
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Deep collaborative filtering models
with audiovisual content-aware

algorithms for movie
recommendations

Author:
Robert Lewis

Supervisor:
Ognjen Rudovic

Submitted in partial fulfillment of the requirements for the MSc degree in
Computing Science of Imperial College London

September 6, 2019

Section 0 0.0

Abstract

In this work we propose a way to enhance the recommendation capabilities of col-
laborative filtering algorithms for movie recommendations by using the audiovisual
content of movie trailers.

Our approach makes the collaborative filtering algorithms significantly more effec-
tive at making recommendations in the item cold start scenario as judged by a broad
suite of evalutation metrics. Moreover, our approach shows promise at improving
the quality and diversity of recommendations in the item warm start scenario.

Our approach centers around a deep learning architecture which combines the state
of the art in recommender system matrix factorisation techniques with leading tech-
niques in video content interpretation and learning.

Moreover, the work for this project has resulted in the construction of a flexible au-
diovisual content feature extraction pipeline that is capable of efficiently processing
arbitrarily large video datasets. For the purposes of this work we used this pipeline
to extract audiovisual feature descriptors for over 12,000 movie trailers (totalling
more than 650 hours of content).

2

Section 0 0.0

Acknowledgements

I would like to thank Oggi for his insight and for the infectious enthusiasm he showed
for difficult problems throughout the project. I would also like to thank my partner
Stella and my family who were tremendously supportive as always.

3

Section 0 0.0

Contents

1 Introduction 7
1.1 The case for audiovisual content-aware recommender systems 7
1.2 Research overview . 10

2 Theory and related work 12
2.1 Recommender Systems . 12

2.1.1 Formulating the recommender system problem 12
2.1.2 Collaborative filtering . 15
2.1.3 Content-based filtering . 23
2.1.4 Pros and cons of collaborative filtering and content based models 25
2.1.5 Hybrid recommender system techniques 26
2.1.6 Evaluation methodology . 26

2.2 Audio-visual content representation and analysis 35
2.2.1 Extracting deep visual features from audiovisual content . . . 35
2.2.2 Extracting deep audio features from audiovisual content . . . 36
2.2.3 Learning from sequences of audiovisual features 37
2.2.4 The semantic gap . 42

3 Our approach 44
3.1 Using audiovisual content to enhance collaborative filtering models . 44
3.2 Theory of our proposal . 44
3.3 Our proposed network architectures 46
3.4 Our formulation of the rating prediction problem 48
3.5 Elements not considered in the scope of our project 49

4 Experiments and results 51
4.1 Ground truth data overview . 51

4.1.1 Data overview . 51
4.1.2 Data scenarios . 53

4.2 Audio-visual feature extraction . 57
4.2.1 Experimental approach . 57
4.2.2 Results . 60

4.3 Audiovisual content enhanced collaborative filtering 66
4.3.1 Experimental approach . 66
4.3.2 Results . 69

5 Discussion 82
5.1 Performance of audiovisual enhanced collaborative filtering models

versus collaborative filtering baselines 82
5.2 Performance of audiovisual enhanced collaborative filtering models

versus the genre baseline . 83
5.3 Performance of audiovisual enhanced collaborative filtering models

versus one another . 84

4

Section 0 0.0

5.4 Utility of audiovisual content feature descriptors in collaborative fil-
tering models . 85

6 Conclusions and future work 86
6.1 Conclusions . 86
6.2 Future work . 86

A Ethical and professional considerations 91

B Additional collaborative filtering results 92
B.1 Data sampled at 20 reviews per user on 1000 movie 1500 user dataset 92
B.2 Data sampled at 80 reviews per user on 1000 movie 1500 user dataset 94

C Effect of different feature aggregation techniques on ranking results 96

D System design 97
D.1 How to run the code . 97
D.2 Designing and implementing a performant audiovisual feature extrac-

tion pipeline . 97

E Example calculation of recommender system rank metrics 98

F Additional views of MovieLens AV rating distributions 100

List of Figures

1 The matrix completion problem and the various data scenarios. . . . 13
2 An illustration of rating matrix sparsity with our MovieLens AV dataset.

More information on this dataset can be found in Section 4.1. 14
3 Conceptual overview of collaborative filtering versus content-based

recommendation. 15
4 Conceptual overview of the matrix factorisation approach. 17
5 The problem with linear matrix factorisation. Despite u4 being more

similar to u3 than u2 in rating space there is nowhere it can be placed
in latent space to satisfy this constraint while also satisfying the con-
straint that u4 is most similar to u1. NB: This figure comes with ex-
plicit thanks to Xiangnan He et al [23]. 21

6 Two deep learning approaches to collaborative filtering: general ma-
trix factorisation and MLP-based collaborative filtering. 23

7 The conceptual structure of a recurrent neural network (RNN). The
diagram on the right shows it in unrolled form. 38

8 The conceptual structure of a long short term memory network (LSTM).
With explicit thanks to Christopher Olah[50]. 39

9 The conceptual structure of a long-term recurrent convolutional net-
works (LRCNs) . 41

10 Deep Collaborative Filtering with AV Content Information - Model 1. 46

5

Section 0 0.0

11 Deep Collaborative Filtering with AV Content Information - Model 2. 47
12 LSTM with AV Content Information Model. 48
13 Cooccurrence of genres in MovieLens AV dataset. 52
14 Ground truth rating distributions by value in MovieLens AV dataset. . 53
15 Ground truth rating value distribution by decade in MovieLens AV

dataset. 54
16 (a) The distribution of rating values by genre, and (b) the proportion

of genre reviews per decade. 55
17 Movie rating count distribution in MovieLens AV dataset. 56
18 User rating count distribution in MovieLens AV dataset. 56
19 Data scenarios used to assess the recommendation capacity of our

models. 57
20 Explained variance left in latent dimensional data when applying in-

cremental PCA to aggregated visual and audio data. 60
21 a) Visual and b) audio feature distribution after dimensionality reduc-

tion with UMAP. 61
22 Visual feature distribution by sub clip number in MovieLens AV dataset

after dimensionality reduction with UMAP. 62
23 Audio feature distribution by sub clip number in MovieLens AV dataset

after dimensionality reduction with UMAP. 62
24 Bhattacharyya coefficients between subclip distributions for (a) visual

and (b) audio features. Bhattacharyya coefficients are calculated on
the latent space representation of the features and on the inner tercile
of each sample. 63

25 Visual feature distribution by genre in MovieLens AV dataset after di-
mensionality reduction with UMAP. 64

26 Audio feature distribution by sub clip number in MovieLens AV dataset
after dimensionality reduction with UMAP. 65

27 Bhattacharyya coefficients between genre distributions for (a) visual
and (b) audio features. Bhattacharyya coefficients are calculated on
the latent space representation of the features and on the inner tercile
of each sample. 66

28 Example of how ranking metric values vary relative to each other for
two dummy recommendation lists. 99

29 Ground truth rating value distribution by genre in MovieLens AV dataset.100
30 Ground truth rating value distribution by year in MovieLens AV dataset.101

6

Section 1 1.1

1 Introduction

In this section we introduce the research direction and compelling commercial ap-
plications of our work. Then, in Section 2 we outline the relevant theory and related
work - including a consideration of the ethics of our work - before discussing our
proposed extension to this in Section 3.

We then present our experimental approach and results in Section 4 before discus-
sion their implications in 5. Finally, in Section 6 we summarise the conclusions from
our findings and discuss interesting avenues of future work.

1.1 The case for audiovisual content-aware recommender sys-
tems

The case for recommender systems generally is well-known[12]. In an age of online
information and content overload, users require the assistance of an information-
retrieval device to help them track down the content that matters most to them in a
reasonable time[54].

The longer this process takes, and the less personalised it feels, the more it reduces a
user’s satisfaction - leading them to conclude that there is nothing in the company’s
catalogue that appeals to them - and thus increasing the risk that they will churn1

from the platform or service. In commercial terms this translates to a loss in revenue
for the company.

Therefore, recommender systems are now an integral part of corporate strategy for
online content providers and retailers. The online streaming service Netflix believe
that the combined effect of personalisation and recommendations save them more
than $1B per year[33]; similarly, it has been estimated that 30% of Amazon.com’s
page views result from recommendations[45, 2].

To achieve such numbers recommender systems address various issues throughout a
company’s business. For example, they increase customer acquisition and retention
by personalising the list of items they recommended to any given user and in doing
so increasing user satisfaction and fidelity.

Recommender systems also help a company grow its sales and brand by recommend-
ing more diverse items from its product catalogue (including seemingly unpopular
ones to specific users - a calculated risk that may not have been possible without the
personalised analysis of a recommender system). Moreover, by providing an insight
into what the customer base - both individually and collectively - enjoys in items,
they can play an important role in areas such as new content generation and new

1The churn rate of a customer base refers to the proportion of contractual customers or subscribers
who leave a supplier during a given time period. It directly affects a company’s recurring revenue and
thus it is of utmost importance to reduce the churn rate if a company is to grow profitably.

7

Section 1 1.1

market entry.

The case for audiovisual content-aware recommender systems - and the focus of this
research - is perhaps less apparent given its novel nature. As such we offer our per-
spectives on how such a system may contribute to the recommender systems already
employed at online streaming service providers.

First and foremost, the audiovisual content of an item is perhaps the most important
feature in determining how a user responds to it. Thus, by building a system that
takes it into account a company should be able to more precisely recommend items
that match the audiovisual aesthetic or sensory experience their customers are look-
ing for.

The value of such a system is increased when one considers a common scenario for
items - the item cold start scenario where items are introduced to the catalogue and
have no (or very few) user reviews nor other forms of feedback (such as tagging or
viewing history).

With current collaborative filtering based recommender systems (defined in Section
2.1.2) there is a large risk that such items are overlooked permanently due to effects
such as popularity bias2. However, the audiovisual content of a media item is present
from day one and thus if one can build a model that relates it to user review - and
thus is able to recommend it - then the item cold start issue can be addressed.

Thus, we see mitigating the negative economics of such a scenario as the primary
commercial application of our work. However, there is more. While it is tempting to
see recommender systems as purely a content recommendation/retrieval system, this
is shortsighted: recommender systems should be seen as a powerful tool throughout
the entire lifecycle of a product from content ideation through to the delivery of the
final content to a user.

On what grounds can we justify such a statement? The central premise of this state-
ment is that by learning how low-level item content relates to user review a rec-
ommender system can provide insight on whether or not a user is going to like an
item even before the item is finalised. Therefore, the recommender system has a
central and active creative director style role to play in the marketing, creation and
even initial proposal of the content.

Proposing tangible use cases is the best way to elaborate on this argument

• How should we promote existing content to target users?

2Popularity bias refers to the phenomenon in recommender systems that popular items are recom-
mended frequently while less popular, niche products, are recommended rarely or not at all[36]. It
is very notably an issue for collaborative filtering systems that rely on exploiting similarities between
item and user review histories to generate new recommendations.

8

Section 1 1.1

– Here the system could assist in the trailer creation stage of the production
process. By this point, the movie itself is usually cut and thus creating
a trailer is about finding a way to summarise the content in a way that
generates the broadest user appeal.

– An audiovisual content enhanced recommender system contains informa-
tion on every user’s individual reactions to different content styles and,
moreover, it provides an accurate feedback mechanism on whether a user
will like an item’s content that does not require having to actually contact
or interview the user

– Thus, there is a conceivable scenario where a production studio could
iterate versions of a film’s trailer, each time running it through the recom-
mender system to gauge the expected review/engagement it is likely to
receive, and then re-cutting it to improve on these metrics.

– More powerful still is the personalised, generative scenario where the rec-
ommender system is set up in such a way that it can select (or even pro-
duce) a personalised trailer for each user3. In their simplest form these
trailers may contain different scenes from the movie containing content
that each user would enjoy/engage with most

• How should we produce original content that appeals to target users?

– Here the system contributes to the actual content creation process. Again,
it can be used purely for feedback - for example, generating a score for
each scene - or as an ideas generator - proposing what type of scenes
would make the movie appealing to a broader or specific user base.

– The fact that a company could also combine the recommender system in
this creative guru guise with the customer churn analysis generated by its
strategy team adds further weight to this use case

– For example, the churn analysis would identify groups of users who are at
risk of churning. The recommender system could then run an analysis of
what type of content these users like and a gap analysis between this and
the company’s current content catalogue could be performed. This gap
analysis, combined with the system’s generative ability, would then allow
the system to advise on what scenes to include in content already being
produced, or indeed what new content ideas to consider, with the explicit
goal of engaging these users and mitigating their risk of churn

• What would be the expected return of producing content like this?

– A final potential use case of a content-aware recommender system is as a
financial analysis aide to an executive who decides whether or not a piece
of content gets produced (or gets another series). As such, it informs

3Generative in this context refers to the capacity of the recommender system to generate candidate
trailers from the film’s content. In related generative work, Netflix has already released a way of
personalising the artwork used to promote an item to each user[27].

9

Section 1 1.2

the executive on whether or not an item has significant enough return on
investment capacity to merit the investment of a production budget.

– Here the introduction of additional content modalities such as the movie
script are critical as the content is just an idea at this stage and thus has
little or none audiovisual content (although if we extend the remit of the
system to the music industry then the audio capabilities would be useful
at this very early stage).

– Then, in this role, the recommender system could provide an estimate of
the review each user would give to the movie script if it was produced
in its current form. Aggregate financial analysis could be performed on
this - for example, estimating that X% of the company’s user base would
consider the movie at 4 stars or above and are thus likely to watch it - to
arrive at an expected revenue figure.

– The executive could then weigh off this expected revenue with expecta-
tions on the cost to produce the movie to arrive at a decision on whether
or not to produce it. Once again, a generative version of the system could
make proposals on what the script is missing in its current state and this
could fuel an iterative process with the writer.

It should be noted that our experimental focus in this project is on how our audio-
visual content enhanced recommender system can address item cold start issues for
items that already exist. However, in our future work section (see Section 6.2) we
provide proposals on how the work could be extended to address these additional
and exciting use cases.

1.2 Research overview

In this project we structured our work in such a way so as to address the following
research questions

• RQ1. Does the audio-visual content of movie trailers enhance the capabilities
of recommender systems in a) the item warm start scenario and b) the item
cold start scenario?

• RQ2. How can audio-visual content be summarised to enable its use in CF-
based recommender systems?

Taking each of these questions in turn, RQ1 allows us to investigate the interplay
between a movie’s content and the user’s response to this. Our in-going hypothesis
is that audio-visual content should improve the quality of the recommender system -
both in terms of recommendation accuracy and other recommender system metrics
(such as the diversity of items recommended).

Our favoured approach is to look for ways to enhance existing collaborative filtering
models as these achieve state of the art results in warm start scenarios[11, 40] yet at
the same time have a severe limitation in the item cold start scenario that our content

10

Section 1 1.2

aware approach may help them mitigate.

Our choice of using movie trailers over the actual movie itself is predicated on our
proposal that the trailer of a movie is probably the single most decisive factor in de-
termining whether or not a user will watch a new movie and that a trailer is highly
representative of the movie’s overall content. This latter premise is supported by
the literature, where it has been reported that the audiovisual features of a movie’s
trailer correlates heavily with the audiovisual features of the actual movie itself[57].

RQ2 is an essential prerequisite to enable investigation of RQ1. but is by no means a
trivial task. Here our goal is to find a representation of the audiovisual content that
is closely aligned with the way that a user will perceive it. Thus, our representation
must be both i) perceptually complete4 and ii) semantically meaningful5.

Working with the raw audiovisual features is not an option due to the curse of dimen-
sionality - a phenomenon where increasing dimensionality increases the gap between
data points in the feature space, and thus similar features are not actually that close
together and are thus hard to identify. This curse also greatly increases computation
times and memory requirements and thus it is not desirable from an engineering
perspective either.

Therefore, our goal in this piece of the work is to find a low-dimensional represen-
tation of the audiovisual content that preserves the requirements i) and ii) of good
feature representations discussed above.

4Perceptually complete means that the representation should contain at least one representation
for each of the media through which a user will experience the trailer - in our case audio and visual

5Semantically meaningful[1, 26] feature extraction refers to the process of finding a lower-
dimensional representation of the original input within which we can assign/infer meaning (i.e.
semantics) to/from different input instance values, and that these assigned/inferred semantics are
relevant to the target domain - in other words they provide meaningful variance in the input data
that explains different results in the target domain.

11

Section 2 2.1

2 Theory and related work

2.1 Recommender Systems

2.1.1 Formulating the recommender system problem

Before venturing into our discussion on the various ways to build recommender sys-
tems, it’s important to first define exactly the problem we are trying to solve. In
Section 1, we outlined why we need recommender systems and how they are used,
but what precisely is the underlying problem we are asking them to model?

Broadly speaking there are two ways of formulating the recommender system prob-
lem

1. Recommender systems as a rating prediction problem - aka the matrix comple-
tion problem: in this view of the problem, we are presented with an incomplete
set of user ratings for items as our training data and our target is to predict the
missing ratings for items specific users have not yet reviewed. Here the entity
using the recommender system is asking the question exactly how much will a
user like this item?

2. Recommender systems as a ranking prediction problem - aka the top-k rec-
ommendation problem: in this alternative view of the problem, the goal is to
predict a user’s relative preference for items in a list. As a result, it is not essen-
tial to predict the users’ ratings for items (though the model still learns from
user ratings in either explicit or implicit form). Here the entity using the rec-
ommender system is asking the question what list of items should I recommend
to a user?

Both approaches are prevalent in recent literature[4] and it’s important to note that
the first formulation of the problem can be easily cast into the second by ranking
items on the model’s predicted ratings for them. In our work, our model explicitly
predicts ratings for items but we also follow this translation approach so as to create
a set of evaluation metrics that are prevalent in the literature (see Section 2.1.6 for
more details).

Explicit vs implicit ratings and the utility matrix

Regardless of how the model generates recommendations, it must learn from a
dataset of user ratings. As such, it is important to categorise how these ratings
are encoded.

At a high level the two types of ratings are explicit ratings - that is to say an explicit
indication by the user of how much she liked an item - and implicit ratings, which
are more subtle. Implicit ratings are potential indications of the user’s enjoyment of
or interest in an item inferred from signals relating to how she interacted with that
item.

12

Section 2 2.1

Figure 1: The matrix completion problem and the various data scenarios.

For example, watching a movie on a streaming service and stopping it half way might
suggest that the user did not enjoy the item; whereas, watching the movie and then
sharing it with friends might on the contrary suggest heightened enjoyment from
consuming the item. Other signals from which implicit ratings can be inferred in-
clude preemptive ones such as saving an item to a list to watch later and the user’s
physiological response when consuming the item[19].

Explicit ratings are usually specified on an ordinal scale (for example, Netflix/Amazon
item reviews) whereas implicit ratings are usually unary in nature - meaning that
there is a signal which indicates a user’s like of an item but not one which indicates
a user’s dislike. For example, buying an item intuitively suggests a user likes an item
but not buying an item does not necessarily mean they did not like it. This lack
of negative feedback can prove tricky when designing recommender systems and it

13

Section 2 2.1

Figure 2: An illustration of rating matrix sparsity with our MovieLens AV dataset. More
information on this dataset can be found in Section 4.1.

often pushes the designer to a top-k recommendation formulation of the problem.

Once the rating type has been decided it is common to present the rating data in a
matrix. This matrix is often referred to as the utility matrix and it usually contains
the user ratings of the items but not always6. In this report we will use the terms
utility matrix and ratings matrix interchangeably as for our purpose the matrices we
work with will always contain user ratings. Figure 1 shows examples of a utility
matrix for explicit ratings.

Warm and cold start scenarios

Now that we know what form user ratings come in and how to predict them, it is
important to consider the different scenarios in which we will operate. Figure 1
provides a graphical overview of the different warm-start and cold-start scenarios.
Each is worthy of further explanation

1. The warm-start scenario refers to making recommendations for users and items
already considered in the ratings matrix of the model. In other words, it is a
case of making predictions of how current users’ will rate the remaining items
in the current catalogue. While potentially the simplest of the scenarios in the
sense that it gives the modeller the most head start it is still not that simple
as typically rating matrices are very sparse - meaning that they contain a high
proportion of missing to non-missing entries - and, thus as the number of rat-
ings for a user/item tends to zero, the warm-start scenario approaches the user
cold-start and item cold-start scenario, respectively (see Figure 2 for an exam-
ple of matrix sparsity). Under this scenario one often asks the question who is
this user most like and what items do they like, as we will see in our section
on collaborative filtering systems (which we discuss at length in Section 2.1.2)

6Formally, utility is defined as the amount of profit one takes from something and this choice of
terminology is related to the commercial case for recommender systems outlined in Section1.1, where
companies will track the profit they generate from effectively recommending products to customers.

14

Section 2 2.1

2. The item cold-start scenario refers to recommending items that are new to the
catalogue. In this scenario, one typically asks the question what item is this
item most like which lends itself to systems that can recognise and recommend
similar content - systems that work in this way are referred to as content-based
systems (which we discuss in Section 2.1.3)

3. The user cold-start scenario refers to recommending existing catalogue items to
new users. In this scenario we have no rating information from the user - so
we cannot just recommend them items that users with similar review histories
have enjoyed or items with similar content profiles to ones they have already
reviewed. Instead we have to think about ways to work out what this new user
may like from ancillary information (such as their demographics) and/or by
asking for a subset of item ratings from them during customer onboarding

4. The item and user cold-start scenario is the most extreme in that we must rec-
ommend new items to new users. While this should be seen as an unlikely case
(and one that we do not give much attention to in this work) it is not impos-
sible. For example, companies in low volume and high unit price industries
that sell unique items such as fine art and real estate may find recommender
systems that can operate in this scenario useful as it is unlikely they have a
large set of regular customers

Throughout the subsequent subsections we will outline various approaches for com-
pleting the utility matrix and their relative strengths and weaknesses under these
scenarios.

2.1.2 Collaborative filtering

Figure 3: Conceptual overview of collaborative filtering versus content-based recom-
mendation.

Broadly speaking there are two main types of recommender systems: collabora-
tive filtering models and content-based filtering models. Figure 3 shows a graphical

15

Section 2 2.1

overview of these two types of systems. It is important to address the foundations
and relevant literature of both of these areas as our proposal combines aspects from
both of them into a hybrid system - for which we discuss the theory and design in
Section 3. This subsection discusses collaborative filtering and the subsequent one
addresses content-based filtering.

What are collaborative filtering recommender systems?

At a high-level, a collaborative filtering model looks at past user behaviour - for
example movie ratings or product purchases - and uses this to find items that similar
users have enjoyed to recommend to the target user7. The literature proposes two
major categories of solutions to this problem

1. Memory-based or neighbourhood models: which look for neighbouring items
or users (where neighbouring is defined by similarity metrics in the explicit or
implicit rating space)

2. Model-based or latent factor models: which look to decompose the utility matrix
into a lower-dimensional latent space where both users and items are described
by latent factor vectors

While our work focuses on the second case, it is important to quickly address the for-
mer as we use them as baselines in our work. Memory-based models are typically im-
plemented as k-nearest neighbour models (KNN) - a class of non-parametric/“lazy”
machine learning algorithms8 that are simple to implement.

Equations 1 and 2 outline the two most common formulations of k-nearest neighbour
based rating prediction models. It is important to note that these equations capture
the rating prediction problem from the perspective of using a set of similar users to
triangulate the target user’s rating. It is equally viable to make the prediction using
a set of similar items but we will not state the equations for brevity.

r̂ui = µu +

∑
v∈N k

i (u)
sim(u,v) · (rvi −µv)∑

v∈N k
i (u)

sim(u,v)
(1)

7It is worth noting that collaborative filtering can also be framed from an item-centric perspec-
tive, where the interaction history of the target item is compared to that of other items in order to
predict unknown ratings. There are several reasons why a system might want to take an item-centric
approach over a user-centric one. For example, if the number of items in the system is considerably
less that the number of users then this can reduce model prediction time. Moreover, it can be argued
that item collaborative filtering profiles are more stable than users profiles over time (as user taste
is more liable to change) and thus item-centric approaches can result in more consistent and stable
results[item˙based˙cf].

8Non-parametric/“lazy” algorithms are ones that only form an approximation to the target func-
tion at query time and based on the query data (i.e. they generate a local approximation of the target
function). Thus, they offer a significant degree of flexibility and scalability, especially when dealing
with sparse data but are prone to overfitting.

16

Section 2 2.1

In these equations r̂ui refers to the rating prediction for user u of item i; v refers
to other users from the set of k other users; µ and σ are the k-sample mean and
standard deviation, respectively. The similarity metric9 sim(u,v) is a measure of
how similar user u is to users v ∈N k

i (u) and in using this a weighting term is created
that means the reviews from more similar users to the target users count for more
towards the prediction.

r̂ui = µu + σu

∑
v∈N k

i (u)
sim(u,v) · (rvi −µv)/σv∑
v∈N k

i (u)
sim(u,v)

(2)

We also implement an even simpler memory based model as a baseline in our work,
which Equation 3 summarises. Here µ refers to the global mean - that is to say the
mean rating for all currently known item and user pairs - and bu and bi refer to the
user and item bias (with respect to the global mean), respectively

r̂ui = bui = µ+ bu + bi ‘ (3)

Matrix factorisation as a powerful solution to the matrix completion problem

Figure 4: Conceptual overview of the matrix factorisation approach.

While the aforementioned neighbourhood models look for ways to predict miss-
ing ratings and make recommendations by navigating the existing user-item rating
space, latent factor models reduce the dimensionality of the data to describe user
and items in terms of information rich latent factor vectors and then recombine these

9A range of similarity metrics can be used to identify similar users and items. In practice, the most
common for users and items in the explicit rating case is the cosine similarity:

cosine sim(u,v) =

∑
i∈Iuv

rui · rvi√ ∑
i∈Iuv

r2ui ·
√ ∑
i∈Iuv

r2vi

In the implicit rating case metrics such as the Jaccard similarity are used.

17

Section 2 2.1

vectors to calculate estimates for any missing ratings.

The overarching intuition for this matrix factorisation is that the observed data in
a higher dimensional space (for us this is the rating space) can be fully (or almost
fully) explained by factors in a lower dimensional hidden space - aka the latent
space. Figure 4 shows the matrix factorisation algorithm graphically.

More formally, if we take the rating matrix to be R (of dimensions m users by n
items), then matrix factorisation is about finding the best approximation to the ma-
trix factors it is composed of - which we define as U for the user factor matrix
(dimensions mxk) and V for the item factor matrix (dimensions nxk) where impor-
tantly k is the number of latent factors or concepts that we can treat as a hyperpa-
rameter

R ≈UV T (4)

The fact that the second dimension of the latent factor sub-matrix is the same for
both the items and users means that this dimension can be interpreted in quite an
intuitive way: for each user the extent of each element in the latent factor vector
corresponds to how much the user likes those elements/concepts in an item. Simi-
larly, for each item the extent of each element corresponds to how much that item
possesses those elements/concepts.

It is for this reason that the extent of each element is often referred to as its affinity.
However, it is worth noting that only sometimes do the elements/concepts in this
latent dimension relate to actual features of the item and more often than not they
are intangible.

So once we have reduced the known data to a joint latent space how do we use
this to predict the missing user-item interactions? For each user-item pair this is as
simple as taking the inner product of their latent factor vectors:

r̂ui = q
T
i pu (5)

In this equation qi ∈ Rf represents the latent vector for item i and pu ∈ Rf represents
user u. As aforementioned, the value of each element corresponds to an affinity and
therefore the inner product is intuitively predicting an overall score for how positive
or negative the user’s interaction with that item will be.

The rating prediction in Equation 5 can be improved further by introducing terms
for user and item ratings bias bu + bi . If we are to believe that a user’s review for an
item is not just determined by their interactions with that particular item but also
due to individual characteristics of the user and item indepedendent of each other
(for example, the fact that user A may have a tendency to give higher ratings on
average than user B; or the fact that a particular item is just not very good) then
adding learnable bias terms makes a lot of sense.

18

Section 2 2.1

The best way to add terms for both user and item bias is by formulating them as
deviations from the global average of the rating dataset µ via r̂ui = µ+ bu + bi . These
terms are then combined with the user-item interaction term learned through matrix
factorisation to calculate a single estimate of the rating via the following equation

r̂ui = µ+ bu + bi + q
T
i pu (6)

Thus, the overarching challenge of building matrix factorisation based systems is
working out how to most accurately compute the mapping of each item and user
from the rating space to the latent factor space.

The long-standing solution to solve this problem is closely related to the singular-
value decomposition (SVD)10 - a technique that is used to reduce the dimensionality
of data in a high-dimensional space to a lower-dimensional space whose dimensions
are the most information rich latent semantic factors of the observed data.

While early matrix factorisation methods11 had to grapple with missing data in the
rating matrix in order to apply SVD (which is undefined when the matrix is in-
complete), more modern matrix factorisation techniques reformulate SVD into an
incremental algorithm[32, 58] that only works on the observed ratings - a feature
that is very important for recommender systems where rating matrices are sparse as
it greatly increases the scalability of the model in terms of shorter compute times
and lower memory requirements.

This incremental approach to matrix factorisation is achieved by using stochastic gra-
dient descent - a well known optimisation algorithm that updates a model’s parame-
ters over time in a way that minimises the cost function defined by the programmer.
In the context of linear matrix factorisation the model parameters consist of the la-
tent factor representation of the different items and users and the cost function is
defined as

eui =
∑

rui∈Rtrain

(rui − r̂ui)2 +λ
(
b2i + b

2
u + ||qi ||2 + ||pu ||2

)
(7)

In this equation rui refers to the true rating of item i by user u and r̂ui is the model’s
prediction of this value. The first term in this equation is thus an error term - the
mean squared error (MSE) to be precise (this metric is discussed in more detail in

10The singular value decomposition is a factorisation of a real or complex matrix. It is related to the
eigendecomposition of a matrix - which refers to representing the matrix in terms of its eigenvalues and
eigenvectors and usually only applies to diagonal matrices. SVD is a generalisation of this approach,
allowing us to perform eigendecomposition on any mxn matrix.

11It is relevant to note that earlier matrix factorisation techniques relied on heuristics or imputation
to fill in missing values in the rating matrix so regular SVD could be used[pre˙incr˙svd, 51]. This
approach had two significant shortcomings: firstly, it greatly increased the number of ratings to
Ni .Nu which leads to significant scalability issues - both in terms of the additional time to compute
the decomposition and the memory requirements to hold the whole rating matrix in memory at once.
Secondly, imputing missing values based on various heuristics introduced significant bias to the model
thus increasing the risk of the model learning inaccurate approximations of the true target function.

19

Section 2 2.1

Section 2.1.6). The second term in this equation is a regularisation term - where λ is
a hyperparameter to be optimised by cross-validation and ||qi || and ||pu || refer to the
Frobenius norm of the item and user latent vectors, respectively.

This regularisation term has a very important role in reducing overfitting in the
model which is essential when working with sparse datasets. In exactly the same
way regularisation is used in classification and regression models, it introduces a
term to the cost function that penalises large coefficient values in qi and pu - as
these large values usually correspond to excessive variance in the target function
approximation that has resulted from overfitting to noise in the training data. A full
derivation and assessment of regularisation as an approach to control overfitting is
beyond the scope of this section but can be found in [35, 49, 53].

With the cost function defined, stochastic gradient descent thus updates the learn-
able model parameters via the following set of update equations

bu← bu +γ(eui −λbu) (8)
bi ← bi +γ(eui −λbi) (9)
pu← pu +γ(eui · qi −λpu) (10)
qi ← qi +γ(eui · pu −λqi) (11)

In this equation γ is the “learning” rate which is a programmable hyperparameter
which is optimised through cross-validation. Thus, by running the matrix decompo-
sition and reconstruction steps over several iterations - and updating the learnable
parameters in the user and item latent factor matrices at the end of each iteration as
per the rules in equations 8-11 - we can converge upon a good approximation of the
missing values. This is the crux of the matrix factorisation approach to recommender
systems.

Finally, we note that as matrix factorisation has been at the centre of state of the art
recommender systems for over a decade the literature includes many variants that
are not discussed in this short overview[11, 40].

Going beyond linearity - deep neural network solutions to the matrix factorisa-
tion problem

While the linear matrix factorisation-based methods described in the previous sec-
tion have reigned supreme at warm-start scenario problems for the last decade[11,
40], non-linear techniques have recently emerged in the literature that use neural
networks to achieve superior results. Our approach is largely based on these recent
architectures so we take some time in this section to point out their advantages.

Firstly, to describe why linear-based techniques are suboptimal we use the example
illustrated in Figure 5. This figure shows how the inner product function at the heart

20

Section 2 2.1

Figure 5: The problem with linear matrix factorisation. Despite u4 being more similar
to u3 than u2 in rating space there is nowhere it can be placed in latent space to satisfy
this constraint while also satisfying the constraint that u4 is most similar to u1. NB: This
figure comes with explicit thanks to Xiangnan He et al [23].

of linear matrix factorisation algorithms (see Equation 5) can limit their expressive-
ness. In the example of Figure 5 we are initially presented with the review vectors
of three users (here the ratings are implicit and hence binary): a) shows the ratings
for these users in rating space and b) shows the ratings for these users in latent space.

The challenge is where to place a new user u4. Using the Jaccard similarity mea-
sure12 we observe the following inequalities for existing users (sim(u2,u3) = 0.66) >
(sim(u1,u2) = 0.5) > (sim(u1,u3) = 0.4). However, for the new user (sim(u4,u1) =
0.6) > (sim(u4,u3) = 0.4) > (sim(u4,u2) = 0.2) which creates a problem. While it is
possible to satisfy the first rating space inequality for u4 in the latent space also -
by placing p4 closest to p1 (see the dotted lines in (b)) - in doing so we violate the
second rating space inequality for u4: that is to say, wherever we place p4 it will
be closer to p2 which is not an accurate representation of the ground truth in the
rating space. Such gaps in expressiveness result in prediction errors in linear matrix
factorisation models.

So how can we introduce this non-linearity? By restating Equation 5 in the more
general form of Equation 14, where f is the inner product (in other words the

12The Jaccard similarity measure is a common similarity measure for implicit rating systems and is
defined as

sim(i, j) =
|Ri | ∩ |Rj |
|Ri | ∪ |Rj |

If we were considering an explicit rating space we could use the cosine similarity defined previously.

21

Section 2 2.1

element-wise product of the vectors followed by their sum) of the user vector pu
and the item vector qi , we can tee up the conceptual leap.

r̂ui = f (u, i|pu ,qi) = pTu qi (12)

While the operations that constitute f - in other words the model’s approximation
of the target function - can be programmed a priori it is not necessary to approach
the problem with such inductive bias. Instead we can pose the problem as a more
flexible learning task in which a deep neural network is used to provide a larger hy-
pothesis space in which to search for a closer approximation to the target function13.
Then during training of the network - using backpropagation of errors through the
system to update network parameters accordingly - we can arrive at a higher-order,
more-complex approximation to the target function which more accurately models
the interaction between user and item vectors and thus achieves better recommen-
dation results.

Thus, we can rewrite Equation 14 as

r̂ui = f (P
T vUu ,Q

T vIi |P ,Q,Θ) = φout(φX(...φ2(φ1(P
TV U

u ,Q
T vIi))...)) (13)

In this equation, vUu refers to an input feature vector for the user u and vIi refers
to an input feature vector for the item i. P ∈ Rm×k and Q ∈ Rn×k refer to the user
and item latent factor matrices, respectively and Θ refers to the model parameters.
Finally, φout and (φx represent the mapping function of the output layer and the x-th
layer of the neural network (of which there are X hidden layers in total).

Two different formulations of collaborative filtering as a deep learning problem are
proposed by the pioneers of this technique[23] and these are displayed in Figure 6.

The first of these - termed general matrix factorisation - maintains the element-wise
vector product operation of linear matrix-factorisation but introduces non-linearity
by way of a non-linear sigmoid activation function at the end of the network (in
place of the identity operation in linear matrix factorisation) which facilitates the
learning of non-linear function approximations in the hidden layer h of the network.
This can be summarised by Equation 14, where aout is the sigmoid function and h is
the only hidden layer of the network

r̂ui = aout(h
T (pu � qi)) (14)

The second technique concatenates the user and item latent factors and then passes
them through a multilayer perceptron, which adds an arbitrary number of fully-
connected layers with non-linear activation functions. Equation 13 is the most concise
formalisation of this structure. This version of the model achieves state of the art
results and thus we use a variant of it in our work.

13This use case of neural networks as global function approximators is well proven[42] and is
utilised in many domains.

22

Section 2 2.1

Figure 6: Two deep learning approaches to collaborative filtering: general matrix fac-
torisation and MLP-based collaborative filtering.

2.1.3 Content-based filtering

With the state of the art in collaborative filtering now defined, we should next shift
our focus to providing a brief overview of content-based filtering techniques as the
overarching goal of this research is to enhance CF models with content-based capa-
bilities.

What are content-based recommender systems?

Content-based recommender systems rely on the actual content of an item and the
target user’s reviews of it to make predictions of how that user will review other
items (for which the content is available). As a result they are unlike collaborative
filtering models in the sense that they do not require the reviews of other users (or
items) in order to generate rating predictions.

The content descriptors of an item can come in many different forms and they can
usually be described by one of two categories: either they are human generated at
varying levels of details, such as user tags and labels about the properties of a prod-
uct. Or, they are objective properties of the item itself, such as its visual aesthetic or
its textual content (for example the trailer of a movie and the script of a movie). A
collection of content descriptors that describe an item are usually referred to as an
item profile and deciding on a meaningful item profile is a feature selection/weighting
problem.

Central to the content-based problem is working out how individual users will react
to the content of an item and thus any content-based approach must construct what

23

Section 2 2.1

is often referred to as a user profile. This is usually constructed by simply combining
the ratings the user has given to items with the content of these items. This profile
is then an indication of the type of content the user likes and can be used to recom-
mend new items to them with similar content profiles.

Nearest neighbour based approach to content-based recommendations

A common approach to content-based recommendation is to perform a KNN-based
prediction on a per user basis. If we define the items a user has reviewed as i ∈ Iu,train
and the items we can recommend to the user as j ∈ Iu,test, then the predictive model
can be defined as

r̂ui =

j≤k∑
j∈Iu,train

sim(i, j) · rui

j≤k∑
j∈Iu,train

sim(i, j)

(15)

Where, very importantly, the similarity metric sim(i, j) is calculated between the dif-
ferent content descriptors of the item and k is the number of nearest neighbours
considered in the calculation.

We implement such a model as one of our baselines for our experiments (see Sec-
tion 4.3) using handcoded genre features. It is nonparametric and thus enjoys the
benefits that come with this.

For example, even if the target function is very complex it can still achieve good
approximations for each test instance as it generates a local approximation at query
time for each instance rather than having to commit to a global approximation. This
may result in more accurate or more personalised recommendations. However, it
also has the downsides of nonparametric functions - such as requiring a lot of work
at query time to generate predictions and also not being robust to outliers.

Embedding based regression approach to content-based recommendations

The other main approach to content-based recommendation is to perform a regres-
sion on a per user basis. In its simplest form a regression model could be built per
user, but the scalability of this system would be very poor and thus one must be more
ingenious in designing the system.

A recent solution to this problem[56, 52] - and the one that we implement in our
audiovisual content-based recommender system - is to create a model that has a user
embedding for each user with the same dimensions as the content-based item profile
(or item content embedding).

The model is provided with the item profile and the user ID as input (with which it

24

Section 2 2.1

Table 1: Comparison of collaborative filtering to content-based models

Collaborative filtering Content-based

Warm start results Achieves state of the art
accuracy results if user
and item review data is
available during training

Significantly worse
results to CF models in
warm start scenario

Cold start results Unable to make accurate
predictions in both item
and user cold start
scenario

No item cold start
scenario issues if user has
provided some item
ratings. However, still
prone to user cold start
issues.

Quality of
recommondations

Can find surprising
similarities between
items (for example, items
from different genres)
that please the use - e.g.
by creating a feeling of
serendipity. However, it
is also prone to
popularity bias where
more popular items
dominate the
recommendations.

Prone to recommending
the most obvious item as
it recommends those
with the most similar
content to what the user
has already liked. This
may or may not be
desirable depending on
the context.

Interpretability Harder to build into the
system as latent factors
often do not have
tangible meaning.

Easier to provide
especially if
human-generated content
descriptors are used (e.g.
recommended because it
contains cat videos)

looks up the user’s embedding) and makes a prediction for that specific user in a way
that is entirely analogous to the matrix factorisation approaches for collaborative
filtering discussed in the previous section. During training the user embedding is
modified in the same way as in these approaches, with the main exception between
the approaches being the fact that the content profile of the items remain fixed.

2.1.4 Pros and cons of collaborative filtering and content based models

Before moving on to how the best of collaborative filtering models can be combined
with the best of content-based models, it’s worth quickly summarising the relative
advantages and disavantages of both methods. Table 1 provides this.

25

Section 2 2.1

2.1.5 Hybrid recommender system techniques

As our proposed approach creates a hybrid recommender system we quickly define
the term here. Hybrid systems are defined as those that combine two or more rec-
ommender system models with the intention of enhancing their capabilities and it
can be done in one of several ways.

For example, ensembles of different models can be created with the resultant predic-
tion decided by a query by committee style set up. Or, use of the component systems
can be phased - for example, using one of the models in one scenario and the other
in another scenario. Finally, the inputs to the models can be combined and the model
designed in such a way so as to reach a single prediction.

The reason why one would look to create a hybrid recommender system is to allevi-
ate shortcomings in the individual models. The most common reason for doing this
is to treat cold-start issues, both user and item-based. We save further discussion on
how we designed our hybrid recommender system until Section 3.

2.1.6 Evaluation methodology

As the suite of evaluation metrics used to evaluate recommender systems is vast in
scope, we summarise them in Table 2. We also provide a “toy example” of the rank
metric calculations in Appendix E.

The following subsections walk through the definitions of these metrics in detail.

The need for a broad suite of evaluation metrics

In Section 1 we outlined both the commercial and personal case for recommender
systems. In this section we look at how we can quantitatively measure their per-
formance across various different performance dimensions. Before diving into the
detail, it is instructive to state upfront the importance of using a broad suite of eval-
uation metrics to assess the performance of a recommender system rather than just
analysing the prediction accuracy (e.g. via a loss term).

The reason for this is twofold: firstly, the most relevant evaluation metric will usu-
ally depend on the context in which the recommender system is being used. So for
example, a recommender system may only have the chance to recommend one item
to a user or it may get to recommend a list of items, and thus the accuracy measures
in the latter case will have to analyse the contents of a recommendation list whereas
the former is just concerned with the top rated item.

A second important reason for employing a suite of metrics is that the desired fea-
tures in a recommender system are not necessarily complementary to each other and
thus tradeoffs must be made. For example, while recommending the items with the
highest predicted review to a user may result in the greatest user satisfaction it may

26

Section 2 2.1

Category Metric Description

Accuracy
MSE Is a measure of loss for regression tasks that is typ-

ically used as the basis of a cost function in recom-
mender systems.

RMSE /
NRMSE

Is a measure of the deviation of the recommender
system’s predicted ratings versus the ground truth
value of the ratings. N refers to normalised - a trans-
formation that ensures its within the range of the
ground-truth min and max rating value.

MAE / NMAE Interpreted in a similar way to RMSE. Does not sum
the square of the errors in its computation so is more
robust to outlier values versus RMSE.

Rank
MRR Is a measure that rewards the system more for plac-

ing the first relevant item higher in the list of rec-
ommended items. It uses a binary relevance term.

MAP Is a measure that rewards the system more for plac-
ing many relevant items in the list of recommended
items. It also uses a binary relevance term.

NDCG Is a measure that rewards the system more for plac-
ing the many relevant items higher in the list of rec-
ommended items and differs from MAP in that it
uses the ground true rating values as its relevance
term.

ROC

Precision Is a measure of the ability of the recommender sys-
tem to only recommend items that are relevant in
the ground truth data

Recall Is a measure if the ability of the recommender sys-
tem to recommend as many of the items that are
relevant in the ground truth data

F1 Is the harmonic mean of precision and recall and
represents the system’s overall ability to perform
both well at both of these metrics

Other

Catalogue
coverage

Refers to the proportion of a company’s overall item
list that a recommender system includes in its rec-
ommendations

Diversity Refers to the diversity in the list of items recom-
mended to a particular user

Personalisation Refers to how unique a particular user’s list of rec-
ommended items is versus all other users

Table 2: Summary of the different evaluation metrics used to assess recommender sys-
tem performance.

27

Section 2 2.1

also mean that a large proportion of the company’s catalogue is not being recom-
mended to anyone. This may cause issues for the company as it might mean that a
lot of their stock is never sold. Similarly, if all the items in a recommendation list are
similar what happens if the model is wrong and the user actually dislikes all items
with that content profile? It is for these reasons amongst others that we provide a
range of evaluation metrics in our approach and theoretical write up.

Online versus offline evaluation

It is also worth briefly noting the definitions of the concepts of online versus offline
evaluation in the context of recommender systems. Online evaluation refers to evalu-
ating the effectiveness of recommendation algorithms through real interactions with
users. In the past it has been typically performed by ab-testing different algorithms
with different sub-groups of users then choosing the algorithm that performed best
on the sub-groups to be used in future.

However, more recently reinforcement learning approaches based on multi-armed
and contextual bandits have been adopted which adapt the recommendation algo-
rithm during the evaluation session based on the user’s feedback and in doing so
minimise the regret incurred in the evaluation process14.

By contrast offline evaluation refers to assessing the performance of a system using
historical data and it is much more common in the literature as a) it is easier to or-
ganise and b) it makes it easier to test recommender system algorithms on a variety
of data sets. Therefore, while online evaluation is a very exciting area and one that
we considered pursuing for this work we limit the evaluation of our system to the
offline context given the main contributions of this work are to assess the utility
of low-level video content on the accuracy of recommendations and we propose the
findings from this will have equal relevance in the online and offline context.

Raw recommender system accuracy

Once the data has been segmented the simplest and most obvious way to assess a
recommender system’s quality is by computing the error in its predictions versus the
test set. As discussed in Section 2.1.1, the explicit and implicit rating prediction
problem is usually cast as a regression problem and therefore typical regression er-
ror metrics can be used to evaluate recommender systems (and indeed to train them
as Equation 7 shows).

The most common regression metric is the mean squared error (MSE) defined as

14Regret refers to the loss in user satisfaction (and therefore profit) that results from following the
sub-optimal recommendation policy during algorithm evaluation. It is actually a huge source of lost
profits to a company and thus bandit algorithms have been a significant breakthrough in this area

28

Section 2 2.1

MSE =
1

|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)2. (16)

Where |R̂| is the number of ratings in the test set, r̂ui is the predicted rating and rui is
the ground-truth/actual rating. The shortcoming of using the MSE is that it is not in
units of rating and thus it is less easy to tell quickly tell by how much the algorithm
miscalculates the ratings. To improve upon this, the root mean squared error (RMSE)
and the mean absolute error (MAE) are common variations

RMSE =

√√
1

|R̂|

∑
r̂ui∈R̂

(rui − r̂ui)2. (17)

MAE =
1

|R̂|

∑
r̂ui∈R̂

|rui − r̂ui | (18)

While these terms make it easier to interpret the magnitude of the error they can
be improved further by normalising them, which in this context refers to modifying
their values to the domain between the maximum and minimum rating value. This
further improves interpretability as unbounded regression errors can easily be in a
range far greater than actual range of the rating scale used

NRMSE =
RMSE

rmax − rmin
(19)

NMAE =
MAE

rmax − rmin
(20)

Ranking accuracy evaluation through utility

While the accuracy metrics from the previous section evaluate the system’s accuracy
over all data points, ranking metrics typically evaluate the system’s effectiveness by
just looking at the top-k items recommended. Given that only a subset of the items in
a catalogue are recommended to a user in practice, it is often argued that analysing
a system in this way yields results that are more relevant to how the system will be
perceived in a real-world setting.

Generally speaking there are two forms of ranking metrics: those that compare the
ground-truth ranking to the recommender system’s ranking and those that use the
ground-truth rating to analyse the system’s ranking. The latter case are referred to
as utility based methods and we focus our analysis on these utility metrics.

The rationale for using utility based measures over general ranking measures (and
indeed over solely accuracy based metrics) is that we should analyse our system on
the basis of providing recommendations that a user might actually find useful and
therefore ranking items that the user actually likes highly is more important than

29

Section 2 2.1

simply getting the ranking order correct. This is particularly important in the typi-
cal case where recommended item lists are significantly shorter than the number of
items in the catalogue: utility metrics allow us to make the items at the top of the
list count for more than items further down the list.

So how do utility based metrics work in practice? The overarching idea is to have
two utility terms in the analysis metrics: one that measures the ground-truth util-
ity of the item to the user (where items with higher ground-truth ratings obviously
having higher utility to the user) and one that measures the position of the item in
the recommendation list (following the logic that items higher in the list have higher
utility to the user as they are more likely to get noticed and thus consumed).

In order to quantify utility in this way the concepts of recommended items and rel-
evant items and are important to understand. Recommended items are simpler to
understand - these are the items that the system actually recommends to the user.
The logic for what items get recommended is usually based on a threshold value
where any item that has a rating greater than this threshold makes it into the rec-
ommended list.

Relevance in the context of items recommended is defined as those items that are
actually liked by the user. It is thus based off of the ground truth data and again a
threshold is used to decide which items are relevant but there is further nuance in
the sense that relevance can can be binary or continuous/ordinal valued depending
on the evaluation metric used.

With these preparatory definitions out of the way we now consider the three main
ranking metrics we use in our system.

Mean reciprocal rank / average reciprocal hit-rate

The first metric we use is the mean reciprocal rank (MRR) (also known as the average
reciprocal hit-rate in the literature [29]). The logic behind this metric is to rank the
system based on the position of the first relevant item in the list and it is defined as
follows

MRR =
1
m

m∑
u=1

1
rankuj

(21)

In this equation m is the number of users, item j is the first relevant item, and rankuj
is the rank position of the first relevant item. Importantly, we use a binary definition
of relevance in our version of this metric and thus the numerator is 1. As rank is the
denominator, the MRR reduces as the first relevant item is found further down the
recommended list. The intuition behind this metric is thus how good the system is
at pushing relevant items to the user.

30

Section 2 2.1

Mean average precision

While MRR rank is a good first start towards a utility based evaluation system it
can be improved upon by taking into account not just the first relevant item in the
recommended items set but all relevant items in the set. To do this we use a metric
called the mean average precision (MAP) which is based off of the definitions of
precision and recall in the previous section. Mean average precision is calculated
by looking at the average precision (AP) of the system for each user and this latter
metric is defined as follows

AP =
1
N

N∑
k=1

P@k · rel(k) (22)

Here N is the number of recommended items to consider (where N <=N ′ and N ′ is
the total number of items recommended for each user and the logic for this limit be-
ing that a system will only recommend a subset of the items it calculates predictions
for) and k is each subset of these items from just the first item to the N th item. The
term P@k refers to the precision at k defined exactly as in Equation 26 and rel(k) is
the relevance of item k which is binary in this metric.

Mean average precision is then defined as the mean of the average precision across
all users m

MAP =
1
m

m∑
u=1

AP(u) (23)

The average precision part of the MAP metric is what allows it to improve upon
the MRR metric. The intuition is as follows: firstly, the MAP rewards the system
for all relevant recommendations made through the binary relevance term rel(k).
Moreover, through the P (k) term it rewards the system for front-loading the relevant
predictions - as P (k) is greatest when all recommendations up to and including k
are correct. Thus, MAP provides us with an overall utility score for all items on the
recommended list.

Normalised discounted cumulative gain

Can we go just one step further and reward the system for all relevant items in the
recommended list taking into account the ground-truth utility of each item?. Indeed
we can, the metric to use for this is the discounted cumulative gain (DCG) which
rewards the system by using a non-binary relevance and is defined as

DCG =
1
m

m∑
u=1

N∑
k=1

guk
log2(vk +1)

(24)

The limits of this sum are firstly over all users u in m and secondly over all items
j ∈ Iu up to position N in the ranked list. The term guj refers to the ground-truth

31

Section 2 2.1

utility of the items defined as guj = 2reluj − 1 where reluj is the aforementioned non-
binary relevance value of the item for which we use the ground truth ratings.

The term 1
log2(vj+1)

models the utility from the item’s position in the system’s gener-

ated list - where vj is the rank of item j in the list and thus the contribution of an
item to the DCG reduces when it becomes further down the list. Therefore, when
combined we can see that these terms reward the system in a similar way to the
terms in MAP except that the extent to which a user likes an item in the list (using
the ground-truth rating as a proxy) is also incorporated.

A useful extension to the DCG score is to normalise it so that values of the metric
can be compared between different data cuts and data sets. To achieve this the raw
DCG score is divided by the ideal discounted cumulative gain (IDCG) of the system
which is computed via equation 24 by using the ground-truth ranking in place of the
system’s ranking

NDCG =
DCG
IDCG

(25)

Ranking accuracy evaluation through receiver operating characteristic curves

An alternative way to evaluate ranking in recommender systems is by using preci-
sion and recall concepts to plot receiver operator characteristic curves that illustrate
the trade-offs to be made when deciding on the size of the recommendation list. The
concepts of precision and recall in recommender systems are similar to the same
concepts in the context of classification, except that the recommender systems pro-
poses a list of items the user might like rather than a single class label. Given this
list-based output and the fact that a recommender system will probably not recom-
mend all items that it calculates a prediction for it is common to see precision and
recall “@k” which refers to the precision and recall rate for the first k items in the list
of length N ′.

Formally, precision@k in our context is defined as

Precision@k = 100 · |Recommended(k)∩Relevant(k)|
|Recommended(k)|

(26)

Similarly, recall@k is defined as

Recall@k = 100 · |Recommended(k)∩Relevant(k)|
|Relevant|

(27)

Intuitively, we interpret these metrics as follows: the precision of a recommender
system algorithm rewards it for how well it recommends true positives (that is to
say items the user likes - relevant items) without also recommending false positives
(items the user does not like). On the other hand, recall rewards the system for how
well it recovers all true positives and is unconcerned by false positives.

32

Section 2 2.1

It should be clear from the definitions that a trade-off must be made between preci-
sion and recall and a very effective way to visualise this trade-off (and thus compare
different recommender system algorithms) is by plotting a receiver operating charac-
teristic curve. This consists of plotting the true positive rate versus the false positive
rate for different values of k15. The line/curve that these points create thus forms
the perimeter of an area - creatively called the area under the curve (AUC) - whose
size is proportional to how effective the algorithm is at increasing the true positive
rate while suppressing the false positive rate. We save further discussion on what
exactly we can infer from these plots until Section 4.

We also note that while it is not as informative as viewing the plots, a version of the
F1 score exists for recommender system - which is the harmonic mean of precision
and recall - and this is useful for rapidly analysing the trade-off. It is defined (similar
to as in other domains) as

F1@k =
2 ·Precision(k) ·Recall(k)
Precision(k) +Recall(k)

(28)

Finally, it is important to address the question of why this alternative view of a sys-
tem’s ranking performance is useful. Ultimately, the level of true or false positive
rates is an “acceptance criteria” that the company operating the recommender sys-
tem must decide upon. If the recall is too low then the user might miss items that
they actually like, causing the company to miss out on profits; by contrast, if the
precision is too low the system might recommend too many items that the user does
not like thus affecting the user experience and potentially causing churn from the
platform.

To take a real world example - imagine how frustrating it would be as a user to
constantly receive spam from a company recommending almost every item in their
catalogue. Precision and recall allow the company to quantify and control experi-
ences like these and decide on a level of both which is appropriate for their line of
business.

Coverage, diversity and personalisation - other ways of looking at recommender
system effectiveness

Beyond the conventional accuracy and rank based metrics there are several addi-
tional metrics that are worthy of note as they help to highlight additional features
of a recommender system that may be as important as accuracy depending on the
target domain[6]. Given our primary context is movie recommendation we opt to

15True positive rate is exactly equivalent to the definition for recall in equation 27 and the false
positive rate is defined as (where Iu is all possible items)

FPR(k) = 100 · |Recommended(k)−Relevant|
|Iu −Relevant|

33

Section 2 2.1

also assess our system along the dimensions of catalogue coverage, diversity and per-
sonalisation.

• Catalogue coverage: refers to a simple assessment of what proportion of a
company’s catalogue the recommender system is currently recommending. It
looks across all recommendations to all users and compares this to all unique
items in the catalogue. In this equation m is the number of users and I is the
set of all items

CC =
|
m⋃
u=1

topk-recommendations(u)|

|I |
(29)

• Diversity: refers to the amount of variety within a single user’s list measured
using a similarity metric on the features of the items in the list16. In other
words, it is a measure of the intralist similarity and the commonly held view is
that lists should be diverse to a) reduce the user’s fatigue at always seeing the
same thing, and b) hedge the risk that if the user dislikes one item in the list
then they are likely to dislike all its items if they are similar. In this equation
F(iu,x) refers to the features of items k and j, respectively

Diversity =
1
2m

m∑
u=1

∑
iu,k∈Iu

iu,k,iu,j∑
iu,j∈Iu

(1− cosine sim(F(iu,k),F(iu,j))) (30)

• Personalisation: where diversity refers to the amount of intralist variety gen-
erated by the algorithm, personalisation measures the amount of interlist diver-
sity. In other words, it is a measure of how well the algorithm has learned the
specific tastes of a user and this can be seen as a highly prized asset as it may
help build a lot of brand loyalty with the customer (e.g., “XX really know what
I like”). Importantly, additional feature representations do not need to be used
for items in this metric - rather the similarity measure is calculated directly on
the contents of the recommendation list, noted as I(ux) for each user i and j

Personalisation =
1
2

∑
ui∈U

ui,uj∑
uj∈U

(1− cosine sim(I(ui), I(uj))) (31)

Scalability

Finally, no evaluation of recommender systems would be complete without also con-
sidering the scalability of the systems built. Recommender systems are a well-know
“big data” task. To give an example, our target dataset (MovieLens 20M citemovie-
lens) consists of 27,000 movies and 138,000 users. While only 20 million explicit

16For simplicity and efficiency, we use one-hot encoded features for each item which represent the
genres of the movie

34

Section 2 2.2

ratings are provided for this dataset the overall number of cells in the rating matrix
is approximately 3.7 billion, and thus as many recommender system methods rely
on the resconstruction of the full rating matrix (see Section 2.1.2), we must always
be mindful of scalability when building recommender systems.

We consider the following scalability dimensions

• Training time: this refers to the time taken to train the model from a ran-
dom initialisation state to a level of accuracy that is deemed acceptable to the
operator of the system and we measure this in wall clock time

• Prediction time: this refers to the time taken to generate a list of recommen-
dations for a set of users and again this is measured in wall clock time

• Memory requirements: this refers to the memory/RAM requirements of the
system and we measure it in gigabytes (GB)

Interpretability

Finally, it is worth quickly noting another property that is becoming increasingly de-
sirable in recommender systems as algorithms evolve - interpretability.

Despite the accuracy of cutting edge matrix factorisation methods, they typically fail
at producing interpretable recommendations as the latent factor spaces they trawl
through to generate recommendations often have little tangible meaning. There-
fore, while users may be more pleased overall with the list of recommendations
these algorithms have produced for them, the human touch of explaining why the
recommender thinks they might like them is lost.

We do not formally assess our systems along interpretability lines in this project (as
this is hard in an offline setting without user involvement) but it is worth noting that
increasingly more research effort in the field is going into defining and designing
explainable systems[59].

Included in these works is proposals for offline interpretability metrics such as mean
explainable precision, which assesses the model’s ability to prioritise only recom-
mending items it can explain and recommending, and model fidelity, which rewards
the model for having more explainable items in its recommendation lists.

2.2 Audio-visual content representation and analysis

2.2.1 Extracting deep visual features from audiovisual content

A visual stream of a video consists of a sequence of image frames shot at a certain
rate of frames per second. As a result, the first step to extracting visual features from
a video is to extract features from individual image frames.

35

Section 2 2.2

For a long time the field of computer vision looked to handcrafted feature extraction
techniques such as SIFT, SURF and HOG to generate these features but the mantle of
“go to” method has since been seized by deep convolutional neural networks(CNNs)
which can produce information rich feature descriptors for images they have not
seen before (so long as they have been pretrained on a sufficiently large training
image set)[41].

A detailed explanation of CNNs is out of scope for this project but a brief explanation
of how they represent images is important. As images - which are represented in raw
pixel form in the input - are passed through the network, the network reduces their
dimensionality and performs a type of feature selection on them (which is invariant
to the location of features in the images).

The complexity of these feature representations is greater the deeper into the archi-
tecture they occur. So for example, in early layers the features may be simple shapes
such as lines and edges but further into the network they may represent specific fea-
tures of images (like human facial features).

The final layers of the CNN architecture are then used in a discriminatory way to
make predictions (often on what the raw image contains) based off of these inner
feature representations. Networks such as AlexNet[25], VGG16[61] and ResNet[16]
are well-known for their performance on such tasks (for example on classifying im-
ages in the vast image catalogue that is ImageNet[28]).

However, the great power of these networks - and how we use them - is that the
deep feature representations they generate need not be used for the same discrimi-
natory task on which they are trained. In fact, they can easily be extracted from the
network and used as input into a completely different model.

Moreover, there is no need that the images run through the CNN when using it in
this feature extraction use case be from the same domain as the images used to train
the model. As the CNN has built up an internal understanding of the contents of
images, the features extracted from it will still be information-rich and meaningful
even if it has not seen the images from which we wish to extract features before.

Thus, given the benefits of this method, as well as its prevalence throughout the
literature in a broad range of domains[41] (including in the field of recommender
systems[24]), we choose to implement it as our visual feature extraction technique.
For more details on exactly how we implement it in our feature extraction pipeline
please see Section 4.2 for more details.

2.2.2 Extracting deep audio features from audiovisual content

Audio features can be extracted from the audio stream of videos in a way that is
largely analogous to the visual feature extraction discussed in the previous section.
What ImageNet is to visual feature representation learning, AudioSet[14] is to au-

36

Section 2 2.2

dio feature representation learning - a vast, labelled audio clip catalogue which re-
searchers can use as a training ground for their audio classification models.

Taking a conceptually similar approach to how AlexNet and VGG16 process raw im-
ages17, VGGish[21] is a neural network built with convolutional layers that achieves
excellent results when taking raw audio files from AudioSet and performing various
discriminatory tasks with them (for example, the audio event detection classification
task). Thus, the same unsupervised feature extraction process can be performed with
VGGish with the same result - a compact, but information-rich feature descriptor for
an audio frame.

However, the additional challenge with raw audio signal processing - is that it does
not come in the convenient extraction ready form that raw visual signals do. Rather,
audio signal is one-dimensional and sampled at a very high sample rate (in the case
of our movie trailers 44,1K per second) and thus some preprocessing must be per-
formed before it can be provided to VGGish.

The solution to this preprocessing challenge is to create mel spectrogram features
from the raw audio signal first. In brief, a spectrogram is a representation of the
spectrum of frequencies of a signal as it varies over time. They are typically com-
puted using Fourier Transforms to convert the audio signal to the frequency domain
and then gathering together these frequencies over time.

The mel part of mel spectrogram refers to converting these resultant frequencies to
the Mel Scale. This is an alternative frequency space which has been intentionally
designed to place frequencies at distances from one another that match how humans
perceive the distance between sounds at those frequencies. It thus puts a lot of
emphasis on sounds recorded that are in the human audible range.

2.2.3 Learning from sequences of audiovisual features

Recurrent neural networks

While traditional neural networks (such as the two-dimensional visual CNNs dis-
cussed in the previous section) have many powerful applications, one thing that
they lack is the ability to persist state between items of data belonging to the same
sequence. In other words, they have no memory capacity.

This can be a severe limitation when working with data that has temporal depen-
dencies (for example, the different scenes within a trailer) but it can be solved by
making use of a branch of memory-enabled neural network architectures known as

17It should be noted that the main conceptual difference between these approaches is that whereas
image CNNs operate on two-dimensional images at a single timestep, audio CNNs operate on a
one-dimensional audio signal with the second dimension being time. Despite this deviation in the
semantics of the dimensions, convolutional layers are just as effective at learning meaningful repre-
sentations of the signals.

37

Section 2 2.2

recurrent neural networks (RNNs).

Recurrent neural networks extend the standard neural network equations (which
can be stated concisely as ŷ = f (W T

hyh(x)+by) and h(x) = f (W T
xhx+bh)) by introducing

a recurrence term into the formulation whereby each hidden state at time step t is
calculated by considering both a contribution from the input at t and a contribution
from the state of the network in the previous time step t − 1. More formally

ht = f
′(W T

xhxt +W
T
hhht−1 + bh) (32)

ŷt = f (W
T
hyht + by) (33)

Here W and b are the learnable parameters of the network and h represents the acti-
vation of hidden layers in the network. Perhaps more intuitively, the network control
flow this creates is visualised in Figure 7 where on the left hand side the network
is visualised in its recurrent form and on the right hand side it is unrolled, showing
how state propagates through the system.

Figure 7: The conceptual structure of a recurrent neural network (RNN). The diagram
on the right shows it in unrolled form.

The training of RNNs is not dissimilar to the training of other neural network archi-
tectures. Gradient descent and backpropagation are used to minimise the error of the
network relative to ground truth, with the only difference for RNNs being that the
gradient is propagated back through the hidden layers at t and to the hidden layers
at t − 1.

∂E
∂W

=
T∑
t=1

∂Et
∂W

(34)

∂Et
∂W

=
t∑
k=1

∂Et
∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂W

(35)

In these equations E represents the error. Equation 34 represents the fact that the
total error in ths system is the sum of each error at each time step18. Equation 35

18However, it is important to note that there is only an error at a time step if there is a correspond-
ing label at that time step, which is not always the case depending on the problem the network is
addressing.

38

Section 2 2.2

shows how the error is backpropagated through the system (which has a temporal
contribution recalling the recurrence in Equation 32).

Long short-term memory networks (LSTMs)

However, recurrent neural networks have a major shortcoming when used in the
form of Equations 34 and 35 - namely, the vanishing gradient problem19.

This refers to the phenomenon of the gradient in the error (with respect to the net-
work parameters) becoming very small as it is backpropagated further back through
the network. It tends to happen when the RNN has grown to a certain length and it
is a problem as it means none of the network parameters receive any error gradient
signal with which to update themselves after a certain point in the network. Thus,
training stalls in a far from optimal state. This has the disappointing consequence
that RNNs cannot be used to modelled sequences beyond a certain length and thus
long-term temporal dependencies cannot be learned.

Fortunately, there is a solution to this: modifying the architecture of the network to
that of a long short-term memory network (LSTM). The conceptual architecture of
such a network is displayed in Figure 8.

LSTMs have been designed in such a way so as to mitigate the vanishing gradient
problem and thus long-term dependencies in the data are easily learned and retained
throughout training. They achieve this by the carefully configured cell structure
displayed in Figure 8.

Figure 8: The conceptual structure of a long short term memory network (LSTM). With
explicit thanks to Christopher Olah[50].

19It is worthy of a quick note that the opposite can also happen to the network - the so called
exploding gradient problem - with similarly disastrous repercussions. Whether one or the other occurs
depends on the extent of the recurrent weights matrix Whh from Equation 32

39

Section 2 2.2

At a very high-level, the configuration of logic gates within the cell - both those
consisting of pointwise operations and learnable neural network operations - allow
it to learn a strategy on what information to keep, what information to forget, what
information to output, and how to update the cell state. It achieves each of these in
turn by the following series of equations

ft = σ (Wf · [ht−1,xt] + bf) (36)

it = σ (Wi · [ht−1,xt] + bi) (37)

C̃t = tanh(WC · [ht−1,xt] + bC) (38)
ot = σ (Wo · [ht−1,xt] + bo) (39)
ht = ot ⊗ tanh(CT) (40)

Ct = ftt−1 + it ⊗ C̃t (41)

Namely, Equation 36 is the forget gate layer, Equations 37 and 38 are the input gate
layer, Equations 39 and 40 are the output gate layer, and Equation 41 represents the
update in cell state (where Xt−1 is the output of the cell at t − 1). Ct represents the
state of the LSTM cell at time t and is a separate state from the input data xt and the
hidden weight activations ht.

Thus, a network structure is born that can learn how to prioritise what information
it retains over time and which can be used on sequences of arbitrary length without
falling foul of the vanishing gradient problem. For more detail on how exactly the
gates defined above allow the LSTM to achieve this please reference the original pa-
per[20].

At this juncture we should also briefly mention that gated recurrent units (GRUs)[15]
were also considered as a recurrent network architecture for this work. They pro-
vide similar performance to LSTMs with a largely similar architecture. While they
could be equally valuable in the task of audiovisual content learning we chose to per-
severe with LSTMs because of their prevalence in the audiovisual learning literature.

Long-term recurrent convolutional networks (LRCNs)

Long-term recurrent convolutional networks (LRCNs)[13] are a type of deep network
architecture that excel at audiovisual learning tasks. They combine the best of the
CNN and RNN architectures discussed in the previous sections and are as such often
referred to as doubly deep in the sense that they are deep in both the spatial and
temporal dimensions.

This architecture type has been put to effective use in a broad range of visual infor-
mation processing tasks such as activity recognition, video captioning and human
emotion detection from facial expressions[18] with excellent results versus non-
recurrent baselines[13].

40

Section 2 2.2

Figure 9: The conceptual structure of a long-term recurrent convolutional networks
(LRCNs)

Broadly speaking the tasks which it can perform can be categorised into three main
types

1. Sequential input, static output: 〈x1,x2..,xT 〉 7→ y. Where, for example, the goal
would be to predict an overall label for the video taking into account all of its
frames

2. Static input, sequential output: x 7→ 〈y1, y2.., yT ′〉. Where, for example, a static
image must be categorised with a sequence of labels - something that arises
when one needs to caption an image

3. Sequential input, sequential output: 〈x1,x2..,xT 〉 7→ 〈y1, y2.., yT ′〉 where, for ex-
ample, the goal would be to predict a sequence of labels for a video based on
a sequence of input frames (noting that T \ T ′ , ∅ is permitted)

Briefly, LRCNs achieve their performance increase over non-temporal visual base-
lines on these tasks by allowing the visual representations that they learn to include
temporal dependencies. As video content typically gets a lot of its semantics from
the sequence of frames it contains - rather than from individual frames in isolation -
it follows that an architecture that can model how this content changes over time is

41

Section 2 2.2

a better model for the system.

As our dataset provides one label per movie trailer we focus on use case (1) of LR-
CNs extending the reasoning to also model audio content over time. The conceptual
architecture for this use case is displayed in Figure 9.

It should also be noted that we operate the LRCN architecture in a two step fashion,
whereby we first extract visual and audio features from the trailers and then feed
them to the LSTM regression model. The rationale for this was stemmed from the
size of our audiovisual input (typically 180s long with visual streams at 25 FPS and
audio at 41,1K FPS with over 10K trailers in total).

While a one step LRCN architecture can be used on data of this size it presents a
significant compute and RAM overhead which is not a necessary challenge for us to
tackle to prove the viability of our approach. More details on our approach can be
found in Sections 3 and 4.2.

2.2.4 The semantic gap

Finally, no review of the audiovisual processing literature would be complete with-
out quickly addressing the notion of the semantic gap[3, 46] between the low-level
representation of audiovisual content and how users actually perceive and interpret
it.

In reality, the size of the semantic gap usually depends on a trade-off between the
level of interpretability and the level of descriptive power to endow a model with.
In the context of content-based recommender systems (see Section 2.1.3), inter-
pretability has historically been achieved by learning from human encoded content
descriptors (such as genre and sentiment tags) which by definition have semantics
that humans can understand.

However, these labels are limited in their expressiveness - for example, two films
from the same genre may appear similar from their high-level tags but in practice
they actually provide a very different audiovisual and emotional experience to their
viewers. Moreover, human labellers are expensive and, as the amount of video con-
tent available online is growing at an exponential rate, they cannot solely be relied
upon to provide interpretations to video content20.

As a result, researchers and companies are looking towards the low-level video rep-
resentation learning techniques discussed in the previous sections to provide a more
granular representation of the video content and to do so in an automated and scal-
able fashion. However, with this additional descriptive power comes the downside

20For audiovisual content growth figures please reference: https://www.cisco.com/

c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/

white-paper-c11-738429.html

42

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html

Section 2 2.2

of less tangible interpretations for the new dimensions - hence the trade-off.

Unfortunately, there is not yet a silver bullet solution to bridge this gap when work-
ing with low-level content features. However, there are some heuristics that can be
followed to narrow the gap such as using feature descriptors for inputs from models
that have achieved semantically understandable results and formulating the prob-
lem in such a way so as to learn as many correlations as possible between low-level
content and human labels.

In our work we follow these guidelines where we can. However, formally designing
and assessing our system to quantify its semantic gap is saved for future work (see
Section 6.2).

43

Section 3 3.2

3 Our approach

3.1 Using audiovisual content to enhance collaborative filtering
models

As outlined in Section 1.2, our research questions whether audiovisual trailer con-
tent has a part to play in improving the quality of recommender systems. Because
collaborative filtering models have achieved the best results for over a decade - and
because their deployment is ubiquitous in industry - we choose to focus our work on
how audiovisual content can enhance this type of recommender system specifically.

This research aim thus straddles our work between the two exciting new fields of
neural collaborative filtering[23] - which achieves state of the art recommendation
accuracy results[dlrsreview] - and deep learning for automated audiovisual content
analysis and interpretation[5].

As both of these areas base their work on a deep learning toolkit we are encouraged
to continue working with these technologies and architectures for the benefits this
will bring in terms of being able to replicate the results of their work and to more
easily achieve interoperability between the different modules of our model (as ev-
erything can be written in the same deep learning library).

Regarding the taxonomy of recommender system types discussed in Section 2, our
research aims guide us in the direction of designing a hybrid recommender system.
Specifically, our model can be seen as a feature combination hybrid[4] as we leverage
information from collaborative and content-based sources to reach a single predic-
tion of user rating.

The following subsections outline the theory of our proposed approach.

3.2 Theory of our proposal

To assess our hypothesis that audiovisual content information can enhance collab-
orative filtering models we devise a model for which the target function is defined
as

r̂ui = f (P
T vUu ,Q

T vIi , fi(ti ∈ Ti))|P ,Q,Θ) = φout(φX(...(P
TV U

u ,Q
T vIi , fi)...)) (42)

Here, all of the terms are defined as in Equation 13 with the exception of fi(ti ∈ Ti)
which is a new longitudinal feature term representing the audiovisual content of the
item over the duration of the trailer (where ti represents a temporal portion of trailer
i and Ti represents all time portions within trailer i).

Equation 42 can be stated in an alternative form so as to emphasise the different
“branches” of our model for the collaborative filtering and audiovisual content infor-
mation

44

Section 3 3.3

r̂ui = φout(φX(...(φCF,N (P
TV U

u ,Q
T vIi) + βφAV ,M(fi))...)) (43)

φCF,N (P
TV U

u ,Q
T vIi) = φCF,N−1(...φCF,2(φCF,1(P

TV U
u ,Q

T vIi))...) (44)
φAV ,M(fi) = φAV ,M−1(...φAV ,2(φAV ,1(fi))...) (45)

In these equations, N , M and X represent the number of hidden layers in the col-
laborative filtering, audiovisual and “joined” branches of the network respectively. β
is a weighting term that controls the influence of the two branches when they are
concatenated together.

The audiovisual content is in the form of movie trailers which on average consist of
about 180 seconds of audio and visual frames at 44,1K and 25 frames per second, re-
spectively. Therefore, using the data in this raw form is not feasible due to the curse
of dimensionality and the negative consequences this brings (as discussed in Section
1.2). Thus, it is essential that our model incorporates a dimensionality reduction
approach that reduces the feature space volume while preserving its variance and
thus the ability to use it in predictive models.

We therefore propose a model that reduces the dimensionality of the raw features
before they are provided to the model that implements Equation 42. This model has
the form

fi(ti ∈ Ti) = φe(t′i ∈ T
′
i |Θe) (46)

Where t′i ∈ T
′
i (where |T ′i |>>|Ti |) represents the features in their full-dimensional

space and φe represents the dimensionality reduction model (with model parame-
ters Θe).

As finding the most semantically meaningful reduced dimensionality representation
of audiovisual content is a full research project in its own right - and not the focus of
this project - we opt to draw from the relevant literature on the semantic reduction
and segmentation of audiovisual content (as summarised in Section 2.2) rather than
to propose anything novel on this front.

Therefore, we program the parameters for the model in Equation 46 a priori based
on the findings of these works, making minor adjustments during the experimental
works to ensure the extracted features are preserving a satisfactory level of seman-
tics. The full details of how we implemented this submodel can be found in Section
4.2.

We elaborate on the theory of how we propose to implement Equation 42 in the next
section.

45

Section 3 3.3

Figure 10: Deep Collaborative Filtering with AV Content Information - Model 1.

3.3 Our proposed network architectures

To combine audiovisual content with collaborative filtering data we need a model
architecture that has a module for both modalities and then a fusion module that
combines their outputs into a final prediction of the user review. As such, we propose
the following network architectures (depicted graphically in Figures 10-12)

1. Deep Collaborative Filtering with AV Content Information - Model 1

• This model combines the core of the neural collaborative filtering model
discussed in Section 2.1.2 (Equation 13) with the core of the long-term re-
current convolutional network (LRCN) model21 discussed in Section 2.2.3

• The audiovisual content branch of the model consists of a separate LSTM
sub-branch for the audio and visual modalities followed by dense layers
to fuse them. The rationale for separate modality sub-branches is that
a) it ensures neither modality dominates the other at the input stage (it
should be noted that visual features are 4096 dimensional whereas audio
features are 128 dimensional) and b) that additional modalities could in
future be added to the content branch with minimal rework (see Section
6.2)

21However, it should be noted that we operate our LRCN model in a two step fashion by placing the
convolutional unit in the feature extraction process and the recurrent unit in the collaborative filtering
model. As such, the weights of the convolutional part of the model are not learnable. Operating
the model “as one” would be an exciting extension to the work but presents compute and memory
challenges due to the size of the raw trailer features.

46

Section 3 3.3

Figure 11: Deep Collaborative Filtering with AV Content Information - Model 2.

• The logic behind the overall model architecture is to allow both branches
to transform their respective input features in the early layers of the net-
work before concatenating them at a certain point in the architecture and
applying more hidden layers with non-linear activation functions after the
concatenation point

• Thus, the model is able to learn the most relevant way to fuse these modal-
ities and we treat the point at which the two branches are concatenated
as a hyperparameter in our experimental approach (β in Equation 43)

2. Deep Collaborative Filtering with AV Content Information Model 2

• This model is similar to (1) but varies in the sense that there is a different
user embedding module for both the collaborative filtering module and
the av-content based module. This makes the architecture closer to that
proposed by the authors of [52] who assess how images of products can
enhance collaborative filtering models for online marketplaces (such as
Amazon.com)

• The logic behind having a second user embedding module is that it should
allow the av-content branch of the model to take into account individual
user effects early in its transformation of the input features which may
lead to better predictions

• A further argument for adopting this architecture is that it facilitates pre-
training of the model’s individual components - an approach that is well-
known to enhance a model’s learning capacity[10] and that has achieved
promising results in other neural collaborative filtering applications[23]

47

Section 3 3.4

Figure 12: LSTM with AV Content Information Model.

• The pre-training approach with this architecture consists of first train-
ing the optimal deep collaborative filtering branch and av-content branch
separately before combining them into this model’s architecture and re-
suming model training

3. LSTM with AV Content Information Model (LstmCont)

• Finally, this model just contains the av-content branch of (2) with a final
dense layer to allow it to predict. The logic for separating this branch
into its own model was a) to allow us to isolate and analyse the effect of
incorporating audiovisual features into the model, and b) to facilitate the
pretraining of (2) discussed above

All of our models are parameterised with non-linear hidden layer activation func-
tions (such as RELU) and additional layers (such as dropout layers) that are known
to promote a deep model’s learning and generalisation capabilities. The cost func-
tion used to train the network is discussed in the next section.

3.4 Our formulation of the rating prediction problem

As discussed in Section 2.1.1, the recommender system problem can be formulated
in many ways. Therefore, it is important to specify how we have cast it in our ap-
proach.

48

Section 3 3.5

We treat the problem as a matrix completion problem where the rating matrix con-
tains explicit ratings. As such, the cost function for our model is

eui =
∑

rui∈Rtrain

(rui − r̂ui)2 +λ
∑
w

w2 (47)

Where r̂ui are the ratings our model predicts, rui are the ground truth rating, and λ
is a regularisation term we apply to our network weights (to prevent overfitting).

As this formulation of the problem makes it a regression - which is intended for val-
ues in a continuous and unbounded domain - whereas our rating domain is ordinal
between 0.5 and 5.0, we constrain the prediction of our model by applying the sig-
moid activation function to its final neuron output (thus forcing it to lie in the range
[0,1]) and then scaling this value to lie in the range [0.5, 5.0]. The final layer of our
model is thus parameterised as

r̂ui = σ (θX(P
T vUu ,Q

T vIi , fi(ti ∈ Ti))) ∗ (Rmax −Rmin) +Rmin (48)

Where σ represents the sigmoid function (σ (x) = 1
1+e−x), Rmin and Rmax are the min

and max ratings in the training data, and θX(P T vUu ,Q
T vIi , fi(ti ∈ Ti)) represents the

output of the final hidden layer of the network.

We briefly considered encoding the data in such a way so as to cast the problem
as an ordinal regression problem[39] but found this was not a common approach
in the literature. Moreover, we considered stating the problem for implicit rating
prediction but assign this to future work, reassured by the literature that our overall
architecture[23] could be easily modified to generate these types of predictions.

Finally, detailed information on how we prepared the rating data to assess the item
non cold and item hard cold start scenario can be found in Section 4.1.2.

3.5 Elements not considered in the scope of our project

Finally, we quickly summarise possible modifications / extensions to our work that
were considered but not included in the scope of this project for various reasons

• Different video summarisation methodologies:

– On the visual stream side we considered even more recent architectures
than LRCN that achieve state of the art results[7, 9]. These are based
around “3D convolutional” units with the extra dimension representing
time. While it is highly likely that the embeddings these models can pro-
duce would be a more meaningful summary of visual video content, run-
ning these models requires far greater compute, memory and parameter-
isation effort

49

Section 3 3.5

– On the audio stream side we considered using i-vectors in place of embed-
dings extracted from the VGGish model given their prevalence in the au-
dio classification and speaker recognition literature[17]. However, after
an in-depth assessment felt that the parameterisation process (whereby
a global extraction model must be trained on the training data before
individual embeddings can be extracted) risked making our results too
specific to our chosen dataset. Moreover, the strong results of VGGish -
a very recent model - versus baselines such as i-vectors on many audio
tasks suggest it will usher in a paradigm shift in how audio content is
represented

• Different content modalities

– We considered adding additional content modalities to our architecture
and workflow such as the script of the trailers. However, as this was not
essential to prove the validity of our approach we assign this extension to
our future work

• User cold start scenarios

– We also do not consider any user cold start scenarios in our work which
are an important issue that collaborative filtering based recommender sys-
tems face. Our rationale for this is that it is unlikely adding information
on the audiovisual content of the items will address the user cold start
scenario. However, combining such capabilities with our model - most
notably through recent active learning techniques[48, 31] - would be an
exciting piece of future work

50

Section 4 4.1

4 Experiments and results

4.1 Ground truth data overview

4.1.1 Data overview

In this sub-section we provide an introduction to the rating data that we use as
ground truth in our experiments before discussing in detail in the next sub-section
how we sample from this data to create meaningful model assessment scenarios.

Given we are interested in the interplay between audio-visual film content and user
enjoyment we use the MovieLens dataset[34] as our primary source. The MovieLens
project provides different sized sets of movie ratings (and associated metadata such
as genre tags) for researchers to use freely.

Of the sets available, we opted to use the “MovieLens 20M” dataset for two reasons:
firstly, it is the largest and most up to date version of their data, thus giving us as
many ground truth data points to work with as possible, and secondly because Grou-
pLens provide a list of YouTube urls that link a significant portion of the movies in the
dataset to their trailers on YouTube. Therefore, the task of retrieving and processing
the trailers for each movie was made more efficient by this mapping.

During our trailer download work (see Section 4.2), we found that not all movies
in the “MovieLens 20M” dataset had high quality trailers available on YouTube (for
example, the links provided might be broken or not available in our region) but that
a significant portion did. Thus, rather than searching elsewhere for missing trailers
we opted to work with a marginally smaller version of the original dataset.

For clarity in the discussion we term our version of the dataset “MovieLens AV” (AV
for “audiovisual”). Table 3 provides a high-level summary of the difference between
our ground-truth rating set and the original.

Table 3: Summary of MovieLens AV dataset versus original MovieLens 20M dataset22

|M | |U | |R| |R|
|M |

|R|
|U | Years Genres Scale

ML 20M 26,7K 138,4K 20.0M 747.8 144.4 1900-2015 20 0.5-5.0
ML AV 12,3K 138,4K 13.1M 1062.7 94.8 1970-2015 20 0.5-5.0

It is important to highlight several interesting characteristics of the ground truth
rating data in this section as they explain how and why we parameterised our exper-
iments in the way we did (which we present in the subsequent sections)

• Decision to take a subset of available years: despite having trailers available
for movies all the way back until 1900 we decided to stop our assessment of

22|M | is number of movies, |U | is number of users and |R| is number of ratings. NB: more than one
genre tag can apply to a single movie - see Figure 13.

51

Section 4 4.1

Figure 13: Cooccurrence of genres in MovieLens AV dataset.

trailers at 1970. The rationale for this is that the trailers from before 1970 were
a) often in black and white (which would require us to correct for the effect
of colour in our visual feature extraction pipeline), and b) often of notably
different quality than trailers after 1970 (for example, many of the videos were
of lower audio-visual quality as well as editing quality).

• Rating value distributions

– Overall: the overall rating value distribution is displayed in Figure 14.
Visualising this distribution is important as it allows us to recognise the
general bias of users towards higher ratings (and reluctance to give very
low ratings). While we do not explicitly correct for this in our models -
as to do so would introduce a modelling bias that is not representative of
the ground-truth - it is very helpful when interpreting our results

– By decade: the summary statistics for rating values by decade are dis-
played in Figure 15. From this we can draw two important insights

1. It is clear that the central tendency of the entire dataset (both mean
and median) is towards 3.5. Thus, when deciding on a value to use
as the relevance/recommended threshold value for our ranking results
it made most sense to take this value (see Section 2.1.6 on ranking
metrics)

2. There is limited difference in the rating value distributions between
decades (with the exception of 1970-1979, which has a larger pro-
portion of higher rated movies). This is relevant as when designing
and initially training our model we worked on subsets of the data
by decade (for example, the last two decades) and thus knowing the
rating distribution of this sample matched the population distribution

52

Section 4 4.1

Figure 14: Ground truth rating distributions by value in MovieLens AV dataset.

gave us confidence that our model and results would scale to larger
datasets

– By genre: we also analysed the rating distribution by genre as shown in
Figure 16.a which shows comparatively more variance in rating, for ex-
ample with Film Noir and War films generally being rated the highest and
Horror films being rated the lowest. This distribution is most descriptive
when used in conjunction with Figure 16.b - which shows the number of
films by genre by decade. Together these plots give us insight into how
the data is distributed in decade based subsets which gives more intuition
when training the models. For example, we see that in the half-decade
between 2010-15 IMAX films are far more prevalent than they are in any
past decade and as they are rated on average higher this may widen our
rating distribution. Similarly, in this same timeframe there are proportion-
ally less Comedy movies - which tend to be rated slightly below average
- which combined with the IMAX trend may explain why the average for
2010-15 is slightly above the previous two decades in Figure 15

• Rating count distributions: Finally, in Figures 17 and 18 we show several
representations of the “long-tail” phenomena for items and users, respectively.
We make extensive reference to how we use the knowledge from these plots to
design the evaluation scenarios in the next subsection

4.1.2 Data scenarios

Given our research hypotheses that incorporating audiovisual content into collabo-
rative filtering models would enhance recommendation quality (in particular in the

53

Section 4 4.1

Figure 15: Ground truth rating value distribution by decade in MovieLens AV dataset.

item cold start regime) it was important that we set up data scenarios that isolated
the impact of the audiovisual feature injection. To this end, we devised two scenarios
in which to evaluate our models (which are depicted graphically in Figure 19)23

1. Item non-cold start: where all items in the test set are available during training
time and there are many training reviews for each of these items (i.e. 50% of
the data for the test items is added to the training set)

2. Item hard-cold start: where no items in the test set are available during train-
ing time, and thus the model only learns on items that it will not be evaluated
on (i.e. 0% of the data for the test items is added to the training set)

Importantly, as we are interested in assessing the impact of audiovisual content on
alleviating item cold start we impose a simple constraint on the number of reviews
per user in the rating data (and in doing so we also constrain the matrix sparsity).

We do this by sampling a fixed number of reviews per user from the starting rating
data24 before performing a train/validation/test split for the given scenario. To pro-
vide at least some variability in user review sparsity we consider the settings where

23It should be noted that for meaningful comparison of results between scenarios we used random
number generator seeds to ensure that the contents of the test set were exactly the same between
scenarios. All of our results were tested and replicable from a variety of initial seeds and thus we are
confident that are results represent the generalisation capability of our model.

24Given the size of the dataset (and as a result the training times) we started our scenario sampling
from subsets of the rating data. We specifically created starting subsets of: a) the top 400 items and
top 600 users, b) the top 1000 items and top 1500 users, and c) the top 4000 items and top 6000
users. Here “top” is defined as the items/users who have received/provided the most reviews. Overall
we found that our model performs consistently over the size of the dataset and we plan to run our
model on even larger datasets as part of future work.

54

Section 4 4.1

Figure 16: (a) The distribution of rating values by genre, and (b) the proportion of
genre reviews per decade.

55

Section 4 4.1

Figure 17: Movie rating count distribution in MovieLens AV dataset.

Figure 18: User rating count distribution in MovieLens AV dataset.

each user starts (before train/val/test split) with 20, 40 and 80 item reviews.

This user rating sampling strategy has 3 notable benefits: a) it removes any effects
that may result from user cold start in the results (or indeed the opposite, where a
small set of users may account for the majority of reviews) thus making our results
more representative of item cold start, b) it imposes a rating sparsity that is repre-
sentative for the majority of users and items in a company’s catalogue (rather than
of those with the most reviews), and c) it also reduces the size of the training data
thus reducing model training times (which can be very useful when running hyper-
parameter optimisation).

By referencing Figures 17 and 18 we can position our scenarios relative to the ac-
tual density of ratings by items and users, respectively. Figures 17.a and 17.b show
the movie “long tail” for all items and the bottom 70% of items, respectively. Our
scenarios test the model at different positions on this curve. So, for example, the
item non-cold start scenario tests the model towards the left hand side of the curve
whereas the item hard-cold start scenario tests the model to the extreme right of the
curve, where the items have not received any reviews yet.

For the additional user sparsity adjustment Figures 18.b and 18.c are the most infor-
mative plots. By limiting the number of ratings per user to between 20 and 80 we
can see that our model is representative of the middle 50% of users (between 30%
and 80%) in the data - in other words the users who have provided neither the most
nor the least ratings.

56

Section 4 4.2

Figure 19: Data scenarios used to assess the recommendation capacity of our models.

Additionally, it should be noted that while maintaining these scenarios we strictly
follow the cross-validation requirements for recommender systems (and machine
learning models more generally). That is to say, we create a train, validation and
test fold in our data before training the model and only allow the model to “see”
the train data for weight updates and validation data for hyperparameter tuning (by
way of calculating the validation loss every N training epochs and updating e.g. the
learning rate accordingly) during training time.

The test data is then only used for evaluation of the model at the end of training -
i.e. it is at no point used in the training process - so that our reported results are
representative of the model’s ability to generalise to new data. As our data is large
we create two folds for our experiments; therefore, all items are evaluated in the
test set exactly once.

4.2 Audio-visual feature extraction

4.2.1 Experimental approach

Given the length and complexity of movie trailers as an input type the feature ex-
traction portion of our work was not trivial.

With the MovieLens AV dataset - that consists of 12,3K trailers of ~180 seconds in
length - we had to build a feature extraction pipeline that could process ~615 hours

57

Section 4 4.2

of audiovisual data (or ~55,3M individual visual frames and ~90,7B individual au-
dio frames).

In Appendix D.2 we briefly discuss the engineering challenges faced and resulting
system design as they are important learnings from the project; in this section we
focus on our implementation of the feature extraction theory introduced in 2.2.

The overarching goal of the feature extraction process - as discussed in Section 1.2 -
was extracting features for subclips of the movie trailers that were both i) perceptu-
ally complete and ii) semantically meaningful.

To be perceptually complete was relatively straightforward - we chose to initially ex-
tract one feature representation for each media type through which a user experi-
ences a trailer. Hence, the decision to have an audio and visual feature representa-
tion.

To be semantically meaningful was more complex. As discussed in Section 2.2.4 the
phenomenon of the semantic gap is well documented in content-based recommender
systems that use low-level audiovisual content and it is logical to conclude that this
will affect our approach also. The issue is that it is hard to elicit whether or not a
feature representation is meaningful or not until actually running experiments with
it in the target domain (and even then the conclusions of these experiments may not
be trivial).

Thus, we adopted a pragmatic approach in our feature extraction work whereby we
extracted features by modality as per the state of the art literature recommendation
for semantically meaningful representations and created variations of these features
so that we could investigate how varying them impacted prediction results.

Then, before using our features in the rating prediction scenario discussed in Section
4.3 we applied simple analyses to them to check that at least some instances with
different semantics were being extracted (the results of this are presented in Section
4.2), with the intention of leaving the assessment of whether these semantics were
truly meaningful until the collaborative filtering stage.

The specific details of our feature extraction process are as follows

• Visual feature extraction: for our visual feature representation we extract
neural features for each video frame (of dimensionality 4,096) by using a
pre-trained convolutional neural network (this technique is discussed in more
depth in Section 2.2.1). We opted to use the pretrained AlexNet25[25] model as
it is relatively lightweight (in terms of number of parameters and thus memory
requirements) while still being accurate. Thus, features can be extracted with
a large batch size which is good for feature extraction run times. However, it

25Which is available pretrained from the PyTorch model zoo - https://pytorch.org/docs/

stable/torchvision/models.html.

58

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

Section 4 4.2

is worth pointing out that any other pretrained CNN (e.g. such as VGG16[61])
could be simply swapped into our architecture and this could be an interesting
avenue of future work

• Audio feature extraction: for our audio feature representation we also ex-
tract neural features from fixed audio frame windows (resultant features are
128 dimensions) this time using the pretrained VGGish model26[21]. The pa-
rameterisation of this model is to use 96 audio frames per mel-spectogram patch
and one feature is produced for each mel-spectogram patch. The theory and pa-
rameterisation behind this model are discussed in detail in Section 2.2.2

• Aggregation methods:

– Aggregation technique and frequency: as our goal in the rating prediction
model was to use recurrent neural networks to learn the effect of tem-
poral as well as audiovisual information in the trailers we need more
than one audio and one visual feature per trailer. However, the frame-
level features are too numerous (for example, there are approximately
180s × 25 frames s−1 = 4500visual frames per trailer) and thus must be
aggregated to a more manageable number. To do this we decide on a
number of “subclips” of equal length27 to extract per trailer (in our case,
we consider 10, 20, 30 and 40 per trailer) and then use different statis-
tics to aggregate the frames in each of these subclips. These aggregation
schemes are as follows

* Average - where the mean of the individual feature values in the sub-
clips is computed

* Average and variance - where the mean and the variance of the indi-
vidual feature values in the subclip are computed and then concate-
nated into one single vector (of dimensions 8,192 in the visual case
and 256 in the audio case)

* Median - where the median of the individual feature values in the
subclip is computed

* Median and median absolution deviation - where the median and ab-
solute deviation of the individual feature values in the subclip are
computed and then concatenated into one single vector (with the
same dimensions as the average and variance vector)

– Modality fusion: we do not apply any modality fusion at this point in the
feature extraction pipeline (rather we apply the fusion midway through
our content-enhanced collaborative filtering model) but we do ensure that

26Which is available with the TensorFlow source code - https://github.com/tensorflow/

models/tree/master/research/audioset/vggish.
27To be clear, the subclips are of equal length within a single trailer - e.g. a trailer of 180 seconds

would have 10 x 18 s subclips - but they are not necessarily of equal length between trailers. This is
because we need to have exactly the same number of subclips per trailer to feed them to our LSTM
architectures. As such, to provide some control on the comparative length of subclips we introduce a
constraint in our audiovisual pipeline that no trailer can be longer than 5 minutes in length.

59

https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish

Section 4 4.2

Figure 20: Explained variance left in latent dimensional data when applying incremen-
tal PCA to aggregated visual and audio data.

the aggregation scheme is entirely consistent between the audio and vi-
sual modalities (such that the subclips refer to exactly the same time point
in the trailer)

• Feature dimensionality reduction: finally, given that the dimensionality of
the visual features are still quite large after being passed through AlexNet and
aggregated to the subclip level we opt to apply some linear dimensionality
reduction to them as this greatly reduces the training times of the LSTM models
we use (as well as reducing the memory requirements). When doing this we
use an incremental PCA algorithm28[60] and ensure that we choose a large
enough number of latent dimensions such that the majority of the explained
variance remains in the lower-dimensional space (see Figure 20; as a general
heuristic we worked with feature sets that maintained ≥ 95% of the variance
in the data. So, for example greater than 600 dimensions was acceptable for
the average and variance and median and mean absolution deviation sets.)

4.2.2 Results

In this section we present the results from our feature extraction approach.

28This is a version of the very well-known PCA algorithm that does not require all instances of the
data to be in memory at once. Thus, it means that linear dimensionality reduction can be applied to
data larger than can fit into RAM at once - which is the size limit of the standard PCA algorithm.

60

Section 4 4.2

Figure 21: a) Visual and b) audio feature distribution after dimensionality reduction
with UMAP.

Figure 21 shows a UMAP29 reduction of the average visual and audio features, re-
spectively, where 10 subclips have been extracted per trailer. The goal of non-linear
dimensionality reduction techniques such as UMAP is to preserve the relative dis-
tances between data points from the higher-dimensional feature space when trans-
forming the data to the lower-dimensional, latent space (which in our case is two-
dimensional).

Thus, from the apparent clustering of visual and audio data points in Figure 21 -
where areas of dense clustering are represented by many contour lines - it is appar-
ent that our feature extraction approach has successfully extracted several sets of
features with similar semantics.

However, plotting all of the data together in these plots obscures many of its underly-
ing trends and thus to dive deeper into the contents and relations of our audiovisual
features we break them down by time and context.

Figures 22 and 23 show how the distribution of visual and audio features change by
clip number. From the visual features in Figure 22 three clear phases to the trailer
can be seen. The first and last subclips tend to cluster by themselves, which sug-
gests that trailers have similar beginnings and endings. Conversely, the middle eight
subclips are consistent with each other in their clustering pattern - with two notable
clusters - but their pattern is also more spread out over a large area of latent space,
which suggests that the content of these subclips is more varied between subclips
and trailers.

The audio distribution in Figure 23 is not dissimilar to this - with a notably dense

29UMAP[44] is a non-linear dimensionality reduction technique that operates with similar proper-
ties to t-SNE[47] but with considerably better computational efficiency -O(N1.14) for UMAP vsO(N2)
for t-SNE.

61

Section 4 4.2

cluster in the first subclip and a homogeneous clustering pattern for the set of middle
sub clips - but it also has a far less distinct final subclip.

Figure 22: Visual feature distribution by sub clip number in MovieLens AV dataset after
dimensionality reduction with UMAP.

Figure 23: Audio feature distribution by sub clip number in MovieLens AV dataset after
dimensionality reduction with UMAP.

A more quantitative analysis of the similarity of the subclip distributions was per-
formed by computing the Bhattacharyya coefficients30 between them. As the shading
in Figures 24.a and 24.b show, the results of the quantitative analysis reinforce the

30The Bhattacharyya coefficient is a measure of the overlap between two statistical samples and it
is often used in feature extraction work to gauge the level of separation between feature types[43].
The limits of the coefficient are [0,1] with 0 suggesting there is no overlap (or similarity) between
the distributions and conversely 1 suggesting there is perfect overlap.
For completeness, the Bhattacharyya distance is defined as

DB(X1,X2) =
1
8
(µ1 −µ2)

TΣ−1(µ1 −µ2) +
1
2
ln

(
detΣ

√
detΣ1 detΣ2

)
Where µi and Σi are the mean and covariance of distribution Xi , respectively, and Σ is the mean of
the covariances. The Bhattarcharyya coefficient can then be approximated by solving for BC(X1,X2)

62

Section 4 4.2

conclusions we make by inspection of Figures 22 and 23.

Figure 24: Bhattacharyya coefficients between subclip distributions for (a) visual and
(b) audio features. Bhattacharyya coefficients are calculated on the latent space repre-
sentation of the features and on the inner tercile of each sample.

Figures 25 and 26 break down the clustering patter by genre. Again, this more gran-
ular level of presentation helps to elicit some of the underlying trends in the data.
Notable here, for example, is the dense clustering pattern for visual features relating
to the Animation genre (in the top left corner of the subplot at the top right of Figure
25). This very dense clustering suggests that trailers in this genre have very similar
visual aesthetics - which is immediately understandable from first-hand experience
as animation as a content type is notably different from real-world content.

Beyond this notable trend there are some additionally interesting trends by genre -
for example, from inspecting the audio distributions in Figure 26 we can see that:
IMAX movies form a very dense cluster; Children and Animation films cluster to-
gether frequently (although the fact that multiple genre labels can be applied to a
single movie should be taken into account here - recall Figure 13); Drama movies
are the most varied in terms of audio content; and, Documentary movies seem to
cluster around a centroid largely unique from the distributions of other genres.

Once again the quantitative analysis of genre samples using Bhattacharyya coeffi-
cients in Figure 27 echo the trends we conclude visually from the scatter distribu-
tions. However, the trends are much less pronounced for genre than they are for
time step within the trailer. This is hardly a surprising finding because - as discussed
in Section 2.2.4 - high-level content tags (such as genre) are a poor reflection of the
actual audiovisual stimuli that a user experiences31.

in the equation
DB(X1,X2) = −ln(BC(X1,X2))

31It should also be noted that the multivariate form of the Bhattacharyya distance we used to
calculate the Bhattacharyya coefficients is parametric. In other words it assumes that the underlying
distribution of the data is Gaussian. This is clearly not the case for our data - in particular for the genre

63

Section 4 4.2

Figure 25: Visual feature distribution by genre in MovieLens AV dataset after dimen-
sionality reduction with UMAP.

64

Section 4 4.2

Figure 26: Audio feature distribution by sub clip number in MovieLens AV dataset after
dimensionality reduction with UMAP.

65

Section 4 4.3

Figure 27: Bhattacharyya coefficients between genre distributions for (a) visual and (b)
audio features. Bhattacharyya coefficients are calculated on the latent space representa-
tion of the features and on the inner tercile of each sample.

Thus, our conclusions from this section of the work are as follows

• Our proposed feature extraction process is clearly extracting some semantics
given the tendency of the data to form clusters

• Analysing the membership of these clusters over time and by genre suggests
that these semantics have both temporal and contextual connotations, with
notably dense clustering at the beginning and end of trailers for both audio
and visual streams, and dense clustering for the Animation genre for visual
modality

• We defer discussion of whether or not these semantics are meaningful to the
following subsection, with the rationale that if they correlate with a user’s
tendency to like or dislike a movie then they must have meaning in the domain
of recommender systems

4.3 Audiovisual content enhanced collaborative filtering

4.3.1 Experimental approach

In this section we summarise the experimental setup we devised to evaluate our au-
diovisual enhanced collaborative filtering models before discussing the results pro-

distributions - and so we would see a slightly more pronounced set of coefficients if a nonparametric
distance measure was used but expect the trend to be largely similar.

66

Section 4 4.3

duced by them at length in the following section.

Labelling of models and choice of baselines

Critical to any investigation into the capabilities of a new model is to compare the
results they produce against well-known baselines. As such we select the following
models as our baselines

• Random: this model draws random samples from a normal distribution de-
fined by the training data’s mean and standard deviation

• Baseline: this model makes rating predictions by taking the global mean for
the training data and adjusting each rating prediction by the user and item bias
(see Equation 3)

• User KNN (Z): is an implementation of the user-based kth nearest neighbour
approach to collaborative filtering discussed in Section 2.1.2. We implemented
both of Equations 1 and 2 in our experiments but found their results to be very
similar. As such, we only display the results for Equation 2 in our results

• Item KNN (Z): is an implementation of the item-based kth nearest neighbour
version of Equation 2

• Regularised SVD (RegSVD): is an implementation of the linear matrix factori-
sation presented in Equation 6

• Deep Collaborative Filtering (DeepCf): is our own implementation of the
neural collaborative filtering model summarised by Equation 13. As our work
extends this model with audiovisual content information it is important that
we know how our results compare to this model without the enhancements

• Genre content (GenreCont): finally, we also introduce a content-based rec-
ommender system as a baseline given our model is a hybrid collaborative-
content system. This model is an implementation of Equation 15 using genre
features as content. While our success criteria for this work do not require us to
outperform other content based models we include it to ensure that our results
are within a similar range to those produce by other content-based models

The audiovisual content enhanced models we use are those described in Section 3.
For clarity: DCfAvCont(1) refers to model (1); DCfAvCont(2) refers to model (2);
and LSTMAvCont refers to model (3).

We implement all of our models in the opensource machine learning library Keras
with the exception of the CF KNN baselines which use the Surprise library[37] and
the GenreCont model which we implement in native Python.

Model training

67

Section 4 4.3

To train our models we must tune a lot of hyperparameters. Specifically, for the
audiovisual content enhanced collaborative filtering models these consist of

• Network training hyperparameters

– The optimiser: we use the ADAM optimiser[30] for all standard training
runs which outperforms other optimisers on most well-known learning
tasks and it maintains an adaptive learning rate per parameter which thus
removes the need to tune the learning rate

– The learning rate: as we are using ADAM we commence all training runs
with a learning rate of 0.001

– The number of epochs: we implement early stopping in our models - where
training is stopped if the validation loss starts increasing for a certain
number of epochs - and thus set the number of epochs to a large num-
ber so that all models train to convergence with the global (or a local)
optimum

– The batch size: we do not tune the batch size. Instead we choose a batch
size of 128 for all of our experiments as this provides a nice tradeoff be-
tween fast network training times without too much GPU memory usage

– The weight initialiser: all of our network weights are initialised with the
Keras default weight initialisation settings

• Network architecture hyperparameters:

– The number of dense hidden layers

– The number of neurons per layer

– The number of LSTM layers (and number of LSTM units within these)

– Where the network layers should be joined

– The level of regularisation to apply and where and how to apply it (both
L2 regularisation and dropout are considered)

To find the optimal network hyperparameters we employ a grid search technique
whereby the model is run and evaluated on all combinations of hyperparameters
within a pre-specified range. We considered using Bayesian optimisation techniques[38]
but did not feel they were necessary given the programming overhead they introduce
and the fact that our research goals do not necessitate that we find the absolute best
hyperparameter combinations.
We also used Tensorboard throughout the training process which greatly aids the de-
bugging of neural network training issues. For example, it creates interactive loss
curves that allow for the easy comparison of training behaviour between runs and
weight histograms that allow you to audit model parameter values over time to check
they are updating as expected.

68

Section 4 4.3

Table 4: Accuracy metrics in non and hard-cold start scenario

Item Non Cold Start Item Hard Cold Start
MAE RMSE MSE MAE RMSE MSE

DCfAvCont(1) 0.632 0.818 0.668 0.747 0.952 0.906
DCfAvCont(2) 0.632 0.820 0.672 0.746 0.949 0.900
LSTMAvCont 0.719 0.917 0.842 0.744 0.942 0.888

DeepCf 0.636 0.820 0.673 0.751 0.947 0.897
RegSVD 0.674 0.856 0.732 0.801 0.988 0.977
User KNN (Z) 0.638 0.830 0.689 0.806 1.001 1.003
Item KNN (Z) 0.641 0.830 0.689 0.806 1.001 1.003

GenreCont 0.763 0.982 0.965 0.767 0.987 0.974

Baseline 0.641 0.825 0.680 0.753 0.948 0.898
Random 1.110 1.386 1.922 1.109 1.386 1.920

4.3.2 Results

As discussed in Section 2.1.6, it is important to analyse recommender systems with
a range of evaluation metrics as different properties of the system may be desirable
depending on the use case. In this section we assess our system and the baselines
against all of the evaluation metrics outline in Section 2.1.6.

NB:

• All results in Tables 4-10 are presented on the same subsample of the Movie-
Lens AV dataset containing 1000 movies and 1500 users with 40 ratings per
user

• All results are those achieved from the optimal hyperparameters found through
the grid search approach discussed in the previous sub-section

• All results were tested for replicability on this dataset by rerunning the models
from different random seeds. Encouragingly the same trends were found and
the metric values were of very similar magnitude

• Finally, all of the trends in the results were found to scale with the size of the
dataset (specifically on the top 400 movie 600 user dataset and the top 4000
movie 6000 user dataset) as well as with the number of items sampled per user
(please see Appendix B where these results are listed).

Accuracy

Table 4 presents the accuracy measures that assess how effective the system is at
predicting explicit ratings for each user-item combination. The results produced by
our proposed audiovisual enhanced models are encouraging.

69

Section 4 4.3

In the item non cold start scenario our audiovisual enhanced deep collaborative fil-
tering models outperform all baselines, including the “state of the art” deep collab-
orative filtering model without audiovisual information. However, this difference
versus the deep collaborative filtering model is only slight and does vary with the
number of starting items per user (see Appendix B for further results). Thus, we see
it as a promising but not decisive finding.

In the item hard cold start scenario the audiovisual enhanced models - this time also
including the LSTM model with a user content embedding but no collaborative fil-
tering module - outperform all baselines comprehensively.

There are several trends worthy of note here

• Performance of audiovisual enhanced and baseline collaborative filtering
models between scenarios:

– Overall there is an unsurprising worsening in the performance of all the
collaborative filtering models in the transition from the non-cold start to
the hard-cold start scenario. While our audiovisual content enhanced
models continue to outperform the baselines in the hard cold start sce-
nario, they still suffer a notable reduction from this scenario transition.

– However, it can be seen that their relative reduction in performance versus
the collaborative filtering baselines of RegSVD, UserKNN and ItemKNN is
less, with these baseline models showing a drop off in MAE of 0.127,
0.168, and 0.165, respectively versus 0.115 and 0.114 for our proposed
DCfAvCont(1) and DCfAvCont(2) models.

– The exception to this trend is the DeepCf baseline which also only shows
a drop off in MAE of 0.115 between scenarios. Thus, it is possible that
the “insulation” towards item cold start scenarios - as far as the accuracy
related metrics go - results from the deep neural network architectures
of these models more so than it does from the inclusion of audiovisual
content.

– This could perhaps be as a result of the fact that the deep architectures
concatenate the user and item collaborative filtering embedding vectors
and present them to the hidden layers of the network as a single unit
(see Figures 10 and 6). Thus, the network learns relations to the user
factors individually (as well as in combination with the item factors) and
therefore it is still able to make use of the user relations it has learned
from the training data in the item cold start scenario

– However, it should be noted that the trends for the ranking metrics dis-
played in Tables 7 and 8 and discussed in the next subsection paint a
different picture

• Performance of audiovisual enhanced models versus genre content mod-
els:

70

Section 4 4.3

– The performance of our proposed models relative to the genre-based con-
tent baseline is a very promising finding of our work. We see that our
proposed models achieve comparable (and indeed superior) results to the
genre content baseline in both the non cold and hard cold scenario on the
accuracy metrics

– To reflect on what this implies, it is most meaningful to compare the
LSTMAvContent model with the GenreCont model as this version of our
model isolates the effect of the audiovisual content (in other words it con-
tains no collaborative filtering module). The fact that our model achieves
comparable accuracy metrics - with a MAE score of 0.744 in the item
cold start scenario versus 0.767 for GenreCoont - shows that using the
audiovisual content from movie trailers - extracted and preprocessed by
our feature extraction pipeline - is a viable form of content to enhance
recommender systems.

– This finding thus validates one of our central research hypotheses that
summarised audiovisual content has a part to play in improving the capa-
bilities of recommender systems.

– Moreover, linking this back to Section 4.2 while it is not absolute proof
that the features we have extracted are the most semantically meaningful,
it does prove that they are at least somewhat semantically meaningful as
otherwise they would not match the performance of clearly semantically
meaningful features in the form of genre tags that have been hand-coded
by a human

– With that said, we should reiterate that the goal of this research is not
to outperform recommender systems based on other forms of content (as
time does not permit for this), but rather to propose a framework that
incorporates audiovisual information with collaborative filtering models
and alleviates their item cold start issues as a result

– It is also worth quickly noting the comparatively weak performance of
both LSTMAvCont and GenreCont in the non cold start scenario versus
the collaborative filtering models, which reinforces the literature by show-
ing that collaborative filtering models produce the best results when item
review data is plentiful

• Performance of audiovisual enhanced CF models versus one and other:

– We also briefly note that the different versions of our models perform
approximately equally with one another in the hard cold start scenario,
with a slight superiority for LSTMAvContent

– However, in the non cold start scenario the models with collaborative fil-
tering modules are significantly better, suggest the dominance of this tech-
nique and their ability to exploit it in this setting

Finally, to conclude this subsection we make a quick comment about the nuances
between the accuracy measures presented (more information on them can be found

71

Section 4 4.3

in Section 2.1.6).

The main point to comment on is the difference between the RMSE and MAE metric.
The RMSE sums the square of the errors and thus is more affected by outliers than
the MAE metric. Thus, while the RMSE does have benefits in applications where
robustness of predictions is very important, it is also not a true reflection of the aver-
age error as it amplifies the impact of outliers. Therefore, we focus our conclusions
on the MAE as it is more representative of the true error in our system.

Nevertheless, both the RMSE and MAE are presented given their prevalence in the
literature. The MSE - which is the loss function used to train the model - is also
presented for completeness.

Ranking metrics - non cold start scenario

Table 5: Rank metrics in non-cold start scenario (k=4)

Item Non Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.704 0.681 0.692 0.813 0.620 0.635
DCfAvCont(2) 0.703 0.625 0.662 0.802 0.588 0.665
LSTMAvCont 0.406 0.367 0.386 0.469 0.335 0.517

DeepCf 0.718 0.650 0.682 0.822 0.608 0.667
RegSVD 0.660 0.514 0.578 0.724 0.489 0.667
User KNN (Z) 0.682 0.598 0.637 0.767 0.561 0.660
Item KNN (Z) 0.695 0.617 0.654 0.794 0.579 0.659

GenreCont 0.533 0.475 0.503 0.629 0.415 0.481

Table 6: Rank metrics in non-cold start scenario (k=10)

Item Non Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10 NDCG@10

DCfAvCont(1) 0.680 0.683 0.681 0.813 0.597 0.735
DCfAvCont(2) 0.677 0.591 0.631 0.797 0.535 0.753
LSTMAvCont 0.394 0.393 0.394 0.469 0.336 0.656

DeepCf 0.694 0.614 0.652 0.822 0.558 0.757
RegSVD 0.651 0.433 0.520 0.725 0.405 0.756
User KNN (Z) 0.662 0.555 0.604 0.767 0.506 0.753
Item KNN (Z) 0.677 0.568 0.618 0.794 0.519 0.752

GenreCont 0.526 0.462 0.492 0.630 0.385 0.634

Tables 5 and 6 shows the ranking results of the different models at k = 4 and k = 10

72

Section 4 4.3

(this time with the most basic baselines removed for brevity). The variable k refers
to the length of the recommended list that we consider when calculating the ranking
metric. So, for example, k = 4 implies that the first 4 items in the recommended list
are considered32.

Regarding the non-cold start scenario, the following trends are worthy of discussion

• Unsurprisingly, the collaborative filtering models achieve far superior results
to the content models on all of the rank metrics in this scenario. More en-
couraging still is the fact that the neural collaborative filtering models (includ-
ing those with audiovisual content) achieve the best results - with the DeepCf
model and the DCfAvCont(1) claiming the top spot in the metrics (with the
DCfAvCont(2) model closely behind)

• The most noteworthy trend from this scenario for these metrics is the tradeoff
in precision and recall capabilities between the models33. The audiovisual en-
hanced deep collaborative filtering models appear to gain recall at the expense
of some precision.

• For example, for the metrics “@4” DCfAvCont(1) enjoys a higher recall (Radj@4)
of 0.681 versus 0.650 in the DeepCf model (an increase of 5%), but in doing
so loses 2% in its precision (P@4) to rest at 0.704 versus 0.718 for the DeepCf
model. This trend is echoed in the “@10” metrics and the relative tradeoffs are
best summarised by the F1 metrics, which go in favour of the DCfAvCont(1)
model

• Thus, we conclude that the introduction of audiovisual content boosts the re-
call capabilities of the model while almost maintaining its precision capabil-
ities. This insight goes along way to explaining the MRR, MAP and NDCG
metrics listed in Tables 5 and 6

• For MRR - which represents the model’s capacity to place a relevant item high-
est up the recommendation list - we see that DeepCf marginally outperforms
DCfAvCont(1)34

• By contrast, for MAP - which rewards the model’s capacity to fill the recom-
mended list with relevant items (i.e. all relevant items are rewarded rather

32 For reference, a detailed definition and discussion of these metrics is provided in Section 2.1.6.
We also provide a “toy example” of them being calculated in Appendix E.

33To recap, in the context of recommender systems: precision refers to the ability of the model to
only recommend items that are actually relevant to the user in the ground truth data (thus minimising
false positives), whereas recall refers to the ability of the model to ensure all ground truth relevant
items are recommended to the user (thus maximising true positives). Please refer to Section 2.1.6 for
further discussion.

34On the same test dataset, a model with more precision and less recall is likely on average to be
generating shorter recommendation lists to users. A claim that is supported by the average recom-
mendation list results in Table 9, where the DCfAvCont(1) model recommends on average 5.0 items
to users whereas the DeepCf model recommends 4.4. Thus, on average we should expect the first
relevant item to be at a higher rank (i.e. earlier position) in the list - hence the trend we observe in
MRR

73

Section 4 4.3

than just the first) - shows DCfAvCont(1) performing strongest. Referencing
this back to the trend we observe in recall, it makes sense that a system which
is recalling more of the ground truth relevant items should score higher on this
metric

• Finally, for NDCG - which is similar to MAP in that it rewards the system for
recommended relevant items but differs in the sense that it assigns a non-
binary relevance weighting - we see that DeepCf narrowly outperforms DCfAv-
Cont(2) (and more significantly so DCfAvCont(1)).

• This reversal in trend can potentially be explained by recognising that the
NDCG metric rewards the system in a slightly different way than MAP. Where
MAP has a tendency to reward systems highest that recall the most relevant
items, the NDCG has the tendency to reward systems highest that place the
relevant items that the user has ranked highest in the ground truth data at the
top spots in the ranking. Thus, it is indeed possible for one algorithm to score
higher on MAP and the other on NDCG (please reference Appendix E for a
“toy” example of this phenomenon).

Ranking metrics - hard cold start scenario

Tables 5 and 6 present the ranking metrics for the models in the hard cold start sce-
nario. Here the results of the audiovisual enhanced collaborative filtering models
versus the baseline collaborative filtering models are very encouraging.

To summarise the key trends

• Performance of audiovisual enhanced CF models versus CF baselines:

– We see that the audiovisual enhanced models outperform the DeepCf
model on all metrics and by a significant amount. This suggests that the
audiovisual enhanced models are making more relevant cold start item
recommendations to existing users

– This finding thus validates another of our central research hypotheses that
the relative benefit of enhancing collaborative filtering models with audio-
visual content is increased in the item cold start scenario

– We posit a likely explanation for this in our Discussion (please see Section
5.1)

• Performance of audiovisual enhanced CF models versus GenreCont model:

– However, the very good results of the GenreCont model on all metrics
versus the DCfAvCont and LSTMAvCont models - with the exception of
the NDCG metric - should be noted

– Again, as this is a significant finding of our work we propose a likely
explanation for it in our Discussion (please see Section 5.2)

74

Section 4 4.3

Table 7: Rank metrics in hard-cold start scenario (k=4)

Item Hard Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.295 0.285 0.290 0.338 0.255 0.512
DCfAvCont(2) 0.236 0.247 0.241 0.280 0.214 0.433
LSTMAvCont 0.312 0.277 0.294 0.353 0.249 0.508

DeepCf 0.207 0.215 0.211 0.240 0.185 0.417
RegSVD 0.000 0.000 0.000 0.000 0.000 0.424
User KNN (Z) 0.000 0.000 0.000 0.000 0.000 0.424
Item KNN (Z) 0.000 0.000 0.000 0.000 0.000 0.424

GenreCont 0.515 0.464 0.488 0.612 0.404 0.481

Table 8: Rank metrics in hard-cold start scenario (k=10)

Item Hard Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10 NDCG@10

DCfAvCont(1) 0.278 0.327 0.301 0.339 0.271 0.654
DCfAvCont(2) 0.235 0.320 0.271 0.281 0.251 0.600
LSTMAvCont 0.302 0.300 0.301 0.353 0.253 0.650

DeepCf 0.208 0.280 0.239 0.241 0.219 0.590
RegSVD 0.000 0.000 0.000 0.000 0.000 0.595
User KNN (Z) 0.000 0.000 0.000 0.000 0.000 0.594
Item KNN (Z) 0.000 0.000 0.000 0.000 0.000 0.594

GenreCont 0.511 0.457 0.482 0.613 0.377 0.633

75

Section 4 4.3

– We also note here that the exception in the ranking metric results is that
our proposed models do still beat the GenreCont model on the NDCG met-
ric which is an important metric and means that they are placing the items
that the user likes most in the ground truth data at the higher rankings in
the recommendation list versus GenreCont

– A possible explanation for this reversal in trend can be linked back to
the fact the DCfAvCont models also outperform the GenreCont model on
accuracy metrics, as a system that more accurately predicts individual
item ratings is more likely to then prioritise them appropriately

• Performance of audiovisual enhanced CF models versus one and other:

– We also briefly comment on continued strong performance of DCfAv-
Cont(1) and LSTMAvCont relative to one and other on the ranking met-
rics in this scenario. It is interesting that DCfAvCont(1) has higher recall
capabilities but slightly lower precision than LSTMAvCont

– DCfAvCont(2) also underperforms considerably compared to our other
models on these metrics in this setting. As it has more network parameters
(as a result of possessing two user embedding modules) it is potentially
overfitting the data and thus underperforming on the test set

• Performance of non-neural CF baselines:

– Finally, the explanation for the zero values for RegSVD and both KNN
models should be briefly noted. As the test items have no review data
these models operate in a very limited capacity.

– For the RegSVD model, this means that the item latent factor vector is still
in a random initialisation state centered around 0. Thus, the inner prod-
uct term in Equation 6 evaluates to close to 0 with all users (as no strong
affinity scores are generated on any of the vectors’ elements). Therefore,
the RegSVD model always predicts the global mean with a slight adjust-
ment for the user bias in this scenario (which always evaluates to less
than 3.5 for this particular instance of the data - therefore, nothing is
recommended)

– For the KNN model, the explanation is simpler. The similarity term of
Equation 2 always evaluates to 0 as it is based off of a comparison of the
test item’s rating history to other similar items. As the test item has no test
history there are no similar items. Therefore, the KNN model just predicts
the global mean for each item and thus nothing is recommended

– As aforementioned, the neural CF baseline does not fall foul of this fate
as it can fall back on making predictions based solely off of the variance
in the user’s CF latent factor vector

Other metrics

76

Section 4 4.3

Table 9: Other metrics in non-cold start scenario

Item Non Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.921 0.629 0.981 5.002 5.003
DCfAvCont(2) 0.896 0.561 0.982 4.101 5.003
LSTMAvCont 0.980 0.349 0.993 3.193 5.003

DeepCf 0.921 0.583 0.982 4.357 5.003
RegSVD 0.759 0.471 0.983 3.021 5.003
User KNN (Z) 0.921 0.538 0.985 4.014 5.003
Item KNN (Z) 0.881 0.565 0.984 4.054 5.003

GenreCont 0.999 0.457 0.939 3.907 5.003

Table 10: Other metrics in hard-cold start scenario

Item Hard Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.999 0.268 0.997 2.840 5.003
DCfAvCont(2) 0.918 0.246 0.996 2.819 5.003
LSTMAvCont 0.993 0.256 0.997 2.565 5.003

DeepCf 0.998 0.213 0.998 2.463 5.003
RegSVD 0.000 0.000 0.000 0.000 5.003
User KNN (Z) 0.000 0.000 0.000 0.000 5.003
Item KNN (Z) 0.000 0.000 0.000 0.000 5.003

GenreCont 0.999 0.440 0.941 3.851 5.003

77

Section 4 4.3

As discussed in Section 2.1.6, it is important to assess recommender systems on
characteristics beyond their ability to just recommend relevant items. As such we
implemented metrics for coverage, diversity and personalisation and present the
results of these in Tables 9 and 10.

• The stand out results from the other metrics are the improved diversity score
for DCfAvCont(1) versus DeepCf in both the non cold and hard cold settings.
Increased diversity in the recommended list mitigates against the risk that the
user ends up disliking the entirety of the list because it is made up of a single
content type that they dislike35.

• All neural based models achieve good catalogue coverage and personalisation
results, and it is interesting that they score more highly on these metrics in
the hard cold start scenario - perhaps an outcome of the model being less sure
about what to recommend for each user

• Finally, the GenreCont model once again records a strong performance in the
hard cold start scenario and this is likely again due to its nonparametric nature
(as discussed in the previous section). What strengthens that claim here is
the observation that it generates significantly more recommendations in the
hard cold start scenario versus the other models - with 3.851 on average versus
2.840 for the nearest deep model.

Effect of network architecture and pretraining on audiovisual enhanced collab-
orative filtering models

In this section, we briefly comment on trends in optimal network architectures that
we observed when running hyperparameter optimisation to produce the results pre-
sented in the previous section.

• Generally speaking, we saw a trend towards smaller network architectures.
For example, working with less than 64 user and item CF factors, and dense
connected layers consisting of between 8 and 64 neurons with no more than
1-3 layers per module (CF, AV or join) in our model. This is in line with the
observations from [23]

• We also found that an LSTM consisting of two LSTM layers for each modality
was optimal. It appeared from our work that only one layer does not give the
network enough capacity to learn whereas more than two layers causing the
network to overfit drastically. All of our results were thus produced with LSTM
layers of dimension [128, 64] for each audiovisual content modality

35It is worth caveating that the diversity metric has been calculated by computing the variety in the
genre tags applied to the items in the recommendation list. Thus, while they are less homogeneous
from a high-level genre perspective with the av-enhanced models this does not mean they are less
homogeneous from a low-level audiovisual perspective (and indeed it is very likely that the opposite
is true). Whether or not this is desirable depends entirely on the context and specific user.

78

Section 4 4.3

• Finally, it is also important to note that we observed a trend for smaller network
architectures to perform better on the accuracy metrics, whereas slightly larger
networks performed better on the ranking metrics

Additionally, it is relevant to note that we attempted pretraining / transfer learning
with our models (in line with our vision for these models laid out in Section 3.3).
However, at the time of writing, this has not yet yielded a significant improvement
in the results.

For completeness, our approach to pretraining was to first train the DeepCf and
LSTMAvContent models with their optimal hyperparameters on a training set of the
data and save their weights. We then instantiated an instance of the DCfAvCont(2)
model with the same network architecture in its CF and AV modules as the DeepCF
and LSTMAVContent models, respectively. The weights from these models were then
transferred to the DCfAvCont(2) model and this model was then trained further on
the same training set.

Pretraining is well-known to be a delicate art[8] yet from related literature [23] we
remain confident that it will improve the accuracy of our models.

Effect of different feature aggregation techniques on audiovisual enhanced col-
laborative filtering models

We also briefly comment on the effect of different feature aggregation techniques.
Table 26 of Appendix C shows the effect on the ranking scores of the different ag-
gregation techniques we implemented. All the features produce comparable results,
suggesting that they are all equally viable techniques of summarising the data and
can be used interchangeably.

Scalability of our proposed models

Finally, we also benchmarked the training and prediction times of the different rec-
ommender system models and Table 11 presents the results from this.

Of note here is the relatively long training times of our proposed audiovisual models
versus the collaborative filtering baselines. This can be attributed to the addition of
the LSTM which has a lot of model parameters and thus takes longer to train (as
there are more weight update operations to carry out in the backpropagation algo-
rithm). It should also be noted that the LSTM can introduce memory issues if the
number of parameters is too high but this can be mitigated by reducing the batch
size (however, doing so in turn will increase training times).

Also of note is the long prediction times for the GenreCont model. This is because
the model is nonparametric and thus it only commits to an approximation of the
target function at query time. Moreover, the complexity of the algorithm is O(N 2)
for each user (therefore O(N 3) overall) as it must compute the nearest train item

79

Section 4 4.3

Table 11: Model training and prediction times for 1000 movie 1500 user MovieLens AV
dataset (non-cold start scenario; 40 items per user). The neural network training times
are over 100 epochs with a batch size of 128.
NB: the training times include the time taken to train the model on both folds of the
data (and are therefore a fair estimate of how long it takes to train the model on all of
the rating data).

Training time Prediction time

DCfAvCont(1) 900s 10s
DCfAvCont(2) 900s 10s
LSTMAvCont 800s 10s

DeepCf 150s 5s
RegSVD 80s 2s
User KNN 0s 60s
Item KNN 0s 60s

GenreCont 0s 1320s

neighbours for each item in the test set. Therefore, its run time is proportional to
|U | × |Itrain| × |Itest |. The other algorithms scale linearly with the size of the training
and test data if the same network architecture is used.

For clarity, the timings in Table 11 correspond to models with the following architec-
tures / parameters

• DCfAvCont(1): 64 factor user and item collaborative filtering embeddings; 2
deep collaborative filtering layers with [32, 16] neurons; an individual LSTM
component for visual and audio modalities both with [128, 64] LSTM units
and dense layers of [32, 16] to merge the modalities; finally, 1 dense layers of
[8] to join the collaborative filtering and content branches

• DCfAvCont(2): the same architecture as DCfAvCont(1) except for the inclu-
sion of a user content embedding unit of 64 factors

• LSTMAvCont: the same architecture as DCfAvCont(2) but without the collab-
orative filtering branch

• DeepCf: 64 factor user and item collaborative filtering embeddings and dense
layers of [32, 16, 8]

• RegSVD: 64 factor user and item collaborative filtering embeddings

• User KNN: 20 nearest user neighbours

• Item KNN: 20 nearest item neighbours

80

Section 4 4.3

• GenreCont: 5 nearest item neighbours (for each item in the test set)

All results were generated on a laptop with an Intel(R) Core(TM) i7-4710MQ CPU
@ 2.50GHz and 8 CPUs with 32GB of RAM and a Nvidia GeForce GTX 980M GPU.
The models implemented in Keras (neural models + RegSVD) ran on the GPU and
the GenreCont calculation was multiprocessed across the 8 available cores.

81

Section 5 5.1

5 Discussion

In this section we summarise our findings from the various experimental work we
conducted and align them with our proposed approach (see Section 3) and the rele-
vant theory.

5.1 Performance of audiovisual enhanced collaborative filtering
models versus collaborative filtering baselines

We find that our audiovisual enhanced collaborative filtering models significantly
outperform the collaborative filtering baselines in the item hard cold start scenario
on all metrics36. We also find that they outperform all CF baselines in the item non
cold start scenario except for the state of the art deep collaborative filtering model on
some of the ranking metrics.

Addressing these observations in turn, our models’ superior performance in the item
hard cold start scenario is likely to be as a result of the audiovisual content module
they contain.

This gives them a predictive capability to fallback on when the collaborative filtering
module has no information on the new item. By analysing the audiovisual content of
the new item - which is present even when the item has no reviews - the models are
able to make a prediction based on the extent to which the target user has enjoyed
movies with similar audiovisual content in the past.

This conclusion is strongly supported by the performance of our “audiovisual con-
tent only” model (LSTMAvCont) which typically performs as well as the audiovisual
enhanced collaborative filtering models in the item hard cold start scenario.

Regarding the item non cold start results, when compared to the deep collaborative
filtering model, we see that our audiovisual content module endows the system with
more recall at the expense of some precision but improves on the overall F1 measure.

The result of this enhanced recall ability is that our audiovisual enhanced models
achieve higher mAP scores versus the deep collaborative filtering model at the ex-
pense of lower mRR scores.

Whether or not a larger mRR or larger mAP is desirable in recommender systems (if
a tradeoff must be made) depends on the context. If the screen real-estate is small or
the user has a short attention span then mRR might be more desirable as it rewards
the system for ensuring a relevant item is at the highest rank possible. Whereas, if
the user is more likely to browse through a list of recommendations - which seems

36With the exception of only a slight but non-negligible increase on the accuracy metrics versus the
deep collaborative filtering model.

82

Section 5 5.2

viable in the context of movie recommendations - then mAP may be more desirable.

On the other metrics for the item non cold start scenario, the performance between
our models and the deep collaborative filtering model are similar which suggests there
is still work to do in optimising our model architecture (see Section 5.3).

To round out the analysis with a perceivable downside of our models, they do take
a significantly longer time to train than the deep collaborative filtering model. This is
understandable given the introduction of the audiovisual content and the LSTM with
the result that the network has far more network parameters. A potential mitigation
strategy for this is to train the model in a distributed computing environment where
it can access more GPUs and process data on distributed RAM.

5.2 Performance of audiovisual enhanced collaborative filtering
models versus the genre baseline

We see very promising results for our models relative to the genre KNN baseline. Our
models comprehensively outperform this model in the item non cold start scenario
and show good (and sometimes superior) results to it in the item hard cold start sce-
nario.

The superior performance of our models with collaborative filtering modules in the
item non cold start scenario is not surprising. Collaborative filtering is a superior
technique when rating data on the items exists and our model architecture exploits
this.

The comparable results in the item hard cold start are an excellent result in many
ways. This shows that from a completely unsupervised feature extraction technique
- which is able to process over 650 hours of video in less than 24 hours - we are able
to subsequently design a recommender system that uses these features to address
the item hard cold start issue with comparable performance to a model that uses
features that must be hand-coded by humans.

That said, our model is still significantly behind several of the metrics versus the
genre baseline which suggest there is much room for improvement. We posit that
why it drops behind at the moment is as a result of two factors.

The first is straightforward: while we have proven our extracted content features
are meaningful in this domain, there are a multitude of ways in which they can be
enhanced to contain more semantically meaningful information. See Sections 5.4
and 6.2.

The second requires some more explanation. Referencing back to the counts of rat-
ing by rating value (see Figure 14), the fact that the distribution of the ground truth
data used to train the model is approximately Gaussian with its central tendency

83

Section 5 5.3

around 3.5 and a reasonably small standard deviation has a considerable implica-
tion on the way the models learn.

The genre-based content model is based on KNN and is thus nonparametric whereas
our audiovisual enhanced deep collaborative filtering models are parametric. There-
fore, our models must commit to a global approximation of the target function at
training time whereas the genre KNN model can calculate a local approximation of
the target function for each user at query time.

Combining these observations we can explain why the predictions from our models
are more centered around the sample mean with far less “extreme value” predictions
(such as 5.0 and below 1.0) versus those of the genre content model. This in turn
means less rating predictions are above the threshold required to make a recommen-
dation and hence why our models generate shorter recommendation lists on average
and underperform on the rank metrics (but, interestingly, not on the accuracy met-
rics).

A potential solution to this problem would be to reformulate the loss function of
the deep collaborative filtering models to explicitly reward ranking performance - a
discussion which we save for Section 6.2. Similarly, one could apply an upsampling
strategy to the training data, although this is not trivial given explicit rating predic-
tion is a regression problem and upsampling must be done in a way that preserves
the similarity trends between user and items in the rating matrix.

5.3 Performance of audiovisual enhanced collaborative filtering
models versus one another

Our 3 proposed model architectures were outlined in Section 3.3. From the results,
it would appear that “Deep Collaborative Filtering with AV Content Model 1” is the
best performer overall as it keeps track with the state of the art Deep Collaborative
Filtering model in the item non cold start scenario and significantly outperforms it in
the item hard cold start scenario.

In Section 5.1 we argue why this model has these abilities; in this section we pro-
vide brief comment on why we suppose this model outperforms its audiovisually
enhanced peers.

Regarding its performance versus LSTMAvCont, it is most probable that the addi-
tional fully connected layers after its collaborative filtering and audiovisual content
branches join allow it to combine this information in an additive way and thus en-
hance its predictive capacity. Hence, it has learned how to make very good predic-
tions in the item non cold start scenario - where collaborative filtering advice is better
- but also knows to leverage its content capabilties when it is queried on an unseen
item.

84

Section 5 5.4

Regarding the underperformance of “Deep Collaborative Filtering with AV Content
Model 2” versus Model 1, we propose that as a result of its additional user embed-
ding module it is too complex in its current shape to learn as effectively.

We designed this version of the model so that we could pretrain its components and
we attempted this in our experiments. However, at the time of writing, this pretrain-
ing has not improved the results of “Deep Collaborative Filtering with AV Content
Model 2”. We believe this is simply because we have not yet discovered the optimal
pretrain recipe and remain confident that this approach will yield improvements in
future work.

5.4 Utility of audiovisual content feature descriptors in collabo-
rative filtering models

Our strong experimental results using audiovisual content features in our models
suggest that this is a viable form of content to enhance recommender systems with.
As mentioned in Section 5.2, we see the fact that we compare favourably with results
from a content based baseline as proof of this.

As a result, we feel that we have met our success criterion for this part of the work
in the sense that this means our feature extraction process produces features that
are semantically meaningful in the domain of recommender systems. However, we
do not quantify this extent and thus we do not formally address the semantic gap we
discussed in Section 2.2.4. Doing so would be an interesting item of future work.

85

Section 6 6.2

6 Conclusions and future work

6.1 Conclusions

In this section we pin our findings back to the research questions we posed at the
beginning of the project

• RQ1.a Does the audiovisual content of movie trailers enhance the capabilities of
recommender systems in the item warm start scenario?

– To a certain extent it does, most notably by endowing collaborative filter-
ing algorithms with greater recall and as a result higher mAP scores while
still matching the rating prediction accuracy scores of a state of the art
deep collaborative filtering baseline

– However, there is certainly scope for improvement in warm-start scenario
results and these may be achievable in the near term through further
assessment of network architectures and transfer learning / pretraining
strategies

• RQ1.b Does the audiovisual content of movie trailers enhance the capabilities of
recommender systems in the item cold start scenario?

– Given our audiovisual enhanced models show a significant improvement
on almost all evaluation metrics versus the un-enhanced baselines we can
conclude confidently that it does

– Moreover, the fact that our model can perform like this while at the same
time achieving state of the art accuracy results in the warm start scenario
suggests the audiovisual content module we enhance it with is additive to
the system’s performance and makes it more robust to a broader range of
commonly encountered rating scenarios

• RQ2. How can audio-visual content be summarised to enable an investigation of
its usefulness in recommender systems?

– Using pretrained neural networks to extract features from audiovisual
content on a frame-by-frame basis and then aggregating these frames to
a subclip level is a viable form of summarising this type of content

– These features are proven to be semantically meaningful - at least to a
certain extent - by the fact that our algorithms can use this information to
improve their performance significantly in item cold start scenarios

6.2 Future work

Drawing together all of our findings from this research, we propose the following
items of future work

86

Section 6 6.2

• Using different loss functions to train the collaborative filtering models:
the loss function of the model could be parameterised in a different way so as to
encourage the system to learn slightly different trends from the training data.
For example, we could adopt the ranking loss function of [22] that explicitly
rewards the system for learning the correct rank of different items

• Implicit rating capabilities and affective feedback data: related to the above,
we could also reformulate the final layer of our network to allow it to learn
from and predict implicit ratings. An area we are very interested in assessing
further is the use of affective feedback signals from users (such as their facial
expressions) as the implicit rating data in our system. Being able to use this
type of data in recommender sytems would greatly increase the amount of data
that the system has to learn with

• Active learning as a complementary solution to user cold start: in our work
we do not address user cold start scenarios. However, we see recent advances in
the field of active learning[31, 48] that use reinforcement learning approaches
to help models learn quickly on a small data labelling budget as being a way
to potentially enhance our system with a way to address user cold start

• Additional content feature modalities: we built our system in a modular way
so that additional content modalities could be added to it with minimal rework.
As a next step we would like to consider using the script of the movie as a form
of content. We expect that this will give the system a greater understanding
of what a trailer contains and thus increase its recommendation performance.
Moreover, it will allow us to further enable some of the use cases we outlined
in Section 1

• Different representations of video content and different aggregation meth-
ods: while the audiovisual content feature descriptors we create in this work
are sufficient to prove the viability of our approach we believe that they can be
enhanced, in particular the way in which they are aggregated. Supervised fea-
ture extraction techniques that make use of the Gini Index are something we
could consider next. Alternatively, we could devise a deep model that learns
for itself what the most relevant portions of the trailer are to use in a summary
of it

• Privacy preserving recommender systems: finally, we would like to look into
the feasibility of modifying our system so that it can become privacy preserv-
ing. To do so would require an assessment of our system to operate within the
constraints of the “three pillars of privacy preserving AI” - differential privacy,
federated learning and multi-party computation. The recent opensource li-
brary PySyft[55] provides all the tools required to build a deep learning model
in line with these concepts and we feel it would be an excellent feature of our
model in a generation where users expect companies to be more considerate
of their privacy rights

87

Section 6 6.2

References

[1] R.W. Picard et al. A. Pentland. “Photobook: Content-Based Manipulation of
Image Databases”. In: (1995).

[2] D.J. Watts A. Sharma J.M. Hofman. “Estimating the causal impact of recom-
mendation systems from observational data”. In: (2015).

[3] Benjamin Schrauwen Aaron van den Oord Sander Dieleman. “Deep content-
based music recommendation”. In: (2013).

[4] Charu C. Aggarwal. Recommender Systems: The Textbook. 2016.

[5] Alberto Garcia-Garcia et al. “A survey on deep learning techniques for image
and video semantic segmentation”. In: (2017).

[6] Cai-Nicolas Ziegler et al. “Improving Recommendation Lists Through Topic
Diversification”. In: (2005).

[7] Carreira et al. “Quo Vadis, Action Recognition? A New Model and the Kinetics
Dataset”. In: (2017).

[8] Chuanqi Tan et al. “A Survey on Deep Transfer Learning”. In: (2018).

[9] Diba et al. “Temporal 3D ConvNets: New Architecture and Transfer Learning
for Video Classification”. In: (2017).

[10] Dumitru Erhan et al. “Why Does Unsupervised Pre-training Help Deep Learn-
ing?” In: (2010).

[11] Fidel Cacheda et al. “Comparison of collaborative filtering algorithms: Lim-
itations of current techniques and proposals for scalable, high-performance
recommender systems”. In: (2011).

[12] Francesco Ricci et al. “Recommender Systems Handbook”. In: (2010).

[13] Jeff Donahue et al. “Long-term Recurrent Convolutional Networks for Visual
Recognition and Description”. In: (2014).

[14] Jort F. Gemmeke et al. “Audio Set: An ontology and human-labeled dataset
for audio events”. In: (2017).

[15] Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neural Net-
works on Sequence Modeling”. In: (2014).

[16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: (2015).

[17] Mohammed Senoussaoui et al. “An i-vector Extractor Suitable for Speaker
Recognition with both Microphoneand Telephone Speech”. In: (2010).

[18] Ognjen Rudovic et al. “Personalized machine learning for robot perception
ofaffect and engagement in autism therapy”. In: (2018).

[19] Qian Zhao et al. “Explicit or Implicit Feedback? Engagement or Satisfaction?”
In: (2018).

[20] S Hochreiter et al. “Long short-term memory”. In: (1997).

88

Section 6 6.2

[21] Shawn Hershey et al. “CNN Architectures for Large-Scale Audio Classifica-
tion”. In: (2017).

[22] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from Implicit Feed-
back”. In: (2009).

[23] Xiangnan He et al. “Neural Collaborative Filtering”. In: (2017).

[24] Yashar Deldjoo et al. “MMTF-14K: A Multifaceted Movie Trailer Feature Dataset
for Recommendation and Retrieval”. In: (2018).

[25] Ilya Sutskever Alex Krizhevsky and Geoffrey E. Hinton. “ImageNet Classifica-
tion with Deep ConvolutionalNeural Networks”. In: (2012).

[26] et al Andrea Frome. “DeViSE: A Deep Visual-Semantic Embedding Model”. In:
(2013).

[27] Justin Basilico Ashok Chandrashekar Fernando Amat and Tony Jebara. “Art-
work Personalization at Netflix”. In: (2017).

[28] J. et al Deng. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
(2009).

[29] MUKUND DESHPANDE and GEORGE KARYPIS. “Item-Based Top-N Recom-
mendation Algorithms”. In: (2004).

[30] Jimmy Ba Diederik P. Kingma. “Adam: A Method for Stochastic Optimization”.
In: (2014).

[31] Meng Fang, Yuan Li, and Trevor Cohn. “Learning how to Active Learn: A Deep
Reinforcement Learning Approach”. In: (2017).

[32] Simon Funk. “Netflix Update: Try This at Home”. In: (2006).

[33] CARLOS A. GOMEZ-URIBE and Inc. NEIL HUNT Netflix. “The Netflix Recom-
mender System: Algorithms, Business Value, and Innovation”. In: (2016).

[34] F. Maxwell Harper and Joseph A. Konstan. “The MovieLens Datasets: History
and Context”. In: (2016).

[35] Anders Krogh John A. Hertz. “Simplifying Neural Networks by Soft Weight-
Sharing”. In: (1991).

[36] Bamshad Mobasher Himan Abdollahpouri Robin Burke. “Managing Popularity
Bias in Recommender Systems with Personalized Re-ranking”. In: (2019).

[37] Nicolas Hug. “Surprise, a Python library for recommender systems”. In: (2017).

[38] Hugo Larochelle Jasper Snoek and Ryan P. Adams. “Practical Bayesian Opti-
mization of MachineLearning Algorithms”. In: (2012).

[39] Zheng Wang Jianlin Cheng and Gianluca Pollastri. “A Neural Network Ap-
proach to Ordinal Regression”. In: (2007).

[40] Guy Lebanon Joonseok Lee Mingxuan Sun. “A Comparative Study of Collab-
orative Filtering Algorithms”. In: (2012).

[41] Andrea Vedaldi Karel Lenc. “Understanding Image Representations by Mea-
suring Their Equivariance and Equivalence”. In: (2018).

89

Section 6 6.2

[42] Halbert White Kurt Hornik Maxwell Stinchcombe. “Multilayer feedforward
networks are universal approximators”. In: (1989).

[43] Euisun Choi Chulhee Lee. “Feature extraction based on the Bhattacharyya
distance”. In: (2003).

[44] James Melville Leland McInnes John Healy. “UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction”. In: (2018).

[45] Brent Smith Greg Linden. “The Test of Time: Two Decades of Recommender
Systems at Amazon.com”. In: (2017).

[46] et al Lu Jiang Shoou-I Yu. “Bridging the Ultimate Semantic Gap: A Semantic
Search Engine for Internet Videos”. In: (2015).

[47] Laurens van der Maaten Geoffrey Hinton. “Visualizing Data using t-SNE”. In:
(2008).

[48] Gholamreza Haffari Ming Liu Wray Buntine. “Learning How to Actively Learn:
A Deep Imitation Learning Approach”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (2018).

[49] Steven J. Nowlan and Geoffrey E. Hinton. “Simplifying Neural Networks by
Soft Weight-Sharing”. In: (1992).

[50] Christopher Olah. “Understanding LSTM Networks”. In: (2015).

[51] Charu C. Aggarwal Srinivasan Parthasarathy. “Mining Massively Incomplete
Data Sets by ConceptualReconstruction”. In: (2001).

[52] Julian McAuley Ruining He. “VBPR: Visual Bayesian Personalized Ranking
from Implicit Feedback”. In: (2015).

[53] Ruslan Salakhutdinov and Andriy Mnih. “Probabilistic Matrix Factorization”.
In: (2008).

[54] Barry Schwartz. “The Paradox of Choice: Why More is Less”. In: (2005).

[55] Andrew Trask et al Theo Ryffel. “A generic framework for privacy preserving
deep learning”. In: (2018).

[56] Elena Smirnova Flavian Vasile Thomas Nedelec. “Content2Vec: Specialiazing
Joint Representations of Product Images and Text for the Task of Product
Recommendation”. In: (2017).

[57] Paolo Cremonesi et al Yashar Deldjoo Mehdi Elahi. “Content-Based Video Rec-
ommendation System Based on Stylistic Visual Features”. In: (2016).

[58] Robert Bell Yehuda Koren and Chris Volinsky. “Matrix Factorization Tech-
niques For Recommender Systems”. In: (2009).

[59] Yongfeng Zhang and Xu Chen. “Explainable Recommendation: ASurvey and
New Perspectives”. In: (2019).

[60] Haitao Zhao and Pong Chi Yuen. “A Novel Incremental Principal Component
Analysisand Its Application for Face Recognition”. In: (2006).

[61] Karen Simonyan Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: (2015).

90

Section A A.0

A Ethical and professional considerations

Regarding the ethics checklist completed at the beginning of the project we had one
legal issue to address - namely, the use of information for which there are legal
implications. We use YouTube movie trailers extensively in this project for which
copyright regulation is in effect in certain jurisdictions including the USA where our
YouTube trailers were downloaded and preprocessed.

However, we refer to US federal government regulation on fair use which relates to
this matter. To directly quote from www.copyright.gov:

Fair use is a legal doctrine that promotes freedom of expression by per-
mitting the unlicensed use of copyright-protected works in certain cir-
cumstances. Section 107 of the Copyright Act provides the statutory
framework for determining whether something is a fair use and identifies
certain types of usessuch as criticism, comment, news reporting, teach-
ing, scholarship, and researchas examples of activities that may qualify
as fair use.

As our usage of this data constitutes scholarship and/or research and as such quali-
fies as fair use.

Additionally, Section 1 provides the summary of our in depth assessment of how the
commercialisation of this work could take effect.

91

www.copyright.gov

Section B B.1

B Additional collaborative filtering results

B.1 Data sampled at 20 reviews per user on 1000 movie 1500
user dataset

Table 12: Accuracy metrics in non and hard-cold start scenario with sampling at 20
ratings per user.

Item Non Cold Start Item Hard Cold Start
MAE RMSE MSE MAE RMSE MSE

DCfAvCont(1) 0.708 0.911 0.829 0.806 1.012 1.025
DeepCf 0.671 0.861 0.741 0.775 0.979 0.958
RegSVD 0.732 0.922 0.850 0.815 1.007 1.015

Table 13: Rank metrics in non-cold start scenario (k=4) with sampling at 20 ratings per
user.

Item Non Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.522 0.447 0.481 0.605 0.395 0.612
DeepCf 0.576 0.508 0.540 0.637 0.476 0.690
RegSVD 0.471 0.311 0.375 0.494 0.301 0.693

Table 14: Rank metrics in hard-cold start scenario (k=4) with sampling at 20 ratings
per user.

Item Hard Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.556 0.500 0.526 0.646 0.438 0.615
DeepCf 0.263 0.276 0.270 0.309 0.240 0.589
RegSVD 0.000 0.000 0.000 0.000 0.000 0.583

92

Section B B.1

Table 15: Rank metrics in non-cold start scenario (k=10) with sampling at 20 ratings
per user.

Item Non Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10 NDCG@10

DCfAvCont(1) 0.521 0.435 0.474 0.606 0.381 0.665
DeepCf 0.574 0.500 0.535 0.638 0.465 0.720
RegSVD 0.470 0.295 0.363 0.494 0.285 0.722

Table 16: Rank metrics in hard-cold start scenario (k=10) with sampling at 20 ratings
per user.

Item Hard Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10 NDCG@10

DCfAvCont(1) 0.556 0.492 0.522 0.646 0.426 0.667
DeepCf 0.264 0.297 0.280 0.309 0.251 0.646
RegSVD 0.000 0.000 0.000 0.000 0.000 0.644

Table 17: Other metrics in non-cold start scenario with sampling at 20 ratings per user.

Item Non Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.628 0.413 0.992 1.962 2.556
DeepCf 0.795 0.382 0.993 1.937 2.556
RegSVD 0.537 0.216 0.994 1.067 2.556

Table 18: Other metrics in hard-cold start scenario with sampling at 20 ratings per user.

Item Hard Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.573 0.464 0.991 2.199 2.556
DeepCf 0.953 0.232 0.999 1.398 2.556
RegSVD 0.000 0.000 0.000 0.000 2.556

93

Section B B.2

B.2 Data sampled at 80 reviews per user on 1000 movie 1500
user dataset

Table 19: Accuracy metrics in non and hard-cold start scenario with sampling at 80
ratings per user.

Item Non Cold Start Item Hard Cold Start
MAE RMSE MSE MAE RMSE MSE

DCfAvCont(1) 0.635 0.827 0.684 0.744 0.941 0.886
DeepCf 0.624 0.809 0.655 0.754 0.952 0.907
RegSVD 0.642 0.826 0.683 0.792 0.987 0.975

Table 20: Rank metrics in non-cold start scenario (k=4) with sampling at 80 ratings per
user.

Item Non Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.784 0.730 0.756 0.883 0.690 0.586
DeepCf 0.790 0.726 0.756 0.883 0.688 0.586
RegSVD 0.758 0.699 0.727 0.850 0.661 0.577

Table 21: Rank metrics in hard-cold start scenario (k=4) with sampling at 80 ratings
per user.

Item Hard Cold Start
P@4 Radj@4 F1@4 MRR@4 MAPK@4 NDCG@4

DCfAvCont(1) 0.424 0.358 0.388 0.479 0.327 0.397
DeepCf 0.279 0.253 0.266 0.324 0.220 0.296
RegSVD 0.113 0.113 0.113 0.132 0.098 0.303

94

Section B B.2

Table 22: Rank metrics in non-cold start scenario (k=10) with sampling at 80 ratings
per user.

Item Non Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10 NDCG@10

DCfAvCont(1) 0.752 0.605 0.671 0.883 0.553 0.687
DeepCf 0.757 0.596 0.667 0.883 0.547 0.687
RegSVD 0.726 0.581 0.646 0.850 0.530 0.681

Table 23: Rank metrics in hard-cold start scenario (k=10) with sampling at 80 ratings
per user.

Item Hard Cold Start
P@10 Radj@10 F1@10 MRR@10 MAPK@10NDCG@10

DCfAvCont(1) 0.402 0.302 0.345 0.463 0.260 0.511
DeepCf 0.275 0.255 0.265 0.315 0.203 0.415
RegSVD 0.112 0.119 0.116 0.132 0.095 0.426

Table 24: Other metrics in non-cold start scenario with sampling at 80 ratings per user.

Item Non Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.940 0.660 0.964 6.685 8.334
DeepCf 0.927 0.655 0.964 6.532 8.334
RegSVD 0.886 0.631 0.965 6.502 8.334

Table 25: Other metrics in hard-cold start scenario with sampling at 80 ratings per user.

Item Hard Cold Start
Cov. Div. Pers. Avg Rec L Avg Rel L

DCfAvCont(1) 0.999 0.348 0.990 3.619 8.334
DeepCf 0.999 0.272 0.995 3.434 8.334
RegSVD 0.499 0.117 0.499 1.579 8.334

95

Section C C.0

C Effect of different feature aggregation techniques
on ranking results

Table 26: The effect of different feature aggregation techniques on model performance.
All results are from the 1000 movie 1500 user dataset (40 ratings per user) and the
audiovisual content data has been reduced to 600 dimensions per subclip using incre-
mental PCA.

Item Non Cold Start Item Hard Cold Start
MRR MAP NDCG MRR MAP NDCG

DCfAvCont(1)

Avg 0.769 0.546 0.665 0.287 0.223 0.509
AvgVar 0.784 0.559 0.660 0.315 0.243 0.483
Med 0.790 0.577 0.662 0.295 0.226 0.510
MedMad 0.783 0.560 0.670 0.325 0.252 0.499

DCfAvCont(2)

Avg 0.790 0.578 0.668 0.257 0.193 0.417
AvgVar 0.802 0.593 0.668 0.241 0.184 0.422
Med 0.778 0.559 0.662 0.284 0.215 0.436
MedMad 0.786 0.577 0.669 0.269 0.206 0.433

LSTMAvCont

Avg 0.767 0.554 0.654 0.517 0.358 0.508
AvgVar 0.763 0.557 0.656 0.587 0.388 0.510
Med 0.794 0.586 0.655 0.601 0.416 0.506
MedMad 0.781 0.579 0.654 0.616 0.419 0.514

96

Section D D.2

D System design

D.1 How to run the code

Our code is implemented in an object-oriented format. All run modes have an associ-
ated run driver and all run cans be configured and started from the main.py method.
A UML diagram of the code is provided with the repository.

D.2 Designing and implementing a performant audiovisual fea-
ture extraction pipeline

To process the audiovisual data at the scale we did (¿12K trailers of 350GB in size in
compressed form) we had to be very mindful of the RAM requirements of our mod-
els. Moreover, we had to diligently handle exceptions in the pipeline as otherwise
overnight jobs could crash resulting in lost time.

Regarding RAM requirements, we made use of generators in Python. This is a way
of implementing lazy evaluation - that is to say, a programming paradigm in which
an item of data is only brought into memory when it is requested. This allowed us
to feed the visual and audio frames of the trailer files to the feature extractors on a
frame by frame basis.

Regarding exception handling, we wrote our own exception handling framework
that caught all of the possible video file exceptions that our underlying video pro-
cessing utility ffmpeg generated. These included various weird and wonderful types
of corruption to the videos’ audio and visual streams. Our general logic was to cease
to use a trailer which generated an exception as our dataset is so large than we can
afford to exclude certain trailers from it.

When passing our extracted features to our collaborative filtering neural networks
we also made use of the recent Python utility diskcache. This is an excellent piece of
technology that allows you to persit a key-value store to disk and access items from
it on request with low-latency. Moreoever, it supports multiprocessing (i.e. it allows
concurrent access to the store) and thus allowed us to build our own custom data
generators and data loaders for Keras.

97

Section E E.0

E Example calculation of recommender system rank
metrics

Figure 28 shows two example recommendation lists generated for the same user and
the associated rank metrics that result from this. What is important to note from this
“toy” example is that different rank metrics reward slightly different properties of
the recommended list.

For example, the algorithm that generates List 1 places the two highest reviewed
ground truth items first and thus scores a larger NDCG@5 value versus the algo-
rithm behind List 2. However, its recall capabilities are lower and thus it fails to to
recommend ground truth item 3 and thus scores a lower MAPK@5 value.

Therefore, this illustrates how the NDCG metric puts more emphasis on placing the
most relevant items at the top of the list whereas MAPK puts comparatively more
emphasis on ensuring all relevant items are recalled.

98

Section E E.0

Figure 28: Example of how ranking metric values vary relative to each other for two
dummy recommendation lists.

99

Section F F.0

F Additional views of MovieLens AV rating distribu-
tions

Figure 29: Ground truth rating value distribution by genre in MovieLens AV dataset.

100

Section F F.0

Figure 30: Ground truth rating value distribution by year in MovieLens AV dataset.

101

	1 Introduction
	1.1 The case for audiovisual content-aware recommender systems
	1.2 Research overview

	2 Theory and related work
	2.1 Recommender Systems
	2.1.1 Formulating the recommender system problem
	2.1.2 Collaborative filtering
	2.1.3 Content-based filtering
	2.1.4 Pros and cons of collaborative filtering and content based models
	2.1.5 Hybrid recommender system techniques
	2.1.6 Evaluation methodology

	2.2 Audio-visual content representation and analysis
	2.2.1 Extracting deep visual features from audiovisual content
	2.2.2 Extracting deep audio features from audiovisual content
	2.2.3 Learning from sequences of audiovisual features
	2.2.4 The semantic gap

	3 Our approach
	3.1 Using audiovisual content to enhance collaborative filtering models
	3.2 Theory of our proposal
	3.3 Our proposed network architectures
	3.4 Our formulation of the rating prediction problem
	3.5 Elements not considered in the scope of our project

	4 Experiments and results
	4.1 Ground truth data overview
	4.1.1 Data overview
	4.1.2 Data scenarios

	4.2 Audio-visual feature extraction
	4.2.1 Experimental approach
	4.2.2 Results

	4.3 Audiovisual content enhanced collaborative filtering
	4.3.1 Experimental approach
	4.3.2 Results

	5 Discussion
	5.1 Performance of audiovisual enhanced collaborative filtering models versus collaborative filtering baselines
	5.2 Performance of audiovisual enhanced collaborative filtering models versus the genre baseline
	5.3 Performance of audiovisual enhanced collaborative filtering models versus one another
	5.4 Utility of audiovisual content feature descriptors in collaborative filtering models

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	A Ethical and professional considerations
	B Additional collaborative filtering results
	B.1 Data sampled at 20 reviews per user on 1000 movie 1500 user dataset
	B.2 Data sampled at 80 reviews per user on 1000 movie 1500 user dataset

	C Effect of different feature aggregation techniques on ranking results
	D System design
	D.1 How to run the code
	D.2 Designing and implementing a performant audiovisual feature extraction pipeline

	E Example calculation of recommender system rank metrics
	F Additional views of MovieLens AV rating distributions

