Ob, Oc⟩⟩ be an
ILPcontext

loas task andQ be an asp program. Given any interpretation I ofQ, we TI denotes
the task ⟨B, SM, ⟨E+

I , E−I , Ob
I , Oc

I⟩⟩, where:

E+
I = {e ∈ E+ | example_active(eid) ∈ I}

E−I = {e ∈ E− | example_active(eid) ∈ I}
Ob

I = {o ∈ Ob | example_active(eid) ∈ I}
Oc

I = {o ∈ Oc | example_active(eid) ∈ I}

A hypothesis H ⊆ SM is said to be an inductive solution of T with respect to the
injection ofQ iff ∃I ∈ AS(Q) such that H ∈ ILPcontext

loas (TI).

7.4 translation from deep, context dependent loas task to context
dependent loas task with meta-program injection

For any ILPdeep
loas task, T = ⟨B, SM, E, O,◁⟩, we translate T to T′ = ⟨B, SM, ⟨E+, E−, Ob

inject, Oc⟩⟩
the ILPcontext

loas withQ as follows:

1 When presenting examples only the board states that are used will be shown

66 learning preferences from game trees

E+, E− and Oc are left unchanged. Ob
leaves is the set of all possible combinations of leaves

at depth d on the left branch and leaves at depth d on the right branch

Ob
leaves =

∪
⟨e1,e2,d,◁⟩∈Od

{
⟨ed

1, ed
2⟩ | ∀ed

1 ◁d e1, ∀ed
2 ◁d e2

}

Ob
inject = Ob ∪Ob

leaves

Q = meta(E+) ∪meta(E−) ∪meta(Ob) ∪meta(Ob
leaves)

∪meta(Oc) ∪meta(Od) ∪meta(◁)

◁d is the dth power of◁, defined inductively by

◁0 = {(e, e) | e ∈ S}
◁1 = ◁
◁i+1 = ◁ ◦◁i (for i > 0, ◦ is functional composition)

and the meta function is as follows:

meta(E+) =
{

example_active(eid) | eid ∈ E+
}

(7.10)
meta(E−) =

{
example_active(eid) | eid ∈ E−

}
(7.11)

meta(Ob) =
{

example_active(oid) | oid ∈ Ob
}

(7.12)

meta(Oc) = {example_active(oid) | oid ∈ Oc} (7.13)

meta(Ob
leaves) =

{
ord(e1

id, e2
id, oid)

∣∣∣ o = ⟨e1, e2⟩ ∈ Ob
leaves

}
(7.14)

meta(Od) =

{
root(e1, chosen)

root(e2, other)

∣∣∣∣∣ o ∈ Od

}
(7.15)

meta(◁) = {child(a, b) | b◁ a} (7.16)

Equations 7.10–7.13 add facts to themeta-program ensuring that the positive, negative,
brave and cautious orderings must be covered. Equation 7.14 adds a set of facts denoting
the possible orderings of the leaves at depth d. Equation 7.15 adds the root trees to the
meta-program. Finally, we add a fixed program responsible for searching through all the
possible brave orderings, Od

leaves, in order to find the set

∪
⟨e1,e2,d,◁⟩∈Od

{
⟨ed

1, ed
2⟩

∣∣∣ explanation(B ∪ H, (e1,◁), (e2,◁), d)
}

for a hypothesis, H, that will be learnt by the task. This can be achieved using a choice
rule for selection over the children of a branch such that ∃ei+1 ◁ ei, and a normal rule
for enforcing ∀ei+1◁ ei.

explanation(EX_ID, forall)← root(EX_ID, chosen) (7.17)
explanation(EX_ID, exists)← root(EX_ID, other) (7.18)

7.4 translation to context dependent loas task with meta-program injection 67

1{explanation(Child, forall) | child(Parent, Child)}1 (7.19)
← explanation(Parent, exists),

child(Parent, _)

explanation(Child, exists)← child(Parent, Child),

explanation(Parent, forall)

(7.20)

example_active(ORD_ID)← ord(EX_ID_1, EX_ID_2, ORD_ID),

explanation(EX_ID_1, _),
explanation(EX_ID_2, _).

(7.21)

Proposition 2. Given the task T = ⟨B, SM, E, O,◁⟩, the meta-programQ from the trans-
lation of T into ameta-program injection task, and a hypothesis H, ∃I ∈ AS(Q) such that

∀o ∈ Ob
leaves(I), B ∪ H bravely respects o ⇐⇒ ∀o ∈ Od, B ∪ H deeply respects o

where Ob
leaves(I) =

{
o ∈ Ob

leaves | example_active(oid) ∈ I
}

Proof. Let T = ⟨B, SM, E, O,◁⟩, Q be the translation of T into a meta-program injec-
tion task, and hypothesis H.

(∀o ∈ Od)B ∪ H deeply respects o (7.22)

⇐⇒ (∀o ∈ Od)(∀o′ ∈ Ob
leaves(I, o))B ∪ H bravely respects o (7.23)

⇐⇒ I ∈ AS(Q) ∀example_active(oid) ∈ I . H covers o (7.24)

⇐⇒ ∀o ∈ Ob
leaves(I)B ∪ H bravely respects o (7.25)

Equation 7.24 comes from the fact that Rules 7.20 and 7.19 clearly generate all the children
and exactly one child, respectively. All the terms needed to satisfy these predicates are
given as facts inQ (see meta(Od), meta(Ob

leaves), meta(◁)). We know that B∪H bravely
respects this ordering from the explanation condition. Note. The upper bound of 1 is not
required, it just limits the number of examples that are generated, the important bound
is the lower bound, stating that there must be at least one.

Theorem 1. Given the task T = ⟨B, SM, E, O,◁⟩ and the task T′ withQ created from the
translation of T into a meta-program injection task then for all H ⊆ SM,

H ∈ ILPdeep
loas (T)⇐⇒ H ∈ ILPcontext

loas (T′) withQ

Proof. In order for H ∈ ILPdeep
loas (T) it must satisfy the following (from Definition 7.2.4):

(i) H′ ∈ ILPcontext
las (⟨B, Slas

M , E+, E−⟩), where H′ is the subset of H with no weak con-
straints, Mlas = ⟨Mh, Mb⟩.

(ii) ∀o ∈ Ob, B ∪ H bravely respects o

(iii) ∀o ∈ Oc, B ∪ H cautiously respects o

68 learning preferences from game trees

(iv) ∀o ∈ Od, B ∪ H deeply respects o.

In order for H ∈ ILPcontext
loas (T′) withQ the following must hold: ∃I ∈ AS(Q) such

that H ∈ ILPcontext
loas (T′I), and for H ∈ ILPcontext

loas (T′I) the following must be satisfied
(from Definition 7.3.1, Definition 3.4.7):

(v) H′ ∈ ILPcontext
las (⟨B, Slas

M , E+
I
′, E−I

′⟩), where H′ is the subset of H with no weak
constraints, Mlas = ⟨Mh, Mb⟩.

(vi) ∀o ∈ Ob
I
′, B ∪ H bravely respects o

(vii) ∀o ∈ Oc
I
′, B ∪ H cautiously respects o

It remains to show that (i)⇔ (v), (iii)⇔ (vii), and (ii) and (iv)⇔ (vi).

1. (i)⇔ (v) B and SM are left unchanged by the translation. From meta(E+), ∀e ∈
E+ the fact example_active(eid) is in Q therefore it is also in I therefore ∀e . e ∈
E+ ⇔ e ∈ E+

I
′. A similar argument can be made for E−.

2. (iii)⇔ (vii) A similar argument as above shows that ∀o . o ∈ Oc ⇔ Oc
I
′.

3. (ii) and (iv)⇔ (vi) Ob
I
′ is split, by definition, into Ob

I ∪Ob
leaves(I). Again, using

a similar argument to 1. and 2., it is sufficient to show that

∀o ∈ Ob
leaves(I), B ∪ H bravely respects o ⇐⇒ ∀o ∈ Od, B ∪ H deeply respects o

where Ob
leaves(I) =

{
o ∈ Ob

leaves | example_active(oid) ∈ I
}
. This follows directly

from Proposition 2.

7.5 automatically generating the game trees

As the depth and number of deep orderings increases the number of examples and or-
derings that are needed grow rapidly. Fortunately, the structure of the gdl-based logic
programs can be leveraged in order to generate the additional positive examples in the
tree, and the child relation, ◁, automatically. Each root example can be combined with
its context and the background and using Clingo the children can be created using the
methodology outlined below.

We define two mutually recursive functions (algorithm 7.1 and algorithm 7.2). One
which for each answer set of of an example will generate the branches and collect the
child relation and all leaf examples from the branches. The other will take an answer set
an extract the next state (i. e. take the next(·) and make that the current state), and then
aggregate the results of making the branches from each child.

The Branch Generation algorithm is the entry point of the generation, a root node is
passed in alongwith the background knowledge and a depth to generate. If d = 0 then the
entry node is the child, which is already in the examples, and so empty sets are returned.
Otherwise, the Child Generation algorithm is called for each answer set of B ∪ C, this is
done by calling out to Clingo, and the results are then aggregated.

7.5 automatically generating the game trees 69

Algorithm 7.1: Branch Generation
Input: Background Knowledge: B
Input: Positive Example: ⟨e, C⟩ ∈ S
Input: Depth: d ≥ 0

Result: A set of ⟨e, C⟩ for each leaf at depth d, and the child relation,◁
begin

if d = 0 then
return ∅, ∅

else
(decendents, E+

child)←−
unzip {ChildGen(B, eid, d− 1, A) | A ∈ AS(B ∪ C)}

return
∪

decendents,
∪

E+
child

end
end

Algorithm 7.2: Children Generation
Input: Background Knowledge: B
Input: Positive Example id: eid

Input: Depth: d ≥ 0

Input: Answer Set: A
Result: Tuple of the child relation,◁, and the child examples, E+

child

begin
state←− { f | next(f) ∈ A}
E+

child ←− {⟨{move} , ∅, state⟩ | move ∈ legal(state)}
◁←−

{
(e′id, eid) | e′ ∈ E+

child

}
if d = 0 then

return◁, E+
child

else
(decendents, E+

leaves)←− unzip
{

BranchGen(B, e′, d) | e′ ∈ E+
child

}
return

∪
◁′∈decendents∪◁◁′,

∪
E+

leaves

end
end

70 learning preferences from game trees

The Child Generation algorithm takes as input the background knowledge, the id of
the current example and an Answer Set of the example and the background knowledge.
The depth, d, is also passed in, and is the value we reduce on in order to terminate. Firstly
the next state is created from the answer set, and the child examples and child relation
are generated from this state. Here we use the legal which simply returns the set of legal
moves for the game, in practice this can be done by, again, calling out to Clingo.

Example 7.5.1. Take the following tree from Chapter 8, it depicts a game tree for the
CrossDot game (Section 2.3). The left branch denotes the chosen path by the player, and
the right branch denotes another possible move. The strategy here is that not letting your
opponent win is a good idea. If, however, you were playing by the strategy “move into an
isolated box or next to your own marker” (a dominant strategy for the first player) then
the right branch would be preferred.

⊠ □ □ □

⊠ ⊡ □ □

⊠ ⊡ ⊠ □

⊠ ⊡ ⊠ ⊡

⊠ ⊡ □ ⊠

⊠ ⊡ ⊡ ⊠

⊠ □ ⊡ □

⊠ ⊠ ⊡ □ ⊠ □ ⊡ ⊠

⊠ ⊡ ⊡ ⊠

Figure 7.5. Cross-Dot defence game tree generated from
⟨(·, ⊠ □ □ □ , a2), (·, ⊠ □ □ □ , a3), 2⟩, the ordering
example, with a depth of 2. Green and red represent a winning
and losing state for ·, respectively.

The background knowledge, B, for this task can be found in Logic Program A.3. The
mode declaration is M = ⟨∅, ∅, {goal(vrole, 100)}, {1,−1}, 1⟩. The only positive ex-
amples, E+, given are:

e1 = ⟨∅, ∅, C1⟩
e2 = ⟨∅, ∅, C2⟩

C1 =


box(1, x). box(2, b). box(3, b). box(4, b).

control(o).

← not does(o, mark(2)).

C2 =


box(1, x). box(2, b). box(3, b). box(4, b).

control(o).

← not does(o, mark(3)).

The only deep ordering example given is ⟨e1, e2, 2,◁⟩. No other examples are given. The
full task is T = ⟨B, SM, E, O,◁⟩.

Next we generate the additional children examples and the child relation◁.

e1,1,1 = ⟨∅, ∅, C3⟩ e1,2,1 = ⟨∅, ∅, C4⟩ e2,1,1 = ⟨∅, ∅, C5⟩ e2,2,1 = ⟨∅, ∅, C6⟩

C3 =


box(1, x). box(2, o). box(3, b). box(4, x).

control(o).

← not does(o, mark(4)).

7.5 automatically generating the game trees 71

C4 =


box(1, x). box(2, o). box(3, x). box(4, b).

control(o).

← not does(o, mark(3)).

C5 =


box(1, x). box(2, x). box(3, o). box(4, b).

control(o).

← not does(o, noop).

C6 =


box(1, x). box(2, b). box(3, o). box(4, x).

control(o).

← not does(o, mark(2)).

◁ =


(e1, e1,1), (e1, e1,2),

(e2, e2,1), (e2, e2,2),

(e1,1, e1,1,1), (e1,2, e1,2,1),

(e2,1, e2,1,1), (e2,2, e2,2,1),

All e are added to E+ and◁ is as defined above. Next we translate T into T′ the meta-
program injection task. T′ = ⟨B, SM, ⟨E+, E−, Ob

inject, Oc⟩⟩ withQ. E+, E−, and Oc

are unchanged, as per the translation.

Ob
inject = Ob ∪

{
⟨e1,1,1, e2,1,1⟩, ⟨e1,1,1, e2,2,1, ⟩
⟨e1,2,1, e2,1,1⟩, ⟨e1,2,1, e2,2,1⟩

}

Q =



root(e1, chosen) root(e2, other)

ord(e1,1,1, e2,1,1, o1) ord(e1,1,1, e2,2,1, o2)

ord(e1,2,1, e2,1,1, o3) ord(e1,2,1, e2,2,1, o4)

example_active(e1) example_active(e2)

example_active(e1,1,1) example_active(e1,2,1)

example_active(e2,1,1) example_active(e2,2,1)

explanation(E, forall)← root(E, chosen)

explanation(E, exists)← root(E, other)

1{explanation(C, forall) | child(P, C)}1← child(P, _), explanation(P, forall)

explanation(C, exists)← child(P, C), explanation(P, forall)

example_active(O)← ord(E1, E2, O), explanation(E1, _), explanation(E2, _)

The solution of the task is H iff ∃I ∈ AS(Q) such that H ∈ ILPcontext
loas (T′I). H is the

hypothesis below:

⇝goal(P, 100), control(P).[−1@1, P]

and I ∈ AS(Q) contains exactly the following example_active(oid) predicates (and
other predicates, e. g. root etc.): Iexample_active = {example_active(o1), example_active(o2)}

8 CASE STUDY: CROSS -DOT GAME

In this chapter I focus on an alternative game, which I have taken from the literature. The
game I will look at has also been studied in Zhang and Thielscher (2015). The Cross-
Dot Game, another name for a m–k game, where players aim to get k boxes in a row
marked with their player symbol (from a possible m boxes), the full description and rules
of the game can be found in Section 2.3. An example of a game state may look as follows:
⊠ □ ⊡ □ □ .

As discussed in Section 4.2, Zhang andThielscher (2015) present an extension toGame
Description Language which includes a modal operator (⃝), the ability to represent
strategies in their language (not just the game rules), some preference operators for the
strategies (△, ▽) and a translation of a subset of their language into asp.

Zhang et al. use the following definition of a strategy. A strategy of player i is S(φ) ⊆
W × Ai where W is the set of game states, Ai is the set of actions player i can take andφ

is a strategy rule that is true in all ω such that (ω, a) ∈ S(φ). A strategy S is only valid
if S(φ) ̸= ∅.

The notion of prioritised conjunction (△) and prioritised disjunction (▽) were intro-
duced by Zhang andThielscher in order to combine smaller strategy rules intomore com-
plex strategies. The semantics of r1 △ · · ·△ rn are: apply as many strategy rules from the
left as possible whilst still maintaining a valid strategy for this state. The semantics of
r1 ▽ · · ·▽ rn are: try r1 and if that does not work try r2 and so on.

In their paper Zhang et al. present strategies written in their modal language, they then
compare them and show interesting properties of each. The experiments in this chapter
take examples of games that have been played using the strategies and learn an equival-
ent strategy in asp. Experiments 8.1–8.5 use context-dependent loas tasks and Experi-
ment 8.6 onwards use our deep, context-dependent loas tasks from Chapter 7.

8.1 the game

The game state is denoted by a tuple of current player and current state (p, □ □ · · · □).
For instance, (×, ⊠ ⊡ □ □) where × is to move and each player has had one turn
playing in the first two boxes. Moves, or state-action pairs, are represented as a tuple of
state and action (p, □ □ · · · □ , ab) where ab represents marking box b.

Example 8.1.1. Taking the example game state above and the action a3, we get the move
(×, ⊠ ⊡ □ □ , a3). When this move is made the following state change occurs:
(×, ⊠ ⊡ □ □)→a3 (·, ⊠ ⊡ ⊠ □). If we preferred thismove to (×, ⊠ ⊡ □ □ , a4)

we can express this as the cdoe (Definition 3.4.9): ⟨(×, ⊠ ⊡ □ □ , a3), (×, ⊠ ⊡ □ □ , a4)⟩.
This notation is used throughout the chapter.

8.1.1 representation

To represent the game I have used a modified version of the asp presented in the paper.
This is to eliminate certain duplication, and due to some restrictions imposed by the asp
allowed in ilasp, e. g. conditions. The representation I have used follows from the gdl

73

74 case study: cross-dot game

specification in Section 5.2. next means the predicate is true after themove. does means
a move is taken. legal means a move is possible given true. The representation used
in the paper has multiple rules for some predicates that deal with boxes that can be on
either side; which I overcome by introducing adj(·, ·) meaning two boxes are adjacent.
Additionally, I introduce longest_chain(·, ·) to denote a player’s longest chain to avoid
creating multiple instances of the program for different ks. The full logic program used
as background knowledge for the game can be found in Logic Program A.3.

8.2 learning strategies

In order to demonstrate the capabilities of weak constraints I use ilasp 3 to learn the
strategies presented and compare the actions chosen with the actions selected using the
strategies from Zhang and Thielscher (2015). The strategies in the paper can be divided
into three categories: simple, prioritised and forward-thinking. These strategy rules are
shown in Table 8.1. In all the examples in the following section partial interpretations are
written in a simplified format using the aforementioned state-action representation.
Note. Throughout this chapter I use E+

O to denote the positive examples drawn from the
ordering examples (i. e. Ob, Oc and Od).

simple prioritised forward-thinking

fill_next combined defence
fill_isolated fill_leftmost cautious

fill_any thoughtful fill_o_next

passive_defence

Table 8.1. Categorised strategy rules from Zhang and Thielscher (2015)

8.2.1 simple strategies

Simple strategies can be learnt using only a single priority level for the weak constraints.

Experiment 8.1 (Fill Next). The fill_next strategy means if possible, mark a box next to
one of your own. Given the Context Dependent loas task (Definition 3.4.10) Tnext =

⟨B, SM, E+
O , ∅, Ob, ∅⟩ where

B is the background knowledge from Logic Program A.3,
M = ⟨∅, ∅, {adj(v, v), does(c, mark(v)), box(v, c)} , {−1} , 1⟩

Ob =



⟨(×, ⊠ □ □ □ □ ⊡ , a2), (×, ⊠ □ □ □ □ ⊡ , a3)⟩
⟨(×, ⊡ □ ⊠ □ □ □ , a2), (×, ⊡ □ ⊠ □ □ □ , a5)⟩
⟨(×, ⊡ □ ⊠ □ □ □ , a2), (×, ⊡ □ ⊠ □ □ □ , a6)⟩
⟨(×, ⊡ □ ⊠ □ □ □ , a4), (×, ⊡ □ ⊠ □ □ □ , a5)⟩
⟨(×, □ ⊡ □ □ ⊠ □ , a6), (×, □ ⊡ □ □ ⊠ □ , a3)⟩

The ordering examples shown here are taken from a few games against a player (·) using
a random strategy. Each example is from the× player’s point of view.

8.2 learning strategies 75

ilasp was able to learning the following hypothesis1:

⇝does(x, mark(Box1)), adj(Box1, Box2), box(Box2, x).[−1@1, Box1, Box2]

In English this hypothesis means you2 gain a reward of 1 if you mark a box next to a
box you have already marked.

Experiment 8.2 (Fill isolated). The fill_next strategy has a flaw, if you play in the first box
your opponent can easily block you off. To remedy this you may wish to play in one of
the centre cells as you are guaranteed to win on your next turn (assuming k = 2). The
fill_isolated strategy means if possible, mark a box with no mark either side of the box.
Given the learning task Tiso = ⟨B, SM, E+

O , ∅, Ob, ∅⟩ where
B, M are the same as in Tnext,

Ob =


⟨(×, □ □ □ □ □ □ , a2), (×, □ □ □ □ □ □ , a1)⟩
⟨(×, □ □ □ □ □ □ , a2), (×, □ □ □ □ □ □ , a6)⟩
⟨(×, □ □ □ □ □ □ , a3), (×, □ □ □ □ □ □ , a6)⟩
⟨(×, ⊠ ⊡ □ □ □ □ , a4), (×, ⊠ ⊡ □ □ □ □ , a3)⟩

The examples here show what you might play at the beginning of the game with this
strategy, and what you might do later in the game if you made a mistake earlier on.

ilasp was able to learning the following hypothesis1:

⇝does(x, mark(Box1)), adj(Box1, Box2), true(box(Box2, b)).[−1@1, Box1, Box2]

In English this hypothesis means you2 try to maximise the number of blank boxes
either side of you.

Remark. fill_any expresses a lack of preference over the actions and so does not need
anything to be learnt.

8.2.2 combined strategies

Combined strategies use the prioritised operators△ and▽ to compose basic notions into
something more complicated.

Experiment 8.3 (Combined). The combined is the composite strategyfill_next▽fill_isolated▽
fill_any, meaning you first try to fill a box next to your own, then fill an isolated box and
if there are no moves that conform to this strategy you fill any box you can. Given the
learning task Tcomb = ⟨B, SM, E+

O , ∅, Ob, ∅⟩ where
B is the same as in Tnext,

M = ⟨∅, ∅, {adj(v, v), does(c, mark(v)), true(box(v, c))} , {−1, box} , 2⟩

Ob = Ob
next ∪Ob

iso

1 Variable names have been replaced for clarity
2 Here we assume you are playing as×

76 case study: cross-dot game

Note. Here we are able to use the union of the examples used for the simple strategies
(Ob

next, Ob
iso) as they encode the preference of fill_next over fill_isolated. Specifically, the

example ⟨(×, ⊠ □ □ □ □ ⊡ , a2), (×, ⊠ □ □ □ □ ⊡ , a3)⟩, and there are no counter
examples to this preference. Though this is not always the case.

ilasp 3 was able to learning the following hypothesis1:

⇝does(x, mark(Box1)), adj(Box1, Box2), true(box(Box2, x)).[−1@2, Box1, Box2]

⇝does(x, mark(Box1)), adj(Box1, Box2), true(box(Box2, b)).[−1@1, Box1, Box2]

In English this hypothesis means you2 try to go next to your own piece first, and if this
is not possible minimise the number of dots next to you. I believe this is equivalent to the
other strategy in this game.

Experiment 8.4 (Fill Leftmost). The fill_leftmost is the composite strategy cm △ · · ·△ c1

where ci =
∨i

j=1 does(aj) such that 1 ≤ i ≤ m (e. g. if does(a2) is an option at the
current state ω and does(a1) is not then (ω, a2) ∈ S(cm △ · · · △ c1) but (ω, a−2) /∈
S(cm △ · · ·△ c1) where−2 is everything bar 2).

Remark. This representation of this strategy is rather unintuitive, we will see that in ilasp
this is far simpler and more self explanatory.

Given the learning task Tleft = ⟨B, SM, E+
O , ∅, Ob, ∅⟩ where

B, M are the same as in Tcomb,
Ob = {⟨(×, ⊠ ⊡ □ □ ⊡ ⊠ , a3), (×, ⊠ ⊡ □ □ ⊡ ⊠ , a4)⟩}

ilasp 3 was able to learning the following hypothesis1:

⇝does(x, mark(Box1)).[Box1@1, Box1]

In English, this hypothesis means you gain a penalty proportional to the position of
the box, i. e. the further left the lower the penalty.

Experiment 8.5 (Thoughtful). The thoughtful strategy means the same as the combined
strategy but in all cases pick the left most option when faced with a choice. Formally this
is, combined △ fill_leftmost. Given the learning task Tthoughtful = ⟨B, SM, E+

O , ∅, Ob, ∅⟩
where

8.2 learning strategies 77

B = Bcomb ∪ {leftmost(B, 7− B)← box(B)},
M =

⟨
Mh, Mb, Mo, {−1, box, score} , 2

⟩
Mh = {fill_next(vbox, vbox), fill_isolated(vbox, vbox)}

Mb = {adj(vbox, vbox), does(crole, mark(vbox)), true(box(vbox, cstate)}

Mo = {fill_next(vbox, vbox), fill_isolated(vbox, vbox), leftmost(vbox, vbox)}

Ob =



⟨(×, □ □ □ □ □ □ , a2), (×, □ □ □ □ □ □ , a3)⟩
⟨(×, □ □ □ □ □ □ , a2), (×, □ □ □ □ □ □ , a1)⟩
⟨(×, □ ⊠ ⊡ □ □ □ , a1), (×, □ ⊠ ⊡ □ □ □ , a5)⟩
⟨(×, ⊡ ⊠ □ □ □ □ , a3), (×, ⊡ ⊠ □ □ □ □ , a4)⟩
⟨(×, □ ⊠ □ ⊡ □ □ , a1), (×, □ ⊠ □ ⊡ □ □ , a3)⟩

⟨(×, □ □ ⊠ ⊡ □ □ , a2), (×, □ □ ⊠ ⊡ □ □ , a1)⟩
⟨(×, □ □ ⊠ ⊡ □ □ , a2), (×, □ □ ⊠ ⊡ □ □ , a6)⟩
⟨(×, □ ⊡ ⊠ □ □ □ , a4), (×, □ ⊡ ⊠ □ □ □ , a1)⟩
⟨(×, □ ⊡ ⊠ □ □ □ , a4), (×, □ ⊡ ⊠ □ □ □ , a5)⟩
⟨(×, ⊡ □ ⊠ □ □ □ , a2), (×, ⊡ □ ⊠ □ □ □ , a6)⟩

Ob contains twomain groups of examples, the first set are taken from playing using the
strategy from the beginning of the game. However just using these examples can cause
ilasp to learn a hypothesis that learns features of the states not the moves. With all of the
examples, ilasp was able to learning the following hypothesis1:

fill_1(Box2)← adj(Box1, Box2), does(_, mark(Box1)).

fill_2(Box2)← adj(Box1, Box2), box(Box1, Player),

does(Player, mark(Box2)).

⇝fill_1(Box), leftmost(Box, Score).[−Score@1, Box, Score]

⇝fill_2(Box), leftmost(Box, Score).[−Score@2, Box, Score]

ilasp has created two predicates, fill_1 which describes a box that is adjacent to a box
that is being marked, and fill_2 which describes a player marking a box next to one of
their own boxes. Putting this together with the weak constraint we get: “at the highest
priority gain the reward of how far left a box is if there is already an adjacent box that you
have marked, otherwise choose the leftmost box with the most neighbours”. Because of
the complexity of the game this is equivalent to the correct strategy presented in (Zhang
and Thielscher, 2015).

8.2.3 forward-thinking strategies

Forward-thinking strategies involve the modal operator⃝ which means “will be true in
the next state”. Further, this operator can be nested giving rise to strategies that reason
several steps into the future, such as the defence strategy rule below. In their paper Zhang
et al. state they are unable to represent strategies involving⃝ in asp. In this section, I

78 case study: cross-dot game

experiment with using Deep Context Dependent loas tasks in order to learn strategies
using⃝.

Experiment 8.6 (Defence). If the cross player were to play in the first box the dot player
would lose using the thoughtful strategy, assuming the cross player is rational. This is
illustrated in Figure 8.1 below, where the right branch represents the thoughtful strategy.
It would make more sense for the dot player to block the cross player in order to try and
force a draw.

The defence strategy means that if there is a move that the opponent could play to win,
make that move instead. The learning task described below uses the deep orderings from
Chapter 7 (Definition 7.2.3). Given the learning task Tdef = ⟨B, SM, E+

O , O⟩ where
B is the same as in Tthoughtful,

M = ⟨∅, ∅, Mo, {−1, 1} , 1⟩

Mo = {goal(vrole, creward), role(vrole), control(vrole)}

Od =
{
⟨(·, ⊠ □ □ □ , a2), (·, ⊠ □ □ □ , a3), 2⟩

The relevant examples are then expanded into a game tree (see Figure 8.1). Along with
generated examples, and the injected meta program (described in Section 7.4) ilasp was
able to learning the following hypotheses1: and at depth 2 you get

⇝not goal(V0, 0), control(V0).[−1@1, 1, V0]

When applied to minimax at depth two this corresponds to the strategy “make sure
you have not lost on your next turn”.

⊠ □ □ □

⊠ ⊡ □ □

⊠ ⊡ ⊠ □

⊠ ⊡ ⊠ ⊡

⊠ ⊡ □ ⊠

⊠ ⊡ ⊡ ⊠

⊠ □ ⊡ □

⊠ ⊠ ⊡ □ ⊠ □ ⊡ ⊠

⊠ ⊡ ⊡ ⊠

Figure 8.1. Cross-Dot defence game tree generated from
⟨(·, ⊠ □ □ □ , a2), (·, ⊠ □ □ □ , a3), 2⟩, the ordering
example, with a depth of 2. Green and red represent a winning
and losing state for ·, respectively.

8.3 comparison

In this chapterwehave seen that, usingweak constraints, ilasp is able to learn the strategies
presented by Zhang and Thielscher. The weak constraints have the advantage of using in-
teger weights in order to penalise or reward moves, whilst the logical language described
in Zhang and Thielscher (2015) suffer from verbosity, for example in the leftmost strategy.
Using these weights to create a ‘heatmap’ of locations is an idea that is revisited in Exper-
iment 10.4.

8.3 comparison 79

Zhang and Thielscher translate a subset of strategies written in their modal logic into
asp. Specifically, all strategies using the modal operator ⃝. They use traditional con-
straints in order to restrict the set of legal moves down to a few that are considered good
with respect to the strategy. This means that if a particular strategy does not satisfy some
of the properties shown in the paper (e. g. completeness and determinism) then one could
find themselves in a situation where no moves can be recommended, despite legal moves
existing. This problem can be quite easily rectified by saying that any legal move is part
of the strategy, if rest of the strategy failed. In their modal logic this is written as:

fill_anyi =
∨

ai∈Ai

(
legal(ai) ∧ does(ai)

)
strati = r1 ▽ r2 ▽ · · ·▽ fill_anyi

Which is to be read as “try all strategies ri in decreasing order of priority and if they all
fail then simply select a legal action”. However, when translated into asp this becomes:

1 strat(A, T) :- r_1(A, T).
2 strat(A, T) :- r_2(A, T), not r_1(_, T).
3 %...
4 strat(A, T) :- fill_any(A, T), not r_n(_, T).
5 fill_any(A, T) :- legal(A, T).

Whereas when using weak constraints this process is completely omitted as if no weak
constraints are violated (i. e. no penalties are gained) then every legal actionwill by default
score 0 and any one can be selected.

Part III

EVALUAT ION

9 LEARNING THE GAME RULES

Learning the rules of a game is the first step in coming up with a strategy that will allow
you to defeat your opponents. The rules introduce you to the board, cards, and pieces of
the game. They show you how everything can interact andwhat actions you have available
to you on your turn. Most importantly the rules let you know how to win the game, and
by putting all of these components together you can begin to formulate a plan that will
allow you to have a better chance of winning.

In this chapter, I will outline the methodologies used in order to learn the rules of
Onitama, Five Field Kono and Cross-Dot. Each experiment below lists the examples and
mode bias provided to ilasp, in Appendix B you can find the exact options passed to
ilasp and what features were used.

9.1 process

For each game a representation was created in gdl and translated into asp. In the games
looked at here the legal actions available can be calculated directly from the current state
of the board. Thus the next(·) and does(·, ·) predicates can be removed from the rep-
resentation, significantly reducing the grounding of the meta representation.

Each gamewas translatedwith as fewhelper predicates as possible, for examplerows(·)
and columns(·)were added toOnitama in order to extract rows and columns from a pair
of cells. All games had types added to the background knowledge in order to overcome
free variables and bound cell ranges etc.. The background knowledge for each game can
be found in Appendix A.

Whilst you could achieve the samehypothesis fromobservingmany games being played,
examples have been provided by an ‘oracle’. This way mimics the way a parent may teach
their child a game, additionally it means that examples can be chosen to specifically show
a new rule or edge case. In order for ilasp to learn an accurate representation of the
rules ‘nonsense’ moves must be explicitly ruled out as illegal moves. For example, you are
unable to move from a empty square to another empty square.

9.2 learning

Experiment 9.1 (Onitama Rules). The task takes the background knowledge from Logic
Program A.1 without the action choice rule and the next(·) predicate. The mode bias
has been built such that instead of creating one rule that defines the legal moves it learns
sub predicates each with a restricted search space. This reduces the maximum number of
variables that need to be used, and the number of literals that a rule contains.

Themode declaration of this task added some additional rules to the background know-
ledge as, at the time, ilasp did not support arithmetic expressions in the bias constraints.

delta(D)← card(_, (D, _)).
delta(D)← card(_, (_, D)).

83

84 learning the game rules

math(B− C, B, C, 1)← cell(B− C, B), delta(C).

math(B + C, B, C,−1)← cell(B + C, B), delta(C).

The mode declaration used is as follows, the bias constraints used can be found in Sec-
tion B.1.1, along with the positive and negative examples:

Mh =



legal(vrole, move(vpair, vcard))

pred_1(vrole, (vcell, vcell))

pred_2(vcard, vpair, vdir)

pred_3(vrole, vcell)

pred_4(vrole, vcell)

pred_5((cell(vindex, vindex), cell(vindex, vindex)), (vindex, vindex))

pred_6(vdelta, vpair, vdir)

pred_7(vdelta, vpair, vdir)

Mb =



control(vrole) pred_1(vrole, vpair)

location(pawn(vrank, vrole), vcell) pred_2(vcard, vpair, vdir)

in_hand(vrole, vcard) pred_3(vrole, vcell)

card(vcard, (vdelta, vdelta)) pred_4(vrole, vcell)

dir(vrole, vdir) pred_4(vrole, vcell)

cell(vindex, vindex) pred_5(vpair, (vindex, vindex))

math(vindex, vindex, vdelta, vdir) pred_6(vdelta, vpair, vdir)

pred_7(vdelta, vpair, vdir)

Remark. The hypothesis that is learnt can be reduced to one rule which has a smaller
grounding by replacing the occurrences of pred_X(·) by their body’s.

pred_7(DR, (From, To), Dir)← math(Row2, Row1, DR, Dir),

rows(From, To, (Row1, Row2)).

(9.1)

pred_6(DC, (From, To), Dir)← math(Col1, Col2, DC, Dir),

columns(From, To, (Col1, Col2)).

(9.2)

pred_2(Card, Coords, Dir)← card(Card, (DC, DR)),

pred_6(DC, Coords, Dir),

pred_7(DR, Coords, Dir).

(9.3)

location(Role, Cell)← location(pawn(_, Role), Cell). (9.4)
pred_1(Role, (From, To))← location(pawn(_, Role), From),

not location(Role, To),

cell(To), control(Role).

(9.5)

legal(Role, move(Coords, Card))← in_hand(Role, Card), dir(Role, Dir),

pred_1(Role, Coords),

pred_2(Card, Coords, Dir).

(9.6)

9.2 learning 85

The hypothesis learnt can be described in English in the following way:
(9.1) pred_7 is true when there is a correct translation to the rows of the

coordinates;
(9.2) pred_6 is true when there is a correct translation to the columns of

the coordinates;
(9.3) pred_2 is true when there is a card that represents the translation

of the pawn;
(9.4) location is the projection of the location predicate, removing the

pawn’s rank;
(9.5) pred_1 is true when the starting location contains your pawn and

the ending location does not;
(9.6) legal is truewhen a card in your handprovides the translation of the

pawn (given your direction) and that you have moved your pawn
to a valid location.

This hypothesis can be compressed into the following form:

legal(Role, move((From, To), Card))← in_hand(Role, Card), dir(Role, Dir),

location(pawn(_, Role), From),

not location(pawn(_, Role), To),

cell(To), control(Role),

card(Card, (DC, DR)),

math(Col1, Col2, DC, Dir),

columns(From, To, (Col1, Col2)),

math(Row2, Row1, DR, Dir),

rows(From, To, (Row1, Row2)).

Experiment 9.2 (Five Field Kono Rules).

adj(cell(Row1, Col1), cell(Row2, Col2))← (9.7)
cell(Row1, Col1), cell(Row2, Col2),

Row2 == Row1 + 1, Col2 == Col1 + 1.

adj(cell(Row1, Col1), cell(Row2, Col2))← (9.8)
cell(Row1, Col1), cell(Row2, Col2),

Col1 == Col2 + 1, Row1 == Row2− 1.

adj(cell(Row1, Col1), cell(Row2, Col2))← (9.9)
cell(Row2, Col2), cell(Row1, Col1),

Col2 == Col1 + 1, Row2 == Row1− 1.

adj(cell(Row1, Col1), cell(Row2, Col2))← (9.10)
cell(Row1, Col1), cell(Row2, Col2),

Col1 == Col2 + 1, Row2 == Row1− 1.

legal(Role, move(cell(Row1, Col1), cell(Row2, Col2)))← (9.11)
adj(cell(Row1, Col1), cell(Row2, Col2)), control(Role)

state(Row1, Col1, Role), state(Row2, Col2, e).

The hypothesis learnt can be described in English in the following way:

86 learning the game rules

(9.7)–(9.10) adj represents that immediate diagonals are adjacent to the current
location (this ismore obvious after some arithmeticmanipulation);

(9.11) A move is legal when the destination is empty and adjacent to the
starting location, which has one of your pieces.

This hypothesis can be compressed into the following form:

adj(cell(Row, Col), cell(Row + 1, Col + 1))← cell(Row, Col), cell(Row + 1, Col + 1).

adj(cell(Row, Col), cell(Row + 1, Col− 1))← cell(Row, Col), cell(Row + 1, Col− 1).

adj(cell(Row, Col), cell(Row− 1, Col + 1))← cell(Row, Col), cell(Row− 1, Col + 1).

adj(cell(Row, Col), cell(Row− 1, Col− 1))← cell(Row, Col), cell(Row− 1, Col− 1).

legal(Role, move(cell(Row1, Col1), cell(Row2, Col2)))←
adj(cell(Row1, Col1), cell(Row2, Col2)), control(Role)

state(Row1, Col1, Role), state(Row2, Col2, e).

Experiment 9.3 (Cross-Dot Rules). As the search space of the Cross-Dot game is much
smaller I also added the head for learning the noop action, i. e. does not move.

legal(Role, mark(Box))← box(Box, b), control(Role). (9.12)
legal(Role, noop)← not control(Role), role(Role). (9.13)

10 LEARNING AND EXPRESS ING
STRATEGIES

Capturing, advancing pawns and forking1 are all tactics that a playermay enforce within a
game in order to try and gain the advantage over their opponent. These tactics are also cal-
culable by only looking at the current board position, and they form the building blocks
of winning strategies. A lot of powerful strategies in games come from composing smal-
ler strategies that solve particular sub-goals within the game. For example, during the
opening you may be looking to capture student pawns in order to restrict the opponents
movement, and in the end game look at advancing your master pawn across the board to
your opponent’s temple square. Later these simple strategies are used in order to create
something more complex. As well as being combined they can be reasoned about at dif-
ferent depths of the tree and, in a similar fashion to Chapter 8, we will explore applying
deep orderings to player’s strategies to learn stronger strategies still.

10.1 immediate strategies

10.1.1 winning

Whilst it seems obvious, achieving the winning conditions must be encoded within the
strategy. The idea of winning, losing or drawing is also the basis of algorithms such as
Monte Carlo tree search, which when they arrive at a winning node propagate a positive
value up the game tree, a negative value if it is a losing node or zero for a drawing posi-
tion. This simple heuristic can be a good indicator of a board position if many games are
simulated by randomly walking the tree.

In many games, including Onitama, there are multiple ways to win. Recall from the
rules (Section 2.1) that in Onitama you can either capture your opponent’s master, or
navigate your own master to your opponent’s temple. It may be of interest to learn which
of these strategies is preferred and if one method is dominant over another. However,
learning the dominant/preferred strategy will require a more complex task, as the best
option can often depend on both the cards, and the strategy of your opponent.

Experiment 10.1 (Try toWin). For this experiment we used ilasp2i to perform the learn-
ing task as there is no noise. The task given to ilasp was T = ⟨B, SM, E+, ∅, Ob, ∅⟩
where,

B is the logic program from Logic Program A.1
M = ⟨∅, ∅, {goal(vrole, cscore), control(vrole)}, {−1, 1}, 1⟩
E+ is the set of examples, ei, with the contexts, Ci, below and empty inclusions and exclusions
Ob = {⟨e1, e2⟩, ⟨e1, e3⟩}

Note. For this task we can take advantage of the built in gdl specified predicate goal.

1 Threatening to capture two pawns with one

87

88 learning and expressing strategies

% Context: C1

location(pawn(student,red),cell(5,5)).
location(pawn(student,blue),cell(4,3)).
location(pawn(student,red),cell(4,5)).
location(pawn(master,red),cell(2,1)).
location(pawn(student,red),cell(2,2)).
location(pawn(student,red),cell(2,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,5)).
control(blue).
in_play(monkey).
in_play(ox).
in_play(sable).
in_hand(red,monkey).
in_hand(blue,ox).

% Context: C2

location(pawn(student,blue),cell(4,3)).
location(pawn(student,red),cell(4,4)).
location(pawn(student,red),cell(4,5)).
location(pawn(student,red),cell(3,5)).
location(pawn(master,red),cell(2,1)).
location(pawn(student,red),cell(2,2)).
location(pawn(master,blue),cell(2,4)).
location(pawn(student,blue),cell(1,1)).

location(pawn(student,blue),cell(1,5)).
control(blue).
in_play(monkey).
in_play(ox).
in_play(sable).
in_hand(red,monkey).
in_hand(blue,ox).

% Context: C3

location(pawn(student,red),cell(5,5)).
location(pawn(student,blue),cell(4,3)).
location(pawn(student,red),cell(3,4)).
location(pawn(student,red),cell(3,5)).
location(pawn(master,red),cell(2,1)).
location(pawn(student,red),cell(2,2)).
location(pawn(master,blue),cell(2,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,5)).
control(blue).
in_play(monkey).
in_play(ox).
in_play(sable).
in_hand(red,monkey).
in_hand(blue,ox).

The hypothesis learnt by ilasp is:

⇝goal(Role, 100), not control(Role).[−1@1, Role]

At first this result may look odd as it says “a reward is given when the player not in control
reaches the goal of 100”, however when looking at the states it is because the player who
has just moved is no longer having their turn.

10.1.2 capturing piece

A common strategy among Onitama beginners is to capture a piece when they can, and
whilst this strategy can sometimes be short-sighted (as seen in Chapter 7) it is important
to be able to learn the strategy and represent it in the background knowledge.

Intuitively to humans a hypothesis of ‘capturing’ could be thought of as “moving into a
square with containing opponent pawn”, This contains the notions of ‘moving’, ‘location’
and ‘opponent pawns’. Therefore predicates relating to these concepts would be useful to
add to the mode declarations. With this in mind we present the following experiment.

Experiment 10.2 (Capture). Using the digital versions of the games many examples of
capturing a pawn if at all possible (and randomly choosing in the case of multiple possib-
ilities) were collected. For this experiment we used ilasp 2i in order to do the learning as
there is no noise. The task given to ilasp was T = ⟨B, SM, E+, ∅, Ob, ∅⟩ where,

B is the logic program from Logic Program A.1

M =

⟨
∅, ∅,

{
location(pawn(vrank, vrole), vcell),

control(vrole), does(vrole, move(vcell, vcell))

}
, {−1, 1}, 1

⟩

10.1 immediate strategies 89

E+ is the set of examples, ei, with the contexts, Ci, below and empty inclusions and exclusions
Ob = {⟨e1, e2⟩, ⟨e3, e4⟩}

% Context: C1

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,3)).
location(pawn(master,red),cell(4,2)).
location(pawn(student,blue),cell(3,2)).
location(pawn(student,blue),cell(3,5)).
location(pawn(student,blue),cell(2,2)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,5)).
control(red).
in_play(sable).
in_play(ox).
in_play(monkey).
in_hand(red,sable).
in_hand(blue,ox).

% Context: C2

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,3)).
location(pawn(master,red),cell(4,2)).
location(pawn(student,blue),cell(3,2)).
location(pawn(student,blue),cell(3,3)).
location(pawn(student,red),cell(3,5)).
location(pawn(student,blue),cell(2,2)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,5)).
control(red).
in_play(sable).
in_play(ox).
in_play(monkey).
in_hand(red,sable).
in_hand(blue,ox).

% Context: C3

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,5)).
location(pawn(student,blue),cell(4,2)).
location(pawn(student,blue),cell(3,5)).
location(pawn(student,blue),cell(2,2)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,5)).
control(red).
in_play(monkey).
in_play(sable).
in_play(ox).
in_hand(red,monkey).
in_hand(blue,sable).

% Context: C4

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,5)).
location(pawn(master,red),cell(4,2)).
location(pawn(student,blue),cell(3,2)).
location(pawn(student,blue),cell(3,5)).
location(pawn(student,blue),cell(2,2)).
location(pawn(master,blue),cell(1,4)).
location(pawn(student,blue),cell(1,5)).
control(red).
in_play(monkey).
in_play(sable).
in_play(ox).
in_hand(red,monkey).
in_hand(blue,sable).

The hypothesis learnt by ilasp is:

⇝location(pawn(Rank, Player), Cell).[1@1, Rank, Player, Cell]

This hypothesis does not contain the notion of movement and has a penalty instead of
a reward! On closer inspection it can be seen that this weak constraint is attempting to
minimise the number of unique pawns on the board, as you are unable to capture your
own pieces this translates to capturing the opponent.

This experiment is not particularly interesting, it has a single predicate in the body and
a single priority. Also consider the possibility of having the choice to capture a master
piece or a student piece, the hypothesis above would weight them the same. In order to
express this preference we can change the mode declaration by replacing vrank with crank,
and adding the following ordering example: Ob ′ = Ob ∪ {⟨e5, e6⟩}

% Context: C5

location(pawn(student,red),cell(3,4)).
location(pawn(student,red),cell(5,5)).
location(pawn(student,blue),cell(2,5)).
location(pawn(student,blue),cell(3,3)).

location(pawn(student,blue),cell(2,1)).
location(pawn(master,blue),cell(1,3)).
control(red).
in_play(boar).
in_play(sheep).

90 learning and expressing strategies

in_play(eel).
in_hand(red,boar).
in_hand(blue,eel).

% Context: C6

location(pawn(student,red),cell(5,5)).
location(pawn(master,red),cell(3,3)).
location(pawn(student,blue),cell(3,4)).
location(pawn(student,blue),cell(3,2)).

location(pawn(student,blue),cell(2,1)).
location(pawn(master,blue),cell(1,3)).
control(red).
in_play(boar).
in_play(sheep).
in_play(eel).
in_hand(red,boar).
in_hand(blue,eel).

Experiment 10.3 (Capture: Master or Student?). Given the new task T = ⟨B, SM′ , E+, ∅, Ob ′, ∅⟩,
based on the task in Experiment 10.2 above, where

M′ = ⟨∅, ∅, {location(pawn(crank, vrole), vcell), control(vrole)}, {−1, 1,−2, 2}, 1⟩

notice how extra weights have been added, alternatively we could have chosen to allow
two priority levels. They have been added as one might expect at a high priority the
strategy describes the master and at a lower priority, the students.

ilasp learns the hypothesis:

⇝location(pawn(master, Player), Cell1),

location(pawn(student, Player), Cell2).[1@1, Player, Cell1, Cell2]

The immediate observation is that ilasp has been able to cover the ordering examples
using a single rule. This hypothesis means the following: for each player penalise each
of their students when their master is also on the board. In a scenario when you cannot
capture themaster, then themasters will still be on the board next turn and so this strategy
is equivalent to before. However, when you can capture the opponent’s master it will no
longer be on the board and so only the winning player’s students are counted.

10.1.3 space advantage

Experiment 10.4 (Controlling Regions of the Board). A common tactic in (certain) ab-
stract strategy games is to control asmuch space a possible (or certain spaces of the board).
In chess, controlling the centre is often touted as good practice. It can free up paths for
your bishops, and allow knights to control more of the important squares. Figure 10.2
shows two illustrations, on the left is a board state with blue’s control shaded, and on the
right is the same for red. We can see that blue is making it very difficult for red to advance.
Red is only controlling their half of the board, meanwhile blue is moving pawns up across
the board, creating lots of space to move into.

This experiment used a large set of noisy examples collected from full games but was
unable to learn a suitable strategy, due to the noise in the examples andmode declarations
not providing enough information.

Experiment 10.5. In this experiment the examples are generating from a player correct-
ing the decisions of an ai. These examples were collected using the training-mode of di-
gital Onitama, see Section 6.1.1 for details. The task was run using ilasp2i because we
assume there is no noise as the player is explicitly correcting a move.

The mode declaration for the task is:

M =

⟨
∅, ∅,


valid_translation(_, vcell, _, vrole),

control(vrole), opponent(vrole, vrole),

location(pawn(crank, vrole), vcell)

 , {−1, 1}, 1

⟩

10.1 immediate strategies 91

5
v

4
oo o

3
oo

2
o o

1
vo

1 2 3 4 5

sable

rat

mantis

(a) Blue’s value over the spaces,
i. e. approaching the spaces near the
temple is a good move

5
v

4
oo o

3
oo

2
o o

1
vo

1 2 3 4 5

sable

rat

mantis

(b) Red’s valuation over the spaces,
i. e. moving forward is a good move

Figure 10.1. Illustrations of how valuing different areas of the board affects
strategy. Red represents higher valuation and white is the
lowest.

5
v

4
oo o

3
oo

2
o o

1
vo

1 2 3 4 5

sable

rat

mantis

(a) Blue’s control over the board

5
v

4
oo o

3
oo

2
o o

1
vo

1 2 3 4 5

sable

rat

mantis

(b) Red’s control over the board

Figure 10.2. Illustrations of how controlling space on a board can give be
advantageous. Grey areas represent spaces that the cards allow
each player to move to. The strategies learnt in Experiment 10.5
and Experiment 10.7 both have this concept in their mode
declarations (valid_translation(·, ·, ·, ·))

The contexts used to create the example are as follows
The learnt hypothesis learnt is:

⇝not valid_translation(_, To, _, Player), location(pawn(master, Player), To).[1@1, To, Player]

⇝not valid_translation(_, To, _, Player), location(pawn(master, Enemy), To),

control(Enemy), opponent(Player, Enemy).[1@1, To, Player, Enemy]

This hypothesis says that you get penalised for not being able to defend your master
pawn. The second rule says that if one is not able to threaten the opponent’s master then
a penalty is received. Note that the control(·) here is after themove has beenmade and
so this refers to the opponent’s master.

92 learning and expressing strategies

10.2 complex strategies

Experiment 10.6 (Planning a Path for the Master). Many chess engines (e. g. Stockfish)
use endgame tables (e. g. Nalimov endgame tablebases2) towards the end of the game,
normally when there are fewer than six pieces on the board, as these small portions of
the sub-trees have been solved. A wrong move can quickly turn a winning position into
a drawing position (or worse a losing position). In Onitama because of the fixed moves
you can find yourself in a situation where providing you notice it early enough you can
force a win by navigating the master correctly to the temple square, this is occurs more
often in the three card variant. Learning this from examples is something that could be
done using enough forethought, and is a good test of how powerful the deep orderings
are, and what they can achieve. Figure 10.3 demonstrates a series of moves for the blue
master ¥ which red is unable to defend against. This experiment is an extension of the
“try to win” strategy (Experiment 10.1) involving deep orderings.

While in theory reasoning 5 moves into the future is possible the ILPcontext
loas with Q

that is generated contains 1.15× 107 brave orderings for the leaves. This is due to the
branching factor of the game. As the task has to be fully described before being solved
by ilasp there currently is no way of partially evaluating the tree. In out future work
(Section 11.2) we discuss one method of pruning the tree by evaluating ‘quiescent nodes’
(see Section 3.5.3). For this reason the task below uses a deep ordering based on Fig-
ure 10.3b which only has 24 649 brave orderings, meaning an average branching factor
of 5.39 moves.

5
o

4
o

3
v

2
o v

1

1 2 3 4 5

cobra

giraffe

horse

(a) Reasoning 5 moves into the future

5
o

4
o v

3

2
o

1
v

1 2 3 4 5

giraffe

horse

cobra

(b) Reasoning 3 moves into the future

Figure 10.3. Guaranteed win by following the moves shown

Weuse ilasp 3with injection in order to encode the following task: T = ⟨B, SM, E, O,◁⟩
where,

M = ⟨∅, ∅, {goal(vrole, vreward), control(vrole)}, {vreward}, 1⟩ (10.1)
E+ = {e1, e2} (10.2)

Od = {⟨e1, e2, 3,◁⟩ (10.3)

2 http://www.k4it.de/index.php?topic=egtb&lang=en

http://www.k4it.de/index.php?topic=egtb&lang=en

10.2 complex strategies 93

% Context: C1

location(pawn(student,red),cell(2,2)).
location(pawn(student,red),cell(5,4)).
location(pawn(master,red),cell(2,5)).
location(pawn(student,blue),cell(4,1)).
location(pawn(master,blue),cell(3,2)).
control(blue).
in_play(giraffe).
in_play(cobra).
in_play(horse).
in_hand(red,cobra).
in_hand(blue,giraffe).
:- not does(blue, move(cell(3,2), cell(4,4),

giraffe)).↪→

% Context: C2

location(pawn(student,red),cell(2,2)).
location(pawn(student,red),cell(5,4)).
location(pawn(master,red),cell(2,5)).
location(pawn(student,blue),cell(4,1)).
location(pawn(master,blue),cell(3,2)).
control(blue).
in_play(giraffe).
in_play(cobra).
in_play(horse).
in_hand(red,cobra).
in_hand(blue,giraffe).
:- not does(blue, move(cell(4,1), cell(3,1),

giraffe)).↪→

This lead to ilasp generating the hypothesis:

⇝goal(Player, Reward).[−Reward@1, Player, Reward]

Despite this being a similar hypothesis to the one originally learnt in Experiment 10.1,
given the two examples e1 and e2 a normal context-dependent loas task would have re-
turned this as unsatisfiable because of the forward thinking. Next we describe a more
complex use case for deep orderings.

Experiment 10.7 (Defending Pawns). InOnitama there is very little space to manoeuvre,
however it can still be the case that a pawn is left stranded on the board. Take Figure 10.2
as an example, the red student § on (2, 5) is left without defence (note the lack of shading
from red’s perspective).

Unlike chess where the pieces have fixed movement, in a game of Onitama the cards
will rotate. Therefore to think about defending your pieces you need to calculate both
where your pieces will be and what moves they will have. In order to achieve this as part
of an ilasp learning task, you can encode the preference as a deep ordering looking at
depth 2. As if the other player takes your pawn then you have a chance to capture back
(giving a better valuation than just losing a pawn).

This task was created using training-mode, with one alteration: a brave to a deep or-
dering, of depth 1 i. e. considering the opponent’s next turn. The mode declaration of
the tasks is the same as in Experiment 10.5, the main difference is in this experiment we
are looking to defend our own pawns instead of avoid capture completely. For ease, M is
restated below:

M =

⟨
∅, ∅,


valid_translation(_, vcell, _, vrole),

control(vrole), opponent(vrole, vrole),

location(pawn(crank, vrole), vcell)

 , {−1, 1}, 1

⟩

The contexts for the partial interpretations using the deep ordering are below, all other
contexts used in this task can be found in Section B.1.2.

% Context: C7

location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,1)).
location(pawn(student,red),cell(4,4)).

location(pawn(student,red),cell(4,2)).
location(pawn(student,blue),cell(2,1)).
location(pawn(student,blue),cell(2,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(master,blue),cell(1,3)).

94 learning and expressing strategies

location(pawn(student,blue),cell(1,4)).
control(red).
in_play(rat).
in_play(crab).
in_play(mantis).
in_hand(red,mantis).
in_hand(blue,crab).
:- not does(red, move(cell(4,2), cell(3,1),

mantis)).↪→

% Context: C8

location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(4,1)).
location(pawn(student,red),cell(4,2)).
location(pawn(student,red),cell(4,4)).

location(pawn(student,red),cell(5,4)).
location(pawn(student,blue),cell(2,1)).
location(pawn(student,blue),cell(2,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,4)).
control(red).
in_play(rat).
in_play(crab).
in_play(mantis).
in_hand(red,mantis).
in_hand(blue,crab).
:- not does(red, move(cell(5,4), cell(4,5),

mantis)).↪→

The brave ordering examples, Ob, are:

⟨e1, e2⟩ ⟨e3, e4⟩ ⟨e5, e6⟩

and the deep ordering example: ⟨e7, e8, 1,◁, a translation of this task can be found in Lo-
gic Program B.2.

ilasp learnt the following hypothesis:

⇝not valid_translation(_, To, _, Player), location(pawn(student, Player), To).[1@1, Player, To]

This hypothesis translates into English as: “minimise the number of students one has
that you cannot move to” which means that if your piece were to be captured, you could
move to that square and capture back.

10.3 tournaments

In order to test whether or not the hypotheses we have learnt in this chapter are usable in
a game and able to perform well we pitted strategies against each other and against a ran-
dom (no preference) and hand coded strategy. Each experiment involves 100 simulated
games of two strategies, the random nature of the game means that each ai gets to start
roughly evenly. We then perform a binomial, two-tailed hypothesis test to see whether or
not the strategies are equal or if there is a bias towards one. Table 10.1 shows the p-values
of the various tests, as you can see most of the experiments show that we should reject the
hypothesis that the strategies are equal.

10.4 summary

In this section we give a high level overview of the learning tasks in the project and com-
ment on what our results show. Table 10.2 shows the hypotheses learnt across the various
chapters of this report.

10.4 summary 95

strategy 1 vs. strategy 2 p-value result

Win or Capture vs. Random 1.9114× 10−15⋆ Win or Capture is clearly a better
strategy than random.

Win or Capture vs. Avoid Capture 0.67181 These strategy’s are roughly equival-
ent, we should not reject the null hy-
pothesis

Win or Capture vs. Defend Pieces 0.01203⋆ The Defend Pieces strategy is con-
sidered the better strategy

Table 10.1. Hypothesis tests between various strategies,⋆ represents a
significant value

96 learning and expressing strategies

ex
pe

ri
m

en
t

h
yp

ot
h
es

is
no

te
s

Ex
pe

rim
en

t1
0.
1

⇝g
oa

l(
P

la
ye

r,
10

0)
.[−

1@
1,

P
la

ye
r]

U
se

fu
l

la
te
r

w
he

n
co

m
bi

ne
d

w
ith

ot
he

rs
tr
at
eg

ie
s

Ex
pe

rim
en

t1
0.
2

⇝lo
ca

tio
n(

pa
w

n(
R

an
k,

Pl
ay

er
),

C
el

l)
.

[1
@

1,
R

an
k,

Pl
ay

er
,C

el
l]

In
sta

nc
eo

ft
he

pe
na

lty
be

in
gu

se
d
to

m
in

im
ise

ab
oa

rd
fe
at
ur

e

Ex
pe

rim
en

t1
0.
3

⇝lo
ca

tio
n(

pa
w

n(
m

as
te

r,
Pl

ay
er
),

C
el

l1
),

lo
ca

tio
n(

pa
w

n(
st

ud
en

t,
Pl

ay
er
),

C
el

l2
).
[1

@
1,

Pl
ay

er
,C

el
l1

,C
el

l2
]

Ex
pe

rim
en

t1
0.
4

—
Th

is
ex

pe
rim

en
t

w
as

un
su

cc
es

sfu
l

ba
se

d
on

nu
m

er
ou

se
xa

m
pl

e
ga

m
es

,

th
is

co
ul

d
be

du
et

o
no

ise

Ex
pe

rim
en

t1
0.
5

⇝n
ot

va
lid

_t
ra

ns
la

tio
n(

_,
To

,_
,P

la
ye

r)
,l

oc
at

io
n(

pa
w

n(
m

as
te

r,
Pl

ay
er
),

To
).
[1

@
1,

To
,P

la
ye

r]

⇝n
ot

va
lid

_t
ra

ns
la

tio
n(

_,
To

,_
,P

la
ye

r)
,l

oc
at

io
n(

pa
w

n(
m

as
te

r,
En

em
y)

,T
o)

,

co
nt

ro
l(

En
em

y)
,o

pp
on

en
t(

Pl
ay

er
,E

ne
m

y)
.[1

@
1,

To
,P

la
ye

r,
En

em
y]

Ex
pe

rim
en

t1
0.
6

⇝g
oa

l(
Pl

ay
er

,R
ew

ar
d)

.[−
R

ew
ar

d@
1,

Pl
ay

er
,R

ew
ar

d]
Th

is
w
as

a
sim

ila
r

ta
sk

to
Ex

pe
ri-

m
en

t1
0.
1,

bu
tu

sin
g
de

ep
or

de
rin

gs

Ex
pe

rim
en

t1
0.
7

⇝n
ot

va
lid

_t
ra

ns
la

tio
n(

_,
To

,_
,P

la
ye

r)
,

lo
ca

tio
n(

pa
w

n(
st

ud
en

t,
Pl

ay
er
),

To
).
[1

@
1,

Pl
ay

er
,T

o]

Ex
pe

rim
en

t8
.1

⇝d
oe

s(
x,

m
ar

k(
Bo

x1
))

,a
dj
(B

ox
1,

Bo
x2
),

bo
x(

Bo
x2

,x
).
[−

1@
1,

Bo
x1

,B
ox

2]

Ex
pe

rim
en

t8
.2

⇝d
oe

s(
x,

m
ar

k(
Bo

x1
))

,a
dj
(B

ox
1,

Bo
x2
),

tr
ue
(b

ox
(B

ox
2,

b)
).
[−

1@
1,

Bo
x1

,B
ox

2]

Ex
pe

rim
en

t8
.3

⇝d
oe

s(
x,

m
ar

k(
Bo

x1
))

,a
dj
(B

ox
1,

Bo
x2
),

tr
ue
(b

ox
(B

ox
2,

x)
).
[−

1@
2,

Bo
x1

,B
ox

2]

⇝d
oe

s(
x,

m
ar

k(
Bo

x1
))

,a
dj
(B

ox
1,

Bo
x2
),

tr
ue
(b

ox
(B

ox
2,

b)
).
[−

1@
1,

Bo
x1

,B
ox

2]

Ex
pe

rim
en

t8
.4

⇝d
oe

s(
x,

m
ar

k(
Bo

x1
))

.[B
ox

1@
1,

Bo
x1
]

Ex
pe

rim
en

t8
.5

(s
ee

pa
ge

77
)

Ex
pe

rim
en

t8
.6

⇝n
ot

go
al
(V

0,
0)

,c
on

tr
ol
(V

0)
.[−

1@
1,

1,
V

0]

Ta
bl
e1

0.
2.

Su
m

m
ar

y
of

ex
pe

rim
en

ts
pe

rfo
rm

ed
th

ro
ug

ho
ut

th
er

ep
or

t

10.4 summary 97

In this chapter we have presented a series of experiments created from constructed
situations in order to evaluate the feasibility of usingweak constraints to learn strategies in
games. We startedwith single predicateweak constraints to assess thewinning conditions,
afterwards we moved onto looking at basic tactics such as capturing, and combining the
two strategies in order to create a more robust strategy. This strategy has shown to be
effective in practice, but not as strong as some of the later positional and forward-thinking
strategies, just as one might expect.

We then looked into strategies that assign value to positions on the board, utilising
weights of weak constraints as a simple way of summing over the pawns on the board.

Finally, we look into applying the deep orderings in order to calculate positions from
the given states, just as players do when playing games. We have shown that for smaller
depths these tasks work well, and are superior in practice to the immediate strategies.

11 CONCLUSION

Learning from weak constraints means we can express strategies using English once they
have been learnt. This allows us to no only understand inmore depthwhat has been learnt
but also it allows us to learnmore about a game from the strategies of better players. Weak
constraints allow us to build upon existing strategies by assigning a priority level to each
rule. Using deep orderings we are now able to learn about a state based one preferences
within the game tree using our ILPdeep

loas tasks.
Attempting to learn from full games, i. e. comparing the move a player made to other

possible moves per turn, did not yield interesting or powerful strategies. Further experi-
mentation looking into reducing the grounding and constructing a hypothesis space that
is better suited to the games could be an option.

Learning only from suggestions provided by a human player allowed us to create a
smaller set of examples that we were more certain reflected the strategy of the player. The
results that came from these experiments did show that ilasp could learn strategies that
are good in competition. Having fewer examples means that the tasks can run quickly, this
is important for future work in order to incorporate the learning into an online ai player.

Learning from deep orderings has taken advantage of being able to inject additional
meta-programs into ilasp allowing us to create rules which activate only certain learning
examples. In this report we have shown proof-of-concept tasks that highlight the added
expressiveness of deep orderings. Though, there is further work that needs to be done in
order to reduce the size of the tasks for larger depths.

In conclusion, the experimentation in this report has demonstrated that weak con-
straints are fully capable to learn strategies; what is more, it has shown the explainable
nature of the hypotheses learnt.

11.1 achievements

1. We have described a method of applying the Game Description Language to learn-
ing strategies (Chapter 5). In particular it means that we can use its defined struc-
ture in order to construct tree-based examples from the answer sets of a turn. It
also means that the framework presented is not fixed to any of the games presented
here in this report, the background knowledge for Onitama, Five Field Kono and
Cross-Dot all conform to this specification.

2. In Chapter 6, we created a program to simulate games using different types of play-
ers (e. g. human, Monte Carlo and the Clingo ais) in both tournament-mode and
training-mode. In the twomodeswe can record different types of learning examples
that are given directly to ilasp. Again, new types of board games can be added to
this program in a simple manner.

3. We present ILPdeep
loas , a new Inductive Logic Programming framework that intro-

duces deep orderings. A new way of describing preferences over possible futures
based on a single move based on the minimax theorem.

99

100 conclusion

4. Following from a review of the literature (Chapter 4) we explored strategies for
Cross-Dot (see (Zhang and Thielscher, 2015)).

5. To evaluate the learningmethodswe provide experimentation inChapter 10 as well
as running tournaments (Section 10.3) to compare the strategies that have been
learnt.

11.2 future work

Whilst experimenting with ilasp and weak constraints we came across many points to
explore, such as:

• Extending the hypothesis space to allow custom weights for rules, this would allow
features of the games to be learnt and added as rules to background knowledge and
used in the mode declarations with a length greater than one in order to not bias
the mode declaration too much in their favour,

• Extending the ILPdeep
loas to perform a Monte Carlo style search, this would involve

only considering a subset of the children that are considered to be ‘better’ using
some heuristic — perhaps learnt or represented using weak constraints.

• Experiment with simple games involving non-determinism, for example the Royal
Game of Ur, a simple race game using a 4-sided die where the strategy lies in choos-
ing your pieces correctly to hinder your opponent’s movement.

• Looking into relating our explanation condition with formal strategy and game
logic, such as those in Benthem (2011) and Zhang and Thielscher (2015).

However, there are two more significant pieces of work that could be explored whilst
using weak constraints to learn strategies. The first is learning features of the game to
perform a quiescent search, and the second is effectively identifying examples that encode
the strategy.

11.2.1 performing quiescent search with weak constraints

As the minimax tree can explode rapidly, deep orderings become infeasible after a certain
depth, depending on the average branching factor of the game. In order to cut down on
the branches that are expanded an heuristic could be applied to a state and any branches
that are deemed to not be of use can be pruned from the tree. This heuristic can be a set of
weak constraints that have been learned previously. Clingo has an option to only return
answer sets below a certain penalty, this would potentially require using a wider set of
weights when learning than done so in this report. In order to not bias future tasks, you
could prune the branch with a certain probability, similar to the exploitation/exploration
techniques used in Reinforcement Learning.

The weak constraints learnt for this purpose may be more ‘feature-based’, i. e. a set for
captures, a set for checks etc., mimicking the capture-trees and endgame tables in Chess
engines. Performing this selective search after a fixed depth minimax is the basis of a
quiescent search, and not only prunes the tree but it is able tomitigate against the horizon
effect.

11.2 future work 101

11.2.2 identifying examples with strong strategic choices

Based on the results from the experiments we have run in this report we see that having
lots of noise and positions where no interesting tactical decisions have been made make
learning the strategies more challenging. However, using a human player means that
collecting examples is expensive and cumbersome. One future extension to the example
collection mechanism could be to have a method of selecting which examples taken from
a game are worth keeping and which are not. This could be achieved through a hybrid
logic-neural solution using a trained neural network to select examples from a game that
are key in different decision processes. The logic frameworkwould offer the same accurate
and explainable properties that are so desired in an ai that we have seen throughout this
report.

Part IV

APPENDIX

A LOGIC PROGRAMS

Logic Program A.1. Onitama Background Knowledge
1 % Game Constants
2

3 cell(5, 1). cell(5, 2). cell(5, 3). cell(5, 4). cell(5, 5).
4 cell(4, 1). cell(4, 2). cell(4, 3). cell(4, 4). cell(4, 5).
5 cell(3, 1). cell(3, 2). cell(3, 3). cell(3, 4). cell(3, 5).
6 cell(2, 1). cell(2, 2). cell(2, 3). cell(2, 4). cell(2, 5).
7 cell(1, 1). cell(1, 2). cell(1, 3). cell(1, 4). cell(1, 5).
8

9 cell(cell(1..5, 1..5)).
10

11 temple(red, cell(5,3)).
12 temple(blue, cell(1,3)).
13

14 opponent(red, blue).
15 opponent(blue, red).
16

17 role(red).
18 role(blue).
19

20 dir(red, -1).
21 dir(blue, 1).
22

23 captured_master(Player) :- role(Player), not true(location(pawn(master, Player),
_)).↪→

24

25 % Action Generation
26 0 { does(Player, Action) } 1 :- legal(Player, Action), not terminal.
27

28 %:- does(Player, A1), does(Player, A2), A1 != A2.
29

30 :- does(P, noop), does(P, move(_, _, _)).
31 % Try splitting this up
32 :- does(P, move(C1, _, _)), does(P, move(C2, _, _)), C1 < C2.
33 :- does(P, move(_, C1, _)), does(P, move(_, C2, _)), C1 < C2.
34

35 :- legal(Player, _), not terminal, not does(Player, _).
36

37

38 % Game State
39

40 % Pawn location
41 next(location(pawn(Rank, Player), Cell)) :-
42 true(location(pawn(Rank, Player), Cell)),
43 not does(_, move((_, Cell), _)), not does(Player, move((Cell, _), _)).

105

106 logic programs

44 next(location(pawn(Rank, Player), To)) :- true(location(pawn(Rank, Player),
From)), does(Player, move((From, To), _)).↪→

45

46 % Card in center
47 true(center_card(Card)) :- in_play(Card), not true(in_hand(red, Card)), not

true(in_hand(blue, Card)).↪→

48

49 % Player's hand
50 next(in_hand(Player, Card)) :- true(in_hand(Player, Card)), not

true(control(Player)).↪→

51 next(in_hand(Player, Card)) :- true(center_card(Card)), true(control(Player)).
52 % Only needed for 5 card variant
53 next(in_hand(Player, Card)) :- true(in_hand(Player, Card)), Card != Card2,

does(Player, move(_, Card2)).↪→

54

55 % Player's turn
56 next(control(Player)) :- true(control(Opp)), opponent(Player, Opp).
57 next(control(blue)) :- true(control(red)).
58

59 goal(Player, 100) :- captured_master(Opp), opponent(Player, Opp).
60 goal(Player, 100) :- temple(Opp, Temple), true(location(pawn(master, Player),

Temple)), opponent(Player, Opp).↪→

61 goal(Player, 0) :- goal(Opp, 100), opponent(Player, Opp).
62

63 terminal :- goal(_, 100).
64

65 legal(Player, noop) :- role(Player), not true(control(Player)).
66 legal(Player, move(cell(FromR, FromC), cell(ToR, ToC), Card)) :-
67 true(control(Player)),
68 true(location(pawn(_, Player), cell(FromR, FromC))),
69 not true(location(pawn(_, Player), cell(ToR, ToC))),
70 dir(Player, D), card(Card, (DC, DR)),
71 true(in_hand(Player, Card)),
72 ToR == FromR-(DR*D), ToC == FromC-(DC*D).

73 % Cards
74

75 card(tiger,(0,-2)). card(tiger,(0,1)).
76 card(crab,(0,-1)). card(crab,(-2,0)). card(crab,(2,0)).
77 card(monkey,(1,-1)). card(monkey,(1,1)). card(monkey,(-1,1)).

card(monkey,(-1,-1)).↪→

78 card(crane,(0,-1)). card(crane,(-1,1)). card(crane,(1,1)).
79 card(mantis,(-1,-1)). card(mantis,(1,-1)). card(mantis,(0,1)).
80 card(boar,(0,-1)). card(boar,(-1,0)). card(boar,(1,0)).
81 card(dragon,(-1,1)). card(dragon,(1,1)). card(dragon,(2,-1)).

card(dragon,(-2,-1)).↪→

82 card(elephant,(-1,-1)). card(elephant,(-1,0)). card(elephant,(1,0)).
card(elephant,(1,-1)).↪→

83 card(eel,(-1,-1)). card(eel,(-1,1)). card(eel,(1,0)).
84 card(goose,(-1,-1)). card(goose,(1,1)). card(goose,(1,0)). card(goose,(-1,0)).
85 card(frog,(-1,-1)). card(frog,(1,1)). card(frog,(-2,0)).
86 card(horse,(0,-1)). card(horse,(-1,0)). card(horse,(0,1)).

logic programs 107

87 card(rabbit,(1,-1)). card(rabbit,(-1,1)). card(rabbit,(2,0)).
88 card(ox,(0,-1)). card(ox,(1,0)). card(ox,(0,1)).
89 card(cobra,(1,-1)). card(cobra,(1,1)). card(cobra,(-1,0)).
90 card(rooster,(1,-1)). card(rooster,(-1,1)). card(rooster,(-1,0)).

card(rooster,(1,0)).↪→

91 card(kirin,(-1,-2)). card(kirin,(1,-2)). card(kirin,(0,2)).
92 card(turtle,(-2,0)). card(turtle,(-1,1)). card(turtle,(1,1)).

card(turtle,(2,0)).↪→

93 card(giraffe,(-2,-1)). card(giraffe,(2,-1)). card(giraffe,(0,1)).
94 card(phoenix,(-2,0)). card(phoenix,(-1,-1)). card(phoenix,(1,-1)).

card(phoenix,(2,0)).↪→

95 card(otter,(-1,-1)). card(otter,(1,1)). card(otter,(2,0)).
96 card(viper,(-2,0)). card(viper,(0,-1)). card(viper,(1,1)).
97 card(iguana,(-2,1)). card(iguana,(0,-1)). card(iguana,(1,1)).
98 card(rat,(-1,0)). card(rat,(0,-1)). card(rat,(1,1)).
99 card(bear,(-1,-1)). card(bear,(0,-1)). card(bear,(1,1)).

100 card(dog,(-1,-1)). card(dog,(-1,0)). card(dog,(-1,1)).
101 card(sable,(1,-1)). card(sable,(-1,1)). card(sable,(-2,0)).
102 card(seasnake,(2,0)). card(seasnake,(0,-1)). card(seasnake,(-1,1)).
103 card(tanuki,(2,1)). card(tanuki,(0,-1)). card(tanuki,(-1,1)).
104 card(mouse,(1,0)). card(mouse,(0,-1)). card(mouse,(-1,1)).
105 card(panda,(1,-1)). card(panda,(0,-1)). card(panda,(-1,1)).
106 card(fox,(1,-1)). card(fox,(1,0)). card(fox,(1,1)).

Logic Program A.2. Five Field Kono

1 role(w).
2 role(b).
3

4 cell(5, 1). cell(5, 2). cell(5, 3). cell(5, 4). cell(5, 5).
5 cell(4, 1). cell(4, 2). cell(4, 3). cell(4, 4). cell(4, 5).
6 cell(3, 1). cell(3, 2). cell(3, 3). cell(3, 4). cell(3, 5).
7 cell(2, 1). cell(2, 2). cell(2, 3). cell(2, 4). cell(2, 5).
8 cell(1, 1). cell(1, 2). cell(1, 3). cell(1, 4). cell(1, 5).
9

10 init(state(1,1,w)).
11 init(state(1,2,w)).
12 init(state(1,3,w)).
13 init(state(1,4,w)).
14 init(state(1,5,w)).
15 init(state(2,1,w)).
16 init(state(2,5,w)).
17

18 init(state(5,1,b)).
19 init(state(5,2,b)).
20 init(state(5,3,b)).
21 init(state(5,4,b)).
22 init(state(5,5,b)).
23 init(state(4,1,b)).
24 init(state(4,5,b)).
25

108 logic programs

26 state(A, B, e) :- not state(A, B, w), not state(A, B, b), cell(A, B).
27

28 not_in_starting_location(w) :- init(state(A, B, b)), not state(A, B, w).
29 not_in_starting_location(b) :- init(state(A, B, w)), not state(A, B, b).
30

31 goal(P, 100) :- not not_in_starting_location(P), role(P).
32 goal(P, 50) :- not legal(_, _), role(P).
33 goal(P, 0) :- not_in_starting_location(P).
34

35 0 { does(P, A) } 1 :- legal(P, A), not terminal.
36 :- role(P), not does(P, _), not terminal.
37 :- does(P, A1), does(P, A2), A1 < A2.
38

39 next(control(x)) :- control(o).
40 next(control(o)) :- control(x).
41

42 next(state(A, B, P)) :- role(P), state(A, B, P), not does(P, move(cell(A, B),
_)).↪→

43 next(state(A, B, P)) :- does(P, move(cell(A, B), _)).
44

45 next(box(M,P)) :- does(P,mark(M)), init(box(M,b)).
46 next(box(M,P)) :- init(box(M,P)), P!=b.
47 next(box(M1,b)) :- does(P,mark(M2)), init(box(M1,b)), M1!=M2.
48

49 legal(P, noop) :- role(P), not control(P).
50

51 adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V3 ==
V1+1.↪→

52 adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V0 ==
V2-1.↪→

53 adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V0 ==
V2-1.↪→

54 adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V2 ==
V0-1.↪→

55 legal(V4, move(cell(V0, V1), cell(V2, V3))) :- adj(cell(V0, V1), cell(V2, V3)),
state(V0, V1, V4), state(V2, V3, e), control(V4).↪→

56

57 terminal :- goal(_, 100).
58 terminal :- goal(_, 50).

Logic Program A.3. Cross-Dot Game

1 role(x).
2 role(o).
3 box(1).
4 box(2).
5 box(3).
6 box(4).
7 next(box(M,P)) :- does(P,mark(M)), box(M,b).
8 next(box(M,P)) :- box(M,P), P!=b.
9 next(box(M1,b)) :- does(_,mark(M2)), box(M1,b), M1!=M2.

logic programs 109

10 next(control(x)) :- control(o).
11 next(control(o)) :- control(x).
12 legal(P,mark(M)) :- box(M,b), control(P).
13 legal(P,noop) :- not control(P), role(P).
14 legal(P,noop) :- terminal, role(P).
15 open :- box(_,b).
16 terminal :- not open.
17 terminal :- goal(_, 100).
18 chain_segments(1,M,P) :- role(P), box(M,P).
19 chain_segments(2,M+1,P) :- chain_segments(1, M, P), box(M+1,P).
20 longest_chain(M,P) :- chain_segments(M,_,P), not chain_segments(M+1,_,P).
21 longest_chain(0,P) :- role(P), not chain_segments(_,_,P).
22 0 { does(P, mark(B)) } 1 :- legal(P, mark(B)), not terminal.
23 does(P, noop) :- legal(P, noop).
24 :- role(P), not does(P,_), not terminal.
25 :- does(P,mark(B1)), does(P,mark(B2)), B1<B2.
26 goal(P,100) :- longest_chain(2,P).
27 goal(o,0) :- goal(x, 100).
28 goal(x,0) :- goal(o, 100).
29 adj(M,M+1) :- box(M), box(M+1).
30 adj(M+1,M) :- box(M), box(M+1).

B ILASP LEARNING EXAMPLES

b.1 onitama

b.1.1 Experiment 9.1: onitama rules

Logic Program B.1. Examples of legal and illegal moves in Onitama
1 #pos({legal(blue,move((cell(1,2),cell(2,3)),rabbit))}, {}, {
2 in_play(seasnake).
3 in_play(dog).
4 in_play(rabbit).
5 control(blue).
6 in_hand(red,dog).
7 in_hand(blue,rabbit).
8 location(pawn(master,red),cell(5,3)).
9 location(pawn(student,red),cell(5,1)).

10 location(pawn(student,red),cell(5,2)).
11 location(pawn(student,red),cell(5,4)).
12 location(pawn(student,red),cell(5,5)).
13 location(pawn(master,blue),cell(1,3)).
14 location(pawn(student,blue),cell(1,1)).
15 location(pawn(student,blue),cell(1,2)).
16 location(pawn(student,blue),cell(1,4)).
17 location(pawn(student,blue),cell(1,5)).
18 card(seasnake,(2,0)). card(seasnake,(0,-1)). card(seasnake,(-1,1)).
19 card(dog,(-1,-1)). card(dog,(-1,0)). card(dog,(-1,1)).
20 card(rabbit,(1,-1)). card(rabbit,(-1,1)). card(rabbit,(2,0)).
21 }).
22

23 #pos({ legal(blue,move((cell(2,3),cell(3,3)),seasnake))
24 , legal(blue,move((cell(2,3),cell(1,2)),seasnake))
25 },
26 { legal(blue,move((cell(1,5),cell(1,7)),seasnake))
27 , legal(blue,move((cell(1,5),cell(2,4)),seasnake))
28 , legal(blue,move((cell(2,3),cell(1,4)),seasnake))
29 , legal(red,move((cell(4,1),cell(5,2)),rabbit))
30 }, {
31 in_play(dog).
32 in_play(rabbit).
33 in_play(seasnake).
34 control(blue).
35 in_hand(red,rabbit).
36 in_hand(blue,seasnake).
37 location(pawn(master,red),cell(3,4)).
38 location(pawn(student,red),cell(4,1)).
39 location(pawn(student,red),cell(4,5)).
40 location(pawn(master,blue),cell(1,3)).

111

112 ilasp learning examples

41 location(pawn(student,blue),cell(2,1)).
42 location(pawn(student,blue),cell(2,3)).
43 location(pawn(student,blue),cell(1,5)).
44 card(seasnake,(2,0)). card(seasnake,(0,-1)). card(seasnake,(-1,1)).
45 card(dog,(-1,-1)). card(dog,(-1,0)). card(dog,(-1,1)).
46 card(rabbit,(1,-1)). card(rabbit,(-1,1)). card(rabbit,(2,0)).
47 }).
48 #pos(
49 { legal(red,move((cell(4,3),cell(2,2)),kirin))
50 },
51 { legal(red,move((cell(3,3),cell(5,3)),kirin))
52 , legal(red,move((cell(3,2),cell(1,1)),kirin))
53 , legal(red,move((cell(3,3),cell(2,3)),rat))
54 }, {
55 in_play(fox).
56 in_play(kirin).
57 in_play(rat).
58 control(red).
59 in_hand(red,kirin).
60 in_hand(blue,rat).
61 location(pawn(master,red),cell(5,3)).
62 location(pawn(student,red),cell(4,3)).
63 location(pawn(student,red),cell(3,3)).
64 location(pawn(master,blue),cell(3,5)).
65 location(pawn(student,blue),cell(4,4)).
66 location(pawn(student,blue),cell(2,2)).
67 card(fox,(1,-1)). card(fox,(1,0)). card(fox,(1,1)).
68 card(rat,(-1,0)). card(rat,(0,-1)). card(rat,(1,1)).
69 card(kirin,(-1,-2)). card(kirin,(1,-2)). card(kirin,(0,2)).
70 }).
71

72 #max_penalty(1000).

1 #bias(":- head(pred_1(V0, (V1, V1))).").
2 #bias(":- not head(pred_3(_, _)), body(location(_, _)).").
3 #bias(":- not head(pred_4(_, _)), body(naf(location(_, _))).").
4 #bias(":- not head(pred_3(_, _)), not head(pred_4(_, _)), body(control(_)).").
5

6 #bias(":- not head(pred_5(_, _)), body(cell(_, _)).").
7 #bias(":- head(pred_5((cell(V0, V0), _), _)).").
8 #bias(":- head(pred_5((_, cell(V0, V0)), _)).").
9 #bias(":- head(pred_5((cell(_, V0), cell(_, V0)), _)).").

10 #bias(":- head(pred_5((cell(_, V0), cell(V0, _)), _)).").
11 #bias(":- head(pred_5((cell(V0, _), cell(_, V0)), _)).").
12 #bias(":- head(pred_5((cell(V0, _), cell(V0, _)), _)).").
13 #bias(":- head(pred_5(_, (V0, V0))).").
14 #bias(":- body(pred_5(_, (V0, V0))).").
15

16 #bias(":- head(pred_5(_, _)), body(cell(V0, _)), body(cell(_, V0)).").
17

18 #bias(":- not head(pred_2(_, _, _)), body(card(_, _)).").
19 #bias(":- not head(pred_2(_, _, _)), body(pred_6(_, _, _)).").

B.1 onitama 113

20 #bias(":- body(card(_, (V0, V0))).").
21

22 #bias(":- head(pred_3(_, _)), body(pred_1(_, _)).").
23 #bias(":- not head(pred_1(_, _)), body(pred_3(_, _)).").
24 #bias(":- not head(pred_1(_, _)), body(pred_4(_, _)).").
25 #bias(":- not head(pred_6(_, _, _)), body(math(_, _, _, _)).").
26 #bias(":- not head(pred_6(_, _, _)), body(pred_5(_, _)).").
27

28 #bias(":- head(legal(_, move(V1, V1, _))).").
29 #bias(":- body(math(V0, V0, _, _)).").

b.1.2 Experiment 10.7: defend pawns

% Context: C1

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,2)).
location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,2)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,4)).
location(pawn(student,blue),cell(1,5)).
control(blue).
in_play(rat).
in_play(crab).
in_play(mantis).
in_hand(red,rat).
in_hand(blue,crab).

% Context: C2

location(pawn(student,red),cell(5,1)).
location(pawn(student,red),cell(5,2)).
location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,5)).
location(pawn(student,red),cell(4,5)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,2)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,4)).
location(pawn(student,blue),cell(1,5)).
control(blue).
in_play(rat).
in_play(crab).
in_play(mantis).
in_hand(red,rat).
in_hand(blue,crab).

% Context: C3

location(pawn(student,red),cell(5,1)).
location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,2)).
location(pawn(student,red),cell(4,4)).
location(pawn(student,blue),cell(2,1)).

location(pawn(student,blue),cell(2,5)).
location(pawn(student,blue),cell(1,1)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,4)).
control(red).
in_play(crab).
in_play(rat).
in_play(mantis).
in_hand(red,crab).
in_hand(blue,rat).

% Context: C4

location(pawn(student,red),cell(5,1)).
location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,2)).
location(pawn(student,red),cell(4,4)).
location(pawn(master,blue),cell(2,2)).
location(pawn(student,blue),cell(2,5)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,2)).
location(pawn(student,blue),cell(1,4)).
control(red).
in_play(crab).
in_play(rat).
in_play(mantis).
in_hand(red,crab).
in_hand(blue,rat).

% Context: C5

location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,1)).
location(pawn(student,red),cell(4,2)).
location(pawn(student,red),cell(4,4)).
location(pawn(student,blue),cell(2,1)).
location(pawn(student,blue),cell(2,4)).
location(pawn(student,blue),cell(1,1)).
location(pawn(master,blue),cell(1,3)).
location(pawn(student,blue),cell(1,4)).
control(red).
in_play(mantis).
in_play(crab).

114 ilasp learning examples

in_play(rat).
in_hand(red,mantis).
in_hand(blue,crab).

% Context: C6

location(pawn(master,red),cell(5,3)).
location(pawn(student,red),cell(5,4)).
location(pawn(student,red),cell(4,1)).
location(pawn(student,red),cell(4,2)).
location(pawn(student,red),cell(4,4)).
location(pawn(student,blue),cell(2,1)).

location(pawn(master,blue),cell(2,3)).
location(pawn(student,blue),cell(2,5)).
location(pawn(student,blue),cell(1,1)).
location(pawn(student,blue),cell(1,4)).
control(red).
in_play(mantis).
in_play(crab).
in_play(rat).
in_hand(red,mantis).
in_hand(blue,crab).

Logic Program B.2. Deep Ordering Translation for the Defend Task

272 location(pawn(master,red),cell(5,3)).
273 location(pawn(student,blue),cell(2,1)).
274 location(pawn(student,blue),cell(2,4)).
275 location(pawn(student,blue),cell(1,1)).
276 location(pawn(master,blue),cell(1,3)).
277 location(pawn(student,blue),cell(1,4)).
278 in_hand(blue,crab).
279 in_hand(red,rat).
280 control(blue).
281 location(pawn(student,red),cell(5,4)).
282 location(pawn(student,red),cell(4,1)).
283 location(pawn(student,red),cell(4,4)).
284 location(pawn(student,red),cell(3,1)).
285 does(blue,move(cell(2,4),cell(2,2),crab)).
286 does(red,noop).
287 }).
288 #pos(ex_a_0_4, {}, {}, {
289 location(pawn(master,red),cell(5,3)).
290 location(pawn(student,blue),cell(2,1)).
291 location(pawn(student,blue),cell(2,4)).
292 location(pawn(student,blue),cell(1,1)).
293 location(pawn(master,blue),cell(1,3)).
294 location(pawn(student,blue),cell(1,4)).
295 in_hand(blue,crab).
296 in_hand(red,rat).
297 control(blue).
298 location(pawn(student,red),cell(5,4)).
299 location(pawn(student,red),cell(4,1)).
300 location(pawn(student,red),cell(4,4)).
301 location(pawn(student,red),cell(3,1)).
302 does(blue,move(cell(2,4),cell(3,4),crab)).
303 does(red,noop).
304 }).
305 #pos(ex_a_0_5, {}, {}, {
306 location(pawn(master,red),cell(5,3)).
307 location(pawn(student,blue),cell(2,1)).
308 location(pawn(student,blue),cell(2,4)).
309 location(pawn(student,blue),cell(1,1)).
310 location(pawn(master,blue),cell(1,3)).

B.1 onitama 115

311 location(pawn(student,blue),cell(1,4)).
312 in_hand(blue,crab).
313 in_hand(red,rat).
314 control(blue).
315 location(pawn(student,red),cell(5,4)).
316 location(pawn(student,red),cell(4,1)).
317 location(pawn(student,red),cell(4,4)).
318 location(pawn(student,red),cell(3,1)).
319 does(blue,move(cell(1,3),cell(1,5),crab)).
320 does(red,noop).
321 }).
322 #pos(ex_a_0_6, {}, {}, {
323 location(pawn(master,red),cell(5,3)).
324 location(pawn(student,blue),cell(2,1)).
325 location(pawn(student,blue),cell(2,4)).
326 location(pawn(student,blue),cell(1,1)).
327 location(pawn(master,blue),cell(1,3)).
328 location(pawn(student,blue),cell(1,4)).
329 in_hand(blue,crab).
330 in_hand(red,rat).
331 control(blue).
332 location(pawn(student,red),cell(5,4)).
333 location(pawn(student,red),cell(4,1)).
334 location(pawn(student,red),cell(4,4)).
335 location(pawn(student,red),cell(3,1)).
336 does(blue,move(cell(2,1),cell(2,3),crab)).
337 does(red,noop).
338 }).
339 #pos(ex_a_0_7, {}, {}, {
340 location(pawn(master,red),cell(5,3)).
341 location(pawn(student,blue),cell(2,1)).
342 location(pawn(student,blue),cell(2,4)).
343 location(pawn(student,blue),cell(1,1)).
344 location(pawn(master,blue),cell(1,3)).
345 location(pawn(student,blue),cell(1,4)).
346 in_hand(blue,crab).
347 in_hand(red,rat).
348 control(blue).
349 location(pawn(student,red),cell(5,4)).
350 location(pawn(student,red),cell(4,1)).
351 location(pawn(student,red),cell(4,4)).
352 location(pawn(student,red),cell(3,1)).
353 does(blue,move(cell(1,3),cell(2,3),crab)).
354 does(red,noop).
355 }).
356 #pos(ex_a_1_1, {}, {}, {
357 location(pawn(master,red),cell(5,3)).
358 location(pawn(student,blue),cell(2,1)).
359 location(pawn(student,blue),cell(2,4)).
360 location(pawn(student,blue),cell(1,1)).
361 location(pawn(master,blue),cell(1,3)).

116 ilasp learning examples

362 location(pawn(student,blue),cell(1,4)).
363 in_hand(blue,crab).
364 in_hand(red,rat).
365 control(blue).
366 location(pawn(student,red),cell(4,1)).
367 location(pawn(student,red),cell(4,2)).
368 location(pawn(student,red),cell(4,4)).
369 location(pawn(student,red),cell(4,5)).
370 does(blue,move(cell(1,4),cell(1,2),crab)).
371 does(red,noop).
372 }).
373 #pos(ex_a_1_2, {}, {}, {
374 location(pawn(master,red),cell(5,3)).
375 location(pawn(student,blue),cell(2,1)).
376 location(pawn(student,blue),cell(2,4)).
377 location(pawn(student,blue),cell(1,1)).
378 location(pawn(master,blue),cell(1,3)).
379 location(pawn(student,blue),cell(1,4)).
380 in_hand(blue,crab).
381 in_hand(red,rat).
382 control(blue).
383 location(pawn(student,red),cell(4,1)).
384 location(pawn(student,red),cell(4,2)).
385 location(pawn(student,red),cell(4,4)).
386 location(pawn(student,red),cell(4,5)).
387 does(blue,move(cell(2,1),cell(3,1),crab)).
388 does(red,noop).
389 }).
390 #pos(ex_a_1_3, {}, {}, {
391 location(pawn(master,red),cell(5,3)).
392 location(pawn(student,blue),cell(2,1)).
393 location(pawn(student,blue),cell(2,4)).
394 location(pawn(student,blue),cell(1,1)).
395 location(pawn(master,blue),cell(1,3)).
396 location(pawn(student,blue),cell(1,4)).
397 in_hand(blue,crab).
398 in_hand(red,rat).
399 control(blue).
400 location(pawn(student,red),cell(4,1)).
401 location(pawn(student,red),cell(4,2)).
402 location(pawn(student,red),cell(4,4)).
403 location(pawn(student,red),cell(4,5)).
404 does(blue,move(cell(2,4),cell(2,2),crab)).
405 does(red,noop).
406 }).
407 #pos(ex_a_1_4, {}, {}, {
408 location(pawn(master,red),cell(5,3)).
409 location(pawn(student,blue),cell(2,1)).
410 location(pawn(student,blue),cell(2,4)).
411 location(pawn(student,blue),cell(1,1)).
412 location(pawn(master,blue),cell(1,3)).

B.1 onitama 117

413 location(pawn(student,blue),cell(1,4)).
414 in_hand(blue,crab).
415 in_hand(red,rat).
416 control(blue).
417 location(pawn(student,red),cell(4,1)).
418 location(pawn(student,red),cell(4,2)).
419 location(pawn(student,red),cell(4,4)).
420 location(pawn(student,red),cell(4,5)).
421 does(blue,move(cell(2,4),cell(3,4),crab)).
422 does(red,noop).
423 }).
424 #pos(ex_a_1_5, {}, {}, {
425 location(pawn(master,red),cell(5,3)).
426 location(pawn(student,blue),cell(2,1)).
427 location(pawn(student,blue),cell(2,4)).
428 location(pawn(student,blue),cell(1,1)).
429 location(pawn(master,blue),cell(1,3)).
430 location(pawn(student,blue),cell(1,4)).
431 in_hand(blue,crab).
432 in_hand(red,rat).
433 control(blue).
434 location(pawn(student,red),cell(4,1)).
435 location(pawn(student,red),cell(4,2)).
436 location(pawn(student,red),cell(4,4)).
437 location(pawn(student,red),cell(4,5)).
438 does(blue,move(cell(1,3),cell(1,5),crab)).
439 does(red,noop).
440 }).
441 #pos(ex_a_1_6, {}, {}, {
442 location(pawn(master,red),cell(5,3)).
443 location(pawn(student,blue),cell(2,1)).
444 location(pawn(student,blue),cell(2,4)).
445 location(pawn(student,blue),cell(1,1)).
446 location(pawn(master,blue),cell(1,3)).
447 location(pawn(student,blue),cell(1,4)).
448 in_hand(blue,crab).
449 in_hand(red,rat).
450 control(blue).
451 location(pawn(student,red),cell(4,1)).
452 location(pawn(student,red),cell(4,2)).
453 location(pawn(student,red),cell(4,4)).
454 location(pawn(student,red),cell(4,5)).
455 does(blue,move(cell(2,1),cell(2,3),crab)).
456 does(red,noop).
457 }).
458 #pos(ex_a_1_7, {}, {}, {
459 location(pawn(master,red),cell(5,3)).
460 location(pawn(student,blue),cell(2,1)).
461 location(pawn(student,blue),cell(2,4)).
462 location(pawn(student,blue),cell(1,1)).
463 location(pawn(master,blue),cell(1,3)).

118 ilasp learning examples

464 location(pawn(student,blue),cell(1,4)).
465 in_hand(blue,crab).
466 in_hand(red,rat).
467 control(blue).
468 location(pawn(student,red),cell(4,1)).
469 location(pawn(student,red),cell(4,2)).
470 location(pawn(student,red),cell(4,4)).
471 location(pawn(student,red),cell(4,5)).
472 does(blue,move(cell(1,3),cell(2,3),crab)).
473 does(red,noop).
474 }).
475 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_1, ex_a_0_1, ex_a_1_1).
476 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_2, ex_a_0_1, ex_a_1_2).
477 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_3, ex_a_0_1, ex_a_1_3).
478 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_4, ex_a_0_1, ex_a_1_4).
479 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_5, ex_a_0_1, ex_a_1_5).
480 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_6, ex_a_0_1, ex_a_1_6).
481 #brave_ordering(ord_a_1_ex_a_0_1_ex_a_1_7, ex_a_0_1, ex_a_1_7).
482 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_1, ex_a_0_2, ex_a_1_1).
483 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_2, ex_a_0_2, ex_a_1_2).
484 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_3, ex_a_0_2, ex_a_1_3).
485 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_4, ex_a_0_2, ex_a_1_4).
486 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_5, ex_a_0_2, ex_a_1_5).
487 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_6, ex_a_0_2, ex_a_1_6).
488 #brave_ordering(ord_a_1_ex_a_0_2_ex_a_1_7, ex_a_0_2, ex_a_1_7).
489 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_1, ex_a_0_3, ex_a_1_1).
490 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_2, ex_a_0_3, ex_a_1_2).
491 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_3, ex_a_0_3, ex_a_1_3).
492 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_4, ex_a_0_3, ex_a_1_4).
493 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_5, ex_a_0_3, ex_a_1_5).
494 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_6, ex_a_0_3, ex_a_1_6).
495 #brave_ordering(ord_a_1_ex_a_0_3_ex_a_1_7, ex_a_0_3, ex_a_1_7).
496 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_1, ex_a_0_4, ex_a_1_1).
497 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_2, ex_a_0_4, ex_a_1_2).
498 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_3, ex_a_0_4, ex_a_1_3).
499 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_4, ex_a_0_4, ex_a_1_4).
500 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_5, ex_a_0_4, ex_a_1_5).
501 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_6, ex_a_0_4, ex_a_1_6).
502 #brave_ordering(ord_a_1_ex_a_0_4_ex_a_1_7, ex_a_0_4, ex_a_1_7).
503 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_1, ex_a_0_5, ex_a_1_1).
504 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_2, ex_a_0_5, ex_a_1_2).
505 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_3, ex_a_0_5, ex_a_1_3).
506 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_4, ex_a_0_5, ex_a_1_4).
507 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_5, ex_a_0_5, ex_a_1_5).
508 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_6, ex_a_0_5, ex_a_1_6).
509 #brave_ordering(ord_a_1_ex_a_0_5_ex_a_1_7, ex_a_0_5, ex_a_1_7).
510 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_1, ex_a_0_6, ex_a_1_1).
511 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_2, ex_a_0_6, ex_a_1_2).
512 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_3, ex_a_0_6, ex_a_1_3).
513 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_4, ex_a_0_6, ex_a_1_4).
514 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_5, ex_a_0_6, ex_a_1_5).

B.1 onitama 119

515 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_6, ex_a_0_6, ex_a_1_6).
516 #brave_ordering(ord_a_1_ex_a_0_6_ex_a_1_7, ex_a_0_6, ex_a_1_7).
517 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_1, ex_a_0_7, ex_a_1_1).
518 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_2, ex_a_0_7, ex_a_1_2).
519 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_3, ex_a_0_7, ex_a_1_3).
520 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_4, ex_a_0_7, ex_a_1_4).
521 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_5, ex_a_0_7, ex_a_1_5).
522 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_6, ex_a_0_7, ex_a_1_6).
523 #brave_ordering(ord_a_1_ex_a_0_7_ex_a_1_7, ex_a_0_7, ex_a_1_7).
524 #inject("r_o_o_t(ex_a_0,chosen).
525 r_o_o_t(ex_a_1,other).
526 c_h_i_l_d(ex_a_0,ex_a_0_1).
527 c_h_i_l_d(ex_a_0,ex_a_0_2).
528 c_h_i_l_d(ex_a_0,ex_a_0_3).
529 c_h_i_l_d(ex_a_0,ex_a_0_4).
530 c_h_i_l_d(ex_a_0,ex_a_0_5).
531 c_h_i_l_d(ex_a_0,ex_a_0_6).
532 c_h_i_l_d(ex_a_0,ex_a_0_7).
533 c_h_i_l_d(ex_a_1,ex_a_1_1).
534 c_h_i_l_d(ex_a_1,ex_a_1_2).
535 c_h_i_l_d(ex_a_1,ex_a_1_3).
536 c_h_i_l_d(ex_a_1,ex_a_1_4).
537 c_h_i_l_d(ex_a_1,ex_a_1_5).
538 c_h_i_l_d(ex_a_1,ex_a_1_6).
539 c_h_i_l_d(ex_a_1,ex_a_1_7).
540 :- c_h_i_l_d(P1,C), c_h_i_l_d(P2,C), P1<P2.
541 example_active(EX_ID,forall) :- r_o_o_t(EX_ID,chosen).
542 example_active(EX_ID,exists) :- r_o_o_t(EX_ID,other).
543 1 {example_active(Child,forall) : c_h_i_l_d(Parent,Child)} 1 :-

example_active(Parent,exists), c_h_i_l_d(Parent,_).↪→

544 example_active(Child,exists) :- c_h_i_l_d(Parent,Child),
example_active(Parent,forall).↪→

545 example_active(ORD_ID) :- o_r_d(EX_ID_1,EX_ID_2,ORD_ID),
example_active(EX_ID_1,_), example_active(EX_ID_2,_).↪→

546 o_r_d(ex_a_0_1,ex_a_1_1,ord_a_1_ex_a_0_1_ex_a_1_1).
547 o_r_d(ex_a_0_1,ex_a_1_2,ord_a_1_ex_a_0_1_ex_a_1_2).
548 o_r_d(ex_a_0_1,ex_a_1_3,ord_a_1_ex_a_0_1_ex_a_1_3).
549 o_r_d(ex_a_0_1,ex_a_1_4,ord_a_1_ex_a_0_1_ex_a_1_4).
550 o_r_d(ex_a_0_1,ex_a_1_5,ord_a_1_ex_a_0_1_ex_a_1_5).
551 o_r_d(ex_a_0_1,ex_a_1_6,ord_a_1_ex_a_0_1_ex_a_1_6).
552 o_r_d(ex_a_0_1,ex_a_1_7,ord_a_1_ex_a_0_1_ex_a_1_7).
553 o_r_d(ex_a_0_2,ex_a_1_1,ord_a_1_ex_a_0_2_ex_a_1_1).
554 o_r_d(ex_a_0_2,ex_a_1_2,ord_a_1_ex_a_0_2_ex_a_1_2).
555 o_r_d(ex_a_0_2,ex_a_1_3,ord_a_1_ex_a_0_2_ex_a_1_3).
556 o_r_d(ex_a_0_2,ex_a_1_4,ord_a_1_ex_a_0_2_ex_a_1_4).
557 o_r_d(ex_a_0_2,ex_a_1_5,ord_a_1_ex_a_0_2_ex_a_1_5).
558 o_r_d(ex_a_0_2,ex_a_1_6,ord_a_1_ex_a_0_2_ex_a_1_6).
559 o_r_d(ex_a_0_2,ex_a_1_7,ord_a_1_ex_a_0_2_ex_a_1_7).
560 o_r_d(ex_a_0_3,ex_a_1_1,ord_a_1_ex_a_0_3_ex_a_1_1).
561 o_r_d(ex_a_0_3,ex_a_1_2,ord_a_1_ex_a_0_3_ex_a_1_2).
562 o_r_d(ex_a_0_3,ex_a_1_3,ord_a_1_ex_a_0_3_ex_a_1_3).

120 ilasp learning examples

563 o_r_d(ex_a_0_3,ex_a_1_4,ord_a_1_ex_a_0_3_ex_a_1_4).
564 o_r_d(ex_a_0_3,ex_a_1_5,ord_a_1_ex_a_0_3_ex_a_1_5).
565 o_r_d(ex_a_0_3,ex_a_1_6,ord_a_1_ex_a_0_3_ex_a_1_6).
566 o_r_d(ex_a_0_3,ex_a_1_7,ord_a_1_ex_a_0_3_ex_a_1_7).
567 o_r_d(ex_a_0_4,ex_a_1_1,ord_a_1_ex_a_0_4_ex_a_1_1).
568 o_r_d(ex_a_0_4,ex_a_1_2,ord_a_1_ex_a_0_4_ex_a_1_2).
569 o_r_d(ex_a_0_4,ex_a_1_3,ord_a_1_ex_a_0_4_ex_a_1_3).
570 o_r_d(ex_a_0_4,ex_a_1_4,ord_a_1_ex_a_0_4_ex_a_1_4).
571 o_r_d(ex_a_0_4,ex_a_1_5,ord_a_1_ex_a_0_4_ex_a_1_5).
572 o_r_d(ex_a_0_4,ex_a_1_6,ord_a_1_ex_a_0_4_ex_a_1_6).
573 o_r_d(ex_a_0_4,ex_a_1_7,ord_a_1_ex_a_0_4_ex_a_1_7).
574 o_r_d(ex_a_0_5,ex_a_1_1,ord_a_1_ex_a_0_5_ex_a_1_1).
575 o_r_d(ex_a_0_5,ex_a_1_2,ord_a_1_ex_a_0_5_ex_a_1_2).
576 o_r_d(ex_a_0_5,ex_a_1_3,ord_a_1_ex_a_0_5_ex_a_1_3).
577 o_r_d(ex_a_0_5,ex_a_1_4,ord_a_1_ex_a_0_5_ex_a_1_4).
578 o_r_d(ex_a_0_5,ex_a_1_5,ord_a_1_ex_a_0_5_ex_a_1_5).
579 o_r_d(ex_a_0_5,ex_a_1_6,ord_a_1_ex_a_0_5_ex_a_1_6).
580 o_r_d(ex_a_0_5,ex_a_1_7,ord_a_1_ex_a_0_5_ex_a_1_7).
581 o_r_d(ex_a_0_6,ex_a_1_1,ord_a_1_ex_a_0_6_ex_a_1_1).
582 o_r_d(ex_a_0_6,ex_a_1_2,ord_a_1_ex_a_0_6_ex_a_1_2).
583 o_r_d(ex_a_0_6,ex_a_1_3,ord_a_1_ex_a_0_6_ex_a_1_3).
584 o_r_d(ex_a_0_6,ex_a_1_4,ord_a_1_ex_a_0_6_ex_a_1_4).
585 o_r_d(ex_a_0_6,ex_a_1_5,ord_a_1_ex_a_0_6_ex_a_1_5).
586 o_r_d(ex_a_0_6,ex_a_1_6,ord_a_1_ex_a_0_6_ex_a_1_6).
587 o_r_d(ex_a_0_6,ex_a_1_7,ord_a_1_ex_a_0_6_ex_a_1_7).
588 o_r_d(ex_a_0_7,ex_a_1_1,ord_a_1_ex_a_0_7_ex_a_1_1).
589 o_r_d(ex_a_0_7,ex_a_1_2,ord_a_1_ex_a_0_7_ex_a_1_2).
590 o_r_d(ex_a_0_7,ex_a_1_3,ord_a_1_ex_a_0_7_ex_a_1_3).
591 o_r_d(ex_a_0_7,ex_a_1_4,ord_a_1_ex_a_0_7_ex_a_1_4).
592 o_r_d(ex_a_0_7,ex_a_1_5,ord_a_1_ex_a_0_7_ex_a_1_5).
593 o_r_d(ex_a_0_7,ex_a_1_6,ord_a_1_ex_a_0_7_ex_a_1_6).
594 o_r_d(ex_a_0_7,ex_a_1_7,ord_a_1_ex_a_0_7_ex_a_1_7).
595 example_active(ex_d_0).
596 example_active(ex_d_1).
597 example_active(ex_c_0).
598 example_active(ex_c_1).
599 example_active(ex_b_0).
600 example_active(ex_b_1).
601 example_active(ex_a_0).
602 example_active(ex_a_1).
603 example_active(ex_a_0_1).
604 example_active(ex_a_0_2).
605 example_active(ex_a_0_3).
606 example_active(ex_a_0_4).
607 example_active(ex_a_0_5).
608 example_active(ex_a_0_6).
609 example_active(ex_a_0_7).
610 example_active(ex_a_1_1).
611 example_active(ex_a_1_2).
612 example_active(ex_a_1_3).
613 example_active(ex_a_1_4).

B.2 five field kono 121

614 example_active(ex_a_1_5).
615 example_active(ex_a_1_6).
616 example_active(ex_a_1_7).").

b.2 five field kono

b.2.1 Experiment 9.2: five field kono rules

Logic Program B.3. Examples of legal and illegal moves in Five Field Kono
1 #pos(init,
2 { legal(w, move(cell(1,2), cell(2,3)))
3 , legal(b, noop)
4 , legal(w, move(cell(2,5), cell(3,4)))
5 },
6 { legal(w, noop)
7 , legal(w, move(cell(1,2), cell(2,2)))
8 , legal(w, move(cell(1,2), cell(1,1)))
9 },

10 {
11 control(w).
12

13 state(1,1,w).
14 state(1,2,w).
15 state(1,3,w).
16 state(1,4,w).
17 state(1,5,w).
18 state(2,1,w).
19 state(2,5,w).
20

21 state(5,1,b).
22 state(5,2,b).
23 state(5,3,b).
24 state(5,4,b).
25 state(5,5,b).
26 state(4,1,b).
27 state(4,5,b).
28 }).
29

30 #pos(mid,
31 { legal(b, move(cell(5,1), cell(4,2)))
32 , legal(w, noop)
33 , legal(b, move(cell(4,3), cell(5,4)))
34 },
35 { legal(b, noop)
36 , legal(b, move(cell(4,3), cell(3,4)))
37 , legal(b, move(cell(4,2), cell(3,1)))
38 , legal(b, move(cell(4,2), cell(3,3)))
39 , legal(w, move(cell(1,2), cell(2,3)))
40 , legal(w, move(cell(2,3), cell(3,2)))
41 },
42 {
43 control(b).
44

45 state(1,1,w).
46 state(2,3,w).
47 state(1,3,w).

122 ilasp learning examples

48 state(1,4,w).
49 state(1,5,w).
50 state(2,1,w).
51 state(3,4,w).
52

53 state(5,1,b).
54 state(5,2,b).
55 state(5,3,b).
56 state(4,3,b).
57 state(5,5,b).
58 state(4,1,b).
59 state(4,5,b).
60 }).

61 3 ~ pred(cell(V0, V1), cell(V3, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
62 3 ~ pred(cell(V0, V1), cell(V4, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
63 3 ~ pred(cell(V0, V3), cell(V1, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
64 3 ~ pred(cell(V0, V3), cell(V4, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
65 3 ~ pred(cell(V0, V4), cell(V1, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
66 3 ~ pred(cell(V0, V4), cell(V3, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
67 3 ~ pred(cell(V1, V0), cell(V3, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
68 3 ~ pred(cell(V1, V0), cell(V4, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
69 3 ~ pred(cell(V1, V3), cell(V0, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
70 3 ~ pred(cell(V1, V3), cell(V4, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
71 3 ~ pred(cell(V1, V4), cell(V0, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
72 3 ~ pred(cell(V1, V4), cell(V3, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
73 3 ~ pred(cell(V3, V0), cell(V1, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
74 3 ~ pred(cell(V3, V0), cell(V4, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
75 3 ~ pred(cell(V3, V1), cell(V0, V4), V2) :- state(V0, V1, V2), state(V3, V4, e).
76 3 ~ pred(cell(V3, V1), cell(V4, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
77 3 ~ pred(cell(V3, V4), cell(V0, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
78 3 ~ pred(cell(V3, V4), cell(V1, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
79 3 ~ pred(cell(V4, V0), cell(V1, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
80 3 ~ pred(cell(V4, V0), cell(V3, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
81 3 ~ pred(cell(V4, V1), cell(V0, V3), V2) :- state(V0, V1, V2), state(V3, V4, e).
82 3 ~ pred(cell(V4, V1), cell(V3, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
83 3 ~ pred(cell(V4, V3), cell(V0, V1), V2) :- state(V0, V1, V2), state(V3, V4, e).
84 3 ~ pred(cell(V4, V3), cell(V1, V0), V2) :- state(V0, V1, V2), state(V3, V4, e).
85 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V1 == V3+1.
86 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V1 == V3+1.
87 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V3 == V1+1.
88 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V3 == V1+1.
89 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V2 == V0+1.
90 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V2 == V0+1.
91 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V3 == V1+1.
92 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V3 == V1+1.
93 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V1 == V3-1.
94 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V1 == V3-1.
95 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V3 == V1-1.
96 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2+1, V3 == V1-1.
97 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V0 == V2-1.
98 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V0 == V2-1.
99 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V2 == V0-1.

100 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V1 == V3+1, V2 == V0-1.
101 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V1 == V3-1.
102 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V1 == V3-1.
103 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V3 == V1-1.
104 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V2 == V0+1, V3 == V1-1.
105 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V3 == V1+1, V0 == V2-1.

B.3 cross-dot 123

106 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V3 == V1+1, V0 == V2-1.
107 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V3 == V1+1, V2 == V0-1.
108 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V3 == V1+1, V2 == V0-1.
109 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2-1, V1 == V3-1.
110 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2-1, V1 == V3-1.
111 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V0 == V2-1, V3 == V1-1.
112 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V0 == V2-1, V3 == V1-1.
113 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V1 == V3-1, V2 == V0-1.
114 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V1 == V3-1, V2 == V0-1.
115 5 ~ adj(cell(V0, V1), cell(V2, V3)) :- cell(V0, V1), cell(V2, V3), V2 == V0-1, V3 == V1-1.
116 5 ~ adj(cell(V2, V3), cell(V0, V1)) :- cell(V0, V1), cell(V2, V3), V2 == V0-1, V3 == V1-1.
117 #max_penalty(50).

b.3 cross-dot

b.3.1 Experiment 9.3: cross-dot rules

Logic Program B.4. Examples of legal and illegal moves in Cross-Dot
1 #pos({legal(x, mark(1)), legal(o, noop)}, {legal(x, noop), legal(o, mark(1))}, {
2 box(1, b).
3 box(2, b).
4 box(3, b).
5 box(4, b).
6 control(x).
7 }).
8 #pos({legal(x, noop), legal(o, mark(1))}, {legal(o, noop), legal(o, mark(2))}, {
9 box(1, b).

10 box(2, x).
11 box(3, b).
12 box(4, b).
13 control(o).
14 }).
15 #pos({legal(o, noop), legal(x, mark(3))}, {legal(x, mark(1)), legal(x, mark(2))},

{↪→

16 box(1, o).
17 box(2, x).
18 box(3, b).
19 box(4, b).
20 control(x).
21 }).

22 #modeh(legal(var(role), mark(var(box)))).
23 #modeh(legal(var(role), noop)).
24 #modeb(box(var(box), const(state))).
25 #modeb(control(var(role))).
26 #modeb(role(var(role))).
27

28 #constant(state, x).
29 #constant(state, o).
30 #constant(state, b).
31

32 #maxv(2).

BIBL IOGRAPHY

Benthem, Johan van (2011). ‘Logic Games: FromTools toModels of Interaction’. In: Proof,
Computation and Agency: Logic at the Crossroads. Ed. by Johan van Benthem, Amit-
abha Gupta and Rohit Parikh. Dordrecht: Springer Netherlands, pp. 183–216. isbn:
978-94-007-0080-2. doi: 10 . 1007 / 978 - 94 - 007 - 0080 - 2 _ 11. url: https :
//doi.org/10.1007/978-94-007-0080-2{_}11.

Blockeel, Hendrik and Luc De Raedt (1998). ‘Top-down induction of first-order logical
decision trees’. In: Artificial Intelligence 101.1-2, pp. 285–297. issn: 00043702. doi:
10.1016/S0004-3702(98)00034-4. url: http://linkinghub.elsevier.
com/retrieve/pii/S0004370298000344.

Buccafurri, Francesco, Nicola Leone and Pasquale Rullo (1997). ‘Strong and weak con-
straints in disjunctive datalog’. In: Logic Programming And Nonmonotonic Reasoning.
Vol. 1265, pp. 2–17. isbn: 3-540-63255-7. doi: 10.1007/3-540-63255-7_2. url:
http://dx.doi.org/10.1007/3-540-63255-7{_}2.

Calimeri, Francesco et al. (2013). ‘ASP-Core-2 Input Language Format’. In: url: https:
//www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf.

Cerexhe, Timothy, Orkunt Sabuncu and Michael Thielscher (2013). ‘Evaluating Answer
Set Clause Learning for General Game Playing’. In: Logic Programming and Non-
monotonic Reasoning. Ed. by Pedro Cabalar and Tran Cao Son. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 219–232. isbn: 978-3-642-40564-8.

Čermák, Petr et al. (2014). ‘MCMAS-SLK: Amodel checker for the verification of strategy
logic specifications’. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 8559 LNCS,
pp. 525–532. isbn: 9783319088662. doi: 10.1007/978- 3- 319- 08867- 9_34.
arXiv: 1402.2948.

Dastani, Mehdi et al. (2005). ‘Modelling user preferences and mediating agents in elec-
tronic commerce’. In: Knowledge-Based Systems 18.7, pp. 335–352. issn: 09507051.
doi: 10.1016/j.knosys.2005.05.001.

Edwards, Steven J. (1994).PortableGameNotation Specification and ImplementationGuide.
url: https://opensource.apple.com/source/Chess/Chess-110.0.6/
Documentation/PGN-Standard.txt (visited on 09/01/2018).

Gebser, Martin, Torsten Grote and Torsten Schaub (2010). ‘Coala: A Compiler from Ac-
tion Languages to ASP’. In: Logics in Artificial Intelligence. Ed. by Tomi Janhunen and
Ilkka Niemelä. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 360–364. isbn:
978-3-642-15675-5.

Gelfond, Michael and Vladimir Lifschitz (1988). The stable model semantics for logic pro-
gramming. doi: 10.1.1.24.6050.

Gelfond, Michael and Vladimir Lifschitz (1998). ‘Action languages’. In: Electronic Trans-
actions on AI 3.16, pp. 1–23. url: http://ssdi.di.fct.unl.pt/rcr/geral/
biblio/assets/gelfond98action.pdf.

Grasso, G, N Leone and F Ricca (2013). Answer set programming: Language, applications
and development tools. doi: 10.1007/978- 3- 642- 39666- 3_3. url: https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&

125

https://doi.org/10.1007/978-94-007-0080-2_11
https://doi.org/10.1007/978-94-007-0080-2{_}11
https://doi.org/10.1007/978-94-007-0080-2{_}11
https://doi.org/10.1016/S0004-3702(98)00034-4
http://linkinghub.elsevier.com/retrieve/pii/S0004370298000344
http://linkinghub.elsevier.com/retrieve/pii/S0004370298000344
https://doi.org/10.1007/3-540-63255-7_2
http://dx.doi.org/10.1007/3-540-63255-7{_}2
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://doi.org/10.1007/978-3-319-08867-9_34
http://arxiv.org/abs/1402.2948
https://doi.org/10.1016/j.knosys.2005.05.001
https://opensource.apple.com/source/Chess/Chess-110.0.6/Documentation/PGN-Standard.txt
https://opensource.apple.com/source/Chess/Chess-110.0.6/Documentation/PGN-Standard.txt
https://doi.org/10.1.1.24.6050
http://ssdi.di.fct.unl.pt/rcr/geral/biblio/assets/gelfond98action.pdf
http://ssdi.di.fct.unl.pt/rcr/geral/biblio/assets/gelfond98action.pdf
https://doi.org/10.1007/978-3-642-39666-3_3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1

126 Bibliography

}doi=10.1007{\%}2F978- 3- 642- 39666- 3{_}3{\&}partnerID=40{\&
}md5=d476b39aec47180e307cc402ef5b94a1.

Gunning, David (2016). Explainable Artificial Intelligence (XAI). url: https://www.
cc.gatech.edu/{~}alanwags/DLAI2016/{\%}28Gunning{\%}29IJCAI-
16DLAIWS.pdf (visited on 28/04/2018).

Heineman, George T, Gary Pollice and Stanley Selkow (2008). ‘Path Finding in AI’. In:
Algorithms in a Nutshell, pp. 213–217. isbn: 9780596516246. doi: 10.1093/aje/
kwq410. url: http://www.ncbi.nlm.nih.gov/pubmed/21047818.

Kaiser, Łukasz (2012). ‘Learning Games from Videos Guided by Descriptive Complexity’.
In: Aaai, pp. 963–969. url: http://www.aaai.org/ocs/index.php/AAAI/
AAAI12/paper/viewPDFInterstitial/5091/5508.

Kaminski, Roland (2014). Clingo. url: https://github.com/potassco/clingo.
Law,Mark, Alessandra Russo andKrysia Broda (2014). ‘Inductive Learning of Answer Set

Programs’. In: European Conference on Logics in Artificial Intelligence (JELIA) 2.Ray
2009, pp. 311–325. issn: 16113349. arXiv: 1608.01946.

Law,Mark, Alessandra Russo andKrysia Broda (2015a). ‘Learningweak constraints in an-
swer set programming’. In:Theory and Practice of Logic Programming 15.4-5, pp. 511–
525. issn: 14753081. doi: 10.1017/S1471068415000198. arXiv: 1507.06566.

Law, Mark, Alessandra Russo and Krysia Broda (2015b). The ILASP system for learning
Answer Set Programs. url: https://www.doc.ic.ac.uk/{~}ml1909/ILASP
(visited on 22/12/2017).

Law, Mark, Alessandra Russo and Krysia Broda (2016). ‘Iterative Learning of Answer Set
Programs from Context Dependent Examples’. In: Theory and Practice of Logic Pro-
gramming. Vol. 16. 5-6, pp. 834–848. doi: 10.1017/S1471068416000351. arXiv:
1608.01946.

Law, Mark, Alessandra Russo and Krysia Broda (2018). TheMeta-Program Injection Fea-
ture in ILASP. Tech. rep. Imperial College London, p. 2. url: https://www.doc.
ic.ac.uk/{~}ml1909/ILASP/inject.pdf.

Lee, Joohyung (2012). ‘Reformulating action language C+ in answer set programming’.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 7265, pp. 405–421. issn: 03029743.
doi: 10.1007/978-3-642-30743-0_28.

Lifschitz, Vladimir (2008). ‘What Is Answer Set Programming?’ In: Aaai 2008, pp. 1594–
1597.

Liu, Tie-Yan (2007). ‘Learning to Rank for Information Retrieval’. In: Foundations and
Trends® in Information Retrieval 3.3, pp. 225–331. issn: 1554-0669. doi: 10.1561/
1500000016. arXiv: arXiv:1208.5535v1. url: http://www.nowpublishers.
com/article/Details/INR-016.

Love, Nathaniel et al. (2006). ‘General Game Playing: Game Description Language Spe-
cification’. In: ScienceLG–2006–01. url:http://games.stanford.edu/language/
spec/gdl{_}spec{_}2008{_}03.pdf.

Marsland, T. A. (1986). ‘A review of game-tree pruning’. In: ICCA journal 9.1, pp. 3–19.
url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.
7446{\&}rep=rep1{\&}type=pdf.

Mnih, Volodymyr et al. (2013). ‘Playing Atari with Deep Reinforcement Learning’. In:
arXiv preprint arXiv:1312.5602.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881127729{\&}doi=10.1007{\%}2F978-3-642-39666-3{_}3{\&}partnerID=40{\&}md5=d476b39aec47180e307cc402ef5b94a1
https://www.cc.gatech.edu/{~}alanwags/DLAI2016/{\%}28Gunning{\%}29 IJCAI-16 DLAI WS.pdf
https://www.cc.gatech.edu/{~}alanwags/DLAI2016/{\%}28Gunning{\%}29 IJCAI-16 DLAI WS.pdf
https://www.cc.gatech.edu/{~}alanwags/DLAI2016/{\%}28Gunning{\%}29 IJCAI-16 DLAI WS.pdf
https://doi.org/10.1093/aje/kwq410
https://doi.org/10.1093/aje/kwq410
http://www.ncbi.nlm.nih.gov/pubmed/21047818
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPDFInterstitial/5091/5508
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewPDFInterstitial/5091/5508
https://github.com/potassco/clingo
http://arxiv.org/abs/1608.01946
https://doi.org/10.1017/S1471068415000198
http://arxiv.org/abs/1507.06566
https://www.doc.ic.ac.uk/{~}ml1909/ILASP
https://doi.org/10.1017/S1471068416000351
http://arxiv.org/abs/1608.01946
https://www.doc.ic.ac.uk/{~}ml1909/ILASP/inject.pdf
https://www.doc.ic.ac.uk/{~}ml1909/ILASP/inject.pdf
https://doi.org/10.1007/978-3-642-30743-0_28
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
http://arxiv.org/abs/arXiv:1208.5535v1
http://www.nowpublishers.com/article/Details/INR-016
http://www.nowpublishers.com/article/Details/INR-016
http://games.stanford.edu/language/spec/gdl{_}spec{_}2008{_}03.pdf
http://games.stanford.edu/language/spec/gdl{_}spec{_}2008{_}03.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.7446{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.7446{\&}rep=rep1{\&}type=pdf

Bibliography 127

Muggleton, Stephen H. et al. (2014). ‘Meta-interpretive learning: Application to gram-
matical inference’. In: Machine Learning 94.1, pp. 25–49. issn: 08856125. doi: 10.
1007/s10994-013-5358-3.

Muggleton, Stephen (1991). ‘Inductive logic programming’. In: New Generation Comput-
ing 8.4, pp. 295–318. issn: 02883635. doi: 10.1007/BF03037089.

Muggleton, Stephen (1995). ‘Inverse entailment and progol’. In:New Generation Comput-
ing 13.3-4, pp. 245–286. issn: 02883635. doi: 10.1007/BF03037227.

Muggleton, Stephen and Luc de Raedt (1994). ‘Inductive Logic Programming: Theory
and Methods’. In: Journal of Logic Programming 19.20, pp. 629–679. issn: 07431066.
doi: 10.1016/0743-1066(94)90035-3. url: http://homes.soic.indiana.
edu/natarasr/Courses/I590/Papers/ilp.pdf.

Muggleton, Stephen et al. (2011). ‘ILP turns 20’. In: Machine Learning 86.1, pp. 3–23.
issn: 0885-6125. doi: 10 . 1007 / s10994 - 011 - 5259 - 2. url: http : / / www .
springerlink.com/content/9463m43357074631/.

Olah, Chris et al. (2018). ‘The Building Blocks of Interpretability’. In: Distill. doi: 10 .
23915/distill.00010.

Ray,Oliver, Krysia Broda andAlessandraRusso (2003). ‘Hybrid abductive inductive learn-
ing: A generalisation of Progol’. In: Proceedings of the International Conference on In-
ductive Logic Programming 2835, pp. 311–328. issn: 3-540-20144-0. doi: 10.1007/
978- 3- 540- 39917- 9_21. url: http://www.springerlink.com/index/
LXQFK7E5V8K3D0AV.pdf.

Romstad, Tord et al. Stockfish. url: https://stockfishchess.org.
Samek, Wojciech, Thomas Wiegand and Klaus-Robert Müller (2017). ‘Explainable Artifi-

cial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Mod-
els’. In: arXiv: 1708 . 08296. url: https : / / arxiv . org / pdf / 1708 . 08296 .
pdfhttp://arxiv.org/abs/1708.08296.

Shortliffe, Edward H (1977). ‘Mycin: A Knowledge-Based Computer Program Applied to
Infectious Diseases’. In: Proceedings of the Annual Symposium on Computer Applica-
tion in Medical Care, pp. 66–69. isbn: 0195-4210. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf{\%
}0Ahttp://www.ncbi.nlm.nih.gov.proxygw.wrlc.org/pmc/articles/
PMC2464549/.

Silver, David et al. (2017a). ‘Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm’. In: arXiv preprint arXiv:1712.01815.

Silver, David et al. (2017b). ‘Mastering the game of Go without human knowledge’. In:
Nature 550.7676, pp. 354–359. issn: 14764687. doi: 10.1038/nature24270. arXiv:
1610.00633.

Takizawa, Makoto. Elmo. url: https : / / github . com / mk - takizawa / elmo{\ _
}for{_}learn.

Tesauro, Gerald (1995). ‘Temporal difference learning and TD-Gammon’. In: Communic-
ations of the ACM 38.3, pp. 58–68. issn: 00010782. doi: 10.1145/203330.203343.
url: http://portal.acm.org/citation.cfm?doid=203330.203343.

Thielscher, Michael (2010). ‘A general game description language for incomplete inform-
ation games’. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence (AAAI-10), pp. 994–999. url: https://www.aaai.org/ocs/index.
php/AAAI/AAAI10/paper/view/1727.

https://doi.org/10.1007/s10994-013-5358-3
https://doi.org/10.1007/s10994-013-5358-3
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037227
https://doi.org/10.1016/0743-1066(94)90035-3
http://homes.soic.indiana.edu/natarasr/Courses/I590/Papers/ilp.pdf
http://homes.soic.indiana.edu/natarasr/Courses/I590/Papers/ilp.pdf
https://doi.org/10.1007/s10994-011-5259-2
http://www.springerlink.com/content/9463m43357074631/
http://www.springerlink.com/content/9463m43357074631/
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010
https://doi.org/10.1007/978-3-540-39917-9_21
https://doi.org/10.1007/978-3-540-39917-9_21
http://www.springerlink.com/index/LXQFK7E5V8K3D0AV.pdf
http://www.springerlink.com/index/LXQFK7E5V8K3D0AV.pdf
https://stockfishchess.org
http://arxiv.org/abs/1708.08296
https://arxiv.org/pdf/1708.08296.pdf http://arxiv.org/abs/1708.08296
https://arxiv.org/pdf/1708.08296.pdf http://arxiv.org/abs/1708.08296
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf{\%}0Ahttp://www.ncbi.nlm.nih.gov.proxygw.wrlc.org/pmc/articles/PMC2464549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf{\%}0Ahttp://www.ncbi.nlm.nih.gov.proxygw.wrlc.org/pmc/articles/PMC2464549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf{\%}0Ahttp://www.ncbi.nlm.nih.gov.proxygw.wrlc.org/pmc/articles/PMC2464549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464549/pdf/procascamc00015-0074.pdf{\%}0Ahttp://www.ncbi.nlm.nih.gov.proxygw.wrlc.org/pmc/articles/PMC2464549/
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/1610.00633
https://github.com/mk-takizawa/elmo{_}for{_}learn
https://github.com/mk-takizawa/elmo{_}for{_}learn
https://doi.org/10.1145/203330.203343
http://portal.acm.org/citation.cfm?doid=203330.203343
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727

128 Bibliography

Vinyals,Oriol et al. (2017). ‘StarCraft II: ANewChallenge forReinforcement Learning’. In:
arXiv preprint arXiv:1708.04782. doi: https://deepmind.com/documents/110/
sc2le.pdf. arXiv: 1708.04782. url: http://arxiv.org/abs/1708.04782.

Zhang,DongmoandMichaelThielscher (2015). ‘Representing andReasoning aboutGame
Strategies’. In: Journal of Philosophical Logic 44.2, pp. 203–236. issn: 15730433. doi:
10.1007/s10992-014-9334-6. arXiv: 1407.5380.

https://doi.org/https://deepmind.com/documents/110/sc2le.pdf
https://doi.org/https://deepmind.com/documents/110/sc2le.pdf
http://arxiv.org/abs/1708.04782
http://arxiv.org/abs/1708.04782
https://doi.org/10.1007/s10992-014-9334-6
http://arxiv.org/abs/1407.5380

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions

	2 Games Under Study
	2.1 Onitama
	2.1.1 Rules
	2.1.2 Three Card Variation
	2.1.3 Example Game

	2.2 Five Field Kono
	2.2.1 Rules

	2.3 Cross-Dot Game
	2.3.1 Rules

	3 Background
	3.1 Normal Logic Programs
	3.1.1 Syntax
	3.1.2 Herbrand Models
	3.1.3 Stable Model Semantics

	3.2 Answer Set Programming
	3.2.1 Choice Rules
	3.2.2 Weak Constraints

	3.3 Inductive Logic Programming
	3.4 Inductive Learning of Answer Set Programs
	3.4.1 Learning from Answer Sets
	3.4.2 Learning Weak Constraints
	3.4.3 Context Dependent Examples
	3.4.4 Learning from Noisy Examples
	3.4.5 Constraining the Hypothesis Space with Bias Constraints
	3.4.6 ilasp Meta-Level Representation

	3.5 Game Theory
	3.5.1 Game Types
	3.5.2 Utility Functions
	3.5.3 Minimax Theorem

	4 Related Work
	4.1 Knowledge Representation
	4.2 Representing Games in Formal Logics
	4.3 Learning Answer Set Programs
	4.4 Machine Learning and Games
	4.5 Explainable AI

	Implementation
	5 Game Model
	5.1 Intuition
	5.2 Game Description Language
	5.2.1 Specification
	5.2.2 Translation into asp

	5.3 Simplifications

	6 Digitised Game & Planner
	6.1 Program Flow
	6.1.1 Example Collection
	6.1.2 Minimax Planner
	6.1.3 Assistive Movement

	6.2 Extensibility
	6.2.1 Adding new games

	7 Learning Preferences from Game Trees
	7.1 Motivation
	7.2 Inductive Learning Programs with Deep Orderings
	7.3 Implementation
	7.3.1 ilasp with Meta-Program Injection

	7.4 Translation to Context Dependent loas Task with Meta-Program Injection
	7.5 Automatically Generating the Game Trees

	8 Case Study: Cross-Dot Game
	8.1 The Game
	8.1.1 Representation

	8.2 Learning Strategies
	8.2.1 Simple Strategies
	8.2.2 Combined Strategies
	8.2.3 Forward-Thinking Strategies

	8.3 Comparison

	Evaluation
	9 Learning the Game Rules
	9.1 Process
	9.2 Learning

	10 Learning and Expressing Strategies
	10.1 Immediate Strategies
	10.1.1 Winning
	10.1.2 Capturing Piece
	10.1.3 Space Advantage

	10.2 Complex Strategies
	10.3 Tournaments
	10.4 Summary

	11 Conclusion
	11.1 Achievements
	11.2 Future Work
	11.2.1 Performing Quiescent Search with Weak Constraints
	11.2.2 Identifying Examples with Strong Strategic Choices

	Appendix
	A Logic Programs
	B ilasp Learning Examples
	B.1 Onitama
	B.1.1 Experiment 9.1: Onitama Rules
	B.1.2 Experiment 10.7: Defend Pawns

	B.2 Five Field Kono
	B.2.1 Experiment 9.2: Five Field Kono Rules

	B.3 Cross-Dot
	B.3.1 Experiment 9.3: Cross-Dot Rules

	Bibliography

