Imperial College
London

MENG INDIVIDUAL PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Learning end-to-end robotic
manipulation of deformable objects

Supervisor:
Andrew Davidson

Author: Second Marker:
Jan Matas Edward Johns

PHD Superuvisor:
Stephen James

June 17, 2018

Abstract

Manipulation of rigid objects has been consistently researched in the last couple
of decades which resulted in multiple end-to-end learning algorithms capable of in-
ferring the joint velocities directly from RGB observations. However, to the best
of our knowledge, no one has tried to learn end-to-end visuomotor policy for ma-
nipulating deformable objects and transfer it directly to the real world. We have
used a combination of state-of-the-art deep RL algorithms to address the problem
of manipulating cloth, and we evaluate our approach on three tasks - folding a towel
up to a mark, folding a piece of cloth diagonally and draping a face towel over a
hanger. Training of the agent was seeded with a small number of demonstrations
collected in a simulator and executed entirely in the simulation with strong domain
randomisation. We then show a successful transfer of the learned policy to the real
robot, without ever seeing any real-world data.

Acknowledgements

I would like to thank:

Andrew Davidson for his invaluable advice and encouragement with regards
to all aspects of this project.

Stephen James for his expertise in the field of RL for robotics and his will-
ingness to share it, for giving me invaluable advice when I got stuck and for
being always there for discussion of any problems I have encountered.

Edward Johns for his help with redacting the final CoRL publication and
many discussions of the project progress.

Every member of Dyson lab for warmly welcoming me in their workspace
and sharing the compute resources without which this project would not be
possible.

My mother, Sona and my girlfriend, Marina for their love and support.

Contents

Introduction
1.1 Objectives
1.2 Challenges
1.3 Contributions Lo
1.4 Publication
1.5 Report Layout
Preliminaries
2.1 Artificial Neural networks oL
2. 1.1 Summary
2.2 Reinforcement Learning L oL
2.2.1 Introduction to Reinforcement Learning
222 Q-Learning
2.2.3 SUmMmary
Background
3.1 Manipulating Deformable Linear Objects
3.2 Manipulating Cloth 0o
321 Grasping
3.2.2 Brining the cloth to known configuration
3.2.3 Cloth Folding,
3.2.4 Cloth flattening L
3.3 Machine learning approaches to manipulation tasks
3.3.1 Supervised learning
3.3.2 Large scale self-supervision
3.3.3 Learning in simulation
3.3.4 Summary ...
3.4 Deep Reinforcement Learning,
3.4.1 DQN . .o
342 DDPG
3.4.3 Other algorithms
344 Summary
3.5 SUMMArY

11
11
13
13
13
15
16

4 Simulator and learning environments 34

4.1 Simulation approaches investigated in depth 34
4.1.1 V-Rep 35
4.1.2 Blender 36
4.1.3 Bullet physics L 38
4.1.4 Summary 39

4.2 Work with Pybullet00 39
4.2.1 Library overview 39
4.2.2 Original status of softbody support 42
4.2.3 Contributionso o 42

4.3 Environmentso 47
4.3.1 2D environments 48
4.3.2 3D rigid object environments 50
4.3.3 3D cloth environments 53
4.3.4 On the resourcefulness of agents in presence of ill defined rewards 56
4.3.5 SUmMMAary 57

5 Reinforcement learning 59

5.1 Research tools 59
5.1.1 Programming languages and tools 59
5.1.2 Important automations L. 60
5.1.3 Learning hardware 61
5.1.4 Deep learning libraries 62
5.1.5 Summary 62

5.2 First Experiments oo 62
52.1 DDPG-Keras 62
522 DQN . . . 64
5.2.3 Other experiments L. 65

5.3 DDPG and implemented improvements 66
5.3.1 Basic DDPG implementation 67
5.3.2 Asymmetric actor-critico 68
5.3.3 N-stepreturns., 69
5.3.4 Prioritized replay buffer 0000 69
5.3.5 Demonstrations Lo 71
5.3.6 Distributed DDPG 75
5.3.7 Auxiliary predictionso oL 76
5.3.8 Combining low-dimensional and pixel actor input 76
5.3.9 Twincritico L 7

5.4 Summary 78

6 Transferring policies learned in simulation to the real world 79

6.1 Domain randomisation in simulation 79

6.2 Real world setup 81

6.3 Transfer challenges 83

6.4 Summary 84

7 Evaluation 85

7.1 Simulator work 85
7.1.1 Deformable object simulation quality 85
7.1.2 Simulation stability o000 87
7.1.3 Simulation performance 87
714 Summary 88

7.2 Learning in simulated environments 88
7.2.1 On the variance in results 88
7.2.2 Success rates in a simulation of baseline runs 89
723 Plotanalysis. oo 91

7.3 Ablation studies in simulation 91
7.3.1 N-stepreturns 92
7.3.2 Twin critic 93
7.3.3 Reset to demonstration 93
7.3.4 Number of provided demonstrations 94
7.3.5 No auxiliary predictions 95
7.3.6 Prioritized demonstration sampling 96
7.3.7 Pre-training L L L oo 96
7.3.8 Low Dimensional state in the actor 97

7.4 Real world experiments L 98
7.4.1 Failuremodes 99

7.5 Summary and Comparison with other work 99

8 Conclusion and Future work 101

8.1 Future work 102
8.1.1 Deformable object simulation and environments 102
8.1.2 Learning in simulation 103
8.1.3 Domain transfer L. 103

Chapter 1

Introduction

The majority of state-of-the-art work in robotic manipulation focuses on working
with rigid objects that either do not deform when they are grasped or have negli-
gible deformation. However, deformable object manipulation has many important
real-world applications. Key domains of interest are home assistance robotics (cloth
folding [1], bed making [2|, getting dressed [3, 4]); medicine (robot surgery [5], su-
turing [6]); and industry (cable insertion [7]). Robots attempting to work with
these objects are however presented with many new challenges, most notably the
large configuration space the object can be in, the difficulty of accurate modelling of
object behaviour, and the large change in the configuration resulting from manipu-
lation attempts. All these factors contribute to the difficulty of deformable object
manipulation. The conventional approach to manipulate an object in robotics would
consist of a series of small tasks [8]. For example, consider a robot that is supposed
to put a cube into a basket. It would find the cube; decide where to grasp it; plan
the path to reach grasp point; grasp the cube and verify grasp success; locate the
basket and plan the trajectory to reach above it and only then it would execute
the trajectory and finally release the cube. Each task is programmed separately,
often using very error-prone open-loop approach. Moreover, the errors propagate
from one step to another (e.g. inadequate grasp point results in poor or unsuccessful
grasp). This problem becomes even more pronounced when dealing with deformable
objects. Even very small inaccuracy of robot movement can cause the object to de-
form in an unpredictable way, so the robot needs some servoing method to adapt to
changes happening during the manipulation. It is, therefore, necessary to look for
different approaches if we want to enable the robots to handle deformable objects
confidently.

Instead of using this pipeline of steps, new research suggests using machine learn-
ing to teach the robot how to perform actions based purely on raw sensor data, such
as camera images or joint angles. This technique is particularly interesting as it
would allow the next generation of robots to learn to accomplish new full tasks di-
rectly without hand-engineering steps to perform each sub-action. In other words,
the robot would be able to look at the data from sensors, such as RGB camera
images and directly infer the motor velocities using a single, task agnostic learning
algorithm.

One specific branch of machine learning applicable to the task of robotic ma-

nipulation is Deep Reinforcement learning. RL, in general, builds on behavioural
psychology and investigates how to teach an agent to execute actions that lead
to the highest cumulative reward. In practice, this would mean that the engineer
would only need to define what is the goal of the robot (and hence when it gets the
reward) and the robot would learn how to achieve it by itself. This is a massive
decrease in the workload compared to a conventional approach where the engineers
need to design and implement each subtask necessary to achieve the goal. Moreover,
a robot learning to achieve the task is likely to make mistakes, so it needs to learn
how to recover from them. In contrast, the conventional robot would either need to
be hard-coded to cope with each possible mistake it can make, or it would fail to
accomplish the goal. Deep RL uses deep neural networks to learn the right robot
policies, and it has found applications in many other robotic domains, including
rigid object manipulation [9, 10|, UAV control [11] or bipedal robot control [12].

Unfortunately, Deep RL is known to be extremely sample inefficient - it requires
vast amounts of training data to achieve good performance. While it is possible to
collect the real-world data using robot farms, it is extremely time consuming and
prohibitively expensive for most research teams. An alternative is to train robots in
simulation, where one can cheaply create thousands of manipulators executing tasks
in parallel. Moreover, optimised simulation runs significantly faster than a real-time
robot, which further speeds up the learning process.

However, it has been shown that transferring the models learned in simulation
to the real world (crossing the reality gap) is sometimes challenging and the robots
perform poorly when they need to act in an unseen domain. There are, however,
multiple emerging techniques to cope with the challenges imposed by domain trans-
fer, and recent state-of-the-art research shows that it is possible to train the robot
exclusively in simulation and apply the trained policy in real-world without further
training. [13, 14, 15]

We hypothesise that applying deep reinforcement learning on deformable object
manipulation can result in a system which is:

e robust to the new challenges arising from object deformation
e not dependent on task-specific engineering

e trained without the use of real hardware in simulation and usable in the real
world

This work combines the state-of-the-art research in three different related do-
mains: deformable object simulation, deep reinforcement learning and transferring
trained machine learning models over the reality gap. To the best of our knowl-
edge, this is the first time Deep RL is applied to the task of deformable object
manipulation with a sim-to-real transfer.

1.1 Objectives

Our goal was to investigate whether it is possible to use deep RL to learn to manip-
ulate deformable objects in end-to-end fashion (from RGB images to robot control

6

signal). As we mentioned in the previous section, the task we want to achieve com-
bines the work in 3 different domains, and we can set the objectives accordingly:

1. Simulation

e Research available physics engines and select a simulator which has ade-
quate support for robotic simulation as well as deformable object simu-
lation.

e [f necessary, build upon the simulator to introduce new necessary features
and improve the stability /believability of the simulation.

e Define a set of manipulation tasks that can be reasonably attempted by
the robot both in simulation and in the real world. Take inspiration from
existing literature on deformable object manipulation.

e Incorporate the deformable object simulation into well-defined simulated
environments where the robot can learn to accomplish various manipula-
tion tasks.

2. Deep Reinforcement learning
e Research and evaluate various Deep Reinforcement Learning algorithms

and choose the best candidate for the project.

e Research literature and implement the latest extensions to the algorithm,
so it learns to accomplish the manipulation tasks in the simulation.

e Evaluate the final model through an extensive set of ablations to under-
stand the behaviour of specific features and inform further research in
the domain.

3. Domain transfer
e Implement domain randomisation [14, 13, 16] in the simulation and train

new models robust to domain changes.

e Implement the "transfer environment" that allows the model to control
real robotic arm seamlessly.

e Evaluate the transfer on the manipulation tasks in the real world.

1.2 Challenges

Overall, the project was challenging because it was dealing with state-of-the-art
research and hence it entailed many concepts that are yet to be fully understood.
Moreover, it ventured into initially unexpected areas such as: debugging huge code-
bases, OpenGL rendering or Python language internals. The most significant chal-
lenges we had to deal with were:

1. No stable and supported soft body simulator - even though we have
found a simulator which supports deformable objects [17], the source code

7

maintainers warned us on many occasions that the functionality is experi-
mental and not yet supported. We had to implement various new features
including object rendering or anchoring, extend and debug Python extension
code, hunt down memory leaks and solve intermittent segmentation faults in
a massive codebase.

. No standard benchmark tasks for deformable object manipulation -
at the time of writing, there were no standard tasks or environments where
the researchers can test their algorithms for deformable objects manipulation.
We had to do extensive research to find a set of feasible tasks and implement
own environments to evaluate the agent.

. Large variance of results - Deep RL is notorious for producing hardly
reproducible results because the environments are stochastic, the algorithms
are stochastic, and the execution heavily depends on the element of luck - does
the robot randomly discover the rewarded behaviour? We often had problems
understanding what caused a performance decrease between two subsequent
training runs. Was it a code change we did, a hyper-parameter we changed or
pure luck?

. Immense training times - Deep RL algorithms take very long time to yield
representative results (at least 24 hours for experiments learning from RGB
pictures, sometimes even more). This makes the iteration extremely slow, and
it makes it hard to prioritise which experiments are worth the time spent ex-
ecuting them. Moreover, there is also a problem of experiment granularity -
ideally, we would change one hyper-parameter at a time and test it with mul-
tiple random seeds to eliminate random effects. In practice, we often change
multiple things between runs to save time, but it then becomes difficult to
attribute the increase/decrease in performance to a specific change.

. Experiment failures - we have encountered various issues that sometimes
caused an experiment to end prematurely, such as machine running out of disk
space or memory, machine restarts or segmentation fault in the library. Those
issues were inconvenient and they slowed down the progress.

. Real robot - we had both software and hardware issues with the real robot.
From the hardware point of view, the gripper we used was damaged by pre-
vious experimentation, and it often caused the cloth to fall from it. We also
experimented with new gripper parts later during the project but we were
constantly worried about breaking them. The provided software SDK [18§]
was based on Python2.7 which caused some incompatibility with our code-
base and the joint controls were not working reliably (gripper commands were
sometimes unfinished or ignored). We had to do significant engineering work
to create a working infrastructure to test the policy on the real robot.

Figure 1.1: The project presents agent trained solely in simulation environments
(left) and tested in real-world (right). We evaluate the algorithm on three differ-
ent tasks: folding a large towel up to tape (top row), hanging a small towel on a
hanger(middle row) and diagonally folding a square piece of cloth (bottom row).

1.3 Contributions

After extensive research of various deformable object manipulation tasks, we have
decided to focus on cloth manipulation within this project. It would not be feasible
to research manipulation of a wide variety of deformable objects due to time con-
straints and scope of this project. However, we believe that cloth is one of the most
challenging objects to manipulate due to its strong de-formability and difficulty of
accurate simulation.

To the best of our knowledge, this work is the first ever application of sim-to-real
Deep Reinforcement learning to cloth manipulation. The main contributions can be
summarised as follows:

1. Reasonably realistic simulation of cloth grasping and manipulation
- we have extended Pybullet simulator with new features, such as strong cloth
anchors or fake grasps to achieve reasonably accurate simulation of cloth be-
haviour when interacting with a robotic arm.

2. Set of robotic environments for learning from RGB pixels - we have
created a set of environments for RL where the robot is receiving only pixel
observations. There are two simple 2D environments inspired by OpenAl gym
[19], a reimplementation of rigid object robotic manipulation environments in-
spired by OpenAl robotics gym [20] and finally, 3 new cloth manipulation
environments. The cloth manipulation environments embody 3 different
manipulation tasks for the robot - folding a face towel diagonally (Folder en-
vironment), folding a large towel up to tape (Tape environment - inspired by
[21]) and draping a towel over a small hanger (Hanger environment). The
agent can act in those environments and learn the tasks for which it is getting
a reward.

3. Learning algorithm - we have taken an implementation of DDPG [22] learn-
ing algorithm and implemented more 9 improvements presented in recent re-

search. Moreover, we sometimes further customised the implementation to
improve the results (e.g. demo priority computation).

4. Domain transfer - we implement domain randomisation to aid the domain
transfer, and we show that the policies trained in simulation using Deep RL
can be directly transferred to the real world.

5. Ablation studies - we perform a broad set of ablation studies where we re-
move some features of the learning algorithm. This helps us understand which
code changes we implemented are indeed useful when learning the manipula-
tion tasks.

1.4 Publication

The work presented in this report was also summarised in a paper that was submitted
to Conference on Robot Learning (CoRL) 2018. CoRL annually brings together
hundreds of best researchers working on the intersection of robotics and machine
learning.

1.5 Report Layout

Chapter 2 introduces the basic concepts in Machine Learning and Reinforcement
Learning that are relevant for the rest of the report. The following chapter focuses
mainly on the research in deformable object manipulation, and it has two aims
- firstly to summarise what different approaches have been employed before and
secondly to inform our decisions when designing the set of tasks we are going to
use for testing our algorithm. The final parts of this chapter also introduce the
fundamental algorithms used in Deep RL.

The core part of the report starts with Chapter 4, where we describe our contri-
butions towards the Pybullet simulator and also the design process of the new RL
environments. Afterwards, in Chapter 5, we evaluate a selection of learning algo-
rithms to choose the best one for this project and follow-up with description and
implementation of state-of-the-art improvements to the selected candidate. This ul-
timately allows us to train successful policies in the simulation. Chapter 6 discusses
how we achieved the transfer of the trained policies into the real world. In Chapter
7, we critically evaluate our work on simulation, test the learning algorithm and
assess the quality of domain transfer. Finally, in Chapter 8, we summarise the work
we have done to achieve our results, and we follow up with a couple of suggestions
for future work.

10

Chapter 2

Preliminaries

This chapter aims to introduce the fundamentals of Machine Learning and Rein-
forcement learning which will be relevant throughout the project.

2.1 Artificial Neural networks

Artificial neural networks (ANNs) are biologically inspired computational models
capable of solving many complex tasks by observing a significant amount of example
data. They are build up from simple units, called neurons, that are interconnected to
form a directed graph. Each neuron continuously reads values from its inputs which
might be either the outputs of the previous neurons or they might be the inputs
to the network as a whole. The inputs have a weight assigned to them. Therefore,
some inputs are very significant, and some are almost ignored. After reading the
inputs, the neuron computes their weighted sum and applies an activation function
that further transforms the output which is then either read by another neuron or
the network outputs it.
We could divide all neural networks to two categories:

e Feed-forward networks - these networks form an acyclic graph, so a neu-
rons output does not influence any of its inputs. The network is sending the
information forward. Feed-forward networks are used nowadays in deep ar-
chitectures, where the neurons are arranged in multiple layers to approximate
extremely complex functions.

e Recurrent networks - these networks contain loops, so the output of one
neuron can become the input of another. Networks of this kind are much
more challenging to train, but they are better suited to represent temporal
dependencies. We did not find it necessary to employ them in this work.

Training feed-forward networks is accomplished via backpropagation. The net-
work is trying to approximate some function f such that f(x) = y where z is the
vector of inputs and y is the vector of desired outputs. In the ideal scenario, the
network output (as read from the output neurons) y would be equal to y, but this is
hard to achieve. We assign some cost function to measure the dissimilarity between
y and y, and we attempt to minimise it by changing the weights. If we shift any

11

weight in the network a tiny bit to one direction, it could either increase and de-
crease the cost. We exploit this property to adjust the weights to the right directions
by differentiating the cost function with respect to each weight and adjusting it by
some negative multiple of the gradient. This algorithm is called gradient descent.
Moreover, differentiation does not become harder as we move backwards through
the network, because gradient with respect to weights of input at each node depends
only on the output of that node.

Gradient descent can be implemented in multiple ways. The classic approach
would be to average the gradient with respect to each weight over all available exam-
ples (this is also called batch gradient descend). Although this approach arrives at
a correct result, it is very time consuming, offers only very slow convergence and be-
cause of its deterministic nature, it is likely to fall into local minima. An alternative
is to use stochastic gradient descent, where we always present the backpropagation
algorithm with only a single example at a time. Even though the updates might
oscillate, on average they will tend to the right direction. A combination of the two
methods is called mini-batch gradient descent, where we use a small subset of all
examples at each training step. Increasing the subset size might cause convergence
in fewer timesteps, as it prevents the oscillations caused by single updates but on the
other hand, it makes the descend more likely to get stuck in local minima. It turns
out that mini-batch size is one of the hyper-parameters that need to be optimised
for each task.

A widely used neural network architecture is a convolutional neural network
(CNN). This architecture has been applied to a large number of vision tasks with
large successes compared to the previous state-of-art. Krizhevsky et al. [23] used a
CNN to classify 1.2 million images into more than 1000 categories with considerably
better error rate than any previous state-of-art solution.

e R g
=
0
ho
o surst } P
Lo
A o ~o
° No
° No Paog
o o
o o
o \e et J> o
. . o o
convolution + max pooling vec | o \3
nonlinearity | °
convolution + pooling layers fully connected layers ~ Nx binary classification

Figure 2.1: Illustration of CNN architecture. [24]

CNNs can consider spatial correspondences between pixels naturally. Similarly
to feed-forward neural network, CNNs are composed of multiple layers forming a
deep structure. However, it is not the case that each neuron on the first layer would
be connected to each neuron in the second layer, as this would be computationally
very expensive (e.g. a 100x100 image with a second layer of size 10x10 would require
1 million weights). Instead, only a small spatially-localised number of neurons in
the first layer (they are together called a "receptive field") is connected to a single

12

neuron in the second layer. The receptive fields of hidden neurons overlap so that
each input pixel might be an input to multiple hidden neurons. The weights of the
receptive fields are the same across all hidden neurons, and we call them a kernel.
A number of kernels applied at each layer is a hyper-parameter of the network, and
it decides the depth of next layer. The output of convolutional layer is often called
a feature map, because the kernels sliding over the inputs detect features in images
and if a specific neuron in output fires, we know that the corresponding feature has
been seen in the image.

The convolutional layers might be followed by pooling layers that reduce the
size of the resulting output, usually by taking the maximal output or by taking the
average. Pooling layer still saves the spatial correspondence in the feature map, as
it again only pools the outputs of collocated neurons in previous layer.

The output of a couple of alternating convolutional and pooling layers is then
fed into a fully connected layer that understands the correspondences between high-
level features recovered in feature maps and actual classes of objects. In classification
tasks, the signal from last fully connected layer passes through a softmax function
to create a probability distribution, where the output of each neuron roughly cor-
responds to the probability that an object of the specific class is present in the
picture.

2.1.1 Summary

We will extensively use both fully-connected neural networks and convolutional neu-
ral networks when building the models for our Deep RL algorithms. While fully con-
nected networks work well for low dimensional data, CNNs can be applied directly
to RGB images. We will also be combining them to create models that take both
RGB images and low-dimensional vectors to predict the agent policies. We will not
be using a straightforward gradient descent as described in this section but a more
advanced algorithm based on the same principles - Adam [25].

2.2 Reinforcement Learning

2.2.1 Introduction to Reinforcement Learning

Reinforcement learning is a machine learning paradigm derived from behavioural
psychology. At its core lives an agent, which in our case is a robotic manipulator.
The agent interacts with an environment and tries to accomplish a task. There are
another four basic concepts:

e State - at each point in time ¢, the state s describes the current situation.
It should encompass both the information about the robot (the joint angles,
the software memory, gripper status) and the environment (position of objects
around the robot, translation between the base of the robot and world frame,
configurations of the objects etc.).

e Action - action a describes the different moves the agent could take in a given
state. For example, it could move one of its joints by one degree in a clockwise

13

direction. The role of the agent is to decide what is the best action to take at
each time.

e Reward - when an agent advances to the next state as a result of the action
it performed, it receives a reward r. This reward is most often a single scalar
that can be either positive or negative.

e Observation - in most cases, the state of the environment is not fully observ-
able, and agent only receives some partial observation o. This observation can
be either low-dimensional (e.g. a 3D coordinates of the cube an object tried to
grasp) or high-dimensional (e.g. an image of a table with a cube and robot).

The agent always tries to maximise the reward it receives over its whole running
time. The runtime is possibly infinite, so if the robot could achieve some small
reward at each timestep, it could just keep stepping back and forth to accumulate
infinite expected reward. In order to guarantee convergence of expected reward, we
can introduce a discounting factor 0 < v < 1. The resulting equation for reward
becomes:

Ry = re 4+ yreet + Vrese +VPres + 7 s + 7 res.

As a result, rewards far in the future account for less than the rewards in the
next few time-steps. Moreover, as t tends to infinity, 7, tends to 0. As it is an
example of geometric series with ratio between elements 7 < 1 we know that the
sum converges.

In RL, an episode is one run of the agent interacting with the environment. It
starts in some initial (likely stochastic) state and it finishes either when the agent
accomplishes the task or when a predefined time limit expires.

It is not always the case that the result of agents action is entirely deterministic.
In most real-world scenarios, the reward for taking an action is stochastic, and we
can represent it by a probability distribution. Moreover, even the state where the
agent ends after the action is often stochastic. If this probability p(sii1, 71|58, a¢)
is independent of previous states and actions (it ignores the history), we say that the
process has Markov property and can be called Markov Decision Process (MDP).
A majority of RL algorithms assume that they are dealing with an MDP and it is,
therefore, necessary to have this property. We can achieve it by encoding all relevant
historical information into the state. For example, assume we have a robot that tries
to put a cube in a basket, so it needs to know if it has already grasped the cube.
Instead of looking at previous states, we can add another field isGrasping to the
state vector, and hence we can have the information without breaking the Markov
Property.

Reinforcement learning aims to learn the optimal policy 7 (mapping from obser-
vation to an optimal action to perform in that state) for the agent to follow. In order
to decide which policy is optimal, we need to define value functions for state V7 (s)
and for action Q7 (s,a). Those functions give us the expected cumulative reward
of following the policy from state s or of taking an action a in state s respectively.
Intuitively, the optimal policy would be the one that assigns highest value function
to initial state s (we can call this policy objective function J).

14

One way of finding optimal policy is value iteration and policy improvement. We
can initialise 7 randomly, and we then evaluate policy by computing the value V7™ (s)
of each state. Then we can improve the policy by greedily selecting the action that
brings the agent to the state with the best value (also taking into account transition
rewards). We evaluate the new policy and continue until the algorithm converges.

This approach would require us to have complete knowledge of the environment
and consider each state in a possibly enormous state-space in each iteration. An
alternative is to follow the current policy and remember the return associated with
following it fully. If a state is visited multiple times, the algorithm takes the average
of the rewards. This approach has en exploration/exploitation trade-off - if we set
the policy to always follow the route promising highest rewards, we might never
discover other even better options. One solution, called € — greedy method, is to
follow the policy in most cases, but take a random action with a small probability
¢, which will allow the agent to explore new states.

2.2.2 (Q-Learning

Instead of taking into account the rewards of full episodes, we can update our un-
derstanding of the environment after each transition. This approach is called Q-
learning. The Q-function is always updated according to

Qnew(St, ar) = (1 — a)Q(s¢, ay) + a(r + ymax,Q(si11, a))

where « is the learning rate. This function is known as the Bellman equation.
Practically, we would have a table storing current QQ estimate for each state-action
pair and we would update it whenever a transition with that particular pair is
executed.

Even tough Q-learning can perform fairly well on discrete low-dimensional state
space, using it in high dimensional or continuous state spaces would require some
discretization schema and extremely large state/action table. An alternative is to
use a function approximator to approximate the Q-value of a given state-action pair.
This approach allows the model to also predict the Q-values in states it has never
seen before (generalisation). For example, if we used a simple linear combination of
state features as function approximator for Q-value, the predicted Q-value for similar
states would be likely very similar (unless the coefficients for some features are
extremely high). However, a linear combination of the features is rarely expressive
enough to capture the true Q-value of a state and it results in poor approximation
for complex tasks. Some Deep RL methods solve this problem by using deep neural
networks to approximate the Q-function and sometimes they even approximate the
policy with deep neural network to avoid the need for searching action with maximal
Q in each state. We will look at those methods further in section 3.4.

One last thing we would like to introduce is the classification of RL algorithms.
Firstly, we can divide them into model-based and model-free. Model-based RL
algorithms attempt to learn the transition probability distribution T'(s;11|s¢, a;). In
other words, they explicitly model what is the most likely state s, that results from
execution of action a, in state s;. On the other hand, model-free do not explicitly
model the behaviour but they simply rely on experience. For example, let’s assume a

15

student wants to get home from college quickly at 5 pm and can either cycle or take
a bus. A model-based behaviour would be to plan both routes and use a previously
learned model of traffic dynamics to estimate the delays caused by congestion and
choose the faster option. The model-free system would say that at 5 pm, the buses
are always slow so the student should cycle. In general, model-based approaches do
not scale well to high-dimensional state spaces, so we will only consider model-free
algorithms.

An RL algorithm can also be off-policy and on-policy. On-policy algorithms are
learning only from the experiences generated by their current policy. In other words,
they are estimating the value of actions assuming that the current policy will be
followed. Off-policy algorithms can learn from any experiences in the environments
and it does not matter which policy generated them. The agent could even behave
randomly and still bring in valuable data. We will be mostly focusing on off-policy
algorithms because they can be easily extended with demonstrations.

2.2.3 Summary

RL is a machine learning method where an agent interacts with an environment
and tries to maximise the reward it receives over time. It is straightforward to see
how this paradigm can be applied to the manipulation tasks. For example, a robot
controlled by software agent can attempt to fold a small towel and receive a reward if
it produces an adequate fold with nicely aligned corners. We will be doing precisely
this as a part of the project.

More specifically, the agent will control a robotic arm on a table via an action
a representing the velocity of the gripper and the velocity of the fingers. It will
receive observations of the environment in the form of RGB images, gripper position
and joint angles o and the environment will also have a high-dimensional state s
containing the information about robot configuration as well as cloth configuration.
It will be receiving reward r for folding the cloth successfully. The agent will use a
deep neural network to approximate both Q-function) and policy function 7. The
exact implementation of this will be described in Chapter 5.

16

Chapter 3

Background

The following section aims to survey current research of deformable object manipu-
lation and also give a brief historical context to more recent work in the area. We will
initially focus on classic methods of manipulating deformable objects and outline
what sort of tasks have been already accomplished by the researchers. This review
should reveal what we can hope to achieve in the scope of this project. We will then
continue by looking at the literature on using machine learning to manipulate both
rigid and deformable bodies to illustrate the variety of approaches we could use.

3.1 Manipulating Deformable Linear Objects

The simplest deformable objects are one dimensional, commonly called deformable
linear objects (DLOs). Some examples of DLOs are cables, ropes or threads. Manip-
ulating them has a wide variety of applications in manufacturing (e.g. positioning
and securing cables on assembly lines), robotic assistance (tidying up rooms) or
medicine (sutures). Very early work with DLOs was done by Inaba and Inoue [26],
who created a small robotic arm coupled with a stereo camera that was able to
manipulate a piece of rope. The system did not take advantage of physical mod-
elling of the rope, but it instead relied solely on visual feedback. The robot could
accomplish simple tasks such as putting the rope through a small circular opening.
Another early work was presented by Remde et al. [27]|, who showed that grasping
of DLO can be accomplished with only 2 pixels of visual information (obtained by
light barriers). Their robotic arm assumed that a DLO is hanging from a ceiling
somewhere in front of it. It first scanned the area horizontally to locate the object
with a forward facing light barrier, and it later moved the gripper forwards until
it sensed the DLO between its fingers. The team was able to achieve 100% grasp
success rate if moderate scan speeds were used.

Saha and Isto [28] presented a dual manipulator robot that was able to tie knots
using needles. The robot employed a motion planner taking advantage of a mathe-
matical model of a DLO, as opposed to only sensing information used by previous
research. The code was initially tested in simulation environment where authors
tweaked the rope parameters to behave as it would in the real world visually. The
robot was controlled by a planning algorithm that created a probability road-map of
different configurations with a rope model determining if the configuration transition

17

(d)

(a)

Figure 3.1: Knots executed by dual-arm manipulator as described by Saha and
Itso[28].

is feasible. Hence, the roadmap essentially encoded some new rope configurations
that can be achieved from the current state as well as how to achieve them. The
researchers made sure that the roadmap formation is biased towards the goal state
(knot tied) so the system does not need to explore large portions of the large state-
space unnecessarily. After the system discovers the route on the map leading from
current state to the goal by employing only feasible transitions, it can execute the
motion. The robot was able to tie 5 simple kinds of knots (4 only using the DLO and
1 with also using a rigid object) as seen in Figure 3.1. Even after they introduced
large Gaussian errors to the physical characteristics of the rope in the model, the
robot was still able to complete the knot in a majority of the cases suggesting good
generalizability of the approach.

Most systems use two robotic manipulators to tie knots. However, Wakamatsu
et al. [29] created a system which is using only one simple robotic manipulator
(3 translational degrees of freedom (DOFs) and 1 Rotational) to tie simple knots.
Their paper introduced a topological description of configurations of DLOs, and it
then categorised all transitions between states into four basic operations. Planning
algorithm was used to create a chain of those operations to accomplish any tying
task given only the start and final configuration.

The task of discovering which sequence of moves (plan) leads to the desired
configuration can be simplified by providing a demonstration. Kahl and Henrich [30]
demonstrated a robot that was instructed in virtual reality how to accomplish a DLO
manipulation task and then it was able to repeat it. The robot did not learn exact
coordinates of the path the object should follow, but instead it only remembered
contact states (e.g. first go forwards until the object hits a specific face of an object
in front of it, then go sideways until there is no contact - find an opening, then go
forwards through opening). This approach, however, had difficulties with modelling
complex objects and handling unstable contacts. A similar method of learning
from human demonstrations was used by Hirana et al. [31] who employed special
hardware to collect observation of human performing the task of hose insertion and
then made a robotic manipulator repeat it.

All of the above research only considered the deformations in the static state.
The robots were slow enough so all vibrations of the objects died away before the
next manipulation step was considered. This approach, however, does not scale well
to industrial applications where robots need to be able to accomplish tasks quickly
to avoid creating bottlenecks in manufacturing process. Manipulating DLOs which

18

are vibrating presents a new set of issues to do with the evolution of configuration in
time. Yue and Henrich [32] proposed a robot that inserts a DLO (steel ruler) which
is vibrating quickly into a hole. The experimental setup can be seen in Figure 3.2.
The robot first samples the vibration using force/torque sensor and computes the
moment when the DLO will be in a position aligned with the hole. It then executes
the forward motion of the arm to insert the DLO into the hole at the right time.

Figure 3.2: Experimental set-up for insertion of vibrating DLO to a hole [32].

Overall, the researchers handling the problem of DLO manipulation worked on
the following set of tasks: grasping the DLO, inserting it into a hole, putting it into
a specific location, throwing it on or tying it around a fixed rigid object and tying a
knot. Manipulating a deformable object which is not resting presents some further
challenges.

Most of the researchers approached the problem by planning the motion in ad-
vance and then used either open-loop approach or simple visual servoing to execute
the motion. Some works also used demonstrations either collected in virtual reality
or with some specialised hardware.

3.2 Manipulating Cloth

Handling garments presents all of the challenges of handling deformable objects
we outlined so far: the cloth has very high dimensional configuration space which
creates a large number of possible visual appearances. It can also occlude grasping
points, making it hard to find desirable grasping locations (such as corners). After
successful grasp, any manipulation again influences the configuration of the cloth
thus making planning tasks considerably more difficult.

The easiest solution to most of the above problems is to use specialized hardware,
specific initial configuration and constrained environments. For example, Nair et al.
[33] presented an extremely simple robot that folds laundry using 4 DC motors
and specially built frame. Similarly, just introduced commercially available robot

19

FoldiMate can use specific folding hardware to fold up to 10 pieces of clothing per
minute [34]. However, we would like to focus on cloth manipulation using general
purpose robotic manipulators that can be deployed on household robotic assistants
in the future.

Early work on manipulating cloth with the general purpose robotic arm was
done by Fahantidis et al. [35]. They identified four subtasks in the domain of cloth
manipulation:

e Grasping - this is a two-phase process of grasping the cloth. The system first
needs to identify the ideal grasping position and then execute the movement
to reach it with its end effector.

e Laying - this is a task of putting the cloth to the desired configuration. In the
paper, the authors limited the desired configuration space to the cloth laying
on a table, but this can be easily extended to any configuration.

e Folding - Putting one edge of the cloth over another.
e Flattening - task of removing wrinkles from a cloth laying on a table.

The task of folding is usually implemented as a pipeline of other steps, including
initial grasping, re-grasping to arrive into the specified configuration, flattening and
final folding. We will now look at the specific research papers that made substantial
contributions to the specified subtasks and some of which also demonstrated an
end-to-end working system.

3.2.1 Grasping

The most straightforward approach to selecting the ideal grasping point to manip-
ulate a cloth is to grasp it repeatedly at different locations until a suitable configu-
ration is found. This approach usually requires a dual manipulator, as described by
Osawa et al. [36] Their robot is using two robotic arms to repeatedly grasp the low-
est hanging corner, which is determined by analysing the curvature near the lowest
point of the cloth. The corners are assumed to have high curvature as opposed to
sides of the cloth.

Figure 3.3: Final steps of the first fold - the configuration with robot grasping two
adjacent corners has been achieved by re-grasping [37].

Particularly successful implementation of this approach is presented by Maitin-
Shepard et al. [37]. The robot aims to fold a couple of previously unseen towels

20

randomly placed in a pile on the table. It first picks up one or more towels by
grasping at a central point obtained by foreground-background segmentation. Af-
terwards, a corner is localised by evaluating discontinuities on the depth image and
finding the lowest point likely to be a corner. The robot then grasps the towel with
its second arm and then releases the first arm, which also releases other towels (if
the robot initially picked up more than one towel). In the next step, the robot then
grasps the second lowest corner (to ensure holding towel by adjacent corners) by its
free gripper and straightens the towel on the edge of the table. Finally, the towel
is folded by aligning the grasped corners with free corners as shown on Figure 3.3.
Multiple re-grasps might be necessary at each step to ensure corners are held. In
case of repeated failures, the robot drops the towel and starts again. Overall, it was
able to fold the towel successfully in 100% of the trials.

More advanced method of determining the grasping point used machine learning
algorithms. Wang et al. [38] used 2D Shape features in Support Vector Machine to
determine the configuration of socks before selecting the ideal grasp location. Ramisa
et al. [39] used a bag of features algorithm, which is known to be reasonably robust
in the presence of deformations because it ignores large-scale spatial configurations
of the objects but instead focuses only on localised features. The algorithm was
trained with a dataset of images of a polo in random configurations with good
grasping points labelled by the human supervisor. During a test run, the system
first selected a couple of grasping candidates by sliding a window over the image
and evaluating the probability that well-graspable collar is in the window based on
a bag of features paired with logistic regression. Best candidates from the first layer
are then further refined by applying SVM with Gaussian Kernel.

3.2.2 Brining the cloth to known configuration

Bersch et al. [40] tried to solve the problem of bringing the cloth into a specific
configuration by repeatedly grasping as outlined previously. However, they have
decided to use fiducial markers to simplify the estimation of the grasp point. Their
method can be seen in Figure 3.4 Their robot first picks up the cloth at the highest
point in the pile and then uses the depth data along with the markers to estimate
the position of the first grasp. The robot then greedily grasps the point which it
estimates to be as close as possible to the grasping location in the desired config-
uration (holding the T-shirt by shoulders). These steps are repeated as necessary.
Each grasp candidate point is first evaluated using an SVM trained on almost 500
grasp attempts, and if the model predicts that grasp would fail, the point is rejected,
and next best point in terms of the distance to the desired configuration is selected.
From the final configuration, it was simple enough to fold the cloth using open-loop
routine.

Cusumano-Towner et al. [41] are also solving the problem of bringing the cloth to
a known configuration. Unlike the greedy approach used in the methods mentioned
above, this system can use prior information about articles of clothing to reduce the
number of grasps to reach the desired configuration. The robot first picks up an
unknown article of clothing and uses a series of re-graspings as described by Osawa
[36]. In this phase, observations are collected and Hidden Markov Model is used to

21

Al A .
(a) Robot grasping garment from (b) Robot holding the garment
a pile with fiducial marks visible

Figure 3.4: Different stages of folding as described by Bersch et al [40].

estimate the most likely grasping point as well as identify the article of clothing. The
result is then fed into planner and simulator (which is using prior knowledge about
the clothing article). The simulator then iteratively constructs a directed graph of
grasping points where an edge between two points means that starting from the first
grasping point, it is feasible in the simulation to grasp the cloth at the other point.
Obtaining the plan that results in the desired configuration becomes the shortest
path problem in this graspability graph.

A similar simulation-based approach was employed by Kita et al. [42]. They used
cloth function in Autodesk Maya [43| to simulate an article of clothing in different
configurations with different grasp points. The robot then picks up the cloth at
random location and compares the observed data with the simulation results. The
3D model which best describes the observation is selected and the information is
used to find the best grasping position for the second arm to achieve the desired
configuration.

3.2.3 Cloth Folding

As we have seen, many authors have found that after the robot grasps the cloth in
a specified configuration, it is possible to fold the cloth with an open-loop routine.
Specifically, for T-shirts, it involves grasping the garment by shoulders, rotating the
sleeves inwards and placing the t-shirt on the table by a folding motion [40]. In case
of towels, the robot uses outlined re-grasping methods to arrive at a configuration
where the towel is grasped at 2 corners and then a closed-loop routine incorporates
visual data in order to align grasped corners to free hanging corners on a table. 37|

More complex folding routines can be also implemented, usually if the robot
needs to fold many types of garment. These can be roughly divided into geometry
based and simulation-based. Berg et al. [44] pioneered geometry based approaches.

22

They described how to reliably fold a garment laying flat on the table by exploiting
gravitational pull. A geometrical approach might be inaccurate because it only
cares about the shape, not the physical properties of the garment. Yamakawa et
al. employed a simulation approach [45]. Their robot folds a piece of cloth by
rapid, smooth motion inspired by observations of human subjects. In this dynamic
approach, timings are crucial for the success of grasping. They, therefore, employed
simulation of the cloth to exactly estimate when the robotic arms should be in
different trajectory states. Their simulation is enhanced by visual feedback in later
papers.

However, most of the outlined methods are manipulating cloth using a dual
manipulator, which is not planned for this project. The body of research concerning
cloth manipulation task with a single manipulator is significantly smaller. One work
is done by Petrik et al. [46], who define a physical model to compute a path for a
robotic arm given the grasping location and the line where the garment should be
folded.

Figure 3.5: The comparison of simulation produced by Maya and real folding sce-
nario as developed by Li et al. [47|. The lines show optimized folding trajectories.

Another paper which describes folding procedure with single end effector was
written by Li et al. [48]. This research is particularly relevant for our work because
it heavily employs simulations and gives guidance on how to tune simulation param-
eters. The authors used simulation software Maya [43] in order to simulate cloth
as seen in Figure 3.5. They found that most important parameters are frictions
between the garment and the table as well as the shear resistance of the garment.
Friction can be set experimentally by lifting the garment until is starts to slide and
then adjusting friction in simulation until it starts to slide in the same configuration
(lifted corner should be elevated to the same altitude in simulation and in real world
in the moment when the cloth starts sliding). For shear, a garment should be first

23

laid flat on the table and distance between two extreme points (e.g. opposite corners
of the towel) should be measured as L;. The cloth should then be hung from one
extreme point and the distance to the other point should be measured as Ls. The
authors then adjusted the shear resistance in Maya until the fraction (L; + Lo)/ Lo
became the same in real world and in simulation. The simulation environment was
then used to iteratively optimize the paths of end effectors in order to fold the cloth.

3.2.4 Cloth flattening

Both robots with the ability to accomplish some folding tasks with only a single end
effector were assuming the initial configuration of the garment - it was laying flat
on a table. Another body of research considers the task of unfolding and flattening
the cloth with wrinkles which can be used to get the cloth to lay flat on the table.
Sun et al. [49] tackled the problem initially in a simulation environment and then
transferred the resulting code to a real-world scenario. They have decided to reduce
the infinite search space of possible force applications on a cloth to 8 possibilities
- pulling the cloth by its corners and by its edges. They then implemented an
algorithm for wrinkle detection by clustering the depth deviations as measured by a
depth camera. In each iteration, they selected the longest wrinkle and applied force
in one of the eight directions which was the most aligned with wrinkle bisector. A

Figure 3.6: Clopema robot flattening a towel with observed depth map in the middle
[49].

specific application of cloth flattening is making a bed. The robot needs to flatten
the sheets and align them over the bed to adequately cover it. A work heavily
related to this project was presented by Laskey et al. [2] The authors used a robot
with single end effector to grasp and stretch the sheet to make a bed. The robot
learns how to do this task by observing 50 human demonstrations and then using
regression to learn proper mappings from sensor data to control impulses.

Overall, we have learned that most cloth manipulation tasks can be split into
multiple subtasks. The robot initially needs to grasp an object, then apply series of
re-grasps to get it to desired grasping configuration and then apply a final manoeuvre
to get the cloth into the desired configuration (e.g. folded). All those steps can be
either navigated purely by sensors or also use simulation to aid the decision process.

24

While operating with only a single manipulator, only a limited set of tasks can be
accomplished, such as cloth grasping, cloth flattening or cloth folding starting with
the garment laid out on the table. We found the tasks outlined in this section to be
very applicable in real world but we could not attempt them due to the limitations
of our simulator (see section 7.1.1).

3.3 Machine learning approaches to manipulation
tasks

3.3.1 Supervised learning

A significant body of research has been trying to leverage deep learning in the field
of robotics. Lenz et al. [50] used 2 deep neural networks in order to select good grasp
location for both rigid and deformable objects in Cornell Grasping dataset [51] which
contains 1035 images (RGB-D) with positive and negative grasping points annotated
in a form of bounding rectangles. The team used all input modalities - colour, depth
and surface normals as inputs. Each rectangle was first rotated and scaled so left and
right edges correspond to gripper plates and it was then whitened. The first smaller
neural network was used to consider every possible rectangle (with some level of
discretization) and select top T candidates for grasping. The second network with
more features then only evaluated this subset to produce the final candidate. The
approach was proven to be successful, as it outperformed other algorithms on the
same dataset and achieved the accuracy of 93% (where the candidate rectangle was
rejected if orientation differed by more than 30 degrees or if the overlap union of
prediction and ground truth was more than 25% bigger than the intersection). The
team claims that the results can be transferred to different robots with different
grippers, given that labeled training data exists.

3.3.2 Large scale self-supervision

Robot execution

Human demonstration

Figure 3.7: Baxter using the self-learned model to imitate the action of human
supervisor [52].

25

However, creating labelled data is a challenging task, that might be very expen-
sive, tedious and error-prone for a human supervisor. This is why some researchers
explored the possibility of self-supervised robots collecting data autonomously. Nair
et al. [52] tried to develop algorithm that would allow Baxter robot to manipulate a
DLO into a set of predefined shapes ("S" shape, "W" shape and a simple knot). The
team used a deep convolutional network with the first couple of layers duplicated
into two streams. The input to those two streams is a 2D image of ropes initial
configuration and 2D image of its next configuration after executing an action. The
streams then connect in a fully connected layer which estimates the pickup location
and displacement (in terms of orientation and length) that caused the difference
between the two pictures. In the test phase, the robot uses this network to imi-
tate the action of the human supervisor as seen on Figure 3.7. It is presented with
keyframes of the human supervisor creating one of the 4 shapes. The network, fed
with the current image and next "subgoal" outputs the pick up point, the orientation
of displacement and length of displacement in order to achieve it. This research is
particularly interesting because the robot was able to collect training data by itself
- it repeatedly conducted different actions and remembered the image before and
after it. This team collected more than 500 hours of episodes with minimal human
interaction.

Other authors also investigated the possibility of self-supervision for large-scale
data collection. Pinto and Gupta collected 50k grasps and 700 hours of video to
create a grasping model based on CNN pre-trained on ImageNet network. The
CNN, predicting grasp points, only observed the scene before the grasp begun and
did not try to take advantage of continuous servoing. [53| This model showed good
level of robustness with over two thirds success rate on unseen objects. Levine et
al. [54]| used 14 robotic manipulators to collect 800k grasps over 2 months and used
the data to train similar network to the one used by Pinto and Gupta but with
continuous servoing. The closed-loop approach achieved considerably better results.
Gu et al. [9] also note that training times of deep-Q-learning systems (deep RL,
see 3.4) can be significantly reduced by using multiple robots that pool their policy
updates asynchronously.

Yet another approach to self-supervision was taken by Pinto et al. [16] They used
an adversarial strategy, where one robotic manipulator was trying to learn how to
grasp objects (both deformable and rigid) and the adversary was trying to break the
grasp. One strategy the adversary employed was taking over the control of robotic
arm holding the object and shaking it, which forced the weakly grasped object to
slip out. Another strategy was to use a second robotic arm to snatch the object by
pulling (as seen on Figure 3.8) or pushing it. The shaking adversary strategy saw 2
digit percentage improvements over a baseline initialized by self-supervised learning.
Adding the snatching adversary also saw some small improvement. A particularly
big improvement was reported for a deformable plush toy, where the original system
only succeeded in 20% of the grasps, while the system trained with adversarial data
collection succeeded in 60% of the grasps.

26

Figure 3.8: Adversary trying to pull a latex glove from the protagonist [16].

3.3.3 Learning in simulation

However, even if self-supervision is employed, it is still expensive to acquire and
operate multiple robots for prolonged periods of time. Another body of research
attempted to collect the training data instead in simulation and then transfer the
learned model to the real-world robot.

The work by Rusu et al. [55] shows how to use progressive networks to execute
this transfer. Progressive networks are a new model architecture that allows for a
simple transfer of learned model between tasks. The network is built from multiple
columns, where each column is a separate deep neural network. The model is initial-
ized with one column and trained on one task (in our case grasping in simulation)
and then the first column is frozen. After transfer, more columns are added to the
robot with lateral connections to the trained column. The new columns are then
trained on a real robot. The results show that the progressive networks outperform
classic fine tuning paradigm (the robot trained is first trained in simulation and then
the same model is trained further in real-world).

James et al. [13] were successful in fully avoiding the need for further training
using a real robot and propose a model trained only in simulation. However, their
work was only limited to rigid objects. The task of the single arm manipulator robot
was built-up from multiple stages: arrive with gripper to a way-point above a cube,
close a gripper, lift the cube, arrive to way-point above a basket and finally drop
the cube to the basket. CNN was used to map pixel data to the velocities of the
joints, gripper actions, position of the cube and gripper position. The trajectories in
training phase were computed using inverse kinematics and all simulation steps were
used as a training examples for the network. Authors randomized the environment

27

Figure 3.9: Examples of episodes generated by domain randomization. [16]

during simulation to ensure the robot would be able to generalize the knowledge
to the task in real world. More specifically, they sampled colours of all objects
from normal distribution, uniformly sampled the position of all objects as well as
camera and light, sampled the arm configuration from normal distribution and also
created random textures for the table and the background (as seen in Figure 3.9).
In some episodes, they also added random shapes to distract the arm. The arm was
able to achieve 100% accuracy after transition to the real world, if the environment
stayed fixed and did not contain distractors. In the case of dynamic environment
(moving basket/moving camera), the robot still completed the task in more than
three quarters of the cases. From the architectural point of view, authors showed
that the networks needs to contain LSTM module in order to be able to complete
the task and speculate that otherwise the robot is not able to capture the state
(eg. understanding if the gripper is closed). Authors also showed that using joint
angles as extra input to LSTM and auxiliary data as network outputs (cube position
and gripper position) improve the accuracy of the model after training, but are not
essential for the task.

3.3.4 Summary

We have seen a short review of research on leveraging machine learning for solving
grasping and manipulation tasks. Overall, we can classify the approaches we have
seen into 3 categories:

e Supervised learning - the agent requires an extensive annotated dataset
of objects with grasping points, which is expensive and tedious to produce.
Moreover, this does not scale well to large number of objects or multiple gripper

types.

e Self-supervision in real world - there are some approaches that simply leave
the robot to experiment and collect data which are then used in supervised
learning models. Those approaches require hundreds of hours of hardware
time to gather the data, which is very expensive.

28

e Learning in simulation - learning in simulation does not require real robots
which makes the learning process much cheaper and safer. However, applying
the policy learned in a simulation to real world is a challenging task. There
are approaches that require further real world training and also approaches
that learn to be robust to domain change and hence can be applied directly.

We now move on from looking into supervised learning approaches to the domain
of RL. We will however not put a strong emphasis on grasping and manipulation
and instead we will review the applications of Deep RL in broader context.

3.4 Deep Reinforcement Learning

We have explained the basics of RL in preliminaries section and we went on describe
one of the prevalent RL method called Q-learning where the agent learns to estimate
the Q-value (cumulative future reward) of state-action pairs. This Q-value can be
encoded in a table for each state and action, but this approach would not scale to
high dimensional and/or continuous state spaces and action spaces. One solution is
to use deep neural networks to approximate the Q-function.

3.4.1 DQN

Mnih et al. [56] pioneered this approach with a Q-learning algorithm using deep
neural network - DQN. As in classic Q-learning, the network wants to approximate
the Q-value of each state-action pair. However, they no longer had a table where
they simply updated each combination of a action and a state. Instead, they made
a neural network that minimised Bellman loss directly derived from the Bellman
equation we have seen in previous chapter:

L = Q(sy, at)(r + ymazr,Q(s41,a))

where Q(s;, a;) was the current prediction of the network and (r +~ymaz,Q(si11,a))
was the target. They evaluated this algorithm on a large selection of Atari 2600
games. The observation the agent received was a stack of preprocessed consecutive
game frames and reward was a function of the achieved score. The system was able
to achieve superhuman performance in some of the games.

However, the researchers have encountered multiple challenges unique to RL:

1. Objective - in supervised learning, the network simply needs to learn the
mapping between inputs and outputs and the loss can be based on the differ-
ence between real and predicted output. In RL, the only feedback the network
received has a form of sparse and noisy reward function. In many cases, this
reward is not awarded immediately after the right action was taken and it may
take hundreds of timesteps to see the results. The network does not have a
clear objective on what it needs to learn.

2. Changing distributions - as the agent learns, it changes its policy and there-
fore it is likely to do different actions in the same states as the time progresses.

29

This becomes a problem when estimating Q-function because taking different
future steps makes the current estimate of Q-function inaccurate. In other
words, the network trying to map state-action pairs to QQ-values is learning a
distribution that changes as it learns.

3. Variance in results - RL is very sensitive to the selection of the random seed,
which makes experimentation extremely time consuming and error prone. For
example, an agent that randomly "stumbles" upon good states that are likely
to bring rewards will learn the right behaviours quickly. However, agent based
on same code might be exploring wrong areas of state space for a very long
time, making the code seem buggy, even tough the agent was just "unlucky".

The DQN paper [56] addresses some of those problems. The researchers miti-
gated the issue of changing distributions by introducing a new trick called experi-
ence replay. Instead of just training the network on most recent experience tuples
(St+17 Sty
ag, T, 04,0441), they stored each experience in memory and at each step, they re-
played a random subset of experiences. This approach greatly improved stability
of the agent as it made the distribution change at much slower rate. Moreover, it
removed the problem of samples fed into the network being temporally correlated
which often led the network to a local minima.

Another important improvement they introduced was the use of a target network.
As we can see from loss equation, the target the network tries to predict is (r +
ymax,Q(si41,a)) I also contains network prediction Q(s;41, a), hence it is a recursive
definition. This "feedback loop" can easily cause divergence of learning when all Q-
values explode towards infinity. To mitigate this, DQN introduced a concept of
target network Q", which changes the loss equation to:

L = Q(s¢,a0) (r + ymaxaQ (8111, a))

We can see that the main network is no longer optimising with respect to itself
(which can cause the network to diverge), but it started optimising with respect to
target network. The target network is a copy of the main network that gets re-copied
every couple of timesteps. In other words, the target network follows the updates
of main network at much slower pace preventing the oscillations and divergence.

One of the limitations of DQN is that the agent needs to evaluate the Q-function
multiple times in a single state in order to determine which action seems to be the
most promising. This becomes impractical if the agent operates with a large number
of possible actions. It is however possible to change the network architecture so it
has one Q-value output for each possible action. The network would then take the
current observation and compute Q-values for each action in a single forward pass.

This algorithm can only account for experiences of one agent and therefore it
can’t be parallelized on multiple machines. Deepmind also published a new RL
algorithm by Mnih et al. [57] called A3C (Asynchronous Advantage Actor-Critique).
This algorithm is in a way similar to DQN, because it uses deep neural network to
estimate the quality of states. However, instead of Q) function it estimates value
function V' of the states (critic) and also it estimates the policy 7 function (actor)
which we will explain in more detail in the next section.

30

Instead of using single agent, the algorithm allows to have multiple workers
with each having its own copy of the network. After the workers collect enough
experience, they use the data to compute the value function loss and policy loss
based on their data. The losses are then used to update the global network, which
essentially centralizes the knowledge of all workers. This algorithm not only allows
for parallelism, but it also improves learning stability as all agents have different
experiences.

3.4.2 DDPG

A large limitation of A3C is that it is only applicable to discrete action spaces. This
might become problematic when one tries to control a robotic manipulator with
multiple degrees of freedom. Discretizing the action space too coarsely would throw
away the capability to do fine manipulation while many discretization levels would
create a massive action space (because of dimensionality). An alternative is to use
an algorithm capable of working directly in continuous space without the need of
discretization.

One of such algorithms is Deep Deterministic Policy Gradient (DDPG [22]) based
on prior work in Deterministic Policy Gradient methods [58]. Unlike DQN (and Q-
learning), policy gradient methods are trying to learn a policy function directly
instead of greedily taking the action with best estimated Q value. It is therefore
effective in high-dimensional and continuous action spaces. Before diving into deter-
ministic policy gradient methods, we will first describe stochastic policy gradients
that follow a policy my which samples actions from a parametrized probability distri-
bution p(a|s,) (0 are trainable actor parameters). Stochastic policy gradients find
a good policy by establishing a policy objective function J (for example the value
of initial state when following the policy) and trying to optimise the parameters by
gradient ascent w.r.t. to J, more formally 6,1 = 0 + VyJ(0).

In practice, we can play an episode until the end and store all the transitions
(s,a,r). We can then use a so called policy gradient theorem which states that:

VoJ(0) =E.,[Vologme(s,a)Q™ (s, a)

to compute the gradient. Even tough we do not know the true Q™ (s, a), we can use
the rewards we have collected as an unbiased sample. This is called Monte Carlo
Policy Gradient and it is the basis of Reinforce algorithm presented by William back
in 1992 [59]. Silver et al. proved that similar method is applicable to deterministic
policies and introduced a family of Deterministic Policy Gradient algorithms [58].

However, using just a single episode roll-out at each update introduces a lot of
variance in the algorithm which becomes unstable. An alternative is to use a critic
network which directly estimates Q™ (s, a). DDPG does exactly that - it uses a critic
to estimate Q(s, a). Critic is trying to minimize loss based o Bellman equation, which
is similar to DQN:

L= (Q(St, at) — Ty — Q*(St-i-la W*(0t+1)))2

The most important difference is that we are no longer maximising with respect
to all actions (which would not work in high dimensional continuous action space)

31

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|6%) and actor u(s|#*) with weights 2 and 4.
Initialize target network Q' and i’ with weights 89 « 69, 9+ « 64
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Select action a; = u(s:|0*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; 1
Store transition (s, a¢, ¢, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;,7;, S;+1) from R
Sety; = 7; +vQ' (Sit1, ' (si1]0#)[69")
Update critic by minimizing the loss: L = + 3=, (y; — Q(s:,;|69))?
Update the actor policy using the sampled policy gradient:

1
Voud = N Zi:an(s’ a|9Q)|s:s1,a:p(si)vg“p‘(s|9u)ISi

Update the target networks:
09 « 709 + (1 —7)6%
O« 70* + (1 —T1)6%
end for
end for

Figure 3.10: DDPG pseudocode [22]

but we are instead directly plugging in the action proposed by the actor in the next
state.

DDPG also adopted the improvements of DQN that guarantee the stability of
learning. Instead of training on most recent episodes, it uses a replay buffer to store
all the transitions and it uses random samples from learning. As we can see from
the loss equation, it also uses target networks (Q"(s,a) being the target critic and
7" being the target actor). The pseudo-code of the algorithm as presented in the
original paper [22] is on figure 3.10. Please note that the authors do not make a
distinction between a state and observation, hence the difference in notations.

The exploration/exploitation trade-off in DDPG is addressed by adding noise
to the policy actions, such as Gaussian noise. However the authors has found that
Ornstein-Uhlenbeck process [60] can produce temporarily correlated actions which
is more efficient in physical control task.

DDPG was the main building block for many new algorithms, such as DDPGfD
[7], TD3 [61], D4PG [62]. We will describe the main contributions of those algorithms
in Chapter 5 where we also describe how they apply to our project and how we used
them to improve the performance of our agent.

3.4.3 Other algorithms

We will also do some brief experiments with other algorithms within this project,
most notably HER [63], PPO [64] and TRPO [65] but we have decided not to use

32

them extensively. We offer a very brief overview of those algorithms in Section 5.2.3
and we also justify why there are not suitable for the task.

3.4.4 Summary

In summary, we have seen two important Deep Reinforcement Learning algorithms
we will further use in this project: DDPG and DQN. The two algorithms are both
off-policy, model-free and based around Q-learning paradigm we have introduced in
previous chapter. We will evaluate both algorithms and we will use DDPG exten-
sively throughout this project.

3.5 Summary

The background chapter was divided into 3 sections: manipulating deformable linear
objects; manipulating cloth; and review of machine learning approaches to manipu-
lation tasks with emphasis on deformable objects.

The first two sections gave us insight about what sort of tasks have been already
accomplished in the domain of deformable object manipulation. We have used this
data to compile a list of manipulation problems we could consider for this project
which we later narrowed down to 3 tasks. Moreover, the previous research motivated
us to use demonstrations in our projects and gave us multiple insights on how to
successfully tweak cloth simulation to get results close to the real-world behaviour.

In the last section, we examined supervised, self-supervised and RL methods to
solve manipulation tasks. This research motivated us to focus on RL in this project,
mainly to address the poor scalability of supervised approaches that require human
labelling and extreme costs of acquiring data through self-supervision. We have then
described the main learning algorithms we will use in the scope of this project.

33

Chapter 4

Simulator and learning environments

The main prerequisite for the development of good RL algorithm is having an accu-
rate and fast simulator in which we can do our experiments. We begin this chapter
by in-depth comparison of 3 simulators that have either direct or indirect support
of deformable objects. We later justify our simulator choice and outline further de-
velopment work we had to do in order to get realistic simulation of a robotic arm
interacting with a piece of cloth. In the last part of this chapter, we describe the
RL environments we have created for our agent to learn in.

4.1 Simulation approaches investigated in depth

Most general purpose simulators that directly support deformable object simulation
are currently targeted at the gaming industry and they, unfortunately, provide little
support for robotic applications (eg. loading robot models, interfacing with robot
joints etc.) We have looked at PhysX [66] from NVidia and Havok [67] in some
detail, but we were not able to find any previous robotics research that used those
engines which undermined our confidence in their fitness for our purpose. Moreover,
both engines have proprietary codebase which would make it impossible to do small
code adjustments when necessary.

We have therefore shifted our attention to Open Source solutions and investigated
3 of them in depth: V-Rep [68|, Blender [69] and Pybullet [17].

Figure 4.1: PhysX [66] (left) and Havok [67] (right) physics engines have very good
support for cloth and other deformable objects. However, they offer minimum sup-
port for robotic applications and they are not open-sourced.

34

4.1.1 V-Rep

The first simulation tool we tried was V-Rep [68]. The simulator had a model of
the robotic arm we wanted to use in the default library and it was easy to control it
from Lua scripts. Moreover, the authors of prior work investigating domain transfer,
James et al. [13], have used the simulator for this purpose and even provided us
with some code to control the simulation from Python. Those two factors justified
the need for a more in depth experimentation.

V-Rep provides a front-end to a wide variety of physics engines that can be
seamlessly interchanged. It also provides a nice interface allowing the user to create
new objects, customize them and generally control many aspects of the simulation.
We anticipate that the interface can be extremely useful for quick prototyping and
debugging.

On the flip side, the main scripting language of V-Rep is Lua, so the direct inter-
actions need to be written in Lua and Python code only calls Lua functions, which
adds another layer of complexity. Moreover, V-Rep does not have first class support
of deformable objects and they can only be approximated by different combinations
of rigid objects and constraints, which we attempted.

As the first step, we tried to simulate DLO (rope) using rigid cylinders connected
by spherical joint constraints. We extended the PyRep library to allow the creation
of joint constraints and we managed to assemble a first rope. We found it to visually
behave very similarly to a real-world rope, but we did not attempt to create a more
objective metric to evaluate the simulation behaviour. It was however not possible
to adjust the parameters of the joints directly and the only way to edit the physical
properties of the rope was to edit the mass and inertia of the cylindrical links.
We believe that this may be a significant problem in future because we won’t be
able to accurately model arbitrary DLOs. Testing the interaction with robotic arm
went well and we were able to manually grasp the rope when controlling the arm
with keyboard using a short Python script. We then tried to extend the same

O

Figure 4.2: Cloth simulation in V-Rep implemented as square lattice of rigid spheres
connected by dummies.

approach to a 2D object, such as a towel. In V-Rep, objects exist in a parent-child

35

relationship tree, where a child is usually attached to its parent by a constraint.
This was sufficient to model the rope which was a chain of alternated cylinders
and joints connected by parent-child relationships. This approach however does not
extend to 2D objects because it is impossible to create stable 2D structure without
loops. A solution is to use so-called dummies, which are a separate entity in V-Rep
and can be attached as a child to any other object. Dummies can be also linked
together by overlap constraint, which forces a pair of dummies to move together,
so their relative position and orientation with respect to each other stays fixed. We
succeeded in simulating 2D deformable object by creating a square lattice of rigid
spheres with 4 dummy children. The dummies of neighbouring spheres are linked by
an overlap constraint, which forces all spheres to stay together. It is unfortunately
impossible to control the forces exercised by the dummies and again the only way
to change the physical properties of the cloth is to play with mass and inertia of the
spheres. In the case of cloth it however did not work that well - the default cloth
was too rigid and resembled a rubber while the cloth with decreased inertia was too
prone to breaking. Moreover, the simulation was extremely slow, where only a small
cloth of 10x10 spheres contained almost 400 constraints and the simulation was no
longer runnable in real time on my mid 2015 MacBook Pro. We anticipate that
we would need at least 30x30 or larger lattice to create a visually believable cloth
simulation, which would require at least ten times more compute power.

Taking into account the heavy limitations in parameter customization and per-
formance we have decided that V-Rep is currently not suitable for simulating 2D
deformable objects, but might be a viable option for simpler simulations with linear
deformable objects.

4.1.2 Blender

Another tool we investigated in depth was Blender [69]. This tool is primarily used
for animation and graphic work, but it is also possible to use it for simulations.
Blender have multiple rendering modes, where the default "Blender Render" is an
accurate tool with all the features of underlying physics engine, but it is very com-
putationally expensive and it can’t be controlled once the run starts. An alternative
mode used by a a community of researchers leveraging Blender for robotics simula-
tions if called "Blender Game Engine". This renderer can be synchronously stepped
from a Python API, which makes it suitable for RL simulations where agent decides
on the next action of the simulated robotic arm. As a proof of concept, we mention
Morse [70], which is a academic-grade robotic simulator that uses Game Engine at
its core and allows simulation of dozens of robots.

We attempted to use Blender for our simulation. In the initial work, we tested
if the cloth simulation provided by Blender would be accurate enough. We found,
again only by subjective judgment, that the simulation acted very closely to how a
cloth would behave in real world (as seen in figure 4.3). Building up on a promising
simulation of cloth, we tried to create a robotic arm to manipulate it. We ideally
wanted to find a simulator that supports URDF imports. URDF files describe
how the robot is constructed from meshes and allow users to import their robot
descriptions into a simulator. The URDF files are widely used in ROS [71] ecosystem

36

(a) Simple hand-crafted manipu- (b) Velocity control allows infinite
lator when there are no collisions torque to be exercised, which de-
forms the joints.

Figure 4.4: Blender game engine arm simulation.

- a large collection of tools used in robotics. Blender does not support URDF robot
descriptions out of the box, but there are couple of plug-ins that claim to achieve the
task. We experimented with Phobos [72] and URDF importer |73|, but unfortunately
we did not have much success. The latter seems to be currently abandoned and it
did not load at all while the former is still under active development, but it was
unsuccessful reading the Mico arm description package. The issue seems to be a
known unsolved problem with loading ROS URDF packages. We did not attempt
to fix this problem in Phobos code-base and instead we started with a simpler proof
of concept custom robotic arm.

We modelled a simple robotic arm with 4 DOF (two hinge joints and gripper
claws allowing for linear displacement). However, we found it impossible to accu-
rately control the joints of the robotic arm. When we used velocity control to set
angular velocity of each joint, all physical constraints were ignored as the joints
were able to exercise infinite force. Alternatively, we could use torque control of
the joints and set maximal torques, but this would require another significant de-
velopment effort to implement PID controllers that could bring the joint to desired
position/velocity. Implementing and fine tuning the robot model would take con-
siderable amount of time. Moreover, we found that it is not possible to run Blender
game engine in headless mode, which would bring extra problems during prolonged
training episodes on cloud machines.

Overall, we found Blender to be a reasonable tool for simulation of even more
complex deformable objects (such as cloth), but the absence of features for importing

37

and modelling our robotic manipulator made it unsuitable for our task.

4.1.3 Bullet physics

The last simulation environment we considered was Bullet physics engine [74]. Both
Blender and V-Rep are using this engine as a back-end for their simulation, so we
might consider them wrappers with good user experience and some extra function-
ality. We have decided to look into Bullet because it has:

e first-class support for deformable objects (although experimental)
e support for importing URDF robots
e python API with lot of examples (including reinforcement learning ones)

e strong and responsive community with ongoing effort to improve soft-body
physics

Again, the first attempted task was to model a cloth. Unfortunately, there are
currently no python bindings for creating it, so we had to experiment with underlying
C++ API. We also found the library to be fairly unstable with a lot of unexplained
segmentation faults (eg. in the same scene, creating a cube caused segfault while
creating a cylinder behaved normally). Although we consider this to be a red flag, we
found it simple to either fix or work around most of the issues so far. It is possible
to create a fairly adequate cloth simulation by our subjective measure, however
the cloth did not respond well to our attempts to grasp it. Different settings of
parameters (most importantly collision margin and bending constraints) caused the
cloth to either "tunnel" through the grippers (collision only happen with the vertices
of cloth, which means that it often tears and the gripper slips through the hole) or
to be repelled from the gripper.

The library has declared support for URDF imports, so it should not be prob-
lematic to import the model of robotic arm. Even all examples provided in the
library codebase load robot models written in URDF.

Overall, we found Bullet to be the best option for the task at hand but we still
foresee the following challenges:

e No support for soft-body textures - soft-bodies are only rendered as a wire
mesh in debug renderer, they do not appear at all at renders from simulated
cameras.

e very experimental - The code using deformable objects seems to encounter
segmentation faults quite often and it might be a big development effort to fix
some of those.

e immature - A lot of features are completely missing, not yet available in
Python (many things are only accessible from C++) or work in progress. We
will likely need to implement a lot of new features and bind them to python (eg.
there is no soft-body anchor removal at all, there are no soft-body constraints
exposed to python, no cloth creation exposed to python...). We will describe
this work in the next section.

38

V-Rep | Blender | Bullet
Soft-body simulation n y y
Importing robot model y n y
Stable y y n
Soft-body textures n y n
Python bindings y y y
Headless operation y n y
GUI for scene creation y y n

Table 4.1: Summary of simulation engine features.

4.1.4 Summary

Overall, we found that each simulation engine has it’s own trade-offs. We have
chosen Pybullet as the most suitable candidate, mainly because it has first class
support for soft bodies and allows us to import the robotic arm with ease. The
summary of our findings can be seen on Table 4.1. For more detailed comparison of
Bullet with other engines, we refer the reader to study by Erez et al. [75]. In the
next section, we will describe PyBullet in more detail and discuss the implementation
changes we did to make the simulation more realistic.

4.2 Work with Pybullet

As outlined in the previous section, we have chosen Bullet [74] as the physics simu-
lator for this project. However, the simulation did not work out of the box and we
had to make a couple of bugfixes and implement new features. In this section, we
will first give a a more in depth description of the library and we will then describe
the most important changes we had to implement in the original codebase.

Figure 4.5: Kinova Mico arm holding a piece of cloth simulated and rendered by
Pybullet physics engine with our improvements described in this section.

4.2.1 Library overview

The library, currently hosted on GitHub, is dominantly written in C++ with some
functions implemented in C and Python. The whole repository has currently almost

39

eight hundred thousand lines of code in those languages, so it can be classified as
a large code base. Most of the code has been developed since 2003 by its current
maintainer, Erwin Coumans, who joined Google Brain team in 2014. The library
sits in the core of many animation and rendering software products used in various
industry domains, including film-making. The maintainer along with other contrib-
utors won the Academy award in 2015 for the development of this library, because it
has been used in simulating complex visually believable destruction scenarios with
a large numbers of constrained rigid bodies.

There are multiple APIs available to control the simulation engine. The default
one is written in C++ and directly calls the simulator functions. Alternatively,
there is also a Bullet C-API that has been wrapped into a Python C extension to
create PyBullet. The Bullet C-API is designed to be independent form the physics
engine and render engine. The intention of the authors was to allow the user to
use only a very small subset of functionality (for example only collision detection or
only rigid-body dynamics without the soft-dynamics) so they made the library very
modular. The main components relevant to this project are command processor,
dynamic worlds, renderers and Python bindings.

The command processor is responsible for accepting commands and routing them
to the relevant simulation component. It serves as an entry point for the rest of the
system and the file itself has almost 10k LOC. Most of the logic inside this file
parses the user command, initializes new objects if necessary, executes actions on
them and constructs the response. Many commands need to execute a different set
of actions based on the type of objects they are invoked on (eg. creating a constraint
between two rigid bodies is different from creating a constraint between a soft body
and a rigid body). Moreover, the commands often have multiple flags that alter
functionality which further complicates the code. This component also holds most
of the state - it has pointers to all objects created by the user, all constraints between
those objects, all loaded textures and the pointer to dynamics world those objects
live in.

The dynamics worlds are responsible for running the simulation and they execute
the step function, which advances the simulation by one timestep. This is done by
executing the following:

e Predict unconstrained motion - integrate the velocities to get the new
6DOF position of rigid objects (or nodes for soft bodies).

e Detect all collisions between objects - this is done by finding one or more
contact points between the objects. Each contact point has a distance (either
negative for penetration of positive for separation) and a normal vector of
the contact. The collision detection is sequential, consisting of 2 phases. The
first phase, also called BroadPhase, prunes away pairs of objects that can’t
be in contact with each other. This phase needs to be fast (avoid O(N?)
algorithms) and is based on axis sweeping. The algorithm walks through each
axis and maintains a list of active objects. When a start point of an object is
encountered (the point on the object with the lowest coordinate in the given
axis), the object is added to the active list. When the object endpoint is
encountered, the object is removed. After sweeping all axes, the algorithm

40

needs to only further consider object pairs that have been overlapping (in
active list at the same time) in all 3 axes. Those object pairs then advance to
NarrowPhase, when they are all analyzed by an algorithm most suitable for
the respective type of objects in the pair (eg. (box, box) employs different,
simpler algorithm than for example (non-convex mesh, convex mesh) pair).

e Find constraints - the simulation usually links multiple bodies by con-
straints, such as hinges, prismatic joints etc. The role of a constraint is to
remove a DOF of the object. If the solver is unable to satisfy a constraint,
there is a gap between objects (as seen in figure 4.4). Apart from the static
constraints created by the user, there are contact constraints (based on contact
points found in previous step) and friction constraints based on the contact
normals.

e Solve constraints - the constraints in Bullet are solved on the position and
velocities level, which means that the solver makes sure that penetrating ob-
jects are moved out of penetration state and that objects in contact cease to
move towards each other. The constraints are expressed in terms of a sys-
tem of linear equations and inequalities which are then solved iteratively using
variants of the Gauss-Seidel method.

e Integrate transforms - after all constraints have been solved, the simulator
integrates the acceleration and velocities to get the final transforms, using
semi-implicit Euler method.

Each dynamic world implements this functionality for all types of object that live
within. In the case of our simulation, those are rigid bodies, multi-bodies and
soft bodies. Multi-bodies are essentially an improved version or rigid bodies that
implement Featherstone algorithm [76] for computing constraints. In the classic rigid
body setting, a constraint removes one or more DOFs by linking two objects that
stay independent. In contrast, linked multi-bodies live in parent child relationships
and their behaviour is different. By default, the child has no DOFs with respect to
its parent. Adding a constraint adds a degree of freedom, so the child can move in
its parents coordinate frame.

For example, suppose we have a prismatic joint between two objects. If those
objects are rigid bodies, they both have their 6 degrees of freedom and the con-
straint solver removes 5 degrees of freedom from one of them. On the other hand, if
the objects are multi-bodies, one object would be a parent with 6DOF. The other
object would be a child with no default degrees of freedom. However, the addition
of prismatic joint allows it to move along one axis in parents coordinate frame. In
practice, multi-bodies are significantly more stable when working with objects con-
structed from multiple parts. We will therefore use a multi-body to model the arm
in our project.

Pybullet.c is a C extension that enables us to call the library functions from
Python. It, unfortunately, exposes a very limited subset of all library features and
there is a lot of work being done to extend it.

The final component we will be working with extensively are the renderers. Py-
bullet supports two rendering options: one is based on OpenGL3 and therefore uses

41

GPU acceleration while the other one, tinyrenderer, is written from scratch and
does all computation on CPU. OpenGL renderer is slightly faster (10%) when tak-
ing images in large resolution(640x480), but the performance advantage fades when
making smaller renders for RL (resolution we used for benchmarking was 80x80).
Moreover, OpenGL implementation in Pybullet requires a GUI which makes it dif-
ficult to use in headless mode on cloud servers. We subjectively did not notice any
significant difference between the quality of OpenGL and tinyrenderer renders.

4.2.2 Original status of softbody support

Even tough soft bodies are implemented in the library, they are not yet officially
supported. Erwin Coumans (the main author and maintainer of the library) stressed
this on multiple occasions when we submitted a pull request to fix a bug or when we
asked for advice on library forums. Originally, the library allowed the user to load
a soft body from a .obj 3D model and simulate its interactions with other rigid and
deformable objects. There was also limited support for creating constraints between
soft and rigid objects, but the constraints were unstable (either too weak to hold the
objects in desired relative positions or too strong causing the objects to explode).
Finally, there was no support for rendering soft objects whatsoever - they were only
visible through debug draws in Pybullet GUI application.

4.2.3 Contributions

We had to do a significant amount of development in order to create a stable, visually
believable and reasonably accurate simulation of deformable objects. Whenever the
time allowed, we also contributed the code changes back to the library repository for
the benefit of the wider community. This section summarizes the most important
work on the library:

1. API for deformable object creation (including cloth) - the library did
not expose any commands for creating deformable objects through Python
code. We have identified the most important features of the underlying C++
codebase and wrote Python bindings so they can be called from Python code.
The biggest challenge was to ensure proper memory management - Python
uses reference counting to work out the lifetime of an object and we had to
make sure all objects used on the borderline between C code and Python code
are destroyed at the right moment.

2. createCloth method in C++ - so far, the only way to create deformable
object was to load a .obj file. This method was not a good fit for a task of
creating 2D cloth, because many internal parameters and consequently the
behaviour of the object depended on the 3D model used. Instead, we created
an API function that allows users to create 2D cloth directly, specifying all
important parameters (location of corners, number of internal nodes, mass,
node linkages). The implementation took advantage of undocumented helper
function in soft body codebase that creates a soft body patch from a grid-like
arrangement of nodes. We have also exposed this function to be called directly
from Python.

42

3. Cloth parameter search - a significant engineering effort was necessary to
understand the internals of cloth simulation and to search for a reasonable
set of parameters to create a realistic simulation of cloth interacting with
the robotic arm. Overall, there are two main implementations of soft body
simulation - default and cluster. In default simulation, soft bodies detect
collisions using the vertices and faces. However, if there are not enough vertices
in a given area, it is likely that a soft body would miss a collision and rigid
body will simply fly through it without any interaction (so-called tunnelling).
Another method of simulation decomposes the soft body into sets of convex
clusters that can use more accurate collision detection for convex shapes and
decrease the likelihood of tunnelling. In our experiments, we found that cluster
collisions work fairly well for volumetric bodies that mostly return to original
shape after deformation. However, a cloth simulated with cluster-collisions
was always floating far away from rigid objects (due to collision margin), it
was too stiff and it did not hold the deformed shape well (crumbled cloth
would simply flatten out over time). We have decided to use the default
simulation and work on parameter selection. We found a good value for the
friction parameter in a similar fashion to the method suggested in [48] (lift
a corner of the cloth until it starts sliding and record the height, then lift
in simulation to the same height and decrease friction until sliding occurs),
found the approximate mass by measurement and found linear and angular
stiffness by experimentation with a real and simulated cloth. An especially
important parameter was cloth damping used to reduce the buildup of kinetic
energy stemming from the inaccurate simulation. It accelerates the decay of
node velocities. Small damping would make the cloth waving in the air even
in absence of any manipulation while large damping would make it impossible
to move. We made all parameters easily configurable from Python code to
allow quick changes in the future.

4. Rendering - the original library did not have any support for rendering de-
formable objects. The only way to see them was to enable "debugDraw" func-
tionality in the Bullet ExampleBrowser. This functionality shows wireframes
of all simulated entities in OpenGL GUI window. However, those wireframes
were not rendered when using the camera APIs. We have implemented soft-
Body rendering both in OpenGL and in Tinyrenderer to be able to contribute
this change back to the main library repository. We have used the functions
for rendering a rigid mesh shapes as an inspiration and implemented code that
draws the vertices and faces(triangles) of the soft body, which allowed us to
render the body once. It was however not possible to synchronize the rendered
body with rigid simulation as the renderers only support 6DOF translations.
We have ended up deleting and re-drawing the body after each time step to
render the object in perfect synchronisation with physics simulation. We also
had to disable backface culling in some situations as the deformations some-
times caused a backface of an object to be facing the camera.

5. Memory leaks - the soft body implementation had a large number of mem-
ory leaks that caused a massive increase of memory use during training. We

43

have logged the RSS (resident set size) on every time step during training runs
and we have noticed that the simulator is loosing almost 5GB per hour, which
meant that even a machine with 64GB of memory will OOM after approxi-
mately 13 wall-clock hours of simulation. We have spent a couple of days by
profiling the code and trying to identify memory leaks. We have used Valgrind
to identify the leaks, but this proved to be difficult due to a large amount of
noise generated by Python and the library itself (even after installing python
suppressing files). We have then used strace to find the code sections allocat-
ing biggest chunks of memory, but this was again too noisy and it was hard
to filter out legitimate uses. Finally, we have tried a Mac tool Instruments,
which pointed us directly to a couple of small memory leaks and also helped us
identify large leak by investigating the lines allocating most memory (similar
functionality to strace but with an option to aggregate system calls by issuing
line). This largest leak was caused by a soft body collision detection compo-
nent btSparseSDF. The component was allocating memory in a hash table as
a memoisation technique and resetting the memory when it reached a certain
threshold. However, resetting the simulation during training (for example af-
ter the end of a training episode) did not free the memory of this component
and left the massive hash table undestroyed. Fixing it was as simple as re-
setting this component on each simulation restart. We have also identified a
couple other memory leaks caused by faulty reference counting in my bullet
C extension, some of which were in original code and some of which were in
the new code we have added. We show the overall decrease in memory use in
Evaluation (Chapter 7).

. Segmentation faults - We have noticed that the library sometimes throws
a segmentation fault after many hours of operation. The issue did not appear
deterministically at the same point in time. Sometimes it happened after 6
hours of training, sometimes after 20. At first, we wanted to overcome the
problem by checkpointing the training after every 5 epochs and reload the
model if the fault occurs. However, we were not able to also checkpoint the
replay buffer (16GB+ of data) and we observed that restarting learning from
checkpoint with an empty replay bfuffer adds noise to the network and causes
both immediate and long-term drop in performance. It was also prohibitively
expensive to find the fault using traditional tools such as Valgrind because
running a version without compiler optimisations with instrumentation over-
head would likely make it occur only after multiple days. Finally, we looked at
stack trace generated by the fault handler decompiling the optimised library
and identifying roughly the location of the fault based on offsets from symbols.
We found that the fault is happening in Tinyrenderer shader and is stemming
from out-of-bounds array access in certain combinations of light position and
position of the fragment being rendered. We resolved this by properly checking
array bounds before executing the access.

. Softbody anchors and fake object grasping Initially, we have spent a lot
of time trying to optimise cloth parameters so they work well with grasping
based only on the physical forces between the cloth and the gripper. How-

44

Figure 4.6: Close up look at the gripper with rigid objects used to anchor the cloth
for the purposes of creating "fake grasp". There are 6 objects in total to improve
stability of the grasp and to avoid the spinning behaviour.

ever, we have encountered multiple issues. The gripper was often tunnelling
through the cloth or it was repelled from the cloth due to the large colli-
sion margin. Decreasing the collision margin would cause the cloth simulation
to be unstable, which can for example manifest by cloth falling through the
ground. The strong repelling caused the cloth to pop out of the gripper even
when it was properly held. The solution we introduced was to create a fake
grasp if the gripper fulfils two conditions: it needs to be closed (joint angles
indicating that the gripper fingers are close together) and the end of gripper
fingers need to be very close (approximately 2 cm - configurable) from the
closest cloth node. However, the library did not have any support for the soft
body/multi-body anchor and we have decided to model the arm as a multi-
body. The workaround was to introduce a rigid object at the tip of each finger
and anchor the cloth to those rigid objects with a rigid body/soft body anchor.
Those objects have fixed positions in finger reference frame so they move with
the finger. Even though two such objects (one on each fingertip) should be
theoretically sufficient, we have found the cloth to be much more stable when
we added 3 objects for each fingertip (one in the middle and one on each side).
Multiple constraints stopped the cloth from spinning unnaturally in the air
when held above the ground and made the grasp more stable. The next step
was to create anchors between those rigid bodies and the closest cloth nodes.
However, we have found that the basic anchor code is not sufficient as it can’t
create a rigid attachment. If the anchor strength parameter was set too low,
the cloth would be levitating in the air a couple of centimetres under the grip-
per. Setting it higher made the impulses coming from constraint solver too
strong and the cloth exploded when it was touched. We rewrote the anchor
constraint implementation to make anchored node exactly follow the position
of rigid object no matter what other forces act on it while significantly de-
creasing the impulse generated by the constraint. This implementation of the
constraint resulted in fairly stable and believable interaction with the gripper
but it probably would not be generally applicable in other scenarios. We also
had to expose the creation of soft body-rigid body anchor to the Python API.

. State saving and soft bodies - Pybullet already had APIs for serialization of
rigid objects into a file, which is then used for saving and restoring the state of
the simulation. The engine creates a .bullet file which contains information
about positions, velocities and constraints of all objects. It is therefore possible

45

to create a simulation checkpoint by saving the state to a file and then restore
exactly the same situation by reloading the file. However, soft bodies were
not included in those checkpoints. We have added the information about node
positions and node velocities to the file so it can be easily reloaded. We were
worried that saving just the positions and velocities would not be sufficient
and the cloth would be unstable when reloaded, but this luckily was not the
case. This feature is important for resetting to demonstration improvement
we describe in section 5.3.5.

9. Other contributions: writing and exposing code to query cloth internal
state (returns positions of 4 corners in the world frame), resolving compila-
tion on Mac (this was also since fixed independently by library maintainers),
experimentation with compiler options on different architectures to improve
performance

Existing limitations

Even after the changes we have implemented, the simulator still has some serious
limitations, mostly to do with soft body simulation. The largest problem we have
experienced is the lack of self-collision capability of soft bodies, which is especially
relevant for working with cloth. The deformation of a cloth when hanging freely
is not completely realistic because the sides of the cloth pierce through each other.
When folding, the agent learns to drape the grasped edge of the cloth too close
to the surface because the cloth does not collide with itself in simulation. When
the cloth is folded, we can see visual artefacts caused by two layers of cloth being
exactly at the same height because they do not collide with each other, only with
the surface. Even tough those are serious issues that certainly negatively impact the
performance of trained agent, they are not enough to justify the time investment of
implementing cloth self-collisions.

Another serious limitation is the lack of deformation stability. If we crumple
a piece of cloth in real world, it tends to stay in the crumpled state. However, if
we do the same in simulation, the cloth slowly unrolls until it reaches its original
shape. This can be mitigated to some extent by selecting correct cloth parameters
(large mass, small stiffness coefficients, large damping), but those negatively affect
the behaviour of the cloth in other situations. As a consequence of this limitation,
we could not attempt some of the tasks we have planned to do after reading the
relevant literature (background section). More specifically, we could not do cloth de-
wrinkling or flattening, because cloth left alone would simply de-wrinkle over time
without any robot interaction. Similarly, we could not try unfolding tasks and tasks
of getting cloth into a known configuration because the cloth would be unrealistically
changing its configuration in simulation and the domain transfer would be therefore
impossible. We tried to fix this by changing the cloth deformation parameters or
even freezing the cloth when it is not manipulated, but we could not achieve realistic
behaviour.

46

Summary

We have decided to use Pybullet [17] (and underlying BulletPhysics C++ library)
as the simulation engine for this project. The engine can be used for simulating
deformable objects, but it is still an experimental feature not officially supported by
developers. We have leveraged the existing code, fixed the most serious problems
and implemented new necessary features in order to get realistic cloth behaviour in
some subset of manipulation scenarios. Even tough the engine became sufficient to
simulate some manipulation, we still felt limited in the range of tasks we could use to
evaluate our algorithm. In the following section, we will describe the environments
we have ended up implementing.

4.3 Environments

A vast majority of contemporary RL research is leveraging a battery of test en-
vironments called OpenAl gym [19]. Each environment in OpenAl gym toolkit is
a well-defined task that makes no assumptions about the internal workings of the
RL agent. All environments implement a very simple API that the agent uses to
interact with them:

e env.action_space - the field contains information about the type and shape
of the action the environments expects. For example, Atari game environ-
ments use discrete actions corresponding to button presses while most robotic
manipulation environments expect continuous multidimensional actions corre-
sponding to joint velocities or end-effector velocities.

e env.observation_space - the field contains information about the type and
shape of observations the environment offers. Those can be low dimensional
vectors or high dimensional pixel representations.

e env.reset() - resets the environment instance to initial state and returns ini-
tial observation (which has the type and shape as described by env.observa-
tion_space).

e env.step(action) - advances the simulation one step forward. Takes the
action the agent will execute and returns a 4 tuple (observation, reward,
done, info). observation - represents the result of agents action on the
environments, reward is a (possibly sparse and delayed) measure of agent’s
success, done contains information whether the environments is in a final state
and should be reset and info is a dictionary with additional user-specified
data.

The idea behind offering a suite of RL tasks with simple API is to allow researchers to
benchmark their algorithms and compare the results on some well-defined environ-
ments. OpenAl gym even exposes functions to collect the data from an experiment
and upload them to a shared leadderboard.

We have also decided to use OpenAl gym for this project because we wanted
to have access to the results of other algorithms on a given task. This would allow

47

us to easily judge if our algorithm is flawed or if the task is simply too complex to
complete. In the following subsections, we will give a summary of environments we
have used and implemented over the course of this project.

4.3.1 2D environments

We have started focusing on RL aspect of this project in mid February after getting
some initial visually realistic cloth behaviour in simulation. We have been very
optimistic and tried to apply some off-the-shelf RL algorithms on the cloth-folding
task and hoped to get some quick results. However, none of the algorithms we tried
showed any "signs-of-life" and acted more or less randomly. In order to sanity-
check the algorithm implementation, we have tried running it on two classic control
OpenAl environments - cartpole_v0 and pendulum_v0. Both environments are
very popular benchmarks in RL community and they have been solved by many
published algorithms.

In cartpole_v0, the role of the agent is to balance a pole on a small car moving
in 1D. The agent can only issue two discrete actions - go left or go right. It gets
a reward of 1 for every time-step while it manages to keep the pole upright. The
observation is the position of the cart, velocity of the cart, angle of the pole and
angular velocity of the pole, so it is a low-dimensional vector. In pendulum_vO0, the
role of the agent is to apply torque on a pendulum to make it stay pointing upwards.
The agent can only apply a scalar action corresponding to a torque of a pendulum
joint. Too strong action will result in pendulum swinging over the top and going
to far, while weak action will not prevent the pendulum from falling to its natural
position pointing downwards. The observation is the sin and cos of pendulum angle
0 as well as the angular velocity w of the pendulum.

We have found the implementation of DDPG from OpenAl baselines [77] to
converge quickly on both environments. The next step was to try working with high
dimensional observation (learning from pixels). However, we could not find a simple
classic control OpenAl environment that provided pixels outputs. We have therefore
decided to adapt the cartpole_v0 and pendulum_vO to provide pixel observations.

We used OpenCV [78] to draw shapes corresponding to the pendulum. It was
straightforward to translate the low dimensional state to the coordinates of shape to
draw (first find corners of a rectangle with desired dimensions and then use sin(f)
and cos(f) to construct a rotation matrix to rotate the corners and finally draw
a polygon with vertices at the rotated corner points). The result can be seen on
Figure 4.7.

However, applying the algorithm to the new environment with pixels observa-
tion was disappointing and the performance was only marginally better than the
performance of random agent. We have eventually found out that the problem was
not the learning algorithm, it was the environment. The render for pendulum turn-
ing clockwise and counterclockwise was exactly the same and the agent, having no
memory, had no way of inferring the angular velocity of the pendulum. As a result,
it could not know what torque to apply . We have fixed this issue by colouring
the pendulum according to its angular velocity so the colour changes based on the

48

(a) Our observation of pen- (b) Original OpenAl pendulum

dulum environments ren- render, which is not accessible

dered with OpenCV. through API and can be only vi-
sualized in window.

Figure 4.7: Original render of Pendulum_v0 not available through API and our
render, which can be used as observation for learning from pixels.

(a) Pendulum travelling Pendulum travelling ¢) Stationary pendulum.
counter-clockwise. clockwme

Figure 4.8: Pendulum captured with three different angular velocities.

direction the pendulum turns in. The RGB formula was the following;:
colorrap = (w * 32,255, —w * 32)

The result was clipped so it was always in (0, 255) range. The pendulum turning
counter-clockwise (positive w) was therefore yellow and when turning clockwise, it
was a mix of green and blue (aqua). After this change, the agent learning from
pixel observation was able to quickly learn a correct policy and converge to a result
comparable to the agent learning from low dimensional state.

We have also tried stacking a sequence of four consecutive observation frames
instead of colouring the pendulum, which allowed the agent to infer the the velocity
and acceleration. Although this also worked and the agent was able to achieve good
results, the final average reward was lower than for the colourized version and the
training took longer. We have used the 2D environments for our initial experiments,
because they are much easier to solve and quicker to simulate. We could therefore
get the results quickly.

49

Figure 4.9: 4 OpenAl robotic manipulation environments using Mujoco simulation
and Fetch robot platform. From left: Grabber, Slider, Pusher and Reacher.

4.3.2 3D rigid object environments

After successfully solving the 2D environments, the natural next step was to at-
tempt some 3D environments. We have initially tried to use OpenAl robotics gym
environments [20] based on Mujoco simulator [79] to get a benefit of benchmarking
against other implementations. However, those environments require Mujoco simu-
lator license. It is possible to obtain 1 free license for educational purposes, but even
this license is tied to a specific machine (the user needs to upload a machine-unique
fingerprint which is validated on each simulator launch). Changing the licensed ma-
chine involves a lengthy process of communication with Mujoco sales department.
Therefore licensing our development machine (personal MacBook Pro) would pre-
vent us from training on a DoC machine which would considerably slow down our
iteration speed and overall progress. Moreover, OpenAl robotics environments are
based on Fetch robotic platform [80], which is not available in our lab.

We have decided to avoid using environments tied to Mujoco simulator or using
Fetch robot platform. Instead, we reimplemented the environments in Pybullet
using a robot platform we have access to. There are 4 OpenAl robotic environments
we have re-implemented:

e Reacher - the task of the agent is to manipulate the robotic arm to reach a
specific target location sampled from a box area in front of the robot. In sparse
reward case, the agent gets the reward when the effector reaches the target
position (within a small threshold). In dense case, the reward is computed as
euclidean distance between the end effector and the target position.

e Pusher - the agent needs to control the arm so it pushes a small cube to
a target location. The position of the cube and the position of the target
are randomly sampled from the area in front of the robot and they are both
guaranteed to be on the table so there is no need to grasp the object. Sparse
reward is awarded when the position of the cube is within a threshold from
the target position, otherwise the agent receives -1 on each timestep. In dense
reward case, the reward is proportional to the euclidean distance between the
cube and the target position.

e Grabber - similarly to Pusher, the agent needs to move the cube to the target
position. However, the target position is usually sampled in the air, so the
arm needs to grasp the object in order to lift it. The rewards structure is the
same as with Pusher.

20

Options Description
IK (de- | The control mode inspired by OpenAl Fetch robotics environments.

Action fault) The action contains velocities of end effector (3 scalars) and velocity
of the gripper (opening/closing - 1 scalar). Velocities are scaled so
the robot never moves faster than 0.5 m/s.
Velocity The classic control mode used in most of manipulation research.
The action directly controls the angular velocities of all joints within
the arm (10 scalars)
Dense The reward is equal to the distance between end effector and target
Reward (Reacher) or cube/puck and the target (other environments)
Sparse +3 if distance of cube/puck/end-effector(Reacher) to the target is
bellow the threshold, -1 otherwise
Positive +100 if distance of cube/puck/end-effector(Reacher) to the target
(default) is bellow the threshold, 0 otherwise
low dim Contains low dimensional state of the system (position, target posi-
Observation tion, gripper finger angles, cube/puck position, cube/puck relative

position to the gripper, arm IK goal, arm fingers goal, gripper ve-
locity, wether gripper is holding and object).

pixels (de- | RGB render of the scene from external camera overlooking the
fault) robotic arm and the workspace. The dimension of the observa-
tion is (84, 84, 3) corresponding to width, height and number of
channels in an image.

pixels Same as pixels, but containing a sequence of 4 consecutive frames,
stacked so the dimension is (4, 84, 84, 3). The agent should be able to infer
acceleration and velocities at a cost of extra computational load.

Table 4.2: The action, observation and reward modes of 3D manipulation environ-
ments implemented in Pybullet [17] based on OpenAl Fetch robotics gym [20]

e Slider - the agent needs to slide a puck on low friction surface towards a target,
which is sampled out of reach of the robot. The reward structure is again the
same as in Pusher case.

All OpenAl Fetch robot environments are controlled by a continuous 4-dimensional
action that contains end effector velocities along x, y and z axes as well as grip-
per velocity. The state in those environments is low-dimensional and contains the
position and velocities of the gripper and cube/puck (if present). The observation
contains the state, the desired goal (position of the target) and also achieved goal
(this is the position of the gripper for reaching or position of the cube/puck for other
environments). The composed observation is used so the environment can be used
by algorithms based on Hindsight Experience Replay (HER) [63] (described in more
detail in section 5.2.3). The composed observation can be flattened for use with
algorithms that do not user HER.

Our implementation of the environments follows the same action and reward
structure, however we add other options configurable via keyword arguments. The
summary of the options can be seen in Table 4.2.

In IK (inverse kinematics) control option, the environment remembers a goal
position of the end effector which is an IK target for each step. The velocities
passed in through action actually act on IK target, so at each step, we just add
the action to arm goal position. This implementation effectively acts as a low pass

51

filter. If the desired velocities are too large and the arm can’t keep up with them,
the changes to goal position are clipped so it is always within a short distance (7
cm) from the current end effector position. Hence, we do not need to always scale
the actions so they are achievable by the arm (this would be very difficult because
maximal speed of end effector depends on its position). Both IK goal position and
real position are included in the low dimensional state, which helps the agent infer
the direction of the arm.

We encountered a couple of challenges when re-implementing the OpenAl envi-
ronments in PyBullet:

e URDF description - we have found that the robot description provided
in Kinova SDK [18] does not work with Pybullet. We had to first translate
the .xacro provided by the manufacturer to .urdf file which can be loaded
by the simulator. Xacro is a file format that aims to reduce the size of urdf
descriptions by removing the unnecessary repetition of elements. There is
a Robot Operating System (ROS) [71] package that can do the translation.
We have found that ROS support for MacOS X is very experimental and we
have encountered a large number of problems during the installation which
ultimately prevented us from using ROS on our development machine. As a
workaround, we used an AWS EC2 instance with Ubuntu installation on which
we installed ROS without problems. We still had to add a world to robot link
to the urdf description in order to make the simulator load the file.

e 3D models - the 3D models supplied by the manufacturer were not compatible
with Pybullet, which was manifested by the simulator rendering a simple shape
instead of the mesh. We have loaded the models in Blender [69] and exported
them in .STL format. We knew this format was supported because it was used
to store models used in exampled provided with Pybullet codebase.

e Target rendering - we are not aware of a way to render a visual-only object
in Pybullet, which we found problematic when rendering the target. Ideally,
the target would be visible on renders (so it can be used as pixel observation)
but it should not collide with any other objects. At the end, we used a visual
shape of the desired size (sphere with radius of 2.5 cm) with a tiny collision
object at the centre. We did not encounter issues with the object colliding
with the arm.

e Grasp quality - as we explained in the section about work with simulator, it
is often insufficient to rely on accurate physics simulation when grasping de-
formable objects. We have observed similar issues when grasping rigid objects.
The cube grasp was unstable even if the gripper held the cube at ideal grasp
points (centres of opposite cube faces). We have applied fake grasp solution
again - when both fingers were in contact with the cube and the finger posi-
tions were in closing motion, we create a constraint between the finger and a
cube with origin at the contact point. This resulted in a stable grasp.

The implemented environments can be seen on Figure 4.10. We will elaborate
more on agent performance in the next section.

52

Figure 4.10: Rigid object environments implemented in Pybullet. From left:
Reacher (arm needs to reach the blue sphere), Pusher (arm needs to push the cube
to the blue sphere), Grabber (arm needs to lift the cube to the sphere which is above
ground), Slider (arm needs to slide the cube towards the blue sphere which is out
of its reach)

4.3.3 3D cloth environments

Final set of environments used in this project finally employs a deformable object - a
piece of cloth. Cloth manipulation has been selected as the main focus of this project
from a variety of reasons. On the one hand, we chose it over deformable linear objects
(ropes, cables) because we were interested in the challenges of cloth simulation (much
harder than DLO simulation), because there is a more significant literature gap on
the topic of applying machine learning to cloth manipulation and finally because
it has more applications in home assistance robotics, which is a domain we are
interested in. On the other hand, we chose it over deformable 3D objects (plush
toys, sponges etc.) because the deformation behaviour of those objects is much
weaker and often can be neglected in manipulation tasks. In fact, some robotic
research on grasping [16]| uses exactly the same approach for grasping rigid and 3D
deformable object. Hence we have decided to dedicate this project to manipulation
of cloth and more specifically we focused on manipulating face towels and large
towels.

Due to the limitations of the simulator (as explained in section 4.2.3), we were
not able to focus on any cloth unfolding/flattening tasks because the simulated cloth
simply flattens itself over time and we were not able to fix this problem as it seems
to be a fundamental limitation of the simulator. We have instead decided to attempt
tasks which start with a cloth laying flat on a table (spawned in a random position)
and we propose 3 different tasks (as also seen on Figure 4.11):

e Diagonal folding - a square piece of cloth (with configurable size) is spawned
at a random position in front of the robot. The task of the agent is to grasp
any corner of the cloth and fold it diagonally (forming a triangle). The agent
is successful if a.) two diagonal corners are aligned within a small threshold
(6cm), b.) the cloth is no longer grasped by gripper, c.) all pairs of adjacent
corners are in a distance larger than 66% of their original distance (this is to
prevent crumpling of the cloth).

e Folding up to a tape - this task was used for evaluation of another de-
formable object manipulation algorithm (based on trajectory aware registra-

23

Figure 4.11: Cloth manipulation environments we are solving in this project. From
top: Hanger (arm needs to pick up a square cloth laid on the left and drape it over a
small hanger), Tape (arm needs to fold a large towel up to a tape), Folder (arm needs
to fold a square piece of cloth diagonally to create a triangular shape). Each row
represents a sequence of selected frames showing an agent successfully completing
the task.

o4

Figure 4.12: The level of randomness of our proposed environments. From left:
different initial positions of the tape in Tape environment, space where the cloth
can be spawned in Folder environment and space where cloth can be spawned in
hanger environment (top views).

tion) [21]. A classic bath towel is laid in front of the robot and folded to be
approximately 0.6m long and 0.2m wide (this roughly corresponds to the sizes
in original paper). There is also a black tape randomly spawned at one of the
3 possible positions - 5/8ths of the towel length, 7/8ths or at the very end of
the towel. The tape serves as a mark up to which the towel should be folded.
The robot therefore needs to grasp the towel on the right end and fold it over
up to the tape mark. The agent is successful if both corners originally on the
right end of the towel are within a small distance (6cm) from the tape and the
towel is no longer grasped by gripper.

e Draping on a hanger - the final task should to some extent resemble the task
of doing the laundry. An episode starts with a small rectangular towel spawned
randomly to the left of the robot and a small triangular hanger spawned to
the right of the robot in a fixed position. The hanger has infinite mass, so it it
is impossible to knock it over. Its position is randomized by a few centimetres
for the purposes of domain randomisation. The robot needs to grasp the cloth
and drape it over the hanger so it stays on it and does not fall to the ground.
The agent is successful if all corners of the cloth are above ground for more
than 15 simulation steps after the gripper released it (this ensures that the
cloth needs to be on the hanger, otherwise it would fall).

All environments have the following low dimensional state: gripper position, gripper
finger angles, cloth corner positions (12 scalars), arm goal position, arm goal gripper
fingers, arm velocities and whether the arm is grasping the cloth. Moreover, the
Tape environment and Hanger environments also contain a single additional scalar
representing the position of the tape or the hanger along y axis.

The environments implement sparse reward (3 on success and -1 on each other
step) and positive reward (100 on success and 0 otherwise). The reward magnitudes
were chosen experimentally by observing the learning performance. We did not im-
plement dense rewards at all because it would be difficult for the hanger task. More-
over, we would need to hand engineer the reward function to explicitly tell the robot
how to execute the manipulation, which defeats the purpose of end-to-end learning.
Finally, we seen from our experiments with rigid object environments(section 4.3.2)
that sparse rewards are sufficient when the learning is seeded with demonstrations
(more on this in sections 5.2 and 5.3).

95

£

Figure 4.13: Two greedy behaviours the agent has learned in presence of ill defined
reward. On the left, the agent grasps and throws the cloth in the air - it takes long
enough for the cloth to fall so the reward was awarded. On the right, the agent
learned to crumple the cloth so two diagonal corners become randomly aligned and
agent receives the reward.

The observation is either low dimensional (low dimensional state as described
above), high dimensional (84, 84, 3) RGB image or (4, 84, 84, 3) sequence of con-
secutive RGB images.

4.3.4 On the resourcefulness of agents in presence of ill de-
fined rewards

The task of an agent in RL setting is to learn a behaviour that leads to the largest
possible reward. The environment definitions we have outlined above are actually
a result of a very long experimentation that finally yielded a desired behaviours.
In this short section, we would like to describe some of the situations we have
encountered when designing the environments and how we have resolved them.

One of the first successes of the trained agent, which we have celebrated in early
March, was solving the Reacher environment in the presence of dense reward. The
task was comparatively simple - the agent simply had to reach the blue sphere and it
was receiving immediate feedback on its performance (the dense reward was growing
as the gripper approached the blue sphere). However, the observation we have used
at the time also included the depth render of the environment. We have discussed
this with Stephen James and he expressed concern that depth cameras in real world
are extremely noisy (the Kinova robotic arm has strong specular reflections and its
dark colour makes it hard to register structured light necessary for depth vision).
The noise in depth channel would be likely extremely confusing for the agent after
the domain transfer, so we have decided to only use RGB observation. However, we
found that reaching task becomes almost impossible in absence of depth channel.
The only indication of target position is the size of the ball but the given the low
resolution observations (84x84 pixels), the variation in size if quite small. The agent
simply had no way of knowing where the sphere is along a specific ray from the
camera.

After removing the depth channel from the observation, we were getting signif-
icantly worse average rewards (which, as we understand in hindsight, was caused
by problem we explained in previous paragraph). However, after a couple of hours,
the rewards started growing again and we optimistically thought that the agent has

26

learned the reaching behaviour. When we visualised the final policy, we saw that this
was not the case and the agent simply did a spinning motion at full speed, biased
towards the area where the sphere was. By doing this quick spinning motion, it was
guaranteed to hit the ball regardless of its actual position. After discovering how
missing depth channel affects the learned policy, we have decided to instead iterate
on the Pushing task - having a guarantee that both cube and target are in a single
plane on the table allowed the agent to fully understand the state even without
depth perception. In other words, there was a one to one mapping between object
positions and camera rays in pushing tasks, which was not the case in reaching.

We had many more issues with cloth environments as those were first of their
kind. When we have implemented diagonal folding environment for the first time,
the only condition for success was to align the diagonal corners. We were excited to
see that the agent almost immediately started getting very high rewards based on
the learning curves. However, visualizing the learned policy revealed that the agent
simply learned to crumple the cloth either by simply pushing it to create a small
pile or by lifting it and letting it fall. The crumpled cloth was likely to have two
diagonal corners aligned and the agent thus received the reward. We have resolved
this by introducing a condition that adjacent cloth corners need to stay at 66% of
their original distance from each other.

Similar situation occurred when we were testing the hanger environment. We
initially specified that the cloth corners only need to stay 5 or more centimetres
above ground for 10 simulation steps after the cloth is released from the gripper (we
have experimentally verified that this is enough for the cloth to fall to the ground
if hanging by the corner from the highest point the arm can reach). However, the
agent learned to grasp the middle of the cloth and lift it quickly, so it continues
going up for a brief moment after it was released. The agent learned to throw the
cloth in the air so it takes more than 10 simulation steps for it to fall and hence the
agent got the reward. We have simply solved this by increasing the number of time
steps the cloth needs to stay above ground before we deem the agent successful.

4.3.5 Summary

Overall, we have implemented 3 different kinds of environments to help us with
the development of the RL algorithm. The easiest environments to solve are 2D
environments Cartpole_v0 and Pendulum_v0. However, as those environments do
not support pixels observation, we reimplemented them with OpenCV renders that
can be passed to the agent as pixel observations.

More advanced environments require the algorithm to actually complete a robotic
manipulation task by controlling a robotic arm. We were inspired by OpenAl gym
robotics environments |20] based around Fetch [80] platform and simulated in Mu-
joco [79] and we re-implemented them in Pybullet [17] using the hardware available
in the lab. In total, we have created 4 different environments for rigid object ma-
nipulation: Reacher, Grabber, Pusher and Slider.

We are not aware of any open-sourced environments for robotic manipulation of
deformable objects and therefore we had to implement our own. More specifically,
we have created environments for 3 different tasks: folding a square piece of cloth

o7

diagonally, folding a large towel up to a mark indicated by a black tape and draping
a small rectangular towel over a small hanger.

We have encountered various challenges during the process of implementing the
environments, mainly to do with importing the hardware model into the simula-
tor, creating reasonable approximation of grasping in real world and specifying the
reward criteria such that the agent is not able to cheat.

o8

Chapter 5

Reinforcement learning

This chapter starts by describing our choices for programming languages, machine
learning libraries and hardware. We will then discuss our initial experimentation
with learning algorithms and justify our decision to use DDPG [22]. However, the
central part of this chapter will focus on the implementation of various improvements
to DDPG that ultimately led to an algorithm capable of solving the environments
we have described in the previous chapter.

5.1 Research tools

The selection of correct tools is an essential prerequisite for every research project.
We will briefly justify our choices and also outline any revisions we had to do over
the course of the project.

5.1.1 Programming languages and tools

We have decided to write as much code as possible in Python programming language
[81] for a variety of reasons:

e [t is de-facto industry standard for machine learning projects. As a result,
it has a massive ecosystem of libraries which is still growing (new libraries
being build on top of older ones).

e It is supported by our simulator of choice. Bullet currently only supports
Python, C and C++. However, we have decided to avoid C/C-++ so we can
do much faster prototyping and so we can (mostly) avoid dealing with memory
management.

e There is a lot of RL educational materials written in Python. Most code
examples, blog posts and reference implementations are written in Python.

We used standard Python tooling throughout the project. We installed all necessary
packages using Pip into virtualenv to avoid conflicts between Python installations.
We used Sublime text as our editor of choice as we did not feel that it is necessary
to use an IDE for Python code. We used Vim whenever working with remote
machines. As this is a research project, we did not feel it was necessary to set up

99

any continuous integration pipelines, and we used software testing only on a small
number of occasions.

Our codebase was version controlled using Git and stored on github.com. Our
work required us to fork multiple repositories (Bullet physics [17], OpenAl baselines
[77], OpenAl gym [19], KerasRL [82]) and we therefore extensively used git sub-
modules to embed forked repositories in our main repository and to version control
them (e.g. we knew which commit of Bullet works well with a specific commit of
the main repository). We used a simple git work-flow with a master branch holding
mostly stable code and feature branches used to track implementation of specific
features. When necessary, we also used a "develop" branch to store new, untested
code before a vital checkpoint (e.g. before a supervisor demo) to make sure the code
on the master is in working condition.

In the second half of the project, we started using various headless machines
with GPU acceleration for training instead of the personal computer, and we were
therefore often interacting with machines via ssh. A tool that made this considerably
easier is Mosh, which serves as a drop-in replacement of ssh. It, unlike ssh, does
not disconnect on network change and therefore allows the users to continue working
where they left off even after the commute home or more generally after any network
outage/instability. We usually used it in tandem with tmux to enable terminal
splitting and detachable sessions. We have scripted the necessary commands so
connecting and reestablishing session on a specific machine in DoC, Dyson Lab,
Azure or AWS only required issuing one command in the local shell of our laptop.

5.1.2 Important automations

We found that we are spending a significant amount of time doing the same workflows
over and over again which prompted us to develop a set of automation to reduce
the number of repetitive tasks:

e Evaluation visualisation uploader - as explained in section 4.3.4, looking
only at the evaluation rewards the agent is receiving might be often misleading.
We, therefore, needed a way to visualise its actual behaviour after each training
epoch. We initially rendered and saved a video from the simulator on the
remote machine and we always scp-ed the video to our laptop when necessary.
We later decided to write a module that automatically uploads the videos to
Google drive, and sorted them to folders by the name of the run. Google
automatically compresses the videos to save storage space, and it offers a web
player to play the video quickly. As a bonus, we could check the progress of
learning from a mobile device when we did not have access to a computer.
We estimate that we have collected around 1 million videos that are currently
stored on the drive.

e Lightly loaded GPU search - in the second part of the project, we felt
a need to start using GPUs to accelerate learning (more on this in section
5.1.3). Omne of the repetitive tasks was searching for a lightly loaded GPU
among "graphic" machines in DoC. We automated this by writing a small
script that repeatedly checks the GPU usage and reports it in the terminal.

60

e Hyperparameter search - in ML, it is often necessary to try different com-
binations of hyper-parameters to achieve good results. We automated this
task by using hyperopt [83] package to start the searches and we uploaded
the parameters and results to Google drive sheet (serving as a free database).
However, we never had enough time and computing power to execute a large
scale search.

5.1.3 Learning hardware

We have only been using a personal MacBook Pro Early 2015 (2.7 GHz Intel
i5, 8GB RAM 1867MHz DDR3 RAM) for all experimentation in the first half of
this project. We did not find the hardware limiting because we mostly worked
on improving the simulation environment. We have started working on learning
algorithms in late February and we continued using the personal MacBook Pro
for early experiments with low dimensional 2D environments. However, once we
started learning from pixels, we found two aspects of the hardware limiting - firstly, it
became impossible to store the replay buffer in memory as it required approximately
16 GB of storage even in small resolution. Secondly, training the network without
GPU acceleration was incredibly slow.

We have first attempted to do training on AWS, more specifically on GPU
g2.2xlarge instance. The instance has 1 CUDA-enabled K520 GPU and 15 GB
of memory (which was enough to store the slightly smaller replay buffer). The main
problem was the instance cost of $0.65 per hour, which was quickly depleting our
AWS educate allowance of $100. After running out credits, we started using Mi-
crosoft Azure NCG6 instance with roughly two times stronger NVidia K80 GPU
and 56GB of RAM. This instance allowed us to run multiple simultaneous exper-
iments comfortably and at $0.9 per hour, this option was better value for money.
However, we only had $100 worth of credit which we were mostly saving for emer-
gency situations.

Apart from cloud solutions, we have looked at the hardware provided by the
department. CSG kindly provided us with instruction on setting up Tensorflow [84]
+ CUDA on "graphic" machines. Those machines are equipped with a range of
NVidia GPUs with NVidia 1080 Ti being the strongest and NVidia 970Ti being the
weakest. The machines also have a variable amount of RAM, from 16GB on most
machines up to 64GB on three machines. The machines are available on "First come,
First serve" basis and are heavily utilised. We could not control how much memory
other users use, which tended to be problematic because Linux kernel implements
an OOM killer daemon which kills the largest process when exhausted RAM and
Swap threaten the stability of the kernel. As our training was always the largest
process due to the large replay buffer, our jobs were often killed.

Last hardware resource we extensively used during the project were machines
in Dyson lab. More specifically, we initially had access to bigdaddy (64 GB RAM,
4x NVidia 1080 Ti GPU) and later we were also given access to basalt (256GB
RAM, 5X NVidia Titan and 2X NVidia 980 Ti GPU) which we shared with other
PHD students. Having access to those machines improved our iteration speed and
efficiency because we no longer had problems with training jobs being killed and we

61

had dedicated access to some GPUs for training.

Overall, we used a large variety of hardware during this project depending on
our needs and the availability. We are genuinely grateful to the members of Dyson
lab for sharing a significant amount of their computing power for the purposes of
this project.

5.1.4 Deep learning libraries

The growing interest in artificial intelligence and machine learning motivated the
development of many competing deep learning frameworks. At the time of writing,
Tensorflow [84] was the most popular framework holding the strongest community
with Keras [85] being slightly less popular according to a deep learning framework
survey by Zacharias et al. [86] Keras itself is, however, a wrapper around Tensorflow
- it provides higher level API and allows for faster prototyping at the cost of some
expressive power.

We started the project with some early experimentation using Keras, but we later
settled on using Tensorflow. The main reason for those choices was the availability of
reference implementations of deep RL algorithm in OpenAl Baselines [77]| and Keras-
RL [82]. We wanted to avoid implementing the algorithms from scratch because deep
RL is known to be unstable and it is hard to attribute poor performance to either a
software bug, wrong hyper-parameter choice or merely a bad random seed. Having
a correct and well-tested implementation as a starting point significantly reduces
the likelihood of a software bug, and it also creates a baseline against which we can
compare our further experiments.

5.1.5 Summary

We have used Python programming language with standard Python tooling (pip, vir-
tualenv etc.) for implementation of all RL components and we version controlled our
codebase using Git. Our early experiments were implemented using Keras library,
and we later moved on to use pure Tensorflow. We have extensively automated our
work-flows to save time for actual research work. The need for computational power
was increasing rapidly throughout the project implementation, and we responded
to it by employing both cloud resources, DoC machines and Dyson lab machines.

5.2 First Experiments

We have briefly experimented with multiple reference implementations of various
RL algorithms before settling on a specific choice for this project.

5.2.1 DDPG - Keras

The first algorithm we have experimented with is DDPG [22]. It is a deep RL
algorithm based on the actor-critic architecture. The actor is a neural network that
tries to predict the optimal action in a given state from the partial observation it
receives. The critic takes in observation and action from which it tries to predict

62

F stands for number of filters, K for kernel size and S for stride

-200 Conv Conv Conv
RGB In 32F 64F 64F FC FC
o \ (64x64x3) 8x8 K x4 K 3x3 K 400 300

_600 4s 2s 18 @

pixels
low_dim
pixels divergent

—tan

Episode reward
|

Conv Conv Conv

uuuuu

RGB In a2k B4F e4F || FC FC |linear.
,,,,, (64x64x3) > 8x8 K kg 4x4 K K 3x3 K P 400 > 300
0 100 200 300 400 500 48 2 S 1 S @
Episode

(a) Episode rewards on pendulum_v0 (b) Network architecture used for learning with pix-
with low dim observations and with els observations on pendulum environments. For 3D
pixels observations. Note the diver- robot environments, we only increased the RGB res-
gent behaviour occurring with bad olution to 84x84.

hyper-parameters.

Figure 5.1: Episode rewards on pendulum environments and network architecture
used.

the Q-value of that action in the given state. In other words, it predicts a measure
of how good is the action given the state the agent is in. The critic is learning the
Q-value by minimising the Bellman loss while the actor is merely optimising for the
maximal output of the critic. We have covered DDPG more formally in Background
chapter of this report (see section 3.4.2).

Our initial experiments with DDPG were based on reference implementation in
Keras-RL [82]. We had to make only minimal adaptations to make the code work
with our 2D environments and later with our 3D environments. The algorithm
converged quickly for the low dimensional 2D pendulum. However, we had trouble
making it converge for our pendulum environment with pixel observations. We
experimented with multiple network architectures, and we found that it is necessary
to have at least two fully connected layers after the convolutions to achieve good
results. The network architecture we have used for learning from pixels in Keras
experiments can be seen in Figure 5.1b.

We also found an interesting issue with the performance degrading if the agent
is trained for more than 30000 timesteps. This behaviour seems to occur when critic
network starts predicting extremely low Q-values (critic estimates started diverging).
This is a common issue in Q-learning algorithms, as also noted by Mnih et al.
[56]. We hypothesise that this might be caused by caused by a.) wrong setting of
learning rate, b.) too fast propagation of weights to target networks, c.) too small
replay buffer (changes of Q function cause large changes of policy which again causes
changes in Q function) or d.) lack of regularisation on the critic, which then starts
over-fitting. The behaviour went away with hyperparameter tuning (doubling replay
buffer size to 1 x 10°, decreasing target model update by 10x to 1 x 1073). Overall,
learning from pixel observation achieved comparable performance to learning from
low dimensional observation, as seen in Figure 5.1a.

We used the same algorithm to also experiment with Reacher environment. The
learning unsurprisingly converged when using dense reward and low dimensional
observation. It was, however, a straightforward task because the agent simply had

63

| LW ,,,‘u\r*\\r««,n n
fi '

Episode length

25
sparse

20 dense
positive

0 50000 100000 150000 200000 250000 300000
Training step

(a) Episode lengths on Reacher low
dim environments (lower is better) with
dense (distance to target), sparse (3 on
success, -1 otherwise) and positive (100

Episode reward

0 200 400 600 800 1000
Episode

(b) Pusher never achieved success by
random exploration with normal noise.
Hence, the rewards are flat at -301 (-1 for
each timestep in 301 steps long episode).

on success, 0 otherwise) reward struc-
tures.

Figure 5.2: Learning plots from experiments with DDPG on 3D robot environments
- reacher and pusher.

to learn to reduce a specific component of observation - relative gripper and target
position. Moreover, we used dense reward, so the agent was immediately rewarded
for decreasing the distance between the gripper and the target. Learning with sparse
reward took considerably longer and showed only limited signs of progress, as seen in
Figure 5.2a. Our final experiment was to try a multistage task with sparse rewards,
such as Pushing. On figure 5.2b, we can see that the episode rewards are flat at
minimum reward (-301) which means that the agent never reached a reward state
and therefore could not learn the right behaviour. This is consistent with prior
work by Vecerik et al. who report that pure DDPG cannot solve any of their four
manipulation environments if the agent is awarded only sparse rewards. [7] We
hypothesized that the exploration noise (a noise term added to the action at each
timestep to make the agent explore different behaviors) is too low or not distributed
correctly, so we tried normal noise with standard deviation of 0.2, OrnsteinUhlenbeck
noise with # = 0.15 and uniform noise sampled from [0.2,0.2]. OU noise seemed to
be slightly more successful with two successes out of 300k timesteps, compared to 0
for normal noise and uniform noise. However, we did not experiment with multiple
random seeds so we cannot show statistical significance of this result and we believe
random effects might have caused it. Overall, we see that although DDPG can
solve simple environments with dense rewards both learning from low dimensional
observations and from pixels, it has trouble converging in the presence of sparse
rewards.

5.2.2 DQN

As we previously mentioned, we had many difficulties when we were trying to make
Keras implementation of DDPG work with pixel observations, and we had to exper-
iment with multiple network architectures. There are not any reference implemen-
tations of DDPG build for environments with RGB observations available online, so
we have decided to try an algorithm which achieved substantial successes in Atari

64

environments. DQN uses only a single neural network to approximate the Q-value of
all possible actions in a given state. This can be done in two ways - either by passing
an action as network input and having Q-value as output (which would require a
forward pass for each action to determine maximum Q-value) or by passing only the
state as input and having a single output for each action (in this way, one forward
pass through the network is sufficient to get Q-values of all actions and therefore
get the maximum). The exploration is done by using e-greedy policy, which takes
action with highest Q-value with probability (1 — €) or takes a random action with
probability e. We provide a more detailed description of DQN in background section
2.2.

In order to use DQN, we had to discretise the environments. For pendulum,
we went with simple discretization with 5 discrete actions: (-1, -0.5, 0, 0.5, 1). For
manipulation tasks in our 3D robot environments, this would lead to 5 = 625 which
would create a fairly large network. We instead went for a simpler discretisation
scheme with only three values in each dimension (-0.5, 0, 0.5) leading to only 81
actions.

The results of learning on Pendulum environments can be seen on Figure 5.3a.
Learning on both low dimensional and pixel observation converges, with pixel ob-
servation having slightly worse final performance. When compared to DDPG, DQN
converges on fewer episodes than DDPG and achieves comparable final results.

The situation is however different with low dimensional Reacher environment,
where DQN does not show any progress regardless of the reward structure (as seen
in Figure 5.3b). We have visualised the learned policy, and the arm had fast er-
ratic behaviour. We hypothesise that coarse discretisation of the environment does
not allow the arm to move precisely enough the accomplish the task. We did not
experiment with different discretisation schemes because we believed that cloth ma-
nipulation would require a very precise control which won’t be achievable without
an exponential increase in the number of actions. Moreover, we are worried that
DQNs would show same limitations as DDPG when training with sparse reward.
Overall, DQNs did show some promise on 2D environments, but we do not consider
it a viable option because of the need to discretise high dimensional action space (4
for position control and 10 for velocity control).

5.2.3 Other experiments

We have also experimented with Hindsight Experience Replay [63], TRPO [65] and
PPO [64]. Each of those algorithms had some drawback that discouraged us from
further work with it, and therefore we do not propose a more formal evaluation here.

Hindsight Experience Replay (HER) tries to address the problem of sample ef-
ficiency in sparse reward settings. In most RL algorithms, there is only very little
an agent can learn from failed episodes (episodes with no positive reward). HER
proposes to alter the goal of the agent when replaying a previous experience, so
it achieves the goal. Let’s take a pushing task as an example. Assume an agent
randomly hits the cube and moves it somewhere, but not to the target position.
Normally, there would be no reward for the behaviour, so the agent does not learn
anything. With HER, the episode is artificially made informative by moving the

65

-400 | i f

il 11
'y ‘ |
pixels
low_dim

Episode reward
Episode reward

46
sparse
-1000 dense
positive

0 100 200 300 400 500 0 20000 40000 60000 80000 100000
Episode Episode

(a) Pendulum with low dim and pixels (b) Episode lengths on Reacher low dim

observations. Both converge with pixels environments (lower is better). All

having slightly worse performance. curves fluctuate between 45 and 50,
which means no convergence.

Figure 5.3: Learning plots from experiments with DQN.

goal to the location where the cube landed in hindsight (during training, when the
transition is sampled), so that the agent will be rewarded. More generally, we always
change the goal of an episode to be the final state, so the agent learns how to achieve
different goals. The drawback of this algorithm is a difficulty to change the goals
"in hindsight" for some of our cloth manipulation tasks. For example, in Hanger
task, the robot needs to drape the cloth over a hanger, and this is the only way it
can achieve the reward. There is no straightforward way to make a final result of
a failed episode to be the goal for training because there is only one very specific
goal in this task. We ended up not experimenting further with HER because of this
fundamental limitation.

TRPO and PPO are both from the same family of algorithms and PPO is es-
sentially a simplified version of TRPO. Both are said to be very robust to hyper-
parameter selection which made them appealing to us. We tested the two algorithms
on our pendulum environments, and we achieved comparable results to our experi-
ments with DDPG and DQN. Both algorithms also worked well with dense reward
Reacher task. However, we were not able to achieve convergence on sparse reward
Pushing, most likely due to the agent failing to find high-reward states often enough.
We ceased to experiment with those two algorithms because we found considerably
less research on how to improve them as compared to DDPG. As we did not have a
good road-map of things we could try to make the algorithms work with our more
complex tasks, we have decided to continue our work on DDPG.

5.3 DDPG and implemented improvements

As we have seen in the last section, DDPG has shown promising results, but it did
not work well when using sparse reward structure because exploration using random
noise did not hit the successful states often enough. We, however, wanted to avoid
using dense rewards because it would mean going down the path of reward shaping.
This is difficult to do in practice on many complex manipulation tasks, and it can
encourage the suboptimal behaviour. For example, one way to define dense reward

66

in pushing task would be:

r=)\1 * dgrip/cube +)\2 * dcube/target

where A; and Ay are some positive parameters, dg,ip/cupe is the Euclidean distance
from gripper to the cube and deype/targer 1s the Euclidean distance between the cube
and the target. The reward function will, therefore, encourage the robot first to
reach the cube and then attempt to push it towards the target. However, we have
noticed that an agent might learn to try to push the cube from the top and drag it
to the target, which is much worse than pushing the cube from the back (it is unsafe
for the robot fingers that can break and it is also more likely to loose the cube during
the pushing motion). We believe that the agent learned this behaviour because the
reward function discouraged it from going a bit further from the cube to get behind
it. We could have solved this by introducing a more complicated reward function,
but that would defeat the purpose of RL where the robot should explore the best
behaviour and learn from its successes and mistakes. It is therefore essential to
make sure DDPG can work well with sparse rewards. In the following subsections,
we will describe various improvements to DDPG we have implemented to get the
final learning algorithm used in this project. We defer sharing the experimental
results and ablation studies of this algorithm to the Evaluation (Chapter 7).

5.3.1 Basic DDPG implementation

We initially considered using the DDPG implementation in keras-rl [82| that we
have evaluated in the previous section. However, the library is written with multiple
layers of abstractions that ensure that different learning algorithms expose almost
the same API calls to the user. However, we were aiming to do in-depth work only
on DDPG, so we thought that this design decision introduced a lot of unnecessary
complexity for out project. We have therefore started looking for other reference
implementation we could use as a basis for the future work.

One such implementation is available in OpenAl baselines repository [77]. At
the time of writing, it was the most starred repository with RL algorithm implemen-
tations on GitHub which gave us a lot of confidence in implementation correctness.
The code was using TensorFlow [84] instead of Keras and it was well-structured into
multiple components:

e main.py - entry point responsible for argument parsing, environment initial-
isation and starting the training.

e training.py - module responsible for training the agent. It collects transitions
in the environments according to current policy, calls training functions of the
agent and evaluates the performance after each epoch.

e memory.py - implements the replay buffer storing the transitions collected
in the environment.

e models.py - the code describing the actor and critic network architectures.

e ddpg.py - the code implementing the learning algorithm.

67

All with 3x3 kernel, 32 filters, stride 2

RGB In FC
(84x84x3) Conv —>»{ Conv > Conv —» Conv > 256 > o5 > 256 —‘

tanh

FC FC FC FC .
Full state 256 —> 256 —> 56 —> 256 Imea

Figure 5.4: Network architecture with asymmetric actor and critic (most important
change is highlighted in red).

e noise.py - implements the functions to generate exploration noise (Ornstein-
Uhlenbeck noise and parameter perturbation noise).

We have decided to mostly retain this structure for the remainder of the project.
We benchmarked the Keras-RL and Baselines implementations on pendulum pixels
environments, and we did not see significant differences in performance of the trained
agents or in the speed of learning. We have therefore decided to use the OpenAl
baselines implementation.

5.3.2 Asymmetric actor-critic

The first improvement we implemented was using asymmetric inputs for the actor
and the critic, as proposed by Pinto et al. [15]. When we are training the agent
in simulation, we have access to the full state of the environment (positions and
velocities of each object) which is not the case in the real world, where we only
have a partial observation (e.g. RGB images from the camera). The idea of using
asymmetric-actor-critic is to leverage the low dimensional full state during training
of the agent but only use partial observation at test time (possibly in the real world).
The critic learns to estimate the Q-function much faster because it is presented with
complete information about the environment and it does not need to train the
convolutional network. We show the network architecture at this step in Figure
5.4. We have experimentally found that slightly more fully connected layers seem
to work better for our use case, which we have already reflected in the figure.

The ablation studies provided in the paper showed a significant improvement
of using asymmetric critic over pure DDPG. The symmetric DDPG agent never
converged on their set of tasks when learning from pixels, while the one using asym-
metric DDPG did. The authors also show significant improvements in the learning
stability. We have also experimentally verified the improvement both in the speed
of learning as there are significantly fewer parameters that need to be optimised and
in terms of the agent performance.

68

5.3.3 N-step returns

N-step returns are used to facilitate faster propagation of Q-function values through
Bellman equation and they, therefore, increase the learning speed. In classic DDPG,
the critic is trying to minimise Bellman loss defined as:

Ll—step = (Q(St7 at) — Ty — Q*(5t+17 ﬂ-* (Ot+1)))2 (51)

In other words, the predicted Q-value of taking action a; in the current state s;
should be as close as possible to the awarded reward plus Q-value of taking action
according to the current target actor W*(Ot+1) in the next state s,,1. Q" is the target
critic (second critic network updated at a slower pace to stabilise learning). N-step
Bellman loss is similar:

N
Ln_step = (Q(3t7 at) - Z '7irt+i - VNQ*(SHNa 7*(0t+N>))2 (5-2)
=0

The main difference is that we are looking N steps into the future, so we would
like to have Q-value of current action-state pair Q(ay, s¢) as close as possible to
the discounted (by discount factor) Q-value of the state we reach after N-steps
plus the discounted rewards we collect on the way there. N-Step returns have been
empirically shown to improve performance on locomotion tasks significantly [62].
The ablation studies in their publication reveal that N-step returns are particularly
useful when used in sparse reward environment. In sparse reward setting, the reward
signal is distributed very unevenly - only a couple of states award reward on entry.
It is therefore important to quickly propagate where those states are.

However, even though N-step returns have been empirically shown to improve
performance, it is essential to select a correct value of N. With 1-step update, the
training algorithm always considers a single transition at a time and therefore it
does not matter which policy generated the transition. With N-step updates, the
algorithm considers a sequence of N-transitions which were generated according to a
specific policy. Therefore early training iterations will have different N-step returns
than later iterations (which is not only due to environment randomness). As DDPG
is an off-policy algorithm, this breaks some fundamental assumptions in its design
and becomes detrimental as a value of N increases. We have found N = 5 and
N =10 to work reasonably well, but increasing it further made performance worse.

In terms of the implementation, we add Ly_ge, to the critic loss equation, so
the critic loss becomes:

Lcritic =)\NfstepLNfstep + Alfstelefstep +)\2 (53)

where Ay_gep and A\j_g., are hyper-parameters that weight the contribution of two
Bellman losses and)\, is the 12-regularization term.

5.3.4 Prioritized replay buffer

Replay buffer is the component that stores the transitions generated by the agent
interacting with the environment, and hence it lets the agent reuse experiences from

69

the past during training. Each transition contains information about the original
state (low dimensional representations and pixel observation), action taken, reward
awarded and information about the new state (the result of the action on the en-
vironment). During training, DDPG takes transitions randomly in mini-batches
from the buffer, so it always sees a large temporally uncorrelated sample of previous
states. This stabilises learning and decreases the likelihood of oscillations (agent
"overwriting" old learned behaviours with new ones).

Some of those transitions are naturally more informative than the others. For
example, imagine an agent acting in a sparse reward setting that has never been
given any reward. Suddenly, it randomly executes the right action in the right
state (thanks to the exploration noise), and it stores a transition that contains a
reward. This transition is arguably more valuable than the other transitions in the
buffer because it is the only one that describes the desired behaviour of the agent.
However, suppose then that over time, the agent learns to always do the rewarded
action in that specific state. This transition will, therefore, become less valuable
because it is not bringing any new information to the agent. In general, transitions
that are likely to teach the agent something new are the most valuable. We can
measure this by looking at Bellman losses as described in 5.3.3 (they are also called
temporal difference errors). Large TD errors mean that critic did not understand
well the action-state pair in the current transition, so it miss-predicted the Q-value.
The transition is therefore vital for further learning.

This idea was explored in a paper by Schaul et al. [87]. They propose a propor-
tional sampling strategy, where transition ¢, which had TD error §; when last used
for training, is sampled with probability:

Pl) = P (5.4)

>k D

where « is a hyper-parameter controlling for the strength of prioritization (when
a = 0 there is no prioritization) and p; = |§;| + €. € is a small positive constant
that ensures a transition can be sampled even if it had zero TD error at some point
during training. A new transition is always given maximal priority (currently highest
priority value in the buffer) because we do not yet have any TD error information.

However, having a different probability for each transition introduces a bias
that needs to be corrected. The authors of the paper cope with the problem by
introducing importance weights:

1 1

__)/3
N P(i)

where [is a hyper-parameter and N is the number of transitions in the buffer.
When training, we multiply the critic loss coming from a specific transition by its
importance weight. If 5 = 1, multiplying the critic loss by weight fully offsets the
increased probability of sampling the transition. In practice, we do not need to use
B =1, and we either use a lower value throughout the training or start with a lower
value and anneal it towards one during training.

In terms of implementation, a sampling method linear in size of the replay
buffer would not be sufficient because selecting transition will dominate the CPU

70

usage of the algorithm. We instead implement an alternative method based on
SumSegmentTree data-structure implemented in OpenAl baselines |77]. In our case,
the tree stores transition probability values. We can then uniformly sample a float
between 0 and 1 and query the segment tree to return a maximum index such that
the sum of elements up to and not including the index is less than or equal to the
number we have sampled. We are effectively searching the first element whose corre-
sponding value in cumulative distribution is larger than a uniformly sampled value
between 0 and 1. Segment tree allows doing this operation in O(logN) time. Setting
a value in a tree is also O(logN) time which makes the data structure ideal for our
mixed insert/query workload. However, even when we use algorithmically efficient
implementation, the benchmarking revealed that roughly one-fourth of the execu-
tion time is spent sampling. We believe this could be improved if we implemented
the memory module in C as a Python extension to get full control of the underlying
data-structures and to reduce the overhead of interpreted code.

5.3.5 Demonstrations

As we have shown in Figure 5.2, DDPG has problems to converge on complicated
tasks with sparse rewards because it is statistically very unlikely it will achieve a
correct behaviour by random exploration. One way to overcome this issue is to seed
learning with a small number (in our case 20) of demonstrations to show the agent
what sort of behaviours lead to the rewards. This idea was explored by Vecerik et
al. |7]

Generating demonstrations

One of the obvious downsides of using demonstrations is that we first need to create
them. There are two main approaches to collecting demonstrations:

e Real demonstrations - involves a real robot which can be either a.) kines-
thetically force controlled [7], b.) controlled directly by joystick/keyboard or
c.) controlled more intuitively by a VR controler [88]. In this case, the demon-
strator manually controls the robot to achieve the task. The main advantage
is that it does not require any task-specific programming and it easily scales
to a large number of different tasks. It is easy to imagine that in future it
will be enough to show the robot the correct behaviour to achieve the task, it
will learn to generalise it in simulation and then execute it in the real world.
The drawback of this method is that we would need to construct a pipeline
to control the robot, process the data and create a demonstration file. More-
over, we wanted to do experiments with changing environments and numbers
of required demonstrations, which would mean we would need manually recol-
lect the observation after every such change. The demonstration collected on
real robot is translated to simulation and stored in replay buffer to be used in
training.

e Programmatical - another option is to create a program that controls the
robot to achieve the task in simulation and record the transitions. This is

71

2
Reach down to
corner

1
Hover above cloth
corner

Gripper, 6
open Release

d<0.05 not grasping d<0.05

4
Hover above cloth
center

5
Reach opposite
corner

3
Close gripper

Gripper,
closed

Figure 5.5: Example of demonstration state machine for diagonal folding task.

feasible because we can access the full state of the environment in simulation
and therefore it is reasonably straightforward to estimate (possibly subopti-
mal) trajectory for the robot in the majority of tasks. This method does not
require real robot at all.

In our case, we have decided to go for programmatical approach because it allows for
fast iteration on environment specifications. One could argue that there is no point
in using RL for those tasks if we can simply write code that solves the environment
to collect demonstrations. This is not true for a couple of reasons:

e Demonstration code uses full state - one of the main reasons it is rea-
sonably straightforward to write demonstration code is that we have access to
the full state, including the exact positions of the gripper, cloth corners, tape,
hanger etc. This allows us to write things such as: reach a corner, grasp it,
hover over cloth centre point, reach down to the opposite corner, release. We
would need to create a complex vision pipeline if we were to do the same thing
only from pixel input (as the agent does at test time).

e Demonstrations can be suboptimal - we do not necessarily need to pro-
vide optimal demonstrations because their purpose is only to seed the learn-
ing. Once the agent learns the demonstration behaviour (or something close),
nothing is stopping the agent from improving on it.

e Demonstrations can fail - sometimes it is difficult to achieve 100% success
rate with demonstration code. However, when we are collecting demonstra-
tions, we can throw away those that failed. In practice, we throw away ap-
proximately 25% of demonstrations, and this number was considerably larger
in the past.

We can, therefore, see that the role of RL is still very important even when it is
seeded with demonstrations. It can improve on the success rate, find more suitable
trajectories and most importantly, learn to work with pixel observation.

We collect the demonstrations programmatically by examining the full state
of the environment and implementing a finite state machine. In each state, the

72

demonstration code executes an action (e.g. move toward cloth corner), and it can
advance to the next state if it fulfils an advancement condition (e.g. the gripper is
within 5 cm from the cloth corner). The demonstration code rarely handles errors
explicitly, and it instead repeats the whole sequence of actions until it succeeds or the
environment time limit is up (we wanted to avoid over-engineering the demonstration
code because its purpose is only to seed the learning). We show our state machine
for the diagonal folding task in Figure 5.5. The system stays in a given state unless
the leaving condition is met. All states apart from 3 and 6 are implemented by
sending action proportional to the vector between gripper position and goal. 3 and
6 close and open the gripper respectively. We store all transitions so we can use
them later to seed learning (more on this in later subsections).

On the difference between demonstrations and reward shaping

We have presented a couple of arguments against reward shaping at the beginning
of section 5.3 and we gave a practical example from our observations how shaping
reward can lead to suboptimal behaviour. However, we claim in this section that
engineering a task solution and showing it to the agent is the necessary and right
thing to do. Even though both demonstration and shaped reward accomplish the
same end goal to make the agent visit the right areas of the search space and
ultimately learn the task, they have one fundamental difference.

Shaping reward constraints the agent to the behaviour which is described by
the reward shape. Any deviation from the trajectory encouraged by this reward is
immediately penalised, even though it might lead to better end outcome (consider
the example with pushing from the introduction to section 5.3). The demonstra-
tion shows the agent how to achieve the reward but it does not discourage further
exploration, so even though the demonstrated behaviour is suboptimal, it can learn
the more optimal behaviour through more training episodes. In conclusion, both
demonstration and shaping reward accelerate learning by leading the agent towards
the right behaviours, but only suboptimal shaping reward function puts an upper
bound on its final performance.

Prioritized replay buffer and demonstrations

After we successfully collect some demonstration transitions, we can store them
in the replay buffer, and the agent will randomly sample them and use them for
training (as proposed in the DDPGID algorithm by Vecerik et al. [7]). DDPGD
also makes transitions more likely to be sampled by adding a small constant to the
priority of demo transition. However, we found that tuning this constant is very
difficult because TD errors tend to vary by multiple orders of magnitude between
runs and also during training. We, therefore, suggest using a relative measure instead
and increase the probability of sampling demo transitions by some fixed percentage
of current maximal priority in the minibatch. More specifically, the priority will
become:

pi =10 +€e+e max pg (5.5)

keminibatch

73

The sampling probability can then be computed from equation 5.4. ¢, is a hyper-
parameter that controls the ratio between demonstration transitions and normal
transitions. It would be an option to anneal this parameter down to 0 as learning
progresses but we did not find it necessary as the TD error of demonstrations goes
down and therefore their sampling becomes less likely even without this intervention.
In practice, we use ¢; = 0.2. DDPGID also suggests adding a term proportional to
the square of actor loss to the priority term, which we followed.

Finally, DDPGIfD starts the training with some number of pre-training steps.
This means that we sample a few hundred mini-batches from the buffer and train
the networks before starting collecting new transitions. This behaviour leads to an
agent that can immediately have good attempts at completing the task. However,
too much pretraining can lead the agent to a local minimum that is difficult to
escape.

Behavioural cloning

The demonstrations in DDPGfD algorithm do not get any special treatment when
computing network losses. They are simply more likely to get sampled. Nair et al.
[89] propose a method that allows the agent to leverage demonstrations more effec-
tively by directly incorporating them to the actor loss computation. They propose
adding another loss term, Lgc = (7(0;|0,) — a;)?, where 7 is the actor, 6, are the
actor parameters, o; is the observation in transition and a; is the action stored in
transition. This loss term is called behavioural cloning loss. We add it to the loss
only when an actor is trained on a sampled demonstration transition. It encour-
ages the actor to compute the same action m(0;|0,) as was done in demonstration
transition a;.

However, the authors point out that simply adding this loss each time would
prevent the agent from improving on the demonstration behaviour because it will
always just try to imitate the action from the demonstration. In order to overcome
this limitation, they suggest only applying Lp¢ if the action proposed by the actor
has worse Q-value than the demonstrations action (stored in transition tuple). They
call this method Q-filter. The behavioural cloning loss then becomes:

j (m(0i0r) — ai)?, if Q(si, a:lbq) > Q(si, m(0i|0x)]0q)

BC = :
0 otherwise

where () is the critic, 6 are its parameters, and s; is the state in transition tuple.

Q-filter guarantees that the actor is imitating the demonstration behaviour only

when the action it computes is worse (as judged by the critic). If it is better, the

loss term is 0 and no imitation happens.

Reset to demonstration

One thing we did not address so far is the low probability of the agent randomly
hitting the goal state in a complex manipulation task. Even with demonstrations
to seed the learning, it is initially still tough for the agent to complete the task end
to end to create its successful episodes. A method proposed by Nair et al. [89]

74

is to sometimes reset the environment to a state which was encountered during a
demonstration, so the agent could start the experience collection closer to the goal.

For example, in the diagonal folding task, the robot always starts in some initial
joint configurations with the cloth laying on the table. To achieve the reward, the
robot would need to successfully reach it, grasp it, drape it over itself and release it at
the right time. This is arguably a challenging sequence of subtasks. However, if we
reset it to some state encountered in demo episode, we can significantly shorten this
sequence. For example, if we reset it to a state where it is already grasping a corner of
the cloth, it just needs to drape it over and release it which is more straightforward.
Consequently, the agent will be able to start collecting own successful experiences
earlier on in training and it will have the much more diverse set of transitions leading
to reward.

Whenever an agent finishes a training episode, we reset the environment to a
random demo state with probability reset_to_demo_rate. We start with high
probability (0.9) and quickly anneal to low probability (0.1). Any demo state can
be sampled apart from the last five steps before the demo episode termination. This
is to avoid the overhead of many environment resets and to make sure agent needs
to generate some of its transitions before the reward is given.

Implementation-wise, we store the state of simulation after each demonstration
step in a file with a specific UUID (generated at the start of training run), and we
reload it when we that specific state is sampled for reset. We also need to re-generate
the constraints between soft bodies and rigid bodies which are not saved.

Summary

Adding demonstrations is one of the most complex improvements to DDPG we
have used. We generate the demonstrations programmatically based on the full-
state of the environments and store them in a replay buffer with increased priority.
The actor also tries to imitate them whenever its actions are worse compared to
demonstration action. Finally, they help the agent to reach reward states early in
training by randomly resetting the environment to demonstration state where the
agent is closer to getting the reward.

5.3.6 Distributed DDPG

The original version of DDPG is alternating periods of collecting new transitions
and periods of training. According to our profiling results, it spent roughly the
same amount of time on both tasks (in case of cloth environments, for others it
spent more time in training as simulation was significantly cheaper). There is,
however, no reason why transition collection and training cannot be happening in
parallel. In fact, Barth-Maron et al. implemented DDPG with multiple simulator
instances collecting transitions independently in parallel with training. [62]

We have also separated the acquisition of new experiences into a separate thread,
so it is happening in parallel to training. We needed to synchronise the replay
buffer data structure, so there are no concurrent reads (by the training thread) and
writes (by the experience collector thread). We can also spawn multiple threads to
collect experiences in parallel, but we did not find it necessary in practice. Having

75

one thread doing training and one thread collecting transitions ensures roughly the
same ratio of the number of new experiences to the number of training steps as in
original sequential DDPG. Spawning multiple simulators will consume more RAM,
which is the resource we are trying conserve to run multiple experiments on the
same machine.

5.3.7 Auxiliary predictions

Sometimes it is difficult for the agent to learn the most informative set of features it
should predict from the high-dimensional RGB input. One way to help it would be
to make the agent predict the low dimensional features of the environment by adding
another network output that estimates some specific features we believe might be
necessary for the task. For example, in the case of cloth manipulation, the useful
features might be the position of cloth corners, or in the case of pushing environment,
it might be the position of the cube. Auxiliary predictions were used by James et
al. to help to transfer the behaviour learned in simulation over reality gap. [13]

Another advantage of having auxiliary predictions is the ability to better un-
derstand what is going on under the hood of the network. Specifically, we could
print and visualise the predicted positions of cube and gripper corners to make sure
the network understands how to translate the RGB input into the low dimensional
state. This becomes even more important when we attempt the domain transfer.

Implementation-wise, we added loss terms to the actor for predictions of all aux-
iliary features - object configuration (this is either cloth corners position or cube
position), target configuration (this is either target position for pushing, hanger
position for hanging or tape y-position for folding up to tape) and gripper posi-
tion. The loss terms were simply weighted square errors between the prediction and
ground truth. The ground truth was already part of the low-dimensional state, so
we did not need to do any further work with environments or replay buffer. The
changes to the network are highlighted in Figure 5.6 in blue.

5.3.8 Combining low-dimensional and pixel actor input

We have noticed that it is difficult to predict the gripper position from the pure RGB
input accurately. Without the depth perception, the agent can theoretically infer it
only from the scale of the gripper (which varies minimally on low-resolution image)
or from the overall position of the whole arm (extremely difficult). However, having
an accurate position of the gripper is essential for successful manipulation of cloth
because the agent needs to reach it and grasp it with a sub-centimetre accuracy (on
the z-axis).

We mitigate this problem by providing the agent with additional pieces of in-
formation that are readily available at test time anyway - joint angles and gripper
position (real and IK goal). Joint angles can be read from real robot sensors at
test time, IK goal is available in the environment state and gripper position is com-
puted by forward kinematics from joint angles (which is already implemented in
the robot firmware). Those pieces of information are concatenated with a flattened
output from last convolutional layer. The agent no longer needs to infer gripper po-

76

All with 3x3 kernel, 32 filters, stride 2

FC FC
5 g Far
(823&?4!(%) Conv > Conv F»{ Conv |->»| Conv > 256 256

Y

Y

Joint angles
Gripper pos

»

| FC FC FC FC

> 256 [| 256 [] 256 [] 256 >
Full state >

Figure 5.6: Final network architecture. Improvements from section 5.3.7 are high-
lighted in blue, section 5.3.8 in red and section 5.3.9 in green.

sition from scale and it can instead learn forward kinematics or just use the gripper
position. The architectural change is highlighted on 5.6 in red.

5.3.9 Twin critic

The final improvement we have implemented was taken from the work by Fujimoto
et al. [61]. The authors prove that actor-critic methods are prone to overestimating
of the Q-values and also show empirical results from locomotion environments to
support their claim. We have also empirically observed the overestimation of Q-
values in our tasks.

They propose 3 different (not mutually exclusive) methods to fix the overesti-
mation bias:

e Twin critic - maintain two critic networks to estimate Q-values and always use
the minimum estimate. This method is similar to double-Q learning proposed
by Van Hasselt et al. [90]. The critic with higher estimated Q-value servers as
an upper bound for the full estimate, so this method will never overestimate
Q-values more than classic DDPG.

e Regularize target critic estimates with random noise - two action/state
pairs that are very close to each other should have similar QQ-values. This
behaviour is implicitly achieved by using a neural network as function approx-
imator, but it is possible to require it explicitly by using a noisy version €, of
target actor with standard deviation in bellman loss (updated form of equation
5.1):

Li—step = (Q(st,ar) — 10 — Q (5151, T (0441) + N(0,¢,)))? (5.6)

This regularisation would reduce the variance of Q-value estimates. We also
clipped the noise normal distribution to avoid randomly getting very high /low
values.

e Delay target network updates - the last improvement proposed by the
authors is to delay target network updates and update them only once every

77

n steps. Although this is similar to merely reducing 7 (the parameter that
controls how quickly target networks follow actor and critic), the authors argue
that delaying the update by a couple of steps would improve the quality of
update (do less good quality updates rather than many poor quality updates).

We have implemented all 3 improvements but we have found that regularizing target
critic estimates with random noise significantly decreases performance so we stopped
using it in final algorithm. For the other two improvements, we did not notice
significant improvement but we left it in as a baseline for ablation studies. The
architecture changes are highlighted on Figure 5.6 in green.

5.4 Summary

We have decided to use DDPG as the learning algorithm for this project. However,
in its original state, it was not able to solve any of the more advanced manipulation
tasks with sparse reward. We have justified the need to work with sparse rewards,
and we have implemented a large number of improvements to DDPG, most of which
are current state-of-the-art research in deep RL. The majority of the papers we have
used as a resource for implementing those improvements were published in the last
year (during the ongoing project work). The combination of those improvements
allowed us to train the agent and achieve very good performance on all manipulation
tasks. We will analyse the performance in more detail in evaluation (Chapter 7). In
the next chapter, we will discuss our work on crossing the "reality gap".

For completeness, we also list the final equations we used. The critic loss was
computed as follows (with passing action a; from transition tuple):

Lcritic(&) =)\nsteanstep(a)wi + Alstelestep(a)wi + ALQLSeg(QQ)v
N

Lustep(@) = (Q(s1,0) = Y 7'reas — vV mini—1 2Q; (sion, 7 (014n)))%,
=0

Llstep(a> = (Q(Sn a) — Tt — mmi:1,2Q:(3t+1> 7T*<0t+1)))2
The actor loss was computed as follows:

Lactor = _Lcritic(ﬂ—(ot)) +)\BCLBC + Lauaz
{(W(Oi) —a;)?, if Q(si,a;) > Q(si,m(0;)) and i is demonstration

otherwise .

Lpc =

78

Chapter 6

Transferring policies learned in
simulation to the real world

Transferring policies learned in simulation into the real world is a challenging task,
but there are multiple significant benefits:

e Fast acquisition of training data - simulations usually run significantly
faster than real hardware. Moreover, it is easy to spawn multiple simulators
to collect experiences in parallel (see section 5.3.6).

e Robot safety - the robots tend to do very unsafe actions during the first few
epochs of training before they learn the correct behaviours. This can often
become damaging to the robot (e.g. breaking the gripper). Any damage in
the simulation is not a concern because it can be simply reset.

e Cheap data acquisition - only the largest labs with strong funding can afford
large robot farms necessary to collect data for still very sample inefficient RL
algorithms. However, getting data in the simulation is significantly cheaper as
it requires only compute power so almost all researchers can do it.

Considering those significant benefits, it is only natural that we also attempted to
transfer the policy learned in simulation to the real world. In this chapter, we will
start by showing the changes we made to the simulation environments to facilitate
the transfer, we will then describe our setup for real-world evaluation, and we will
finish by listing some of the challenges we encountered during transfer attempts and
how we dealt with them.

6.1 Domain randomisation in simulation

The technique we have used to facilitate the transfer of the policy over the "reality
gap" is called domain randomisation. The idea is to randomise as many simulation
parameters as possible, so the learned policy becomes robust to some subtle changes
of the environment properties. James et al. [13| have successfully used supervised
learning to train an agent on artificial data generated in simulation (with strong
randomisation) to accomplish Grabbing task in the real world, without ever seeing

79

Figure 6.1: Examples of domain randomisation for hanger environment. Please note
the changing textures, colours, light position, camera position and orientation, cloth
size and position, hanger size and position, initial arm position and size of arm base.
The values are sampled from either normal or uniform distributions around our best
estimate of the value in the real world.

real data. Similarly, Tobin et al. [14] used domain randomisation to create a vision
component of grasping algorithm (estimate object positions) that successfully trans-
ferred over the reality gap. Most relevant previous work is by Pinto et al. [15], who
used domain randomisation exclusively for visual elements of simulation to transfer
their policies learned with Asymmetric DDPG.

We used strong randomisation of many simulation parameters. More specifically,
we randomized:

e Textures - the random textures were generated using Perlin noise [91], more
specifically we were using the implementation by Casey Duncan [92]. We first
sampled the base colour for the table and the wall from a normal distribution
centred at the real colour of the objects (as measured by examining pixels from
the real camera image). We clip the sampled colour, so each component stays
in [0,255] range to create "base colour". We then generate a colour palette
(map from an integer to colour) which maps all integers from 0 to 255 into
colours centred at base colour and varying by up to 10 in each direction. The
noise generator then creates a 2D noise array, which is mapped into colours
using the palette to generate the final texture.

e Camera parameters - we are randomising a variety of camera parameters.
Perhaps most importantly, we are sampling the camera position from a normal
distribution centred at its real position (according to our noisy measurement)
with a standard deviation of 1 cm. We then randomise the "look at" position
(the point in space where the camera aims) and the field of view (FOV) from
a normal distribution around the noisy measurement of FOV of the camera.
We measured this using a simple printout of a protractor and marking last
lines visible on the image.

e Lighting and shadows - we randomise the position of the light by setting it to
a uniformly sampled coordinate above the scene (z € [70, 100}, z € [—20, —5]U
[5,20],xz € [—20,—5] U [5,20]). Note the absence of samples with the light
directly above the scene, which we had to do because values close to 0 caused
segmentation faults in the tinyrenderer shader. We were not able to identify
the root cause of this behaviour. The hue of the light is sampled from a uniform
distribution close to white, and all lighting coefficients (ambient, specular,
diffuse) are sampled from uniform distributions.

80

e Object randomisation - we have randomised the colours and sizes of all
objects present in all environments (cube, target, cloth, hanger, tape). All
values were sampled from normal distributions.

e Arm randomisation - we randomise the spawn position of the arm in z-
direction because, in the real world, the arm sits on a small metallic stand.
We also randomise the initial joint positions from a normal distribution around
the rest poses, and we randomise the colours of all components.

e Cloth parameter randomisation - we randomise the angular stiffness, lin-
ear stiffness, damping and mass of the cloth (from uniform distributions). We
have already mentioned that we also randomise the size and colour of the cloth.
Cloth position is of course also randomised as the part of the task, not only
for the purposes of the transfer.

Overall, we have attempted to randomise as many parameters as possible. We,
unfortunately, did not have an opportunity to do ablation studies of different ran-
domisations to verify how much randomisation is necessary for successful transfer,
but it is an interesting suggestion for future work.

We also implement an interesting interaction between the reset to demonstra-
tion feature of the learning algorithm (see section 5.3.5) and domain randomisation.
Whenever we reset the environment to a state sampled from a demo, we re-randomise
as many environment characteristics as possible. For example, the arm spawn po-
sition needs to stay the same as it was during a demonstration because otherwise
the gripper position would change and it would no longer be grasping the cloth.
However, other things such as textures, camera position and lightning can be easily
sampled again. Consequently, even though we are resetting the agent to a low-
dimensional state which is already in the replay buffer, we are getting entirely new
set of associated RGB observations. It would be an interesting future research di-
rection to augment the collected demonstrations by this technique before the start
of learning.

We also tried more aggressive randomisation of textures, where we sampled the
colours from uniform distribution across all colours instead of normal distribution
centred at real noisy measurement. The learning algorithm still converged to rea-
sonably good policy. However, this policy did not transfer as well. We were working
on the pushing task at the time, and we have noticed that the policy trained with
uniform textures is much more likely to miss the cube and only very rarely completes
the task in the real world, compared to the good performance of the agent trained
with "normal textures". We therefore decided to only employ "normal textures" at
the cost of some environment generalizability.

6.2 Real world setup

The setup we used in real-world was very close to the simulation environments we
presented in previous sections. All real-world experiments were done in Dyson lab
at Imperial College campus. The integral part of our setup was Kinova Mico 6DOF
robotic arm. The hardware of the arm is built from carbon fibre, and it can lift

81

(a) Sideview of the real world setup (b) Fingernails used before we received
new grippers.

Figure 6.2: Setup for evaluating the policy in the real world.

payloads of up to 2 kilograms. The arm is equipped with a two finger gripper.
Unlike most of the arm, the gripper did not have a particularly robust build, and it
was prone to breaking.

We did a few hardware alternations of the gripper to make it less likely to get
damaged by hitting the table during an experiment. Firstly, we added a small ring
made out of wire around gripper fingers that helped to stabilise them and ensured
the finger bone would not tear through the plastic coating. Secondly, we secured
the wires with duct tape, so they do not slip out of place during operation. Finally,
we added "fingernails" to the tips of gripper fingers. The fingernails considerably
helped to stabilise the cloth grasping, and they also helped the gripper fingers to
slide on the table. The arm usually grasps the cloth by placing the fingertips of an
open gripper on the table and the closing it. The fingertips have a rubber coating
that has very high friction with the table, and they, therefore, make this approach
not feasible. Adding the fingernails allows the fingers to slide and moreover they
also grab the cloth from underneath, which makes the grasp stronger. These changes
were no longer necessary after we received replacement finger from the manufacturer
which had much better dynamics.

We used a standard low-cost Genius C170 webcam to collect the RGB obser-
vations in the real world. The camera was mounted on a static tripod at a fixed
location that we measured and attempted to replicate in the simulation. We also
measured the field of view of the camera. We had to slightly crop the camera image
because the edges of the table were visible on the picture and we wanted to avoid the
need to model them in the simulation. They were still visible even after cropping,
but they were less intrusive and did not seem to cause trouble in our experiments.
We noticed that reading the camera image via OpenCV [78] sometimes returns an
outdated image by up to a couple of seconds. We suspected that this is due to
buffering either on the device, in the driver or in OpenCV itself. We did not investi-
gate the root cause, and instead, we moved the code to acquire the image from the
camera to a separate thread. This thread is always querying the device and stores

82

the image to an in-memory buffer protected by a lock. The actor then reads this
buffer to get the observation. Stephen James suggested this implementation.

We used Robot Operating System (ROS) [71] to facilitate the communication
with the robot. We have created a new OpenAl gym [19] environment SimRealEnv-v0
, which implemented the same APIs as the simulation environments used for train-
ing. This environment, however, provided RGB observations taken from the real
camera and real joint angles as measured by arm encoders. The full state of this
environment returns an array of zeros because we do not have access to this infor-
mation. The realEnv is therefore usable only at test time for evaluation.

Implementation-wise, we use Kinova Mico ROS packages [18] available free of
charge from the supplier. SimRealEnv-v0 imports a MicoReal python object which
implements the same APIs as the object representing simulated arm, so the control
is roughly the same. The MicoReal class contains a ROS node that communicates
with arm driver via message passing, which is a standard way of communication
in ROS. We have also decided to render a simulated arm along with the real arm.
This helps us with debugging as we can visualise auxiliary predictions (cloth corner
position, gripper position, tape position etc.) in the simulator along with the arm,
so we have some insight about how the agent understands the scene. We have also
decided to use IK solver from Pybullet package instead of the firmware IK solver
because the results the two solvers gave varied considerably in terms of resulting
joint angles and the firmware solver was not able to plan for positions starting with
the initial configuration we used for training. We have decided not to retrain the
model but we instead simply used simulation solver for real robot as well.

The pieces of cloth used in the real world were ordinary low-cost towels we have
bought for this purpose. Because of the arms limited reach, we could not fold the
towels at its full size but we instead "pre-folded" it, so all corners are within easy
reach of the arm. The cube we used for rigid object tasks was made from paper, it
had the side of 6 cm and was used in previous work by James et al. [13]. The target
was a blue plastic ball taken from Lego Mindstorms NXT kit with a radius of 26
mim.

6.3 Transfer challenges

We encountered a couple of challenges when attempting the domain transfer and we
will now describe the most serious ones and how we resolved them.

We often encountered problems with insufficient domain randomisation. For ex-
ample, we trained a couple of models for folding up to a tape task. Those models con-
verged successfully in simulation, but the robot in real-world always folded the cloth
up to a point roughly in the middle between all possible tape positions. The auxiliary
predictions indeed showed that the agent believes the tape is at y = —0.20 which
is almost exactly the average of the tape spawn points (y = —0.075, —0.225, —0.3).
Employing randomisation of tape colour and tape size-resolved this problem - even
though the predictions were still slightly biased towards the mean, they were always
accurate to a couple of centimetres. The takeaway was always to try to randomise
all possible parameters.

83

Another challenge we encountered was the camera alignments and camera set-
tings. Our policies did not transfer because we had the camera in significant mis-
alignment with the view in the simulation. We viewed the camera image and sim-
ulation render side by side and overlaid them on top of each other to roughly align
the main features (robotic arm stand, edge between table and wall). As we have
already mentioned, we have also encountered significant problems with the field of
view of the camera. In the simulation, we were training with a massive field of view
(90 degrees) and with a camera located very close to the scene. At first sight, the
real and simulated scenes were similar, but they differed significantly when the robot
got to the edge of the frame. We have then decided to measure the camera distance
and FOV, adjust the parameters of the simulation and retrain the models.

We have also encountered issues with robot safety. Some policies tended to take
the gripper too low and hit the table with the fingers (which were already damaged
by previous experiments). Even though we employed some hardware measures to
prevent further damage (see section 6.2), we were still not confident it is safe to
operate the robot mainly given the very high prices of the components. We have
therefore decided to restrict the reach of the real robot, so it always stops a couple
of millimetres above the table and does not push it with full force. It still sometimes
happened that it touched the table in fast movement (due to sensor inaccuracy and
inertia) but it happened less often, and the impact was not as threatening. Our final
policies that we talk about in Evaluation (Chapter 7) did not need this protection
so we disabled it. We also operated the robot at reasonably low speeds, as suggested
in DDPG{D paper [7].

6.4 Summary

Overall, we successfully managed to employ domain randomisation to transfer the
policies trained in simulation to the real robot (see section 7.4). We randomised
a large number of simulations parameters, such as textures, lighting, scales and
colours, to ensure that the agent is robust to domain changes. We then developed a
sim-to-real environment that allows us to evaluate the algorithm on the real robot
and we successfully resolved many hardware challenges. In the next section, we will
finally evaluate our work and discuss the results in detail.

84

Chapter 7

Evaluation

We can roughly subdivide our work on this project to 3 different stages (which had
some large overlaps):

1. Working on the simulator and creating the environments - the goal of
this stage was to create believable deformable object simulation and a set of
RL environments where we can test the learning algorithms. This work was
explained in detail in Chapter 4.

2. Exploratory research of learning algorithms and learning algorithm
implementation - in this stage, we wanted to review existing state-of-the-art
algorithms, find the most suitable option and adapt it to our needs. More
details on this are available in Chapter 5.

3. Transfer from simulation to real world - after we successfully trained
the agent in simulation, we wanted to use the same policy in the real world
without further training. The details of techniques used and our real world
setup can be found in Chapter 6.

We will now critically evaluate our work on each stage, and we then summarise our
results.

7.1 Simulator work

We will evaluate our work on simulation using a qualitative approach because it is
almost impossible to reduce our work in this domain into numbers. We will aim to
answer the following questions: a.) is the simulation of deformable objects believable
representation of real-world behaviour? b.) is the simulation stable enough for RL
purposes? c.) can the simulation run in real-time or faster?

7.1.1 Deformable object simulation quality

Overall, we subjectively consider the cloth simulation to be believable and accurate
enough for the purposes of the task. However, our contribution in this area was
limited to a parameter search and anchor code so we will focus on those two aspects.

85

v

Figure 7.1: Cloth anchored to the gripper to create fake grasp before our code
changes (left) and after (right)

The selection of cloth deformation parameters is essential for achieving a believ-
able cloth behaviour. We made sure it does interact well with other rigid objects
(little to no tunnelling and falling through), it is stable (the cloth does not do wav-
ing motion when left on the ground, and it does not explode when touched) and it
deforms comparably to real towel (not too stiff or too elastic). All those choices were
a trade-off with respect to some other properties. For example, to avoid tunnelling
through a very narrow object (e.g. hanger), we had to increase the collision margin
which makes the cloth float in the air. We also had to increase the number of it-
erations of all constraint solvers, which traded off performance. Overall, we believe
that the cloth behaviour is now believable in most scenarios.

The anchor code was not suitable for our purposes before the changes we im-
plemented. The cloth was hanging a couple of centimetres below the gripper which
made all operations visually very different from real behaviour. We present the com-
parison of anchoring before and after our code changes in Figure 7.1. The gripping
now looks reasonably accurate.

On the other hand, the simulation quality was still extremely restricting con-
cerning the tasks we could accomplish. Perhaps most importantly, the cloth is still
unstable when left crumpled on the table. It simply unfolds over time until it lays
flat or mostly flat. This prevented us from trying any de-wrinkling, unfolding or
re-configuration tasks. Secondly, the cloth simulation requires unnaturally large
collision margins (1 to 3 cm) which causes the cloth to float over the table. This
can be falsely learned by the agent that attempts the grasps a couple of centimetres
above the table and hence often fails. Thirdly, the simulation does not support ren-
dering textures on the cloth which limits both the domain randomisation aspect and
the variety of clothes we can train on. Lastly, the lack of self-collisions in cloth sim-
ulation is also restricting us to select only simple manipulation tasks, and it would
probably be a hurdle if we were to attempt large tasks, such as clothing assistance.

Overall, we consider our work on cloth simulation quality to be successful as
it enabled us to simulate the small set of tasks we have selected for this project.
However, there is much further work to be done, and we believe that cloth simulation
quality remains a significant bottleneck in future RL robotic manipulation research.

86

o
=)

before leak fixes
after leak fixes

Resident Set Size (GB)
N w IS 0
S 3 S 3

o
o

0 20000 40000 60000 80000 100000 120000
RunTime (seconds)

Figure 7.2: Comparison of memory used by training process (Resident Set Size) in
GB before and after we worked on memory leak fixes. The initial ramp up is caused
by filling the replay buffer.

7.1.2 Simulation stability

Even though we experienced a couple of problems during our early experimentation,
we found the simulation to be becoming stable, and we did not experience any seg-
mentation faults or fatal errors during the last month of project work (during which
we were running at least ten simulation instances non-stop). Our work in the area
included debugging intermittent memory leaks in the large codebase, which were ex-
tremely difficult to identify with usual tools and also debugging rare segmentation
faults. Altogether, the fixes we have identified contributed to a significant decrease
of simulation memory usage, and it allowed us to run indefinitely long experiments
(see figure 7.2). The fixes were also contributed back to the library for the benefit
of the community.

Overall, we found that even though the library maintainers do not yet support
soft bodies, their implementation is reasonably stable. We fixed a few remaining
issues, and the current version is stable enough to run for prolonged periods necessary
for RL experiments.

7.1.3 Simulation performance

We did not find the performance of the library to be limiting, so we did not attempt
to optimise the existing code-base. We, however, made sure that the code we added
to the library does not add too much computational overhead, and we compiled the
library to use native architecture optimisations on each machine we used.

Cloth simulation, however, is still significantly more expensive than a simulation
with exclusively rigid objects (as we show in Figure 7.3). All times were measured
on DoC machine with Intel Xeon E5-1630 (3.70GHz). For the sake of cloth stability,
we are running the simulation at very low discrete time step (1/240s), and each
environments step corresponds to 5 simulation steps. Therefore the simulation time
elapsed per environment step is roughly 0.02s. As we can see from the figure, median
wall time for an environment step with rigid objects is 0.05s while it is 0.2s for a
cloth environment. The simulation is therefore not running real-time even with
rigid objects, and this difference is even more pronounced with cloth (wall-time

87

1.384
Cloth env
0.195
Rigid body env
0.051
m 99.9th percentile m50th percentile

Figure 7.3: Comparison of wall time of execution (in seconds) of one simulation
step between Hanger environment (cloth env) and Reacher environment (rigid body
env).

is 10x larger than the time elapsed in simulation). Even though we see that the
simulation is quite slow, it is still faster than the training of the networks. As
both are happening in parallel on different threads, we did not have an incentive to
improve on this.

7.1.4 Summary

Overall, we consider the simulation stage of this project to be successful. We went
a long way from the first simulation experiments in V-Rep up to the randomised
cloth environments we used for training. We are glad we achieved sufficient cloth
simulation quality and simulation engine stability to be able to train our models
and achieve the transfer. However, there is still some work to do to improve the
simulation performance and unlock the potential for simulating more complex tasks
with deformable objects.

7.2 Learning in simulated environments

The core objective of this project was to develop an RL algorithm that can learn to
do deformable object manipulation tasks in the simulation. We have addressed this
problem using DDPG with a large variety of improvements. Overall, we believe that
this objective has been fulfilled. We will substantiate this claim by first showing the
evaluation results on the three different cloth manipulations tasks, and we will then
discuss the learning plots to explain the progress of the algorithm. We will also
perform a series of ablation studies to show which features of the algorithm were
the most crucial to achieving the final success rate.

7.2.1 On the variance in results

There is recently a growing concern about the large variance of all RL results [93].
The variance is caused by a variety of things inherent to RL: the environments are
non-deterministic, the learning algorithms use a large number of stochastic elements,

88

Seedl | Seed2 | Seed3 | Average
Folder | 0.9 0.9 0.9 0.9
Hanger | 0.8 0.9 0.6 0.77
Tape 0.7 1 0.9 0.86

Table 7.1: The success rates of our algorithm on the 3 environments with full ran-
domisation.

00 50 200 250 00 50 200 750 00 50 200
Eval episode (folder) Eval episode (hanger) Eval episode (tape)

Figure 7.4: Evaluation rewards on the Folder(left), Hanger(middle) and Tape(right).

and the exploration of the agents is based on chance - either they find a high reward
strategy or not.

The RL community usually addresses this issue by running each experiment
multiple times with a large number of different random seeds, and they then report
the mean and the standard deviation bounds. However, in our case, running a
single experiment to completion can take up 48 hours and given the limited computer
power, we are not able to run all experiments with a large number of seeds. However,
all the results we present are a result of running with two or three different seeds, and
we comment on the variance we have observed. We find two seeds to be a reasonable
trade-off between data reliability and the number of ablation experiments we would
like to complete with a limited amount of time until the deadline.

7.2.2 Success rates in a simulation of baseline runs

We report the simulation success rates of the algorithm with all improvements as
described in section 5.3 in table 7.1. We call those runs "baselines" because we will
compare against them in ablation studies. All runs (even across tasks) were run
with the same learning algorithm and same hyper-parameters. We got the numbers
by examining last ten evaluation episodes of training and looking at the number of
successes. The environments were running with full randomisation, evaluation envi-
ronments were never seen before, the training took 34 hours (using shared GPU), and
each agent has seen roughly 80k simulation steps. It should be noted that this can be
considered excellent sample efficiency. For example, state-of-the-art Rainbow DQN
[94] takes roughly 18M frames to achieve human-level performance, even though the
comparison is not entirely fair because Rainbow does not use demonstrations.

The learning graphs corresponding to the same training runs can be seen in Fig-
ure 7.4. The graphs are smoothed with an average window of 20 to make them
more legible. They show how the reward awarded for evaluation episodes evolved
during training. Particularly in case of Hanger environment, we can see that the

89

rewards yet did not plateau and there was some potential for further improvement.
We, however, ended the experiment to make sure we can reasonably keep all ex-
periments running for the same amount of time in ablation studies to allow for fair
comparison.

These are not the best success rates we have achieved throughout the project.
For example, we were able to get a success rate of 95% on Tape task (19 successes out
of last 20 evaluations) in a couple of experiments. However, we were using a reward
structure that was awarding -1 for each step before the success, while experiments in
this section use positive structure of +100 on success and 0 otherwise. We found that
negative structure worked better in terms of final success rate, but it was significantly
less robust to random seed changes (e.g. out of 3 runs with same parameters, one
converged to almost 100% success rate, and others failed).

We also looked at failure cases of each model to understand why the success rate
is not reaching 1. The analysis is listed below:

e Tape failure cases:

— Repeated failed grasp - even tough the agent has learned to re-grasp
the cloth if the grasp failed, in some episodes, it repeatedly fails until
time runs up. The most likely cause of failure is trying to grab above the
cloth. We hypothesise this might be due to an outlier in camera spawn
position or arm spawn position.

— Grasp crumpling the towel - grasp often crumples the towel. When
it is released (even directly over the tape), it immediately flattens out,
and the corners fall out of the reward threshold.

— Towel twisting in mid flight - even though we employ multiple an-
chors with our "fake grasp", the grasp is still not stable, and the towel
sometimes rotates when grasped, which causes corner misalignment when
released. We do not believe this failure would happen in real world.

e Hanger failure cases

— Grasping at the wrong place - The hanger agent is likely to miss
the cloth corner - the gripper sometimes grasps the cloth too far to the
right outside of the cloth edge. This might be due to the agent learning
to "cut corners" - after the grasp, the next move is to drape the cloth
over the hanger which is always on the right. It has therefore learned to
grasp the cloth as close to the hanger to reduce the trajectory length, but
sometimes is miss-predicts how far it can go from the cloth and still get
a successful grasp.

— Draping the towel too far - much rarer but still present failure case
is that hanger pulls the cloth over the hanger too far, so it falls.

e Folder failure cases

— Crumpling the cloth - The most likely problem with Folder is the
cloth becoming crumpled when the diagonal folding motion is executed
inaccurately or if the robot moves too fast.

90

— Grasping issues - similar grasp issue as with Tape environment is
present in Folder.

Overall, we consider the simulation results to be satisfactory. The agent was able
to learn competent policies even despite heavy domain randomisation. Even though
the training took a long period of time, the sample efficiency was outstanding. We
have also found the algorithm to be robust to random seed changes as all our baseline
runs converges to similar final results. We will now look under the hood of those
training runs to better understand the behaviour of the algorithm.

7.2.3 Plot analysis

The presence of demonstrations in our algorithm moves the originally pure RL prob-
lem to a grey area between RL and supervised learning. We would like to understand
how much of the training is supervised and how does the ratio between supervised
learning and RL evolve.

We show the relevant plots in Figure 7.5 (both curves smoothed with a window
of 50). The first plot shows how the number of sampled demonstrations decreases
over time in Folder environments. The vertical line marks the moment in training
when the replay buffer achieves its maximal size and when it starts evicting old
experiences. The sharp drop at the start can, therefore, be attributed to the replay
buffer simply being diluted - when more transitions are stored, it is less likely that
demonstrations are sampled because their number remains fixed. However, the
percentage of demonstrations in minibatch keeps decreasing afterwards. We can
conclude that the agent is learning from the demonstrations repeatedly and it begins
to remember them. Hence, the loss of demonstrations decreases which in turn
decreases the temporal difference error and sampling priority. The percentage of
demonstrations plateaus towards the end, which can be attributed to fixed demo-
epsilon that keeps the priority non-zero even if TD-errors are low.

The second plot shows us that Q-filter removes approximately 50% of demo
transitions as being inferior to the actor policy. We intuitively expected the curve
to follow a decreasing trend as we hoped the Q-filter would eliminate more and
more demonstrations from Behavioural Cloning. However, the curve line seems to
stay fixed. The presence of priority replay can explain this. The sampling is biased
towards the demonstrations that still provide a learning opportunity, and therefore
the proportion of demonstrations that rejected might not necessarily drop.

Overall, it seems that the learning gradually progresses from heavily supervised
phase to RL phase as the percentage of sampled demonstrations drops from 100%
during pre-training to roughly 23% at the end. These are the desired dynamics -
we want the agent to initially understand the right behaviour from supervision and
then start exploring other options on its own.

7.3 Ablation studies in simulation

We have done a series of ablation experiments where we removed (or changed)
some feature of the learning algorithm, and we observed the results. To reduce the

91

—— Folder - seed 0 0575

Folder - seed 1

—— Folder - seed 2 0330

0.525

0.500

0.475

Q-filter passed

A 0.450

0.425 —— Folder - seed 0
Folder - seed 1
—— Folder - seed 2

Portion of demos in minibatch
o
o

0.400

0 20000 40000 60000 80000 100000 120000 140000 160000 0 20000 40000 60000 80000 100000 120000 140000 160000

Training step Training step
(a) The portion of demos sampled in a mini- (b) The portion of demos passing the Q-
batch. The vertical line shows the training filter (demos that are "rated better" by
step when replay buffer was saturated. critic then actor policy).

Figure 7.5: Demo sampling rate and Q-filter rate

number of necessary experiments, we have decided to analyse only the Folder task.
We always compare the ablation result to the mean of the three baseline runs (agent
with all improvements).

7.3.1 N-step returns

o ©
=] 1=

Reward (smoothed)
B
S

N
=]

—— Mean of baselines
Folder - no-nstep - seed 0
—— Folder - no-nstep - seed 1

0 50 100 150 200 250
Evaluation episode

Figure 7.6: Comparison of evaluation reward development with and without N-step
returns.

We present the result of removing the N-step returns from the critic loss equation
in Figure 7.6. The mean of baseline rewards is consistently higher than both runs
without N-step returns. We find this result consistent with the existing literature
[62] and also with our preliminary experimentation. We use quite high N = 10 in
presented runs, but we have also tried training with N = 5, and we did not see any
significant increase or decrease of performance as compared to N = 10.

We understand that removing a term from critic loss equation results in decreas-
ing the magnitude of the critic loss, which in turn might disrupt the balance of loss
terms and decrease performance. We accounted for this possibility by doubling the
1-step loss multiplier in those experiments, so the change in critic loss magnitude is
less significant.

92

7.3.2 Twin critic

90

80

70

Reward (smoothed)

—— Mean of baselines
Folder - single-critic - seed 0
Folder - single-critic - seed 1
—— Mean of single critic

50

0 50 100 150 200 250 300
Evaluation episode

Figure 7.7: Comparison of evaluation reward development with and without twin
critic.

Twin critic is one of the most debatable additions to our algorithm because it
is very new research result not yet verified by multiple studies. We present the
comparison of experiments with only a single critic and baseline experiments in the
figure 7.7.

It seems that the mean of experiments with only a single critic stays consistently
below the mean of baselines. However, one of the two runs stayed very close or
even above the baseline line for a large portion of the experiment. Overall, it seems
like having twin critic might be useful, but we cannot conclusively rule out the
possibility that the difference in mean is due to only random seed selection. Even
if the difference is statistically significant, it is not large enough to justify the extra
computational cost (extra 1 % for asymmetric critic but much more for symmetric
critic). We would need to run many more experiments with different seeds and
ideally also do a hyper-parameter sweep to get a more reliable result.

7.3.3 Reset to demonstration

Reward
N
S

80
. — Baseline - mean
No Behavioural Cloning - mean

No Behavioural Cloning - seed 0
~—— No Behavioural Cloning - seed 1
—— No Reset and No BC - mean
—— No Reset and No BC - seed 0
No Reset and No BC - seed 1

T

60 7Y —— Baseline - mean g
/./ No reset-to-demo - mean

No reset-to-demo - seed 0

No reset-to-demo - seed 1

0 50 100 150 200 250 o

o £ 00 50 700 250
Epoch Epoch

(a) Ablating reset to demonstration does (b) Ablating both reset to demo and BC has
not decrease the model performance. similar effect as ablating only BC.

Figure 7.8: Reset to demonstrations ablations.

93

Perhaps the most surprising result was that reset-to-demonstration does not
increase the performance of the agent. This finding is in sharp disagreement with our
early experiments when we could not get a model to converge without this feature.
We hypothesise that reset-to-demo stopped being necessary after the introduction
of behavioural cloning loss and prioritised treatment of demonstrations in replay
buffer.

This hypothesis states that after introducing BC loss coupled with pre-training,
the agent learned the basics of the behaviour very early in training (which we can
see on some evaluation plots - some runs have a strong evaluation episode in the
first couple of epochs). Therefore the agent could accomplish the full sequence of
necessary movements on its own and does not need the reset to a demonstration to
get exposed to high rewards states. This was shown to be false by ablating both
reset-to-demo and BC loss - the results were comparable to the results of ablating
only the BC loss. Hence reset-to-demo was not useful even in this case.

Another hypothesis is that frequent resets to demo might cause the agent to
over-fit for the demo configuration (e.g. cloth position) or that some of the states
from demonstrations might be suboptimal for the current policy of the agent, so it
might be better off learning without being forced to visit them. We also believe that
prioritised sampling of demo transitions made reset-to-demo obsolete. If the agent
has enough diverse demo transitions to learn from already, it might not be that
useful for it to reset into the same state it has already seen in saved demonstration
data.

7.3.4 Number of provided demonstrations

100

80

60 —— Mean of baselines
0 demonstrations (mean of 2 seeds)
—— 5 demonstrations (mean of 2 seeds)

40 —— 60 demonstrations (mean of 2 seeds)

Reward (smoothed)

20

0 50 100 150 200 250 300
Evaluation episode

Figure 7.9: Comparison of agent performances when given different number of
demonstrations.

One of the main criticism of imitation learning and RL methods based on demon-
strations is the amount of work required to collect the data. We were therefore
interested to know if the number of provided demonstrations has strong impact on
performance. We present the results on Figure 7.9.

As we have expected based on our initial DDPG experiments (see section 5.2.1),
an agent with no demonstrations in the presence of sparse reward does not finish

94

the task because it is unlikely it would be able to grasp the cloth corner and drape
it diagonally without crumpling by purely random action.

We are more interested in the comparison of performance when the agent is
given 5, 20 (baseline) and 60 demonstrations. Unsurprisingly, an agent with more
demonstrations behaves better than an agent with fewer demonstrations. However,
we can see that the advantage of having more demonstrations is diminishing - there
is a significant difference throughout the training between 5 and 20 demonstrations,
but the difference between 20 and 60 is much smaller. Moreover, the differences are
closing towards the end of the training.

Overall, we can conclude that using demonstrations is necessary for successful
completion of the task. However, providing more demonstrations gives only a slight
benefit in final performance, and the only substantial difference is the speed of
training (the runs with many demonstrations seem to plateau after 100 evaluation
episodes while the run with five demonstrations takes three times longer).

7.3.5 No auxiliary predictions

-
=]

o
=]

—— Mean of baselines
No Aux - seed 0
No Aux - seed 1

—— No Aux - mean

\,\M

0 25 50 75 100 125 150 175 200
Evaluation episode

Reward (smoothed)
Now s w
s & & &

-
o

Figure 7.10: Comparison of agent performances with and without predicting low
dimensional state components (eg. cloth corners).

Auxiliary predictions should help the agent understand how to translate high
dimensional RGB observation into low dimensional features. In our case, we are
predicting cloth corners and task target (irrelevant for Folder task and therefore
set to 0), and in experiments without explicitly passing in gripper position, we also
predict it (see 7.3.8). We wanted to understand how predicting those values helps the
agent performance, so we set the losses on those network outputs to zero, effectively
ablating this algorithm feature. Results can be seen in Figure 7.10. It should be
noted that this experiment ended 10 hours early due to the machine running out-
of-memory, but we believe we have gathered sufficient data for this ablation.

We can easily see that auxiliary predictions have a sizeable positive impact on
learning performance. We are hinting the agent how to extract some critical features
while we are not preventing it from recognizing the others, should it need to do so
(this is in contrast with bottleneck approach [95] which constraints a whole actor
layer to predict low-dim state so no other information can get through to fully
connected layers). The downside of adding this information is the need to define

95

the "useful" features that we want to help the agent discover, which reduces the

generalizability of the algorithm and increases the amount of hand engineering.
Overall, this algorithm improvement is beneficial for both final performance and

training time, but it does require domain-specific knowledge to implement.

7.3.6 Prioritized demonstration sampling

—— Baselines - mean

80 No demo prioritization - mean

Baseline - seed 0
Baseline - seed 1
Baseline - seed 2
No demo prioritization - seed 0
No demo prioritization - seed 0

—— Mean of baselines

No demo prioritization - seed 0
40 No demo prioritization - seed 1
—— No demo prioritization - mean

Reward (smoothed)

Portion of demos in minibatch (smoothed)

| = B & I
0 50 100 150 200 250 300 0 10000 20000 30000 40000
Evaluation episode Training step
(a) Results of ablating demo priority boost- (b) Portion of demoes in minibatch after ab-
ing (setting €4 to 0). lating eg.

Figure 7.11: Results of ablating demo prioritization.

Prioritized demo sampling increases the probability the demonstrations are sam-
pled from the replay buffer. The rationale behind this design is that demonstrations
are known to show right behaviour that we want the agent to know about. The
result of ablation experiment can be seen in Figure 7.11.

We can see that without demo prioritisation it takes much longer for first suc-
cessful evaluation episodes to appear and overall performance is significantly behind
the baseline runs. We can see the strength of demonstration priority boosting on
the right - the baseline runs are approximately eight times more likely to sample a
demo around step 10000 (which is quite shortly after the pre-training phase visible
as a dent in the graph).

Overall, it seems that boosting the demonstrations shifts the RL/supervised
learning balance a bit towards supervised learning which is beneficial for the per-
formance, especially early on. We would be interested to see if experiments without
demo-priority boosting would catch up in terms of performance later on in training
(after a couple of days) but we are not able to execute the experiment due to time
constraints.

7.3.7 Pre-training

As we would expect, not running pre-training on demonstration transitions causes
the agent to start getting first successes in evaluation episodes later in the training
process which delays plateauing of training by a couple of epochs. The policy in our
experiments also converged to slightly better final rewards, but we do not believe
this result is beyond the scope of statistical error given the low number of seeds we

96

®
o

N
o

—— Baseline - mean
No Pretraining - mean
No Pretraining - seed 0
—— No Pretraining - seed 1

o
o

Reward
w
o

40

30

20

o
v
o
=
o
IS
=
u
o
N
o
o
N
a
o

Epoch

Figure 7.12: Comparison of agent performances with and without running 2000
pre-training steps (10 minutes) at the start of training.

use. Overall, it seems that pre-training is worth approximately 10 minutes at the
start of the training to achieve the overall speed-up.

7.3.8 Low Dimensional state in the actor

o g
N
0.02 __‘\“*
Epoch Training step
(a) Comparison of using no low-dimensional (b) The distance between auxiliary predic-
state; only joint angles; and baseline (joint tion and ground truth of gripper position.

angles along with gripper position).

Figure 7.13: Results of ablating demo prioritization.

Adding low dimensional state to the actor might be considered a controversial
choice because we are no longer inferring the motor policy purely from visual ob-
servation. However, from the practical point of view, both joint angles and gripper
position are available at test time in robot API so leveraging them does not require
any further engineering work.

We can see in Figure 7.13 that removing the gripper position from the state
has a negligible impact on the performance. In those experiments, we added the
gripper position to the set of auxiliary outputs. The loss on gripper auxiliary quickly
dropped and the test distance plateaued at around 1 or 2 cm from ground truth,
so we can conclude the agent is capable of confidently inferring the gripper position
from joint angles and RGB images. Hence, it can learn forward kinematics. As we
would expect, it took it a bit longer to plateau then baseline run which just needed
to propagate the gripper position from input to output.

97

Diagonal folding task

Grasp 66.6%
Not crumpled 66.6%
d < 0.15m 53.3%
d <0.1m 40%
d < 0.05m 20%

Tape folding task

Grasp 90%
d <0.15m 90%
d<01lm 76.6%
d <0.0om 43%

Hanging task

Vicinity 100%

Grasp 76.6%
Drape over 70%

Full success 46.6%

Table 7.2: The success rates for each environment in the real world. Note that these
are run in the real world without any additional training. For the hanging task,
vicinity means the gripper being within 5cm from the cloth, drape over means the
cloth is touching the top part of the hanger and full success is achieved if the cloth
does not fall after it is released. For diagonal folding, not crumpled means that adja-
cent corners are more than 15cm from each other and the d is the distance between
diagonal corners (lower is better). For tape folding, d is the distance between towel
edge and the tape mark.

We have also tried fully ablating all low dimensional inputs (not giving gripper
position nor joint angles). In this case, the smoothed error of auxiliary gripper
prediction stayed above 3 cm, which is not sufficient for our fine manipulation tasks
and the evaluation rewards were significantly affected. We hypothesise that it is
very hard for the network to predict the position along a ray from the camera
(consistently to our findings from Reacher environment explained in section 4.3.4).

7.4 Real world experiments

We evaluated our agent in real world on the experimental setup as described in
Chapter 6 and we report the success rates based on 30 trials for each task in Table
7.2.

We subdivided each task into multiple subtasks so we can measure the agent
performance with better granularity. For hanging, vicinity means that the gripper
was within 5 cm of the cloth, grasp means that the robot lifted any part of the cloth
to the air (not necessarily on the first attempt), drape over means that the robot
started the draping motion (so the cloth touched top of the hanger) and full-success
means that the robot draped the towel over the hanger and it did not fall.

In diagonal folding, we first looked if the agent managed to grasp the cloth. If it
did, we looked at the result of the manipulation. The cloth is crumpled if adjacent
corners are within 15cm from each other; otherwise we measure the alignment of
diagonal corners and sort the trials into 3 buckets - aligned within 5 cm (very good
alignment), within 10 cm (satisfactory alignment), 15 cm (some alignment). For
tape task, we employ a similar method, but we measure the distance between the
middle point of cloth edge from the tape.

We consider the presented results to be exceeding expectations. In all tasks, we
achieve at least two thirds of successful grasps, which is very good given the low
acceptable margin of error on z-axis when the cloth lays flat on the table. Going

98

too low can damage the gripper while going too high results in failed grasp above
the cloth. For tape task, the agent achieved a fold within 15 ¢m from the mark in
27 out of 30 trials which shows the robustness of our method to domain transfer.
Some results were to some extent disappointing, particularly in the diagonal fold-
ing task. Because of the large variation of cloth spawn positions, the agent achieved
much lower grasp success rates and we noticed that it has more problems if we place
the cloth on the edge of spawn position distribution. Moreover, it achieved a very
good alignment only in 20% of the trials, compared to 90% in simulation. We have
noticed that the agent tends to lift the cloth too high, which leads to deformation.
This behaviour does not happen in training due to simulator inaccuracy, so the
agent could not learn to avoid it. We will now discuss failure modes in more detail.

7.4.1 Failure modes

As we have already hinted, the most common failure mode was the failure to grasp
the object. The agent needs to get into exactly the right z-axis position to make
an efficient grasp. This success rate varied considerably from model to model, with
only some training runs achieving the results we gave in the last section. A related
problem is a weak grasp. Sometimes the gripper tries to grasp the cloth too close
to the edge, and it only catches a couple of millimetres of the fabric. This grasp is
not strong enough, and it fails when cloth touches the hanger.

Another common failure mode is movement imprecision. For example in diag-
onal folding, the ideal trajectory would most likely lead straight from one corner
to another with little deviation. The agent, however, learned to do a suboptimal
trajectory which deviates to a side. Moreover, it learned to lift the cloth a little too
high. Those imprecisions often resulted in cloth crumpling. We investigated this
failure mode in more detail by looking at simulation renders. The agent does the
same motion, but the cloth in simulation behaves differently. It has lower linear
stiffness, so it stretches when pulled up, and hence it does not crumple. This high-
lights that main limitation of this method is simulation accuracy, and further work
will be needed to train more complex tasks with deformable objects.

7.5 Summary and Comparison with other work

Overall, we have successfully shown that DDPG with our implemented improve-
ments can learn control policy to solve the three long horizon manipulation tasks we
have defined. Moreover, we were also able to transfer the policy to the real world
and achieve satisfactory success rates for the tasks.

To the best of our knowledge, this is the first application of Deep RL with
sim-to-real-transfer on cloth manipulation and we, therefore, do not have a strong
benchmark to compare against. We have designed one of our tasks to be similar
to previous task defined by Lee et al. [21]. We do not achieve as good results
as the original work. The authors do not report a failure rate and we, therefore,
assume they have achieved 100% success rate in grasping the towel and folding it.
Our method has achieved only 90%. The Root Mean Square error of successful
folds is also better with their method (3.8cm) while ours is 6.8cm. The authors of

99

this paper also compared their method with previous state-of-the-art - thin plate
spline (TPS) [96] method and coherent point drift method (CPD) [97]. Both those
methods achieve significantly worse results than ours, with RMS of 13.6cm or 26.9cm
respectively.

However, we are using a task agnostic training algorithm that has learned the
control from RGB (without depth) images and sensor data by itself, so those are
not entirely fair comparisons. Moreover, the robotic platform they have used has a
parallel gripper which allows for a wider margin of error in z-axis when top-down
grasping and they do their experiments on a soft surface, which increases robot
safety and further increases acceptable error in the z-axis. Overall, even though we
did not achieve state-of-the-art results on this task, we achieve better scores than
pre-2015 methods even tough we use task agnostic algorithm.

Looking at sim-to-real results, we can most closely compare our work to Pinto
et al. [15]. Their methodology is however different. Firstly, they use a different
set of tasks only dealing with rigid objects - picking up a cube, pushing the cube
to a target location and moving the cube to a target location. We briefly experi-
mented with those tasks during the project and we found them to be simpler because
pushing or grasping the cube allows for significantly larger acceptable error during
manipulation, and it is easier to recover from problems. Secondly, they did not use
demonstrations to seed learning, although they did use a feature similar to "reset
to the demonstration" when they sometimes reset the environment to a state where
the agent was already holding the cube. Finally, they use a different robot platform
with a parallel gripper. Their best method, Asymmetric Hindsight experience re-
play can achieve 100% success rate (out of 5 trials) on each task. The baselines they
compare against (assym DDPG, sym HER, BC and DAgger) achieve success rates
close to 0. We have achieved consistent results when experimenting with ablations.
Given the larger difficulty of our tasks, we believe that the best methods presented
in both works are comparable, but it is difficult to select a better one without same
experimental set-up.

100

Chapter 8

Conclusion and Future work

We have successfully applied Deep Reinforcement Learning to the problem of soft
object manipulation or more specifically to the manipulation tasks including 2D
deformable objects - clothes and towels. As a first step, we have done a substantial
amount of work on open-source physics engine Pybullet so we could simulate cloth
with reasonable accuracy, stability and speed. We have then designed and imple-
mented robotic environments to simulate three cloth manipulation tasks: folding a
towel up to a mark (Tape), folding a face towel diagonally (Folder) and draping a
face towel over a hanger (Hanger).

In the next phase, we evaluated a number of Deep RL algorithms on simple
environments we have implemented based on OpenAl Gym suite, and we settled on
using Deep Deterministic Policy Gradients (DDPG) for this project. The algorithm
in its basic form, however, was not sufficient to learn the complex cloth manipulation
tasks, so we extended it with multiple improvements described in current state-of-
the-art publications. The final algorithm can achieve 80%+ success rate on all our
proposed cloth manipulation tasks robustly, and some specific runs achieved success
rates over 95%. We evaluated the contribution of specific improvements through an
extensive series of ablation studies.

The final step of our project was to attempt to use the policies learned in sim-
ulation in the real world. We achieved reasonably good overall success rates of
66%(Folder), 46% (Hanger) and 90% (Tape) if we do not consider alignment qual-
ity. The problems we have encountered most often are failed grasps (the robot has
only minimal tolerance in z-axis which makes the grasp difficult), weak grasps and
imprecise movement caused by simulation inaccuracy.

Overall, the results show that using Deep RL is a viable way to tackle the
problem of manipulating deformable objects both in simulation and in the real
world. However, even though the tasks we have proposed are challenging given
the current state-of-the-art, they are still very far from being applicable on a real-
robot in uncontrolled settings, such as in-home assistance. The project has opened
multiple avenues for further research we would like to discuss.

101

8.1 Future work

As with the rest of the project, we can subdivide the Future work into three domains
- the simulation, the learning algorithms and the domain transfer. There is a vast
number of questions that remain open after this project and equally many oppor-
tunities for additional research. We select a couple of them that we subjectively
consider to be the most interesting, are large in scope and could serve as inspiration
for a final year project or a publication.

8.1.1 Deformable object simulation and environments
Pushing the limits of the simulators

We are concerned that even though there are many simulators often used in RL
community, only PyBullet currently has some limited implementation of deformable
object simulation and even this implementation is not yet officially supported by the
library maintainers. We believe that more work on implementing support for de-
formable object simulation into popular physics engines can enable future researchers
to consider manipulating deformable objects along with their rigid counterparts in
all future manipulation research.

There are multiple aspects of simulation that would benefit from further work.
Perhaps most important would be the grasp stability. Currently, we were only able
to simulate grasping by creating artificial constraints that do not accurately resemble
the real behaviour. The simulator would ideally support stable grasping only based
on physical interactions of the objects so it can learn the grasping policies that
transfer seamlessly to the real world. It would also be useful to improve the collision
accuracy between the soft-body and rigid body (avoid penetrations) and between
two soft-bodies (enable self-collisions). Finally, even the simulation of small soft
bodies with couple hundred nodes is computationally expensive and does not run in
real time. As a large part of the soft body simulation algorithm is parallelizable, it
would be interesting to study how to migrate it to GPUs.

Creating standard environments for deformable object manipulation

The introduction of OpenAI Gym Robotics environments [20] finally created a
widely accepted set of benchmarks for robotic manipulation. However, those envi-
ronments do not use deformable objects which again limits the number of researchers
investigating the problem in the future.

It would be ideal to create a standard set of tasks where robots manipulate de-
formable objects and implement them as open-source environments. This would
allow researchers to easily reproduce published work and compare the achieved re-
sults across multiple methods, research teams or even institutions. Furthermore, the
environments should be accompanied by a standardised real-world dataset that the
institutions can buy and use for testing domain transfer of their policies. The set
of environments should be also tested with standard RL algorithms, and the results
should be made available to serve as baselines for further experiments.

102

8.1.2 Learning in simulation
Explaining DDPG performance

Reproducibility of the performance achieved by RL agents is a significant open prob-
lem in the research community. DDPG, in particular, is notorious for low robustness
to initialisation (and hence to random seed) and hyper-parameter selection. This
becomes problematic when trying to attribute a performance change to an imple-
mentation change. For example, an experiment might result in considerably worse
performance after network architecture change, but it is impossible to say if this is
due to randomness in results or it is a genuine regression of the algorithm. It would
be useful to do a large-scale study of various DDPG improvements that can conclu-
sively explain what algorithm features are beneficial in which circumstances. This
study would essentially be a massively scaled up version of our ablation experiments,
which would include a hyperparameter sweep for each ablation and experiments with
a large number of random seeds and a large number of diverse environments and
tasks. However, this study would require immense computing power by design, so it
can only be done by either large institutions (Google, Facebook, OpenAl...) or by
a broad community. If the study was to be done by the latter, it would require an
implementation of an intuitive tool that RL enthusiasts could download and let their
GPU machines use unused cycles for research purposes. Similar initiatives exist in
other domains (e.g. Atlas@Home for analysing data from CERN, SETI@QHome for
searching extraterrestrial intelligence or POEM@Home to study protein folding with
applications in cancer research).

Further investigating DualArm tasks

We have done some very limited experiments with Dual Arm folding during this
project that were not successful. We have seen that the two arms tend to collide
in early learning stages and they therefore never converge. It would be interesting
to analyse why the learning with two arms fails and find some possible remedies,
maybe by addition of some explicit loss that will discourage collisions and promote
collaboration. This would unlock many more cloth manipulation tasks that require
dual manipulation (as discussed in the Background section).

8.1.3 Domain transfer
Automatic environment creation

We have shown that learning in simulation and subsequent domain transfer are a
viable way to cope with sample inefficiency of RL algorithms. However, there is still
a fair amount of engineering involved in creating the learning environments that
roughly correspond to real-world setup. If we were to use this approach in future,
for example with home assistance robots, we would not be able to hand-engineer
a 3D model of each home so the robot can learn in there. It would be however
possible if the robot could automatically generate an environment to learn from its
observation or from externally recorded sensor data.

103

It can be an exciting application of SLAM algorithms. The robot would start
by exploring the area and generating a surfel map, then converting it into a mesh
representation that can be loaded by a physics simulator and finally it could export
the generated data as an RL environment. The robot can then experiment and learn
to accomplish any externally defined task. The reward structure would still need to
be hand engineered, but future research could reveal a user-friendly way of doing so
(possibly based on demonstrations).

Understanding domain randomisation

Our project made excessive use of domain randomisation to enable the transfer of
policy learned in simulation into the real world. After a couple of failed experiments,
we have learned a simple rule of thumb - randomise everything. Although this
approach is simple, it is not always optimal.

We have seen that excessive randomisation is detrimental to both the speed and
performance of learning in the simulation. Intuitively this makes sense because envi-
ronments with a higher degree of randomness require more robust and generalizable
policy. However, we have also seen that too strong randomisation is detrimental to
domain transfer when real-world experiments trained with texture colours sampled
from normal distribution worked better than experiments trained with uniformly
sampled colours. Overall, it seems that there is a golden middle way when imple-
menting randomisation.

It would be interesting to do an in-depth study into randomisation and establish
a.) which properties are necessary to randomise, b.) which seem to be beneficial
and c.) which do not provide a further improvement or even cause harm. We believe
it would be possible to partly do this study without the need for real hardware by
attempting transfers between simulation domains with different parameters. The
preliminary results could then be verified in the real world.

104

Bibliography

1]

2l

3]

4]

[5]

(6]

7]

8]

19]

[10]

[11]

S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel,
“A Geometric Approach to Robotic Laundry Folding,” in Household Service
Robotics, 2014.

M. Laskey, C. Powers, R. Joshi, A. Poursohi, and K. Goldberg, “Learning
Robust Bed Making using Deep Imitation Learning with DART,” 2017.

Y. Gao, H. J. Chang, and Y. Demiris, “Iterative path optimisation for person-
alised dressing assistance using vision and force information,” in IEEE Inter-
national Conference on Intelligent Robots and Systems, 2016.

T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement Learning of
Clothing Assistance with a Dual-arm Robot,” 2011.

B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg,
“Multilateral surgical pattern cutting in 2D orthotropic gauze with deep rein-
forcement learning policies for tensioning,” in 2017 IEEFE International Confer-
ence on Robotics and Automation (ICRA), 2017.

J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Generalization in Robotic Manipu-
lation Through The Use of Non-Rigid Registration,” International Symposium
on Robotics Research (ISRR), 2013.

M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothorl, T. Lampe, and M. Riedmiller, “Leveraging Demonstrations for
Deep Reinforcement Learning on Robotics Problems with Sparse Rewards,”
2017.

K. Huebner, K. Welke, M. Przybylski, N. Vahrenkamp, T. Asfour, D. Kragic,
and R. Dillmann, “Grasping Known Objects with Humanoid Robots: A Box-
Based Approach,” International Conference on Advanced Robotics, 2009.

S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep Reinforcement Learning for
Robotic Manipulation with Asynchronous Off-Policy Updates,” Proceedings -
IEEFE International Conference on Robotics and Automation, 2016.

J. Peters, “Reinforcement learning of motor skills with policy gradients,” Neural
Networks, 2008.

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An Application of Reinforce-
ment Learning to Aerobatic Helicopter Flight,” 2007.

105

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

22|

23]

[24]

[25]

26]

27]

X. B. Peng and G. Berseth, “DeeplLoco: Dynamic Locomotion Skills Using
Hierarchical Deep Reinforcement Learning,” ACM Trans. Graph, 2017.

S. James, A. J. Davison, and E. Johns, “Transferring End-to-End Visuomotor
Control from Simulation to Real World for a Multi-Stage Task,” 2017.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
Randomization for Transferring Deep Neural Networks from Simulation to the

Real World,” 2017.

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel, “Asym-
metric Actor Critic for Image-Based Robot Learning,” 2017.

L. Pinto, J. Davidson, and A. Gupta, “Supervision via competition: Robot
adversaries for learning tasks,” 2017.

E. Coumans and Y. Bai, “PyBullet, a Python module for physics simulation
for games, robotics and machine learning,” 2016.

Kinova Robotics, “Official ROS packages for Kinova robotic arms,” 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “OpenAl Gym,” 2016.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell,
J. Schneider, J. Tobin, M. Chociej, P. Welinder, V. Kumar, and W. Zaremba,
“Multi-Goal Reinforcement Learning: Challenging Robotics Environments and
Request for Research,” 2018.

A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel, “Learning from Multiple
Demonstrations using Trajectory-Aware Non-Rigid Registration with Applica-
tions to Deformable Object Manipulation,” 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” 2015.

A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification with deep
convolutional neural networks,” 2017.

A. Deshpande, “A Beginner’s Guide To Understanding Convolutional Neural
Networks,” 2018.

D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimization,”
International Conference on Learning Representations 2015, 2015.

M. Inaba and H. Inoue, “Hand Eye Coordination in Rope Handling,” Journal
of the Robotics Society of Japan, 1985.

A. Remde, D. Henrich, and H. Worn, “Picking-up deformable linear objects
with industrial robots,” 1999.

106

[28] M. Saha and P. Isto, “Manipulation Planning for Deformable Linear Objects,”
IEEFE Transactions on Robotics, 2007.

[29] H. Wakamatsu, E. Arai, and S. Hirai, “Knotting/Unknotting Manipulation of
Deformable Linear Objects,” The International Journal of Robotics Research,
2006.

[30] B. Kahl and D. Henrich, Virtual robot programming for deformable linear ob-
jects: system concept and prototype implementation. 2002.

[31] K. Hirana, T. Suzuki, S. Okuma, K. Itabashi, and F. Fujiwara, “Realization
of skill controllers for manipulation of deformable objects based on hybrid au-
tomata,” 2001.

[32] S. Yue and D. Henrich, “Manipulating deformable linear objects: sensor-based
fast manipulation during vibration,” 2002.

[33] G. Nair, I. Daut, V. Kumaran, M. Irwanto, Y. M. Irwana, and M. Zambak,
“Photovoltaic Powered T-Shirt Folding Machine,” 2013.

[34] D. Lee, “This machine can fold an entire load of laundry in four minutes,” 2018.

[35] N. Fahantidis, K. Paraschidis, V. Petridis, Z. Doulgeri, L. Petrou, and G. Has-
apis, “Robot handling of flat textile materials,” IEEE Robotics & Automation
Magazine, 1997.

[36] F. Osawa, H. Seki, and Y. Kamiy, “Unfolding of Massive Laundry and Clas-
sification Types by Dual Manipulator,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, 2007.

[37] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth grasp
point detection based on multiple-view geometric cues with application to
robotic towel folding,” in Proceedings - IEEE International Conference on
Robotics and Automation, 2010.

[38] P. C. Wang, S. Miller, M. Fritz, T. Darrell, and P. Abbeel, “Perception for the
manipulation of socks,” 2011.

. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Using depth an

39] A. Ramisa, G. Al F. M N d C. T “Using depth and
appearance features for informed robot grasping of highly wrinkled clothes,”
pp. 1703-1708, IEEE, 2012.

[40] C. Bersch, B. Pitzer, and S. Kammel, “Bimanual robotic cloth manipulation for
laundry folding,” in IEEE International Conference on Intelligent Robots and
Systems, 2011.

[41] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel,
“Bringing clothing into desired configurations with limited perception,” Pro-
ceedings - IEEE International Conference on Robotics and Automation, 2011.

107

[42] Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita, “A method for handling a specific
part of clothing by dual arms,” 2009.

[43] “Maya | Computer Animation & Modelling Software | Autodesk.”

[44] J. Van Den Berg, S. Miller, K. Goldberg, and P. Abbeel, “Gravity-based robotic
cloth folding,” in Springer Tracts in Advanced Robotics, 2010.

[45] Y. Yamakawa, A. Namiki, and M. Ishikawa, “Motion planning for dynamic
folding of a cloth with two high-speed robot hands and two high-speed sliders,”
in Proceedings - IEEFE International Conference on Robotics and Automation,
2011.

[46] V. Petrik, V. Smutny, P. Krsek, and V. Hlava¢, “Single arm robotic garment
folding path generation,” Advanced Robotics, 2017.

[47] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. Allen, “Folding Deformable Objects
using Predictive Simulation and Trajectory Optimization,” 2015.

[48] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Robot Vision
Architecture for Autonomous Clothes Manipulation,” 2016.

[49] K. Sun, G. Aragon-Camarasa, P. Cockshott, S. Rogers, J. P. Siebert, L. Sun,
G. Aragon-Camarasa, P. Cockshott, S. Rogers, and J. P. Siebert, A Heuristic-
Based Approach for Flattening Wrinkled Clothes. 2013.

[50] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic Grasps,”
2013.

[51] Cornell University Computer Science Department, “Cornell Grasping Dataset.”

[52] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine,
“Combining self-supervised learning and imitation for vision-based rope ma-
nipulation,” 2017.

[53] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from
50K tries and 700 robot hours,” 2016.

[54] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning Hand-Eye Co-
ordination for Robotic Grasping with Deep Learning and Large-Scale Data
Collection,” 2016.

[55] A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and R. Hadsell,
“Sim-to-Real Robot Learning from Pixels with Progressive Nets,” 2016.

[56] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,

and D. Hassabis, “Human-level control through deep reinforcement learning,”
Nature, 2015.

108

[57]

[58]

[59]

[60]

[61]

|62]

|63]

|64]

[65]

[66]

[67]
(68
[69]
[70]
[71]

[72]
73]
[74]

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learn-
ing,” PMLR, 2016.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-
terministic Policy Gradient Algorithms,” Proceedings of the 31st International
Conference on Machine Learning (ICML-14), 2014.

R. J. Williams, “Simple statistical gradient-following methods for connectionist
reinforcement learning,” Machine Learning, 1992.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,”
Physical Review, 1930.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation
Error in Actor-Critic Methods,” 2018.

G. Barth-Maro, M. W. Hoffma, D. Budden, W. Dabney, D. Horgan, D. Tb,
A. Muldal, N. Heess, T. Lillicrap, and D. London, “Distributed Distributional
Deterministic Policy Gradients,” 2018.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
grew, J. Tobin, P. Abbeel, and W. Z. Openai, “Hindsight Experience Replay,”
2017.

J. Schulman, F. Wolski, and P. Dhariwal, “Proximal Policy Optimization Al-
gorithms Background : Policy Optimization,” CoRR, 2017.

J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “ High-
Dimensional Continuous Control Using Generalized Advantage Estimation,”
ICML, 2015.

NVidia, “The NVIDIA PhysX Physics Engine.”
http://www.nvidia.com/object /physx new.html.

Havok, “Havok Physics Engine,” 2018.

Coppelia Robotics, “V-Rep - Coppelia Robotics.”

Blender Online Community, “Blender - a 3D modelling and rendering package.”
Morse Online Community, “Morse - Modular OpenRobots Simulation Engine.”

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Mg, “ROS: an open-source Robot Operating System,” Icra,
2009.

Phobos Online Community, “Phobos.”
R. Kaestner, “Blender- URDF.”

Bullet Physics Online community, “Bullet Physics Engine.”

109

|75]

[76]
[77]

78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

33

[89]

T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robotics:
Comparison of Bullet, Havok, MuJoCo, ODE and PhysX,” in Proceedings -
IEEFE International Conference on Robotics and Automation, 2015.

R. Featherstone, Robot dynamics algorithms, vol. 25. 19809.

P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “OpenAl Baselines.”
https://github.com /openai/baselines, 2017.

OpenCV, “OpenCV,” 2018.

E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based
control,” in IEEE International Conference on Intelligent Robots and Systems,
2012.

Fetch-Robotics, “Fetch Mobile Manipulator.” https://fetchrobotics.com/, 2018.

G. Rossum, “Python Reference Manual,” tech. rep., Amsterdam, The Nether-
lands, The Netherlands, 1995.

M. Plappert, “keras-rl.” https://github.com /keras-rl /keras-rl, 2016.

J. Bergstra, D. L. K. Yamins, and D. D. Cox, “Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision
Architectures,” Ieml, 2013.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, X. Zheng, and G. Brain, “TensorFlow: A System for Large-Scale Ma-
chine Learning TensorFlow: A system for large-scale machine learning,” in 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
'16), 2016.

F. Chollet, “Keras as a simplified interface to TensorFlow: Tutorial,” The Keras
Blog, 2016.

J. Zacharias, M. Barz, and D. Sonntag, “A Survey on Deep Learning Toolkits
and Libraries for Intelligent User Interfaces,” 2018.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Re-
play,” 2015.

T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel,
“Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality
Teleoperation,” 2017.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Over-
coming Exploration in Reinforcement Learning with Demonstrations,” 2017.

110

[90] H. V. Hasselt, A. C. Group, and C. Wiskunde, “Double Q-learning,” Nips, 2010.
[91] K. Perlin, “An image synthesizer,” ACM SIGGRAPH Computer Graphics, 1985.
[92] C. Duncan, “Perlin noise library for Python,” 2016.

[93] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep Reinforcement Learning that Matters,” CoRR/, 2017.

[94] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining Improve-
ments in Deep Reinforcement Learning,” 2017.

[95] Fangyi Zhang, J. Leitner, B. Upcroft, and P. Corke, “Vision-Based Reaching
Using Modular Deep Networks: from Simulation to the Real World [arXiv],”
arXiw, 2016.

[96] F. L. Bookstein, “Principal Warps: Thin-Plate Splines and the Decomposi-
tion of Deformations,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1989.

[97] A. Myronenko and X. Song, “Point set registration: Coherent point drifts,”
IEEFE Transactions on Pattern Analysis and Machine Intelligence, 2010.

111

	Introduction
	Objectives
	Challenges
	Contributions
	Publication
	Report Layout

	Preliminaries
	Artificial Neural networks
	Summary

	Reinforcement Learning
	Introduction to Reinforcement Learning
	Q-Learning
	Summary

	Background
	Manipulating Deformable Linear Objects
	Manipulating Cloth
	Grasping
	Brining the cloth to known configuration
	Cloth Folding
	Cloth flattening

	Machine learning approaches to manipulation tasks
	Supervised learning
	Large scale self-supervision
	Learning in simulation
	Summary

	Deep Reinforcement Learning
	DQN
	DDPG
	Other algorithms
	Summary

	Summary

	Simulator and learning environments
	Simulation approaches investigated in depth
	V-Rep
	Blender
	Bullet physics
	Summary

	Work with Pybullet
	Library overview
	Original status of softbody support
	Contributions

	Environments
	2D environments
	3D rigid object environments
	3D cloth environments
	On the resourcefulness of agents in presence of ill defined rewards
	Summary

	Reinforcement learning
	Research tools
	Programming languages and tools
	Important automations
	Learning hardware
	Deep learning libraries
	Summary

	First Experiments
	DDPG - Keras
	DQN
	Other experiments

	DDPG and implemented improvements
	Basic DDPG implementation
	Asymmetric actor-critic
	N-step returns
	Prioritized replay buffer
	Demonstrations
	Distributed DDPG
	Auxiliary predictions
	Combining low-dimensional and pixel actor input
	Twin critic

	Summary

	Transferring policies learned in simulation to the real world
	Domain randomisation in simulation
	Real world setup
	Transfer challenges
	Summary

	Evaluation
	Simulator work
	Deformable object simulation quality
	Simulation stability
	Simulation performance
	Summary

	Learning in simulated environments
	On the variance in results
	Success rates in a simulation of baseline runs
	Plot analysis

	Ablation studies in simulation
	N-step returns
	Twin critic
	Reset to demonstration
	Number of provided demonstrations
	No auxiliary predictions
	Prioritized demonstration sampling
	Pre-training
	Low Dimensional state in the actor

	Real world experiments
	Failure modes

	Summary and Comparison with other work

	Conclusion and Future work
	Future work
	Deformable object simulation and environments
	Learning in simulation
	Domain transfer

