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Abstract

On-demand transportation networks such as Uber or Lyft provide an effective and
cheap mode of transportation which see an ever-growing popularity. A central com-
ponent in these networks are fleet managers, systems responsible for solving the
problem of matching drivers with passengers. The goal of this project is to investi-
gate, implement and evaluate various scheduling methods used in fleet managers,
covering areas such as exclusive taxi where only one passenger can be present at
a time or a shared taxi with multiple passengers at once. In particular, the con-
tributions include an implementation of the Insertion Heuristic algorithm with a
proposed optimization which leverages the fleet manager’s knowledge of a driver’s
queue of passengers. Further, we implement the Aggregated Greedy Dispatch algo-
rithm while suggesting several possible enhancements which use the fact that the
fleet manager has a perfect knowledge about the passengers requests and driver lo-
cations. Finally, we design and devise the last scheduling approach which proposes
an unconventional way of matching drivers to passengers. In this approach, we peri-
odically spawn ’gravitational points’ in an area, which act as locations where drivers
can move in order to pick-up more passengers and maximize the profits.

All of the approaches are evaluated with an aim of greedily improving a defined set
of metrics which directly affect the performance of a fleet manager. The implemen-
tations achieve superior results on a variety of metrics, in comparison to currently
widely used approaches. The reasons and analyses of why the evaluated results of
our implementations are superior (or in certain cases inferior) are in detail provided
in this report. In addition to the implemented methods, the project also delivers two
developed applications which were essential during the process of evaluation.
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Chapter 1

Introduction

1.1 Motivation

With nearly half a billion users worldwide [1], ride-hailing services are undoubtedly
introducing a paradigm shift in the way we think about transportation. We are able
to request a vehicle which arrives nearly instantly, we have a transparent view of the
driver’s location and information about the car and thanks to sharing economy, it
is a self-regulating market and the passengers are able to save money on travelling
[2]. Furthermore, besides the obvious negative environmental implications, owning
a car or using old-fashioned taxi companies is more expensive [3] and increases the
total number of cars within urban areas which is already enormous to the extent that
they are being banned in certain cities [4]. Thanks to ride-hailing application, the
number of drunk driving accidents has significantly decreased [5], simply because
they are so accessible.

Within the space of ride-hailing systems, in the field of computing there are multiple
problems being discussed, such as geolocation services, distributed systems or one of
the key ones being fleet managers. Fleet managers are concerned with the problem
of matching drivers to passengers. More specifically, they solve a special case of the
Vehicle Routing Problem (VRP), an NP-hard class problem, which we are discussing
in more detail in the next sections. The main reason for it’s uniqueness is that the
fleet management happens in terms of a dynamic ride-hailing environment, on a
massive scale (hundreds of thousand passengers per day) where every single pas-
senger wants to be matched as soon as possible. It is a relatively recent topic which
is gaining popularity thanks to successful commercial uses in applications such as
Uber [6] or Lyft [7].

A Fleet manager is a valuable intellectual property and many times we can only
observe and approximate the algorithms and optimizations used by the larger com-
panies to manage their large fleets of drivers. As an example, Lyft claims that they
match their passengers with the closest available driver [8], which we will in later
sections explore as the most basic heuristic for fleet management. The technique is
called Nearest Vehicle Dispatch (NVD) and in our evaluation it turns out to be sur-
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1.1. MOTIVATION

prisingly effective. It can be considered to be the industry standard because of how
easy it is to implement and scale up [9].

Further insight into why the specific approach is used is missing. As we will observe,
there are optimizations which build on top of NVD and introduce significant im-
provements to our evaluated metrics. The improvements are caused by the massive
scales of the fleet managers, where even small incremental changes in the way com-
panies conduct their fleet management add up and have a far-reaching impact. One
of the benefits of more advanced fleet managers is increased environmental sustain-
ability. As an example of a modern urban city, in San Francisco alone, reducing the
number of miles travelled within on-demand means of transport just by 3% would
save 500 thousand miles travelled monthly [10]. The potential in such savings is
that they are instant and it can be many times only a matter of a minor engineer-
ing effort. However, there is only a limited set of resources which would provide
implementations and analyses of current on-demand approaches and their possible
extensions, which we further discuss in Section 2.3.

Figure 1.1: Example of different decisions a scheduler can make. Should it pick the
closest driver based on the straight line distance, which saves us computational time
as we don’t need to run a routing algorithm? Or pick the closest available driver, but
risking that the busy driver might be dropping off it’s customer within the next few
moments? Also, it might be the case that we are unable to consider all of our drivers,
simply because there is too many of them.

Few sources discussing on-demand scheduling contribute to the reason why the
global taxi market is resisting the change of having their drivers operated by a
software, while the drivers continue working with decades-old methods involving
communication by walkie-talkies and the fleet management being done by a team of
dispatchers. This creates a friction between regular taxi companies and ride-hailing
applications, since the taxi companies are not able to compete with the convenience
and costs ride-hailing services offer. Yet, the trend is inevitable. Ride-hailing is over-
taking the customers of regular taxi companies [11]. Uber and Lyft are the biggest
players which together account for 65% of the market [12]. Based on the previous
statistic of 500 million users, this still leaves us with roughly 175 millions of users
scattered among the rest of the ride-hailing services. Usually, they operate at a much
smaller scale compared to the big players and are not able to invest into their fleet
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CHAPTER 1. INTRODUCTION

management which remains basic. And what if an old-fashioned taxi company de-
cides to undergo the dreaded change of becoming almost fully automated? In the
majority of cases we would most possibly find a certain version of the basic NVD
implemented.

As we will find out, just the NVD itself can be extended with several optimizations,
each suitable for a different scenario which can happen during the scheduling pro-
cess, ultimately saving resources for all participating parties in the fleet manager.
Further, the performance of a fleet manager can be improved by techniques not
directly related to matching drivers with passengers, one of which we devise and
explore in Section 3.2.

3



1.2. OBJECTIVES

1.2 Objectives

The goal of the project is to implement and analyze a set of methods, determine
how they perform under various circumstances and establish which yield the best
performance on a defined set of metrics in a large scale simulation. The metrics
will remain consistent throughout the project. Namely, they are Passengers Lost,
Average Waiting Time, Total Distance Travelled and each can be directly linked to
the effectiveness of a fleet manager, where ’effectiveness’ is left to be interpreted by
a third party (usually party operating the fleet manager). It might be , for example,
that some fleet managers benefit more from lower average waiting times at the ex-
pense of more distance travelled or vice-versa. A passenger can be lost if we exceed
a time limit of 20 minutes, which is justified in Section 2.1.2.

If we would want to find the absolutely best approach which gives the best possible
performance on the defined set of metrics, we would have to find the given prob-
lem’s global optimum. With the current methods, such as Linear Programming, this
might be possible, but it would take a large amount of time, a resource which is not
available to a greedy on-demand system where every second counts. This narrows
down our search scope, but there still remains a large set of techniques which allow
us to find less optimal local optimums, at the benefit of an acceptable computing
time.

This project focuses solely on greedy approaches and how they conduct fleet man-
agement. The first reason is simply that considering all of the possible techniques
would be infeasible, given the time scope of the assignment. We will be looking into
some of them, such as Ant Colony Systems (ACS) or the mentioned Linear Program-
ming, but there are many more. Secondly, greedy approaches are used because they
are native to an on-demand scheduling environment. It should be noted that greedy
in this case does not mean picking the first match which satisfies our constraint, but
rather picking a match which is optimal at this point of time, without considering
the long-term consequences as doing so would render many times computationally
infeasible. Every passengers is matched with the closest driver, without planning
further into future, which can long term harm the effectiveness. This is exactly as
the mentioned Nearest Vehicle Dispatch (NVD) behaves, it picks the closest driver to
the user at this point of time. However, devising greedy extensions and algorithms
is extremely challenging, especially when solving NP-hard tasks such as the Vehicle
Routing Problem (VRP) on a massive scale of thousands of passengers and drivers.
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CHAPTER 1. INTRODUCTION

1.3 Contributions

The project’s objective is to explore and benchmark a range of greedy scheduling
methods which include a subset of implementations based on resources provided
by external sources or research papers. The source of original implementation is
always stated, alongside of any modifications or extensions made for an on-demand
ride hailing environment. The other subset includes methods which started with the
basics such as the Insertion Heuristic (in Section 3.1) or Aggregated Greedy Dispatch
(in Section 3.2) and were incrementally modified and optimized, usually based on
observations in the Evaluation section. The main contributions consist of :

• Scheduling of an Exclusive taxi - In order to be able to evaluate the schedul-
ing of taxi where a single passenger can be present at a time, I have imple-
mented the Nearest Vehicle Dispatch, Insertion Heuristic and Optimized Inser-
tion Heuristic algorithms. The details and challenges, such as optimizing a
queue of passengers in the Insertion Heuristic are described in Section 3.1.

• Scheduling of a Shared taxi - For scheduling a taxi where multiple passengers
can be present at a time I have implemented the AGD and DAGD algorithms
alongside with their optimizations. This contribution was inspired by Lyft En-
gineering [13], which lacked a more detailed evaluation and reasoning about
the behaviour of the algorithms. This introduced a challenge as many times I
had to make important decisions regarding the design and logic of the AGD.
The whole implementation process is described in 3.2.

• Scheduling done by Gravitational Points - Gravitational points are a way
of distributing our fleet of drivers throughout the city in order to maximize
our profits in the near future. I consider the gravitational points to be the
biggest contribution of the project, because it takes a different look at fleet
management and demonstrates positive results throughout the analysis. In
Section 3.3, I have proposed 2 possible ways of spawning these points, one
based on statistical analysis of past trends and the other based on predictions
produced by LSTM networks.

• Fleet management simulator - Throughout the project, I needed a fast and
reliable framework for evaluating all of the implemented approaches. For this,
I have developed a system called The Simulator which enables me to ’plug in’
any scheduling approach and with a certain degree of customization, execute
and evaluate the approach on a large set of users and drivers. The Simulator
is described in Section 4.1.

• Visualizer - The visualizer is a web based application which helps the user
visualize different scenarios which happened during the execution of a fleet
manager. It can be used, as was in my case, to make sense of the results pro-
duced by a simulator and understand why the simulator made some decisions.
The Visualizer is described in Section 4.2.
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Chapter 2

Background

Recent advances in technology such as GPS and fast cellular network have enabled
precise vehicle tracking and almost instant communication with the drivers. The
last decade has seen the development and successful commercial use of Intelligent
Transport Systems (ITS), which are based on a combination of GPS technologies and
increasingly efficient hardware and software which allows us to track the position of
a large fleet of vehicles and customers and further execute our routing and schedul-
ing algorithms while instructing drivers about their next actions. As a subset of these
systems, the Fleet Management Systems (FMS) are specifically designed for manag-
ing a corporate vehicle fleet. The FMS are a crucial component in recently emerging
ride-hailing services such as Uber or Lyft [14]. The main problem is the pick-up of
goods or passengers and their further delivery to locations across a given area.

A key technological feature of FMS is the matching component. Traditionally, the
process of matching the passenger and the driver relies on a team of human dis-
patchers who have a certain idea about how the fleet of vehicles is currently dis-
tributed throughout a city, therefore they are able to determine what is the most
suitable driver and passenger match. Largely, the skill, experience and size of the
team of dispatchers determine the outcome of the most critical operational process
of a taxi service. Further, there is a linear relationship between the size of the team
of dispatchers and the size of the fleet, which increases expenses as the fleet grows.
What we will actually find out is that this team of dispatchers is solving a specific
case of the Vehicle Routing Problem (VRP).

6



CHAPTER 2. BACKGROUND

2.1 VRP

2.1.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a generalization of the Travelling Salesman
Problem (TSP) where a fleet of vehicles needs to be scheduled to deliver goods to a
number of customers. Often, the added constraint is that prior to delivering goods,
the driver needs to visit a central depot. The problem has been first introduced by
Dantzig and Ramser in the context of dispatching trucks [15].

The original VRP sets the basic structure of the problem and it is almost 2 decades
later when Wilson and Colvin [16] introduce the element of dynamism, ultimately
defining the Dynamic Vehicle Routing Problem (DVRP) which describes a system
able to schedule requests arriving dynamically. With additional constraints set,
we can form a Dynamic Capacitated Vehicle Routing Problem with Time Windows
(DCVRPTW). DCVRPTW considers the vehicle’s maximum carrying capacity and im-
poses a notion of time windows, a range of time in the future during which the
pick-up or delivery needs to happen. However, we should remember that we are still
tied to the depot pick-up formed in the original VRP. Next widely known problem is
the Dynamic Dial-a-Ride Problem with Time Windows (DDARPTW) which consists
of designing vehicle routes and schedules for n users who specify pick-up and de-
livery requests between origins and destination for a certain time slot within a time
period (e.g. day or week). Ideally, we want to express that the time window is due
in a certain period from the time of the ride being requested and not just arbitrarily
anywhere in the future. To define our system correctly and to further understand
the possible approaches, we should specify what are the properties when the VRP is
being expressed within a ride-hailing taxi service.

2.1.2 Ride-hailing Vehicle Routing Problem

Compared to conventional FMS that usually focus on passengers’ requests in terms
of their time-window constraints, the concerns in a ride-hailing environment will be
different for both the FMS and the customer. In case of an exclusive taxi, where we
do not allow any additional pick-ups during the ride, the customer’s main interest
is to be serviced as quickly as possible because most taxi trips are characterized as
a short trip in urban area, and in a shared-taxi environment we are also taking into
account the maximal detour time added by picking up other passengers. For the FMS
it is similarly reducing the customers’ waiting time, utilizing the fleet and decreasing
the total distance travelled to save the expenses. This overall idea allows us to define
the characteristics of the VRP this project is tackling.

• Dynamic - An original VRP might be solved using a two-step approach where
we collect requests a fixed time frame W ahead, then plan and finally execute.
The DVRP allows customer requests to appear dynamically during the planning
or execution phase which might need us to reassign user agent pairings to
maintain a set of routes closest to optimality.

7



2.1. VRP

• Immediate - Extending the dynamic property, the requests proposed in VRP
need to be fulfilled at a certain time t (or a time range t1 and t2) which usually
leaves us with a time window before the request to plan ahead. In our case, we
will be receiving immediate requests, introduced by H.N. Psaraftis [17] where
users are requested to be serviced as soon as possible so ultimately one of our
main goals is to reduce the user waiting time. We are also assuming that at
t = 0 we are not aware of any orders thus we are not able to plan ahead.

• Multiple depot - Every single customer request is treated as a depot which
needs to be visited only once. Upon visiting it, the driver will is assigned an
address denoting the drop-off location.

• Capacitated - We will be considering two instances of the problem, one where
the vehicle is exclusive to the customer and therefore has only one drop-off
location. Secondly, the increasingly popular ride-sharing model [18] where
the vehicle can at one instance carry at most constant c people.

• Time Window - We will not impose a time window for the whole trip as this
heavily depends on the customer’s destination. However, we will have a time
window on the pick-up of the passenger. It is difficult to determine an exact
hard time limit on how long a passenger is willing to wait for a taxi as it is
dependent on conditions or area where the scheduling is happening. We can
approximate a time limit from available data, such as the average waiting time
of passengers. For example, the reported estimated time of arrival average was
6 minutes in London in 2014 [19]. Based on the previously stated assumptions,
we impose a 20 minute time window throughout the thesis, after which the
customer will lose interest in requesting a taxi.

8



CHAPTER 2. BACKGROUND

2.2 Current Approaches

For a general Dynamic Vehicle Routing Problem with Time Windows (DVRPTW),
the most popular scheduling algorithms operate in 2 steps [20]. The first one being
described as the insertion step, where according to selected heuristics we pick the
driver customer pair and insert it to the global time schedule of planned deliveries,
mostly at a random place within the designated time slot. This step is executed
each time a new request is placed. The second step is the optimization step which
reassigns all orders and the drivers paired with the orders to increase the overall
effectiveness of the deliveries, where the effectiveness can be described as the total
distance travelled or the total number of orders delivered.

In order to quickly derive a near-optimal solution to a request in the DVRPTW or
DDARPTW, heuristics can be used which indicate a good performance without the
need to consider all existing possibilities in the current state of the system [21].
We should also note the difference between heuristics and metaheuristics as both of
them are used in these types of routing problems [21] [22]. Heuristics are usually
problem dependent techniques and they are tied to the problem being solved by
taking full advantage of the particularities within the problem. This comes with the
disadvantage of trying to solve a certain local optimum which usually does not corre-
spond to the global optimum. On the contrary, metaheuristics are problem invariant
techniques and are not tied to the specifics of a problem. They can be customised
to the current problem by tuning certain characteristics and parameters, but in most
cases their overall solution space is larger than the one considered in regular heuris-
tics. This is of course subject to how we set the parameters and pick the heuristics.

In this project we only consider heuristics, more specifically insertion heuristics be-
cause our problem consists of inserting new requests into the current routes at the
best possible position known for each driver individually. One of the reasons for not
considering metaheuristics is that they are not focused on the specific features of
this kind of problem. The lack of a specific approach is usually linked to a shortage
of data about the state or the subjects to which metaheuristics are applied. This is
not the case as in FMS we assume to have very fine-grained data about out fleet
and we can make optimizations on such tiny details as a specific vehicle type fuel
consumption or area details of a customer request.

2.2.1 Exclusive Taxi

Exclusive taxi addresses the problem where our vehicles have their capacity re-
stricted to the single customer, or a single group of people treated exactly the same
as a single customer. Thus, the driver needs to stop at a single pick-up point and a
single drop-off point. We are considering the heuristic based approaches where the
global optimum might differ from the local one on a frequent basis. However, in the
NVD and IH algorithms described below, we will be using the distance as the main
basis for our heuristic, and due to the nature of our specific VRP problem, it is many
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times the global optimum to which we will arrive simply because the drivers which
are the closest to user are usually the ones who can arrive fastest.

Nearest Vehicle Dispatch

Nearest Vehicle Dispatch (NVD) is the most used strategy in current applications,
FMS and industrial solutions [9]. It is the most basic and therefore the easiest to
implement, while still working well when compared to other approaches due to the
distance heuristic described previously in 2.2.1.

The NVD is executed on two state changes, one is when a new request arrives and
one is when a driver finishes his/her delivery as both of these actions contribute to
the supply and demand change of a FMS. From the perspective of a newly arrived
request, we start by looking at the nearest vehicle to the request’s origin location,
usually by expanding a radius around the origin. We further need to check whether
the selected vehicle is able to arrive to the location within a specified time window
after which the customer is assumed to lose patience by waiting on a taxi. If it
is infeasible to arrive to the customer within the specified time, the algorithm can
further consider additional drivers or leave the customer waiting with a hope that
another driver will end their delivery nearby and will be able to pick up the customer.
From a finished drivers perspective, upon successfully dropping off a customer, we do
an NVD ’scan’ in case there are passengers nearby who were previously not assigned
a driver. The algorithm considers only a small subset of available vehicles and it does
not plan further by looking at the passenger’s trip destination or duration.

Insertion Heuristic

While NVD searches only for a nearest feasible vehicle to assign a new passenger, the
Insertion Heuristic (IH) [23] compares all available vehicles to find the best available
match for the request. Every new request is considered on a First-Come First-Served
(FCFS) basis, individually and independently from other new requests. Typical IH
without a customization for a ride-hailing service has four steps and the goal is to
minimize passenger waiting times

1. Request is identified by it’s origin and destination

2. Search through all vehicles, including the vehicles which are currently busy
with delivering

3. Select a vehicle by considering the distance of the nearest vehicles but also by
including the vehicles which might be nearby the pick-up location when they
finish their current delivery

4. Select the most suitable vehicle and update the schedule

Since the strategy considers all the available vehicles, not only the idle ones, this
broadens the choice of taxis and thus increases the chances of finding a better as-
signment compared to the first strategy. However, the heuristic is used to insert
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the route into the pick-up and delivery schedule of a driver and therefore certain
modifications need to be made in order to adopt if for the ride-hailing scheduling.
Since the heuristic considers a larger set of vehicles, in most cases, it is expected to
outperform the first one.

Mixed Integer Programming

The problem can be also formed as an Mixed Integer Program (MIP) inspired by
Cordeau [24]. The routing problem can be described as a directed weighted graph
of pick-up and delivery locations as nodes. Between each node we will find a possible
route with it’s associated weight which can be the duration or distance travelled (or
both).

We want to assign a driver to the user as soon as the user requests a ride. In such a
dynamic environment, MIP is not the ideal candidate for a solution as with increasing
number of drivers and requests, the execution time might not keep up with the
incoming requests. MIP is more usually seen in a dynamic algorithm which needs to
allocate the rides to a certain time window in the future. Nevertheless, it is a popular
approach to similar problems and below is stated an example model of a MIP in a
ride-hailing dynamic environment.

• Set of pickup locations P with a cardinality of n and each location being de-
noted as P = {a1, a2...an}

• Set of delivery locations D with a cardinality of n and each location being
denoted as D = {an+1, an+2...a2n}

• The set L which are all the pickup and delivery locations (L ∈ P ∪ D). For
simplicity, drivers are assumed to start at a certain pickup location and will
end at one of the destinations. This means a that they will not have to travel
to the very first customer, but then will act as is expected in all next rides.

• The rides will be formed as a combination of locations from L. More precisely,
we will denote a ride as a tuple R = (i, j) where i, j ∈ L and i , j

• The cost of a ride between locations i, j is denoted as cij

• Set of drivers K where each driver k ∈ K where each driver has a fixed capacity
of Ck (in our case just 1 since we have an exclusive taxi)

• Number of people the driver is carrying denoted as wk
i upon leaving location

ai . For simplicity, assume that the driver can always pick-up only one person.

• Not all locations combinations will be executed, so we need a binary variable
xkij which is equal to 1 when driver k ∈ K has allocated a ride starting at i and
ending at j.
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minimize
∑
k∈K

∑
i∈L

∑
j∈L

cijx
k
ij (2.1)

subject to
∑
k∈K

∑
j∈L

xkij = 1 i ∈ P (2.2)∑
j∈L

xkji −
∑
j∈L

xkij = 0 i ∈ P ,k ∈ K (2.3)

0 ≤ wk
i ≤ Ck i ∈ P ,k ∈ K (2.4)

wk
j ≥ wk

i x
k
ij i, j ∈ L,k ∈ K (2.5)

xkij ∈ {0,1} i, j ∈ L,k ∈ K (2.6)
cij ≥ 0,Ck = 1 i, j ∈ L,k ∈ K (2.7)

The objective function (2.1) is a minimization of the costs of taken rides. Further,
(2.2 and 2.3) ensure that eventually every customer is picked up and that the drivers
go directly from the pickup to the delivery point. We did not pose any hard time win-
dow upon which the customer might lose patience. Figure (2.4) limits the carrying
capacity of each vehicle to between 0 or it’s maximum allowed capacity, (2.5) says
that the load of a vehicle at the end of a location needs to be higher than at start
thus we do not allow ’empty’ rides. The last figures (2.5 and 2.6) state that xkij is a
binary variable, the maximum capacity of a vehicle is 1 and that the costs must be
non negative.

Such a defined function would be plugged into a MIP solver (example being GLPK
[25]) and the variables alongside with the result of the objective function will be
determined. The variables are a direct mapping of the passengers and drivers in the
fleet manager, therefore as soon as we find the optimal configuration proposed by
the MIP solver, we are able to map the output variables to our fleet manager. We
wouldn’t be able to run the solver every time a new request is added, as solving a
MIP is a computationally expensive task, therefore an approach such as running it
every x minutes or after n new passengers would have to be implemented.

2.2.2 Shared Taxi

In the problem with a shared taxi, we are considering a vehicle with a capacity re-
stricted to c customers, where c is the specified maximum number of customers it
can carry in one instance. Shared taxis are becoming increasingly popular [26] as
the customers are paying a smaller amount of money for the service and the drivers
usually travels less miles and decrease their total expenses. Contributions are also
significant from the environmental viewpoint thanks to the reduced carbon footprint
and lesser amount of cars on the road.

Every passenger needs to be picked up and dropped off at a certain location, there-
fore we need to search through a combination of possible routes we can execute
while still respecting the time window constraint regarding the maximum pick-up
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time. Also, we will introduce a new constraint d which is the maximum detour for
each customer. If the customer requested a ride which would usually take time x de-
pending on the route length and traffic conditions, but it is also assumed that there
will be a certain extra time incurred by servicing the other customers in the shared
taxi. We can’t set d to be static (e.g. 5 minutes), since the maximum detour time will
be different for a ride which takes 10 minutes and 1 hour. In the evaluation phase,
other research sources use maximum % from the trip’s total time and the percent-
age varies from 0.1 to 0.5 [27]. As with the maximum waiting time, it is therefore
difficult to impose a hard limit on the maximum detour, but given the ranges of 0.1
to 0.5 we will use the middle ground of 0.25%.

When compared to the exclusive taxi, the problem’s solutions space is several magni-
tudes larger and therefore we will be less likely to achieve a global optimum. Below,
we will be considering a heuristic based approach similar to NVD called Aggregated
Greedy Dispatch and a variation of the Mixed Integer Linear Programming from be-
fore, while introducing Ant Colony Systems, a metaheuristic based technique. Note
that there are more possible approaches that focus on the same family of problems.
This project is considering a selection of the most suitable techniques related to a
dynamic shared taxi. An interested reader should further refer to [20].

Aggregated Greedy Dispatch

The initial and easiest to implement approach is based on finding a match between
a set of customers with a cardinality smaller than capacity c, and the routes for
their pick-up and drop-off while keeping in mind the maximum detour d for each
customer. This approach is also most widely employed in the applications which
perform shared taxi deliveries.

Aggregated Greedy Dispatch (AGD) approach considers all vehicles available, creates
combinations of feasible pick-up and drop-off locations for the customer set being
considered and greedily picks the first customer vehicle match which satisfies the
mentioned constraints. By combination of pick-up and drop-off locations we mean
that if we have customer labelled pick-up locations 1, 2 and 3 with drop-off locations
as 1’, 2’ and 3’ we can consider arrangements such as 1,2,1’,3,2’,3’ and many more.
We can discard a large subset since e.g. a drop-off 1’ can’t be followed be the pick-up
1 of the same customer. There are 2 possible approaches for AGD, each one with it’s
specific advantages and disadvantages.

• Static - In the static version, we will impose a time window W , starting when
the customer issues a request. During W we will try to match the customers
with other customers in the same time window, while still preferring customers
which are closer to each other (similar to executing NVD on customers). We
try to match these customer combinations with available vehicles. If we find
a match, the users sharing a ride are immediately notified and the driver is
dispatched according to the most efficient permutation of pick-up drop-off lo-
cations. If not, the users which have not been served are simply moved to the
next time window.
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• Dynamic - The core idea behind the dynamic approach is that customers can
also be served from cars which have began their journey and still have space
available. The initial process is the same as in the static problem where we are
also starting with a time window W during which we try to create a match.
If we match number of passengers below the maximum vehicle capacity, the
drivers can make a detour to pick-up a new passenger and update the routes
accordingly, while still respecting the detour d imposed by other passengers.

Mixed Integer Linear Programming

The approach has been described in 2.2.1, now we simply need to alter the constraint
Ck to the number of passengers we wish to carry. Similarly as before, the algorithm
has it’s most effective application in a setting where we have specified time windows
in the future and we are replanning our overall dispatching schedule based on the
arriving orders. In an immediate setting, such an approach is feasible yet it can’t be
guaranteed that the time window W where we are creating our matches between
customers and vehicles is sufficient to consider the whole set of customers and ve-
hicles. As has been discussed, for dynamic problems a more suitable technique is to
narrow down the solution space by using heuristics.

Ant Colony Systems

Ant Colony Systems (ACS) used to solve the DVRP were introduced by R. Monte-
manni et al. [28] and are based on scheduling and optimizations of a set of vehicles
and customers split into time slices of the day of equal duration. Any requests which
arrive during the time slice will be processed at the end of the slice so the optimiza-
tion is run statically and independently of others with main advantage being similar
processing time during these slices. The optimization step is based on the natural
way of how ant colonies work. Ants use pheromone trails to communicate the short-
est path to food and they create a path of this substance throughout the environment.
When an ant wishes to find it’s way to the food they will become attracted by the
pheromone substance which they will ultimately and with a high probability follow,
while also reinforcing it by their own pheromone. Translating the approach to DVRP,
we will be essentially constructing a set of preferred paths which the agent chooses
according to a probability distribution. The probability distribution is further spec-
ified by our custom picked heuristic, such as distance and the previous pheromone
trail left on the path.

As in our problem the solution space stays static throughout the time slices (in the
next time slice, we are still performing the routing and scheduling in the same city)
we can pass the information about the ’good solutions’ to the next time slice and
leverage this information in constructing the new set of paths. Similarly as in AGD,
we can immediately see that the smaller the time slices, the less optimal will the
solution be since the algorithm has a smaller set of requests and vehicles to consider.
Further, the optimization step is similar to MILP where we potentially need to exe-
cute many iterations within a positive feedback loop to determine a set of suitable
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paths with the pheromone trails. Terminating this process early, e.g. by specifying
a hard time limit on the optimization’s execution time might very likely leave us
with a set of sub-optimal trails or trails with a uniform spread of pheromones, thus
resulting in the inability to deterministically choose any of them.
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2.3 On-demand Transportation Networks

In the previous sections we have defined the VRP we are tackling within the FMS
of a ride-hailing service and the possible approaches for solving it. Now we want to
put the FMS into the context of the whole application in order to explore existing
libraries and real world applications using the mentioned approaches. Also, we will
find out that there are more techniques which can be used to improve the customer’s
waiting time and the total distance travelled by our fleet which are contained outside
of the scope of what scheduling and dispatching cover.

2.3.1 Environment

To narrow down the set of existing applications and libraries, we need to specify the
On-demand Transportations Network (ODTN) environment where the system will
operate. This was partially defined in terms of the VRP previously, but not in the
context of the whole application.

• On-demand - The system needs to respond to customer requests as soon as
they arrive. Further, the aim is to minimize the waiting time for a user so it is
essential to pick a match between the user and agent as soon as possible.

• Transportation - We are concerned with transportation of passengers.

• Network - We have a network of agents (drivers) which we also interchange-
ably can call a fleet. While every agent is an individual, we will try to leverage
the information about the position of all of the agents to make sensible dis-
patching decisions.

2.3.2 Industrial solutions

As has been previously mentioned, even small optimizations within the FMS are ca-
pable of saving a large amount of money annually by decreasing the total amount of
miles the vehicles have travelled or increasing the total amount of customers served.
Similarly to this, we have companies who are providing the FMS software in form
of a Software as a Service (SaaS) or an API because it might be more comfortable
for a company to pay per each request while not bearing the costs of developing
their FMS in-house. Also another factor might be the lack of such solutions on the
open-source scene which we are discussing further in 2.3.3.

Stand-alone FMS

As an FMS is usually used as one component of a larger system (usually being a
ride-hailing application), it is very common to offer the fleet manager in form of a
stand-alone library or an API. This is then further implemented into the rest of the
application, perhaps by connecting it to the front-end component used for displaying
the fleet and allowing customers to view where the vehicle currently is or with the
geolocation services in the phones of the drivers to be able to effectively track their
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location throughout a city.

Compared to creating a full on-demand transportation service which is also assumed
to employ own fleet, a library or an APIs is much less demanding to develop and
maintain. Therefore the market for paid SaaS applications which handle fleet man-
agement is rich and potential solutions range from simple VRP solutions up to dy-
namic routing problems spanned across large geographical areas. Usually, the ser-
vice assumes that the customer has the capability of his/her own fleet and they need
a software to effectively match and schedule the incoming requests. Example are
services as InDemand [29] or Juggernaut [30]. Further, there are also solution as
UberRUSH [31] which offers the existing network of Uber drivers. A problem with
these services is that the offered solutions are not usually tailored to the customer,
they are offered without any context. With additional knowledge, which could be
obtained from a comprehensive overview of on-demand scheduling approaches, the
customers would be able to make more data driven choices.

On-demand Transportation Services

This section considers a complete application with an interface provided for both
users and drivers with examples being companies as Uber or Lyft. In the recent
years, thanks to a successful large scale execution across many cities worldwide,
the research in the area of DVRPs has gained significant popularity. Such a service
is composed of many components and layers, yet the FMS plays a significant role,
maybe the one most directly tied to the revenue stream of the application.

As has been already mentioned, when it comes to the fleet management systems of
these services, very little is known as this can be considered a valuable intellectual
property. However, Lyft has claimed to be using the NVD [8] algorithm in an ex-
clusive taxi and a variation of the dynamic AGD [13] algorithm for their shared-taxi
rides. Further, there is also evidence of Uber using the NVD in their UberX (exclusive
taxi) service [32].

2.3.3 Open-source solutions

One is able to find VRPs in many aspects of our lives. We are very dependent upon
distribution and moving of things and people, with very basic examples being a daily
commute to work or supermarket supply scheduling. This may offer an explanation
for a rich amount of papers and algorithms tackling this topic on many different lay-
ers. However, there exist very few implementations in the open-source scene, where
the majority are libraries focused on the general VRP. Even fewer of the solutions
can deal with an instance of a VRP with many constraints and the scale of vehicles
and requests which are present in the real world. Going further, there is a mini-
mum of applications capable of a full fleet management with the added benefit of
an interface for the customer and driver.
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Libraries, Toolkits and APIs

This sections provides an overview of existing open-source implementations tackling
different variations of the VRP. Many of these libraries are built for tackling the gen-
eral VRP or that they solve a larget set of scheduling problems using metaheuristics,
however one can extend them to fit a specific VRP with added constraints, such as
our ride-hailing version of the VRP.

Library Overview and Approach

jsprit [33]

Currently the most popular library for solving the travelling
salesman problem (TSP) and the vehicle routing problem
(VRP). The general problem can be customised with a large
set of available constraints.
Approach is based on Simulated Annealing - metaheuristic
which can be used to solve a large family of VRPs, usually
with less dynamic elements.

Open-VRP [34]

Framework to model and solve VRP based problems. The
set of available constraints which can be set on the fleet is
however smaller when compared to jsprit, currently being
only the capacity or time windows.
Implementation assumes that the developer will supply an
algorithm used for the specific problem he/she have mod-
elled and wishes to solve. The is also a default option for a
metaheuristic based tabu search.

Hipster4j [35]

Heuristic search based library in Java with particular focus
on customisation of the search algorithm. Therefore it is
possible to form and solve almost any VRP.
Available is a wide variety of common search algorithms
such as A*, Bellman-Ford or Hill-Climbing. The basic use
case of the library is to extend or adapt these basic search
approaches to a custom problem.

OptaPlanner [36]

Constraint solver and a planning engine for a wide variety of
scheduling job such as VRPs, task scheduling or timetabling.
Again, the specific VRP needs to be formed in terms of Op-
taPlanner’s scheduler.
The approach used is a combination of several heuristic and
metaheuristic approaches, most namely simulated annealing
and tabu search.

Table 2.1: Open-source libraries and toolkits

On-demand Transportation Services

As has been defined 2.3.2, we are considering applications with a full interface which
would ultimately work in a ‘plug-in-your-fleet-and-play‘ fashion. Such an initiative
requires a great amount of work, maintenance and optimization in areas such as the
system’s fleet manager to provide efficient solutions for the users. As a result of this,
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there is only a handful of such projects the most widely known project is LibreTaxi
[37] which offers an interface for both the customer and agent while incorporating
a basic fleet manager. Besides this, most open-source projects provide just the inter-
face, such as Opencabs [38], while leaving the routing logic to the developers. Since
LibreTaxi is an open-source project, we can observe that it uses an instance of NVD
for the fleet management where it creates a radius and notifies all nearby drivers
[39].
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2.4 Other

In addition to the core dispatching algorithm which is concerned with finding a suit-
able solution for the given VRP there exists a variety of areas where we can think of
optimization which increases the overall effectiveness of the fleet. They are usually
not concerned whether we are solving the exclusive or shared taxi scheduling. This
section outlays number of possible areas which significantly affect the effectiveness
of the system.

2.4.1 Distance measurement

There are several ways of measuring distances between vehicles and customers that
can be applied for finding the nearest vehicle:

• Straight line (SL) - The SL approach uses the haversine formula which com-
putes the distance between two points on a sphere given their longitudes and
latitudes. This is simply the equivalent of ’as the crow flies’ distance, it offers
the lowest precision. The main advantage is that it can be quickly calculated
since it does not require running the shortest path search.

• Travel distance (TD) - The shortest distance path from the vehicle to the cus-
tomer. Usually computed using the A* algorithm which acts according to a
chosen heuristic (such as straight line distance) and expands the next available
node which has the lowest cost. If we are currently at node n0 and considering
a node n1, the cost is defined as a combination of the cost associated with the
edge from n0 to n1 and a value returned by computing the chosen heuristic
from n1 to the end node. In such fashion, we can iteratively find a path from
start node to the end node.

• Travel time (TT) - From a set of possible routes we pick the one with the
shortest travel time. Travel time can be fixed at a certain constant speed of the
vehicle or can be subject to traffic and weather conditions.

Figure 2.1: Distance measurement options
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2.4.2 Free Drivers

In areas with a smaller user to driver ratio it happens that agents do not have a re-
quest assigned and are therefore waiting for the next request. When such a situation
happens, the agent might be interested in optimizing his/her chances of finding the
next request as soon as possible. Below are described three ways of possible agent
behaviours, based on observations from Uber [40].

• Stationary - Agents do not move unless they have a passenger. Driver therefore
does not incur any more fuel expenses, however he/she might be exposed to a
longer waiting time for the net request.

• Random - The agent might want to wander randomly around the area in hope
to find a nearby match.

• Gravitational - Agent will navigate back towards an area with the highest de-
mand density since the drivers usually know where the popular pick-up spots
are.

Figure 2.2: Free driver’s cruising options

2.4.3 Area clustering

The fleet manager does not operate on a global scale as this would cause unnec-
essary memory and processing demands. Instead, the scheduling area can be split
by selected demographics and a unique set of demographic attributes would make
us consider creating a separate transportation network with a disjoint fleet manager.
This project does not directly address the topic of area clustering, but it is a proposed
extension which can build on top of the existing implementations.
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Implementation

In the Chapter 3 of the project, we will be looking into the implementation details
of the proposed scheduling approaches. In case of a fleet manager, we usually think
of scheduler as the system used for pairing the passengers with the most suitable
drivers. This is from a one way of looking at the scheduling problem, and we are
describing proposed approaches in sections 3.1 and 3.2. These sections address the
most immediate problem of receiving passenger requests at certain locations and
matching them with the available drivers. Usually, these matches are based on cer-
tain heuristics and are optimized even after they are initially allocated.

For pairing passengers and drivers, we are addressing two different problems. The
first one is Section 3.1, where the domain is an exclusive taxi, meaning that only
one passenger can be in the taxi at a time. Secondly, it is the increasingly popular
ride sharing [18] option where a driver can have multiple passengers in the cab with
multiple drop off locations. This problem is addressed in Section 3.2.

Lastly, in Section 3.3, we will also explore a nontraditional area of the fleet manager,
which is scheduling drivers (without pairing them with users) to drive to places
where they have an increased chance of finding a passenger. Firstly, an approach
based on looking at the most immediate history of the state of the fleet manager is
used to predict the future demand is used. After, that, the next step is incorporat-
ing machine learning to infer more complex relationships and give more accurate
predictions.

22



CHAPTER 3. IMPLEMENTATION

3.1 The Insertion Heuristic

The Insertion Heuristic (IH) approach proposed in 2.2.1 can be modified to suit the
setting of a ride-hailing application. The algorithm will need to take into account
both free agents and agents currently transporting a customer. In a general DVRP,
the IH would insert the planned trip into a schedule planned for a certain period
of time (e.g. a day). This contrasts with the NVD approach where we don’t have a
notion of a schedule at all, only the ongoing customer journeys.

One option would be to implement the IH with the notion of a global schedule,
such as the mentioned DVRP, where we would insert every single new ride. Global
schedules are used in order to optimize the driver and passenger matches within a
time-frame which spans several hours or days ahead. However, doing so in this case
does not work well, simply because we would be always appending to the global
schedule as we want to serve the customers as soon as possible. Another major
challenge is maintaining a global queue which would be concurrently updated by all
the incoming requests and scheduled rides.

As a result, IH is in the middle ground between these two approaches, since it will
be using a schedule, or more accurately a passenger queue, per every agent. It is
an important part of IH as it is a source of optimizations within an already heavily
constrained space, which we would not be able to perform using a global queue. We
will also consider under what conditions having a queue might not be a good idea,
mainly because of the challenges tied to uncertainty in travelling times. The detailed
workings are explained in detail in the next subsection.

3.1.1 Algorithm

For a customer who has issued a pick-up request the algorithm starts with the NVD
approach by first considering the free agents set and trying to pick the agent accord-
ing to a heuristic, which is usually the closest range, or shortest travel time as we will
see in later experiments. In it’s next step, the algorithm will now consider all busy
agents where it needs to approximate the ending time of the busy agent’s ongoing
delivery and calculate if there is a time gain by waiting for the busy agent to finish
the order and then assign the passenger to him/her. If a busy agent is determined
to be the more suitable match than a free agent, the passenger is appended into the
busy agent’s passenger queue. Of course, all of the heuristics above are subject to
the passenger’s maximum waiting time which we can’t exceed because then they will
lose patience. This step is also called the insertion step.
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Figure 3.1: NVD and IH comparison where the IH finds a more suitable match

As has been described in 2.2, algorithms for solving a certain version of the DVRP
usually involve also an optimization step, which we have determined is not feasible
in our case because we don’t have a global schedule to optimize on and that they are
usually expensive in terms of the computation power. But now, we actually do have
a schedule, the passenger queue. Size of the queue never grows to infeasibly large
scale because of the constraints we have posed on the customer’s maximum waiting
time which allows us to find solutions efficiently.

The optimization step is executed every time a customer requests a ride which is
matched to a busy agent who has at least 1 or more passengers in his/her future
passenger queue. Future queue simply means that we don’t consider currently on-
going rides (as they are still in the queue) but only ones which have t′ > t where t′

is the pick-up time of the passenger and t is the current time. We append the new
passenger to the queue and we start by essentially solving the Travelling Salesman
Problem (TSP) on a small scale. The goal is to find out what is the shortest path
which serves all passengers in the passenger queue, thus we need to determine the
most suitable order of pick-ups and deliveries of the passengers. We will do this by
generating all possible permutations of the queue and determining which one is the
most effective.

As an example, let’s take an agent with a starting position X, a passenger queue
(where all passenger trips start in the future) of size 2, with passenger pick-up coor-
dinates A and B and delivery coordinates A’ and B’. A new passenger with pick-up C
and delivery C’ is inserted. The possible permutations are (X AA’ BB’ CC’), (X AA’ CC’
BB’), (X BB’ AA’ CC’), (X BB’ CC’ AA’), (X CC’ AA’ BB’), (X CC’ BB’ AA’) also shown in
3.2. The X is added in front of every permutation because the agent does not nec-
essarily start at passenger pick-up points so a combination of driver’s starting point
and the first customer pick-up needs to be considered too. Note that this is a problem
addressing an exclusive taxi described in 2.2.1, every pick-up needs to be followed
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by the drop off of the same customer (otherwise we would have multiple passengers
in the cab) which means that we will always need to generate (n+1)! permutations
for a queue of length n and with a one new passenger being added. Since the pick-up
followed by a drop off trips (AA’, BB’, CC’) will be always of the same length we can
save computation time by calculating the travelling distance only for the connecting
trips of a permutation (A’ to B, X to C and others) as there is a unique set of these in
each permutation.

Figure 3.2: Overview of the permutations generated in the example

The algorithm terminates when all of the possible permutations have been tested
and the resulting permutation is the one which involves the least travelling time
between the connecting trips. Also note that the IH is expected to outperform NVD
just by incorporating the insertion step and the optimization step which considers
permutations is optional.

3.1.2 Driver Selection

One of the challenges in the insertion step of an IH is the matching of a passenger
with the closest driver, which is very often based on the Haversine formula and the
actual route length is only found out when the agent is going to pick-up the pas-
senger. This is because if the set of all the agents to consider is large, computing a
pathfinding algorithms such as A* for every agent can be computationally expensive.
There are optimizations in form of Geohashing to bucket latitude and longitude co-
ordinates so we would need to consider only a subset of drivers, but that is out of
the scope of this project.

However, many times there are instances when the Haversine distance can be mis-
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leading, e.g. if the driver is behind a hill or there are other obstacles on the route.
A possible solution which is also used in this project is to collect N drivers who are
closest to a passenger. Then, for every driver in the list we will compute the actual
route using a pathfinding algorithm and pick the driver who has the shortest route,
or who has the shortest estimated travel time. The size N of the list should be set to
a reasonable amount in order to decrease the amount of drivers we need to consider
in the end.

3.1.3 Passenger Queue per Driver

In theory, we should be able to insert as many passengers into the queue as possible,
as longs as the maximum waiting times of passengers are respected. This allows for
extreme situations such as when we would have series of very short trips e.g. each
taking approximately 2 minutes and each of these trips would be assigned to one
same agent. If we assume that the maximum passenger waiting time is 20 minutes,
the agent has ultimately 10 passengers in the queue (we are neglecting here the time
to travel from a drop-off of one passenger to the pick-up of another one). In practice,
as the times are just estimations, we can never know how long will the trip take and
it might be suboptimal to greedily schedule all of the passengers to the single driver.
The estimations are getting less precise the more further ahead we are looking and
ultimately very minor events such as an unexpected red light might lead to losing
the passengers at the end of the queue.

While this project operates in a deterministic environment where we don’t consider
delaying events such as car failures or traffic conditions, we can observe what are
the implications of restricting the driver’s passengers queue to grow uncontrollably.
A possible way of doing this is to limit the queue to schedule at maximum N passen-
gers. This means that even if a busy agent would be chosen as a suitable match for
the passenger, but the agent has already N passengers queued for delivery, they will
be passed on to be considered by other agents. Another possible way is to limit the
queue based on total distance the driver has to travel in order to pick up and drop
off all the passengers contained in his/her passenger queue as the distance travelled
is directly linked to the error we might have in our estimations.
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3.2 The Aggregated Greedy Dispatch

The Aggregated Greedy Dispatch (AGD) approach was proposed in 2.2.2 and it is
based on the algorithms used by Lyft, described in [13]. At it’s hearth, it is a greedy
approach used to schedule trips where multiple passengers can travel at once in the
same taxi. The literature only provides a theoretical overview of the AGD, therefore
the exact implementation details are left to interpret for the developer. We start
off by implementing a static version of the AGD, described in 3.2.1, which explains
how we aggregate the passengers who will be dispatched together. We use the word
static because we don’t allow a journey which has begun to be altered (e.g. to make
a detour and pick up a passenger, even though he or she might be along the way).
However, since the static AGD only provides a way for aggregating the passengers
together, dispatching them is a different problem described in subsection 3.2.2.

Combining the static AGD and a solution for dispatching the aggregated passengers
results in an approach called basic AGD which we will implement and which we will
be extending. Therefore, starting from subsection 3.2.3, each subsection will corre-
spond to an extensions of the basic AGD. We discuss the implementation decisions
made when developing the proposed extensions and we will evaluate the respective
computational efficiency. The computational efficiency is becoming increasingly im-
portant, as we could potentially end up comparing all passengers with all drivers,
which would many times render as impossible, because we need to determine a set
of passenger driver matches within a few seconds.

3.2.1 The Static AGD

There are two ways of approaching the design of the Static AGD. When users issue
a request for a ride, we can set a fixed period of time during which they can be
matched with other passengers if their time windows are overlapping. As soon as
we greedily find a match which is good enough to satisfy all passenger constraints,
we dispatch the closest driver to full-fill this match. Other approach, one taken in
this project, is to have a single matching pool where all users requests arrive and
which is processed every t seconds or minutes. For example, if we set to process the
matching pool every 5 minutes, then a request which arrived at time 14:02 will be
considered together with a request which arrived at 14:04. However, the user who’s
request arrived at 14:06 needs to wait 4 more minutes to be potentially matched.
Users who are not matched are transferred to the next pool, until they are matched
or total of 20 minutes passes since their request and they loose interest.
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Figure 3.3: Fixed period of time (on top) compared to Matching Pools (on bottom)

There is not a large difference in picking between these two approaches, however
the pools give us an advantage of having a single array which we need to sort in the
3.2.4 extension. Otherwise, we would need to perform the sorting for every single
passenger separately.

After the pool has been established, at the end of every time window we need to
determine a set of shared trips among all the users in the pool and dispatch free
drivers to fulfill these trips. For this, we will use a standard greedy algorithm.

3.2.2 A Greedy Matching Algorithm

Firstly, an important parameter, determining the maximum amount of passengers
simultaneously allowed in the taxi, needs to be set (usually it is 4). The more pas-
sengers at once we allow, the more complex it is to find a suitable combination of
users out of all the possible combinations. The simplest and computationally most
expensive way is to loop through all possible permutations of 4 passengers and for
each of these combinations generate the possible orderings for every passenger’s
pick-up and drop-off locations. During this process, many combinations can be ex-
cluded by checking the distance between any two passengers. If the estimated time
for a driver to travel this distance is larger than the maximum waiting time, it is not
possible to pick the combination so it can be excluded. However, if all constraints are
met, the best performing combination will be chosen and the process repeats. If we
consider all 4 passenger combinations, but none would be found to be suitable, we
move to 3 passenger trips and then to 2 passenger trips. The assumption is that trips
which accumulate more people are more effective because they exploit the common
path the passengers share.

The challenge which I faced with the above mentioned approach is the complex-
ity. For a pool which accumulates hundred or more passengers during the time
window, we will end up doing billions of comparisons. One way of mitigating the
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complexity is to decrease the time window size, which will result in less passengers
accumulated, but potentially schedules rides further from the optimal solution. The
approach could be though to be ”decremental”. It looks at the 4 passenger rides,
once it considers all of them it moves to 3 passengers and finally 2. Inversely, we
can look at an incremental approach. We start by picking two passengers who have
the shortest combination of pick-up and drop-off locations. If we denote the pick-up
locations as numbers and the respective drop-off as a number with an apostrophe,
we can see that for 2 passengers, there are only 4 possible orderings to consider.
That is [1 2 1’ 2’], [1 2 2’ 1’], [2 1 1’ 2’], [2 1 2’ 1’]. From there, we will consider a
third passenger to be added, however with the restriction that the order of the ex-
isting match can’t change. Therefore if the ordering [2 1 2’ 1’] was chosen, and we
are inserting passenger number 3, we can’t have [1 2 2’ 3 1’ 3’] because that would
alter the previously chosen match. In a similar incremental fashion, we can get to 4
passengers or to any N. If we are searching for e.g. the 4th passenger and we fail to
find a match which would satisfy all the detour and passenger patience constraints,
we stop and use the best 3 passenger match.

Since we don’t need to generate all permutations, the computational complexity of
this approach is significantly reduced, however at a cost of a potential decrease in
effectiveness.

3.2.3 The Dynamic Matching Extension

Currently, every new passenger request is instantly added to the matching pool.
However, what would make more sense is to first consider the busy drivers who
have free space and are able to divert from their existing scheduled route without
violating the timing constraints posed by other passengers on the existing journey.
In this manner, the Dynamic Matching extends the Static approach. This subsection
describes the implementation details and limitations of the approach.

The algorithm is executed every time a new request arrives. We start by consid-
ering all busy drivers who are within a 20 minute driving range. A busy driver is
picked and the new passenger is inserted into the schedule at every possible start-
ing/ending slot and a set of combinations is generated (again, without reordering
the previous schedule). Firstly, on each of these combinations the detour which we
have introduced by picking up a new passenger needs to be calculated. If the de-
tour violates any of the existing passenger’s maximum detour time, the combination
can’t be considered further. If found, the best driver’s best combination is used to
set a new schedule for the driver and the passenger is arranged to be picked up.
However, many times we may find the drivers to have an already tight schedule and
not a single match will be found. Then, the request is added into the matching pool
where it is considered by the free drivers at the end of the processing window. An
example of this behaviour is shown in Figure 3.4 where we have a driver starting the
same journey. In case of the static matching, the journey is fixed and no changes are
made. The dynamic approach however allows us to pick up additional passengers
and thus be more effective.
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Figure 3.4: The route determined by static matching (left) vs. a dynamic route (right)

3.2.4 Distance Sorting

Throughout the previous algorithms, we are extensively comparing passengers and
drivers based on their location. Also, the very first thing we check is whether the
two locations which are being compared are within the range of maximum waiting
time. Such behaviour can be leveraged by having the matching pool or any other
list which involves the locations of drivers or passengers sorted by the latitude or
longitude (depending on the geographical characteristic of the area where we are
performing the scheduling). If the passengers or drivers are sorted in an increasing
order, we can break from the loop as soon as we find the first item which is not
within a suitable distance as it is guaranteed that the next driver or passenger will
be even further.

Figure 3.5: Overview of the number of excluded passengers after applying distance
sorting

The Figure 3.5 demonstrates an example where we picked a random passenger in
the queue every time a pool was processed and plotted how many other passenger
did we not have to consider thanks to the distance sorting.
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A more elaborate and optimal solution can be designed. We would need to convert
the incoming requests latitude and longitude to a 2D plane x,y coordinates. This
could be done using the Mercator projection, however at a cost of losing precision
(mainly at the poles where we don’t expect to perform any scheduling). Such x,y
coordinates can be stored in Quadtrees which are able to compare two dimensional
data points in O(log n) time. However, we don’t provide an implementation or
evaluation of this solution as it would cause a major deviation from the approach
taken in the source [13] which we are following in this section. Overall, these
approaches do not bring us closer to the optimal solution, but they should decrease
the computational complexity.

3.2.5 Route Exchange

The Route Exchange can be though as an extension applicable to both Static AGD
and to it’s dynamic matching extensions. In this project we are implementing the
Route Exchange optimization on top of the dynamic matching.

From a large portion, the time window size after which we process the matching pool
largely determines the optimality of the scheduled rides. Simply, the larger it is the
more passengers we consider and the more options we have. However, the size must
be sensibly set because one of the most important metrics which this project aims
to optimize is the passenger waiting time. Inevitably, we will not always be able to
accumulate the optimal set of passengers and they will be scheduled in different pool
batches. However, even after a certain time after a passenger has been scheduled,
they might be still waiting for the driver since they are part of the fixed journey. This
leaves us space to exchange a large part of the driver’s scheduled journey, the part
which has not been fulfilled yet, between the drivers. This is because the locations
of drivers constantly change and every time we finish processing a matching pool,
we have a new batch of journeys added. Therefore, it is easily possible that drivers
scheduled by two different matching pool batches exchange their routes because one
of the drivers was not available in the earlier batch.

Firstly, a time window tw needs to be set after which the route exchange algorithm
will be executed. We need a time window with a large enough size in order to
accumulate enough drivers with scheduled journeys. We start by iterating through
the set of the busy drivers and building a list of unfulfilled journeys. Every driver
contributes with the largest part of his or her journey which has not been fulfilled
yet. We are not aiming to exchange a random subset of the journey, it must be a part
which spans till the end of the scheduled journey. If we refer back to the notation
used in 3.2.2 then in an example schedule [1 2 2’ 1’ 3 4 4’ 3’] where the driver
has already picked up the passenger number 1, we must wait until the 1 has been
dropped off (1’), therefore the largest part which can be ’sliced’ is [3 4 4’ 3’] as at that
time the driver does not have any other passenger in the car. A different example
would be [1 3 3’ 2 2’ 1’], and as soon as the driver picks up passenger 1, he/she can’t
participate in the route exchange as they are obliged to drop the passenger off at the
end, which would not be possible if we suddenly scheduled a different journey for
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the driver.

After the list of unfulfilled journeys has been built, we will start comparing them to
each other. We pick a journey and find the driver associated with it. Then, we need
to look at the location where the driver will be immediately before the unfulfilled
journey. We will call this the starting point of the driver. In the Figure 3.6, the
green dot symbolizes the starting point and the green line is the distance between
the starting point and the beginning of the journey which can be exchanged. We
wish to minimize the length of the green line, because the other parts of the journey
remain static, disregarding the driver they are assigned to.

Figure 3.6: Example of a journey. The red path is the unfulfilled part and can exchanged
for a different driver’s journey.

Note that the exchange is performed for two drivers, therefore the green line changes
on both sides and we need to calculate the gain or time loss on both sides. Of course,
we only accept an exchange of two unfulfilled journeys if the total distance of these
two exchanges is lower than the original one. However, this would also include the
case when, for example, the first driver will get assigned a new part of the journey
which is 90 seconds closer, but the second driver will get a journey which is 20 sec-
ond further. We have still gained 70 seconds, however the maximum detour times
for the second driver need to be checked, as it might happen that the extra intro-
duced time will cause some of the passengers to lose patience.

It should be also noted that this optimization does not necessarily need to be exe-
cuted at the end of set time windows. We could also execute the route exchange
step every time a driver is in the middle of a journey but at that time there are no
passengers present in the taxi. Referring back to Figure 3.6, this would be the part of
the graph in green colour. We would simply find other drivers in a similar situations,
looking for a route exchange and perform any viable exchanges.

Once the best match is found, we update each driver’s journey plan and remove the
respective journey from the unfulfilled journey list.
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3.3 Gravitational Points for Agents

We have already covered the main scheduling approaches which focus on matching
a passenger with an agent. This solves the most immediate problem of a ride hailing
application, yet there is also a large space left unexplored when the agents are in
between rides, waiting for a passenger to get assigned to them. The drivers might
be able to drive towards locations experiencing heavy demand which ultimately in-
creases the effectiveness of the fleet manager. Possible approaches were discussed in
2.4.2 where it can be seen that the most effective strategies for a driver are to either
remain stationary, or more interestingly, to drive towards a known hot-spot where
they are more likely to find a passenger [40].

Perhaps a more suitable description is that the drivers ”gravitate” towards the local
hot-spots of the city. They are driving closer and closer to the points of interest (e.g.
train stations, historical city centres, airports) with the assumption that in these ar-
eas, they are more likely to get matched with a passenger. These points of interest
are usually general knowledge amongst drivers or can be easily determined within a
city. However if the majority of drivers would follow this approach, there are several
concerns which arise.

1. Supply & Demand - If most of the drivers would be pulled towards the same
set of locations, it can easily lead to oversaturation of the target areas by
drivers. The drivers would be more successful if they chose a different lo-
cation, yet from a driver’s point of view this is a challenging task as they don’t
have an overview about the distribution of other drivers.

2. Starvation - If most of the drivers drift towards these more attractive locations,
the more distant areas will remain uncovered or the passengers will have to
wait longer for the nearest driver. This works closely with the previous point,
the situation can be that if too many drivers move from a location, it can be
that some of them would find themselves returning back to the point from
where they left a while ago simply because so many drivers left the location
that they have a higher chance of getting a passenger there.

3. Reliability - The set of locations which represent the main points of interest are
static and they don’t necessarily reflect the true state of the arriving requests.
The true state most likely depends on the day of the week and the given hour,
but the drivers do not posses the same information as the fleet management
software does, therefore they are likely to drive towards sub-optimal locations.

The main problem for drivers is the lack of information about the global state of
the requests arriving in the city and what is the location of other drivers, therefore
the decision made by the driver to which point they should drive now are made
autonomously without any input. A large portion of valuable information a fleet
manager has, such as which areas of the city are currently experiencing the heaviest
demand or how are other agents distributed throughout the city, remains unused.
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In order to leverage the knowledge a fleet manager has about the global state of
the passengers and drivers, we can take a more dynamic and data-backed approach
when it comes to the points towards which drivers gravitate. The main idea is to
have these gravitational points spawning (and disappearing) dynamically across the
city at various locations. The locations are determined based on the area’s demand
and would be only created only if there is a lack of drivers to meet the demand.
Further, these gravitational points would be only shown to a certain subset of free
drivers, subset large enough to satisfy the demand in the area. The would cover the
point 1 of our concerns, as we would only dispatch a certain amount of the drivers to
the gravitational point. Point 3 would be satisfied simply because the fleet manager
has an overview of the whole fleet and all the arriving requests and only suggests
a gravitational point if there are circumstances to do so. We will be discussing the
problem raised by point 2 in the implementations themselves.

I have suggested two approaches for tackling this problem, each with it’s own ad-
vantages and disadvantages. Approach one analyses the recent trends and assumes
that these trends will continue in the nearest future. Approach two builds on top of
the first one but also includes historical data from the given area and uses machine
learning in order to predict the demand.
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3.3.1 Approach 1

The first approach responds to the most recent state of the fleet manager. We fix a
configurable time window (e.g. 1 hour) during which different areas of a city collect
passenger metrics, such as total number of passengers lost in the area or the average
waiting time. This is also called the Collection phase of the algorithm. At the end of
the collection phase, the Proposal phase begins where every area proposes a value
which is a result of a cost function computed based on the collected metrics. Lastly,
we have the Dispatch phase where based on the proposed values, a subset of areas
is selected and the gravitational points are spawned. We then select another subset
of free drivers and dispatch them to these points.

Initialization

In order to be able to suggest exact locations for the gravitational points, we need to
segment the city into areas. These areas can’t be too small, because the differences
between them would be minimal and we would ultimately start spawning a large
amount of gravitational points. They also can’t be large because it can easily happen
that a single segment would be covering multiple more optimal smaller segments.
To tackle this problem, we will be splitting a city into tiles according to the Military
Grid Reference System (MGRS). MGRS offers different granularity of the tiles, and
the developer should fit the size of the tiles accordingly to the size of the city where
the fleet manager operates. Sensible values can range from 100x100 metres to 1x1
kilometer.

Figure 3.7: Segmentation overview for New York
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Collection Phase

Global time window tw is set, during which every tile will be collecting passenger
metrics, the most basic being

• Total passengers lost

• Average waiting time

• Number of pick-ups in the area

The size of the time window is a configurable metric, but a value which would allow
us to respond quickly enough to changing trends is needed, such as 45 minutes or 1
hour. One can think of the tiles being stored as objects in a hash-map, as they have
unique MGRS coordinates. In order to log the events, every time a passenger loses
patience (is lost) or other event such as pick-up happens, we map the passengers
coordinates to the correct tile in MGRS and find the tile in the hash-map. Every tile
has access to a global clock, therefore synchronously every tw time units a Proposal
phase of the algorithm can begin.

Proposal Phase

In the second phase, all tiles will need to propose a value based on the collected
metrics. The proposed value is a result of a cost function which takes the metrics as
inputs. The cost function can be as simple as directly returning the number of lost
passengers, so the gravitational points would be created in areas where most passen-
gers are lost or it can assign weights to different metrics and the resulting cost can be
a combination of all metrics. Only requirement is that at the end of a time window,
all tiles need to act according to the same cost function in order to ensure fairness.
However, we might wish to change the cost function at different points in time. As
an example, in the morning it could be more sensible to spawn gravitational points
according to the average waiting time, but in the evening we would want to focus on
having as least passengers lost as possible, therefore we would pick the passengers
lost metric.

Further, we have a global set which holds the proposals from all tiles. Since the
values are all computed by the same cost function, we can sort the set and start
spawning points at tiles associated with the most critical values. This process hap-
pens in the Dispatch phase. An example execution can be seen in 3.8 below. The
most red tiles represent areas with the highest proposed value and they have the
largest chance of spawning a gravitational point.
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Figure 3.8: Heatmap of proposed values over Manhattan.

Dispatch Phase

Taking the global sorted set, we are now able to determine how many gravitational
points we need to spawn and how many drivers to dispatch to each of these individ-
ual points. There are several ways to tackle this problem and we will be exploring
the following two approaches.

• Fixed number of points - We can simply fix the upper number of points to
be spawned in every Dispatch phase (e.g. 3 or 5). This needs to be an upper
limit because the situation can be that we have more free drivers than there
are needed in these tiles, therefore we may wish to serve only a subset of the
selected points. Then, we take the sum of all proposed values of the top N tiles
and for each of these values we calculate what is it’s ”share” amongst the sum.
This will return a float in the range 0-1 which we can multiply by the total
number of free drivers and dispatch that many to the created gravitational
point.

• Dynamic spawning - This type of spawning should be used with the lost pas-
sengers as cost function. It works it’s way from the top of the sorted set to the
bottom (starting from the largest value). For every proposed value, it looks
at the number of passengers lost at the tile associated with the value, spawns
a gravitational point and dispatches a number of drivers linearly proportional
to the number of passengers lost at that tile. Linearly proportional because If
a tile has lost N passengers, we don’t need to dispatch exactly N drivers, we
might want to dispatch less or more depending on what more suits the given
situation. This approach can theoretically observe every single tile, but it is
more likely that we run out of free drivers at some point during the execution,
which is also when we need to stop. Therefore, the number of gravitational
points is dependent on the number of free drivers we have available and the
distribution of lost passengers.
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Figure 3.9: Spawning of gravitational points under different approaches.

Starvation

One of the previously mentioned concerns which was not addressed in this approach
is starvation. It is possible that many of the drivers will be directed towards gravi-
tational points, leaving the outlying areas unable to be serviced, which can in turn
have a harmful effect on the evaluated metrics such as the total number of passen-
gers picked up. A solution to this is to always leave a subset of drivers stationary
during the Dispatch phase. This means that in the Fixed number of points and Dy-
namic spawning approaches, we will initially not consider the set of all free drivers
but a set with a reduced size, such as 80% of the whole set (it is a configurable
parameter). As a result, a random subset of the free drivers will remain stationary
in the outlying areas, available to serve the incoming requests there. It is important
to sensibly choose the percentage of how many drivers remain stationary in order to
satisfy the demand in the outlying areas while at the same time maximizing the gain
from the spawned gravitational points.

Next Steps

Approach 1 works by analysing the trends of certain time window tw in the past.
However, there is still a problem when it comes to the ”freshness” of the data, be-
cause the proposed value is based on the whole time window and it might be that
the situation is not currently what it was a certain time before. Secondly, we need
to account for the time it takes the drivers to arrive to the gravitational points which
again can result in sub-optimal predictions. Ultimately, more robust system is needed
which can observe not only the local trends but also the trends emerging from the
historical data (to which we have access) and actually estimate what will be the
demand at different areas in the future. We will cover this in the second approach
which uses machine learning in order to predict the demand.
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3.3.2 Approach 2

The second approach builds on top of the first one and collects the historical data
about the demand in different tiles in a similar fashion. What differs is that a subset
of tiles will now contain a trained neural network which will be used to predict the
passenger demand in the near future. The predictions serve as an additional input
to the cost function, computed during the Proposal Phase, in order to propose a
more accurate value which would reflect the state of the fleet manager in the next
time window closer to the reality. This section outlines the underlying machine
learning problem of predicting the demand per every tile and the incorporation of
the predictions into the existing system.

Using Machine Learning to Predict Tile Demand

The approximation of the demand in specific tiles from the 3.3.1 can be also posed
as a machine learning problem. Given a sequence of length l, where every entry
represents the demand in an area (tile in our case) for a certain time window tw,
what will the demand be in the next time window. This problem deals with time
series data and unlike a typical regression problem, time series adds the complexity
of a sequence dependence in the input variables. To be more specific, we have an in-
stance of a Univariate Analysis, because our sequential data will always contain only
one variable, the number of requests in the tile. In order to capture the trends of the
demand evolution over time, we will be using a Long Short Term Memory Network
(LSTM), an instance of a Recurrent Neural Network (RNN). An LSTM is capable of
learning and forgetting time series features specific to the trained problem. We will
be discussing the data characteristics and the LSTM implementation details in the
next sections.

Data

The dataset used to train the network is the Uber TLC FOIL Response, which con-
tains 4.5 million Uber pickup coordinates from April to September 2014 [41]. The
provided data has the form depicted in 3.1.

Header Description
Date, Time Date (MM/DD/YYYY) and Time (HH:MM) of the pickup

Lat Latitude of the pickup
Lon Longitude of the pickup
Base TLC company code affiliated with the pickup

Table 3.1: Raw data structure from the TLC FOIL Response

Now, we map the request locations to the MGRS tiles, as described in 3.3.1 and in
each tile we count the number of requests per every time window tw. For simplicity,
throughout the rest of the examples, we will fix the tw to be 1 hour, so we will have
a total of 24 entries per day. For each tile, the result will be an array of length 4392,
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because we have 6 months of data and in each month there are 24 data points for
every day of the month. This is more closely depicted in the figure 3.10.

Figure 3.10: Transforming raw data into array of time series data points.

As this is a supervised learning task, the next step is to transform the sequential data
into the form (X,Y ) where X forms the input to the network and Y is the desired
output. However, this depends on one of the hyper-parameters of the network,
look back, which controls the size of the input to the network, or in other words,
how far in our time series we look back. Therefore, for now we can treat it as a
non-zero positive integer lb. One can think of the (X,Y ) dataset transformation as
having a sliding window of size lb, where X are the elements in the sliding window
and Y is the next element outside of the window.

Figure 3.11: Sliding window data transformation

The example bellow illustrates an X,Y splitting of a small dataset where lb has been
again set to 8. The result is an array of pairs.

Dataset

[11, 6, 2, 5, 3, 3, 12, 15, 21, 18, 26, 38]

(Input, Output)

( [11, 6, 2, 5, 3, 3, 12, 15], 21 )

( [6, 2, 5, 3, 3, 12, 15, 21], 18 )

( [2, 5, 3, 3, 12, 15, 21, 18], 26)
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( [5, 3, 3, 12, 15, 21, 18, 26], 38 )

When every tile has the (X,Y ) labelled data ready, the final step is to rescale the
values to a [0,1] range in order reduce the sensitivity of the model to the magnitude
of data. The MinMax scaling shown below was used, and it should be noted that the
rescaling needs to be done on the whole dataset, not on disjoint subsets separately.

x′ =
x −min(x)

max(x)−min(x)

Data in this form can be split to training, validation and test batches (in our case,
the ratio is 8:1:1).

Model

The model used throughout the project is a Long Short-term Memory (LSTM) net-
work consisting of 3 layers. The justification for the choice of an LSTM was explained
in 3.3.2. A standard LSTM would have a single LSTM layer followed by an output
layer. However, we prefer to infer more abstractions about the behaviour of the de-
mand for a longer period of time (6 months in our case, because of the available
data) and therefore we will be using the Stacked LSTM architecture. This means
that we have multiple LSTM layers stacked on top of other, in our case it is a LSTM
layer with 32 blocks and a hyperbolic tangent as the activation function followed by
a LSTM layer with 16 blocks with the same activation function. The final layer is a
Dense layer which transforms the vector of length 16 from the previous LSTM layer
to a single value. The input to the network is determined by the size of lb hyper-
parameter, which is configurable, however the best performance has been shown
under an lb of 32, which we will be using throughout the project. The model is
shown in 3.12

Figure 3.12: Model Architecture
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Granularity of Trained Models

One major problem which I have immediately noticed was the low accuracy of pre-
dictions when a single general model was used for predicting the demand. This was
simply caused by a large amount of variation in the tiles. As an example, some tiles
experience heavy demand on Friday and Saturday nights, but otherwise they expe-
rience low or close to none demand. Therefore a single trained model would not be
able to generalize effectively. An analogy would be using a single trained model to
predict the value of any stock on the stock market. This is not feasible, and if we
would like to predict the stock’s value, we need a separate model trained on the his-
torical data of the particular stock. Example of the behaviour is given in the below
graphs showing the demand from a 1 week time slice on two different tiles.

Figure 3.13: Tile 18TWL8508 Figure 3.14: Tile 18TWL8509

A subset of tiles are chosen which will contain a machine learning model, trained
on the tile’s collected data. The model is then used to predict the demand for the
next time window. The reason why only a subset of tiles is chosen is because a
large portion of these tiles contain very sparse and inconsistent data, mostly because
they are used only on certain days or weeks. Another large part are the unpopular
tiles. These count tens of customers daily, while the numbers in the most popular
tiles range in thousands, therefore their contribution to the overall ecosystem of the
predictions is fractional.

In this project, I aimed to train the models which account for 70-80% of all the
incoming requests. Tiles which do not contain a trained model fall back to the
approach taken in 3.3.1. More about how these approaches cooperate is explained
at the end of this Section.

Pipeline

The pipeline for supporting the training of tens or hundreds of models and their
deployment to a fleet management simulator was an engineering challenge and un-
derstanding it will help the reader to see how the system predicts the demand in
different areas. This section describes the overall training and deployment process.
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1. Training of a single model - A single tile is chosen and a model is trained
on the provided data. We are using the Root Mean Squared Error (RMSE) to
monitor the loss.

RMSE =

√√
1
n

n∑
t=1

(yt − ỹt)2

During this phase, we are trying to pick a set of hyper-parameters which will
minimize the loss on the validation set. The model is trained using the Keras
library and Hyperas library was used to speed up the hyper-parameter opti-
mization process. The best performing set of hyper-parameters is determined,
which later forms the basis for all the models.

2. Tile selection - Select a subset from the available tiles. Usually, tiles with
incomplete data or low demand are excluded.

3. Training of selected tiles models - Now we need to load the available data,
structure it and normalize it as has been described in 3.3.2 section. Per each
of the selected tiles from the previous step, the corresponding dataset is built.
Then, a model is trained with the hyper-parameters picked in the first step.
Also, if we have a fixed Tile selection process and we always train the same
subset of tiles, we can also compute the Aggregated Root Mean Squared Error
(AMSE)

AMSE =
1
m

m∑
j=1

√√√
1
nj

nj∑
t=1

(yjt − ỹjt)2

Which is a mean of all the tile’s MSE from the subset. This helps us to know if
we are decreasing the loss across all tiles as we are changing the set of hyper-
parameters from the first step.

4. Model deployment - The models are saved locally as files (e.g. an h5) or
uploaded and exposed in form of API endpoints.

Integration into the Fleet Manager

Now have two disjoint subsets of tiles, some with a trained model and some without.
The tiles without a model should be able to contribute to the overall decision process
of spawning a gravitational point at the same magnitude as the tiles with a model. In
order to capture this behaviour, we will need to modify the cost function mentioned
in the Proposal phase. In the Approach 1, the cost function is calculated using the
available collected metrics. Now, for the tiles with a trained model, the cost function
will have an additional metric available, named next demand, which is a result of
the prediction for the next time window. The cost function this project implements
is

cost = next demand ∗ (
lost passengerst−1
total passengerst−1

)

The t − 1 variables stand for the metrics in the previous time window. Or in other
words, we assume that the ratio of lost passengers will be similar in the next time
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window, and we multiply it with the predicted amount of passengers, which should
give us a more informed overview of the fleet manager’s state. The tiles without a
trained model contribute in Proposal phase exactly as before, by assuming that the
demand will be similar to what it was in the previous time window.
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3.4 Next Steps

Chapter 3 has covered the main concerns of a fleet manager, namely the problem
of matching passengers with the drivers and distributing the drivers throughout the
area as efficiently as possible.

For the matching problem, we have devised and optimized an algorithm in Section
3.1 which is responsible for matching a single passenger (or a group of passengers
with a single drop off point) with a driver. The main contributions involved aggre-
gating driver’s several future passengers and optimizing the journey of the driver by
reordering the passengers in the queue.

A more interesting and complex problem is when there are several passengers in
the car with several drop off locations. In this case, we have discussed a static and a
dynamic approach in Section 3.2. The optimization here was similar to the one in an
exclusive taxi, yet we have instead considered exchanging a subset of the passengers
between the drivers.

The scheduling was concluded by the Section 3.3 where we spawn gravitational
points throughout the area where we are managing the fleet in order to match more
passengers more quickly with the drivers. Firstly, we have discussed a basic approach
considering only a certain time window in the past and later we have added more
complex LSTM networks which are able to infer the trends from a larger set of his-
torical data.

The next step is to create an environment, or rather applications where we can ”plug
in” the algorithms we have implemented in order to later test them.
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Applications

After describing the theoretical approaches and their implementation details, we will
now be looking into the details of the applications that were used to test and evaluate
the behaviour of the mentioned approaches. Usually, when we want to evaluate the
performance of a fleet manager and we don’t have an access to a real fleet, we need
to simulate the environment, the arriving passengers and the conditions present in
the environment. Therefore, the first presented application is the Simulator. Using
it, we are able to evaluate tens of thousands of passenger requests spanning across
several days. The execution of the simulation time mainly depends on the complex-
ity of the used algorithm. However, a major disadvantage of the Simulator is that
we are not able to look at particular decisions made by the fleet manager inside the
Simulator. This would be an extremely useful feature, as many times in our 3 sec-
tion, we are expanding a single idea with many layers and extensions and we might
not be able to determine why a particular decision was made.

We could for instance implement a logging system and and log every action the fleet
manager inside the simulator takes. This way, we could track down the exact event
and by studying the logs find out why such an approach was taken. However, this
would still require a great deal of imagination, because the logs would contain a
large set of coordinates and approximating the behaviour based on that might be-
come an uneasy task. Instead, a better approach would be to visualize the behaviour.
For this purpose, the Visualizer was created, which shows us a real time state of the
drivers and passenger requests.

Both Simulator and Visualizer are described from their technological side in this sec-
tion. We will discuss the challenges and decisions made throughout various choices,
along with the limitations of the mentioned applications.
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4.1 The Simulator

4.1.1 Overview

Thinking of the Simulator as a single application would not be correct in case of this
project. More accurately, it is a framework to which different scheduling approaches
can be plugged in and which can be customized to fit the needs of the scheduling
problem at hand. However, the purpose for which the Simulator was created, to
provide a basis for deterministic testing of the implemented algorithms on a large
scale and as efficiently as possible, remains the same across all of the use cases in
this project.

In total, there are 4 applications built on top of the Simulator framework which are
underlined by the same event system, the same data set on which they execute and
the same metric logging system. The separate applications are divided by the topic
which they are addressing in Chapter 3, so there is the Exclusive Vehicle Simulator,
Non-exclusive Vehicle Simulator, Gravitational Points Simulator and Machine Learn-
ing Gravitational Points Simulator. As the scheduling task they are performing is
unique in every case, separating them into isolated applications made sense from
the perspective of both functionality and maintainability.

This Simulator is composed of two main parts, the data which it parses and feeds to
the fleet manager and the fleet manager itself.

4.1.2 Data

The data set has been previously described in detail in Section 3.3.2. The data
set which simulator uses is the same, with the exception of having a separate data
set for spawning the drivers. Therefore, each of the passengers is identified by a
request time and a request origin, all of them arriving in the correct time order. One
significant change which was made is that the time is not more expressed in a format
of HH:MM:SS, but rather all times are converted solely to seconds. This is because
we would need the seconds anyway during our calculations, so instead we normalize
all the values to seconds while parsing the data. As an example, a passenger does
not send his or her request at the time 01:00:10, but at time 3610.

4.1.3 Distance Calculation

The calculation of distances, usually between two points specified by their latitude
and longitude, is left out to be implemented by the plugged scheduling approaches.
The approach used in this project is to initially calculate the distance using the haver-
sine formula (explained in Section 2.4.1), for example when comparing large lists
of passengers and drivers. When the best match based on the haversine distance is
picked, we issue a request to an open-source router (OSRM directions API [42]) in
order to get the exact data about the trip’s length and time.
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4.1.4 Fleet Manager

The main feature of the Fleet Manager are the state changing events. We could im-
plement the fleet manager to loop through every second of a day and execute for
example a whole month of scheduling, but we would waste a large amount of re-
sources, simply because there are gaps of time when nothing happens with the state.
Instead, we wish to only undertake an action when an event occurs and set the cur-
rent time of the simulation according to the time when the corresponding event has
happened.

A state changing event can be in every of the mentioned use cases of the Simulator
something different, for example an event would be a spawning of a new gravita-
tional point, when we would try to find drivers which can move towards the point
to have more success of finding a passenger. We would emit an event for the se-
lected drivers to move from their location to the location of the gravitational point.
However, throughout the whole simulator framework, we have always 2 guaranteed
state changers, a new passenger request and a finished drop-off of passenger(s). In
case of a new passenger, we would immediately try to find a driver which can be
scheduled to pick the passenger up, which in turn produces another events, a jour-
ney to the passenger pick up and drop off. In case of a driver who just finished his
or her journey, we may want to look around the finished location to see if there are
not any potential passenger matches.

As was mentioned, the Simulator framework ensures a correct working of the event
based scheduling. More exactly, it is ensured by having a global MinHeap where all
events are inserted and which, if requested, always pops the next most immediate
event. We plug in a unique scheduler algorithm or technique into it which differs in
the way how and when it emits the event for passengers pick-ups and drop-offs.

The core functions of the fleet manager are the following:

• start() - Starts the whole simulation loop which terminates only if there are
no other events in the global MinHeap. The start is preceded parsing the data
set and building the passengers and drivers list.

• new request() - Simulates incoming of a new request by taking the most im-
mediate passenger from the list of future requests (built by parsing the data
set).

• handle event(event) - After we pop an event from the MinHeap, we pass it
to handle event and determine what actions should the fleet manager take.
Here we can implement the state changing events logic or we could add a new
event type to handle.

48



CHAPTER 4. APPLICATIONS

4.2 The Visualizer

4.2.1 Overview

The Visualizer is a web based application for displaying the real-time state of the
fleet. It displays an interactive map with all the customers, agents, ongoing trips
alongside with real-time updates to metrics such as total distance travelled or how
long have the passengers waited. The initial intention behind building it was the
visual help when I was trying to understand some of the decisions made by the
scheduler, but it later evolved into a piece of software easily usable by a person
responsible for overlooking the fleet. As can be seen on the Figure 4.1, the passen-
gers are denoted with a triangle and the drivers can have an orange path assigned
to them which is either the path to pick up a passenger or a path to drop off the
passenger.

Figure 4.1: Visualizer overlooking a fleet in New York

The Visualizer is composed of three main parts, the front-end, the fleet manager and
the request emulator. All of these can be though of as different services listening on
different ports and communicating together through a common API, or in this case
WebSockets [43], which we will be discussing in later sections. As usual, the front-
end displays the decisions made by the Fleet Manager on an interactive map and
reports the accumulated metrics. Usually, the passenger requests would be based on
a location determined by a GPS module in a passenger’s mobile phone. However,
as was mentioned, our data does not arrive from real users, therefore we need a
separate service which will simulate the requests incoming in real time. For this
specific use case, the next part of the Visualizer is the Request Emulator. All of the
components with the technologies used to implement them are depicted in 4.2.
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Figure 4.2: Overview of the Visualizer components

4.2.2 WebSockets

When wiring the communication between different services, one challenge was how
to handle a large volume of data sent in constant streams. The majority would be
flowing between the front-end and the fleet manager. WebSockets provide a reliable
bi-directional communication between the front-end and the server, and the fleet
manager can be in this case though of as a server. Every time we have a state change
or a new journey was scheduled, we immediately send it to the front-end to render
the changes. Thanks to this, we don’t have to waste resources on techniques such as
polling.

4.2.3 Front-end

The front end is a React [44] application built of two main components. The most
dominant component is the Map, which as the name suggests, display the current
state of the fleet manager on a map. In this project, the Mapbox [45] solution was
used which offers a React component displaying the map and a simple API used for
adding, animating and removing symbols on a map. The symbols are used to display
the drivers and the users. Another part of the API are layers, these are used to display
the journey paths. Then we have the sidebar component, which has a WebSockets
connection established with the Fleet Manager and listens to reported metrics and
updates them accordingly. React was chosen because of the Mapbox support and
because we are updating the Document Object Model (DOM) with tens or hundreds
of passengers or drivers at every second, therefore we need an efficient library for
handling this kind of volume.

One important thing to note is that the Fleet Manager works based on events, it
makes a match and the journey is set a starting position and an ending position.
Therefore, the drivers position is only updated at a drop-off, the position is not
updated continuously in-between, as this would pose a significant computational
burden. This also affects the front-end, mainly the Map component. The component
has only access to the start and to the end, it does not know anything regarding the
path.

The first step to solving this is a request to the OSRM directions API [42]. The fleet
manager uses the API in its calculations of the most optimal path, however it does
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not pass the information along to the front-end. Then, it will pass forward a part
of the response, more particularly it is the waypoints. Waypoints are composed of
the latitude, longitude pairs of all turns in a path from point A to point B. This will
effectively allow us to build the path on the client side, and can be used to animate
the drivers along the path. Unless we would want to make several hundreds of re-
quests per every animated path, we are not able to simulate real traffic situations
and real distances between two waypoints. Instead, we will use the Haversine dis-
tance of two waypoints and determine to what portion of the total journey distance
it corresponds. Then, we take the total time of the journey in seconds and multiply it
by the calculated portion floating point value we have, and we get the time for how
long we need to animate a car on a straight line. This way, we can build the whole
animation.

4.2.4 Request Emulator

The emulator first parses a data file of passenger requests where each of the entries
must have a time when the request arrived and the position of the request. The
emulator then emits an event using WebSockets to the Fleet Manager. The emulator
in this project was written in Node.js [46], however it is a fairly small component
and a wider range of technologies could be potentially used to build the emulator.

4.2.5 Fleet Manager

The Fleet Manager is the hearth of the Visualizer. It tracks the current state of the
drivers and passengers, based on which it then schedules journeys. The state of
the fleet manager is usually changed by 2 main actions, either a new passenger
arrives or a driver finishes his or her journey. More specifically, it is a Flask [47]
server listening for WebSocket events (such as a new user arrives) or the server itself
is emitting events to the front-end, describing the scheduling decisions. The state
needs to be always saved in a database, in this case we are using Redis [48]. Any of
the mentioned implementations can be customized to fit into the scheduling function
of the Flask Fleet Manager, however they were primarily written to work with the
Simulator. That also justifies the choice of Flask, to keep the same programming
language (Python) across the Simulator and the Visualizer for the fleet manager.
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4.3 Next Steps

We have now covered the details of the algorithms in Chapter 3, further we will wish
to observe their behaviour and determine the performance. This can be done using
the tools that were developed in Chapter 4. Therefore, the ultimate step is to connect
both chapters and evaluate the proposed approaches. We will be looking into how
and under what conditions the algorithms affect the metrics which we have chosen
to evaluate their performance.
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Evaluation

In this chapter, I aim to evaluate the performance of the algorithms implemented
in Chapter 3. Similarly to the third Chapter, here we will also have 3 main sections
each tackling a different area, more specifically being the Exclusive Taxi, Shared Taxi
and Gravitational Points.

We will be always looking at 3 metrics, the number of Lost Passengers, Average
Waiting Time and the Total Distance Travelled. We will simply be trying to greedily
minimize these metrics as they are all directly linked to the effectiveness of the fleet
manager. Of course, this would require a definition of what an ’effective’ fleet man-
ager should do, but in our case it would be to maximize a theoretical revenue by
serving as many passengers, as quickly as is possible. For conducting the evaluation,
the Simulator application and it’s data set, described in Section 4.1 is used. It should
be noted that different parts of the data set (or different random seeds) might have
been used in different sections of the evaluation (e.g. the NVD used in Chapter 5.1
is executed on a different part of the same data set as the NVD in Section 5.3). Of
course, they remain consistent within the sections.

The behaviour of driver agents (drivers) throughout this project has been simplified.
We assume that we have a fixed set of drivers who are always available and don’t
have an option to reject an assigned passenger. They are all available, without any
passengers, at the start of the scheduling process, at positions which were extracted
from the used data set. This makes the evaluation more accurate and reduces the
involved non-determinism.

Most importantly, we will be evaluating all of the algorithms in terms of driver to
passenger ratio. Because we are able to force the fleet manager into extreme, or,
in contrary, relaxed situations, by simply varying the ratio, it’s an effective way of
determining under what conditions might it be beneficial to use (or not use) some
of the approaches. Similar evaluation technique is used when determining the effec-
tiveness of ride-sharing systems [49] and it also helps in a more practical manner,
by providing the operators of fleet managers valuable information about what might
be the best amount of drivers to aim for under the circumstances of their fleet man-
agers. More about the exact technical details of what ratios we are going to use is
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There are two main features which we will be varying when determining the be-
haviour of the implemented approaches.

• Request Density - We are simulating a 24 hour time window during which
requests will arrive and the fleet manager will operate. The request density
can be controlled in terms of how many ride requests will arrive within these
24 hours.

According to the used Uber data set, the daily number of passengers ranges
from roughly 8000 to 20000, depending on which period of time we look at.
We will use the upper limit of 20000 passengers as the basis for a ’normal’
request density. Then we will also want a more extreme density, to capture a
system which is stressed. The fleet manager is expected to behave differently
in each of these settings. This will be set to 40000 requests per 24 hours,
two times more than a normal usage, or in other words a request arriving
approximately every 2.2 seconds.

• Driver to Passenger Ratio - The next configurable parameter is the driver to
passenger ratio, which we will limit between 0 and 0.5, with implications that
the smaller the ratio, the worse the overall performance in terms of the eval-
uated metrics will be. It would be possible to have a ratio larger than 0.5,
however such a case would be highly unlikely to occur in a real situation, as
the passengers outnumber the drivers in large numbers. Also, after the thresh-
old of 0.5, there is not much difference in the decisions the fleet manager takes
because it almost always has the majority of fleet available. On the other side
of the spectrum are extremely low ratios which force the system to take more
calculated and planned decisions. Therefore we will test the implementations
with smallest ratios starting from 0.01, 0.05 and 0.1. Then, we will incremen-
tally increase the ratios by 0.1 until 0.5, ultimately resulting in 7 tests [0.01,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5].
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5.1 Exclusive Taxi

The problem of scheduling a taxi where only one passenger can be present at a
time is directly linked to Section 3.1. As was discussed in Chapter 2, it is hard
to determine what is the state-of-the-art scheduling approach in on-demand fleet
managers, mostly because such information is considered confidential or it is such
a complex system that it can’t be expressed in terms of a single algorithm and it’s
optimizations. However, we can observe that the open source implementations use
the Nearest Vehicle Dispatch (NVD) to perform scheduling [9] and since we are
interested in greedy approaches, the NVD portrays an ideal candidate because it
does not try to plan ahead to the future, it just greedily chooses the current best
passenger driver match.

Referring back to Section 3.1, we will be comparing the NVD with IH, which is the
Insertion Heuristic without the optimization step and to IH (O) where we turn on
the queue optimization. Firstly, we will look at the results in a more global overview,
with larger intervals between ratios and then we will inspect the behaviour in more
granular intervals to find out what might be the best situation to implement the
mentioned algorithms.

5.1.1 Normal Density

In the normal density, we simulate 20 000 incoming requests and the ratio of drivers
towards this number is expressed in the D/P Ratio column of the Figure 5.1.

D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
NVD IH IH (O)

11633 10150 10068
128 127 126
89 75 75
28 41 41
20 27 27
17 18 18
16 13 13

Avg. Waiting Time
NVD IH IH (O)
538 939 941
159 181 182
114 137 137
86 92 92
56 70 70
45 65 65
44 58 58

Distance Travelled
NVD IH IH (O)

86.19 87.02 86.90
154.98 151.84 151.77
149.53 149.01 149.01
147.36 146.71 146.71
145.94 145.40 145.40
145.26 144.92 144.92
144.83 144.82 144.82

Table 5.1: Exclusive Taxi : Evaluation of measured metrics under normal request density

The results confirm our assumption that the IH variations outperform the NVD ap-
proach, mainly because they have access to a larger set of drivers. However, in case
of the total passengers lost, one might expect the IH to outperform the basic NVD
approach in every single case, but it can be seen that in ratios 0.2 or 0.3, that is not
the truth. All of the values differ fractionally, except for the first case which is also
where a large gap between ratios 0.01 and 0.05 was created. The rest of the results
behave in a more linear and controlled manner, proportional to the ratio. To under-
stand why such a gap was created, we examine the Table 5.1 depicting the Passenger
Lost metric which showed the most fluctuation. The ranges start from 200 drivers,
corresponding to 0.01 ratio, up until 1000 drivers, which is 0.05 ratio.
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Figure 5.1: Graph of lost passengers in
lower ratios - normal density

Figure 5.2: Number of optimizations
done by IH (O)

In case of the passengers lost, we can see from Figure 5.1 that at around 800 drivers,
all approaches converge to the same level, with some small fluctuations which can be
further followed in Table 5.1. The reason why the implementations converge is that
there are enough drivers to accommodate the demand, even if we don’t plan ahead
at all and stick with a basic approach such as NVD. Difference lies in the amount of
drivers when a given approach starts to get close to the local optimum. The Figure
5.1 shows that IH and it’s optimized version start converging sooner, roughly at a
point of 600 drivers. That is simply caused by the ability to leverage extra resources
in terms of the busy drivers. However, such an optimization does not come for free.
The average waiting time for every single instance of IH approaches has been higher
than the one of NVD. The IH is more likely to make more complex trips, where we
have a queue of pick up and drop offs, ultimately resulting with the passengers at
the end of the queue to have larger waiting times, which in the end increases the
total average of the waiting times.

As for the travelled distance, in the first case we see larger distance travelled for IH
and IH (O) which actually should optimize the distance better than NVD does. They
actually do optimize it, the larger numbers are simply caused by the IH approaches
picking up more passengers, therefore travelling more. After that, the IH approaches
yield always smaller results than the NVD. The common intuition is that if the drivers
drive shorter distance, then they deliver more customers. Referring back to Table
5.1, we can say that this assumption is false. In some cases, the IH shows worse
performance in terms of passengers lost even if it has less distance travelled than
NVD. However, these differences are fractional and occur only occasionally, therefore
we can’t make any definite conclusions, but we should still keep in mind that local
decisions at time t, which IH can pick ’better’ than NVD, do not always mean better
decisions in the long term.

We can also observe that the difference between IH and IH (O) is only present at the
minimal ratio levels, then they both behave the same. Remember that the IH (O)
only works if the drivers have a queue long enough to be able to optimize on, and it
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generally applies that the longer the queue the more options we have for generating
the most suitable permutation. What happens as we add more drivers is that we
simply have a larger pool of free drivers and we are not forced to pick a driver who
is currently delivering a passenger, which in turn reduces the average size of queue
per every driver. This behaviour can also be seen on Figure 5.2, where initially we
perform over 250 optimizations because we are heavily constrained by the lack of
drivers and we have many passenger queues which have a space large enough to be
optimized. The number decreases towards 0 as we keep adding drivers. It should
be also noted that the distance which the optimized algorithm saved is fractional, in
this case ranging from tens to hundreds of kilometers.

The general decreasing trend of all approaches is also expected. As we keep adding
drivers, the numbers in all tables decrease because of the extra influx of options
introduced by new drivers. In conclusion, it can be said that the IH approaches
outperform NVD in terms of the passengers lost and distance travelled, at the cost of
the previously mentioned waiting time and also the larger computational complexity.
The best use case for either IH approach is a heavily stressed system which has a low
ratio, with the optimized version expected to outperform the normal one.

5.1.2 High Density

In the high density, we simulate 40 000 incoming requests and the ratio of drivers
towards this number is expressed in the D/P Ratio column of the Table 5.2.

D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
NVD IH IH (O)

23254 20003 19932
194 169 167
91 85 85
37 42 42
31 31 31
26 25 25
18 18 18

Avg. Waiting Time
NVD IH IH (O)
543 950 955
166 210 211
131 153 153
95 112 112
59 64 64
48 62 62
46 55 55

Distance Travelled
NVD IH IH (O)

174.82 178.93 178.25
308.79 302.38 302.36
298.83 297.01 297.01
292.53 291.63 291.63
289.88 288.57 288.57
288.89 288.19 288.19
288.74 288.11 288.11

Table 5.2: My caption

When simulating two times as many requests, we can observe similar results to the
ones seen during the normal execution. The higher density affected the metrics
only in a way which was expected. We observe higher numbers in terms of lost
passengers, higher waiting times and more distance was travelled. The gap after the
first result is also present, in this case with even a larger difference.
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Figure 5.3: Graph of lost passengers in lower ratios - high density

Similarly as in the normal case, the graph in Figure 5.3 follows a declining trend
which eventually converges to the same level in all of the cases. The threshold when
the convergence happens is also approximately located at a ratio of 0.04, therefore
we can’t conclude that the highly dense case would show any different trends than
the previous findings have shown.
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5.2 Shared Taxi

Scheduling a shared taxi, where N multiple users up to the maximum vehicle ca-
pacity can be travelling to N different locations, is described in the Section 3.2. The
evaluted implementations are based on the approaches used in an on-demand trans-
portation company Lyft, described in [13]. Therefore, we will wish to understand
and evaluate under what conditions might it be beneficial to use the implemented
algorithms, along with determining how introduced parameters, such as a pool time
window, affect the behaviour of the system.

The basis of this section is the Static AGD, denoted in the tables and graphs sim-
ply as AGD. The first extensions is the Dynamic AGD, which allows detours for the
busy drivers to pick up a nearby passenger, denoted as DAGD. Lastly, we presented
a Route Exchange optimization, which is implemented on top of the DAGD in this
project (but does not necessarily need to be so, it will also work on top of the Static
AGD), denoted as REAGD.

Along with the described optimizations and extensions, we have also introduced a
parameter which significantly affects the results. It’s the pool time window, or the
time after which the pool of gathered users should be processed. Setting it too low
would result in having sub-optimal matches as we would not be able to accumu-
late enough passenger, but we would have an advantage of low waiting times of the
users as they would be dispatched more frequently. On the other side, larger pool
time windows allow us to accumulate more users and make more suitable matches,
at the cost of larger waiting time and, potentially, more passenger losses. There is
an extra layer of complexity in how does the pool window affect the proposed ex-
tensions which we will be discussing in sections below. In the following examples,
we will use a pool time window of 5 minutes, however we will be conducting exper-
iments to see how does this number affect the performance.

Referring back to Section 3.2, one of the proposed optimizations was also the longi-
tudinal sorting. As this one does not affect the performance, just the computational
time, we will look at a separate evaluation section devoted to it.

5.2.1 Normal Density

In the normal density, we simulate 20 000 incoming requests and the ratio of drivers
towards this number is expressed in the D/P Ratio column of the Figure 5.3.
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D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
AGD DAGD REAGD
7624 11538 10933
955 1202 1176
668 580 571
654 576 572
610 584 584
620 517 515
603 501 500

Avg. Waiting Time
AGD DAGD REAGD
715 1020 1012
799 1047 1041
808 950 938
756 883 872
757 886 884
772 888 882
748 864 864

Distance Travelled
AGD DAGD REAGD

90.53 78.02 76.94
144.39 137.24 135.91
190.74 194.54 194.03
195.91 193.97 192.44
196.38 192.92 191.31
195.42 193.31 192.54
197.05 192.96 191.12

Table 5.3: Shared Taxi : Evaluation of measured metrics under normal request density

The results are again very similar to the ones presented in the previous section on
Exclusive taxis, with the difference that we can see a clear dominance of AGD in the
first two cases. AGD has outperformed the DAGD and REAGD in terms of the passen-
gers lost and average waiting time metrics, however not in distance travelled. On the
other hand, the distance metric is understandable, as distance travelled is directly
tied to how many passengers we pick up, therefore it should be higher. However, the
question still remains, how does a naive approach significantly outperform the ’ad-
vanced’ versions at first and then falls slightly behind but keeps a linear pace? The
answer to this question is closely linked to using the passenger pool and processing
it every x minutes. The DAGD and REAGD keep the drivers busy, since they keep
adding new and new detours to their task schedules, thus leaving us with fewer free
drivers who would be able to pick up the passengers from the pool every time it is
needed. This is an undesired behaviour at lower ratios, where we actually prefer to
keep the drivers ready to take care of the user from the pool. However, once we hit a
certain threshold when we will always have enough drivers to take care of the pools,
we are ready to assign extra load to the busy drivers in order to maximize our profits.
In the example of above Table 5.3, this is somewhere between the ratios 0.05 and
0.1, where DAGD and REAGD start outperforming the AGD in terms of passengers
lost. As it would be expected, after the threshold the performance has stabilized and
we observe a linear decrease at every ratio (since we have more drivers available).

Thee Average Waiting Time has the lowest values in the AGD and experiences slightly
higher levels in the other two approaches. Drivers in both DAGD and REAGD make
extra detours which they are able to tightly fit into their already busy schedules,
therefore increasing the average waiting time for the passengers.

The DAGD and REAGD achieve smaller travelled distance than the AGD. This is
understandable initially, as they lose more passengers, but later they maintain the
lower levels even though their performance in terms of picked up passengers in-
creases. This is caused by the dynamic approaches taking the closest detours which
already share a large portion of the driver’s trip’s path.

If we isolate the dynamic approaches and compare their performance, it becomes
clear the the Route Exchange optimization has shown improvements in all three
measured greedy metrics. The improvements are many times fractional (or none)
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since when we are exchanging the routes between drivers, we exchange them based
only on one path (which is seen as the green line on Figure 3.6), which often gives
us a small amount of extra value. The previously mentioned evaluations are linked
to the currently used pool time window and we will be further determining how
does the time window affect the execution in Section 5.2.3.

5.2.2 High Density

In the high density, we simulate 40 000 incoming requests and the ratio of drivers
towards this number is expressed in the D/P Ratio column of the Figure 5.4.

D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
AGD DAGD REAGD

15248 18538 18122
1908 2202 2076
736 740 729
708 631 642
655 584 567
630 535 522
631 539 525

Avg. Waiting Time
AGD DAGD REAGD
718 1048 1022
810 997 988
770 984 975
746 1015 994
761 953 942
749 940 941
748 931 928

Distance Travelled
AGD DAGD REAGD

182.34 172.58 170.95
291.27 280.93 273.48
374.52 366.38 365.81
380.11 375.36 368.22
378.45 373.52 371.05
378.95 376.11 373.49
379.04 378.01 374.15

Table 5.4: Shared Taxi : Evaluation of measured metrics under high request density

The most significant observation is the general performance trend of all AGD ap-
proaches under higher density. In the first case of normal density, we have seen a
roughly 40-55% passenger loss, here we are in the area of 35-45%. This effect also
applies to the next ratios. Besides that, we can’t conclude much new from the Table
5.4. The trends remain more or less the same, AGD outperforming both advanced
approaches in first two cases and then falling slightly behind (however, never in
terms of average waiting time). Under higher density, there are more opportunities
to optimize on, therefore the gaps between DAGD and REAGD have increased in
favour of REAGD.

Figure 5.4: Number of Route Exchange Optimizations per hour : Comparison of Normal
and High demand (300s time windows, 0.1 ratio)
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Such behaviour can also be observed in Figure 5.4 where we can also clearly see
that the number of route exchanges follow a usual pattern, i.e. they are highest in
the morning, when usually people request a taxi to work, and similarly so in the
evening.

It is possible that someone could think of REAGD in a similar way as of the IH (O)
from the previous Exclusive Taxi evaluation in Section 5.1. In a way, that’s true,
because both approaches optimize on small parts of scheduled journeys, just in dif-
ferent environments. However, there is one major difference, which we have seen
in the evaluation of IH (O). As we increase the driver to passenger ratio, it becomes
that IH and IH (O) converge to same performance levels as there are enough drivers
to accommodate all passengers and IH (O) does not have a queue large enough to
optimize on. We don’t see the converging trend here because REAGD always has
journeys which it can optimize on, thanks to the default implementation of AGD
which creates 3 or 4 person long trips, thus having routes large enough to be poten-
tially exchanged.

5.2.3 Pool Time Window

In order to determine how the pool time window affects the overall scheduling pro-
cess, we will look at 4 different time windows (75s, 150s, 225s, 300s). The simu-
lations are performed under a normal density of 20 000 users with different driver
to passenger ratios. The REAGD has not been included in the tests as it is only an
extension of DAGD and can be expected to behave similarly.

Figure 5.5: Graph of lost passengers throughout different time windows

A certain time window represents a threshold when the AGD starts to outperform
the DAGD (in this case it is between 300 and 225), which was not the observed
phenomenon in Section 5.2.1. The performance of DAGD is moderately affected by
the time windows changes, in a positive trend. This makes sense as most of the
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drivers are usually busy because of the dynamic detours and more frequent pool
processings give us more chances to assign drivers to pools. On the other hand, the
more significant impact was on the side of AGD. It seems that in our case, the more
frequent pool windows benefit the AGD’s performance because it is able to send
out drivers more frequently, at the cost of less optimal routes, which in this case is
not a problem as the best performing choice is an AGD with time window of 150
seconds. As would be expected, there is another extreme in the realms of 75 second
time windows, where both of the algorithms performed worse than almost all of the
other implementations, except the AGD with 300 seconds time window. This clearly
shows us that there is a point between 75-150 seconds when the pools are too small
to make good passenger driver matches.

In practice, the best approach would be to look at the time windows with even a
larger granularity, approximately having them 10 or 20 seconds apart. We can’t say
that a pool time window of length n is always to most optimal one, as this might be
very specific to the fleet or to the area where the scheduling is happening.

5.2.4 Distance Sorting

The Distance sorting, or in this case more specifically longitudinal sorting, is an op-
timization which aims to improve the computational efficiency. The tests were done
on a normal simulation with 20 000 users, 1000 drivers and with a pool time win-
dow size of 5 minutes. The results were measured using the time python package,
on a machine with 3.1GHz Intel Core i7 processor with 16 GB 1867 MHz DDR3
RAM. We report the average time needed to process a pool and a maximum and
minimum time across all processed pools. The instance where longitudinal sorting
is turned on includes the time it needs to sort the pool.

Longitudinal Sorting Average Time Max. Time Min. Time
No 8.21s 26.77s 0.16s
Yes 3.29s 24.91s 0.47s

Table 5.5: Comparison of pool computational efficiency with and without the longitu-
dinal sorting optimization

As can be seen in the Table 5.5, the version with longitudinal sorting outperforms the
naive one. A slice from the algorithm’s execution is on the Figure 3.5, where we can
see instances of pools considering very few passengers, thus being able to break from
the loop after looking at just 1-2% of nearest passengers. Another notable difference
can be seen in the higher minimum time when longitudinal sorting is enabled, which
is most likely caused by the sorting of the pool, since it takes actually more time to
sort it than to process it. Overall, we have not improved the general complexity,
which is still n2, however we have introduced significant computational efficiency
savings.
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5.3 Gravitational Points

The Gravitational Points are concerned with a different scheduling problem than the
ones we have already observed in the previous sections of Evaluation. We are trying
to move the drivers to locations which will bring more value, later in time. Gravi-
tational Points are completely disjoint from approaches such as IH or AGD as they
don’t create passenger driver pairings, they schedule solely drivers and they com-
plement IH, AGD or any of the previously used scheduling techniques. Therefore,
we need to pick an algorithm (or several algorithms) which we will use as a basis.
The evaluation will then be performed by comparing the algorithm with and with-
out spawning gravitational points. As this optimization does not interfere with the
core scheduling process, it should not make a significant difference when picking
what algorithm should be used as a basis for the gravitational points testing, it is
applicable to all approaches. As a result, we can use the simplest NVD and observe
how does Approach 1 and Approach 2 from Section 3.3 affect it’s decisions. At first,
we evaluate both approaches separately, as one is statistically based and the other
is machine learning based, and we would like to explore different features of each.
Then, we will evaluate an example where we compare Approach 1 against Approach
2 and observe what are the strengths and weaknesses of each.

In the previous sections, we have evaluated the algorithms in 24 hour long time
windows. As some of the days from the data set had less than 20 000 or 40 000 pas-
sengers arriving in a day, we had to normalize several days into a single instance of
single 24 hours. Now, we will not need to worry about this, we simply let the num-
ber of passengers determine how many days of scheduling we need. The change is
required because of how we process the data set which we feed into the machine
learning part of the scheduler. As was mentioned in Section 3.3.2, we create a total
of 4392 training/validation/testing examples, one for each hour of the data set. The
relation is violated if we squeeze several days into one. This would result in a large
data inconsistency which affects the model used to predict the future demand, as
it would suddenly see data with completely different patterns as it was trained on.
Therefore, we will also not be able to simulate a high density of requests, just the
density which the data set offers.

In section 3.3.2 we described one of the hyper-parameters of the LSTM network, the
look back, which represents the amount of time the network looks back in order to
predict the next time window demand. We have set it to 32, which means that we
will need at least 32 hours of previous scheduling data in order to be able to feed
it to the network. Intuitively, this means that we need to be simulating at least 33
hours, preferably more, in order to evaluate the Approach 2. We will actually set the
number of passengers to 50 000, an equivalent of approx. 4 days of simulation, in
order to observe the behaviour of both approaches.
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5.3.1 Approach 1

D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
NVD NVD (GP)

18900 10763
2422 1665
2237 1559
1923 1368
1606 1121
1355 903
913 596

Avg. Waiting Time
NVD NVD (GP)
528 479
183 176
160 157
123 119
90 89
65 63
47 46

Distance Travelled
NVD NVD (GP)

344.60 470.30
420.47 499.16
417.13 492.38
411.58 479.07
407.19 466.55
404.36 455.37
407.97 445.82

Table 5.6: Gravitational Points : Evaluation of measured metrics under Approach 1

The results have shown a performance increase for every measured ratio. This was
an expected outcome, however it would be very hard to predict how big percentage
gains does spawning of gravitational points produce. In terms of the passengers lost,
it can be observed that the NVD (GP) performs roughly 28-43% better than a classic
NVD, depending on the situation. On a smaller scale, we can also see improvements
of the average waiting time, approximately by 1-9%. The reasoning is simple, since
we are able to a certain degree tell where the next passengers will show, we can move
subsets of our fleet there which in turn improves these two metrics. However, moving
the fleet comes at a cost, the travelled distance, which performed worse on the part
of NVD (GP). Part of the increased distance travelled can be accounted to picking
up more passengers, but it is certain that a large portion was contributed by drivers
moving to the gravitational points. This behaviour can be shown by calculating the
distance per picked up passenger, which can be obtained directly from the provided
data. In ratio 0.01, we can see that NVD travels 11.08km per passenger and NVD
(GP) travels 11.99km, precisely 0.91km more, which is 8.2% more.

Figure 5.6: Number of spawned Gravitational Points for different ratios in Approach 1
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If we go into more detail, the largest impact of NVD (GP) can be seen in the first
test, which might at first sound counter-intuitive. We would expect the NVD (GP)
to perform worse on lower ratios since the drivers would be driving to the gravi-
tational points instead of picking up customers. We can afford such behaviour in
the higher ratios where we have enough drivers to cover the demand and drive to
gravitational points. However, we must not forget that we dispatch only free drivers
to the gravitational points. In the lowest ratio, most of the drivers are busy because
of the driver’s shortage and therefore only a small amount of drivers move towards
gravitational points every time they are spawned. In order to confirm this assump-
tion, we can again observe the distance travelled per picked up passenger. As we
have already calculated, the NVD (GP) at 0.01 ratio sees an 8.2% increase, when
compared to NVD. Comparing again NVD (GP) to NVD at the 0.05 ratio, we can see
a 16.85% increase in the distance travelled per picked up passenger, which means
that the drivers at the 0.01 ratio travel more than two times less to gravitational
points while still being highly effective. The ability to position the already limited
number of drivers smartly introduces a significant decrease in both passengers lost
and average waiting time metrics.

A larger number of drivers in the fleet manager results in a higher chance that an
area already has a sufficient number of drivers present. As a result, we observe lower
percentage differences between NVD and NVD (GP) as we increase the ratio. This
trend is also confirmed by the decreasing number of spawned Gravitational Points
on Figure 5.6. While in general we can expect that more spawned points mean a
higher performance (because they are always spawned for a reason), we can see
one outlier at the ratio 0.05. The reason why the percentage gain in terms of the
measured metrics is lower is simply the fact that a spawned gravitational point is
clearly more valuable to a constrained system than to a relaxed one.

Figure 5.7: Heatmap of a subset of spawned Gravitational Points in Approach 1. The
legend displays the number of times a point was spawned at a tile. This is a run with 50
000 passengers and 5000 drivers.
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Figure 5.7 was generated at the end of one of the evaluation runs and we can use
it to observe what are some typical gravitational points in a part of our scheduling
area. There are 2 major areas. First is the lower side of Manhattan, which is a
popular touristic and a business district thus experiencing heavy demand almost
non-stop. Secondly, with the location in the bottom right corner, there is the John F.
Kennedy International Airport, also operating non-stop and being the starting point
of a large subset of the passengers list. Besides that, we see more subtle, but still
significant spawned points throughout the residential areas such as Brooklyn, with
a larger concentration closer to Manhattan. The points are spawned according to
a user defined cost function, as described in Section 3.3, therefore this heatmap
represents just a single instance out of a wide range of possibilities (to be exact, this
heatmap was constructed by the cost function being the number of lost passengers),
but it can be still seen that the spawned points follow locations with high passenger
density.
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5.3.2 Approach 2

First, we will discuss the evaluation of the underlying machine learning problem.
Since we are using tens of models, or more exactly 47, we need to measure the
performance in terms of Aggregated Root Mean Squared Error (ARMSE), as was
described in Section 3.3.2 of the Implementation. On this data set, the 47 tiles have
an average of 17.90 passengers incoming per hour. We will be using this metric for
comparison with the network’s predicted values.

Every tile’s data was split to a training, validation and testing instance (in ratio
8:1:1) and we will be reporting the RMSE or ARMSE based on their performance
on the testing subset. The table below displays the results, with ARMSE being an
average taken from all tiles and RMSE representing just one tile (in this case one
with the smallest and one with the largest error). The units of RMSE (or ARMSE)
are the same as those in the model’s input, therefore they are free to interpret as ’the
prediction missed on average by x passengers’.

Metric Value
Avg. Number of Passengers Per Hour (across all tiles) 17.90
ARMSE 2.91
Min. RMSE 1.83
Max. RMSE 4.29

Table 5.7: Evaluation of measured metrics on the trained models per every tile

The ARMSE shows that every prediction is on average off by 2.91 passengers from
the reality. Taking into account the average number of passengers per hour, we can
expect a 16% deviation from a predicted value. If we take the average prediction
error of Approach 1 for the same subset of tiles, we get an average miss of 6.22
passengers. This expressed in percentage is a 35% deviation per every predicted
value, therefore a 16% error is certainly an improvement. Further, the min and max
RMSE show us that there was a tile where we missed only by 1.83 passengers, or
inversely missed by more than 4 passengers. These higher and lower numbers are
simply caused by the different characteristics of the tiles. Tiles experience different
passengers loads and the predictions can have values ranging from 0 to more than
300. Therefore the higher RMSEs belong to tiles which predict on average larger
values since they are prone to generate larger errors. The same applies to the lower
RMSEs.

Now we can now evaluate the effects of applying machine learning powered predic-
tion to the spawning of Gravitational Points.
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D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
NVD NVD (GP)

18900 10742
2422 1648
2237 1533
1923 1334
1606 1066
1355 845
913 559

Avg. Waiting Time
NVD NVD (GP)
528 479
183 176
160 157
123 118
90 88
65 63
47 45

Distance Travelled
NVD NVD (GP)

344.60 468.03
420.47 497.75
417.13 490.79
411.58 478.77
407.19 465.66
404.36 456.07
407.96 448.28

Table 5.8: Gravitational Points : Evaluation of measured metrics under Approach 2

The results shown in Table 5.8 are very similar to the ones observed in previous Sec-
tion 5.3.1. This is understandable, as Approach 2 builds on top of the first one. We
also need to remember that Approach 2 can only be executed after the first 32 hours
have been schedules and data was collected (because we have set the look back pa-
rameter to 32) and during that time, Approach 2 falls back to being Approach 1.
The general effects, such as less passengers lost or more distance travelled on the
side of NVD (GP) has already been reasoned about in the previous section and it
applies also here, because of Approach 2 working in a similar manner as the Ap-
proach 2. Therefore, we will continue by describing the differences between these
two approach in the next section.

5.3.3 Comparison

The results from Approach 1 are under the columns marked NVD (GP). Results from
Approach 2 are under NVD (GP-ML).

D/P Ratio

0.01
0.05
0.1
0.2
0.3
0.4
0.5

Passengers Lost
NVD (GP) NVD (GP-ML)

10763 10742
1665 1648
1559 1533
1368 1334
1121 1066
903 845
596 559

Avg. Waiting Time
NVD (GP) NVD (GP-ML)

479 479
176 176
157 157
119 118
89 88
63 63
46 45

Distance Travelled
NVD (GP) NVD (GP-ML)

470.30 468.03
499.16 497.75
492.38 490.79
479.07 478.77
466.55 465.66
455.37 456.07
445.82 448.28

Table 5.9: Gravitational Points : Comparison of Approach 1 and Approach 2

In all of the measured metrics, the NVD (GP-ML) performs better than the NVD
(GP). The most interesting feature is that the gravitational points in the evaluation
of Approach 1 and Approach 2 improved the passengers lost metric at the cost of
distance travelled, because the drivers had to drive extra to these points. Now,
we actually don’t see this behaviour. We observe fewer lost passengers and at the
same time, less distance travelled. The reason for this is intuitive, NVD (GP-ML)
has only a 16% prediction error, while the NVD (GP) has a 35% error (discussed in
previous section). As a result, the NVD (GP-ML) makes more accurate and calculated
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predictions, resulting in less gravitational points, which are more effective. The
assumption is also confirmed if we look at the Figure 5.8. The NVD (GP-ML) achieves
better results with fewer gravitational points spawned. It should be also noted that
both NVD (GP) and NVD (GP-ML) algorithms don’t only decide where a point is
spawned, but they also propose the number of drivers which should move to the
location, which ultimately gives them more control over the fleet manager.

Figure 5.8: Heatmap of a subset of spawned Gravitational Points in Approach 1. The
legend displays the number of times a point was spawned at a tile. This is a run with 50
000 passengers and 5000 drivers.

Even though we have demonstrated better performance in the NVD (GP-ML), the
resulting numbers are many times only marginally better. This is because an error
of 16% still introduces a significant noise to the predictions. Now, the machine
learning problem is an instance of univariate analysis where we are predicting the
future demand based simply on the levels of demand 32 hours before. However, if
we would transform the problem to a multivariate analysis, we would be able to infer
much more about the demand. Including information such as humidity, wind speed
or traffic conditions significantly affect people’s decisions on whether to take a taxi
or not. Unfortunately, this project lacks the data to perform the extended analysis,
but it is certainly an extension which is expected to introduce improvements to the
existing model of gravitational points.
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5.4 Challenges

Besides the challenges I have encountered during the implementation of the ap-
proaches, there were two other, tied more to the evaluation.

• Making sense of the results once a simulation was complete (more importantly
when the results deviated from what was expected).

• Defining an approach which can be used to evaluate all of the implemented
algorithms uniformly.

The first challenge was mainly tackled thanks to the Visualizer, described in Section
4.1, an application which helped me to visualize the execution of the fleet manager
and observe it’s decisions on smaller instances. However, even then the results were
sometimes hard to grasp, after which I have generated graphs to help me under-
stand the evolution of metrics throughout the simulation. The graph generation was
performed using a Python package Matplotlib [50].

The second challenge is related to how the algorithms concerning the Vehicle Rout-
ing Problem (VRP) are evaluated. If we look at the current research, we would
observe that the algorithm’s performances are benchmarked on two standartised
sets of problems. The first one is the Solomon’s problem set [51] and the Gehring &
Homberger’s extended benchmark set [52]. The problem with both of these sets is
that they have been created in order to estimate the performance of a Vehicle Rout-
ing Problem with Time Windows (VRPTW) and the passengers in the sets range from
25 up to a maximum of 1000 passengers, while the drivers are usually spawned in
number of tens. Our on-demand fleet manager works on a much larger scale and
it is a modified instance of a Dynamic Vehicle Routing Problem with Time Windows
(DVRPTW). We need to test the system during several days of simulation with tens
of thousands of passengers and drivers.

As a solution, we have used an approach tied more specifically to our problem [49]
[53] which is based on the ratio of drivers and passengers further described at the
start of Chapter 5. We also leverage the fact that we have access to the Uber’s data
set and we don’t need to generate random passengers requests throughout the area,
which wouldn’t allow us to implement algorithms such as the spawning of gravi-
tational points, as they need a certain pattern to follow. The is also an option to
perform this inversely, to fix the number of drivers are vary the number of passen-
gers, but it is not expected to perform with much difference.
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Chapter 6

Conclusion and future work

This chapter aims to give a concise summary of the work done in this project, along-
side with possible future improvements or work which can be done to extend the
content of the project.

6.1 Conclusion and Contributions

• Implementation of the NVD and IH algorithms, which tackle the problem of
scheduling an exclusive taxi. Further reasoning about possible optimizations
of IH and their subsequent implementation.

• Implementation of the AGD algorithm and it’s optimizations used for schedul-
ing of shared taxis, according to the Lyft Engineering [13].

• Design and implementation of a non-standard scheduling approach in form
of Gravitational Points. The project proposes 2 different ways of spawning
the gravitational points and dispatching drivers to them, each demonstrating
significant improvements in the measured metrics.

• Creation of The Simulator framework used to simulate an execution of a fleet
manager and The Visualizer for visualizing the decisions made by the fleet
manager.

• Comparison and throughout analysis of all of the above mentioned approaches,
evaluated on a real world data set under different conditions controlled by the
driver to passenger ratio.

6.2 Future Work

This section is divided into two parts, first one describing the plans which can be
implemented by directly extending the work I have done. The second part includes
more ambitious and complex proposals which still overlap with the topic discussed
in the project, but would require more time to complete.
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6.2.1 Immediate Extensions

• Multivariate analysis in Approach 2 - First mentioned in Section 5.3.3, the
performance of Approach 2 can be improved by enriching the data we provide
to our LSTM networks. We have measured a prediction error of 16% under an
instance of a univariate analysis. The prediction error is expected to decrease if
we would pose the machine learning problem as a multivariate analysis, as we
would be able to include additional information along with the time series data
of the demand, such as the wind speed, humidity or information regarding the
traffic situation.

• Events Prediction in Approach 2 - When we are spawning gravitational points
and we use the neural networks to predict the demand in the next time window
we always act to some kind of a linear pattern seen in the past. However,
there are millions of events (such as concerts, conferences, exhibitions or many
more) going on every day. It is expected to see a larger passenger demand at
the start and end of these events, which in turn introduces an unexpected
element to our predictions. Usually, the exact location and time of these events
can be known beforehand, and we can even estimate the size of passenger
influx which such an event would produce. The next step would be to extend
our system with a part which can find out about such events in a scheduled
area and alter the predicted demand according to the size, time and location
of the event.

• Add Non-deterministic Elements - It would be interesting to see how non-
deterministic elements such as a driver or user rejecting the scheduled match or
driver logging out at the end of a shift affects the performance of the proposed
implementations.

• Area Clustering - As described in Section 2.4.3, the fleet manager does not
operate on a global scale as this would cause extremely high processing and
memory demands. It rather works on a basis of larger cities or areas. The Area
Clustering extension would explore what are the demographic aspects which
determine what shapes and sizes of an area are most optimal for deploying a
fleet manager.

6.2.2 Further Extensions

• Gravitational Points for Users - We are already spawning gravitational points
for drivers, why not use the same approach to suggest the users a nearby loca-
tion where they can move in exchange for a cheaper ride? This way, we would
be able to aggregate users to common locations which would help us schedule
and predict the demand even more effectively. We would need an ’auctioneer-
ing’ system because also want to determine what are good conditions of giving
such an offer to the user. It can also further tackle common problems such as
one way lanes, the driver might need to make an extra detour of several kilo-
meters just because the user is in the middle of a one way lane, however if we
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6.2. FUTURE WORK

would be able to ’nudge’ the user to the end of the lane we would introduce a
benefit to both parties.

• On-demand food delivery - Food delivery shares many common traits with an
on-demand ride transportation network. The main difference is that we would
be solving a different VRP problem, as we would have many restaurants scat-
tered throughout an area where the driver needs to stop first before arriving to
the ’passenger’. Also, since the requests first arrive to a restaurant where they
need to cook the food, we are also given a larger time window to plan.
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