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Abstract

Partial Differential Equations (PDE) have always been of great interest, both in the
industrial world and in the research one. These equations can be found in a vari-
ety of fields, such as structural dynamics, fluid mechanics (Navier-Stokes), electro-
magnetism (Maxwell), and financial mathematics (Black-Scholes). Solving a PDE is
often challenging, and strongly depends on the boundary conditions. If, as in most
cases, there are no closed form solutions, numerical techniques are often used, like
finite differences, or Monte Carlo simulations. Their main drawback, however, is
that they do not scale well in high dimensions. This requires either to have large
computational resources or to limit the size of the problem to be solved.
This project suggests an alternative technique relying on deep learning to solve PDEs
in high dimensions. In particular, this report focuses on the Black-Scholes equation,
widely used in finance to price derivatives. The proposed implementation is capable
of finding the solution efficiently enough to also allow for additional terms, which
are usually discarded for complexity reasons, to be added to the equation. This could
have sizeable implications in the banking world, where, for example, many banks
were severely damaged in 2008 as a consequence of ditching the impact of the risk
of default from this equation.
Moreover, after building the aforementioned algorithm, the project focused on de-
veloping ways for optimising it that go beyond the standard computational optimisa-
tion techniques and that are more tailored to this specific task. The final optimisation
algorithm developed was based on solving sub proximal problems, and performed
widely better than the other benchmark techniques.
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Chapter 1

Introduction

Conventional numerical techniques to solve Partial Differential Equation (PDE) suf-
fer from the curse of dimensionality. This problem appears because they rely on
spatio-temporal grids which can quickly become computationally expensive. For
example, doing Monte Carlo simulation requires to sample exponentially from a
probability distribution to estimate an expectation. The same curse of dimensional-
ity appears for finite differences, where every dimension has to be discretised. The
number of points needed to define a particular region of the space grows exponen-
tially with the dimension (Figure 1.1).
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•

•

•
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•
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•

•

•
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Figure 1.1: Illustration of the curse of dimensionality with the points needed to define
a particular region within 1D, 2D and 3D spaces. In this case, 2d points, with d the
dimension, are needed.

This report suggests a different approach to solve these equations: using deep learn-
ing. This not only it gives an accurate solution to the equation, but it also scales very
well with the dimension of the problem. However, deep learning cannot be applied
directly to PDEs. Instead, the partial differential equation has to be converted into
a set of forward and backward Stochastic Differential Equation (SDE) before deep
learning can be used.
Once the forward and backward SDEs are set, a neural network (Raissi (2018b), Han
et al. (2017), Henry-Labordere (2017), Beck et al. (2019), Sirignano and Spiliopou-
los (2018)), is used to approximate the unknown solution. A lot of space is left in
the choice of the architecture (Han et al. (2018), Weinan et al. (2017), Han et al.
(2016)). The automatic differentiation from the deep learning library (PyTorch or
TensorFlow) is then applied to compute the gradient through the neural network.
There is no conventional dataset to train the model. The training set is composed
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Chapter 1. Introduction

of sequences over time based on randomly generated Brownian motions. Learning
on thousands of paths enables the model to then produce an accurate prediction for
paths coming from the same distribution.
From an ethical point of view, there is no private data involved in this project. How-
ever, from a big-picture perspective, developing a way to solve PDEs more efficiently
can involve serious ethical considerations, given that PDEs are used in countless in-
dustries, and could therefore have questionable applications such as, for example,
military/terrorist use.
The following report focuses particularly on the Black-Scholes equation, and how
deep learning can help to solve the equation in high dimensions. The goal is to solve
the equation as fast as possible and with the best possible accuracy by training a
neural network.
The first part of the report gives the necessary mathematical background to derive
the forward and backward stochastic differential equations from the initial partial
differential equation. A special focus is made on the Black-Scholes equation. For
very simple cases, a closed formed solution is derived. The second part suggests
the use of neural networks to solve the problem. A practical implementation is
developed, and tests are conducted to ensure the correct behaviour of the model.
Then, several stochastic gradient descent based techniques are explored and tested
on toy examples to have an intuition on how it could help the resolution of the main
problem. The same approach is applied to implicit methods, including proximal
backpropagation. The last part of the report focuses on the numerical experiments
done using the above techniques, applied to the main problem.

2



Chapter 2

Background

This chapter covers the mathematical material required to be able to build the neural
network in the next chapter . It starts from the very fundamental concept of Brow-
nian motion, moves to forward-backward stochastic equations, and then focuses on
the Black-Scholes equation.

2.1 Brownian motion

2.1.1 Definition

A Brownian motion or a Wiener process constitutes the very fundamental of the
following theory. It can be seen as the limit when δt → 0 of a symmetric random
walk with equal probabilities to go up or down (well described in Higham (2004)).
Let N be the number of periods of time δt. A random walk can be defined as this
additive process:

z(tk+1) = z(tk) + ε(tk)
√
δt

tk+1 = tk + δt

for k = 0, 1, 2, ..., N , where z(0) = 0 and the disturbance follows a standard normal
distribution: ε(tk) ∼ N (0, 1).

2.1.2 Properties

A Brownian motion can also be defined by its properties:

1. For all j < k we have z(tk)− z(tj) ∼ N (0, tk − tj),

2. For all tk1 < tk2 ≤ tk3 < tk4 the random variables z(tk2)−z(tk1) and z(tk4)−z(tk3)
are independent,

3. z(t0) = 0 with probability 1.

3



2.1. BROWNIAN MOTION Chapter 2. Background

Normal distribution

The difference random variable defined by z(tk) − z(tj) for j < k is normally dis-
tributed: z(tk)− z(tj) ∼ N (0, tk − tj).
The expectation is:

E[z(tk)− z(tj)] = E

[
k−1∑
i=j

ε(ti)
√
δt

]

=
√
δt

(
k−1∑
i=j

E[ε(ti)]

)
= 0

The variance is:

Var[z(tk)− z(tj)] = E

(k−1∑
i=j

ε(ti)
√
δt

)2
−(E[k−1∑

i=j

ε(ti)
√
δt

])2

= E

(k−1∑
i=j

ε(ti)
√
δt

)2


= E

[
k−1∑
i=j

ε(ti)
2δt

]
+ E

 k−1∑
i,i′=j
i 6=i′

ε(ti)ε(ti′)δt


= E

[
k−1∑
i=j

ε(ti)
2δt

]

= δt

(
k−1∑
i=j

E[ε(ti)
2]

)

= δt

(
k−1∑
i=j

Var[ε(ti)] + E[ε(ti)]
2

)
= δt(k − j)
= tk − tj

Non overlapping intervals

If tk1 < tk2 ≤ tk3 < tk4, then the random variable z(tk2) − z(tk1) and z(tk4) − z(tk3)
are independent.
This is because these differences are made up with different uncorrelated ε’s.
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Chapter 2. Background 2.2. ITO’S LEMMA

Non differentiability

A Wiener process is not differentiable with respect to time. An intuition can be given
by the following calculation. For times s and t such that s < t:

E

[(
z(s)− z(t)

s− t

)2
]

=
1

(s− t)2Var[z(s)− z(t)]

=
s− t

(s− t)2

=
1

s− t −−−−→s−t→0
∞

2.2 Ito’s lemma

In this section, a mathematical intuition is given on how to derive Ito’s lemma.
Let f a function of two variables: f(t,Xt), with Xt defined as an Ito process. This
means:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

with µ and σ two continuous functions of (t,Xt), and Wt a Brownian motion.
Applying the Taylor expansion up to the second order terms:

df(t,Xt) ≈
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂t2
dt2 +

1

2

∂2f

∂X2
t

dX2
t +

∂2f

∂t∂Xt

dtdXt

The idea is to evaluate the order of each term according to (Table 2.1) to make sure
this expansion is relevant:

dt dXt

dt 0 0
dXt 0 dt

Table 2.1: Order analysis.

Taking only first-order terms:

df(t,Xt) ≈
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂X2
t

dX2
t

Substituting Xt in the Taylor expansion:

df(t,Xt) ≈
∂f

∂t
dt+

∂f

∂Xt

(µdt+ σdWt) +
1

2

∂2f

∂X2
t

(µdt+ σdWt)
2

As for the term in dX2
t , we have to analyze the order of the different terms when

developing (Table 2.2):
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2.3. STOCHASTIC DIFFERENTIAL EQUATION Chapter 2. Background

dt dWt

dt 0 0
dWt 0 dt

Table 2.2: Order analysis.

So we keep only the term in dWt since it is the only term with first order magnitude.

df(t,Xt) =
∂f

∂t
dt+

∂f

∂Xt

(µdt+ σdWt) +
1

2

∂2f

∂X2
t

σ2dt

And then, reorganizing the terms, leads to Ito’s lemma:

df(t,Xt) =

(
∂f

∂t
+

∂f

∂Xt

µ+
1

2

∂2f

∂X2
t

σ2

)
dt+

∂f

∂Xt

σdWt

2.3 Stochastic differential equation

2.3.1 Definition

A stochastic differential equation can be defined by a Brownian motion Wt, and µ
and σ two continuous functions of (t,Xt):

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

An equivalent formulation is:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.1)

Under certain conditions, the existence and uniqueness of the solution can be proven.
The function µ(t,Xt) is usually called the ’drift’ and represents the general trend of
the stochastic process, whereas the other term corresponds to the ’stochastic volatil-
ity’.
The above formula (Equation 2.1) can be written as:

Xt+1 = Xt + µ(t,Xt)dt+ σ(t,Xt)
√
tε

ε ∼ N (0, 1)

As a simple example, taking scalar values for µ(t,Xt) and σ(t,Xt) leads to the fol-
lowing stochastic processes (Figure 2.1).

2.3.2 Feynman-Kac formula

The Feynman-Kac formula (Pham (2015), Van Casteren (2007)) establishes a link
between partial derivative equations and stochastic differential equations (Ludvigs-
son (2013)).

6



Chapter 2. Background 2.3. STOCHASTIC DIFFERENTIAL EQUATION

0.0 0.2 0.4 0.6 0.8 1.0

t

0.0
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0.8

1.0

X
t

Stochastic process

σ = 0.1, µ = 1

σ = 1, µ = 0.1

Figure 2.1: Stochastic processes for different values of drift and volatility.

Let µ, σ and φ such that:

∂f

∂t
+ µ(t, x)

∂f

∂x
+

1

2
σ2(t, x)

∂2f

∂x2
= 0

with the final condition f(x, T ) = φ(x).
It can be shown that the solution of the above equation is:

f(x, t) = E[φ(XT )|Xt = x]

Where (Xt) is the solution of the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

To get to this result let consider the Ito process Yt = f(t,Xt) when f is solution of
the PDE.

dYt =
∂f

∂x
(t,Xt)dXt +

∂f

∂t
(t,Xt)dt+

1

2

∂2f

∂x2
(t,Xt)dXt

=
∂f

∂x
(t,Xt)(µ(t,Xt)dt+ σ(t,Xt)dWt) +

∂f

∂t
(t,Xt)dt+

1

2

∂2f

∂x2
(t,Xt)σ

2(t,Xt)dt

=

(
∂f

∂x
(t,Xt)µ(t,Xt) +

∂f

∂t
(t,Xt) +

1

2

∂2f

∂x2
(t,Xt)σ

2(t,Xt)

)
dt+

∂f

∂x
(t,Xt)σ(t,Xt)dWt

Since f verifies the PDE, the terms in dt cancel out, and then:

dYt =
∂f

∂x
(t,Xt)σ(t,Xt)dWt

7



2.3. STOCHASTIC DIFFERENTIAL EQUATION Chapter 2. Background

Integrating this equation from t to T:

YT − Yt =

∫ T

t

∂f

∂x
(t,Xt)σ(t,Xt)dWt

And then, taking the expectation, since the Brownian motion has a null expectation:

E[YT ]− E[Yt] = E[f(Xt, T )|Xt = x]− E[f(Xt, t)|Xt = x] = 0

So, finally

f(x, t) = E[f(Xt, t)|Xt = x] = E[f(Xt, T )|Xt = x] = E[φ(Xt)|Xt = x]

This is usually where the Monte Carlo simulation is done (Bouchard and Touzi
(2004)), in order to evaluate this expectation. Instead of doing this, we derive the
forward and backward equations, and make the neural network learn Yt.

2.3.3 Forward equation

The forward equation is given by:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

Where µ and σ are two continuous functions of (t,Wt), with Wt defined as a Brown-
ian motion.

2.3.4 Backward equation

Based on Gobet (2016) and Perkowski (2011), let:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

∂u

∂t
(t, x) + µ(t, x)

∂u

∂x
(t, x) +

1

2
σ(x, t)2

∂u2

∂x2
(t, x) + g(t, x, u(t, x),∇u(t, x)) = 0

Then, the stochastic processes (X, Y, Z) define as:

Yt = u(t,Xt)

Zt = ∇u(t,Xt)σ(t,Xt)

satisfy the following:

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

Yt = f(XT ) +

∫ T

t

g(s,Xs, Ys, Zs[σ(s,Xs)]
−1)ds−

∫ T

t

ZsdWs

8



Chapter 2. Background 2.4. BLACK-SCHOLES EQUATION

The second equation is called the backward equation. This result can be shown
starting from:

Yt = u(t,Xt)

Zt = ∇u(t,Xt)σ(t,Xt)

And applying the Ito’s formula on u and X:

dYs =du(s,Xs)

=

(
∂u

∂t
(s,Xs) + µ(s,Xs)

∂u

∂Xs

(s,Xs) +
1

2
σ(Xs, s)

2 ∂u
2

∂X2
s

(s,Xs)

)
ds+

∇u(s,Xs)σ(s,Xs)dWs

=− g(s,Xs, u(s,Xs),∇u(s,Xs))ds+∇u(s,Xs)σ(s,Xs)dWs

By integration between s = t and s = T :

u(T,XT ) = Yt −
∫ T

t

g(s,Xs, u(s,Xs),∇u(s,Xs))ds+

∫ T

t

ZsdWs

Since u(T, .) = f(.):

Yt = f(XT ) +

∫ T

t

g(s,Xs, Ys, Zs[σ(s,Xs)]
−1)ds−

∫ T

t

ZsdWs

2.4 Black-Scholes equation

In the previous section, we have seen how the PDE, the forward and the backward
stochastic equations are linked.
The goal is to solve the Black-Scholes equation in high dimensions. The usual meth-
ods (Monte Carlo or finite differences) used to solve PDEs will not work well due to
the curse of dimensionality already mentioned. The use of forward and backward
SDE is mentioned in Gobet (2016), but Yt is only evaluated by a simple linear regres-
sion. A more sophisticated method would be to use a neural network to approximate
the function u(tn, x) and automatic differentiation to evaluateDu(tn, x). This is what
we suggest to explore in the following.

2.4.1 Partial differential equation

Based on Ito’s Lemma we derive the Black-Scholes equation.
First, the following portfolio P is defined:

P = V + δS

This portfolio contains 1 option V and δ stocks. The stock price S follows a stochastic
process:

dS = µSdt+ σSdW

9



2.4. BLACK-SCHOLES EQUATION Chapter 2. Background

Here, the functions µ(t, S) = µS with µ a constant, and σ(t, S) = σS with σ constant.
We know from Ito’s lemma that:

dV =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW

So:

dP =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt+ σS

∂V

∂S
dW + δ(µSdt+ σSdW )

⇐⇒ dP =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+ δµS

)
dt+

(
σS

∂V

∂S
+ δσS

)
dW

By choosing the number of stocks so that we eliminate the randomness (the Brown-
ian motion W ) in the previous equation:

δ = −∂V
∂S

This leads to:

dP =

(
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− ∂V

∂S
µS

)
dt

dP =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

This becomes a non stochastic portfolio and so its value has to be the same has if it
was on a bank account with a risk free interest rate r. This means:

dP = rPdt

Taking the previous expression and this one, leads to:(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt = rPdt

Then, replacing P by V + δS:(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt = r(V + δS)dt

= r

(
V − ∂V

∂S
S

)
dt

Reorganizing the terms, leads to the Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

10
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2.4.2 Closed-form solution

The main idea to derive a closed-from solution is to transform the Black-Scholes
equation into the heat equation. The different transformations are independent of
the derivative type, which means, they do not affect the terminal condition V (T,XT )
stating the payoff of the derivative.
Starting from the partial differential equation:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= rV

The first step is to apply the following transformations, with K the strike price:

x = ln

(
S

K

)
τ = T − t

Z(x, τ) = V (Kex, T − τ)

The derivatives become:

∂V

∂t
= −∂Z

∂τ
∂V

∂S
=

1

S

∂Z

∂x
∂2V

∂S2
= − 1

S2

∂Z

∂x
+

1

S2

∂2Z

∂x2

The resulting PDE for the function Z(x, τ) is:

− ∂Z

∂τ
+ rS

1

S

∂Z

∂x
+

1

2
σ2S2

(
− 1

S2

∂Z

∂x
+

1

S2

∂2Z

∂x2

)
− rZ = 0

⇐⇒ ∂Z

∂τ
+

(
σ2

2
− r
)
∂Z

∂x
− 1

2
σ2∂

2Z

∂x2
+ rZ = 0

The second step is to transform the above equation into the heat equation. We
introduce the new function u(x, τ) = A(x, τ) = eαx+βτZ(x, τ), where the real number
α and β are chosen so that the transformed PDE for u is the heat equation. The
derivatives are the following:

∂Z

∂τ
= A

(
∂u

∂τ
− βu

)
∂Z

∂x
= A

(
∂u

∂x
− αu

)
∂2Z

∂x2
= A

(
α2u− 2α

∂u

∂x
+
∂2u

∂x2

)
Putting back the expression of the derivatives in the EDP:

11
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∂u

∂τ
− βu+

(
σ2

2
− r
)(

∂u

∂x
− αu

)
− 1

2
σ2

(
α2u− 2α

∂u

∂x
+
∂2u

∂x2

)
+ ru = 0

⇐⇒ ∂u

∂τ
+

(
ασ2 +

σ2

2
− r
)
∂u

∂x
− 1

2
σ2∂

2u

∂x2
+

(
(1 + α)r − β − α2σ2 + ασ2

2

)
u = 0

The idea is to cancel the terms ∂u
∂x

and u. This means:{
ασ2 + σ2

2
− r = 0

(1 + α)r − β − α2σ2+ασ2

2
= 0

⇐⇒
{
α = r

σ2 − 1
2

β = r
2

+ σ2

8
+ r2

2σ2

The function u(x, τ) is solution of the PDE:

∂u

∂τ
− σ2

2

∂2u

∂x2
= 0

The heat equation admits the following solution (Green formula):

u(x, τ) =
1√

2σ2πτ

∫ ∞
−∞

e−
(x−s)2

2σ2τ u(s, 0)ds

It corresponds to the convolution between the fundamental solution and the function
g(s) = u(s, 0).

2.4.3 Example on a call option

For a call option, the terminal condition is: V (S, T ) = max(0, S −K). This means:

u(x, 0) = eαxZ(x, 0)

= eαxV (Kex, T )

So:

u(x, 0) =

{
Keαx(ex − 1) if x > 0
0 otherwise

Putting back this expression of u(s, 0) in the Green formula:

u(x, τ) =
1√

2σ2πτ

∫ ∞
0

e−
(x−s)2

2σ2τ Keαs(es − 1)ds

= K

(
1√

2σ2πτ

∫ ∞
0

e−
(x−s)2

2σ2τ e(α+1)sds− 1√
2σ2πτ

∫ ∞
0

e−
(x−s)2

2σ2τ eαsds

)
12
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= K

(
e(1+α)x+

1
2
σ2τ(1+α)2Φ

(
x+ σ2τ(1 + α)

σ
√
τ

)
− eαx+ 1

2
σ2τα2

Φ

(
x+ σ2τα

σ
√
τ

))
Where Φ is the distribution function of a normalised normal distribution:

Φ(x) =
1√
2π

∫ x

−∞
e−

s2

2 ds

Let us simplify the expression.

(1 + α)x+
1

2
σ2τ(1 + α)2 − (αx+ βτ) =(1 + α)x+

1

2
σ2τ(1 + α)2 − αx− (1 + α)rτ+

σ2α2τ

2
+
ασ2τ

2

=x+ σ2τ(
1

2
+

3α

2
+ α2)− (1 + α)rτ

=x+ σ2τ

(
r2

σ4
+

r

2σ2

)
−
(

1

2
+

r

σ2

)
rτ

=x

Similarly for the second term:

αx+
1

2
σ2τα2 − (αx+ βτ) = σ2τα2 − (1 + α)rτ +

ασ2τ

2
= −rτ

So:

u(x, τ) = Keαx+βτ
(
exΦ(d1)− e−rτΦ(d2)

)
d1 =

x+ σ2τ(1 + α)

σ
√
τ

d2 = d1 − σ
√
τ

This leads to the option price:

V (S, t) = SΦ(d1)−Ke−r(T−t)Φ(d2)

d1 =
ln( S

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t

For a specific value of K = 6, T = 1, σ = 1 and r = 0.1 the results are the following
(Figure 2.2).
For a given stochastic process, we can compute the price of the option call associated
to the asset (Figure 2.3).
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Figure 2.2: Price of a call option for K = 6 at different times, function of the price of
the underlying asset.
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Figure 2.3: Stochastic process of the underlying asset, and call option value through
time.
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Chapter 3

Forward-Backward Stochastic Neural
Network

The aim of this part is to explain how the neural network (denoted forward-backward
stochastic neural network in the following) is built. This chapter covers the initial
forward-backward stochastic equations used to formulate the problem in a way a
neural network can take part. It goes through the choices made for the loss func-
tion, the architecture of the neural network itself and presents a few experimental
results after a first training session.

3.1 Model

3.1.1 Forward-backward equations

The problem can be described by the following set of forward-backward equations,
with the defined terminal condition (Bender and Denk (2007)):

dXt = µ(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt)dWt

X0 = ξ
dYt = φ(t,Xt, Yt, Zt)dt+ ZT

t σ(t,Xt, Yt)dWt

YT = g(XT )

First of all, the characteristics of the stochastic process Xt has to be defined. As
done in Raissi (2018b), no drift is taken into account (µ = 0), and the volatility
is a constant σ that multiplies diag(Xt). This determines the characteristic of the
path of the underlying assets Xt. Then, the function φ is defined as φ(t,Xt, Yt, Zt) =
r(Yt − ZT

t Xt). This leads to the following set of equations:


dXt = σ diag(Xt)dWt

X0 = ξ
dYt = r(Yt − ZT

t Xt)dt+ σZT
t diag(Xt)dWt

YT = g(XT )
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3.1. MODEL Chapter 3. FBSNN

The above forward-backward equation is equivalent to the Black-Scholes equation,
with:

Yt = u(t,Xt)

Zt = ∇u(t,Xt)σ(t,Xt)

This leads to (Raissi (2018b)):

ut = −1

2
Tr(σ2 diag(X2

t )D2u) + r(u− (Du)Tx)

In the following, and for the sake of simplicity, the function g is chosen so that:
g(x) = ‖x‖2. In our case, this means the norm of the vector Xt of dimension D at
t = T .
Applied to a stochastic process, the result is the following (Figure 3.1):
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Figure 3.1: Stochastic process of the underlying asset, and value of the derivative
through time with terminal condition g(x) = x2.

We can verify that the function u(x, t) = e(r+σ
2)(T−t)g(x) is solution of the Black-

Scholes equation:

∂u

∂t
= −(r + σ2)e(r+σ

2)(T−t)g(x)

∂u

∂x
= e(r+σ

2)(T−t)g′(x)

∂2u

∂x2
= e(r+σ

2)(T−t)g′′(x)

And then:

−(r + σ2)g(x) + rxg′(x) +
1

2
σ2x2g′′(x) = −(r + σ2)x2 + 2rx2 + σ2x2

= rx2

Which verifies the equation. The function u(x, t) = e(r+σ
2)(T−t)g(x) is then the true

function that will enable us to evaluate the performance of the neural network.
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3.1.2 Euler-Maruyama scheme

Applying the discretisation scheme to the previous set of equations, gives:

∆Wn ∼ N (0, ∆tn)

Xn+1 ≈ Xn + µ(tn, Xn, Yn, Zn)∆tn + σ(tn, Xn, Yn)∆Wn

Yn+1 ≈ Yn + φ(tn, Xn, Yn, Zn)∆tn + (Zn)Tσ(tn, Xn, Yn)∆Wn

(3.1)

3.1.3 Neural network

Based on the previous set of forward-backward stochastic equations, the idea is to
train a neural network to predict Yn from the inputs (tn, Xn). The general architec-
ture of the network is shown in Figure 3.2.

Y0

Z0

Output
layer

...

Hidden
layer 1

Input
layer

X0, t0

Y1

Z1

Output
layer

...

Hidden
layer 1

Input
layer

X1, t1

. . .

. . .

. . .

YN

Output
layer

ZN

...

Hidden
layer 1

Input
layer

XN , tN

Figure 3.2: Architecture of the FBSNN

At each time step, Xt is computed by generating Brownian motions. Yt is the pre-
diction of the neural network. Then, Zt is computed by taking the derivative of Yt
with respect to Xt, which means to compute the gradient of the neural network with
respect to its inputs. This part is done using automatic differentiation from the deep
learning packages in Python.
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3.1.4 Loss function

The neural network takes (tn, Xn) as an input and predicts Yn. From Raissi (2018b),
the loss function is designed such that it compares the prediction of the neural net-
work (Yn+1 in the loss function below) with the actual value from the previously
mentioned discretisation scheme. The number of time steps in the discretisation is
N , whereas M is the batch size:

M∑
m=1

N−1∑
n=0

∣∣Y m
n+1 − Y m

n − φ(tn, X
m
n , Y

m
n , Z

m
n )∆tn − (Zm

n )Tσ(tn, X
m
n , Y

m
n )∆Wm

n

∣∣2 +

M∑
m=1

|Y m
N − g(Xm

N )|2

(3.2)
As mentioned, the first term represents the difference between the next true value
and the evaluation using the Euler-Maruyama scheme. The last term corresponds
to the terminal condition, which means the last prediction is compared both to the
result of the discretisation scheme and the terminal condition. As a reminder:

Xm
n+1 = Xm

n + µ(tn, X
m
n , Y

m
n , Z

m
n )∆tn + σ(tmn , X

m
n , Y

m
n )∆Wm

n

Y m
n+1 = u(tn, X

m
n )

Zn
n+1 = Du(tn, X

m
n )

(3.3)

In this machine learning problem, unlike usual ones, there is no concept of overfit-
ting, since the whole point of the neural network is to find a solution that verifies
the set of forward-backward stochastic equations. The solution, by definition, will
then generalise to every cases.

3.2 Implementation

The starting point of the project is a TensorFlow 1.x implementation of the neural
network named ’FBSNNs’ available on the GitHub repository of Maziar Raissi Raissi
(2018a).
The first challenge is to reproduce the results with our own PyTorch implementation.
This task has two main objectives. First, implementing the code requires a good
understanding of the mathematical concepts behind. Second, PyTorch appears to
be more intuitive in general, and looks more promising to add new features and
optimise the general implementation.

3.2.1 Architecture

The architecture of the neural network described in Raissi (2018b) is represented in
Figure 3.3.
It is composed of 4 hidden layers with sin as an activation function. Each hidden
layer has 256 neurons. The input layer is of dimension D+ 1, composed by a vector
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Figure 3.3: Architecture of the neural network

Xt of dimension D and a scalar t for the current time. The output layer is the
prediction Yt.

3.2.2 Pseudo code

As a reminder, the neural network tries to learn Yt by optimising the loss function
taking the sum over time of the difference between the prediction and the value
computed by the Euler-Maruyama scheme. The derivative Zt is then computed using
automatic differentiation (autograd) thought the neural network (see Algorithm 1).

3.2.3 Testing the results

The main difference between TensorFlow and PyTorch is the way the graph is com-
puted. Basically, it gathers the information about all the variables used in the neural
network, linked by the operation between them. In PyTorch, the graph is computed
dynamically whereas TensorFlow generates a static graph.
To correctly compare the two architectures, the randomness of the two different im-
plementations is deleted. Since the code fundamentally relies on random processes,
it implies the following:

• a random seed is placed on the generator of the Brownian motion,

• a random seed is placed on the initialization of the weights,

• the gradient descent is a batch gradient descent with a fixed learning rate.
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Result: Train the model
Initialise attributes;
for number of iterations do

generate Brownian motion W ;
generate initial value X0;
for number of time steps do

inputs = (tn, Xn);
compute the true value Ỹn; (see equation 3.1)
Yn = model(input);
Zn = autograd(Yn);
compute Xn+1; (see equation 3.1)
compute loss function; (see equation 3.2)

end
update weights;

end
Algorithm 1: Training algorithm

The comparison is done with a simple architecture, but with enough trajectories,
time snapshots and dimensions, so the model is representative of the general behav-
ior. The different graphs of the Figure 3.4 show the results after 2000 iterations. The
parameter used are the following: M = 10, N = 50, D = 10, 2 hidden layers of 50
neurons, SGD with learning rate of 1e-5, sin activation.
Without any randomness, the results are the same between the two implementa-
tions, apart from very small numerical errors. After 2000 iterations, the training loss
value is 10.9801 in PyTorch for 10.9804 in TensorFlow.
These tests ensure that our PyTorch implementation of the neural network is reliable
and can serve as a base to further optimisations.

3.3 First experimental results

3.3.1 Training session

In this section, a more complex example is tested. The parameters are the following:
M = 100, N = 50, D = 100, 4 hidden layers of 256 neurons each. The loss function
is optimized using Adam with a learning rate sequence as described: 20k iterations
at 1e-3, 30k at 1e-4, 30k at 1e-5 and another 20k at 1e-6 . The results are shown in
the Figure 3.5.
We can also visualize the price of the derivative for the assets X of dimension D =
100, that matches the terminal condition: YT = ‖XT‖2 (Figure 3.6).

3.3.2 Loss function

In analyzing the training loss, huge jumps can be noticed when the learning rate is
1e-3, during the first 20k iterations (see Figure 3.7 for details).
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Changing the activation function for the ReLu one reduces drastically the noise as
shown in Figure 3.8, but does not optimize efficiently the loss function since for
the same number of iterations it decreases to 103 instead of 102. Even after a large
number of iterations, the ReLu function does not enable the loss function to decrease
to an acceptable small value.

3.3.3 Time efficiency

The PyTorch implementation appears to be slower than the TensorFlow one. So far
all the experiments were conducted on Google Colab, either using Tesla K80 or Tesla
T4 GPU. Time recorded over 100 iterations shows the following distribution within
a single iteration (see Figure 3.9)
As expected, the time to compute fetch mini-batch is similar in both implementations
since it only involves the creation of tensors. For the forward and backward, the
stacked bars show substantial differences.
The ’forward + autograd’ part is divided into two part: a constant part (negligible
when the number of time snapshots is high) and a variable part dependent on N
(number of time steps) which forms a loop. Within the loop itself, there are the
’forward’ part to calculate Yt and the automatic differentiation part to calculate Zt
(Figure 3.10).
What is interesting to notice is the fact the time does not change too much with the
batch size (in our case the number of trajectories). This means, we can expect to
have slightly better results in increasing the number of trajectories without impacting
too much the computational expense, even if this notion is often debated.
Also, several tests were conducted by running the algorithm on more powerful
GPU’s. To do this, virtual machines were created using Google Cloud Computing.
This platform enabled us to use Tesla P100 and V100 which are supposed to be
more efficient. Practically speaking, the differences were minor and did not show
any significant improvement. After monitoring the activity of the GPU’s, we realised
that only a small percentage was used. It could be an option to try to take the full
advantage of powerful GPU’s, or to do parallel calculations.
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Figure 3.4: Comparison in between PyTorch (left) and TensorFlow (right) implementa-
tion for training loss, Y0 prediction, learned solutions and error after 2000 iterations.
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Figure 3.5: Training loss over 100k iterations with the following parameters: M = 100,
N = 50, D = 100, 4 hidden layers of 256 neurons, Adam with learning rate according to:
20k iterations at 1e-3, 30k at 1e-4, 30k at 1e-5 and another 20k at 1e-6, sin activation
function.
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Figure 3.6: Comparison between Yt and ‖Xt‖2, at the end of the training.
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Figure 3.7: Training loss over 20k iterations with the following parameters: M = 100,
N = 50, D = 100, 4 hidden layers of 256 neurons, Adam with learning rate of 1e-3, sin
activation function
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Figure 3.8: Training loss over 20k iterations with the following parameters: M = 100,
N = 50, D = 100, 4 hidden layers of 256 neurons, Adam with learning rate of 1e-3,
ReLu activation function.
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Figure 3.9: Time comparison done on a average of 100 iterations on Google Colab
using Tesla K80 with the following parameters: M = 100, N = 50, D = 100, 4 hidden
layers of 256 neurons, Adam with learning rate of 1e-3, sin activation function. Time in
milliseconds.

0 50 100 150 200

PyTorch

Time in msconstant part u Du rest of the loop

Figure 3.10: Time distribution within ’Forward + autograd’ done on a average of 100
iterations run on Google Colab using Tesla K80 with the following parameters: M = 100,
N = 50, D = 100, 4 hidden layers of 256 neurons, Adam with learning rate of 1e-3, sin
activation function. Time is in millisecond.
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Chapter 4

Stochastic Gradient Descent methods

From the conducted experiments, the main challenge seems to converge to a proper
set of weights, in a reasonable amount of time. This is where the optimiser takes
place. In the following, different techniques are explained and then tested on the
forward-backward stochastic neural network problem. The very first algorithm is
Stochastic Gradient Descent (SGD), and the two next are based on it. Even today,
SGD algorithms are still of great interest (Vaswani et al. (2019), Toulis et al. (2016),
Ruder (2016)).

4.1 Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) is the simplest gradient descent based method,
especially in our case, since one batch corresponds to the entire dataset. It can be
formulated as this:

θt = θt−1 − τ∇L(θt−1)

Where θ is the parameters to optimise, and L the loss function.
The only hyperparameter in this algorithm is τ , the learning rate. Usually, there is
a trade off between converging quickly (with high values) and avoiding divergence
(not to high values). Let f a convex function such that:

f(x) =
1

2
x2

SGD applied to this problem provides the following results (Figure 4.1).
This example is based on a convex function which is often not the case of the loss
function. Let f the following non-convex function:

f(x) = (x− 0.5)3 + 0.5 sin(16x+ 4) + (2x)4 − (3.5x+ 0.2)2

On a non-convex function, the main problem of this algorithm is that is converges to
a local minimum, as shown in the following example (Figure 4.2):
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Figure 4.1: Stochastic Gradient Descent applied on a convex function, for τ = 0.5 and
τ = 10. On the left, the algorithm converges to the solution. On the right side, the
gradient descent diverges

4.2 Stochastic Gradient Langevin Dynamics

An additional term can be added to the previously described algorithm. The Stochas-
tic Gradient Langevin Dynamics (SGLD) can be defined as this (well described in
Kantas et al. (2019), and Brosse et al. (2018)):

θt = θt−1 − τ∇L(θt−1) +

√
2

β
ε

Where ε is a standard Gaussian vector: ε ∼ N (0, 1).
This extra term introduces noise to the vanilla SGD. The new hyperparameter β
adjusts the capacity of the gradient descent to explore the space (Figure 4.3). It is
particularly important for non-convex loss function, as it may help to escape local
minima.
With this algorithm, the new challenge is to wisely choose β so that the space is well
explored, and a good level of convergence is kept.

4.3 Continuous Tempering Langevin Dynamics

An extension to the previous algorithm would be to make β change during the train-
ing. A first intuition could be to choose β dependent of the number of iterations, so
that the exploration of the space is encouraged at the beginning, before switching to
a convergence phase, with a greater value of β.
This leads to the famous ’simulated annealing’ model (Pan and Jiang (2015)), which
can be expressed this way:

θt = θt−1 − τ∇L(θt−1) +

√
2

β(t)

27



4.3. CONTINUOUS TEMPERING LANGEVIN DYNAMICS Chapter 4. SGD methods

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

x

−3

−2

−1

0

1

2

3

y

SGD (τ = 10−2)

Loss function

Gradient descent

Figure 4.2: Stochastic Gradient Descent applied on a non-convex function. It converges
to a local minimum.

Where:

β(t)−1 = kBT (t)

T (t) =
c

log(2 + t)

Here, kB is the Boltzmann constant, and c a well chosen constant. This model can
be even more sophisticated, and this is what is developed in (Ye et al. (2017)). Two
phases are defined: sampling and optimisation.

4.3.1 Definition

It is generally accepted that sharp minima lead to poor generalisation, and on the
contrary, flat minima often generalise better. Based on this result, and viewing the
problem from a Bayesian perspective, flat minima can be assimilated to ’fat’ mode in
the probability distribution over the parameters. This means, the sampling phase is
here to find the ’fat’ modes, which concentrate most of the mass of the distribution.
However, we can imagine these modes to be isolated from each other, which will
require stochastic approximation techniques to overcome this issue.
The model suggests to start with the the Stochastic Gradient Langevin Dynamics:{

θt = θt−1 + τrt−1

rt = rt−1 − τ∇L(θt) +
√

2
β
ε

The above problem can be written this way:{
dθ = rdt

dr = −∇L(θ)dt+
√

2
β
ε
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Figure 4.3: Stochastic Gradient Langevin Dynamics applied on a non-convex function,
for β = 1 and β = 100. On the left, the algorithm converges to the local minimum. On
the right side the space is more explored, and a better minimum is reached

With the usual learning rate equals to τ 2. A friction coefficient is then added:

dr = −∇L(θ)dt− γrdt+

√
2

β
ε

From a gradient descent perspective, it correspond to a momentum of 1− τγ.
Inspired by temperature dynamics, to enable more effective space exploration, we
introduce a function β(α), where α verifies the the two last equations:

dθ = rdt

dr = −∇L(θ)dt− γrdt+
√

2γ
β(α)

ε

dα = rαdt
drα = h(θ, r, α)dt− γαrαdt+

√
2γαdεα

α is now the augmented variable which rules the inverse temperature β(α), and γα
the corresponding friction coefficient. The function h links both the parameters θ we
want to find, and the variable α, and is defined as:

h(θ, r, α) = − ∂

∂α
H(θ, r, α, rα)

H(θ, r, α, rα) = g(α)H(θ, r) + φ(α) + r2α/2

So, it leads to:

h(θ, r, α) = −∂g(α)H(θ, r)− ∂φ(α)

The function φ(α) is defined such that its gradient applies a force to the augmented
variable α so it stays in a certain interval.

∂φ(α) =

{
0 if |α|≤ δ′

C otherwise.
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As for the function g(α), the temperature scaling function, it can be built as a piece-
wise polynomial function:

g(α) =


1 if |α|≤ δ
1− S(3z2(α)− 2z3(α)) if δ < |α|< δ′

1− S if |α|≥ δ′

Where z(α) = |α|−δ
δ′−δ . An example of function g(α) is given in Figure 4.4.

−2 −1 0 1 2

α

0.2

0.4

0.6

0.8

1.0

g
(α

)

Temperature scaling function

Figure 4.4: Temperature scaling function g(α) for Continuous Tempering Langevin Dy-
namics algorithm.

Both the functions g(α) and ∂φ(α) make the variable α stay close to zero, which
means g(α) = 1. When the variable α goes greater or below δ′, g(α) goes to 0.2.
This increases the exploration, and puts more weight to the Gaussian. But, when it
appends, the gradient of φ(α) pulls α back to zero.
Then an additional term Vb(α) is added, to reflect the meta-dynamics that biases the
extended Hamiltonian, which means:

H(θ, r, α, rα) = g(α)H(θ, r) + φ(α) + r2α/2 + Vb(α)

This additional term Vb(α) evolves this way:

Vb,t(α) = Vb,t−1(α) + w exp

(
−(α− αt−1)2

2σ2

)
The algorithm is fully explain in the paper (Ye et al. (2017)) and is synthesised below
(Algorithm 2).
This algorithm involves a lot of hyperparameters, which gives the user a certain
flexibility on how to use this gradient descent technique. However, these defaults
values provide a good starting point:

γ =
1− cm
τ

, with cm ∈ [0, 1]

γα =
1

τ
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Result: Optimise the loss function
Initialise attributes:
r0 ∼ N (0, I), α0 = 0, rα,0 ∼ N (0, 1) and Vb,0(α0) = 0
for number of iterations do

if iteration t < Ls then
This is the exploration regime:
Sample ε ∼ N (0, 1) and εα ∼ N (0, 1)
θt = θt−1 + τrt−1

rt = (1− τγ)rt−1 − τ∇L(θt) +
√

2τγ
g(αt−1)

αt = αt−1 + τrα,t−1
rα,t = (1− τγα)rα,t−1 + h̃(θt, rt, αt)τ +

√
2τγαεα

h̃(θt, rt, αt) = −∂g(αt)H̃(θt, rt)− ∂φ(αt)− Vb,t(αk∗+1)−Vb,t(αk∗ )
2δ′
K

where k is the bin in which αt is located
Vb,t(α) = Vb,t−1(α) + w exp

(
− (α−αt)2

2σ2

)
else

This is the optimisation regime:
θt = θt−1 + τrt−1
rt = (1− τγ)rt−1 − τ∇L(θt)

end
end

Algorithm 2: CTLD

σ = 0.04

C = δ′/τ 2

w =
20

τ 2LsK
, K = 300

4.3.2 Example

This gradient descent algorithm can be tested on the six hump camel function, used
in Kantas et al. (2019):

Φ(x, y) =

(
4− 2.1x2 +

x4

3

)
x2 + xy + (−4 + 4y2)y2

The global minima are located in (0.0898, 0.7126) and (0.0898, 0.7126). It also has
local minima as shown in Figure 4.5.
A good example is provided bellow, where the algorithm visits different local minima
before finding the global one (Figure 4.6). It successfully escapes the first local
minima (-1.6071, -0.5687), and then the second located in (-1.7036, 0.7961).
This experiment shows promising results, especially because the hyperparameters
have not been particularly tuned, so we can expect the algorithm to perform even
better. On the other hand, the large number of hyperparameters makes CTLD hard
to set up, and to tailor to a particular problem.
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Figure 4.5: The six hump camel function, with its global and local minima.

−2 −1 0 1 2

x

−1

0

1

y

Six hump camel function

−8

0

8

16

24

32

40

48

56

0 50 100 150 200 250 300

Iterations

0

5

10

15

20

L
os

s
fu

n
ct

io
n

Evolution of the training loss

Figure 4.6: Ideally, the algorithm is able to visit several local minima, before finding the
global one, and stays in it. Convergence of the algorithm after 300 iterations, with the
following parameters: τ = 0.05, Ls = 200, cm = 0.5, δ′ = 1.5, δ = 0.4, S = 0.85 and the
defaults parameters given above.
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Chapter 5

Implicit methods

The gradient descent techniques mentioned before are all explicit methods. In the
following, we explore implicit methods, and try to give an understanding of how
they can be valuable options (Toulis et al. (2014), Toulis and Airoldi (2014)). Also,
the solution of the sub problem does not have to be exact to already provides good
results (Li et al. (2017)).

5.1 Implicit scheme

5.1.1 Definition

The above techniques are said to be ’explicit’, which means:

θt = θt−1 − τ∇L(θt−1)

An implicit scheme is when the gradient of the loss function is evaluated with the
updated parameters θt:

θt = θt−1 − τ∇L(θt)

This problem can be written the following way. It is called ’proximal’ of the function.

θt = arg min
θ

{
L(θ) +

1

2τ
‖θ − θt−1‖2

}
Since θt minimize the above expression, this means the gradient is equal to zero:

∇L(θt) +
1

τ
(θ − θt−1) = 0

⇐⇒ θt = θt−1 − τ∇L(θt)

So the main point is to solve the min problem defined above.
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5.1.2 Example on a convex function

The power of the implicit scheme can be shown by a simple example. Let L be a
simple convex function: L(θ) = 1

2
‖θ‖2.

The explicit scheme gives:

θt = θt−1 − τ∇L(θt−1)

= θt−1 − τθt−1
= (1− τ)θt−1

Which means:

θt = (1− τ)tθ0

Assuming τ > 0, there are different regimes, depending on the value of τ :

• 0 < τ < 1 ⇐⇒ 0 < 1− τ < 1: converges to 0,

• τ = 1 ⇐⇒ 1− τ = 0: gives 0,

• 1 < τ < 2 ⇐⇒ −1 < 1− τ < 1: converges to 0 with oscillations,

• τ = 2 ⇐⇒ 1− τ = −1: oscillates between θ0 and −θ0
• τ > 2 ⇐⇒ 1− τ < −1: diverges.

The implicit scheme gives:

θt = θt−1 − τ∇L(θt−1)

⇐⇒ θt = θt−1 − τθt
⇐⇒ θt(1 + τ) = θt−1

⇐⇒ θt =
θt−1

1 + τ

⇐⇒ θt =
θ0

(1 + τ)t

Still assuming τ > 0, there is only one regime:

• 0 < τ ⇐⇒ 0 < 1
1+τ

< 1: converges to 0.

This simple example gives us a first intuition on the robustness of the algorithm
depending on the value of τ (see Figure 5.1). We can also notice that, for τ � 1, the
two methods are roughly equivalent as θt ≈ (1− τ)θt−1.

5.1.3 Example on a non-convex function

If we consider again the previous example of the non-convex function defined by:

f(x) = (x− 0.5)3 + 0.5 sin(16x+ 4) + (2x)4 − (3.5x+ 0.2)2

For a sufficiently small value of τ , the additional term 1
2τ
‖θt − θ‖2 tends to make the

function convex (Figure 5.2).
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5.1.4 Ill-conditioned problems

Let consider the following problem:

L(X) =
1

2
‖AX − b‖2

To easily be able to choose a particular condition number for the problem, the matrix
A is built from its Singular Value Decomposition (SVD):

A = UΣV T

Where U and V are orthogonal matrices, and Σ has its diagonal composed of the
singular values, such that:

U ∈ Rm×m

V ∈ Rn×n

Σ = diag(σ1, ..., σp) ∈ Rm×n, with p = min(m,n)

Assuming σ1 is the smallest singular value, and σp the largest, the condition number
is defines as:

κ =
σp
σ1

In our case, the eigenvalues of ATA correspond to the squares of the singular values:

eig(ATA) = {σ2
1, ..., σ

2
p}

For the explicit scheme, the update of X is done this way:

Xt = Xt−1 − τAT (AXt−1 − b)
⇐⇒ Xt = (I − τATA)Xt−1 + τAT b

With the closed-form solution for the optimiser X∗:

X∗ = (ATA)−1AT b

The implicit scheme gives the following:

Xt = arg min
X

{
1

2
‖AX − b‖2+ 1

2τ
‖X −Xt−1‖2

}
⇐⇒ ∂

∂X

(
1

2
‖AX − b‖2+ 1

2τ
‖X −Xt−1‖2

)
(Xt) = 0

⇐⇒ AT (AXt − b) +
1

τ
(Xt −Xt−1) = 0

⇐⇒ Xt = (τATA+ I)−1(τAT b+Xt−1)
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Numerically, the results are the following (Figure 5.3) with the same random initial-
isation.
The implicit scheme finds the right solution, with a final loss function of 0. For
the explicit scheme, the loss function does not go below 5e+3. This is because the
condition number is very large (κ = 100), and the updates are equally large for
components associated to small and large singular values.
In this case, it is possible to have a closed-form solution for Xt. Usually, it is not
possible (the condition number is ≈ 107 for CIFAR 10 according to Frerix et al.
(2017)), and then Xt has to be approximated: conjugate gradient, gradient descent.
Both methods require several inner iterations to have an evaluation of Xt.
The implicit scheme enable τ to take a large range of values. This is not the case
for the explicit scheme, where there are constraints on the value to ensure a proper
convergence. In the example above, the learning rate is set to be τ = 2

σ2
1+σ

2
p

(Nesterov
(2018)).
This section on the implicit scheme is the key step to understand how the proximal
backpropagation is done in the next section.

5.2 Proximal backpropagation

5.2.1 Definition

In this section, we suggest the use of the proximal backpropagation technique (Frerix
et al. (2017) (variations in Fagan and Iyengar (2018)). The general idea of proximal
backpropagation is to replace the explicit gradients usually computed for backprop-
agation by taking implicit steps to update the network. The proximal mapping of a
function f if defined as:

proxτf (y) = arg min
x

{
f(x) +

1

2τ
‖x− y‖2

}
By definition of a minimizer:

f(xt) +
1

2τ
‖xt − xt−1‖2≤ f(xt−1) +

1

2τ
‖xt−1 − xt−1‖2

⇐⇒ f(xt) +
1

2τ
‖xt − xt−1‖2≤ f(xt−1)

⇐⇒ f(xt) ≤ f(xt−1)

This means, the sequence of f(xt) decreases for any τ > 0.
The main idea behind proximal backpropagation is to solve all the linear sub prob-
lems by using a implicit scheme. Let us first define a neural network (Figure 5.4).
The tensors zi and ai are set to be the intermediate results of a forward pass through
the neural network. The tensor zi comes after the linear transformation φ (multipli-
cation by the weights of the layer), whereas ai are outputs of the activation function
σ. This means:

zi = φ(θi, ai−1) = ai−1θi
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ai = σ(zi)

The last layer update is done explicitly:

ak+1
L−2 = akL−2 − τ∇aL−2

L(φ(θkL−1, a
k
L−2))

θk+1
L−1 = θkL−1 − τ∇θL−1

L(φ(θkL−1, a
k
L−2))

For all the other layers, the update is done this way:

zk+1
l = zkl − σ′(zkl )(σ(zkl )− ak+1

l )

ak+1
l−1 = akl−1 −∇

(
1

2
‖φ(θl, .)− zk+1

l ‖2
)

(akl−1)

Then, the weights of the network are updated according to:

θk+1
l = arg min

θ

{
1

2

∥∥φ(θ, akl−1)− zk+1
l

∥∥2 +
1

2τ
‖θ − θkl ‖2

}
This update, which actually has a closed-from solution, is done for every intermedi-
ate layers. Elements of proof are given in Frerix et al. (2017).
The main idea here is to solve individual linear problems, as shown in the previous
section. All the sub problems are actually of the form:

L(X) =
1

2
‖AX − b‖2

With:

X = θ

A = akl−1

b = zk+1
l

The closed-form solution for the corresponding implicit equation has been calculated
in the previous section and is given by:

Xt = (τATA+ I)−1(τAT b+Xt−1)

These sub problems are solved according to an implicit scheme, as its efficiency,
especially on ill-conditioned problems, has been demonstrated. For the activation
function ’layer’ though, the usual explicit scheme is done, as by construction, it can-
not be transform to a linear problem.
Even if the closed-form solution is known for these sub problems, it may be faster
to approximate it by taking a certain number of steps with the conjugate gradient
solver, or enough steps so that the gradient reaches a value below a certain threshold.
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5.2.2 Example

An easy example is used to demonstrate the capacity of this technique. The idea is
to generate a 2D dataset. It is built from the following function, on which noise is
added:

f(x) = (x− 2) sin(2x)

y = f + ε

Where ε ∼ N (0, 1). It leads to the dataset shown in Figure 5.5. The prediction
is done with a small neural network, with two hidden layers of 10 neurons each
(Figure 5.5).
As expected, the grid search shows better results for the exact proximal backpropa-
gation (Figure 5.6). When only one iteration is done within the conjugate gradient
algorithm, the convergence is slower. As for the influence of the hyperparameter τ ,
large values (100, 1000) seems to provide good results.

5.2.3 Application to the FBSNN

This section explains how to use the proximal backpropagation in the case of the
forward-backward stochastic neural network, as it differs from more conventional
neural networks. As a reminder, at each epoch, a new batch is generated, and the
loss is computed with N evaluations through the neural network, corresponding to
the number of time steps.
The challenging part is to construct the different tensors zi,j and ai,j (at layer i and
time j), which correspond to the intermediate results of the neural network. In our
case, at each iteration, N predictions are made, so ai and zi have to contain all the
evaluations through time. One idea could be to take the average, to avoid storing
all these intermediate results and manipulate simpler objects. Unfortunately, this
straightforward implementation does not provide any good result.
The following Figure 5.7 shows the different variables that have to be stored.
Once the different values are stored, tensors containing all the values through time
of a particular intermediate results are built. So we end up with tensors zi containing
all the zi,j, and ai containing all the value ai,j. As a reminder, the update of aL−2 is
done this way:

ak+1
L−2 = akL−2 − τ∇aL−2

L(φ(θkL−1, a
k
L−2))

This requires to compute the gradient of the loss function with respect to all the
aL−2,j. In term of implementation, this is done using automatic differentiation. The
different gradients are then stacked together. The same process is used to compute
the gradient of the loss function with respect to the weights of the last layer θL−1,
since the update is done the following way:

θk+1
L−1 = θkL−1 − τ∇θL−1

L(φ(θkL−1, a
k
L−2))

Then, the regular update scheme is done through the layers for zl and al−1 which
enable the update of θl by the implicit scheme, until each θ is updated.
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Figure 5.1: Comparison between explicit and implicit scheme for different learning rate:
τ = 0.5, τ = 1.75 and τ = 2.25 on the loss function L(x) = 1

2x
2.
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Figure 5.6: Comparison within different proximal backpropagation for learning rates:
τ = 0.01, τ = 1, τ = 100 and τ = 1000.
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Figure 5.7: Architecture of the forward-backward stochastic neural network, with val-
ues of zi,j and ai,j stored to compute proximal backpropagation.

43



Chapter 6

Simulations

In this chapter, the different methods seen in the previous chapter are applied to the
main problem. To save time, a lighter problem is defined. The number of trajecto-
ries is limited to M = 10, the number of time steps is N = 50 and the dimension
is D = 10. The neural network is smaller as well: only 2 hidden layers of 50 neu-
rons each. The number of weights to optimise is 3201 (instead of 223745 for the
original problem). The weights initialization is done with the same random seed to
ensure a good comparison between the different algorithms. For time reasons, only
1000 iterations are done, and so the initialization may affect the performance of the
algorithms.

6.1 Stochastic Gradient Descent

This vanilla version of the SGD enables us to have a base model for comparison. The
Figure 6.1 shows the results after 1000 iterations.
Quantitatively speaking, the mean, standard deviation and minimum of the loss
function over the last 100 iterations are indicated in the Table 6.1. They serve as
quantitative metrics on top of the qualitative visualisation of the paths. Also, the
error computed at the last iteration is provided. The relative error is defined as:√

(Ytest − Ypred)2
Y 2
test

The ’error mean’ which is represented in the figures corresponds to the means of the
error over the different paths. The term ’std’ represents the standard deviation of
the mean over the different paths.

Table 6.1: Loss function on the last 100 iterations, and error at the last iteration.

loss (mean) loss (std) loss (min) error
SGD 81.1 86.5 18.3 0.075 (± 0.035)
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Figure 6.1: Training loss over 1000 iterations with the following parameters: M = 10,
N = 50, D = 10, 2 hidden layers of 50 neurons, SGD with learning rate 1e-4, sin
activation function.

6.2 Stochastic Gradient Lanevin Dynamics

The idea here is to evaluate how the algorithm performs, depending on the value
of β. As a reminder, this hyperparameter is representative of the trade off between
exploration and convergence. Two values are tested: β = 10 and β = 1000, with the
same learning rate as before 1e-4.
Visually, the paths look more convincing with the larger value of β (Figure 6.2),
which is also confirm by the metrics from (Table 6.2).

Table 6.2: Loss function on the last 100 iterations, and error at the last iteration.

loss (mean) loss (std) loss (min) error
SGD 81.1 86.5 18.3 0.075 (± 0.035)
SGLD (β = 10) 84.4 87.1 18.4 0.099 (± 0.049)
SGLD (β = 1000) 81.3 86.5 18.4 0.077 (± 0.036)

It seems that SGLD with a large value of β, which means a small impact of the
standard Gaussian vector, provides similar results to SGD in this case. For a small
value of β the exploration might take the lead over the convergence which could
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explain that the results are not as good as for a large value. Again, in SGLD this
hyperparameter is fixed through time, and does not allow to have an exploration
phase followed by a convergence phase like CTLD does.

6.3 Continuous Tempering Langevin Dynamics

This algorithm provides an exploration phase, and a convergence phase. The chal-
lenge here is to correctly adjust the level of exploration. This first step enables the
algorithm to visit different places, and potentially local minima. For the convergence
step, the algorithm can be written this way:

θt = θt−1 + τrt−1

⇐⇒ θt = θt−1 + τ((1− τγ)rt−2 − τ∇L(θt−1))

⇐⇒ θt = θt−1 − τ 2∇L(θt−1) + τ(1− τγ)rt−2

⇐⇒ θt − θt−1 = −τ 2∇L(θt−1) + (1− τγ)(θt−1 − θt−2)
Which means this corresponds to SGD with a learning rate of τ 2 and a momentum
of 1 − τγ. To stay consistent with the previous experiments, τ is chosen to be equal
to 1e-2 so the learning rate is still 1e-4. Conducting the same experiment with CTLD
leads to the following results (Figure 6.3 and Table 6.3).

Table 6.3: Loss function on the last 100 iterations, and error at the last iteration.

loss (mean) loss (std) loss (min) error
SGD 81.1 86.5 18.3 0.075 (± 0.035)
CTLD (Ls = 200) 58.0 100.3 1.7 0.070 (± 0.070)

This algorithm has a lot of hyperparameters to tune, and as a first approach, recom-
mended values are preferred for most of them.
Even with default values for the hyperparameters, this algorithm provides good re-
sults, and significantly better than the ones obtained with a vanilla Stochastic Gra-
dient Descent. This is promising in a sens that we could expect improvement by
correctly tuning the hyperparameters.

6.4 Implicit scheme

The implicit scheme is tested with two values of τ (0.01 and 100), for 2 and 10 inner
iterations. The visual results are shown in Figure 6.4, whereas the quantitative ones
are available in Table 6.4.
As expected, increasing the number of inner iterations gives better results. However,
this conclusion has to be nuanced since it also increases the computation time. We
have to keep in mind that the goal here is not to transfer the main optimisation
problem to the inner problem.
However, even if we still optimize the loss function using a gradient descent algo-
rithm, this one acts on a more convex function, so potentially with better properties
than the original one.
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Table 6.4: Loss function on the last 100 iterations, and error at the last iteration for
explicit scheme and implicit one (I).

loss (mean) loss (std) loss (min) error
Explicit SGD 81.1 86.5 18.3 0.075 (± 0.035)
I (τ = 0.01, n = 2) 54.2 64.6 8.4 0.024 (± 0.013)
I (τ = 0.01, n = 10) 13.2 33.4 0.2 0.015 (± 0.021)
I (τ = 100, n = 2) 54.2 65.1 7.3 0.024 (± 0.012)
I (τ = 100, n = 10) 12.9 29.3 0.2 0.017 (± 0.021)

6.5 Proximal backpropagation

This algorithm relies on two hyperparameters. The first one is the learning rate τ to
directly update aL−2 and θL−1 which are respectively the output of the penultimate
layer and the weights of the last layer. This update of aL−2 is then used to compute
the update of zL−2, which is used to update aL−3, and then θL−2, etc. The update of
the weights θl is done using and implicit scheme, where the second hyperparameter
τθ is used.
The Figure 6.5 shows the results for τ = 10−2, and τθ = 0.01. The results are the
following (Table 6.5).

Table 6.5: Loss function on the last 100 iterations, and error at the last iteration for
explicit SGD scheme and proximal backpropagation.

loss (mean) loss (std) loss (min) error
Explicit SGD 81.1 86.5 18.3 0.075 (± 0.035)
P (τ = 10−2, τθ = 0.01) 65.9 80.5 13.2 0.029 (± 0.024)
P (τ = 10−2, τθ = 1) 60.3 74.8 6.7 0.049 (± 0.044)
P (τ = 10−2, τθ = 100) 77.9 125.8 8.1 0.142 (± 0.076)
P (τ = 10−3, τθ = 0.01) 112.9 70.8 36.3 0.203 (± 0.102)
P (τ = 10−3, τθ = 1) 95.4 69.7 32.5 0.086 (± 0.055)
P (τ = 10−3, τθ = 100) 78.2 68.8 21.0 0.047 (± 0.037)

These results demonstrate the large capacities of this technique. In particular, the
case with τ = 10−2 and τθ = 0.01 leads to a relative error of 0.029 on the last it-
eration, which is less than half the value of the one obtained by an explicit SGD. It
is also possible to use a larger learning rate without suffering from a diverging loss
function. Also, the computation time per iteration is comparable to the one from the
other algorithm we have seen so far. This makes this technique particularly interest-
ing to solve this problem. Finally, large values of τθ speed up a bit the convergence,
but we advise not using too high values as it tends to introduce noisy predictions.
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Figure 6.2: Comparison in between β = 10 (left) and β = 1000 (right) implementation
for training loss, Y0 prediction, learned solutions and error after 1000 iterations.
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Figure 6.3: Training loss over 1000 iterations with the following parameters: M = 10,
N = 50, D = 10, 2 hidden layers of 50 neurons, CTLD with an exploration phase of 200
iterations.
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Figure 6.4: Training loss over 1000 iterations with the following parameters: M = 10,
N = 50, D = 10, 2 hidden layers of 50 neurons, implicit with τ = 0.01 (left) and τ = 100
(right).
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Figure 6.5: Training loss over 1000 iterations with the following parameters: M = 10,
N = 50, D = 10, 2 hidden layers of 50 neurons, proxy with learning rate 1e-2, τ = 0.01,
sin activation function.
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Chapter 7

Conclusion

7.1 Achievements

The first main goal of the project was to have a working implementation of the
neural network applied to the Black-Scholes equation. This PyTorch implementation
had to be tested by running training sessions to ensure it provided correct results. A
couple of experiments were first conducted by changing the activation function and
noticing the impact on the loss function, and so on the overall convergence. Also, a
time analysis has been done to understand where time could be saved in the learning
process.

This project focuses on optimisation techniques to solve, in the best possible way,
the Black-Scholes equation. To this purpose, several gradient descent techniques
have been explored and toy examples were built to conduct tests and evaluate the
performance of such techniques. Starting from simple Stochastic Gradient Descent
(SGD), the project then moved onto exploring more complex algorithms. Among
them, an evolved version of SGD with a Langevin Dynamics terms and Continuous
Tempering Langevin Dynamics based on exploration and convergence phases. This
has required the implementation of different optimisers. The main reason all these
techniques were tested, was to understand how the optimisers explore the parame-
ters space.

Another idea was to analyse techniques that are supposed to provide better results
on ill-conditioned problems, which is how problems usually are in reality. A raw
implicit scheme has been tested, which produced very good results. A more so-
phisticated technique ’proximal backpropagation’ was then also tested. This ob-
tained very promising results on a toy neural network, encouraging us to test it
on our main problem. We hence developed an adapted version of this algorithm to
fit the forward-backward stochastic neural network. The results substantially out-
performed the other algorithms tested in this project, as the algorithm manages to
provide a very close solution with a limited number of iterations.
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7.2 Future work

During this project, a lot of choices have been made, and starting from a wide prob-
lem, we narrowed it down to a few very specific subproblems. At this point, future
work could focus either on going forward in the current direction or on taking a step
back to explore more options.
As mentioned, the proximal backpropagation applied to the forward-backward stochas-
tic neural network is the most promising technique seen during the project. The
current implementation provides already great results. However, there is still room
for improvement. It could be improved, for example, by making the implementation
more efficient from a software engineer point of view or getting closer to the hard-
ware to try to take full advantage of more powerful GPU’s. In terms of algorithm,
the proximal backpropagation could be even more tailored for the FBSNN. For now,
the output of the penultimate layer and the weights of the last layer are updated
with a typical explicit scheme. The other weights are updated through an implicit
scheme, using an exact solution. This step could almost certainly be improved by
looking for more efficient techniques to solve the implicit problem itself. This could
be for instance mixing a state-of-the-art optimiser with the proxy scheme.
Regarding the architecture of the neural network itself, there are many ways in
which it could be improved. The one used in this project is a unique feed-forward
neural network. But we can think of more evolved architecture or even a single
neural network per time step.
From a wider point of view, the original goal was to provide an efficient way to solve
PDEs using deep learning. This project is very theoretical, with the aim of developing
a robust tool which could be used in many scenarios. However, we focused on the
Black-Scholes equation and a particular terminal condition. Several variations could
be tried. For example, changing the function describing the terminal condition. Or
we could try this model on call options, and also try our model on real data, and
perform back-testing. There are also plenty of other PDEs that could be solved,
hence bringing the potential impact of this project to various different industries
and applications.
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