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Abstract

Inspired by SemEval-2018 Task 11, this project investigates the effect of incorporating com-
monsense knowledge on the level of machine comprehension of text. Using a logic-based
rather than statistical machine learning approach, we translate text and questions to an An-
swer Set Programming (ASP) representation and solve this to find the relevant answers.

Using the work done by Chabierski et al. (2017) [1] as a base, we enhance their transla-
tion of text and questions by conducting a critical analysis of their CCG and λ-ASP* based
approach and implementing improvements. These are done in order to be able to answer
questions on complex texts, such as those in the SemEval-2018 Task 11 corpus.

Assertions from ConceptNet 5 [2], a network of human knowledge, are incorporated into
the system along with relevant background knowledge rules, and we analyse the effect this
has on the system’s comprehension by evaluating its question-answering abilities on stories
from various sources in comparison to Chabierski’s system.
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Chapter 1

Introduction

The problem of machine comprehension is one whose origin is commonly attributed to the
Turing test (1950), which a machine passes if its responses in a conversation are indistin-
guishable from those of a human being [3]. Building off this idea that a machine would
need to be as good as, if not better than, humans at responding to questions, a definition for
machine comprehension of text could be as follows: “A machine comprehends a passage of
text if, for any question regarding that text that can be answered correctly by a majority of
native speakers, that machine can provide a string which those speakers would agree both
answers that question, and does not contain information irrelevant to that question [4].”

One dataset that gives a measure of how well a machine does this is the Stanford Question
Answering Dataset (SQuAD) [5], where questions on given texts (Wikipedia articles) have
answers which can be found within the text itself and systems are not given options of an-
swers to choose between. Many research groups use this dataset and others’ performance
rates as a way to benchmark their systems, and in January 2018 systems built by Alibaba
and Microsoft were both able to outperform a real person in the exact match (EM) metric in
correctly answering the questions in the SQuAD dataset [6]. The dataset contains questions
of varying difficulty, and many of the questions the highest performing systems get wrong
tend to be those that require some form of commonsense knowledge, as will be discussed in
Section 3.3.

1.1 Motivation

The importance of commonsense knowledge for natural language processing (NLP) has been
a topic of discussion since 1960, in the context of machine translation, such that machines
would need extra knowledge in order to resolve semantic ambiguities when translating from
one language to another [7][8]. For story/text comprehension, where the understanding of
a text is measured by answering questions on the text, it is important that a system have
some sort of background/commonsense knowledge. This is because questions may test for
information that is obvious to a human, but which may not necessarily be included within
the text and so without a bank of commonsense knowledge, a machine will not be able to
perform as well as, or better than, humans in this task.

For example, take the sentence “Ann rang the doorbell.” and the question “Does Ann have the
door keys?”. A human would reason that she does not have the keys since she rang the bell.
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CHAPTER 1. INTRODUCTION

A machine with no knowledge of how the world works, however, would not be able to reason
in the same way and would possibly reach a ‘Don’t Know’ outcome. This type of question
falls under story comprehension, for which commonsense knowledge tailored to the situa-
tion is particularly important for reasoning in that environment, as events in the story affect
the way elements relate to one another. This differs to question answering (QA) datasets
like SQuAD, where commonsense knowledge (when required) tends to be of a more general
nature, like knowing that Miami is in Florida (a relation that does not change no matter the
situation you are in).

1.2 Objectives

This project aims to explore the use of logic-based methods in order to create a system that
will be able to process a piece of text, ‘understand’ it and answer questions on it with the
help of pre-learned commonsense knowledge. A significant reason for choosing a logic-based
rather than a statistical machine learning approach to solve this task is the fact that symbolic
representations allow for more abstract concepts, like temporal relation, to be represented.
This is particularly useful, for example, when learning a type of commonsense knowledge
known as script knowledge, which will be discussed in Section 2.3.2.

Thus, at a high level, this project’s main aims are:

1. Translating text and questions into a sufficiently expressive logic representation
We use the system created by Chabierski et al. [1], which combines Combinatory Cate-
gorial Grammar (CCG) and Montague-style semantics (expressed with λ-ASP calculus)
to conduct semantic analysis of text and derive Answer Set Program representations.
As we would like to evaluate the system’s comprehension (question-answering ability)
by using a selection of stories and corresponding question and answer sets from a cor-
pus created for a SemEval-2018 task (as described in Section 2.4), we must extend the
system. This is because these stories are more complex than those used to originally
evaluate the system’s text comprehension, as highlighted in Section 4.

2. Building a commonsense knowledge database
We want to find a way of representing commonsense knowledge acquired from various
sources, as there is no one source that encompasses all the commonsense knowledge
that has been collected by various efforts. We focus on one or two sources for this
project, building our own database to hold relevant data that can be incorporated into
our system to enhance its comprehension.

3. Using this commonsense knowledge to aid in the answering of questions on given
texts
With a good enough logic representation of the text and a bank of commonsense
knowledge, we can then tackle the issue of identifying which commonsense knowl-
edge can be useful when, and at what point to inject it into the system to help with
question-answering.

2



CHAPTER 1. INTRODUCTION

1.3 Contributions

This project extends the work done by Chabierski et al. [1] and produces a system
that is able to utilise commonsense knowledge from an existing source to aid in its
comprehension abilities.

Our main contributions can be summarised as follows:

• Enhancing the English-to-ASP text translation, especially with regards to the rep-
resentation of time and coreference resolution (Section 5.1)

• Extending the question-answering abilities of the system by conducting an analy-
sis of its capabilities and addressing existing issues (Section 5.2)

• Incorporating a representation and background rules for commonsense knowl-
edge and implementing an algorithm that injects concepts tailored to the text and
question the system is processing (Section 6)

• Analysing the improvements to the system’s question-answering ability by testing
it on stories from

– a hand-crafted validation set,
– the SemEval-2018 Task 11 corpus and
– kindergarten-level reading comprehension exercises.

(Section 7)
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Chapter 2

Background

The background information for this project can be divided into several categories, namely
answer set programming (ASP), which is the logic representation used in this project, nat-
ural language processing (NLP), commonsense knowledge, SemEval-2018 (Task 11), which
inspired the direction of this project and the Chabierski System, an existing translation sys-
tem that we will be extending.

2.1 Answer Set Programming (ASP)

ASP is a form of declarative programming oriented towards difficult search problems and
is particularly useful in knowledge-intensive applications [9] relying on the stable model
(answer set) semantics of logic programs. An answer set program P is a finite set of normal
rules, constraints and choice rules, defined as follows [10]:

A literal is either an atom p or its default negation not p (the negation as failure of p).

A normal rule has the form:

h← b1, ...,bn,not c1, ...,not cm

where h is the head of the rule, b1, ...,bn,not c1, ...,not cm as a whole is the body of the rule,
and all of h,bi , cj are atoms.

A constraint has the form:

← b1, ...,bn,not c1, ...,not cm

i.e. a rule with an empty head. The effect of adding a constraint is eliminating all answer
sets that both include all bi and exclude all cj from the answer sets of a program.

A choice rule has the form:

l{h1, ...,hm}u← b1, ...,bn,not c1, ...,not cm

where the head l{h1, ...,hm}u is called an aggregate, with l,u ∈ N and 0 ≤ l ≤ u. All hi for
0 ≤ i ≤m are atoms.

A variable V in rule R is safe if V occurs in at least one positive literal of R. For example, X
is not safe in the following rules

p(X)← q(Y ), not r(Y ).
p← q, not r(X).

5



CHAPTER 2. BACKGROUND

2.1.1 Stable Model Semantics

To define a stable model of a normal logic program P , we must first define a minimal Her-
brand model in the context of logic programs. Given P , the Herbrand Base of P (HBP ) is the
set of all ground (variable free) atoms that can be formed from the predicates and constants
that appear in P . A Herbrand interpretation of P assigns a truth value to each ground atom
a ∈HBP .

A Herbrand model M of a normal logic program P is a Herbrand interpretation in which
every ground instance of a rule r in P whose body is satisfied by M, head(r) is also satisfied
by M. A Herbrand model M of P is minimal if no proper subset of M is also a Herbrand
model of P .

We now define the reduct PM of P as follows: for any set of ground atoms M of normal logic
program P , a reduct PM is a logic program that can be obtained from P by

1. removing any rule whose body contains a literal not ci where ci ∈M

2. removing any negative literals in the remaining rules

M is an answer set (stable model) of P if and only if it is the minimal model of PM . The
fact that normal logic programs can have one, zero or multiple stable models leads to two
different notions of entailment [11], as follows:

Brave entailment An atom a is bravely entailed by P if it is true in at least one stable model
of P (P |=b a).

Cautious entailment A formula a is bravely entailed by P if it is true in all stable models of
P (P |=c a).

2.2 Natural Language Processing (NLP)

Natural language processing (NLP) is the study of mathematical and computational mod-
elling of various aspects of language, as well as the development of a wide range of systems
[12]. It involves concepts from computer science, linguistics, logic and psychology, and NLP
systems include those for speech recognition, language understanding and language gener-
ation.

Almost every NLP system has

• a grammar: finite specification of a potentially infinite number of sentences, and

• an associated parser: an algorithm that analyses a sentence and assigns one or more
structural descriptions to the sentence according to the grammar, if the sentence can
be characterized by the grammar

Chomsky introduced a hierarchy of grammars in [13], known as the Chomsky Hierarchy, in
which he describes four sets of grammars:

Type-0 Unrestricted (recursively enumerable) grammars

Type-1 Context-sensitive grammars (CSG)

6



CHAPTER 2. BACKGROUND

Type-2 Context-free grammars (CFG)

Type-3 Finite state grammars

Of these, we are most interested in CFGs and CSGs as many NLP systems are based on CFGs
and the particular grammar we will be looking at, combinatory categorial grammar, is one
that is somewhere in between a CFG and a CSG.

2.2.1 Context-Free and Context-Sensitive Grammars (CFG and CSG)

A CFG, G, consists of

• a finite set of non-terminals (e.g. S: sentence (start symbol); NP : noun-phrase; V P :
verb-phrase; V : verb; ADV : adverb)

• a finite set of terminals (e.g. John, clowns, hates, passionately)

• a finite set of rewrite rules of the form A→W , where A is a non-terminal and W is a
string of zero or more non-terminals and terminals

Syntactic Rules
S→NP V P
V P → V P ADV
V P → V NP

Lexical Rules
NP → John
NP → clowns
V → hates
ADV → passionately

Structure of
John hates clowns passionately

S

NP

John

VP

VP

V

hates

NP

clowns

ADV

passionately

Figure 2.1: A context-free grammar

A CSG is like a CFG, except that the rewrite (syntactic) rule (on the leftmost of figure 2.1,
for example) for a non-terminal is dependent on the context surrounding it. This is different
to a CFG rewrite rule where the rewriting is context independent.

2.2.2 Combinatory Categorial Grammar (CCG)

CFGs are too simplistic and need to be augmented with more complex string- and tree-
combining operations in order to describe various linguistic phenomena. Combinatory cat-
egorial grammar (CCG) is a grammar somewhere in between context-free and context-
sensitive, known as a mildly context-sensitive grammar (MCSG). MCSG preserves many of
the essential properties of CFG and is also able to capture a wide range of dependencies of
language structure [12].

CCG is a form of lexicalised grammar in which the application of syntactic rules is condi-
tioned on the category (syntactic type) of their inputs [14]. Each word is assigned to either
a primitive category (like NP , noun phrase, and S, sentence) or a function category (like

7
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(S\P )/NP , which identifies the type and directionality of their arguments as well as the type
of their result [15]).

Pure categorial grammar (CG) limits syntactic combination to rules of functional application
of functions to arguments to the right or left, and this restriction limits the expressivity to the
level of CFGs. CCG introduces further rules for combining categories, known as combinatory
rules.

Combinatory Rules [15][14]

1. Application Rules

The simplest of the combinatory rules are the functional application ones, as follows:

Forward Application (>)
X/Y : f Y : a ⇒ X : f a

Backward Application (<)
Y : a X/Y : f ⇒ X : f a

where X and Y are syntactic categories.

The sentence “John hates clowns”, for example, yields the following derivation:

John
NP : john′

hates
(S\NP )/NP : λxλy.hate′xy

clowns
NP : clowns′

>
S\NP : λy.hate′clowns′y

<
S : hate′clowns′john′

2. Coordination

The coordination rule allows constituents that are of the same category to conjoin and
yield a single constituent of that category.

Coordination (<& >)
X conj X ⇒ X

Take the sentence “John loathes and detests clowns”:

John

NP : john′

loathes

(S\NP )/NP : λxλy.loathe′xy
and

conj

detests

(S\NP )/NP : λxλy.detest′xy
<& >

(S\NP )/NP : λxλy.loathe′xy ∧ detest′xy
clowns

NP : clowns′
>

S\NP : λy.loathe′clowns′y ∧ detest′clowns′y
<

S : loathe′clowns′ john′ ∧ detest′clowns′ john′

3. Composition

To allow coordination of subsequent strings (functions) that are not of the same cate-
gory but where the category of one’s domain matches that of the other’s range, CCG
allows composition on functions. There are four composition rules, as follows:

Forward Composition (> B)
X/Y : f Y /Z : g ⇒ X/Z : λx.f (gx)

Backward Composition (< B)
Y \Z : g X\Y : f ⇒ X\Z : λx.f (gx)

Forward Crossing Composition (> B×)

8
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X/Y : f Y \Z : g ⇒ X\Z : λx.f (gx)

Backward Crossing Composition (< B×)
Y /Z : g X\Y : f ⇒ X/Z : λx.f (gx)

where X and Y are syntactic categories.

4. Type-raising

Type-raising rules turn arguments into functions over functions-over-such-arguments.
They allow arguments to compose with the verbs that use them, and thus take part in
coordinations.

Forward Type-raising (> T )
X : a ⇒ T /(T \X) : λf .f a
where X ∈ {NP }
Backward Type-raising (< T )
X : a ⇒ T \(T /X) : λf .f a
where X ∈ {NP ,P P ,AP ,V P ,V P ′ ,S,S ′}
The derivation of the sentence “Jack lent and Jill borrowed money” shows how compo-
sition and type raising work together:

Jack

NP : jack′
> T

S/(S\NP )
lent

(S\NP )/NP : λyλx.lend′xy
> B

S/NP : λx.lend′ x jack′
and

conj

Jill

NP : jill′
> T

S/(S\NP )
borrowed

(S\NP )/NP : λyλx.borrow′xy

S/NP : λx.borrow′ x jill′
<& >

S/NP : λx.lend′x jack′ ∧ borrow′x jill′
money

NP :money′

S : lend′money′ jack′ ∧ borrow′money′ jill′

We can thus create a syntactic parser for CCG, creating an algorithm that assigns one or more
structural descriptions to a sentence according to the rules of CCG.

2.3 Commonsense Knowledge

Commonsense knowledge can be defined to be common knowledge about things in the
world, their associations and interactions. It includes, but is not limited to, facts about
events and their effects, facts about knowledge, beliefs, desires, and material objects and
their properties [16]. While obvious to a human, these things would need to be represented
in a system by either hard-coding or learning of some kind.

2.3.1 ConceptNet

There are many aspects of commonsense knowledge that can be added to a system, like

• Properties of elements, e.g. shiny surfaces are hard

• Taxonomy (classification), e.g. athletes are human

• Sentiment (emotions), e.g. tears mean sadness

• Structures, e.g. wheel is part of a bike

9
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In an attempt to produce a better performing system, we thus look into inducing common-
sense knowledge from ConceptNet, a dataset that has been built which covers many of these
commonsense types.

ConceptNet (Liu et al., 2004)[17] (Speer et al., 2012)[18]
Currently in its fifth iteration, ConceptNet is a semantic network describing general human
knowledge and how it is expressed in natural language, “designed to help computers under-
stand the meanings of words that people use [2]”. The original network was mined out of
the OMCS corpus of English sentences, and this has now expanded to include data mined
from other sources including:

• OMCS for other languages (Portuguese, Japanese, Dutch, Korean, French and Chinese)

• Wiktionary translations

• WordNet

Figure 2.2: A high-level visual representation of the knowledge ConceptNet has about
related concepts [18]

ConceptNet expresses concepts (words and phrases that can be extracted from natural text)
and assertions of the ways these concepts relate to each other. These assertions come from
the sources mentioned above (OMCS, WordNet, etc). A high-level overview can be seen
in Figure 2.2. Each assertion has a label which is a predicate, like isA or usedFor. The
network can be more accurately represented as a hypergraph, with the concepts as nodes
and assertions as (groups of) edges between these nodes, such as in Figure 2.3. Notice the
two assertions (in red and blue), which are justified by other assertions (e.g. each other),
knowledge sources (e.g. Wikipedia) and processes (e.g. the ReVerb parser).

10



CHAPTER 2. BACKGROUND

Figure 2.3: A closer look at two assertions in ConceptNet5[18]

All the relevant information about an edge is stored as properties on that edge. Each edge
indicates a conjunction of sources that produced that edge, and a bundle of edges that make
up an assertion is a disjunction of their conjunctions. Each conjunction is weighted with
a positive or negative score, where the more positive the weight the more solidly we can
conclude from this source that the assertion is true. A negative weight means that we should
conclude from this source that the assertion is not true; it does not mean that the negation
of the assertion is true.

Every node and edge has a Uniform Resource Identifier (URI), which contains all the infor-
mation required to uniquely identify it. Each concept, for example, is represented by a URI
like /c/en/jazz/n/musical art form that identifies

• that is is a concept,

• the language it is in,

• its normalised text, and

• possibly its part of speech and disambiguation.

Relations can begin with both /c/ and /r/. /r/ is used when the predicate is multilingual,
e.g. /r/isA. For a relation taken from a sentence in a particular language, like “A bassist per-
forms in a jazz trio” is an English sentence, a concept URI is used: /c/en/perform in. An as-
sertion URI, beginning with /a/, contains all the information necessary to reconstruct it. For
example, “jazz is a kind of music” has the URI /a/[/r/IsA/,/c/en/jazz/,/c/en/music/].
We can query ConceptNet through a REST API to get all the relevant relations we require.

A more detailed explanation of how we use ConceptNet can be found in Section 6.

2.3.2 Script Knowledge

A type of commonsense knowledge is script knowledge, with a script being “a standard-
ized sequence of events that describes some stereotypical human activity such as going to a
restaurant or visiting a doctor [19].” This type of knowledge is useful for a system to have
so that it is able to see how a chain of events/actions can relate to one another, and thus
be able to make assumptions about temporal relations between these events based on learnt
prototypical orderings. For example, if a story started with Sarah eating in a restaurant, with
the help of script knowledge a system would be able to assume that this person had placed

11
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an order at an earlier point in time. Thus if the question and answer options a and b as well
as the below text were given to a system with knowledge of ‘going to a restaurant’, it should
be able to correctly choose option b as the answer.

Text: Sarah is eating in a restaurant.
Question: What did Sarah do before eating?

a. Sarah stepped in a puddle.

b. Sarah ordered food from a waiter.

The gathering of script knowledge has been done by various different parties and the result-
ing datasets from three efforts have been considered to make up part of the commonsense
knowledge in our system.

1. DeScript corpus: a large-scale crowdsourced collection of event sequence descriptions
(ESDs) (like in Figure 2.4) for various scenarios, including those that require simple
general knowledge (WASHING ONE’S HAIR), more complex ones (BORROWING A BOOK

FROM THE LIBRARY), ones with higher degrees of variability (GOING TO A FUNERAL)
and those requiring more expert knowledge (RENOVATING A ROOM) [20]. The data
was collected from 320 native English speakers describing everyday activities in small
sequences of short sentences using Amazon Mechanical Turk. This was done in two
phases, a pilot phase in which 10 ESDs were collected for each of 10 scenarios, and a
second phase with 100 ESDs per each of the full 40 scenarios. Once the data was col-
lected, it was manually checked to remove undesirable ESDs (i.e. those with unclear
language or which misunderstood the scenario). This corpus, unlike the two below,
also includes a ‘gold standard’ corpus of aligned event descriptions annotated by ex-
perts covering 10 scenarios with 50 ESDs each. Event descriptions (i.e. lines that make
up one ESD) describing equivalent events are grouped into paraphrase sets.

2. RKP (by Regneri, Koller and Pinkal) SMILE corpus: a set of ESDs for 22 scenarios of
ranging complexity, for example CHILDHOOD, which is difficult to describe, MAKING

SCRAMBLED EGGS, which has varied orderings of events, and WEDDING, which would
differ according to culture [21]. They used Amazon Mechanical Turk to assemble
data from volunteers (non-experts), getting 25 people to enter a typical sequence of
events in temporal order and bullet-point style for each of the 22 scenarios. The data
was manually corrected for orthography and entries with broken English or which
misunderstood the scenario were discarded.

3. Open Mind Commonsense (OMCS) Stories: a web-collected corpus by the Open
Mind Initiative [22], which contains 175 scenarios (restricted to indoor activities) with
more than 40 ESDs each, the style of which resembles the RKP corpus. This was also
built from information collected from the general public, but only represents a small
part of the full extent of data collected through the OMCS project. More of this data is
included in this project through the use of ConceptNet 5, as described in Chapter 6.
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Figure 2.4: Three event sequence descriptions (ESDs) for
EATING IN A FAST FOOD RESTAURANT [21]

Induction of Script Knowledge

Different approaches have been proposed for the learning of script knowledge, with three
methods outlined below.

• Narrative Chains
Chambers et al. (2008) [23] presented a new representation of structured knowledge
called narrative chains, which are partially ordered sets of events centred around a
common protagonist. This was extended in their 2009 work [24], which introduced
typed narrative chains, which are partially ordered sets of event slots with a shared
role (being a member of set of types R), as well as narrative schemas, which are sets
of typed narrative chains modelling all actors in a set of events (as opposed to only
one protagonist when you have one narrative chain). Their algorithm in (2008) uses
unsupervised distributional learning with coreferring arguments as evidence of a nar-
rative relation. Their work in (2009) uses verbs in distinct narrative chains to merge
them into a single narrative schema, with shared arguments across verbs providing
rich information for inducing semantic roles.

The narrative chain schema approach (with typed chains) was a significant improve-
ment to single narrative chains, seeing an increase in performance during narrative
cloze evaluation1, which was introduced by Chambers et al. in their (2008) paper.
They found that jointly modelling arguments with events improved event clustering,
and modelling related events helped argument learning: the two tasks mutually in-
formed each other.

• Event Embedding
Modi et al. [25] propose a statistical model to represent commonsense knowledge
about prototypical event orderings. This was done by inducing distributed represen-
tations of events by composing predicate and argument representations which capture
properties relevant to predicting stereotypical orderings of events from unannotated
data.

1Narrative cloze: an event slot is removed from a narrative chain and systems are evaluated based on the
position of the missing slot in the system’s ranked guess list
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The model they describe is limited in its present form as they chose to focus only on the
ordering task, not representing all the information provided by scripts. It can, however,
be extended to represent other aspects of script knowledge by modifying the learning
objective.

This model was evaluated using the crowdsourced RKP corpus described above, as well
as natural text in the form of news data in the Gigaword corpus. In the RKP corpus
case, event embedding outperforms the F1 score of their proposed graph induction
method by 13.5%. Event embedding performs well in the case of natural text too, with
an accuracy improvement of 22.8% compared to the frequency-based baseline set by
Chambers and Jurafsky (2008) [23].

• Event Paraphrase Sets
Wanzare et al. (2017) [26] proposed a semi-supervised clustering approach from
crowdsourced description of event sequences (ESDs). This is done by grouping individ-
ual event descriptions into paraphrase sets (representing event types) and inducing a
temporal order among them. This approach exploits semantic and positional similarity,
and allows for a flexible event order as opposed to the rigidity of previous approaches.
Their best model (semi-supervised clustering with mixed seed data) outperforms the
unsupervised model outlined in RKP in both the paraphrasing and temporal ordering
tasks, as well as Modi and Titov’s (2014) [25] unsupervised model for paraphrasing
but does not beat it for temporal ordering.

2.4 SemEval-2018 Task 11

Task 11 of SemEval-20182 is entitled “Machine Comprehension using Commonsense Knowl-
edge” and formed the initial basis of this project. Manfred Pinkal’s group from Saarland
University set the task, providing trial data, training and development data, and test data.

The task assesses how the inclusion of commonsense knowledge in the form of script knowl-
edge would benefit machine comprehension systems, and systems are tested by seeing how
accurately they can answer multiple choice questions based on given narrative texts about
100 different everyday activities [27].

Some of the given questions have answers that can be found directly in the text, whereas
others require extra knowledge. For example, consider the following story:

My backyard was looking a little empty, so I decided I would plant

something. I went out and bought tree seeds. I found a spot in my

yard that looked like it would get enough sunshine. There, I dug a

hole for the seeds. Once that was done, I took my watering can and

watered the seeds.

Three questions that could go with this story, with the correct answers highlighted in bold,
are as follows:

1. Why was the tree planted in that spot?

2SemEval: an international workshop on semantic evaluation intended to explore the nature of meaning in
language
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A. To get enough sunshine

B. There was no other space

2. What was used to dig the hole?

A. A shovel

B. Their bare hands

3. Who took the watering can?

A. The grandmother

B. The gardener

While the answer to question 1 can be found in the text, the answers to questions 2 and 3
require inferences to be made based on commonsense, namely that people tend to dig holes
with a utensil rather than their bare hands (unless in special circumstances, like they don’t
have the right tool and are desperate or they are a child playing in the sand) and that we
can call people who do gardening ‘gardeners’.

2.5 The Chabierski System - Machine Comprehension of Text Us-
ing CCG and ASP

Chabierski et al. [1] built a system (henceforth referred to as the Chabierski system) that
uses CCG to translate English narratives into an ASP representation, building a knowledge
base that can be used, in addition to background knowledge, to answer questions on the
given text. They first translate the text to an intermediate representation, λ-ASP*, which is
an extension of λ-ASP (Baral et al., 2008) [28] and can handle advanced grammatical and
linguistic constructions such as relativisation, control and raising. This is then translated to
a general-purpose ASP representation language, designed for efficient automated learning
of commonsense knowledge relevant to the given narrative. The system is also capable of
translating wh- questions (who, what, where and which) that require one word answers into
ASP, which would be especially useful for addressing questions in a dataset like SQuAD [5].
A detailed analysis of this system can be found in Section 4.
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Related Work

3.1 Story Comprehension Through Argumentation (STAR)

STAR is a system for automated narrative comprehension, implementing an argumentation-
based semantics adapted to account for temporal aspects of reasoning required for story
comprehension [29]. These semantics operate on a narrative, a set of association rules and
priority relations for these rules.

The STAR system operates on a domain file, following and extending the Prolog syntax and
comprising

• A series of sessions specified by the user, each representing the story narrative up to a
certain scene, as well as a set of questions to be answered at that point. Sessions are
of the form

session(s(#N),#Questions,#Visible)., where

– #N is a non-negative integer,

– #Questions is a list of question names q(#N) to be answered by the system during
this session, and

– #Visible is a list of domain concepts to be shown as the system constructs its
comprehension model. If #Visible is set to all, all domain concepts in the model
will be shown on screen.

These session statements give the operational definition of the session. For example,
session(s(1),[q(1),q(2)],all). tells the STAR system to read up to scene s(1)

and answer questions q(1) and q(2).

The narrative content of the session is given by a set of observations (scenes) of the
form

s(#N) :: #GroundLiteral at #TimePoint., where

– #GroundLiteral is a literal with constants replacing all arguments, and

– #TimePoint is a positive integer or always, for literals that hold at all time points.

An example of scenes could be:

1. s(0) :: person(ann) at always.

“ann” is always of type ‘person’.
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2. s(1) :: rang(ann,doorbell) at 1.

ann rang the doorbell at time point 1. - extracted from a story where the first sen-
tence is “Ann rang the doorbell.”

The format of questions is similarly q(#N) ?? #GroundLiteral at #TimePoint.

For example, a question for the scenes stated above could be q(1) :: has(doorkeys,ann)

at 1., translating to “Does Ann have the door keys?”

• The world knowledge (WK) used in all sessions as background knowledge for the
story comprehension, accounting for the relevant commonsense knowledge required
to understand that story world. We first define #Fluents, which are concepts that
persist over and change across time. All other concepts hold only at their point of
observation or inference.

e.g. fluents([is a( , ), has( , )]).

WK is then represented as associations between concepts in the form of one of three
rules:

1. Property - p(#N) :: #Body implies #Literal.

at same point in time t

e.g. Residents normally have doorkeys: p(1) :: is a(Person,resident) implies

has(Person,doorkeys).

2. Causal - c(#N) :: #Body causes #Literal.

where #Body at time t implies #Literal holds at time t + 1

e.g. Walking to the door usually gets a person close to the door: c(2) :: walk to(Person,door)

causes close to(Person,door).

3. Preclusion - r(#N) :: #Body precludes #Literal.

where #Body at time t means #Literal does not hold at time t + 1

p(#N), c(#N) and r(#N) are unique identifiers of each rule and
#Body = true | #Literal | #Literal,#Body

Priority statements of the form #A1 >> #A2. mean rule #A1 takes priority over #A2.
There are also property rules between types of statements, e.g. causal c(#N) rules are
stronger than inertia rules (persistence of fluents) and inertia rules are stronger than
property p(#N) rules.

With these representations, it is possible to reason about the story world at any given time,
adding more information to the system during every session and learning how this new in-
formation, within the context of the given WK, affects what we thought we knew about the
story world.

Looking at the corpus of STAR stories prepared by Diakidoy et al., we can see that the WK
tends to be highly specialised for the story it is meant for, and is often no longer relevant
when we look at other stories.

For example, in the sample story given in [29], where a character Ann is upset with her
flatmate Mary and knocks on the door to her own flat to interrupt Mary from watching TV, we
have specialised examples like “Walking to the door normally stops one from watching TV.”
The WK in these stories represents what a human reader would typically say when asked to
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verbalise the knowledge they are using to comprehend a story, which makes it clear that the
WK attached to each story is enough context for that story to be fully understood. This raises
the question of whether the process of specialisation occurs during story comprehension or
if it is stored in the human mind in its specialised contextual form. This is of interest to our
project because we need to decide how to represent commonsense knowledge in our system,
and how to access only the very limited set of information required for the context of each
story our system tries to comprehend.

3.2 The Story Cloze Test and ROCStories

Another team working in the area of story comprehension is Mostafazadeh et al. (2016),
who proposed an evaluation framework for evaluating story understanding and script learn-
ing called the Story Cloze Test [30]. This test requires a system to choose the correct ending
(out of two endings) to a four-sentence story, and can be done on a corpus of 50,000 every-
day life stories they built called ROCStories, which captures a rich set of causal and temporal
commonsense relations between daily events.

The focus of these stories is being ‘logically meaningful’, such that the corpus enables a sys-
tem to learn narrative structure across a range of events and can be used to train coherent
story-telling models. The corpus was crowdsourced through approximate 900 workers on
Amazon Mechanical Turk who were asked to write five-sentence stories, where each sentence
no longer than 70 characters. They specified that stories were to have a specific beginning,
ending and something happening in the middle. Each creative writer was first put through
a quality control test to ensure that they understood what a good quality short story was,
resulting in 49,255 of the 49,895 stories submitted being approved.

The Cloze test proved to be a challenge to all the models they tested, and Mostafazadeh et
al. believe it will serve as an effective evaluation for both story understanding and script
knowledge learners, which is perfect for the purposes of this project.

3.2.1 Reasoning with Heterogeneous Knowledge for Commonsense Machine
Comprehension

Lin et al. (2017) [31] used the ROCStories corpus to evaluate their multi-knowledge rea-
soning system, in which they encoded various kinds of knowledge (including event narra-
tive, entity semantic and sentiment coherent knowledge) as inference rules with costs. This
knowledge came from mining raw text as well as relevant knowledge bases. Their reasoning
model selects inference rules for a specific reasoning context using attention mechanism,
and reasons by summarising all valid inference rules.

Their statistical machine learning approach significantly outperforms all baselines on the
ROCStories corpus, with a 13.7% accuracy improvement on the test set. Compared to the
Narrative Event Chain model (Chambers and Jurafsky, 2008) [23], their system achieves
a 16.3% accuracy improvement due to the consideration of other types of commonsense
knowledge (not just event narrative knowledge). They also found that it is necessary to
differentiate between types of commonsense relations for machine comprehension and com-
monsense reasoning, as their method of modeling, distinguishing and selecting different
types of commonsense relations led to a significant improvement compared to Huang et al.’s
Deep Structured Semantic model (2013) [32] and Pichotta and Mooney’s Recurrent Neural
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Network model (2016) [33], both of which model all relations between two elements using
a single semantic similarity score.

Given the success of Lin et al.’s method, it would be a good system to compare ours against
to see whether our logic-based approach can outperform a statistical machine learning one.

3.3 Stanford Question Answering Dataset (SQuAD)

Prior to the conception of SQuAD, reading comprehension (RC) datasets tended to have one
of two limitations: they were either

1. High quality but too small to train data-intensive models (e.g. MCTest by Richardson
et al., 2013 [34], with only 2640 questions), or

2. Large but did not share the same characteristics as explicit reading comprehension
questions (e.g. corpus mined from 300+ thousand articles from the CNN and Daily
Mail websites by Hermann et al., 2015 [35], with around 1 million Cloze [36] style1

questions based on article summary bullet points)

SQuAD [5] was thus produced in 2016 by a group at Stanford University in order to ad-
dress the need for a large, high-quality RC dataset. It consists of 107,785 questions posed
by crowdworkers from the United States and Canada on a set of 23,215 paragraphs (each
no shorter than 500 characters) from 536 articles randomly sampled from the top 10,000
English Wikipedia articles. The subject of these articles cover a wide range of topics from
popular sporting events to abstract concepts.

When submitting questions, crowdworkers were encouraged to use their own words (i.e. not
to use words in the passage). Unlike prior datasets, there is no provided selection of answers
to choose from; instead, the answers to these questions are segments (spans of sentences)
from the corresponding reading passage. Each question has three ‘ground truth’ answers, as
seen in Figure 3.1, against which systems’ answers are tested.

Figure 3.1: An example of a reading passage and corresponding question/answers
from SQuAD [37]

Some world knowledge is required for a small proportion of questions in SQuAD, as can be
seen from Figure 3.1 where the system must know that New Orleans is in Louisiana (and
neither Miami nor San Francisco are) to answer the question correctly.

The accuracy of models attempting to answer questions in the SQuAD dataset are evaluated
by two metrics, which are as follows:

1. Exact Match (EM), which measures the percentage of predictions that match any of
the three given ground truth answers exactly

1Cloze procedure: a reading comprehension activity wherein words are omitted from a passage and students
(or in this case systems) are required to fill in the blank
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2. Macro-averaged F1 score, which measures the average overlap between the prediction
and ground-truth answers. The maximum F1 over all three ground truth answers for
each question is chosen, and then averaged over all questions.

The EM of a human performance has been exceeded by three systems at the writing of
this report, first by Alibaba’s SLQA+, then by Microsoft’s r-net+ and finally by the Joint
Laboratory of HIT and iFLYTEK Research’s Hybrid AoA Reader [37]. r-net+ achieved the
highest EM score of 82.650, 0.345 higher than the human score of 82.304. The highest F1
score of a system, however, is held by the Hybrid AoA Reader at 89.281, 0.788 higher than
that of r-net but 1.94 lower than the human score of 91.221.

3.3.1 Adding Adversarial Sentences to SQuAD

Jia et al. (2017) [38] modified the SQuAD dataset by adding adversarial sentences to the
paragraphs in SQuAD to test the effect of added noise on the performance of publicly avail-
able existing models, focusing on BiDAF (Seo et al., 2016) [39] and Match-LSTM (Wang and
Jiang, 2016) [40]. These two are both deep learning architectures that predict a probability
distribution over the correct answer [38]. They then validate their findings on the single and
ensemble versions of these models on 12 more publicly available models.

They describe two concatenative adversaries, which work by leaving the original question
unperturbed and adding an adversarial sentence to the end of the original paragraph. They
also outline two variants on the adversaries, with all four adversaries described below:

1. ADDSENT, which uses a four-step procedure to produce human-approved grammatical
sentences that look similar to the question but do not contradict the correct answer. It
requires a small number of queries to the model under evaluation in order to choose
the sentence that makes the model give the worst answer, and it is this sentence that
is added to the end of the paragraph.

Variant: ADDONESENT, which adds a random human-approved sentence to the para-
graph.

2. ADDANY, which adds arbitrary sequences of English words to the paragraph. It does
not work on all models as it assumes that the model returns a probability distribution
over answers instead of a single prediction, choosing one of 20 randomised sentences
that minimises the expected value of the F1 score over the models output distribution.

Variant: ADDCOMMON, which works like ADDANY but only adds common words (the
1000 most frequent words in the Brown corpus2)

Their results show drops in the F1 scores of all four main models (BiDAF and Match-LSTM,
single and ensemble) for each of the four adversaries. ADDSENT made the average F1 score
drop from 75.7% to 31.3%. Its variant, ADDONESENT, dropped the F1 score to 43.4%.
ADDANY was more effective, dropping the average score down to 6.7%, but its variant ADD-
COMMON dropped the average score to 46.1%.

The effects of ADDSENT and ADDONESENT were tested on the 12 extra models, and the av-
erage F1 score across all 16 models, 75.4%, dropped down to 36.4% and 46.6% respectively.

2A corpus of American English consisting of over 1 million words produced by Brown University [41]
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However, since ADDANY and ADDCOMMON require models to return a probability distribu-
tion and not all of the other 12 models do so, these two adversaries were not run on any of
the additional models.

3.4 Three-way Attention and Relational Knowledge for Common-
sense Machine Comprehension

Wang et al. (2018) [42] produced the highest achieving system in SemEval-2018 Task 11
(as described in Section 2.4), using a three-way attention mechanism (Three-Way Attentive
Networks TriAN) to model interactions between the given story text, question and answers,
on top of Bi-LTSMs. Their model is pretrained on RACE, the largest available multiple-choice
machine comprehension corpus, for ten epochs before being fine-tuned on official training
data. They use a vector of GloVe embeddings to represent each word in the text, question
and answers, and supplement this with additional information from part-of-speech (POS)
tagging, name entity recognition, and relation embeddings based on ConceptNet to model
commonsense knowledge.

These relation embeddings inspired our approach to incorporate ConceptNet into our sys-
tem (described in Chapter 6), as they query ConceptNet to check whether there is an edge
between words in the passage and any word in the corresponding question or answers. We
used this idea of relating words in the question to words in the passage to cut down on the
number of assertions we include in our logic representation, as the size of ConceptNet can
potentially lead to thousands of ‘relevant’ concepts being added. This idea also led to our
two-hop check, querying ConceptNet to get not only concepts with direct relations, but those
that are related via another concept.
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Chapter 4

Critical Analysis of Chabierski System

The aim of this project is to build upon the system created by Chabierski et al. [1] (hence-
forth referred to as the Chabierski system) in order to be able to ‘understand’ and answer
questions on more complex stories. The QA functionality of the Chabierski system was evalu-
ated using ten of The (20) QA bAbI tasks [43], whilst our main source of texts is the SemEval
corpus [27].

Take the two following text and questions sets:

1. Taken from Weston et al.’s paper describing The (20) QA bAbI tasks [43]

Text:

Mary gave the cake to Fred. Fred gave the cake to Bill. Jeff was given the
milk by Bill.

Question: Who gave the cake to Fred?

2. Taken from Story 18 of the dev-data corpus provided by Ostermann et al. (the organ-
isers of SemEval-2018 Task 11) and cleaned up punctuation etc.

Text:

I needed to clean up my flat. I had to get my broom and vacuum and all the
cleaners I would need. I started by going around and picking up any garbage
I see, like used candy wrappers and old bottles of water. I threw them away.
I went around and picked up any dishes that were out and put them in the
sink then washed them. I used my broom to sweep up all the dust and dirt
off the hard floors, and I used the vacuum to clean up the floors that had
rugs and carpets. When the hard floors were swept, I used a bucket with
floor cleaner and water, and a mop, to mop them up. As the floor dried I
took a rag and began dusting everything in the room. The TV, the tables and
counters and everything else that was a hard surface, I used the rag to dust.

Question: Did I use a mop?

As can be seen from the two examples above, the average sentence length and complexity
of the stories in the SemEval corpus are higher than those of the bAbI dataset. Because of
this, it is imperative to analyse the Chabierski system’s translation of both text and questions
to see if improvements are required for it to be able to handle the SemEval stories.

23



CHAPTER 4. CRITICAL ANALYSIS OF CHABIERSKI SYSTEM

4.1 Chabierski System Overview

Figure 4.1: UML Diagram of Modules in the Chabierski System [44]

Figure 4.1 gives an overall view of the flow within the Chabierski system, showing the vari-
ous modules used for annotating, parsing into logic, generating and solving an ASP program.
Each of these modules are explained below.

A Input

The system takes an input (InputData) like the one in Figure 4.2, which includes a list of
strings to represent the sentences of the text to be translated and a list of questions for the
given piece of text. The ‘positive’ and ‘negative’ fields are for the system’s learning mode
which is not used in this project.

[{

"text": [ "Mary gave the cake to Fred.",

"Fred gave the cake to Bill." ],

"questions": ["Who gave the cake to Fred?"],

"positive": [],

"negative": []

}]

Figure 4.2: Sample JSON Input Used by the Chabierski System
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B Annotation

For each piece of InputData, the text and questions are annotated by two external libraries,
Stanford CoreNLP [45] and EasySRL [46].

CoreNLP handles

1. Sentence splitting and tokenisation

2. Lemmatisation: grouping together inflected forms of a word and assigning the words
lemma

3. Part-of-speech (POS) tagging: assigning POS tags (as defined in the Penn Treebank
Project [47]) to each word, which helps to improve the robustness of λ-ASP* expres-
sion generation in a later step

4. Named entity recognition: identifying names (e.g. Lewis Carroll) and labelling with
the appropriate class

5. Coreference resolution: determining referents of words occurring in both text and
question

EasySRL is used for semantic role labelling, which assigns roles (e.g. agent, recipient, theme)
to arguments of predicates. This is used to order the arguments when generating ASP pred-
icates.

C Parsing into Logic

The CCG Parser [48] uses the previously obtained annotations to produce a (syntactic) parse
tree for each sentence. This tree is then traversed to generate λ-ASP* expressions for each
leaf node using the Lexicon module, and these are used by the Combinator module to com-
pute the λ-ASP* expressions for each internal node. The LambdaExpr that represents the
root node, which corresponds to the full sentence, is the final output.

D Generating ASP Programs and Solving for Answers

Each LambdaExpr is converted to ASPPredicates which form the final ASPProgram. This pro-
gram is then run by Clingo [49] to generate grounded programs and thus produce answers
(if any can be found).

4.2 Text Translation

An in-depth analysis of the ASP representation generated by the Chabierski system was con-
ducted to evaluate the quality of the text and question translations. Chabierski et al. used
online news articles as a way to evaluate the text translation of their system and found that
the results showed their approach could correctly represent complex sentences [1]. This
was reflected in our findings, as despite the lengthy sentences of some stories, the system
was able to produce ASP representations that well reflected each sentence. That being said,
there are definitely improvements that could be made to enhance their approach, as will be
discussed later in this chapter. There were also issues caused by external dependencies that
were more difficult to handle, and these are included in Section 4.2.1 for completeness but
we do not suggest a solution for them.
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4.2.1 External Dependencies

A limitation of the Chabierski system is its external dependencies, such as Stanford CoreNLP
[45] for the majority of annotations (e.g. for coreferencing and POS tagging) and the CCG
parser [48] to generate the parse tree. These tools do occasionally produce inaccurate re-
sults, which lead to inaccurate translations.

For example, to better understand the effects of the CCG parser’s erroneous labels, consider
the following sentence that appears in Story #208 in the SemEval-2018 Task 11 test data:

I take my electronic list with me to the store, but I often still walk up and down
most aisles just browsing for anything new or that I might want to try.

The parse tree given by the CCG parser for this sentence can be seen in Figure 4.3. An error
occurs because the system tries to combine the two highlighted nodes of the tree to give
the root node (first line). The types of the highlighted nodes do not match, as S[em]\S[em]
expects to be composed with S[em] (an embedded declarative, e.g. a sentence beginning
with a preposition like “that I might want to try”), not S[dcl] (a declarative sentence).
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<T S[dcl]>

<T S[dcl]>

<L NP PRP I>

<T (S[dcl]\NP)>

<T (S[dcl]\NP)>

<L ((S\NP)/(S\NP)) RB often>

<T (S[dcl]\NP)>

<L ((S\NP)/(S\NP)) RB still>

<L (S[dcl]\NP) VB walk>

<T ((S\NP)\(S\NP))>

.

. rest of tree for

. "up and down most aisles just browsing for anything new"

.

<T (S[em]\S[em])>

<L CONJ CC or>

<T S[em]>

<L (S[em]/S[dcl]) IN that>

<T S[dcl]>

<L NP PRP I>

<T (S[dcl]\NP)>

<L ((S[dcl]\NP)/(S[b]\NP)) MD might>

<T (S[b]\NP)>

<L ((S[b]\NP)/(S[to]\NP)) VB want>

<T (S[to]\NP)>

<L ((S[to]\NP)/(S[b]\NP)) TO to>

<T (S[b]\NP)>

<L (S[b]\NP) VB try>

<L NONE . .>

Figure 4.3: CCG Parse Tree for
“I take my electronic list with me to the store, but I often still walk up and down most

aisles just browsing for anything new or that I might want to try.”

This particular issue can be solved by adding the word ‘anything’ to the sentence before “that
I might want to try”, to give the modified sentence

I take my electronic list with me to the store, but I often still walk up and down
most aisles just browsing for anything new or anything that I might want to try.

The CCG parser is able to produce a much better representation for this sentence than the
original one. It is difficult to categorise this problem and the ‘solution’ found is ad-hoc,
illustrating the fact that a more general solution to mitigate this problem is difficult to find.
To see the effect of an incorrect CoreNLP annotation, let us consider a sentence and its parse
tree and ASP representation.
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Text: The dog rolls in the sand.

<T NP>

<L (NP/N) DT The>

<T N>

<T N>

<L (N/N) NN dog>

<L N NNS rolls>

<T (N\N)>

<T (N\N)>

<L ((N\N)/NP) IN in>

<T NP>

<L (NP/N) DT the>

<L N NN sand>

<L NONE . .>

binaryPrep(in,c1,c2).

unaryNominal(c2,sand).

unaryNominal(c1,dog).

unaryNominal(c1,roll).

metaData(0,e0).

Figure 4.4: CCG Parse Tree and ASP Representation for
“The dog rolls in the sand.”

The word ‘rolls’ is the verb in this sentence, but CoreNLP annotates it with NNS (plural noun),
thus making the whole sentence a noun phrase NP rather than a sentence S. This error is
carried forward into the sentence’s ASP representation and the system would not be able to
answer any question asked (e.g. “Who rolled in the sand?”) correctly.
These inaccuracies caused by external libraries are unavoidable as there is no library that
has 100% accuracy and we must thus work around this limitation by modifying the input
where necessary.

4.2.2 Inaccurate Timeline

One of the major limitations of the Chabierski system is the way in which it handles time,
which was in essence tailored for the bAbI dataset. Due to the nature of the ‘stories’ in the
bAbI dataset, it was enough for the system to assume that the events occur in a linear order-
ing based on the order of the sentences in the story.

Consider Figures 4.5 and 4.6, which show sets of sentences and questions from Tasks 6 and
15 respectively of the bAbI dataset.

In Figure 4.5, the sentences that form the ‘story’ (i.e. a series of actions) are lines 1, 2, 4, 5,
7, 8, 10, 11, 13 and 14, with questions interjected to check the state of the story world at
that time point. We can see that the line numbers can represent time points associated with
the sentence or question on the corresponding line, thus exemplifying how some ‘stories’ in
the dataset are linear in nature.

In Figure 4.6, the text is made up of a series of facts rather than a series of actions. With
additional (learned) background knowledge to express that these are fluents which hold
over time, the questions in lines 9 to 12 can be answered correctly. Therefore in this case,
the ordering of the ‘events’ in lines 1 to 8 is not important, and can be considered linear.
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1 Daniel went back to the kitchen.

2 Mary grabbed the apple there.

3 Is Daniel in the office? no 1

4 Daniel journeyed to the office.

5 John went back to the office.

6 Is Daniel in the hallway? no 4

7 Mary left the apple.

8 Daniel went to the hallway.

9 Is Daniel in the hallway? yes 8

10 John went to the hallway.

11 Daniel picked up the milk there.

12 Is John in the kitchen? no 10

13 John grabbed the football there.

14 Mary got the apple there.

15 Is Daniel in the hallway? yes 8

Figure 4.5: Example of a Story from Task 6
of the bAbI dataset

1 Mice are afraid of wolves.

2 Cats are afraid of sheep.

3 Sheep are afraid of mice.

4 Wolves are afraid of cats.

5 Emily is a mouse.

6 Jessica is a sheep.

7 Winona is a mouse.

8 Gertrude is a mouse.

9 What is jessica afraid of? mouse 6 3

10 What is jessica afraid of? mouse 6 3

11 What is emily afraid of? wolf 5 1

12 What is emily afraid of? wolf 5 1

Figure 4.6: Example of a Story from Task
15 of the bAbI dataset

All ten tasks used to evaluate the Chabierski system are structured in one of the two ways
shown in Figures 4.5 and 4.6, and thus for the intents and purposes of this system, time
could be considered linear following the order of sentences in the story. This is why the
format of the relevant predicates in the Chabierski system are as follows:

• Event predicate ArityEvent(E,V,X0,...,Xx), where
Arity represents how many Xi variables there are,
E is the event ID and
V is a verb

• Metadata predicate metaData(T,E), where
T is a positive integer representing a time point and
E is an event ID that corresponds to an E of an event predicate.

The T of the instances of the metaData predicate are incremented with each event (action)
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that occurs in the text, which makes the timeline linear. The ASP representation does not
take into account the tenses of each sentence, which can instead be inferred from CoreNLP
verb tags (e.g. VBD for past tense and VBZ for third person singular present). This is thus
a major weakness for question answering tasks that use more complex texts which include
more than one tense and where the timeline does not necessarily follow the order of sen-
tences.

Looking at the ASP representation (Figure 4.7) of the story in Figure 4.6, we see that facts
like “Mice are afraid of wolves.” are not associated with an event, and thus have no time
point. Sentences like “Emily is a mouse.” are represented by event predicates and therefore
do have time points and these are incremented as can be seen from predicates on line 17
and 20 and their corresponding metadata predicates on lines 29 and 30 respectively.

1 binaryModif(afraid,f0,f1).

2 binaryPrep(i0,of,afraid).

3 unaryNominal(f1,wolf).

4 unaryNominal(f0,mouse).

5 binaryModif(afraid,f2,f3).

6 binaryPrep(i1,of,afraid).

7 unaryNominal(f3,sheep).

8 unaryNominal(f2,cat).

...

17 binaryEvent(e0,be,c8,n0).

18 unaryNominal(n0,mouse).

19 unaryNominal(c8,emily).

20 binaryEvent(e1,be,c10,n1).

21 unaryNominal(n1,sheep).

22 unaryNominal(c10,jessica).

...

29 metaData(0,e0).

30 metaData(1,e1).

31 metaData(2,e2).

32 metaData(3,e3).

33 metaData(4,e4).

Figure 4.7: Extract from ASP Representation of Story from Figure 4.6

This representation therefore works for the purposes of the bAbI dataset and was a good
enough method of representing time. However, for a more complex story with sentences of
different tenses and questions that test this, this oversimplified representation of time is not
enough. A different approach to represent time that better reflects a less straightforward
story will be described in Section 5.1.1.

4.2.3 Missing Coreferences

The Chabierski system is able to handle coreferences to some extent, with the coreference
information coming from the CoreNLP annotations, where any words that are coreferences
are assigned the same COREF ID (as exemplified by the example below). However, some of
the correct coreferences generated by CoreNLP are not included in the ASP representation
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because of the way IDs for nouns are being generated.

Consider the following example:

Text: My brother is a swimmer. He went to the lake.
Questions:

1. Where is he?

2. Where is my brother?

3. Where is the swimmer?

1 binaryEvent(e0,be,n0,n1).

2 unaryNominal(n1,swimmer).

3 binaryModif(poss,c2,n0).

4 unaryNominal(n0,brother).

5 binaryEvent(e1,go,c1,c5).

6 binaryPrep(i0,to,e1).

7 unaryNominal(c5,lake).

8 unaryNominal(c1,he).

Figure 4.8: ASP Representation of
My brother is a swimmer. He went to the lake.

These three questions should all give the answer ‘lake’, but currently only “Where is he?”
gives the correct answer. This is caused largely by the missing coreferencing between
‘brother’, ‘swimmer’ and ‘he’. CoreNLP is able to identify that they are all coreferences of
each other, assigning each the COREF ID 1. This is, however, lost in translation as ‘swimmer’
and ‘brother’ are not pronouns or proper nouns and are tagged with IDs beginning with n (as
seen in lines 2 and 4 of Figure 4.8), whereas ‘he’ is tagged with a c (COREF) ID as in line 8 of
Figure 4.8. This means that only ‘he’ is attached to ‘being at the lake’, to which we also want
‘swimmer’ and ‘brother’ to be attached. Therefore one solution would be for all nominals
which are coreferences of one another to have matching IDs, e.g.

unaryNominal(c1,swimmer).

unaryNominal(c1,brother).

unaryNominal(c1,he).

such that the predicate

binaryEvent(e1,go,c1,c5).

is associated with all three words ‘swimmer’, ‘brother’ and ‘he’.

Another similar issue with the translation occurs as a result of missing coreferences for the
same word (e.g. ‘husband’ and ‘husband’ in different sentences), either when

• there is an inaccuracy from CoreNLP
While CoreNLP is able to identify coreferences quite well, it sometimes has trouble identi-
fying that instances of the same word are referring to the same thing.

• or because of the Chabierski system’s approach
As highlighted previously, it only looks for coreferences in certain scenarios and thus loses
coreference information for nominals tagged with IDs beginning with different letters.
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These missing coreferences result in nominal duplication, where the same word (e.g. ‘hus-
band’) that refers to the same thing will have different IDs used in different predicates. For
example, consider the following text, extracted from a story in the development data corpus
of SemEval-2018 Task 11 [27]:

My family and I decided that the evening was beautiful so we wanted to have
a bonfire. First, my husband went to our shed and gathered some dry wood. I
placed camp chairs around our fire pit. Then my husband placed the dry wood
in a pyramid shape inside the fire pit.

The word ‘husband’ is mentioned twice, and in the corresponding ASP translation is given
two different IDs (n2 and n5 respectively) as follows:

1. “...my husband went to our shed...”
binaryEvent(e3,go,n2,n3).

unaryNominal(n2,husband).

unaryNominal(n3,shed).

2. “...my husband placed the dry wood...”
binaryEvent(e6,place,n5,c13).

unaryNominal(n5,husband).

unaryNominal(c13,wood).

These two words should have the same IDs but do not, and so these different IDS are used in
different (event) predicates, preventing the ASP representation from giving an overall view
of all predicates related to this one word (in this case, ‘husband’). This affects the ability
of the system to answer questions, especially since the question translation could assign yet
another ID to the word.

4.3 Question Translation

The type of questions covered by the Chabierski system are fairly limited, including only a
subset of wh-questions (who, what, where) with a particular focus on one word answers and
yes/no questions. The translation of these questions is done fairly well, but there are several
limitations that we found when translating a variety of such questions.

4.3.1 External Dependecies - Inaccurate Annotation

As with the text translation, the system relies on external dependencies for annotations on
questions. When these dependencies produce errors, the final translation of the question is
also erroneous.

For example, the system uses EasySRL [46] for semantic role labelling to help order predi-
cates, as they are sometimes ordered wrongly (e.g. the subject and object are flipped) during
the logic parsing process.

Take the text and question pair

Text: It is a dog.
Question: What animal is it?
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and the corresponding translation

%%% TEXT TRANSLATION %%%

binaryEvent(e0,be,c1,n0).

unaryNominal(n0,dog).

unaryNominal(c1,it).

metaData(0,e0).

metaData(1,e1).

%%% QUESTION TRANSLATION %%%

answer(e1):-

unaryNominal(W0,animal), unaryModif(W0,X0),

semBinaryEvent(e1,be,W0,c1), unaryNominal(c1,it).

Note: the answer predicate and unaryModif predicate in the question translation are both er-
roneous and should instead be answer(X0) and unaryNominal(W0,X0) respectively. This is a
result of manual error when declaring the appropriate λ*-ASP expression for this type of ques-
tion where the subject is inverted (i.e. the object appears before the subject in the question).

The arguments for a semBinaryEvent(E,V,S,O) predicate are:

• E: event ID

• V: verb

• S: subject

• O: object

Therefore for the given question, we would want the event predicate to represent “it is [an-
swer]”, i.e. semBinaryEvent(E,be,c1,W0) with c1 corresponding to ‘it’ and W0 to ‘answer’.
However the ordering is not correct in the obtained predicate semBinaryEvent(e1,be,W0,c1)
which represents “answer is it”, i.e. the subject and object are inverted.

4.3.2 Exact Matching

The system generates ASP programs and finds answers by solving them, getting answers by
ground predicates of type answer(X) in the answer set. This means that without additional
information matching synonyms or like phrases together, the words in the question must
exactly match those in the text for an answer to be obtained.

Consider the text and question pair

Text: Mary ate an apple.
Question: Did Mary consume fruit?

with translations
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%%% TEXT %%%

binaryEvent(e0,eat,c1,n0).

unaryNominal(n0,apple).

unaryNominal(c1,mary).

metaData(0,e0).

%%% QUESTION %%%

q:-semBinaryEvent(E0,consume,c1,X0),

unaryNominal(X0,fruit),unaryNominal(c1,mary).

answer(yes):-q.

answer(no):-not q.

and background knowledge

semBinaryEvent(E,V,S,O) :- binaryEvent(E,V,S,O).

We would want the answer set to include answer(yes) for the system to output the answer
‘yes’, but this is not the case because semBinaryEvent(E0,consume,c1,X0) and unaryNominal(X0,fruit)

are not satisfiable in the ASP program generated by the Chabierski system from the given text
and question.

On the contrary, the same text with the question

Question: Did Mary eat an apple?

would give the translation

q:-semBinaryEvent(E0,eat,c1,N0),

unaryNominal(N0,apple),unaryNominal(c1,mary).

answer(yes):-q.

answer(no):-not q.

which generates the output ‘yes’ because semBinaryEvent(E0,eat,c1,N0) and unaryNominal(N0,apple)

are satisfied with the grounding where N0 is n0 in the answer set generated from the text
and question translation, unifying N0 with n0.

This exemplifies the system’s requirement that the words in the question must have an exact
match in the text for an answer to be found, which is a limitation since this is not always the
case with reading comprehension questions.

4.3.3 Wrong Instantiation of Variables

When translating certain text and question sets, we noticed that the question translation
sometimes includes IDs that do not occur in the text translation, which means the predicates
that contain those IDs as variables will never be satisfied.

Take the following as an example:

Text: My husband went to the woods. He chopped a tree.
Question: Who chopped a tree?

34



CHAPTER 4. CRITICAL ANALYSIS OF CHABIERSKI SYSTEM

These translate to

%%% TEXT %%%

1 binaryEvent(e0,go,n0,c3).

2 binaryPrep(i0,to,e0).

3 unaryNominal(c3,wood).

4 binaryModif(poss,c2,n0).

5 unaryNominal(n0,husband).

6 binaryEvent(e1,chop,c1,n1).

7 unaryNominal(n1,tree).

8 unaryNominal(c1,he).

%%% TEMPORAL META DATA %%%

9 metaData(0,e0).

10 metaData(1,e1).

11 metaData(2,e2).

%%% QUESTION %%%

12 q:-unaryNominal(W0,W1),semBinaryEvent(e2,chop,W0,N0),

13 unaryNominal(N0,tree).

14 answer(W1):-unaryNominal(W0,W1),semBinaryEvent(e2,chop,W0,N0),

15 unaryNominal(N0,tree).

The issue here is that the question is looking for a chop event that occurs at time point 2 (i.e.
semBinaryEvent(e2,chop,W0,N0) in line 12, with the metadata in line 11), which does not
occur in the text.

This is because the translation of every verb, whether in the text or question, includes an
event metadata ID (i.e. the first argument in any Event predicate). When this ID is in-
stantiated (always in the case of text translation but only for present or future tenses in
the question translation) a corresponding metaData predicate and new time point are in-
troduced. In the example above, the event ID e2 should not have been instantiated as the
question was in past tense.

The Chabierski system handles questions with verbs identified to be PAST tense by setting the
first argument (event metadata ID) of the Event predicate to begin with a capital E, indicat-
ing an ungrounded variable. In the example above, however, the problem is caused by the
word ‘chopped’ in the question being incorrectly tagged as VBD, a past participle (which is
not identified as being a PAST tense verb by the system), rather than VBN, a verb in past tense.

These grounded ID variables tend to occur because of inaccurate annotation done by exter-
nal libraries, but in cases where the resulting issue is the wrong instantiation of variables,
this can be rectified by making the question predicates more general (i.e. not ground-
ing certain variables in situations found to be prone to error). This allows for satisfiabil-
ity of predicates to be determined by the matching of words rather than IDs (e.g. for a
unaryNominal(n0,book), we first match book to get its id n0 rather than trying to match
both n0 and book) as well as other grounded variables which are assumed to be accurate.
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4.4 Background Knowledge

The background knowledge file (Appendix A) that was used when evaluating the Chabierski
system with the bAbI dataset was sufficient for those stories, but it is lacking many general
rules. We recognise that the identification and addition of relevant background knowledge
is a task in itself, but it should be noted that this general background knowledge file can
be a starting point to be padded with rules that will complement the ASP representations
generated. This project modifies and adds several such rules, to be explained further in
Sections 5.1 and 5.3.
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Chapter 5

Extensions Made to the Chabierski
System

Based on our findings as explained in Section 4, we have extended the Chabierski system to
improve the overall ASP representation obtained when inputting stories from the SemEval
corpus.
As with the critical analysis, this section is broken down into three subsections: extensions
made to the

1. text translation,

2. question translation and

3. background knowledge.

5.1 Text Translation

As highlighted in Section 4.2, there are two key areas in which improvements can be made,
namely coreferences and time management. We further break coreferences down into two
scenarios:

1. when CoreNLP annotates all the coreferences correctly but the system does not include
all the coreference data and

2. when CoreNLP is unable to coreference correctly.

5.1.1 Time Management

The Chabierski system oversimplifies the representation of time. We therefore want to change
this by including the information acquired about the tense of each Event, and using this to
create a more informed timeline. This will allow the system to answer questions on texts
with different tenses more easily.
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Text: I will eat lunch later.
Question: Did I eat lunch?

%%% TEXT TRANSLATION %%%

unaryModif(will,e0).

unaryModif(later,e0).

binaryEvent(e0,eat,c1,f0).

unaryNominal(f0,lunch).

unaryNominal(c1,i).

metaData(0,e0).

%%% QUESTION TRANSLATION %%%

q:-semBinaryEvent(E0,eat,c1,X0),unaryNominal(X0,lunch),

unaryNominal(c1,i).

answer(yes):-q.

answer(no):-not q.

Figure 5.1: Text, Question and their ASP Representation by the Chabierski System

For example, consider the example in Figure 5.1. With this ASP representation, the Chabier-
ski system outputs the wrong answer ‘yes’. This is because, due to the representation of time,
everything in the text is considered to have happened. Therefore the question translation
assumes that, if answering a question in the past tense, it can simply look for any event that
matches, not taking into consideration that the presence of unaryModif(will,e0) indicates
that e0 is in the future. To counter this, we can either add rules to the background informa-
tion to specify that an Event with modifier ‘will’ indicates the event has not yet happened.
Alternatively, we can add tense information to the ASP representation, allowing for a more
general rule stating “future events have not yet happened” to be added to the background
information instead.

This is the approach we have chosen to take, and our improved system replaces the Chabier-
ski system’s metaData(T,E) predicate with metaData(Time, E, Tense), where

• Time is a positive integer representing a time point,

• E is an event ID that begins with one of [e, p, f] (for present, past and future respec-
tively) and corresponds to an E of an event predicate, and

• Tense is the tense of the event, and is one of the following three values: [past,
present, future]. Since we do include the tense in the metaData predicate, the E

(event ID) does not necessarily need to begin with a letter that indicates its tense, but
we chose to represent it this way to make the tense of event predicates more immedi-
ately obvious to a human reader.

With this change, we must modify the corresponding rules in the background knowledge.
This change can be seen in the difference between Listing 5.1 and Listing 5.2.

Listing 5.1 Temporal Rules Used by Chabierski System
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1 % Time points defined by the meta predicates.

2 previous(E1,E) :- metaData(T1,E1), metaData(T,E), T=T1+1.

3
4 % Temporal rules, semantics of ’before’.

5 binaryPrep(before,E0,E1) :- previous(E0,E1).

6 binaryPrep(before,E0,E2) :- binaryPrep(before,E1,E2), previous(E0,E1).

Listing 5.2 Modified Temporal Rules

1 % Time points defined by the meta predicates.

2 previous(E1,E2) :- metaData(T1,E1,X), metaData(T2,E2,X), T2=T1+1.

3 previous(E1,E2) :- metaData(T1,E1,past), metaData(T2,E2,present),

4 last(E1), T2=0.

5 previous(E1,E2) :- metaData(T1,E1,present), metaData(T2,E2,future),

6 last(E1), T2=0.

7
8 last(E) :- metaData(T,E,X), not metaData(T+1,_,X).

9
10 % Temporal rules, semantics of ’before’.

11 binaryPrep(before,E0,E1) :- previous(E0,E1).

12 binaryPrep(before,E0,E2) :- binaryPrep(before,E1,E2), previous(E0,E1).

With these modified rules, we get an improved timeline where all past predicates occur
first, then the present and finally the future predicates. This timeline makes it easier to
come up with temporal rules to be included in the background knowledge, and could po-
tentially help with the implementation of further temporal questions (e.g. ‘when’ questions).

Consider again the example in Figure 5.1, but with this modified metaData predicate. With-
out appropriate background knowledge rules, this would still output ‘yes’, but now we can
add a rule (line 5 in Listing 5.3) to define ‘future’ events as abnormal, which combined with
the rule in line 2 added by Chabierski et. al makes any ‘future’ event predicate unsatisfiable.
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%%% TEXT TRANSLATION %%%

unaryModif(will,f0).

unaryModif(later,f0).

binaryEvent(f0,eat,c1,f0).

unaryNominal(f0,lunch).

unaryNominal(c1,i).

metaData(0,f0,future).

%%% QUESTION TRANSLATION %%%

q:-semBinaryEvent(E0,eat,c1,X0),unaryNominal(X0,lunch),

unaryNominal(c1,i).

answer(yes):-q.

answer(no):-not q.

Figure 5.2: Improved ASP Representation for Example in Figure 5.1

Listing 5.3 Semantic Rules for Future Events

1 ...

2 semBinaryEvent(E,L,Y,Z) :- binaryEvent(E,L,Y,Z), not abBinaryEvent(E,L,Y,Z).

3 ...

4 % Semantic rule for future events

5 abBinaryEvent(E,L,X,Y) :- metaData(_,E,future), binaryEvent(E,L,X,Y).

It is also worthy to note that the Chabierski system only assigns the future tense to sentences
of type “[Noun] will [Verb Phrase]” (e.g. “I will eat lunch later”). We thus also add a rule to
the source code to do indicate that sentences of form “[Noun] is going to do [Verb Phrase]”
(e.g. “I am going to eat lunch later”) are also future tense, which is reflected in our ASP
representation.

5.1.2 Adding Missing Coreferences

As highlighted in Section 4.2.3, even when CoreNLP gives the correct annotation (i.e. cor-
rectly coreferences two nouns together), the Chabierski system does not always include this.
We want to therefore modify the system to include all these missing coreferences, and one
possible solution could be to have all coreferences assigned the same ID. Unfortunately, this
is difficult to do because of the way the ASP representation is generated. The meanings of
sentences are built in a bottom-up fashion using the CCG parse tree, starting with λ-ASP*
expressions being assigned to words (leaf nodes) based on their annotations, and then being
composed together to form the expression for parent (internal) nodes until the root node is
reached and a final representation for the sentence is generated. Currently, the instantiation
of parameters is not always done at its corresponding word’s node, and so the system does
not have access to the word’s COREF ID. Since we are building upon an existing system, any
changes made to expressions already in use and how they are built could affect its composi-
tion with other expressions, and unwanted behaviour could occur.
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Due to time constraints and complexity of the problem, it was decided that a more feasible
option was to implement a second traversal over the CCG parse tree and add any missing
coreference information in this pass.

For example, consider the example given in Section 4.2.3, with text

My brother is a swimmer. He went to the lake.

and the corresponding ASP representation as shown in Figure 4.8. With the second traversal
in place, we get the ASP representation in Figure 5.3, where lines 5 and 6 are the new
additions. With this representation, as well as the gathering of facts and generalisation of
arguments (further detailed in Sections 5.1.2 and 5.2.1 respectively), we do get the correct
answer for the questions “Where is the swimmer?” and “Where is my brother?”, which was
not the case when using the Chabierski system.

1 binaryEvent(e0,be,n0,n1).

2 unaryNominal(n1,swimmer).

3 binaryModif(poss,c2,n0).

4 unaryNominal(n0,brother).

5 unaryNominal(c1,brother).

6 unaryNominal(c1,swimmer).

7 binaryEvent(p0,go,c1,c5).

8 binaryPrep(i0,to,p0).

9 unaryNominal(c5,lake).

10 unaryNominal(c1,he).

Figure 5.3: New ASP Representation of
My brother is a swimmer. He went to the lake.

An effect of having the same ID represent different nominals, however, is that more answers
than desired tend to fit the body of the answer rule. This problem is magnified by the
addition of facts from ConceptNet as described in Sections 6.1 and 6.2.

Gathering Facts

When there is missing coreference information, be it because CoreNLP makes an annotation
error or the system does not include all that CoreNLP gives, the system refers to different
occurrences of the same noun with different IDs. To mitigate this, we have added the rules
in Listing 5.4.

Listing 5.4 Rules for Gathering Facts About One Noun

1 % Collecting information for one noun

2 semBinaryEvent(E,V,X0,Y) :- semBinaryEvent(E,V,X1,Y),

3 unaryNominal(X1,W), unaryNominal(X0,W).

4 semBinaryEvent(E,V,X,Y0) :- semBinaryEvent(E,V,X,Y1),

5 unaryNominal(Y1,W), unaryNominal(Y0,W).

6 ...

7 . and similarly for events of other arity

8 ...
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These two rules essentially assume that all instances of the same word are references to the
same object in that story world. This is not ideal because there will of course be cases when
two of the same words refer to different objects, but because of the length of the stories
considered for this project, it is usually the case that this is a safe assumption to make.

These rules for gathering facts also complement the addition of the missing CoreNLP pro-
vided coreferences, as described earlier. The additions by themselves are not effective, and
require these rules to help relate the new Nominal facts to their existing counterparts. In
essence, this is the same problem as described above, where different IDs are assigned to the
same reference of a noun.

Consider again the example with the ASP representation in Figure 5.3 along with the follow-
ing question and its ASP representation:

Question: Where is the swimmer?

answer(W1):-unaryNominal(W0,W1),semBinaryEvent(e1,be,c1,W0),

unaryNominal(c1,swimmer).

From the text, we have the following facts (as seen in Figure 5.3):

2 unaryNominal(n1,swimmer).

6 unaryNominal(c1,swimmer).

7 binaryEvent(p0,go,c1,c5).

9 unaryNominal(c5,lake).

Because of the rules in Listing 5.4, we also get the fact

semBinaryEvent(p0,go,n1,c5).

Thanks to the rules about the change of position of an entity defined by Chabierski et al., we
also get the fact

semBinaryEvent(e1,be,n1,c5).

The combination of all these facts gives rise to answer(lake), which is the correct answer.
The question “Where is my brother?” for the same text requires argument generalisation in
the question translation, as will be described in Section 5.2.1.

5.2 Question Translation

As highlighted by Chabierski et al. [44], the ”reliable parsing of questions using CCG gram-
mars has been a problematic task due to smaller sizes of available training corpora.” Since
the conversion from English sentences to λ-ASP* expressions relies heavily on the CCG cate-
gory assigned by the parser, it is currently infeasible to expand the set of questions for which
an ASP representation can be derived without substantial manual effort. This section instead
focuses on making modifications to allow for more of the questions that are covered by the
Chabierski system (i.e. who, what, where, which and yes/no questions) to be answered cor-
rectly.

Aside from small fixes, like changing the head of a λ-ASP* expression to get the right answer,
the extensions made to the system with respect to the question translation are categorised
into the following:
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1. Argument generalisation

2. Future tense questions

3. Questions that contain pronouns that do not appear in the text

4. Multiple choice questions

5.2.1 Argument Generalisation

As described in Section 4.3.3, there are instances when the question translation sometimes
includes IDs that do not occur in the text translation.

Since the example given in that section is addressed by the extension of the time manage-
ment in the system (Section 5.1.1), we use another example to illustrate the way argument
generalisation can help find the correct answer to a question.

Consider again the following text and ASP representation (as in Figure 5.3):

My brother is a swimmer. He went to the lake.

1 binaryEvent(e0,be,n0,n1).

2 unaryNominal(n1,swimmer).

3 binaryModif(poss,c2,n0).

4 unaryNominal(n0,brother).

5 unaryNominal(c1,brother).

6 unaryNominal(c1,swimmer).

7 binaryEvent(p0,go,c1,c5).

8 binaryPrep(i0,to,p0).

9 unaryNominal(c5,lake).

10 unaryNominal(c1,he).

We have seen that the question “Where is he?” can be answered by the Chabierski system and
“Where is the swimmer?” can be answered with the extension described in Sections 5.1.2
and 5.1.2.

The final question we need to be able to answer is

Where is my brother?

answer(W1):-unaryNominal(W0,W1),semBinaryEvent(e1,be,n2,W0),

binaryModif(poss,c2,n2),unaryNominal(n2,brother).

The ASP representation of the question uses the nominal ID n2, which has not been used
in the text. Looking at the text translation, we can see that in order for this question to
be answered, we need to unify n2 with n0. We must therefore generalise n2 to allow this
unification to occur.

With this change, the question translation becomes

answer(W1):-unaryNominal(W0,W1),semBinaryEvent(e1,be,N0,W0),

binaryModif(poss,c2,N0),unaryNominal(N0,brother).
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This allows for the unification of N0 and n0. Because of the rules in Listing 5.4 in Section
5.1.2 and the rules about the change of position of an entity defined by Chabierski et al., we
get the facts

semBinaryEvent(p0,go,n0,c5).

semBinaryEvent(e1,be,n0,c5).

Again, the combination of all these facts gives rise to answer(lake), which is the correct
answer as required.

This generalisation of arguments is similarly done in other instances where the instantiation
of variables prevented unification with existing variables in the text, and more questions are
now able to be answered.

5.2.2 Future Tense Questions

Due to the Chabierski system’s representation of time as described in Section 4.2.2, it was not
able to answer questions regarding the future (i.e. where the text contained future tense)
correctly.

For example,

Text: I will go to the cinema.
Question: Did I go to the cinema?

outputs the answer ‘yes’, and

Question: Will I go to the cinema?

outputs the answer no.

unaryModif(will,e0).

binaryEvent(e0,go,c1,c2).

binaryPrep(i0,to,e0).

unaryNominal(c2,cinema).

unaryNominal(c1,i).

metaData(0,e0).

Figure 5.4: “I will go to the cinema.”
(Chabierski system)
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q:-

semBinaryEvent(E0,go,c1,c2),

binaryPrep(I0,to,E0),

unaryNominal(c2,cinema),

unaryNominal(c1,i).

answer(yes):-q.

answer(no):-not q.

Figure 5.5: “Did I go to the cinema?”
(Chabierski system)

metaData(1,e1).

q:-

unaryModif(will,e1),

semBinaryEvent(e1,go,c1,c2),

binaryPrep(I0,to,e1),

unaryNominal(c2,cinema),

unaryNominal(c1,i).

answer(yes):-q.

answer(no):-not q.

Figure 5.6: “Will I go to the
cinema?”

(Chabierski system)

As can be seen from Figures 5.4 and 5.5, the past tense question outputs ‘yes’ because each
of the predicates in the body of the question is satisfied, due to no representation of the
future tense of the text as well as no background rule stating how the modified will affects
an Event. Looking at the future question translation in Figure 5.6, we can see that q is not
satisfied because e1 cannot unify with e0. This could be rectified by adding a background
rule about the semantics of future (will) events, but again, this is not present in the back-
ground rules for the Chabierski system.

Instead of adding these very specific rules about the modified ‘will’, we can use the tense
information that we added to the metaData predicate (Section 5.1.1) and add a more gen-
eral rule to the background knowledge (Listing 5.5) to specify when future events in the
question should be satisfied. This is achieved because we also remove the unnecessary pred-
icate unaryModif(will,f1) from the question body, relying instead on the metaData to give
the tense of event f1. The predicate binaryPrep(I0,to,f1) is also removed because the
binaryEvent(E,go,S,L) already represents “subject S goes to location L” and the preposi-
tion is superfluous, making it more difficult to get the correct answer.

Another advantage of this more generalised approach is that we can now also answer future
questions of the form “Am I going to...?”, removing the unnecessary “going to” portion of the
translation and ending up with the same question translation as “Will I go to the cinema?”
(Figure 5.9). We are thus able to answer ‘going to’ questions about ‘will’ texts and vice versa,
moving a step further from the exact matching (Section 4.3.2) required in the Chabierski
system.

unaryModif(will,f0).

binaryEvent(f0,go,c1,c2).

binaryPrep(i0,to,f0).

unaryNominal(c2,cinema).

unaryNominal(c1,i).

metaData(0,f0,future).

Figure 5.7: “I will go to the cinema.”
(current system)
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q:-

semBinaryEvent(E0,go,c1,C2),

unaryNominal(C2,cinema).

answer(yes):-q.

answer(no):-not q.

Figure 5.8: “Did I go to the cinema?”
(current system)

metaData(1,f1,future).

q:-

semBinaryEvent(f1,go,c1,C2),

unaryNominal(C2,cinema).

answer(yes):-q.

answer(no):-not q.

Figure 5.9: “Will I go to the
cinema?”

(current system)

Note: the unaryNominal(c1,i) predicate is also missing from the question bodies in Figures
5.8 and 5.9 because of their superfluous nature as well. This will be further discussed in
Section 5.2.3.

Listing 5.5 Background Rule for Future Text and Questions

1 % If question and relevant text info are both future, should be

2 % satisfied

3 semBinaryEvent(E1,V,X,Y) :- metaData(T1,E1,future),

4 metaData(T0,E0,future), binaryEvent(E0,V,X,Y),

5 binaryPrep(before,E0,E1).

5.2.3 Missing Pronouns

The Chabierski system uses CoreNLP to annotate the text and question together so that coref-
erencing can occur between the two. Because of this, it is possible to have pronouns in the
question that refer to something in the text without having that pronoun itself in the text.

Consider the following:

Text: Jack went to school.
Question: Where is he?

%%% TEXT TRANSLATION %%%

binaryEvent(e0,go,c1,f0).

binaryPrep(i0,to,e0).

unaryNominal(f0,school).

unaryNominal(c1,jack).

metaData(0,e0).

metaData(1,e1).

%%% QUESTION TRANSLATION %%%

answer(W1):-unaryNominal(W0,W1),semBinaryEvent(e1,be,c1,W0),

unaryNominal(c1,he).
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This ASP representation given by the Chabierski system can almost get the correct answer
already; the only problem is that there is no unaryNominal(c1,he). in the text translation,
and so the system cannot find the answer ‘school’.

To solve this, we remove any Nominal predicate in the question body whose second argu-
ment is a pronoun and whose first argument is instantiated. This is because this combination
means that a coreference has been found in the CoreNLP annotation and used to formulate
the Nominal ID.

Given that the coreference information provided by CoreNLP tends to be accurate (some
coreferences may be missing but what is present tends to be correct), we can simply match
the coreferenced Nominal ID and the pronoun (e.g. ‘he’) does not need to be considered.

5.2.4 Queries about Actions

A question that come up often across the stories in the SemEval corpus as well as kinder-
garten reading comprehension (used for evaluation in Chapter 7) is of the form “What did
[subject] do?”

This is not covered by the Chabierski system, which expects the answers required to be a
noun (Nominal). “What did [subject] do?” instead requires an answer that is a verb, since it
is looking for the actions [subject] has done.

We thus modify the question body post-predicate generation in the following way. Consider
the text and question

Text: We played a game. Question: What did we do?

%%% TEXT TRANSLATION %%%

binaryEvent(p0,play,c1,n0).

unaryNominal(n0,game).

unaryNominal(c1,we).

unaryNominal(c2,game).

metaData(0,p0,past).

%%% QUESTION TRANSLATION %%%

answer(W1):-unaryNominal(W0,W1),semBinaryEvent(E0,do,c1,W0).

We replace the semBinaryEvent(E0,do,c1,W0) in the question body with semUnaryEvent(E0,W1,c1)

and remove the unaryNominal(W0,W1). This is so that we get the representation

answer(W1):-semUnaryEvent(E0,W1,c1).

This means we are looking for any action (verb) that c1 (we) have done in the story text,
thus answering the question “What did we do?”

This type of modification is only done when the ‘do’ Event predicate has an instantiated
subject (argument 3), as an uninstantiated one generally indicates that the translation has
an error or the question is a ‘who’ rather than a ‘what’.
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5.3 Background Knowledge

As mentioned in Section 4.4, the background knowledge file used by the Chabierski system on
the bAbI dataset can be used as a starting to point to build a general background knowledge
file. Along with the rules added to this file to support the changes explained in the previous
sections (and the ones defined later in Chapter 6), more background knowledge has been
added to the file. These additions can be found in Listing 5.6, and the whole background
knowledge file in Appendix B.

Listing 5.6 Additional Background Rules

1 % Semantics of not

2 abUnaryEvent(E,L,Z) :- unaryEvent(E,L,Z),

3 unaryModif(escnot,E).

4 abBinaryEvent(E,L,X,Y) :- binaryEvent(E,L,X,Y),

5 unaryModif(escnot,E).

6 abTernaryEvent(E,L,X,Y,Z) :- ternaryEvent(E,L,X,Y,Z),

7 unaryModif(escnot,E).

8
9 % Semantics of be and like (i.e. you don’t stop being and liking

10 % something from one time point to another unless something

11 % affects it

12 binaryInitEvent(E,be,P,L) :- binaryEvent(E,be,P,L),

13 not abBinaryEvent(E,be,P,L).

14 binaryTermEvent(E,be,P,L) :- semBinaryEvent(E,be,P,L),

15 unaryModif(escnot,E).

16
17 binaryInitEvent(E,like,S,O) :- binaryEvent(E,like,S,O),

18 not abBinaryEvent(E,like,S,O).

19 binaryTermEvent(E,like,S,O) :- semBinaryEvent(E,like,S,O),

20 unaryModif(escnot,E).

21
22 % Semantics of have

23 binaryInitEvent(E,have,S,O) :- semBinaryEvent(E,have,S,O).

24 binaryTermEvent(E,have,S,O) :- semBinaryEvent(E,lose,S,O).

25
26 % Possession means I have

27 binaryEvent(E,have,S,O) :- binaryModif(poss,S,O),

28 binaryEvent(E,_,O,_).

29 binaryEvent(E,have,S,O) :- binaryModif(poss,S,O),

30 binaryEvent(E,_,_,O).

31 binaryModif(poss,S,O) :- binaryEvent(_,have,S,O).

32
33 % If an object is inside a location, it is in that location

34 % (the format of this is quite specific to the language of a

35 % specific story and could perhaps be more generalised)

36 binaryInitEvent(E,be,P,L) :- binaryPrep(inside,P,L),

37 binaryPrep(I,in,E,P).

38 % If an object is placed in a location, is is in that location

39 binaryInitEvent(E,be,P,L) :- binaryPrep(I,in,E,L),
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40 binaryEvent(E,place,C,P).

41
42 % Transitivity of being in a location

43 binaryInitEvent(E1,be,P,L2) :- semBinaryEvent(E1,be,P,L1),

44 semBinaryEvent(E2,be,L1,L2).

45
46 % Semantics of arriving and leaving

47 binaryInitEvent(E,be,P,L) :- semBinaryEvent(E,arrive,P,L).

48 binaryTermEvent(E,be,P,L) :- semBinaryEvent(E,leave,P,L).

49
50 % Generalised notion that someone’s name is an identifier

51 % for them, e.g ’my name is X’ means ’X is an identifier for I’

52 unaryNominal(C2, X) :- binaryEvent(E0,be,N0,C1),

53 unaryNominal(C1,X), binaryModif(poss,C2,N0),

54 unaryNominal(N0,name), unaryNominal(C2, _).

55
56 % Notion of "If A uses X to do Y, A uses X"

57 semBinaryEvent(E0,use,C1,E1) :- semTernaryEvent(E0,use,C1,E1,_).

58
59 % Notion of "If A uses X to do Y, A does Y"

60 semBinaryEvent(E1,V1,C1,N1) :- semTernaryEvent(E0,use,C1,N0,E1),

61 semBinaryEvent(E1,V1,N0,N1).

62
63 % Notion of "If A [verb] B, A [verb]"

64 % e.g. "I punch a wall" ==> "I punch"

65 % (this may be too general a rule and should be narrowed

66 % down to certain verbs)

67 semUnaryEvent(E0,V1,C1) :- semBinaryEvent(E0,V1,C1,_).

5.4 Multiple Choice Questions

We are looking to evaluate the changes we make to the Chabierski system primarily by using
the SemEval-2018 Task 11 [27] corpus, which contain stories with multiple choice questions
(MCQs) of the format outlined in section 2.4. Thus we have extended the system to take
another set of inputs ‘answers’, as can be seen in Figure 5.10. The system assumes that, if
provided, one of these given answers is the correct one.

[{

"text": [ "Mary gave the cake to Fred.",

"Fred gave the cake to Bill." ],

"questions": ["Who gave the cake to Fred?"],

"answers": ["Mary", "Bill"],

"positive": [],

"negative": []

}]

Figure 5.10: Sample JSON Input Used by Our System
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This change allows us to determine the correct user input answer based on the answer found
by solving the ASP program generated from the text and corresponding question. This extra
step is handled by the AnswerVerifier class, which can be seen in Figure 5.11, where
additions to the original flow are highlighted in red.

Figure 5.11: UML Diagram of Modules with the Addition of Multiple Choice

In the case where we are unable to determine the correct answer, i.e. match the found an-
swer(s) with any given possible answer, we can use information from ConceptNet to help fill
in the missing links. This will be further explained in Section 6.2.

When even the added information from ConceptNet does not yield an answer, since we make
the assumption that one of the given answers is correct, we try to choose the answer with
the most relevance to the text (in terms of number of occurrences in the text) as the output.
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ConceptNet Integration

A major limitation of the original system is the way words in the question must match words
in the text exactly, otherwise an answer cannot be found. This is explained more fully in
Section 4.3.2. As a way to mitigate this limitation, we have decided to supplement the infor-
mation added to the ASP program by including facts fetched from ConceptNet 5 [2]. Because
ConceptNet has approximately 28 million edges [50], with over 40 different relations (listed
in Appendix C), we must find a way to fetch and include only the data that is most pertinent
to our current text and question pair, otherwise the given ASP program would take too long
to solve. We also use ConceptNet in the system’s MCQ mode to try and choose the most
fitting answer. The algorithms we have chosen to determine pertinent information and the
best fitting answer are described in Sections 6.1 and 6.2 respectively.

Figure 6.1 shows the additional steps to the workflow of the system, with the red flow (miti-
gating exact matching of question to text) being covered in Section 6.1 and the blue flow in
Section 6.2.

6.1 Mitigating Exact Matching

For any of the wh-questions, when the system returns no answer (either “nothing” or an
empty string), we assume the problem is a mismatch of words between those used in the
question and those found in the text. In the case of yes/no questions that return the an-
swer “no”, we also make the assumption that this is wrong to double-check that the “no”
was not a result of mismatching. We therefore take the ASP program that was already gen-
erated and use the predicates in the body of the question to formulate queries to ConceptNet.
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Figure 6.1: UML Diagram of Modules with the Addition of Concept Net

The red flow in Figure 6.1 illustrates the path an input takes through the system after no an-
swer (or the answer “no”) has been found for any of the questions given. The generated ASP
program is passed back to the AnswerFormatter, that then uses the words in the question
to form ConceptNet queries. To better understand how these queries are formatted, let us
consider the following example:

Text: Mary ate an apple. Question: Did Mary consume fruit?

%%% TEXT TRANSLATION %%%

binaryEvent(p0,eat,c1,n0).

unaryNominal(n0,apple).

unaryNominal(c1,mary).

unaryNominal(c2,apple).

metaData(0,p0,past).

%%% QUESTION TRANSLATION %%%

q:-semBinaryEvent(E0,consume,c1,X0),unaryNominal(X0,fruit),

unaryNominal(c1,mary).

52



CHAPTER 6. CONCEPTNET INTEGRATION

answer(yes):-q.

answer(no):-not q.

Looking at the translation above, we can see that q would never be satisfied, unless there
is information relating fruit to apple and eat to consume. Thus we know we need to get re-
lations from ConceptNet related to the verb and (common) nouns that appear in the question.

The words and phrases we query from ConceptNet (henceforth called QuestionRootWords)
are therefore the following:

• Verbs, i.e. the second argument of an Event predicate
(e.g. consume in semBinaryEvent(E0,consume,c1,X0))

• Nouns, i.e. the second argument of a unaryNominal

(e.g. fruit in unaryNominal(X0,fruit))

– Note: At this point in the translation flow, the POS tag of each word is no longer
stored. Because of this, it is not possible to determine whether or not a word (e.g.
mary) is a common or proper noun. We therefore query relations for pronouns as
well as common nouns, but this is something to be improved in the future).

• Phrases made up of a verb + a noun
(e.g. consume fruit from the two examples given for verb and noun).

– This is more pertinent for more common phrases like ‘starting a fire’ (start fire).

Once we have these QuestionRootWords that we want to query, we call on the ConceptNet

module to make the relevant API calls to formulate a ConceptNetGraph of related concepts.
The system uses an incremental approach, in that we first check to see if adding direct rela-
tions of the QuestionRootWords to the ASP program will help attain an answer. Only when
this does not work will we expand the graph to include two-step relations, i.e. adding all
concepts related to those already in the initial graph. We currently cap the graph at two
steps, stopping even if we do not find an answer.

The structure of a graph with two steps is shown in Figure 6.2, whose QuestionRootWord is
the verb consume. We can see that there is a relation MannerOf between consume and eat,
and this is added to the ASP program by the ASPFactory module in the form of the fact
conceptNetRelation(mannerOf,eat,consume).

Figure 6.2: Extract of Graph Created from ConceptNet for /c/en/consume/v
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Note that when we form a graph, we do not care about the ordering of nodes in the relation

(e.g. we want relations that are both like consume
MannerOf−−−−−−−−→ spend and

eat
MannerOf−−−−−−−−→ consume). For simplicity, the arrows in Figure 6.2 are all facing one direction,

but in reality some of the arrows will be facing the opposite way.

For the relation between consume (verb) ↔ eat, it is enough to go one step. However, for
fruit (noun) ↔ apple, a second step is needed because there is no relation directly linking
apple to fruit (noun) in ConceptNet. Instead, we get the following:

apple
IsA−−→ pome

IsA−−→ fruit.

These are added to the ASP program as the two following facts

conceptNetRelation(isA,apple,pome).

conceptNetRelation(isA,pome,fruit).

Note: ConceptNet does have a relation between fruit (with no noun label) and apple, but
because we are trying to limit the size of the graph we build, we input as much information
when running queries (e.g. specifying whether a word is a verb or a noun when we know
it is one of the two). This is why this relation is not found when we build a graph from
QuestionRootWord fruit (noun) and we need to go that extra step.

As we can see from the graph in Figure 6.2, there are many concepts that are related to the
QuestionRootWord but have no relation to the text. Therefore to avoid cluttering the ASP
program with unnecessary facts, we traverse the graph from the bottom up, only including
concepts that are either

a. in the given text, or

b. is the parent of an included concept.

Clingo runs the ASP program after each layer of the graph is built and the relevant facts
added. In the example above, it is only after the second layer is added that Clingo can solve
the ASP program, with the addition of background rules in Listing 6.1, to give the answer
set with answer(yes) and the Dispatcher sends ‘yes’ as the final answer to the question.

Listing 6.1 Background Rules for ConceptNet Relations

1 related(X,Y) :- conceptNetRelation(_,X,Y).

2 related(X,Y) :- conceptNetRelation(_,Y,X).

3 related(X,Z) :- related(X,Y), related(Y,Z).

4
5 semUnaryEvent(E,V,S) :- related(V,V1), semUnaryEvent(E,V1,S).

6 semBinaryEvent(E,V,S,O) :- related(V,V1), semBinaryEvent(E,V1,S,O).

7 semTernaryEvent(E,V,S,O,W) :- related(V,V1),

8 semTernaryEvent(E,V1,S,O,W).

9 unaryNominal(I,W0) :- related(W0,W1), unaryNominal(I,W1).

The example above only demonstrates the use of queries about verbs and nouns. While we
do query phrases and the relevant information is added to the ASP program, we are not cur-
rently able to use the information attained in a useful way. That is because querying phrases
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often returns phrases, and it is difficult to relate these in a way that can be used in the ASP
program.

Take, for example,

Text: The umpire was not watching when Julie committed a foul.
Question: Who was playing tennis?

ConceptNet has the relation play tennis
HasSubevent−−−−−−−−−−−→ committing foul. We currently add

conceptNetRelation(hasSubevent, play tennis, committing foul) to the ASP program,
but because action phrases are essentially ‘split’ in the ASP representation into Events and
Nominals, this added conceptNetRelation predicate is not actually useful. We need to find
another way to relate the two phrases, which is a difficult task because the information
(phrases) that come from ConceptNet does not have a set structure. This is thus work that
can be done to improve the system in the future.

6.2 Choosing the Correct Answer for Multiple Choice Questions

The blue flow in Figure 6.1 shows the path taken by the system when the AnswerVerifier

module is not able to choose one of the user input answers for a multiple choice question as
the correct one based on the answers found (outputted) by running Clingo.

When this is the case, we use ConceptNet to find synonyms (relations Synonym and IsA) of
the found answers. These synonyms are then used to pad the set of found answers, which is
what is compared with the user input answers to choose the best fit.
Consider the example below:

Text: Mary ate an apple. Question: What did Mary eat? Answers:

A. Fruit

B. Cheese

We get the answer apple from the system, and so find its synonyms: [accessory fruit, ap-
ple, pome, edible fruit, fruit tree, fruit, tree, apple tree]. The system then chooses the an-
swer ‘Fruit’ over ‘Cheese’ because the word ‘fruit’ appears four times in the list of synonyms,
whereas the word ‘cheese’ does not appear at all. If an answer is not found after one query,
it will then run another query for synonyms of all the previously found synonyms.

The reason we count to find a best fit answer rather than trying to find an exact match is
because there are sometimes too many answers (not all of them correct) found with the
inclusion of conceptNetRelation predicates and the rules in Listing 6.1, especially

unaryNominal(I,W0) :- related(W0,W1), unaryNominal(I,W1).

The longer the text and the more general the words in the question, the more facts are
included from ConceptNet and the more likely Clingo will generate answer sets with words
that are not always directly related. The best fit approach is to mitigate this weakness, as
sometimes when the user input answers are closely related (e.g. red and pink), they can
both be in the set of answers found by Clingo.
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6.3 Local Database

The data in ConceptNet is available in a JSON-LD (JSON for Linked Data) API. This makes
querying the data more manageable and represents the linked nature of the data in Concept-
Net in a format that is easy to understand and work with.

This API returns query responses in a paginated format, meaning each JSON payload con-
tains a limited number of ‘edges’ (50) and a link (value of "nextPage" in Figure 6.3) to
retrieve the next ‘page’ of responses.

{

"@context": [

"http://api.conceptnet.io/ld/conceptnet5.6/context.ld.json"

],

"@id": "/query?node=/c/en/start/v",

"edges": [

...

.

. list of edges

.

...

],

"view": {

"@id": "/query?node=/c/en/start/v&offset=0&limit=50",

"@type": "PartialCollectionView",

"comment": "There are more results. Follow the ’nextPage’ link for more.",

"firstPage": "/query?node=/c/en/start/v&offset=0&limit=50",

"nextPage": "/query?node=/c/en/start/v&offset=50&limit=50",

"paginatedProperty": "edges"

}

}

Figure 6.3: Extract from JSON Payload Received when Querying
http://api.conceptnet.io/query?node=/c/en/start/v’’

This is a good way of managing the size of the payload, since some queries will have very
large responses, but it also means that to get all the data, we need to make multiple API
calls. In some cases, the number of edges to be returned rises to the thousands and the API
calls required also increases accordingly.

Therefore, in order to offset the number of API calls made to the ConceptNet server, we de-
cided to build a local database that stores any information queried using the web API. With
this database in place, we only need to make each API call (along with all the subsequent
calls for the remaining pages) once, and can simply query the database instead the following
times we need the same information.

Our database is only made up of two tables, a concept net edge table and a concept net node

table. Each edge and node JSON object in the response payload contains more information
than we require, and so we store only the data that is useful (or potentially useful) for our
system. These are illustrated in Figure 6.4.
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Figure 6.4: Entity-Relation Diagram of Local ConceptNet Database

A concept net edge represents a relation in ConceptNet (e.g. apple
IsA−−→ fruit), and the

columns of the corresponding table reflect this. The weight column is not currently used in
our system, but is a float that represents the strength of the assertion the edge makes and
could potentially be useful in the future to cut down the amount of information added to the
ASP program.

The columns in the concept net node table are as follows:

• uri: the primary key of the table. It is Concept Net’s unique URI for the node, and in
essence contains the information found in the name, language and sense columns.

• name: the word the node represents.

• language: the language the word is in. The system currently only caters for English,
but if more languages should be added in the future, this information would be useful.

• sense label: n or v, depending on whether the word is a verb or a noun. Not every
node has a sense label.

• hop: an integer value to indicate the depth to which a graph has been built for this
node and the relevant edges stored in concept net edge.

• relations added: a list of relations that have been queried and stored in concept net edge.

We recognise that a better database design would include a relation entity and a junction
table instead of a list of relations added in the concept net node table, but our design
allows for a simpler query when checking whether a certain node has the complete data
for a specific relation type stored in the concept net edge table. For instance, when we
only want to find as we check for either hop > 0 or relations added contains the desired
relation.
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Chapter 7

Evaluation

Our system extends the work done by Chaberski et al. (2017) [1], who presented a novel
approach for translating text and questions to an ASP representation. We thus evaluate our
system by assessing its ability to answer questions and compare its performance to the Cha-
bierski system. We do not evaluate it quantitatively because of limitations the CCG parser
imposes on our question translating capabilities (as briefly described in Section 5.2). This
limits the range of questions we are able to cover, and therefore it is difficult to compare
our performance against other systems, like those by participants of SemEval-2018 Task 11
who largely employed LTSM networks and other statistical machine learning methods and
models.

We qualitatively evaluate our system based on its performance on answering questions from
three sources:

1. Validation Data: hand-crafted by us to highlight the capabilities of our system
A set of short narratives paired with questions to highlight a feature of the system
were hand-crafted by us. These are similar to the examples given for each extension
discussed in Chapter 5.

2. SemEval-2018 Task 11 Corpus (MCScript): the manually compiled corpus provided
by the organisers of Task 11
Ten stories from the corpus, each covering a different everyday activity, along with their
corresponding questions were considered. Many questions were deemed unsuitable for
the system due to

• the type of question not being covered (i.e. not a who/what/where/which or
yes/no question) or

• the question requiring commonsense information of a type we have not yet in-
cluded (e.g. script knowledge).

The questions that we did consider are similar or produce similar problems to those
highlighted in Section 7.2. It is possible to hand-craft questions for each of these
stories to further evaluate the system, but the questions already in the corpus provide
an insight into how much the system needs to be extended in order to fully answer
questions in general text comprehension (that may or may not require commonsense
knowledge).

3. Kindergarten-Level Reading Comprehension: exercises created for students around
the age of 5
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Four exercises of similar style (short reading passages paired with simple MCQ ques-
tions) are used to evaluate the system’s ability to cope with straightforward questions,
as well as identify its weaknesses in answering them.

A sample of these with comments on the system outputs for both our system and the Cha-
bierski system can be found below. For the stories from SemEval and kindergarten exercises,
we change the viewpoint of the questions to match that of the story they correspond to in
order for our system to be able to find any answers. The story texts are also the modified
versions (i.e. we have removed or modified any problematic components like certain words
or symbols). The original version of each of these texts can be found in Appendices D and E.

It should be noted that the algorithm implemented for choosing an answer out of the MCQ
answer options when no answer is outputted by Clingo does not truly reflect the capabilities
of our system, and any answer chosen by this last-resort method will be indicated.

7.1 Validation Data

This section highlights some of the capabilities of our system and the improvements we have
made from the Chabierski system.

Story 1

My mother went to the mall. She bought a necklace.

1. What did my mother purchase?
Chabierski: nothing
Our system: nothing

Neither the Chabierski nor our sys-
tem is able to answer this question
because CoreNLP annotates ‘pur-
chase’ in the question with the POS
tag NN (noun) rather than with a
verb tag. This leads to an erro-
neous ASP representation that does
not have a reasonable meaning.

2. Did my mother get jewellery?
Chabierski: nothing
Our system: yes

As an improvement on the Chabier-
ski system, our system is able to
relate get↔ buy as a direct relation
from ConceptNet and jewellery ↔
necklace via jewelry, i.e.

necklace
IsA−−→ jewelry

FormOf−−−−−−→
jewellery. We are also able to
unify ‘my mother’ with ‘she’, a
coreference that is missing in the
translation given by the Chabierski
system.
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Story 2

I ate an apple because I was hungry.
I then used soap to wash my hands.

1. Did I consume fruit?
Chabierski: no
Our system: yes

We are able to answer this ques-
tion correctly because we were
able to relate consume ↔ eat and
fruit ↔ apple, thanks to assertions
fetched from CoreNLP, namely con-

sume
Synonym
−−−−−−−−→ eat and apple

IsA−−→
pome

IsA−−→ fruit.

2. Did I wash my hands?
Chabierski: no
Our system: yes

A background rule added to our sys-
tem says that “If [A] uses [B] to do
[C], then [A] does [C].” This is a
rule that could perhaps be gener-
alised further (i.e. be true for more
than the verb ‘use’), but it is an ex-
ample of a fairly general rule that
enhances the knowledge of the sys-
tem.

3. Did I use soap?
Chabierski: yes
Our system: yes

4. Was I hungry?
Chabierski: yes
Our system: yes

These two questions generate the
correct result from both systems as
no background rules or extra knowl-
edge are required.

Story 3

I called her. I will call him.

# Question Correct Our Output Chabierski Output

1 Have I called her? yes yes no
2 Have I called him? no no no
3 Will I call her? no no no
4 Will I call him? yes yes no
5 Am I going to call her? no no no
6 Am I going to call him? yes yes no
7 Did I call her? yes yes yes
8 Did I call him? no no yes

This example highlights the ability of our system to accurately discern what events have
happened and which have not. Question 1 was wrongly answered by the Chabierski system
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due to the wrong instantiation of the event ID variable, which we generalised in our system.
The Chabierski system also does not have a good representation of the future, which is why
questions 3 - 6 are wrong. Question 8 is also incorrect because all text events are considered
to have happened before the question time point, and so “I call him” (despite the ‘will’ mod-
ifier) is still considered to have happened.

Our system gives the same correct answers for these 8 questions but with the text “I (have)
called her. I am going to call him.” Modifications need to be made to the source code to
recognise other phrases as future tense (e.g. “I am about to...”) but this example shows
the effectiveness of our time management system coupled with our added background rules,
and our ability not to require exact matching between text and question.

7.2 SemEval-2018 Task 11 Corpus

We look at three different narratives and their accompanying set of questions and answers.
Many of the questions are not covered by our system, and some of them require modifica-
tions in order for our system to produce an answer.

The way answers are represented are as follows:

• The correct answer for each question is in bold

• The answer chosen by our system is marked with an arrow (←)

– A last-resort is added next to the arrow if the MCQ last-resort method is the one
that chooses that answer

• The answers outputted by Clingo for the Chabierski system is given below the question

Story 1: Ordering a Pizza

One afternoon when I was visiting with friends, we suddenly got hungry. So, we decided
to order a pizza. I looked in the telephone book and found several pizza restaurants that
would deliver. We all talked it over and settled on ordering a pizza from Dominos. Then we
discussed what we would like on our pizza and what size we should get. I called the number
and gave our order to the person who answered. We ordered a large pepperoni and onion
pizza with extra cheese. He told me that our pizza would cost fifteen dollars. I said that
would be fine and asked if the pizza could be delivered. He confirmed it could be and asked
for my address. I then gave him my name, address, and phone number. He told me that our
pizza would be delivered in thirty minutes. When the delivery boy arrived, we paid for our
pizza and included a two dollar tip. Then we enjoyed eating our pizza.

1. Who ordered the pizza?
Chabierski: nothing

A. The narrator←
B. The dog

We are able to answer this question
thanks to argument generalisation
and collection of facts, as the iden-
tifier for ‘pizza’ in the question is
not the same as the one in the sen-
tence “We ordered a large pepper-
oni pizza...”
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2. Did we order any other entrees?
Chabierski: no

A. No←
B. Yes

Both systems give the correct an-
swer but the answer given by our
system is ‘more correct’ because it
tries to look for entrees (as defined
by ConceptNet) and does not find
any.

3. Where did they order it?
Chabierski: nothing

A. Pizza Hut← last-resort

B. from Dominos

The translation of the question by
the Chabierski system is

answer(W1):-

unaryNominal(W0,W1),

semBinaryEvent(E0,

order,c59,c7),

unaryNominal(c7,it),

unaryNominal(c59,they).

More manual work is required
to improve the translation of this
question. The traversal of the CCG
parse tree encounters an error
because it runs out of parameters:
it does not know where to get the
answer variable from because ‘did
they order it?’ is represented as
semBinaryEvent(E0,order,c59,c7)

(“they ordered it”), with no
(nominal) variable to unify with
the ID W0 of answer predicate
unaryNominal(W0,W1).

This error is reflected in our system
as well, and it thus uses the last-
resort method to choose an answer.
It chooses ‘Pizza Hut’ over ‘Domi-
nos’ because ‘Dominos’ only appears
once in the story, whereas ‘pizza’ ap-
pears multiple times and the algo-
rithm does a count of each word
that appears in the answer (not in-
cluding words like ‘a’, ’the’, ‘some’).
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Story 2: Making a Bonfire

My family and I decided that the evening was beautiful so we wanted to have a bonfire.
First, my husband went to our shed and gathered some dry wood. I placed camp chairs
around our fire pit. Then my husband placed the dry wood in a pyramid shape inside the
fire pit. He then set some small kindling ablaze. Once the kindling reached the dry wood,
it set the wood on fire. We then sat around the fire for some time, adding more logs as
the previous ones burned out. We cooked marshmallows on sticks over the open flames.
When the marshmallows were golden brown, we placed them between two graham crackers
with chocolate pieces. We ate our smores as we joked, laughed and told stories around our
beautiful fire. When we finished, I put away our camp chairs. My husband made sure the
fire was out by dousing it with some water and we went inside to bed.

1. Who started the fire?
Chabierski: nothing

A. Wife

B. Their husband lit it ← last-
resort

2. Who set the kindling ablaze?
Chabierski: he

A. Wife

B. Their husband lit it←

The question in the SemEval corpus
is Question 1, but we are unable
to answer it even with ConceptNet
because we do not have a way to
relate start fire with set kindling
ablaze in a way that will help Clingo
solve for the answer, even though
these connections do vaguely exist
in ConceptNet.

Modifying the question to “Who set
the kindling ablaze?”, a phrase that
appears directly in the text, the Cha-
bierski system gives the correct an-
swer ‘he’, but is unable to corefer-
ence this with ‘husband’, which is
the answer we desire. With the en-
hancements to coreferencing reso-
lution in our system, this is fixed
and we do get the answer ‘hus-
band’, resulting in choosing the cor-
rect MCQ answer.
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My family and I decided that the evening was beautiful so we wanted to have a bonfire.
First, my husband went to our shed and gathered some dry wood. I placed camp chairs
around our fire pit. Then my husband placed the dry wood in a pyramid shape inside the
fire pit. He then set some small kindling ablaze. Once the kindling reached the dry wood,
it set the wood on fire. We then sat around the fire for some time, adding more logs as
the previous ones burned out. We cooked marshmallows on sticks over the open flames.
When the marshmallows were golden brown, we placed them between two graham crackers
with chocolate pieces. We ate our smores as we joked, laughed and told stories around our
beautiful fire. When we finished, I put away our camp chairs. My husband made sure the
fire was out by dousing it with some water and we went inside to bed.

3. Where did they make the bon-
fire?
Chabierski: nothing

A. In the garage

B. Their fire pit← last-resort

4. Where is the wood?
Chabierski: nothing
Our system: [pyramid shape fire
pit wood kindling ablaze]

A. In the garage

B. Their fire pit←

Similarly to Questions 1 and 2, the
question in the SemEval corpus is
Question 3, but we are unable to
answer because we do not have
a way to relate make bonfire with
place dry wood in pyramid shape.
This is quite a complex representa-
tion and we are unable to use the
concepts gotten from ConceptNet
to make a connection between the
two.

Modifying the question and sim-
plifying the underlying concept to
“Where is the wood?”, we can find
the correct answer thanks to the ad-
ditional background knowledge im-
plemented in our system about the
semantics of ‘inside’ and ‘in’. Look-
ing at the raw output from our
system, [pyramid shape fire pit

wood kindling ablaze], we can
see that there is extra information
given that does not answer our
question, and that is because of the
background knowledge also trying
to gather facts, often resulting in too
many connections being made. This
problem is discussed further in Sec-
tion 7.5, and a way to mitigate it
discussed in 8.1.

65



CHAPTER 7. EVALUATION

My family and I decided that the evening was beautiful so we wanted to have a bonfire.
First, my husband went to our shed and gathered some dry wood. I placed camp chairs
around our fire pit. Then my husband placed the dry wood in a pyramid shape inside the
fire pit. He then set some small kindling ablaze. Once the kindling reached the dry wood,
it set the wood on fire. We then sat around the fire for some time, adding more logs as
the previous ones burned out. We cooked marshmallows on sticks over the open flames.
When the marshmallows were golden brown, we placed them between two graham crackers
with chocolate pieces. We ate our smores as we joked, laughed and told stories around our
beautiful fire. When we finished, I put away our camp chairs. My husband made sure the
fire was out by dousing it with some water and we went inside to bed.

5. What did we do at the bonfire?
Chabierski: nothing

A. Talk and cook smores ←
last-resort

B. Dance around

6. What did we do?
Chabierski: nothing

A. Talk and cook smores←
B. Dance around

We are able to answer this question
when we remove “at the bonfire”
because it adds predicates that
need to be satisfied which will not
be satisfied because none of the
sentences in the text say anything
about doing things “at the bonfire”.
This is thus something that can be
removed from the question, but we
could not formulate a general rule
for when this kind of information is
superfluous and so we remove it on
an ad-hoc basis.

Question 6 initially gives the raw
output [laugh joke finish add

sit tell eat go want have be],
all verbs that ‘we’ do in the text.
We try to match this to one of the
given answers, but this fails as they
do not directly relate. We thus
fetch synonyms of these verbs from
ConceptNet to try and find a con-
nection, and this list of synonyms
helps us choose the correct final
answer.
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Story 3: Cleaning Up a Flat

I needed to clean up my flat. I had to get my broom and vacuum and all the cleaners I would
need. I started by going around and picking up any garbage I see, like used candy wrappers
and old bottles of water. I threw them away. I went around and picked up any dishes that
were out and put them in the sink then washed them. I used my broom to sweep up all the
dust and dirt off the hard floors, and I used the vacuum to clean up the floors that had rugs
and carpets. When the hard floors were swept, I used a bucket with floor cleaner and water,
and a mop, to mop them up. As the floor dried I took a rag and began dusting everything
in the room. The TV, the tables and counters and everything else that was a hard surface, I
used the rag to dust.

1. Did I use a mop?
Chabierski: no

A. No

B. Yes after sweeping←

The background knowledge added
for “If [A] uses [B] to do [C], then
[A] does [C]” helps our system an-
swer this question.

2. Where did I vacuum?
Chabierski: nothing

A. Hardwood floor

B. Rooms with rugs and carpet
← last-resort

The relevant sentence in the story
(“I used the vacuum to clean up the
floors that had rugs and carpets”)
is translated into a representation
that is too convoluted to be able to
answer without very specific back-
ground rules.

unaryNominal(c1,i).

ternaryEvent(p10,use,c1,c25,e5).

unaryNominal(c25,vacuum).

binaryEvent(e5,clean_up,c25,n3).

unaryNominal(c26,carpet).

unaryNominal(n4,rug).

binaryEvent(p11,have,n3,c26).

binaryEvent(p11,have,n3,n4).

unaryNominal(n3,floor).

In summary, the stories and questions in the SemEval corpus are complex, sometimes in
ways that are not immediately obvious to humans. The ASP representation generated by
the system is usually well done in that it is understandable and systematic, but this does
not mean that it is easy to use to answer questions. With the help of additional background
knowledge and ConceptNet, we are able to answer more than what the Chabierski system is
capable of, but there is still a long way to go to be able to answer the questions given with
no modification.
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7.3 Kindergarten Reading Comprehension

Looking at the reading comprehension exercises for various grade levels, we deemed the
kindergarten level to be the most suitable for evaluating our system. Higher levels start ask-
ing more complex ‘how’ and ‘why’ questions which are not yet covered by our system.

As before, the way answers are represented are as follows:

• The correct answer for each question is in bold

• The answer chosen by our system is marked with an arrow (←)

– A last-resort is added next to the arrow if the MCQ last-resort method is the one
that chooses that answer

• The answers outputted by Clingo for the Chabierski system is given below the question

Story 1

See my dog. We like to play outside. We run and jump in the sun.

1. What pet do I have?
Chabierski: nothing

A. Dog←
B. Cat

C. Bird

The system is now able to answer
this question because it can relate
pet ↔ dog. There was also an er-
ror in the λ-ASP* representation of
subject-inverted questions like this
one, which was fixed for our system.

2. Where do we like to play?
Chabierski: nothing

A. Inside

B. Outside← last-resort

C. At the park

Outside is an adverb, represented as
a modifier in the translation, and
the system can only answer ques-
tions with nouns (nominals) or verb
lemmas. This is further explained in
Section 7.5.

3. Where do we run and jump?
Chabierski: nothing

A. Inside

B. In the sun← last-resort

C. At the beach

Work is required to represent the
question properly in λ-ASP*, as the
current translation leads to the er-
roneous representation

answer(W1):-unaryNominal(W0,W1),

semUnaryEvent(e3,jump,c1),

semUnaryEvent(e2,run,c1).

Story 2

Ron has a pink balloon. He will give it to his mum. She will love it.
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1. Who has a balloon?
Chabierski: ron

A. Tom

B. Ron←

The original (Chabierski) system
was able to handle this question
perfectly.

2. What colour is it?
Chabierski: nothing

A. Red

B. Pink← last-resort

One problem comes from EasySLR,
which orders the arguments for
semBinary(E,be,S,O) wrongly,
switching the subject and object.
We also have the issue that ‘pink’ is
an adjective in the text, represented
as a modifier, which the system can-
not handle as an answer (further
explained in Section 7.5).

3. Who will he give it to?
Chabierski: nothing

A. His mum← last-resort

B. Ron

The question is translated wrongly,
with wrong ordering of argu-
ments and composing two nodes
of the CCG parse tree lead-
ing to the question predicate
semTernaryEvent(f2,give,W0,f2,c2)

(i.e. W0 will give event f2 to him).

Story 3

Dan did not like dogs. Dogs were a danger. Dogs can scare you in the dark.
Dan's dad got a dog. Now Dan does like dogs. Dan plays with his dog often.

Dan's dog plays in the dirt.

This story did not have any attached questions so the following two are manually crafted.

1. Does Dan like dogs?
Chabierski: no

A. Yes←
B. No

Background knowledge added to
define the semantics of ‘like’ (i.e.
one does not stop liking something
until otherwise stated) and the se-
mantics of ‘not’ (changes polarity).

2. Who played in the dirt?
Chabierski: dog

A. Dan

B. Dan’s dog←
C. Dan’s dad

The Chabierski system was able to
answer this question well.
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Story 4

Lou plays football. He loves football. Lou can run fast and throw far.
He will ask Jon to play with him.

1. What did Lou play?
Chabierski: football

A. Games

B. Football←
C. Soccer

The Chabierski system was able to
answer this question well.

2. What can Lou do?
Chabierski: nothing

A. Run fast← last-resort

B. Jump high

C. Score

The question translation for this is

answer(W1):-

unaryNominal(W0,W1),

binaryModif(can,E0,c1),

unaryNominal(c1,lou),

semBinaryEvent(E0,do,X0,W0).

This doesn’t match with the
text translation, which trans-
lates ‘can do something’ to
a unaryModif(can,E), not a
binaryModif. Additionally, the
semBinaryEvent(E0,do,X0,W0)

has the variable X0 instead of c1, so
the system does not know whose
actions to look for and cannot mod-
ify the question body accordingly
(see Section 5.2.4 for details on the
modifications).

Overall, our system was able to choose the correct answer for every story we tested. Where
the choice was made by the last-resort algorithm, the system was unable to formulate an
answer because of an error caused by an external dependency or because of the handling of
Modifiers, something that the system needs to improve on.
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7.4 Improvements to the Chabierski System

The extensions described in Chapter 5 help to elevate the Chabierski system, enabling it to
answer more questions accurately. The examples given in this evaluation chapter, as well as
those in Chapter 5 help to illustrate the enhanced capabilities of our system.

The following are some of the most noteworthy ways we have extended the system:

• Time Management
The improved representation of time points in the text and questions allow for more
temporally complex questions to be covered. In this project, we were able to better
distinguish between past events (which have happened) and future events (which will
happen) and answer questions correctly about them.

• Coreference Resolution
By including more of the coreference annotation provided by CoreNLP, we were able
to better gather facts about each entity in a story. This allows for more questions to
be answered, as this helps to mitigate errors of argument instantiation in the question
translation and helps move away from the requirement of exact matching of question
to text.

• Question Translation
We have improved the question translation for specific instances, e.g. future questions,
doing questions and those that refer to pronouns not explicitly mentioned in the text,
as described in the various subsections of Section 5.2. These help the system answer
more questions with higher accuracy.

• Integration of Commonsense Knowledge
We enhance the knowledge added to the ASP program by calling on ConceptNet and
including assertions that are deemed relevant to the question and story being con-
sidered. This helps the system find answers when the wording of the question does
not match that of the text exactly, and also helps to determine the correct option for
multiple choice questions.

7.5 Limitations

Aside from inaccuracies that stem from external dependencies that cannot be easily dealt
with, there are a number of ways the translation can still be improved. There are outstand-
ing translation tasks, like covering more types of questions, and we can improve the accuracy
of answers attained with help from ConceptNet. The following covers some of the areas in
which our system is limited and can be developed further.

Accuracy of Free Output Answers

The inclusion of ConceptNet and the rules gathering facts about each entity in a given text
makes the system more suited to producing answers for multiple choice questions rather
than a free output (i.e. giving the user the answers generated by Clingo). This is because the
surplus of information can lead to Clingo finding answers that are connected (but not in the
desired way) and thus cluttering the answer with wrong concepts. Having stricter rules in
the background knowledge related to ConceptNet relations and in the way we gather facts
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could help to concentrate the answers generated by Clingo. This is something that we could
have developed had we had more time.

Simple Present Tense

The simple present tense in the English language can represent two things: either the ac-
tion is happening right now (i.e. in that moment) or it happens regularly (or unceasingly),
meaning it holds until stated otherwise. This difference is currently indistinguishable by the
system, as the CCG category for both is identical. Therefore the system currently assumes all
instances of the simple present tense represents an action happening in that moment, and we
cannot answer questions which address regular/unceasing occurrences. This is illustrated by
Story 4 in Section 7.3, where the first two sentences represent regular actions. We had to
modify the questions to past instead of present tense to account for the representation of
present tense and rules around it. Since this issue is largely caused by the CCG represen-
tation, it is not something that can be easily addressed and will require research into the
nuanced differences between the two types of occurrences.

Modifiers: Adjectives and Adverbs

The answers to “where/what is...” can often come from adverbs (e.g. ‘outside’ to describe
a location) or adjectives (e.g. ‘pink’ to describe a colour). These are not considered in the
current system, which looks for answers to most wh- questions in nominals (with the excep-
tion of verbs for doing questions, as explained in Section 5.2.4). We can thus expand the
system to look for answers in the modifiers. However, since not all modifiers can be used
to answer wh- questions (‘will’, for example, is classified as a modifier) and so we would
need a way to verify whether the modifier in question actually matches the type of answer
we are looking for. This also relates to the issue discussed below: differentiating wh- ques-
tions and verifying the answers given. With more time, we could have looked further into
this issue and we believe that an approach to determine which adverbs or adjectives can be
used as answers to questions may be to inspect any differences between their CCG categories.

Differentiating Wh- Questions
The system currently does not differentiate between ‘what’ and ‘where’, in that questions
like “What am I?” and “Where am I?” both translate to the same ASP representation with
semBinaryEvent(E,be,[I],[answer]). This can lead to wrong answers generated by Clingo,
and an improvement would thus be to do a check after the answer set is found in order to
improve the accuracy of answer outputted by the system. This is also an issue that we could
have made some progress with had we had more time.
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Conclusion

The aim of this project was to incorporate commonsense knowledge to help enhance ma-
chine comprehension of text. This was done by extending the Chabierski system, whose
question answering portion focused on yes/no questions and who/what/where/which ques-
tions with one word answers. We have improved portions of the text translation, question
translation and incorporated commonsense knowledge from ConceptNet to further the ques-
tion answering abilities of the system.

A brief summary of our contributions is as follows:

• Text Translation

– Improving the representation of time

– Improving coreference resolution

• Question Translation

– Generalising arguments of question body predicates to allow for more questions
to be answered

– Improving ASP representation for future tense questions

– Improving ASP representation of questions about actions (e.g. “What did he do?”)

• Enhancing the background knowledge file with rules to complement changes made in
the translation

• ConceptNet integration

8.1 Future Work

Machine comprehension of text covers a wide range of tasks, many of which can still be in-
corporated or improved in our system to enhance both its translation and question-answering
abilities. The following sections describe various ways the system can be enhanced.

Relating Phrases

Our integration of ConceptNet currently only allows for connections to be made between
verb ↔ verb, noun ↔ noun or verb ↔ noun. This is not always enough, as some concepts
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need to be expressed as phrases (e.g. starting a fire ↔ setting kindling ablaze), but the cur-
rent ASP representation is not very conducive of making relations between phrases and other
representations of concepts.

Translating More Question Types

This is unfortunately limited by the accuracy of the CCG parser, but we can start building
λ-ASP expressions for when and why questions. The CCG representation of some questions
can be worked with, and this can be used as a starting point. The use of frames to generate
answers in the form of phrases or sentences can also be explored, as why questions especially
often need to be answered with more than one word.

Allowing Questions from a Different Viewpoint

Many reading comprehension exercises ask questions from a different point of view to the
story narrator, especially when the narrator is in first person. This is because the questions
are usually asked in third person, a passive voice not representing an entity in the story. It
would thus be useful to allow questions that do not match the viewpoint of the story narra-
tor, but this would complicate coreference resolution between the story and the question.

Adding Script Knowledge

Script knowledge, as described in Section 2.3.2, is a type of commonsense knowledge that
depicts a typical sequence of actions that form a scenario. This is the type of common-
sense knowledge suggested by the group that set SemEval-2018 Task 11, but I found it to
be more difficult to incorporate than the more general concepts of ConceptNet and the task
of identifying the right scenario for which to add the relevant script knowledge is not a
straightforward one. Script knowledge is also useful in very specific cases, whilst Concept-
Net has broader applicability. Incorporation of script knowledge would enhance our system’s
ability to answer more temporal related questions, and so should be added if this is a priority.

Checking Validity of Answers

Since our system currently has the issue of producing ‘too many’ answers, especially when
padded with assertions from ConceptNet, a useful extension to the system would be the
implementation of a validity check once answers are produced. For instance, ‘where’ ques-
tions should produce answers which are a location and should not return names of people.
This would help to narrow down the answers outputted by Clingo and produce answers of a
higher accuracy.
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Appendix A

Original Background Knowledge

File A.1 Background Knowledge Used by Chabierski et al. for bAbI Dataset

1 % Unary.

2 semUnaryEvent(E,L,Y) :- unaryFluent(E,L,Y).

3 unaryFluent(E,L,Y) :- unaryInitEvent(E,L,Y).

4 unaryFluent(E,L,Y) :- unaryFluent(E1,L,Y), previous(E1,E),

5 not unaryTermEvent(E,L,Y).

6
7 % Binary.

8 semBinaryEvent(E,L,Y,Z) :- binaryFluent(E,L,Y,Z).

9 binaryFluent(E,L,Y,Z) :- binaryInitEvent(E,L,Y,Z).

10 binaryFluent(E,L,Y,Z) :- binaryFluent(E1,L,Y,Z), previous(E1,E),

11 not binaryTermEvent(E,L,Y,Z).

12
13 % Time points defined by the mata predicates.

14 previous(E1,E) :- metaData(T1,E1), metaData(T,E), T=T1+1.

15
16 % Appendix - mapping to ’semantic’ predicates.

17 semTernaryEvent(E,L,X,Y,Z) :- ternaryEvent(E,L,X,Y,Z),

18 not abTernaryEvent(E,L,X,Y,Z).

19 semBinaryEvent(E,L,Y,Z) :- binaryEvent(E,L,Y,Z),

20 not abBinaryEvent(E,L,Y,Z).

21 semUnaryEvent(E,L,Z) :- unaryEvent(E,L,Z), not abUnaryEvent(E,L,Z).

22
23 unaryNominal(X,Y) :- eq(X,Z), unaryNominal(Z,Y).

24 eq(X,Y) :- eq(Y,X).

25
26
27 % Rules about the change of position of an entity.

28 binaryInitEvent(E,be,P,L) :- binaryEvent(E,go,P,L).

29 binaryTermEvent(E,be,P,L) :- binaryEvent(E,go,P,L2),

30 unaryNominal(L,C).

31
32 % Event Calculus rules stating when object is carried by an entity.

33 binaryInitEvent(V0,carry,V1,V2) :- semBinaryEvent(V0,take,V1,V2).
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34 binaryTermEvent(V0,carry,V1,V2) :- semBinaryEvent(V0,take_out,V1,V2).

35
36 % Rules saying that an object changes its position together

37 % with a person that carries it.

38 binaryEvent(E,be,O,L) :- semBinaryEvent(E,carry,P,O),

39 semBinaryEvent(E,be,P,L).

40 binaryInitEvent(E,be,O,L) :- binaryTermEvent(E,carry,P,O),

41 semBinaryEvent(E,be,P,L).

42 binaryTermEvent(E,be,O,L) :- semBinaryEvent(E,carry,P,O),

43 binaryTermEvent(E,be,P,L).

44
45 % Rules regarding the change of possession of objects.

46 binaryEvent(E,receive,R,O) :- ternaryEvent(E,bring,G,O,R).

47 binaryEvent(E,bring,G,O) :- ternaryEvent(E,bring,G,O,R).

48
49 % Semantics of forget - forget changes polarity.

50 abBinaryEvent(E,L,X,Y) :- binaryEvent(E,L,X,Y),

51 binaryEvent(E1,forget,X,E).

52
53 % Temporal rules, semantics of ’before’.

54 binaryPrep(before,E0,E1) :- previous(E0,E1).

55 binaryPrep(before,E0,E2) :- binaryPrep(before,E1,E2),

56 previous(E0,E1).
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Background Knowledge

File B.1 General Background Knowledge Rules

1 % Persistance rules motivated by event calculus.

2
3 % Unary.

4 semUnaryEvent(E,L,Y) :- unaryFluent(E,L,Y).

5 unaryFluent(E,L,Y) :- unaryInitEvent(E,L,Y).

6 unaryFluent(E,L,Y) :- unaryFluent(E1,L,Y), previous(E1,E),

7 not unaryTermEvent(E,L,Y).

8
9 % Binary.

10 semBinaryEvent(E,L,Y,Z) :- binaryFluent(E,L,Y,Z).

11 binaryFluent(E,L,Y,Z) :- binaryInitEvent(E,L,Y,Z).

12 binaryFluent(E,L,Y,Z) :- binaryFluent(E1,L,Y,Z), previous(E1,E),

13 not binaryTermEvent(E,L,Y,Z).

14
15 % Time points defined by the meta predicates.

16 previous(E1,E2) :- metaData(T1,E1,X), metaData(T2,E2,X), T2=T1+1.

17 previous(E1,E2) :- metaData(T1,E1,past), metaData(0,E2,present),

18 last(E1).

19 previous(E1,E2) :- metaData(T1,E1,present), metaData(0,E2,future),

20 last(E1).

21
22 last(E) :- metaData(T,E,X), not metaData(T+1,_,X).

23
24 % Appendix - mapping to ’semantic’ predicates.

25 semTernaryEvent(E,L,X,Y,Z) :- ternaryEvent(E,L,X,Y,Z),

26 not abTernaryEvent(E,L,X,Y,Z).

27 semBinaryEvent(E,L,Y,Z) :- binaryEvent(E,L,Y,Z),

28 not abBinaryEvent(E,L,Y,Z).

29 semUnaryEvent(E,L,Z) :- unaryEvent(E,L,Z),

30 not abUnaryEvent(E,L,Z).

31 semZeroEvent(E,L) :- zeroEvent(E,L), not abZeroEvent(E,L).

32
33 % Semantics of not
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34 abUnaryEvent(E,L,Z) :- unaryEvent(E,L,Z), unaryModif(escnot,E).

35 abBinaryEvent(E,L,X,Y) :- binaryEvent(E,L,X,Y),

36 unaryModif(escnot,E).

37 abTernaryEvent(E,L,X,Y,Z) :- ternaryEvent(E,L,X,Y,Z),

38 unaryModif(escnot,E).

39
40 unaryNominal(X,Y) :- eq(X,Z), unaryNominal(Z,Y).

41 eq(X,Y) :- eq(Y,X).

42
43 % Rules about the change of position of an entity.

44 binaryInitEvent(E,be,P,L) :- binaryEvent(E,go,P,L).

45 binaryTermEvent(E,be,P,L) :- binaryEvent(E,go,P,L2),

46 unaryNominal(L,C).

47
48 % Semantics of be and like (i.e. you don’t stop being and liking

49 % something from one time point to another unless something

50 % affects it

51
52 binaryInitEvent(E,be,P,L) :- binaryEvent(E,be,P,L),

53 not abBinaryEvent(E,be,P,L).

54 binaryTermEvent(E,be,P,L) :- semBinaryEvent(E,be,P,L),

55 unaryModif(escnot,E).

56
57 binaryInitEvent(E,like,S,O) :- binaryEvent(E,like,S,O),

58 not abBinaryEvent(E,like,S,O).

59 binaryTermEvent(E,like,S,O) :- semBinaryEvent(E,like,S,O),

60 unaryModif(escnot,E).

61
62 % If an object is inside a location, it is in that location

63 % (the format of this is quite specific to the language of a

64 % specific story and could perhaps be more generalised)

65 binaryInitEvent(E,be,P,L) :- binaryPrep(inside,P,L),

66 binaryPrep(I,in,E,P).

67
68 % If an object is placed in a location, is is in that location

69 binaryInitEvent(E,be,P,L) :- binaryPrep(I,in,E,L),

70 binaryEvent(E,place,C,P).

71
72 % Transitivity of being in a location

73 binaryInitEvent(E1,be,P,L2) :- semBinaryEvent(E1,be,P,L1),

74 semBinaryEvent(E2,be,L1,L2).

75
76 % Event Calculus rules stating when object is carried by an entity.

77 binaryInitEvent(V0,carry,V1,V2) :- semBinaryEvent(V0,take,V1,V2).

78 binaryTermEvent(V0,carry,V1,V2) :- semBinaryEvent(V0,take_out,V1,V2).

79
80 % Rules saying that an object changes its position together with a person that

81 % carries it.

82 binaryEvent(E,be,O,L) :- semBinaryEvent(E,carry,P,O),
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83 semBinaryEvent(E,be,P,L).

84 binaryInitEvent(E,be,O,L) :- binaryTermEvent(E,carry,P,O),

85 semBinaryEvent(E,be,P,L).

86 binaryTermEvent(E,be,O,L) :- semBinaryEvent(E,carry,P,O),

87 binaryTermEvent(E,be,P,L).

88
89 % Rules regarding the change of posession of objects.

90 binaryEvent(E,receive,R,O) :- ternaryEvent(E,bring,G,O,R).

91 binaryEvent(E,bring,G,O) :- ternaryEvent(E,bring,G,O,R).

92
93 % Semantics of forget - forget changes polarity.

94 abBinaryEvent(E,L,X,Y) :- binaryEvent(E,L,X,Y), binaryEvent(E1,forget,X,E).

95
96 % Temporal rules, semantics of ’before’.

97 binaryPrep(before,E0,E1) :- previous(E0,E1).

98 binaryPrep(before,E0,E2) :- binaryPrep(before,E1,E2), previous(E0,E1).

99
100 % Semantics of arriving and leaving

101 binaryInitEvent(E,be,P,L) :- semBinaryEvent(E,arrive,P,L).

102 binaryTermEvent(E,be,P,L) :- semBinaryEvent(E,leave,P,L).

103
104 % Generalised notion that someone’s name is an identifier for them

105 % e.g ’my name is X’ means ’X is an identifier for I’

106 unaryNominal(C2, X) :- binaryEvent(E0,be,N0,C1),

107 unaryNominal(C1,X), binaryModif(poss,C2,N0),

108 unaryNominal(N0,name), unaryNominal(C2, _).

109
110 % Semantics of have

111 binaryInitEvent(E,have,S,O) :- semBinaryEvent(E,have,S,O).

112 binaryTermEvent(E,have,S,O) :- semBinaryEvent(E,lose,S,O).

113
114 % Possession means I have

115 binaryEvent(E,have,S,O) :- binaryModif(poss,S,O),

116 binaryEvent(E,_,O,_).

117 binaryEvent(E,have,S,O) :- binaryModif(poss,S,O),

118 binaryEvent(E,_,_,O).

119 binaryModif(poss,S,O) :- binaryEvent(_,have,S,O).

120
121 % Notion of "If A uses X to do Y, A uses X"

122 semBinaryEvent(E0,use,C1,E1) :- semTernaryEvent(E0,use,C1,E1,_).

123
124 % Notion of "If A uses X to do Y, A does Y"

125 semBinaryEvent(E1,V1,C1,N1) :- semTernaryEvent(E0,use,C1,N0,E1),

126 semBinaryEvent(E1,V1,N0,N1).

127
128 % Notion of "If A [verb] B, A [verb]"

129 semUnaryEvent(E0,V1,C1) :- semBinaryEvent(E0,V1,C1,_).

130
131 % Collecting information for one noun
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132 semUnaryEvent(E,V,X0) :- semUnaryEvent(E,V,X1),

133 unaryNominal(X1,W), unaryNominal(X0,W).

134
135 semBinaryEvent(E,V,X0,Y) :- semBinaryEvent(E,V,X1,Y),

136 unaryNominal(X1,W), unaryNominal(X0,W).

137 semBinaryEvent(E,V,X,Y0) :- semBinaryEvent(E,V,X,Y1),

138 unaryNominal(Y1,W), unaryNominal(Y0,W).

139
140 semTernaryEvent(E,V,X0,Y,Z) :- semTernaryEvent(E,V,X1,Y,Z),

141 unaryNominal(X1,W), unaryNominal(X0,W).

142 semTernaryEvent(E,V,X,Y0,Z) :- semTernaryEvent(E,V,X,Y1,Z),

143 unaryNominal(Y1,W), unaryNominal(Y0,W).

144 semTernaryEvent(E,V,X,Y,Z0) :- semTernaryEvent(E,V,X,Y,Z0),

145 unaryNominal(Z1,W), unaryNominal(Z0,W).

146
147 % This is specifically because SemEval questions have answers that are ’narrator’. Not sure how to improve this.

148 answer(narrator) :- answer(i).

149 answer(narrator) :- answer(we).

150
151 % Semantic rule for future events

152 abBinaryEvent(E,L,X,Y) :- metaData(_,E,future),

153 binaryEvent(E,L,X,Y).

154
155 % If question and relevant text info are both future, should be satisfied

156 semBinaryEvent(E1,V,X,Y) :- metaData(T1,E1,future),

157 metaData(T0,E0,future), binaryEvent(E0,V,X,Y),

158 binaryPrep(before,E0,E1).

159
160 % ConceptNet

161 related(X,Y) :- conceptNetRelation(_,X,Y).

162 related(X,Y) :- conceptNetRelation(_,Y,X).

163 related(X,Z) :- related(X,Y), related(Y,Z).

164
165 semUnaryEvent(E,V,S) :- related(V,V1), semUnaryEvent(E,V1,S).

166 semBinaryEvent(E,V,S,O) :- related(V,V1),

167 semBinaryEvent(E,V1,S,O).

168 semTernaryEvent(E,V,S,O,W) :- related(V,V1),

169 semTernaryEvent(E,V1,S,O,W).

170 unaryNominal(I,W0) :- related(W0,W1), unaryNominal(I,W1).
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Appendix C

ConceptNet Relations

Notes:

• A and B refer to the start and end nodes (of form A→ B) for each relation.

• All relations can be prefixed with ‘Not’ to express a negative assertion.

# Relation Description Used?

1 RelatedTo
Some unknown positive relation

between A and B
Not used in our system

as it is too vague

2 ExternalURL
A URL outside of ConceptNet

where further Linked Data about
the concept can be found

Not used in our system

3 FormOf
B is the root word of A

(e.g. sleep
FormOf−−−−−−→ slept)

Stored & used in our system

4 IsA

A is a subtype or instance of B

(e.g. apple
IsA−−→ fruit

(e.g. Chicago
IsA−−→ city))

Stored & used in our system

5 PartOf
A is a part of B

(e.g. gearshift
PartOf−−−−−→ car)

Stored & used in our system

6 HasA
B belongs to A

often the reverse of PartOf

(e.g. bird
HasA−−−−→ wing)

Stored & used in our system

7 UsedFor
A is used for B

(e.g. bridge
UsedFor−−−−−−−→ cross water)

Stored & used in our system

8 CapableOf
A can typically do B

(e.g. knife
CapableOf
−−−−−−−−−→ cut)

Stored & used in our system

9 AtLocation

B is a typical/inherent
location for A

(e.g. butter
AtLoc−−−−−→ fridge

Boston
AtLoc−−−−−→ Massachusetts)

Stored & used in our system
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# Relation Description Used?

10 Causes
A and B are events
A typically causes B

(e.g. exercise
Causes−−−−−−→ sweat)

Stored & used in our system

11 HasSubevent
A and B are events

B happens as subevent of A

(e.g. eating
HasSubevent−−−−−−−−−−−→ chewing)

Stored but
not really used in our system

12 HasFirstSubevent
A is an event that

starts with subevent B

(e.g. sleep
HFS−−−→ close eyes)

Stored but
not really used in our system

13 HasLastSubevent
A is an event that

ends with subevent B

(e.g. cook
HLS−−−→ clean kitchen)

Stored but
not really used in our system

14 HasPrerequisite
B needs to happen

in order for A to happen

(e.g. dream
HasPre−−−−−−→ sleep)

Stored & used in our system

15 HasProperty
A can be described by B

(e.g. ice
HasProp
−−−−−−−→ cold)

Stored & used in our system

16 MotivatedByGoal
A is a step towards
accomplishing B

(e.g. compete
MBG−−−−→ win)

Stored & used in our system

17 ObstructedBy
A is prevented by B

(e.g. sleep
ObstBy
−−−−−−→ noise)

Stored but
not used in our system

18 Desires
A is a conscious entity
that typically wants B

(e.g. person
Desires−−−−−−→ love)

Stored & used in our system

19 CreatedBy

B is a process or agent
that creates A

(e.g. cake
CreatedBy
−−−−−−−−−→ bake)

Stored & used in our system

20 Synonym
A and B are synonyms

(e.g. sunlight
Synonym
−−−−−−−−→ sunshine)

Stored & used in our system

21 Antonym
A and B are opposites

(e.g. hot
Antonym
−−−−−−−−→ cold)

Stored but
not used in our system

22 DistinctFrom
A and B are

distinct members of a set

(e.g. August
DistinctFrom−−−−−−−−−−−→ November)

Stored but
not used in our system

23 DerivedFrom
B appears in A and

contributes to A’s meaning

(e.g. pocketbook
DerFrom−−−−−−−→ book)

Stored & used in our system

24 SymbolOf
A symbolically represents B

(e.g. red
SymbolOf
−−−−−−−−→ fervor)

Stored & used in our system

86



APPENDIX C. CONCEPTNET RELATIONS

# Relation Description Used?

25 DefinedAs
B is a more exploratory

version of A

(e.g. peace
DefAs−−−−−→ absence of war)

Stored & used in our system

26 Entails
If A happens, B happens

(e.g. run
Entails−−−−−−→ move)

Stored & used in our system

27 MannerOf
A is a way to do B

(for verbs)

(e.g. auction
MannerOf−−−−−−−−→ sale)

Stored & used in our system

28 LocatedNear
A and B typically

found near each other

(e.g. chair
LocNear−−−−−−−→ table)

Stored but
not really used in our system

29 HasContext
A is used in context of B

(e.g. arvo
HasContext−−−−−−−−−−→ Australia)

Stored but
not used in our system

(too vague)

30 dbpedia
Imported from dbpedia

doesn’t correspond to any
existing relations

Not used in our system

31 SimilarTo
A is similar to B

(e.g. mixed
ST−−→ food processor)

Stored & used in our system

32
Etymologically

RelatedTo

A and B have
a common origin

(e.g. folkmusiikki
ERT−−−→ folk music)

Stored but
not used in our system

33
Etymologically
DerivedFrom

A is derived from B

(e.g. detja
EDF−−−→ date)

Stored but
not used in our system

34 CausesDesire
A makes someone want B

(e.g. have no food
CD−−→ go to store)

Stored & used in our system

35 MadeOf
A is made of B

(e.g. bottle
MadeOf−−−−−−−→ plastic)

Stored & used in our system

36 ReceivesAction
B can be done to A

(e.g. button
RA−−→ push)

Stored & used in our system

37 InstanceOf
A is example of B

(e.g. meringue
InstanceOf−−−−−−−−−→ dessert)

Stored & used in our system
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Appendix D

SemEval-2018 Task 11 Stories

File D.1 Narratives from the Development Set Provided by SemEval-2018 Task 11

1 <data>

2 <instance id="13" scenario="ordering a pizza">

3 <text>

4 One afternoon when I was visiting with friends, we suddenly

5 got very hungry! So, we decided to order a pizza. I

6 looked in the telephone book and found several pizza

7 restaurants that would deliver. We all talked it over and

8 settled on a pizza from Domino’s. Then we discussed what

9 we would like on our pizza and what size we should get. I

10 called the number and gave our order to the person who

11 answered. We ordered a large pepperoni and onion pizza

12 with extra cheese. He told me that our pizza would cost

13 $15.00. I said that would be fine and asked if the pizza

14 could be delivered. He said, &quot;yes&quot; and asked for

15 my address. I then gave him my name, address, and phone

16 number. He told me that our pizza would be delivered in 30

17 minutes. When the delivery boy arrived, we paid for our

18 pizza and included a $2.00 tip. Then we enjoyed eating our

19 pizza!

20 </text>

21 <questions>

22 <question id="0" text="When will it be here?" type="text">

23 <answer correct="False" id="0" text="It took an hour."/>

24 <answer correct="True" id="1" text="It took 30 minutes."/>

25 </question>

26 <question id="1" text="Who ordered the pizza?" type="text">

27 <answer correct="True" id="0" text="The narrator"/>

28 <answer correct="False" id="1" text="The dog."/>

29 </question>

30 <question id="2" text="Did they order any other entrees?"

31 type="text">

32 <answer correct="True" id="0" text="No"/>

33 <answer correct="False" id="1" text="Yes"/>

34 </question>
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35 <question id="3" text="Where did they order it?" type="text">

36 <answer correct="False" id="0" text="Pizza Hut"/>

37 <answer correct="True" id="1" text="from Domino’s"/>

38 </question>

39 <question id="4" text="Would they order the same thing

40 again?" type="commonsense">

41 <answer correct="False" id="0" text="no"/>

42 <answer correct="True" id="1" text="yes, it was good"/>

43 </question>

44 <question id="5" text="Did they use a coupon?"

45 type="commonsense">

46 <answer correct="True" id="0" text="No"/>

47 <answer correct="False" id="1" text="Yes"/>

48 </question>

49 <question id="6" text="How long did they have to wait for the

50 meal?" type="text">

51 <answer correct="True" id="0" text="30 minutes"/>

52 <answer correct="False" id="1" text="15 minutes"/>

53 </question>

54 <question id="7" text="Which restaurant did they order the

55 pizza from?" type="text">

56 <answer correct="True" id="0" text="Domino’s"/>

57 <answer correct="False" id="1" text="Pizza Hut"/>

58 </question>

59 <question id="8" text="What door did the pizza get delivered

60 to?" type="commonsense">

61 <answer correct="False" id="0" text="it didn’t say."/>

62 <answer correct="True" id="1" text="The front door"/>

63 </question>

64 <question id="9" text="How much of a tip was given?"

65 type="text">

66 <answer correct="False" id="0" text="$5.00"/>
67 <answer correct="True" id="1" text="$2.00"/>
68 </question>

69 </questions>

70 </instance>

71
72 <instance id="15" scenario="making a bonfire">

73 <text>

74 My family and I decided that the evening was beautiful so

75 we wanted to have a bonfire. First, my husband went to our

76 shed and gathered some dry wood. I placed camp chairs around

77 our fire pit. Then my husband placed the dry wood in a

78 pyramid shape inside the fire pit. He then set some small

79 kindling ablaze using a long lighter. Once the kindling

80 reached the dry wood, it set the wood on fire. We then sat

81 around the fire for some time, adding more logs as the

82 previous ones burned out. We cooked marshmallows on sticks

83 over the open flames. When the marshmallows were golden
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84 brown, we placed them between two graham crackers with

85 chocolate pieces. We ate our S’mores as we joked, laughed

86 and told stories around our beautiful fire. When we

87 finished, I put away our camp chairs. My husband made sure

88 the fire was out by dousing it with some water and we went

89 inside to bed.

90 </text>

91 <questions>

92 <question id="0" text="Who started the fire?" type="text">

93 <answer correct="False" id="0" text="Wife."/>

94 <answer correct="True" id="1" text="Their husband lit

95 it."/>

96 </question>

97 <question id="1" text="Where did they make the bonfire?"

98 type="text">

99 <answer correct="False" id="0" text="in the garage"/>

100 <answer correct="True" id="1" text="Their fire pit"/>

101 </question>

102 <question id="2" text="How long did it take to build the

103 fire?" type="commonsense">

104 <answer correct="True" id="0" text="Few minutes."/>

105 <answer correct="False" id="1" text="Hours"/>

106 </question>

107 <question id="3" text="Who built the bonfire?" type="text">

108 <answer correct="False" id="0" text="the wife"/>

109 <answer correct="True" id="1" text="Their husband."/>

110 </question>

111 <question id="4" text="Had they ever built a bonfire before

112 this one?" type="commonsense">

113 <answer correct="True" id="0" text="Yes, they had built one

114 before?"/>

115 <answer correct="False" id="1" text="No, this was their

116 first."/>

117 </question>

118 <question id="5" text="When did they put the logs in the fire

119 pit?" type="text">

120 <answer correct="False" id="0" text="They did it the next

121 morning."/>

122 <answer correct="True" id="1" text="After they gathered all

123 the logs."/>

124 </question>

125 <question id="6" text="Where did they build the bonfire?"

126 type="text">

127 <answer correct="True" id="0" text="Their fire pit"/>

128 <answer correct="False" id="1" text="in the house"/>

129 </question>

130 <question id="7" text="What did they do at the bonfire?"

131 type="text">

132 <answer correct="True" id="0" text="Talk and cook
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133 smores."/>

134 <answer correct="False" id="1" text="They were dancing

135 around."/>

136 </question>

137 </questions>

138 </instance>

139
140 <instance id="18" scenario="cleaning up a flat">

141 <text>

142 I needed to clean up my flat. I had to get my broom and

143 vacuum and all the cleaners I would need. I started by going

144 around and picking up any garbage I seem, like used candy

145 wrappers and old bottles of water.I threw them away. I went

146 around and picked up and dishes that were out and put them in

147 the sink then washed them. I used my broom to sweep up all

148 the dust and dirt off the floors the hard floors, and the

149 vacuum to clean up the floors that had rugs and carpets. When

150 the hard floors were swept, I used a bucket with floor

151 cleaner and water, and a mop, to mop them up. As the dried I

152 took a rag and began dusting everything in the room. The

153 t.v., the tables and counters and everything else that was a

154 hard surface, I used the rag to dust. My flat looked very

155 nice when it was clean.

156 </text>

157 <questions>

158 <question id="0" text="Did they use a mop?" type="text">

159 <answer correct="False" id="0" text="No"/>

160 <answer correct="True" id="1" text="Yes after sweeping"/>

161 </question>

162 <question id="1" text="Is it hard work to clean the flat?"

163 type="commonsense">

164 <answer correct="True" id="0" text="No."/>

165 <answer correct="False" id="1" text="yes"/>

166 </question>

167 <question id="2" text="Where did they vacuum?" type="text">

168 <answer correct="False" id="0" text="Hardwood floor"/>

169 <answer correct="True" id="1" text="Rooms with rugs and

170 carpet"/>

171 </question>

172 <question id="3" text="Why did the flat needed cleaning?"

173 type="commonsense">

174 <answer correct="True" id="0" text="It was a big mess."/>

175 <answer correct="False" id="1" text="The dishes were washed

176 at the sink."/>

177 </question>

178 </questions>

179 </instance>

180 </data>
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Kindergarten Reading
Comprehension

Figure E.1: Exercise from A Wellspring of Worksheets [51]
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Figure E.2: Exercise from homeshealth.info [52]
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Figure E.3: Exercise from Have Fun Teaching [53]
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Figure E.4: Exercise from CRIA Books [54]
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