Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Improving Autonomous Driving
Agents using Bio-Inspired Visual
Attention

Author: Supervisor:
Alexander Makrigiorgos Aldo Faisal

Submitted in partial fulfillment of the requirements for the MSc degree in MSc
Computing (Artificial Intelligence) of Imperial College London

September 2019

Abstract

Humans’ eye movements contain a wealth of information about their intentions and
decision-making processes when performing tasks, rapidly fixating on objects of in-
terest while tuning out unnecessary details. This ability to identify task-specific high-
interest regions within an image could be very beneficial to machine learning agents
attempting to learn visuomotor tasks which require making sense of a complex vi-
sual environment. In this research project, we investigate the effect of combining a
visual attention model, trained using human eye movement data, with end-to-end
autonomous driving systems. Autonomous driving is a challenging multi-task prob-
lem which has grown in popularity in recent years, and requires a deep understand-
ing of the visual environment in which it takes place. To create a system capable of
imitating human gaze patterns, we collect 3 hours of eye movement data from hu-
man drivers in a virtual reality environment. This data is used to train several deep
neural networks to attempt to predict where humans are most likely to look when
driving. Our most successful model shows a clear ability to identify key objects in
driving sequences and mimic human attention dynamics. We then use the outputs
of this trained network to selectively mask driving images using a variety of mask-
ing techniques. Finally, autonomous driving agents are trained using these masked
images as input. Upon comparison, we found that a dual-branch architecture which
processes both raw and attention-masked images substantially outperforms all other
models in terms of average prediction error, validating our hypothesis that a visual
attention model learned from human data can bolster the performance of machine
learning agents in complex settings.

This work builds on an Independent Study Option carried out under Dr. Aldo Faisal’s supervision
in the winter term of 2019 [21]. The ISO involved a comprehensive review of literature in the fields of
autonomous driving and human gaze prediction, portions of which are summarized with attribution
in the Background chapter of this report. All data collection experiments, novel architecture designs
and implementations presented in this report are entirely independent of the work done in the ISO.
Appendix B summarizes the overlaps between the content of the ISO and this report.

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Aldo Faisal, for his guid-
ance and support throughout this project. His feedback and insights were invaluable,

and motivated me to challenge myself and push the limits of what I could accom-
plish.

Contents

1 Introduction

2 Background
2.1 End-to-End Autonomous Driving

2.1.1 Lane Following with DAVE-2 . . .

...............

2.1.2 Navigation with Conditional Imitation Learning

2.1.3 Attention Models

2.1.4 Evaluating Autonomous Agents . .

2.2 Human Visual Attention
2.2.1 Bottom-Up Gaze Prediction

2.2.2 Top-Down Gaze Prediction

...............

2.2.3 Evaluation Metrics for Saliency Prediction

2.3 CARLA Driving Simulator
2.3.1 Architecture
2.3.2 Environment

2.3.3 Measurements

3 Data Collection & Preprocessing

3.1 GazeDataset

3.1.1 Experimental Setup and Procedure

iii

...............

...............

11
12
13
16
18
18
18

19

21

CONTENTS

Table of Contents

3.2

3.1.2

3.1.3

3.14

3.1.5

3.1.6

3.1.7

Driving Dataset

3.2.1 Expert Demonstrator

3.2.2

3.2.3

Data Collection
World-to-Camera Gaze Projection
Fixation Map Generation
Optical Flow Map Generation

Data Labeling

Analysis, Curation

Data Collection

Preprocessing

4 Deep Learning

4.1 Gaze Prediction Models

4.2

4.1.1

4.1.2

4.1.3

4.1.4

Driving Models
4.2.1 Conditional Imitation Learning

4.2.2 Attention-Guided CIL

Recurrent Mixture Density Network

DR(eye)VE

5 Results and Evaluation

5.1 Gaze Networks

5.1.1

5.1.2

5.1.3

DeepGazelIl
MLNet

RMDN

........

iv

Table of Contents CONTENTS
5.1.4 DR(eye)VE e 51

5.1.5 Side-by-Side Comparison 58

5.2 Driving Networks 58

6 Conclusion 66
6.1 Summary e e e e 66
6.2 Future Work and Improvements 67

A Implementation 73
A.1 Project Setup & Development 73
A.2 Dataset Creation & Preprocessing 74
A3 GazeNetworks 77
A4 Driving Networks L 79

B Relationship to ISO 81
C Ethical and Legal Considerations 83
D Ethics Checklist 84

Chapter 1

Introduction

Autonomous driving is a rapidly expanding field of research with the potential to
provide enormous social, economic and environmental benefits to society. Dozens of
major car manufacturers and tech companies have begun to invest in the driverless
car industry, with new competitors emerging daily and initial testing on public roads
already taking place. There are six commonly defined levels of autonomous driv-
ing. Level O indicates a fully manual system, operated entirely by a human driver.
Level 1 involves computer assistance in simple driving scenarios such as cruise con-
trol or anti-lock braking. At level 2, the computer is able to partially automate one
feature at a time in certain circumstances, such as automatic emergency braking.
Level 3 allows the computer to simultaneously control multiple driving functions,
with a human driver ready to take over in case anything goes wrong. This is the
current state of publicly available autonomous technology, including features such
as simultaneous lane keeping and cruise control. Level 4 lets the computer auto-
mate all driving functions, but still requires a human driver to be present in the
rare case that they are required to take over, while level 5 removes the need for a
human altogether and can operate entirely independently. Currently, the leaders in
autonomous technology have achieved level 4 autonomy in specific, well-defined en-
vironments (college campuses, geo-fenced city blocks, etc.). At present, all of these
companies use a "modular pipeline” approach to carry out the driving task, which
involves combining multiple subsystems such as sensory perception, path planning
and vehicle control to form a full driving system.

While modular pipeline systems are very effective at driving in well-controlled envi-
ronments, they are also somewhat restricted by certain requirements, such as their
reliance on hand-coded road rules and high-definition environmental maps that
must be frequently updated. Because of these restrictions, there is almost no possi-
bility for modular pipeline systems to ever progress to level 5 autonomy. In recent
years, end-to-end autonomous driving systems have attracted increasing amounts of
interest as a potential solution to this scalability issue, with the latest breakthroughs
in deep learning having substantially improved the capabilities of these systems.
End-to-end autonomous systems attempt to directly learn the driving task by train-

Chapter 1. Introduction

The Five Levels of Autonomous Driving

FULLY AUTONOMOUS - Vehicle is completely driverless

CONDITIONAL AUTOMATION/LIMITED SELF-DRIVING -

The car becomes a co-pilot

PARTIAL AUTOMATION/COMBINED AUTONOMOUS
FUNCTIONS t

DRIVER ASSISTED/FUNCTION-SPECIFIC -
Intelligent features add layer of safety and comfort

ZERO AUTOMATION - Driving as Usua

Figure 1.1: Six Levels of Autonomous Driving [1]

ing deep neural networks on sensory input, with the theoretical ability to drive in
previously unseen environments and to continuously learn from experience and op-
timize their behaviour. In practice, however, these networks can be unpredictable or
difficult to interpret, require massive amounts of training data to perform well, and
may not be prepared to deal with rarely encountered edge cases on the open road.
In this project, we aim to address some of these issues by taking inspiration from the
way in which humans approach the driving task.

Humans have a very finely tuned sensory system which allows them to quickly lo-
cate objects of visual interest within a scene, ignoring irrelevant details and only
processing what is important. Eye movements encode a wealth of information about
humans’ intentions, understanding of their environment and decision-making pro-
cesses. The ability to understand and recreate this attention-focusing mechanism has
the potential to provide similar benefits to machine learning systems which have to
parse complex visual scenes in order to complete their tasks, reducing computational
burden and improving performance by quickly identifying key features in images. In
this project, we attempt to inject the expertise of human drivers into an end-to-end
autonomous driving system by incorporating an attention model which has learned
to predict human gaze patterns in the driving context. By directing the focus of the
driving network to specific image locations which contain important information for
driving, we aim to improve both the training speed and overall performance of these
networks.

Chapter 1. Introduction

The main contributions of this project are as follows. First, we collect and manually
label a high-quality dataset of driving sequences annotated with the eye movements
of the driver in a virtual reality simulator. Second, we implement and compare the
performance of several recently published gaze prediction neural networks on our
recorded dataset, and make some novel additions to the best-performing network in
order to further boost performance. Finally, we propose and test multiple methods
of incorporating the attention maps produced by the gaze prediction networks into
autonomous driving systems, and compare the overall performance of systems with
and without attention.

Using the recorded eye movement data from our driving experiments, we show that
we have produced a gaze prediction network which demonstrates a clear under-
standing of the driving task, with the ability to identify key objects and features in
driving images as a human would. A demonstration of a driving sequence blended
with our model’s attention map predictions can be found at https://www.youtube.
com/watch?v=A2cy70ab5xtg. Furthermore, we show that a dual-branch autonomous
driving architecture which learns from both raw and attention-masked driving im-
ages provides a noticeable increase in performance compared to a standard archi-
tecture trained only on raw images, predicting driving actions with a 25.5% average
reduction in error. Finally, we make the interesting observation that an autonomous
agent trained on images which contain only the image regions selected by the gaze
prediction network, with the rest of the image blacked out, sees little to no perfor-
mance decrease with respect to an agent trained on full images.

The remainder of this report is structured in the following way: Chapter 2 reviews
the key papers and technological advancements which have motivated our exper-
iments and choice of deep learning architectures in both gaze prediction and au-
tonomous driving. We also include an overview of the design, functionality and core
features of the Car Learning to Act (CARLA) driving simulator, which we use in all
of our experiments. Chapter 3 describes the collection, preprocessing and prelimi-
nary analysis of the two datasets used in this experiment: one for training a gaze
prediction network, the other for training autonomous driving agents. In Chapter 4,
we provide detailed descriptions for all of the deep learning models developed and
evaluated in the course of this project. For each model, we provide an exact descrip-
tion of the model’s architecture, training process, and the intuition behind its design.
Chapter 5 compares the performance of all implemented models for both tasks. In
addition, we individually evaluate and attempt to understand each model’s observed
behaviour, discussing the implications and conclusions that can be drawn from our
results. Finally in Chapter 6, we conclude by reflecting on the project’s goals and the
results which arose from our experiments, as well as considering improvements and
promising directions for future work.

https://www.youtube.com/watch?v=A2cy70a5xtg
https://www.youtube.com/watch?v=A2cy70a5xtg

Chapter 2

Background

In this chapter, we provide an overview of the existing research and literature which
inspired this project. We begin by looking at the recent advancements which have
made end-to-end autonomous driving a potentially viable alternative to modular
pipelines. Afterwards, we introduce the topic of human visual attention and review
some of the models which have been most successful at predicting human gaze in
different scenarios. Finally, we describe the design and functionality of the CARLA
driving simulator, used to conduct our gaze collection experiments and to train and
evaluate our autonomous driving agents in this project.

2.1 End-to-End Autonomous Driving

The ability to steer a vehicle using commands generated by a neural network was
first demonstrated by David Pomerleau in 1989, with his Autonomous Land Vehicle
in a Neural Network (ALVINN) experiment[24]/[21], in which a retrofitted army
ambulance successfully drove along public roads at low speeds using a three-layer
neural network to convert camera images into steering commands. This process of
directly learning driving commands from sensory input is referred to as end-to-end
autonomous driving, as distinguished from the modular pipeline approach which
deconstructs the driving task into sub-modules such as perception, path planning
and vehicle control. In this project we focus on the end-to-end model, which has at-
tracted a large amount of interest in recent years with the ever-growing popularity of
convolutional neural networks for image processing and the continuously increasing
capabilities of modern GPUs for training deep networks.

Within the end-to-end paradigm, there are two main approaches: (1) Reinforcement
Learning, in which an agent receives a reward signal based on its driving behaviour
and learns to optimize its actions to maximize this reward signal, and (2) Imitation
Learning, in which an agent uses expert data (such as the actions of a human driver)

4

Chapter 2. Background 2.1. END-TO-END AUTONOMOUS DRIVING

to learn a driving policy by mimicking the actions of the expert. Thus far, attempts at
training a self-driving system purely through reinforcement learning have not been
successful[25][36][8][21], largely due to the complex nature of the task requiring
tens of millions of sample episodes to begin learning a stable policy. In addition,
these systems cannot be effectively trained in the real world as the trial-and-error
nature of the training process would require constant human intervention to avoid
collisions. By contrast, imitation learners can learn an effective policy using just
a few hours of recorded expert data[8][6], and can be safely trained off-line such
that only fully trained vehicles would actually be allowed to operate in the real
world. As such, the bulk of end-to-end autonomous driving research in recent years
has been focused on exploring and improving on imitation learning approaches.
The first research team to successfully drive a CNN-guided imitation learning agent,
nicknamed DAVE-2, on public highways and spark a renewed interest in the field of
end-to-end driving was that of Mariusz Bojarski in 2016[3]/[21].

2.1.1 Lane Following with DAVE-2

The original DAVE (DARPA Autonomous Vehicle) [20] project took place in 2004, in
which a shallow convolutional network was trained to drive a small robot through
alleyways while avoiding obstacles scattered throughout the area. While this exper-
iment demonstrated the potential of CNNs for steering a vehicle, the mean distance
between crashes was approximately twenty meters, clearly insufficient for testing on
public roads. Over a decade later, NVIDIA introduced DAVE-2[3], a system which
leveraged the vastly increased power of GPUs to train a deeper, more powerful net-
work and successfully drive on public highways with little to no human intervention
required.

To train the imitation learning network, 72 hours of human driving data was col-
lected using vehicles with three cameras mounted behind the windshield and a Con-
troller Area Network (CAN) bus recording the angle of the steering wheel at all
times. Each camera frame is thus associated with a steering angle which is used as
the command to emulate when training in a supervised manner. To establish diver-
sity in the dataset, data was recorded in a variety of weather conditions (sun, fog,
rain, snow), road types (highways, cities, rural unpaved roads) and different times
of day. As the desired behaviour of the vehicle was simple lane following, any frames
including other actions such as turning or waiting at traffic lights were removed. In
addition, to avoid bias in the dataset which could affect the vehicle’s behaviour, the
proportion of images showing straight and curved roads was manually balanced.

The block diagram for the training process of the DAVE-2 network is shown in Fig-
ure 2.1. As seen, data augmentation was performed to increase the stability of the
produced driving policy. This addresses a well-known issue in imitation learning sys-
tems, namely that since they are trained on data with no examples of driving errors,
they have difficulty recovering from their own mistakes in a testing environment as

5

2.1. END-TO-END AUTONOMOUS DRIVING Chapter 2. Background

they have not observed any data showing them how to recover. Specific image shifts
and rotations were performed using images from all three cameras to approximate a
viewpoint transformation which makes the car appear to be drifting from the center
of the lane or badly angled with respect to the road markings. These augmented im-
ages were then each manually labeled with a steering angle which would restore the
vehicle to the desired position. After augmentation, the desired steering command is
compared to the angle predicted by the CNN, and the mean-squared error between
the two is calculated and used to train the network for subsequent predictions.

Recorded
steering
wheel angle | Adjust for shift Desired steering command
> :
and rotation

Network
Left camera b— computed
steering
o .
- A
>
Right camera f

Back propagation
weight adjustment

command

Figure 2.1: DAVE-2 Training Block Diagram (Taken from [3]/[21])

The network architecture of DAVE-2 consists of five convolutional layers, each fol-
lowed by a max-pooling layer, and ending with three fully-connected layers which
output a single scalar representing the desired steering angle. Using only this rela-
tively simple architecture, DAVE-2 achieved major improvements over any previous
end-to-end systems in a real-world lane following task. The system was tested on
New Jersey highways in various weather conditions, and was able to lane follow
without human intervention approximately 98% of the time. The success of this re-
search paved the way for many subsequent efforts which have attempted to address
the significantly more challenging task of fully autonomous point-to-point naviga-
tion.

2.1.2 Navigation with Conditional Imitation Learning

While successful at simple lane following, Bojarski’s imitation learning network con-
tains some major limitations which prevent it from scaling to the task of full au-
tonomous navigation. Chief among these is an inability to deal with any sort of
intersection scenario, where the car must choose between multiple directions. The
neural network has been trained to find a mathematical mapping between sensory
inputs and control signal outputs, but in this case there is no mathematical func-
tion which can always describe the correct direction to take - it is dependent on the
destination of the user. Pomerleau described the problematic behaviour for this sce-
nario in his original ALVINN paper published in 1989: "Currently upon reaching a

6

Chapter 2. Background 2.1. END-TO-END AUTONOMOUS DRIVING

fork, the network may output two widely discrepant travel directions, one for each
choice. The result is often an oscillation in the dictated travel directions and hence
inaccurate road following[24]”.

In 2017, Codevilla et al. proposed a solution to this problem known as conditional
imitation learning, hereafter referred to as CIL[6]/[21]. This framework introduces
the concept of a high-level command as a new input to the imitation learning net-
work, which tells the vehicle what actions it should take when navigating between
destinations. These commands take the form of simple actions (e.g. take the next
right, continue straight, follow the lane) which remove the requirement for the imi-
tation learning network to perform any sort of high-level route planning and simply
attend to the lower-level tasks of providing acceleration, braking and steering com-
mands. These commands can then easily be provided to the network at test time by
any sort of route planning or mapping application, e.g. Google Maps.

To implement this method, we must expand our dataset from a collection of observa-
tions and their output actions D = {(0;,a;)}, to a set of observations, commands
and actions D = {(0;,¢;,a;)}Y,[6]/[21]. In Codevilla’s CIL dataset, each observa-
tion o, consists of an input image paired with the current speed of the vehicle, which
is necessary to produce sensible acceleration or braking commands in the presence
of dynamic objects. Each command c¢; corresponds to one of a discrete set of high-
level commands as discussed above, and the outputs a; are the vehicle actions in
terms of throttle, brake and steering control signals.

f)
J
Image > Al
gi !
o
- / |_;> Q fo)
()
Measurements) ‘ = | ‘HD 4!
m Uy | M(m) Action
Command € A a

Figure 2.2: Conditional Imitation Learning Model Architecture (taken from [6]/[21])

The architecture used to incorporate these high-level commands into the training
process is shown in Figure 2.2. Input images are processed by a 2D CNN consisting
of eight stacked convolutional layers followed by two fully connected layers, while
the speed input is processed by two fully connected layers, and the two resulting
feature vectors are concatenated. This joint sensory vector is then passed to one of
several possible branch heads, depending on the high-level command recorded for
that frame. Each branch head is trained only on samples for the specific command
it is associated with, producing highly specialized mappings from observation to

7

2.1. END-TO-END AUTONOMOUS DRIVING Chapter 2. Background

action. The network is trained to reduce the multi-task loss for all predicted actions,
for which more details can be found in Section 4.2.1.

2.1.3 Attention Models

Attention models have seen success in a variety of machine learning tasks[34][32][37]
by emphasizing important features in input data, leading to improved performance
as well as more transparent and explainable models. Thus far, however, there have
been very few attempts to integrate attention mechanisms into end-to-end systems
for autonomous driving. To our knowledge, only one method has been published for
incorporating an attention mechanism into an imitation learning agent in the context
of self-driving. The Multi-Task Learning from Demonstration (MT-LfD) framework,
proposed by Mehta et al. in 2018, uses a set of handcrafted auxiliary predictions
to focus the network’s attention on features which were deemed by the authors to
be important for the driving task[22]/[21]. These include visual affordances, such
as calculating the distance to an upcoming intersection or an oncoming vehicle, and
action primitives which decompose larger actions into a series of smaller sub-actions
(e.g. 7turn left at the upcoming intersection” becomes ”slow down”, "turn left”,
”speed up”). A total of 21 auxiliary predictions are defined and used to influence the
training of the network.

Planner Input Visual Affordances
Prediction

Control Prediction

Extracted Image
Features

Action Primitives
Speed Input Prediction

Stack of Input Images ResNet 50 Observation Attention Block Auxiliary Task Attention Block

Figure 2.3: MT-LfD Network (taken from [22]/[21])

The architecture used for the MT-L{fD framework is pictured in Figure 2.3. After ini-
tial processing of the input images, an intermediate prediction stage takes place, in
which the network outputs its predictions for each of the 21 auxiliary tasks. These
predictions are then reintroduced to the network and further processed by another
convolutional block, which outputs the final predictions for actually controlling the
vehicle. The training loss includes the loss from both the main and auxiliary pre-
dictions, forcing the network to learn all tasks simultaneously with the goal of high-
lighting the connections between the two. In practice, however, the model did not
see any improvement in overall performance as a result of training with these aux-
iliary predictions. This is not necessarily a reflection on the usefulness of attention
models for the driving task in general; we argue that the structure of this network is
rather restrictive, as so many strictly defined tasks being included in the network’s

8

Chapter 2. Background 2.1. END-TO-END AUTONOMOUS DRIVING

loss function may limit its ability to learn other important features present in the
input data. In Section 2.2, we explore techniques for predicting attention maps
from human eye movements, which have been shown to encode large amounts of
task-relevant information and which we believe can provide a more natural way of
incorporating attention into autonomous driving systems.

2.1.4 Evaluating Autonomous Agents

The ideal way of evaluating an autonomous driving agent’s performance is, of course,
to test it in the real world and observe its performance. In practice however, this is
not a realistic option for most research groups due to logistics such as cost and safety
concerns. Another option, then, is to evaluate these agents offline by computing per-
formance metrics on a validation set of driving data. This is a very common practice
in the evaluation of machine learning systems, but in an open-loop environment
such as driving in the real world, where the agent is subject to the consequences of
its actions, it is not necessarily guaranteed that a model with low offline prediction
errors will actually perform well. In this section we review the findings of Codevilla
et. al’s study "On Offline Evaluation of Autonomous Driving Systems” [5], which
suggests the best metrics and validation set features to use to ensure that offline
performance correlates well with online performance. In this study, 45 Conditional
Imitation Learning[6] models were trained and compared in terms of online and of-
fline performance evaluations. The models differed in three main respects. First, the
number of convolutional layers in the feature extraction network is varied from 4 to
12 layers. Second, the amount and distribution of the training data used for different
models is varied. Models are trained with 0.2 to 80 hours of recorded data, and this
data is distributed in four different ways: central camera images with noise added
to the control signals, central images without noise, images from three cameras with
noise, and images from three cameras without noise. Third, training parameters
such as dropout, regularization and data augmentation likelihood are varied. All
models are trained using the weighted sum of mean-squared errors between the
predicted and ground-truth control values (see Section 4.2.1 for more details). All
models were then evaluated using a number of different offline metrics, and tested
online in the CARLA simulator[8], measuring online performance in terms of navi-
gation episode completion rate, number of kilometers driven per driving infraction,
and average distance driven towards goal destinations.

The results of the study indicate that the correlation between offline metrics and
online performance is generally quite weak - agents with very low prediction errors
often still prove to be poor drivers. Many specific insights are made into different
training conditions, custom-designed metrics and more - we refer the reader to the
cited paper for further details on these findings. For this project, we make use of
the two most important factors which were found to increase the correlation be-
tween offline and online performance. First, the study found that measuring offline
performance using Mean Absolute Error rather than Mean Squared Error increases

9

2.1. END-TO-END AUTONOMOUS DRIVING

Chapter 2. Background

Success rate

=
L
S

0.00

Figure 2.4: Scatter plots of navigation episode success rate vs. MSE and MAE for a large

0.60

=
=
o

Steering MSE

Correlation -0.39

0.004 0.006

Steering MSE (log)

Success rate

0.60

-l
=
o

o
L]
S

0.00

Steering absolute error
Correlation -0.61

0.025 0.040
Steering absolute error (log)

0.063

selection of autonomous driving models (taken from [5]).

Success rate

0.60

0.40

0.20

0.00

Central camera, no noise
Correlation -0.39

is. 5§

0.004 0.006

Steering MSE (log)

Success rate

0.60

-l
-y
=

o
(]
=

0.00

Central camera, with noise
Correlation -0.54

" X

Ce 38
'o'.'?.:.' D Y
oo e
. .'.--'-_.3.-.;. .

0.010
Steering MSE (log)

Figure 2.5: Scatter plots of navigation episode success rate vs. MSE for a large selection
of autonomous driving models, comparing models trained with and without control
signal noise injections (taken from [5]).

performance correlation by 56%, with MSE in particular shown to be an extremely
inaccurate method of measuring performance. Second, the addition of noise to the
dataset’s control signals further increases the correlation by 38%. The results from
the study indicating these improvements are shown in Figures 2.4 and 2.5.

10

Chapter 2. Background 2.2. HUMAN VISUAL ATTENTION

2.2 Human Visual Attention

The link between human eye movements and the internal cognitive processes which
they reflect is a highly active field of research. Alfred Yarbus first demonstrated this
connection in 1967 with a series of experiments in which he recorded subjects’ gaze
patterns while viewing a painting [35]. By comparing the patterns produced by
subjects who were freely viewing the painting against those who were given specific
instructions about what to look for, he showed that different internal goals produced
consistently different gaze patterns. An example of these results is shown in Figure
2.6, where a clear shift can be seen in the subjects’ visual interrogation of the scene,
particularly from focusing on faces to things such as clothing or objects in the room
which may be indicative of wealth.

Figure 2.6: Example of differing gaze patterns for subjects viewing Repin’s "An Unex-
pected Visitor”. The leftmost image is the original painting, the middle is overlaid with
fixations for subjects freely viewing the painting, and the right is overlaid with fixations
for subjects who were asked to evaluate the material circumstances of the family in the
painting [35].

For this project, we are interested in creating a system which can predict how a
human would distribute their gaze in a given scene, in order to produce an attention
map which could boost the performance of an autonomous driving agent. There
exist two main approaches to predicting gaze patterns: bottom-up and top-down
saliency prediction. In bottom-up saliency prediction, we assume that the subject
has no agenda, and directs their gaze to whatever interests them in the scene they
are viewing. In top-down saliency prediction, we assume that the subject has a
specific goal or a task to complete, and is purposefully directing their gaze to acquire
the information necessary for completing that task. As this project concerns gaze
patterns produced while a subject is driving, we are mainly interested in predicting
gaze in top-down settings, as we have a clear goal (reaching our destination without
crashing). Nevertheless, we implement and evaluate both bottom-up and top-down
gaze prediction methods in order to establish a comparison between the two and
verify that top-down approaches indeed perform better in this setting.

11

2.2. HUMAN VISUAL ATTENTION Chapter 2. Background

2.2.1 Bottom-Up Gaze Prediction

In recent decades, computational models for predicting gaze in a bottom-up setting
have focused on identifying features within an image which are likely to attract a
human’s attention. In recent years, however, these approaches have largely given
way to data-driven approaches which make use of deep convolutional networks and
widely available object recognition datasets to automatically identify important fea-
tures for gaze prediction.

The first model to achieve high performance in the saliency prediction task using
hierarchical feature learning was the Ensemble of Deep Networks (eDN) model of
Vig et al. [33]/[21] shown in Figure 2.7, which used randomly generated multi-
layer feature extractors to create high-quality feature vectors. Hundreds of feature
extractors were created by randomly combining different smoothing, activation and
filtering operations. These extractors were then each individually evaluated, and
the most effective were combined into a single model which blended their predic-
tions into a single feature vector, which was used to train a support vector machine
to predict saliency maps. At the time of its publication in 2014, the eDN model
outperformed all previous models on the well-known MIT300 saliency prediction
benchmark.

Optimal blend of L1, L2, L3 features: Fixation map
Train images
% L3 e =
2 & | [normare - w
3 is . Labeled feature vectors
= % L1
Linear
Normalize I
0] |-+
______ 2 _‘LZ] — e
© Test images 3 o
= | w Normalize —| I1 12 |—> y ¥
z W)
[L eDN saliency map

Figure 2.7: Ensemble of Deep Networks (taken from [33]/[21])

In the following years, another major step forward was made with the discovery
that pre-trained object recognition networks such as Alexnet[16] and VGG[26] per-
formed exceptionally well at identifying visually salient features. By using these
networks as feature extractors, followed by fine-tuning for the saliency task, mod-
els such as SALICON[13], DeepFix[17], MLNet[7] and DeepGaze I and II [19][18]
continued to see increased scores on the MIT300 and SALICON benchmarks. The
MLNet model, which in 2016 achieved the highest results on SALICON, the largest
public saliency prediction dataset, is shown in Figure 2.8.

12

Chapter 2. Background 2.2. HUMAN VISUAL ATTENTION

Learned Prior

l

Bilinear Upsampling

i
MultiLevel Conv 3x3 Conv 1x1

features maps Saliency
features maps

Saliency map

Figure 2.8: Multi-Level Net (MLNet) Architecture (taken from [7])

MLNet uses the VGG-16 network as a feature extractor for input images, with the
fully-connected layers used for classification removed. All parameters are frozen to
their state after being trained on the ImageNet object recognition database. Acti-
vated feature maps are then extracted from different layers of the network to obtain
both high and low-level feature representations. These maps are then upsampled
to the size of the input image, concatenated and processed by a shallow second
network, the Encoding network. This network simply consists of a 3x3 convolu-
tional layer followed by a 1x1 convolutional layer, and is trained using ground-truth
saliency maps to produce saliency-specific feature maps from the VGG-16 activa-
tions. The final important step used by MLNet and many other networks is the
incorporation of a prior. Humans exhibit certain biases when looking at images, in
particular a strong tendency to focus on the center of an image rather than the pe-
riphery. To prevent the network from simply learning to reproduce this bias, a prior
is learned alongside the main training objective and used to mask the predictions of
the network in order to remove the bias from the model’s final output. More details
on the design of MLNet can be found in Section 4.1.2.

2.2.2 Top-Down Gaze Prediction

Far fewer attempts have been made to predict gaze in top-down settings than in
bottom-up settings[21]. This is likely due to the inherently more difficult nature of
the task. Bottom-up approaches are simply focused on identifying general image
features that people find interesting and are likely to look at - as such, they benefit
greatly from using pretrained networks for generalized object detection, since these
networks generally capture the most semantically interesting high-level features of
an image. Each top-down approach, on the other hand, must be tuned and trained
specifically for the task it is being used for. Consider a simple example for two tasks:
making a cup of tea versus making a sandwich. Both tasks would involve simi-
lar scenes and objects (kitchen, pantry, etc.), but the objects focused on by the user
would be very different. As such, there is no way to design a ’general’ top-down gaze

13

2.2. HUMAN VISUAL ATTENTION Chapter 2. Background

predictor. Confounding variables also have to be considered in top-down settings; a
human may be very likely to look at a brightly colored billboard advertisement every
time they drive by it, despite its irrelevance to the actual task of safely driving a car.
The exact degree to which bottom-up and top-down influences dictate how humans
allocate their gaze remains an open question. In order to form an understanding the
decision-making process behind the scheduling of eye movements in a top-down set-
ting, we consider the Uncertainty-Reward model proposed by Sprague and Ballard
in 2003[271/[21].

Figure 2.9: Sidewalk Navigation Agent’s chosen state updates for seven consecutive
time steps. Gray bars indicate obstacle avoidance, black indicate sidewalk following,
and white indicate litter collection. The agent focuses on reducing uncertainty from
variables which have potential to cause negative reward in the near future such as hitting
the obstacle or leaving the sidewalk (taken from [27]).

The Uncertainty-Reward model hypothesizes that eye movements are directed to-
wards certain objects in a scene in order to reduce uncertainty about the state of
those objects, with the overall goal of maximizing some internal reward, i.e. com-
pletion of the given task. Within this framework, then, specific eye movements to
different objects can each be assigned a value based on the amount of uncertainty
that is resolved by focusing on that object, weighted by the object’s relevance to
completing the objective. Sprague & Ballard initially tested this hypothesis with a
simple experiment, in which a virtual reinforcement learning agent was trained to
simultaneously perform three tasks: sidewalk following, litter collection, and ob-
stacle avoidance. A reward function was designed to give positive rewards for re-
maining on the sidewalk and collecting litter, and negative rewards for colliding
with obstacles. To model human gaze scheduling and introduce uncertainty into
the experiment, the model was constrained to only update one variable from the
state space every 300ms, while all other variables were updated via Kalmann fil-
ters, providing increasingly uncertain estimates as to their true values. The model
then learned to maximize its reward in each task by discovering through trial and
error which variables were most important to regularly update (e.g. distance from
edge of the sidewalk for sidewalk following, distance and direction of the oncoming

14

Chapter 2. Background 2.2. HUMAN VISUAL ATTENTION

object for litter collection) in order to pick the best actions for its task - see Fig-
ure 2.9 for an example. Results from this experiment showed that the agent using
learned gaze scheduling to update state variables earned more average reward per
episode than baseline agents that used round-robin scheduling for variable updates.
Subsequent experiments over the next decade extended this framework to a virtual
driving task[28][29][15], further validating the uncertainty-reward model (see [21]
for more details), but the first attempts to go beyond variable updates and predict
attention maps at full pixel-level detail came in 2018 with Zhang et al.’s Attention-
Guided Imitation Learning (AGIL) network[37]/[21].

The AGIL network trains an imitation learning agent to play Atari games in a two-
stage learning process. First, a top-down visual attention network is trained which
learns to predict where in the game screen a human is most likely to look. The
saliency maps predicted by this network are then used to augment the training pro-
cess of a policy network, which outputs actions for the current frame. The visual
attention network is shown in Figure 2.10. Three separate channels are each trained
to make their own individual predictions through a series of convolutional and trans-
posed convolutional layers. Each channel aims to capture different features of the
input frames by preprocessing them in different ways. The top channel processes
the frames with no modifications, the middle channel processes optical flow maps,
and the bottom channel computes bottom-up saliency features such as edges and
corners. The predictions from each branch are then averaged and normalized with
a softmax function to output a single probability map. A very similar model which
uses a semantic segmentation branch in place of the bottom-up saliency branch is the
DR(eye)VE model[23] of Palazzi et. al, described in detail in Section 4.1.4, which
predicts gaze for the driving task.

Final
Prediction

N

Softmax

Deconv Deconv
+ +> g 33,64 4*4,32
Stride: 1 Stride: 2

Figure 2.10: AGIL Visual Attention Network (taken from [37]), [21].

The AGIL policy network, shown in Figure 2.11, uses a two-channel architecture
to take the probability maps produced by the attention network into account. In
order to avoid any loss of overall information, the top channel takes the current
image frame without any alteration, and processes it with a convolutional network.
The bottom branch, however, performs an elementwise multiplication of the current
frame with the attention map produced by the network, masking the image so that
only the regions which were chosen by the attention network remain visible. This
masked image is then processed by an identical convolutional network, and the

15

2.2. HUMAN VISUAL ATTENTION Chapter 2. Background

output features are averaged and processed by a fully connected layer to predict
actions for that frame. By learning in this manner, the AGIL agent outperformed a
baseline imitation learning agent in all eight games for which it was trained, strongly
validating the use of the visual attention model.

Gaze
Image Heatmap

. S

X— - -

!

Figure 2.11: AGIL Policy Network (taken from [37]), [21].

2.2.3 Evaluation Metrics for Saliency Prediction

A wide variety of metrics exist for assessing the similarity between predicted and
ground truth saliency maps. Different metrics can rank saliency models differently
based on a variety of factors such as treatment of false positives and negatives, ac-
counting for central biases, and how saliency maps have been pre-processed. While
there is no ’best’ metric for evaluating how well a model can predict human gaze,
knowledge of the properties of each metric can be very useful when training and
scoring models for specific applications. In "What do different evaluation metrics
tell us about saliency models”[4], Bylinskii et al. provide a comprehensive descrip-
tion of the strengths and weaknesses of 8 different saliency metrics: Area under
ROC curve (AUC), shuffled AUC (sAUC), Normalized Scanpath Saliency (NSS), Cor-
relation Coefficient (CC), Earth Mover’s Distance (EMD), Similarity (SIM), Kullback-
Liebler Divergence (KL), and Information Gain (IG). In addition, suggestions are
made for which metrics should be used based on different dataset characteristics
and targeted applications.

The above metrics can be divide into two categories based on how they require
ground truth saliency maps to be represented for their calculations. Location-based
metrics (AUC, sAUC, NSS, IG) represent ground truth maps as a set of discrete fixa-
tion locations, and evaluate a model’s accuracy in correctly classifying image pixels
as either containing a fixation or not. Distribution-based metrics (SIM, CC, EMD,
KLD) interpret all saliency maps as continuous distributions, and evaluate the simi-
larity between ground-truth and predicted distributions. Of course, since eye track-
ers record gaze in terms of discrete locations, ground-truth distribution maps cannot
be directly observed. Instead, these maps obtained by Gaussian blurring of the fixa-
tion locations. In this project we represent saliency maps as normalized probability
distributions (for a detailed description of how we generate saliency distributions
from fixation locations, refer to Section 3.1.4), and as such we evaluate our models
using distribution-based metrics. Of the four metrics presented in the paper, we dis-

16

Chapter 2. Background 2.2. HUMAN VISUAL ATTENTION

card SIM due to the fact that it can be unpredictably affected by Gaussian blurring,
which we use for creating our fixation maps, and EMD due to its computational ex-
pense and difficulty to optimize. We therefore evaluate our models using KLD and
CC.

Kullback-Liebler Divergence

Kullback-Liebler Divergence is a commonly used metric for measuring the difference
between two probability distributions. For a predicted saliency map X and a ground-
truth map Y/, the KLD is defined:

Dir(Y||X) = ZY log(fg?()) 2.1)

where € is a small constant for regularization. This metric is computed on a per-pixel
basis for both images, with lower total values indicating greater similarity. KLD is
very sensitive to missing ground-truth fixations - for pixels where the model predicts
a near-zero probability of fixation while the ground-truth probability is high, an
undesirably large value will be added. As such, models trained using KLD as a loss
function will be less likely to produce sparse prediction maps, as doing so may cause
them to miss image regions containing fixations, for which they would be strongly
penalized. This is a useful feature for applications which rely on detecting multiple
features in input images.

Correlation Coefficient

Pearson’s Correlation Coefficient is a well-known statistical method of measuring the
linear correlation between two dependent variables. For predicted and ground-truth
saliency maps X and Y, CC is defined:

cov(X,Y)

o(X) %o (Y) (2.2)

CY||X) =

where ¢ indicates the standard deviation. CC values are high in locations where the
predicted and ground-truth maps have similar values. As such, higher total values
indicate greater image similarity. False positives and false negatives are penalized
equally by this metric, making it an overall fair and accurate metric for assessing the
similarity of two saliency maps.

17

2.3. CARLA DRIVING SIMULATOR Chapter 2. Background

2.3 CARLA Driving Simulator

The driving experiments in this project are performed on the CARLA (Car Learning
to Act) simulator[8], version 0.8.2 (stable). CARLA is a high-fidelity, open-source
urban town driving simulator. It is built on Unreal Engine 4 and provides state-of-
the-art rendering quality, realistic physics and a variety of useful tools which allow
users to define and interact with agents that operate in the simulated world. In this
section, we describe the design and functionality of the simulator.

2.3.1 Architecture

CARLA can be launched in two modes: standalone and server. The standalone mode
allows the user to launch CARLA like a videogame, controlling the vehicle with key-
board inputs and driving around the environment. In server mode, the vehicle is
controlled by an external Python client application, which sends driving instructions
to the server and receives sensor readings and meta-information as output. The
server can be run using either a variable time step, which attempts to keep the server
running at a realistic speed for interaction with a human, or a fixed time step which
allows the simulation to run faster and enhances consistency (highly recommended
when recording data for autonomous agents to train on). The server interacts with
the client via sockets which are bound to port numbers 2000, 2001, and 2002 by
default.

The commands sent by the client fall into two categories: actions and meta-commands.
Actions are the control signals which are used to drive the vehicle, such as throttle,
brake and acceleration. These actions can be input by a human driver with a key-
board or steering wheel setup, as in standalone mode, or they can be generated by
some intelligent agent such as a trained neural network. Meta-commands can be
used to configure most aspects of the simulation, such as weather settings, episode
timeouts, and more. These configurations can be either pre-defined in a settings file,
by default named CarlaSettings.ini, or configured while the simulation is running
via the client. A number of example scripts are automatically included in the CARLA
repository, showing the user how to launch a client, control a vehicle via keyboard
commands or computer-generated commands, read and record sensor data from the
server, and run scenarios for assessing a model’s performance.

2.3.2 Environment

The CARLA environment contains two manually designed towns, constructed using
realistic 3D models of a wide variety of different buildings, terrains and dynamically
spawning objects. Town 1 contains 2.9km of drivable roads and is used for both
training and evaluating driving agents, while Town 2, containing 1.4km of drivable

18

Chapter 2. Background 2.3. CARLA DRIVING SIMULATOR

roads, is typically reserved for testing purposes only. At each server reset, non-player
vehicles and pedestrians are randomly spawned within the environment, in numbers
which can be configured by the Python client. The non-player vehicles operate using
a simple controller which allows them to lane follow, make decisions at intersections,
and avoid collisions with other cars and pedestrians. Pedestrians wander around the
town with an overall tendency to remain on the sidewalks and marked pedestrian
crossings, but with the freedom to cross roads at any point.

To increase the visual diversity of the simulation, the appearance of vehicles and
pedestrians is randomized from a large selection of possible colors, clothing items
and miscellaneous objects such as guitar cases, cell phones or umbrellas. At the
time of the stable release, CARLA also contains two lighting conditions (Noon, Sun-
set), and seven environmental conditions (Clear, Cloudy, Wet, WetCloudy, MidRain,
HardRain, SoftRain), for a total of fourteen possible environmental settings. An
example of two different weather settings can be seen in Figure 2.12.

Figure 2.12: The same scene with two different weather settings in the CARLA simulator

2.3.3 Measurements

CARLA provides users with a wealth of information about the simulation state via a
configurable sensor suite and large amounts of meta-information which the user can
access and record. Four types of configurable vehicle sensors are provided:

e Astandard RGB camera which applies some post-processing effects (e.g. Bloom,
Grain Jitter, Depth of Field) to the recorded images to increase the realism of
the scene.

e A depth map camera with a max range of 1km

e A semantic segmentation camera which provides ground-truth semantic seg-
mentation maps of the scene, divided into 12 categories: None, Buildings,
Fences, Other, Pedestrians, Poles, RoadLines, Roads, Sidewalks, Vegetation, Ve-
hicles, Walls, and TrafficSigns.

19

2.3. CARLA DRIVING SIMULATOR Chapter 2. Background

e A rotating Lidar implemented with ray-casting which returns Point Cloud maps
of the scene.

Each of these sensors can be manually configured to alter the field of view of the
camera, as well as the position and orientation with respect to the vehicle. The
Python API provides a command-line option for users to write the camera record-
ings to disk while the simulation is running, with each consecutive frame of the
simulation producing a PNG image which is written to an output directory.

Figure 2.13: Example outputs for the RGB and SemSeg cameras

The user can also record a range of measurements about the state of both their player
agent and other non-player agents. The player measurements include location co-
ordinates, vehicle orientation, speed, acceleration, collision intensity values, and
percentage of vehicle overlap with opposite lanes or sidewalks. Non-player agents
include pedestrians, vehicles, traffic lights and road signs, and the measurements
provided for each include location, speed (where applicable), and the locations and
dimensions for a bounding box surrounding the agents. These sensors and measure-
ments provide very useful feedback in the training and evaluation of autonomous
driving agents.

20

Chapter 3

Data Collection & Preprocessing

A significant component of this project was the collection and pre-processing of two
datasets. The first, which we will refer to as the Gaze dataset, consists of approxi-
mately 3 hours of eye movement data collected from human subjects while driving
in the CARLA simulator. The second, referred to as the Driving dataset, is comprised
of 11 hours of driving data from an expert autopilot agent provided by the CARLA
simulator.

3.1 Gaze Dataset

3.1.1 Experimental Setup and Procedure

The collection of the Gaze dataset took place in the Brain and Behaviour Laboratory
in the Royal School of Mines building. The purpose of these experiments was to track
and record the eye movements of humans while driving. To make the experiment
feel as realistic as possible for the subjects, we use a modified version of the CARLA
environment which has been configured for virtual reality, allowing subjects to freely
view the environment as they would when driving in the real world. A Ferrari 458
Italia USB steering wheel is used to control the movements of the simulated vehicle,
with buttons located on the steering wheel used to control the gas, brake and reverse
functions. We record eye movements using an HTC Vive headset equipped with SMI
Eye-tracking plugins. The configuration of CARLA for virtual reality and the code
for obtaining and recording the location of the subjects’ gaze in the CARLA world
coordinate system was written by a previous Master’s student, Julien Gerard. A
picture of our experimental setup is shown in Figure 3.1.

In the experiment, subjects were instructed to drive for six three-minute episodes in
CARLAs Town 1. Each episode used a different weather preset to increase diversity

21

3.1. GAZE DATASET Chapter 3. Data Collection & Preprocessing

Figure 3.1: Experimental Setup for recording the Gaze Dataset

in the recorded images; the six settings used were 'Clear Noon’, ’Cloudy Noon’, 'Mid
Rainy Sunset’, 'Hard Rainy Noon’, 'Wet Noon’, and 'Clear Sunset’. Before the ex-
periment began, subjects were given several minutes to familiarize themselves with
driving in the simulation, and a calibration of the eye tracker was performed. Sub-
jects were then asked to drive around in a safe manner, respecting all traffic lights
and road rules and giving pedestrians right of way. No specific navigation directions
were given, thus subjects simply chose a random direction at every intersection. In
order to include data on gaze patterns when recovering from a mistake, subjects’
steering commands were occasionally overridden by external commands, causing
their vehicle to drift briefly to the left or right.

3.1.2 Data Collection

The VR CARLA environment is run on a Windows 10 laptop with 16GB of RAM,
equipped with an NVIDIA GeForce GTX 1070 graphics card and an i7-7700HQ @
2.80GHz CPU. In the simulation, a single camera is mounted on the roof of the
vehicle, recording images at a rate of 25 frames per second, at a resolution of
400x300 pixels. CARLA’s provided method for saving camera images involves writ-
ing single images to disk in PNG format at each simulated time step. However, this
disk-intensive process caused a severe slowdown of the simulation, rendering it un-
playable for humans. To fix this problem, the recording method was rewritten to

22

Chapter 3. Data Collection & Preprocessing 3.1. GAZE DATASET

store up to 1000 recorded images in a RAM buffer, which when full is saved to disk
as a compressed numpy array of size 1000x400x300. This results in about a half-
second freezing of the simulation when the buffer is flushed, but otherwise allows
the simulation to run smoothly.

In addition to saving camera outputs, at each time step the absolute position of the
user’s gaze in the CARLA world coordinate system is recorded. This information is
acquired by means of an invisible ’‘GazeCursor’ object provided by the SMI EyeTrack-
ing plugin for Unreal Engine and added into CARLA via the Unreal Editor. The cursor
object is placed by determining the 3D angle of the user’s gaze, projecting a vector
in this direction from the user’s current location, and placing the GazeCursor object
at the coordinates where the vector intersects with an object in CARLA. This infor-
mation is then written to a binary file, along with the corresponding frame number
which is used to sync the gaze information with the frames recorded by the camera.

Each episode was recorded for 4500 frames, plus a small window of additional
frames at the beginning and end of each episode which was not included in the
dataset, but was used for some of the computations described below, such as fixa-
tion map and optical flow calculations. Eleven sets of six episodes were recorded
in total, for a total of 297,000 frames, but one subject’s data was excluded for poor
driving behaviour, and another subject’s data was excluded due to an error with the
eye tracker during the experiment. The final dataset therefore consists of 243,000
frames, corresponding to 2.7 hours of driving data.

3.1.3 World-to-Camera Gaze Projection

In order to map the 3D position of a subject’s gaze to a 2D location in the recorded
camera frames, we require a mathematical transformation to map between abso-
lute CARLA coordinates (X,Y,Z) and image pixel coordinates (x,y). This World-to-
Camera transformation is known as forward projection, and can be calculated as
follows. First, we must transform the 3D gaze position from the World coordinate
system (CARLA coordinates) to the Camera coordinate system, in which the camera
is always located at the origin, with the lens pointed down the Z axis, and the X and
Y axes defining the image plane. This is a rigid 3D transformation which requires
knowledge of the rotation and translation of the camera relative to the world; the
matrix describing this 3D transformation is referred to as a camera’s extrinsic matrix.
This matrix takes the following form, with the top-left 3x3 matrix describing the
world-to-camera rotation, the top-right 3x1 matrix describing the world-to-camera
translation, and the bottom row added for convenience to make the coordinates
homogeneous for future calculations:

23

3.1. GAZE DATASET Chapter 3. Data Collection & Preprocessing

ri1 Trig rig b

R|f] = To1 To2 T23 o
r31 Ts2 T3z U3

0 0 0 1

Next, we must transform our coordinates from the 3D Camera coordinate space to
a 2D image space. This is known as perspective projection. We accomplish this
by making use of the fact that the camera is pointed along the Z axis, and project
the object whose 2D coordinates we wish to obtain onto an X-Y plane located f
distance from the camera along the Z axis, where f is the focal length of the camera,
as shown in Figure 3.2. To scale the returned coordinates to the resolution of the
images produced by the camera, we also multiply the results by the ”principal point
offset”. The principal point is the intersection of the camera’s Z axis with the image
plane, with the principal point offset therefore being the offset between the principal
point and the camera’s origin. The focal length information and the principal point
offset can then be combined into a single matrix, known as the camera’s intrinsic
matrix K, and multiplied by the 3D Camera coordinates of the object of interest to
retrieve the desired pixel coordinates, as shown below:

! fr 0 W/2 0 if o y
% 00 1 0 & -
1
Scene Point
P=(X,Y,2)

Image Point

Figure 3.2: Projection from 3D Camera coordinates to 2D Image coordinates

The forward projection process is summarized in Algorithm 1. In the rare case that
the human is looking at something outside the field of vision of the camera, the pixels
returned do not fall within the correct range of the image borders, and are therefore
excluded from any future computations using these values, with this frame simply
being marked empty of any fixations.

Both the extrinsic and intrinsic matrices of the vehicle-mounted camera are provided
by the Unreal Engine at each time step, thus using the above process we are able to

24

Chapter 3. Data Collection & Preprocessing 3.1. GAZE DATASET

Algorithm 1 Retrieve X,Y Pixel Coordinates

1: function GETXY (eyeX, eyeY, eyeZ, M _intrinsic, M _extrinsic)

2: World_pos < [eyeX, eyeY, eyeZ, 1] > Homogenized
3: Camera_pos_3d <+ M _extrinsic - World_pos

4: Pos_2d < M Zintrinsic - Camera_pos_3d|: 3]

5: Norm_Pos_2d < [Pos_2d|0]/Pos_2d|2], [Pos-2d[1]/ Pos_2d|2], Pos_2d[2]]

6 if Norm_Pos_2d[2] > 0 then > Check object is not behind camera
7 X 2D <« 2d_pos|0]

8

Y 2D < 2d_pos|[1]
return X 2D,Y 2

obtain the X,Y location of the driver’s gaze within each frame. To verify the correct-
ness of the returned locations, a test was performed in which the GazeCursor object
was made visible within the CARLA environment, and a short driving sequence was
recorded with the cursor appearing as a red globe in the captured frames. Forward
projection was then used to annotate the images with a green circle at the calculated
locations, and it was verified that the rectangles and the GazeCursor appeared at the
same locations.

3.1.4 Fixation Map Generation

Using the method described above, each frame is associated with a single X,Y posi-
tion indicating the driver’s current gaze fixation within the frame. Rather than only
considering a single point, however, it is more appropriate to consider all fixations
made within a small temporal window of the current frame when constructing a
fixation map. This includes fixations that have yet to occur at the current time step,
which may seem counterintuitive but in fact provides a valid representation of a hu-
man’s current attention distribution, given that the upcoming movements of the eye
are pre-planned, as indicated by studies such as those of Hoppe et al. in 2019[12].

Figure 3.3: Visualization of how Gaussians are generated for three individual fixations
and combined via the maz operation into a single attention map

As described in Section 2.2.3, our models and evaluation metrics require us to treat
saliency maps as continuous probability distributions. Unlike in bottom-up saliency
approaches, where benchmarks such as MIT300 set a universal standard for fixation
map computation, there is no well-established method for creating continuous maps

25

3.1. GAZE DATASET Chapter 3. Data Collection & Preprocessing

Figure 3.4: Example of the fixation map generated for a single camera frame, and the
corresponding attention heatmap produced by blending the images

from fixation data in a top-down setting. In this project, we use the following ap-
proach, proposed by Palazzi et al. [23] in 2018. To construct a fixation map F; for
a frame at time ¢, we first retrieve the absolute gaze locations from time steps ¢t — 12
to t + 12, for a total of 25 fixations (including the current frame), representing a
1-second window of time centered on ¢. These absolute locations are then converted
to X,Y coordinates within the current frame using the same process described in Sec-
tion 3.1.3, but with all (X,Y,Z) gaze locations transformed using only the extrinsic
matrix for the current frame. Starting with 25 400x300 arrays of zeros, a multivari-
ate Gaussian is generated, centered on each of these projected X,Y coordinates, with
a variance of 02 = 50 pixels to account for any spatial acquisition errors in the eye
tracking system and the fact that humans see in greater detail in a small window sur-
rounding the location of their gaze. The 25 resulting images are then combined via
a max operation, and the final image is normalized, resulting in a continuous proba-
bility distribution modeling the subject’s visual attention for the current frame. This
process is summarized in Algorithm 2, and an example of its creation and outputs
are visualized in Figures 3.3 and 3.4.

Algorithm 2 Compute Fixation Map from Individual Fixations

1: function COMPUTE_FMAP(GazeXY List, Sigma)

F; + Empty[Width, Height]

for X,Y in GazeXY List do
G + multivariate normal(X, Y, Sigma)
PDF <« probability_density_function(G)
F, <+ elemwise max([F;, PDF)

F, + F,/sum(F})

return F;

3.1.5 Optical Flow Map Generation

For each frame in each episode, a dense optical flow map was generated using Gun-
nar Farneback’s optical flow algorithm [9]. This algorithm generates an image pyra-
mid, with each pyramid level having a lower resolution than the previous image. Op-
tical flow tracking begins at the lowest (most coarse resolution) level of the pyramid,
by approximating the two image frames to be compared with quadratic polynomials,

26

Chapter 3. Data Collection & Preprocessing 3.1. GAZE DATASET

and observing how the polynomials are transformed under the translation from one
frame to the next. Key points identified at the lower resolutions are then passed on
to the higher-resolution levels, refining the tracking at each level. This method is
more computationally expensive than other methods such as Lucas-Kanade, but typ-
ically produces more accurate results. An example of two camera frames and their
resulting optical flow map is shown in Figure 3.5 While testing the creation of these
dense flow maps in the driving sequences, it was observed that pedestrians did not
tend to walk fast enough between two consecutive frames to produce a noticeable
output in the flow map. As pedestrians are highly likely to be a focus of attention
for someone driving a car, it was decided to calculate the optical flow between the
current frame and the frame captured 3 time steps previously, therefore allowing
pedestrian movements to be more accurately picked up and represented.

Figure 3.5: Farneback dense optical flow map produced by two camera frames separated
by 3 time steps

3.1.6 Data Labeling

After collection, the data was manually annotated in two ways. First, each frame was
labeled with the current high-level intention of the driver, corresponding to the high-
level commands issued by CARLA’s route planner for autonomous driving vehicles.
These intentions are categorized simply into "Lane Following”, "Left Turn”, "Right
Turn”, and ”Straight”, with the latter three commands signaling the driver’s inten-
tion when approaching an intersection. These labels are used to train the Intention-
Branched DR (eye)VE Model described in Section 4.1.4. As with CARLAs route plan-
ner, the intention for a turn is defined when the vehicle comes within a short distance
of the intersection, and returns to "Lane Following” when the turn is completed. Of
the 243,000 frames in the dataset, 211,651 (87.1%) are labeled as “Lane Follow-
ing”, 10,684 (4.4%) as "Straight”, 10385 (4.3%) as "Right Turn”, and the remaining
10,280 (4.2%) as ”Left Turn”.

As CARLA is an accurate representation of a small urban town, a significant portion
of the collected data consists simply of periods where the driver is waiting at a traffic
light. To distinguish between active driving sequences, where the driver must pay
constant attention to avoid collisions or drifting from their lane, and traffic lights
where minimal attention must be paid (and thus eye movements may be less pre-
dictable), a second manual annotation of the dataset was done, simply labeling all
frames as either ’active’ or ’traffic’. Of the 243,000 recorded frames, 79,437 (32.7%)

27

3.1. GAZE DATASET Chapter 3. Data Collection & Preprocessing

are labeled as ’traffic’, with the remaining 163,563 (67.3%) labeled as ’active’. In
Section 5.1.4, we see that our gaze prediction network performs substantially better
on ’active’ frames.

3.1.7 Analysis, Curation

Upon collecting data from all subjects, some preliminary analysis was performed to
inspect the overall gaze behaviour across subjects and to determine if any curation
could be performed to reduce the size and improve the quality of the dataset. First,
we calculated the mean fixation map for all frames, visualized in the left of Figure
3.6 (blended with the mean training frame). As is very common in gaze tracking
experiments, there is a strong bias to look towards the center of the image. Naturally,
this is also due to the fact that humans are constantly watching the road while
driving. We also calculated the mean fixation map for traffic sequences versus active
sequences, obtaining the results in the middle and right of Figure 3.6. In the traffic
frames, there is a clearly visible shift in attention slightly above and to the right of
the center of the image, where the traffic light would be located.

Figure 3.6: Blended mean fixation maps and driving frames for the entire dataset (left),
traffic frames (middle) and active frames (right)

Next, we looked at the distribution of subjects’ gaze within the camera pixel space to
determine if any regions could be safely cropped. We plotted the fixation distribution
along X and Y axes, obtaining the results displayed in Figure 3.7. As already noted
from the mean maps, fixations are most likely to occur in the center of the image.
Along the X axis, the distribution is fairly symmetric, with fixations less likely to
occur the farther one moves from the center of the image. A fair amount of fixations
still occur even at the extreme edges of the image, almost certainly occurring when
humans look down the road which they are planning to make a turn on. The Y axis’
distribution is not so balanced, with very few fixations occurring above the center
of the image, and almost no occurrences at the borders of the image. This makes
sense, as there is typically no need for humans to look above the vanishing point of
the road while driving. Using this information, we decided to crop the top 80 pixel
rows from each image, as in the 243,000 frames of the dataset, only 231 (<0.1%)
of frames contained fixations in this area.

28

Chapter 3. Data Collection & Preprocessing 3.2. DRIVING DATASET

Distribution of Fixations along Camera X axis Distnbution of Fixations along Camera Y axis

30000 40000

25000
30000

= ~
& =]
=1 =1
= =
=] =]

20000

Number of Fixations
Number of Fixations

10000
10000

0 50 100 150 200 250 300 350 400 0-
Pixel Index

0 50 100 150 200 250 300

Pixel Index
Figure 3.7: Distribution of human gaze fixations along X and Y camera axes for all
recorded episodes

3.2 Driving Dataset

3.2.1 Expert Demonstrator

The data for the Driving dataset was generated by an ’expert’ demonstrator agent
provided by the CARLA developers. This agent has access to privileged information
about the state of the server at all times, including a map of its environment and
exact positions of all other agents in the simulation. For each episode, the agent is
randomly spawned within the town, and provided with a destination. The weather
settings, number of vehicles and pedestrians are all randomly chosen within the
ranges defined by the the user. A route planner uses the A* algorithm to determine
a path to the destination, and this path is then split into waypoints for the agent
to navigate between. The throttle, gas and steering values for the agent to use are
generated by a PID controller based on the current waypoints. The agent respects all
speed limits and traffic lights, and attempts to avoid pedestrians by slowing down
if any pedestrians are within 15 meters, and coming to a complete stop if they are
within 5 meters. Upon successfully reaching the destination, the episode terminates
and a new episode begins.

Each frame, along with the outputs from any cameras attached to the vehicle, the
client generates a metadata file in JSON format with the following information:

Name Data Type Physical Unit Range
Frame Number Integer - -
Elapsed Time Integer Milliseconds -
Vehicle Location X Integer - -
Vehicle Location Y Integer - -
Vehicle Location Z Integer - -
Vehicle Orientation Vector | Float tuple - [0,1]
Vehicle Acceleration Float m/s? -
Vehicle Speed Float km/hr -

29

3.2. DRIVING DATASET Chapter 3. Data Collection & Preprocessing

Stopped (Traffic Light) Boolean - {0,1}
Stopped (Vehicle) Boolean - {0,1}
Stopped (Pedestrian) Boolean - {0,1}
Vehicle Location X Integer - -
High Level Command Integer - {2,3,4,5}
Throttle Float - [0,1]
Brake Float - [0,1]
Steer Angle Float - [-1,1]
Hand Brake Toggled Boolean - {0,1}
Reverse Toggled Boolean - {0,1}
Throttle Noise Float - -
Brake Noise Float - -
Steer Angle Noise Float - -

Table 3.1: Driving metadata collected by CARLA's expert demonstrator for each frame

Another JSON file is generated for each completed episode, containing the number
of pedestrians and vehicles present in the episode, the random seed used to spawn
these objects, and the weather setting used.

To improve the diversity of the dataset and increase the number of state-action pairs
visited, noise is periodically injected into the steering, brake and throttle commands
generated by the PID controller. The inclusion of this noise in training datasets for
autonomous vehicles has been shown to significantly improve the correlation be-
tween offline evaluation metrics and true driving performance[5]. The noise signals
last from 2 to 4 seconds, and gradually increase in intensity over time to compen-
sate for the controller’s attempts to restore the vehicle to the desired state. When
recording the metadata for the episode, the values for the controls generated by the
PID controller and the values truly being used to control the vehicle as a result of
the noise are recorded separately. This is to ensure that when training an agent for
autonomous driving, the noisy signals are not used as a signal to emulate. At each
time step, the controller will always be producing the ideal commands to recover
from any drift caused by the noisy signals, thus providing any trained agents with
data on how to recover from potential mistakes. If, however, the noisy commands
result in the vehicle crashing, the episode is terminated and erased.

3.2.2 Data Collection

The data for the Driving dataset was generated using the same environmental pa-
rameters as the Gaze dataset. The data was collected in both CARLA towns, with
the training set composed only of Town 1 images and the validation set containing
images from both towns. Weather presets were randomly chosen from the ’Clear
Noor’, ’‘Cloudy Noon’, 'Mid Rainy Sunset’, ’Hard Rainy Noon’, "Wet Noon’, and ’Clear

30

Chapter 3. Data Collection & Preprocessing 3.2. DRIVING DATASET

Sunset’ presets. The number of pedestrians spawned ranged from 120 to 200, and
the number of vehicles spawned ranged from 20 to 40. Episodes typically ranged be-
tween 1000 and 8000 frames, with 229 total episodes resulting in 657,456 frames,
equivalent to 7.3 hours of driving at 25 frames per second.

3.2.3 Preprocessing

Rather than compute fixation maps on the fly while training an imitation learning
network, which would drastically slow down the training process and require com-
puting the same attention maps many times, we pre-compute the fixation maps for
all frames in the training and test sequence using our best-performing fully trained
Gaze Prediction network, the Intention-Branched DR(eye)VE model. The branch of
the Gaze network used to predict the attention map for each frame was chosen based
on the high-level command recorded in that frame’s metadata file. All camera frames
were cropped to match the dimensions of the Gaze dataset frames before computing
fixation maps. The generated attention maps were then used to mask the images
from which they were sampled, as depicted in Figure 3.8, for the same purpose of
avoiding repeatedly performing the masking operation while training the network.
Three different types of masks are generated: hard attention, soft attention, and
baseline masks. Hard attention masks are simply computed via element-wise multi-
plication (denoted by the ® symbol in our equations) of the attention map F; and the
input camera image [;. Soft attention masks are computed by reducing the bright-
ness of the images by a factor)\ in areas where the attention map does not overlap
with the image. Finally, the baseline masks are computed via element-wise multipli-
cation of the camera images with the mean fixation map of the dataset GG. Figure 3.8
shows an example driving image with each different type of masking applied to it.

Figure 3.8: Example driving image with different types of attention masking applied.
From left to right: Raw image, Hard masking, Soft masking, Baseline masking. Hard and
soft masks use the attention map generated by our DR(eye)VE gaze prediction model,
while the baseline mask uses the mean fixation map for the training dataset.

Mhard =]t O] Ft (32)
Msoft = /*]t+(1_/\)*]t®Ft (3.3)
Mbase =]t ®© G (34)

Once all frames had been processed in this manner, all images and attention maps
were downsampled by a factor of 2, and the entire dataset was converted into

31

3.2. DRIVING DATASET Chapter 3. Data Collection & Preprocessing

TFRecord format for training with the Imitation Learning networks. To avoid run-
ning into memory issues when loading these files, the dataset was split into TFRecords
containing 2000 labeled training samples each. Each sample was stored as a Tensor-
flow Example dictionary in the following format:

| Key | Feature |
‘image’ 200x110 RGB Camera Image
hard’ 200x110 Hard-Masked Camera Image
'soft’ 200x110 Soft-Masked Camera Image
‘base’ 200x110 Baseline-Masked Camera Image
‘speed’ Target prediction value for vehicle speed
‘gas’ Target action value for vehicle throttle
‘brake’ Target action value for vehicle brake
‘steer’ Target action value for vehicle steering angle
‘command’ High-level command for network branching

Table 3.2: Description of Tensorflow Example Dictionaries used for training autonomous
driving agents

32

Chapter 4

Deep Learning

In this chapter, we give an overview of the architectures and training procedures
for the various deep learning models used in the gaze prediction and autonomous
driving tasks. Details on the implementations and results of each model can be found
in Chapters 5 and 6.

4.1 Gaze Prediction Models

4.1.1 Deep Gaze Il

Deep Gaze II [18] is currently the top-ranked model on the live MIT300 benchmark
for predicting bottom-up visual saliency in images. This network trains in two stages,
first making use of powerful pre-trained networks for object recognition to obtain an
estimate of important image features, and then using a second, trainable network
to fine-tune for the saliency prediction task. The overall architecture is shown in
Figure 4.1. In the first stage, input images are fed into a frozen VGG-19 [26] net-
work which has been pre-trained on the ImageNet object recognition dataset, with
the final fully-connected layers used for classification removed. A selection of the
activated feature maps from specific layers, namely the conv5_1, relu5_1, relu5_2,
conv5_3, and relu5_4 layers, are then extracted and resized to match the dimensions
of the conv2_1 layer. The extracted layers were chosen by comparing results from
a random search of different sets of layers. The resized layers are then combined
into a single tensor (of size 5x512), which forms the input to the model’s secondary
network, the "readout” network. The readout network is simply formed of four lay-
ers of 1x1 convolutions, typically used to reduce the filter dimensionality of deep
networks, each followed by a ReLu activation layer. The number of features in each
layer, in order, is 16, 32, 2, and finally 1 for a single output channel, which is then
smoothed by convolution with a Gaussian filter. Note that since 1x1 convolutions

33

4.1. GAZE PREDICTION MODELS Chapter 4. Deep Learning

preserve the size of their inputs, the height and width of the features remains the
same throughout the readout network.

VGG features readout network
(fixed parameters) (trained parameters)
/\ /

_\

Figure 4.1: DeepGaze II Model Architecture (taken from [18])

Humans exhibit a strong tendency to look at the center of images, known as a central
bias [30]. To model this bias, a baseline bias term is calculated using the average of
all fixations across the training dataset, and this baseline is combined with all pre-
dictions made by the readout network. Finally, a softmax function is used to convert
the output into a probability distribution. Pre-trained versions of the DeepGaze II
network are available for download at https://deepgaze.bethgelab.org/, along
with Jupyter Notebooks demonstrating their use and allowing for the substitution
of center biases from custom datasets to yield better results. We use this pretrained
model, with a substituted center bias from our dataset, as a baseline comparison for
the remainder of the gaze models discussed in this chapter, all of which are retrained
from scratch on our Gaze dataset.

4.1.2 MLNet

Multi-Level Net (MLNet) [7] is another bottom-up saliency model, which in 2016
achieved the highest score in all metrics on the SALICON (Saliency in Context)
dataset [14]. Unlike the MIT300 dataset, SALICON does not actually measure
ground truth eye movements from subjects when viewing an image, but instead

34

https://deepgaze.bethgelab.org/

Chapter 4. Deep Learning 4.1. GAZE PREDICTION MODELS

approximates visual attention by having subjects move a mouse to the location they
are currently paying attention to, allowing for much larger-scale data collection.

As the name suggests, MLNet extracts features from different levels of its feature
extraction network, using a combination of low, mid and high-level features to form
its predictions rather than using only high-level features from the final convolutional
stage. The feature extraction network used is a pre-trained model of VGG-16, with
two minor modifications: the final max-pooling layer is removed, and the second-
to-last max-pooling layer has its stride reduced from 2 to 1. These changes are
made in an effort to reduce the amount of total downsampling done by the network;
while a standard VGG-16 network with 5 max-pooling layers downsamples images
by a factor of 32, this modified architecture downsamples only by a factor of 8.
This reduces the amount of upsampling required to scale saliency maps back to the
original input space, allowing for more finely detailed outputs after rescaling.

Layer Output | Output| Output Number of Parameters
Height | Width | Channels
\ Feature Extraction Network (VGG-16)

Input 480 640 3 0
Conv2D (3x3) 480 640 64 64 x ((3x3) x3)) + 64 = 1,792
Conv2D (3x3) 480 640 64 64 x ((3x3) x 64)) + 64 = 36,928
Pooling (2x2) 240 320 64 0
Conv2D (3x3) 240 320 128 128 x ((3x3) x 64)) + 128 = 73,856
Conv2D (3x3) 240 320 128 128 x ((3x3) x 128)) + 128 = 147,584
Pooling (2x2) 120 160 128 0
Conv2D (3x3) 120 160 256 256 x ((3x3) x 128)) + 256 = 295,168
Conv2D (3x3) 120 160 256 256 x ((3x3) x 256)) + 256 = 590,080
Conv2D (3x3) 120 160 256 256 x ((3x3) x 256)) + 256 = 590,080
Pooling (2x2) 60 80 256 0
Conv2D (3x3) 60 80 512 512 x ((3x3) x 256)) + 512 = 1,180,160
Conv2D (3x3) 60 80 512 512 x ((3x3) x 512)) + 512 = 2,359,808
Conv2D (3x3) 60 80 512 512 x ((3x3) x 512)) + 512 = 2,359,808

\ Encoder Network
Concatenate 60 80 1280 0
Dropout (0.5) 60 80 1280 0
Conv2D (3x3) 60 80 64 64 x ((3x3) x 1280)) + 64 = 737,344
Conv2D (1x1) 60 80 1 1x((1x1)x64)) +1 =65
EltWise_Product 60 80 1 (60/10)x(80/10) = 48
Activation(ReLu) 60 80 1 0
Total 14,452,154

Table 4.1: Multi-Level Net

Feature maps are extracted from three different convolutional stages of the network
(highlighted in blue in Table 4.1), and concatenated into a single tensor. This tensor

35

4.1. GAZE PREDICTION MODELS Chapter 4. Deep Learning

is then input into an encoding network, which consists of a 64x3x3 convolutional
layer followed by a 1x1 convolutional layer to collapse the feature maps into a sin-
gle output prediction. As in the Deep Gaze II model, these predictions are then
combined with a bias term via element-wise multiplication before being converted
to a probability function via the softmax function. Rather than pre-computing the
bias, however, the MLNet model learns a custom bias U. This bias is initialized as a
coarse (size w'xh’) mask of ones, which is upsampled to the size of the predictions
(h,w) before being combined with the saliency predictions. The bias is then trained
alongside the main network to adjust its coarse values based on the total loss.

The loss function used for training MLNet is shown below:

(%) Yy,
NZ (m”(gjﬁy) — A1 - UP? (4.1)

The first term in the summation measures the mean-squared error between the nor-
malized network predictions, ¢(z;), and the ground-truth labels y;, weighted by a
linear function o — y;. This weighting function is added to increase the importance
of high-probability pixels from the ground truth map, as the large majority of pixels
have values at or near zero. With o = 1.1, ground truth samples y; with a value
of zero have their loss weight decreased slightly, while higher valued samples (e.g.
y; = 0.8 = a — y; = 0.3) have their loss weights boosted. The second term in the
overall loss function is an L, penalty on the custom bias U, with A = 1 / (v % I').
Since U is initialized as a mask of ones, this |1 — U|* term penalizes the model for
deviating too much from this original initialization, and encourages the overall net-
work to decrease loss by adjusting convolutional weights rather than by adjusting
the bias.

4.1.3 Recurrent Mixture Density Network

The Recurrent Mixture Density Network [2] (RMDN) proposed by Bazzani et al. in
2017 was the first deep network to use sequences of consecutive frames to predict
saliency in video sequences in a top-down manner, outperforming all existing video
saliency prediction methods on the Hollywood2 dataset, as well as achieving state-
of-the-art results in action recognition on both the Hollywood2 and UCF101 datasets.
An visual overview of the network is shown in Figure 4.2.

The input to the RMDN model is a ’clip’ of K frames beginning at time t - £ + 1 and
ending at time ¢. This clip is first processed by a 3D Convolution Network (C3D)
encoder based on the architecture proposed by Tran et al. in 2014 [31]. The full
details of this C3D network can be seen in Table 4.2. This 3D architecture allows
the network to capture short term spatio-temporal features such as motion, which
can be critical in predicting human attention patterns. The C3D-processed clips are

36

Chapter 4. Deep Learning 4.1. GAZE PREDICTION MODELS

'
voN
|
LSTM hﬂscﬁ hlacl I E— htact ______
K
frames

Figure 4.2: Recurrent Mixture Density Network (taken from [2])

then sequentially fed into a recurrent neural network using Long Short Term Mem-
ory (LSTM) [11] memory blocks. This allows the network to capture longer-term
dependencies in the input video sequences. Finally, a saliency map is constructed in
the form of a Gaussian Mixture Model with C mixture components. The GMM is de-
fined by a set of parameters p,, 7., 0., p., T€presenting the mean, mixture, variance
and correlation coefficients for each of the C Gaussians. Each mixture parameter
is obtained simply by processing the LSTM’s 128-dimensional hidden state with a
single fully-connected layer, referred to as the Mixture Density Network. The param-
eters are then each normalized with the appropriate functions (details can be found
in Table 4.3) to output a single normalized probability distribution.

The C3D network parameters are obtained from the pre-trained action recognition
model of Tran et al. [31], and remain frozen throughout the training of the model.
The LSTM and Mixture Density Networks are jointly trained by optimizing the neg-
ative log-likelihood of the ground truth saliency maps on the predicted Gaussian
Mixture Model, calculated as below:

T;,—1 A

c
L(v',a') = Z Z —log (Wvai(ai,ijvaaPi)) (4.2)
1

t=0 j=1 c=

Here v* denotes the i-th video clip, o’ is the network’s prediction, and the parameters

37

4.1. GAZE PREDICTION MODELS

Chapter 4. Deep Learning

for each of the C Gaussians N, which make up the GMM are produced by the LSTM
at each time step ¢, dependent upon the input clip v;.

Layer Output | Output | Output | Output Number of Parameters
Depth | Height | Width | Channels
Input 16 128 171 3 0
Conv3D (3x3x3) 16 128 171 64 64x((3x3x3)x3)+64 = 5,248
Pool3D (1x2x2) 16 64 85 64 0
Conv3D (3x3x3) 16 84 85 128 128x((3x3x3)x64)+128 =
221,312
Pool3D (2x2x2) 8 32 42 128 0
Conv3D (3x3x3) 8 32 42 256 256x((3x3x3)x128)+256 =
884,992
Conv3D (3x3x3) 8 32 42 256 256x((3x3x3)x256)+256 =
1,769,728
Pool3D (2x2x2) 4 16 21 256 0
Conv3D (3x3x3) 4 16 21 512 512x((3x3x3)x256)+512 =
3,539,456
Conv3D (3x3x3) 4 16 21 512 512x((3x3x3)x512)+512 =
7,078,400
Pool3D (2x2x2) 2 8 10 512 0
Conv3D (3x3x3) 2 8 10 512 512x((3x3x3)x512)+512 =
7,078,400
Conv3D (3x3x3) 2 8 10 512 512x((3x3x3)x512)+512 =
7,078,400
Flatten 1 1 1 81920 0
Total 27,655,936

Table 4.2: C3D Encoder Network Architecture for RMDN

38

Chapter 4. Deep Learning 4.1. GAZE PREDICTION MODELS

| Layer | Output Shape | Number of Parameters
Input (50, 81920) 0
LSTM (50, 128) 4x (81,920 x 128 + 128% + 128)
= 42,009,088
Dropout (0.5) (50, 128) 0
Fully-Connected (Weight) (50, 20) (128 x 20) + 20 = 2,580
Activation (Softmax) (50, 20) 0
Reshape (50, 20, 1) 0
Fully-Connected (Mean) (50, 40) (128 x40) + 40 = 5160
Reshape (50, 20, 2) 0
Activation (ReLu) (50, 20, 2) 0
Fully-Connected (50, 40) (128 x40) + 40 = 5160
(Variance)
Reshape (50, 20, 2) 0
ElemWise: e* + 1 (50, 20, 2) 0
Fully-Connected (50, 20) (128 x 20) + 20 = 2580
(Correlation)
Reshape (50,20, 1) 0
Activation (tanh) (50, 20, 1) 0
Concatenate (50, 20, 6) 0
Total 42,024,568

Table 4.3: Mixture Density Network Architecture for RMDN, with 50 LSTM time steps
4.1.4 DR(eye)VE

The final gaze prediction model used is based on the DR (eye)VE model [23], pro-
posed by Palazzi et al. in 2017 for top-down saliency prediction in the task of real-
world driving. As with RMDN, the DR(eye)VE network uses clips of consecutive
frames within a short time window as input. Rather than look for longer-term de-
pendencies, however, the DR (eye) VE network simply makes predictions based on the
input clip, making use of a deep multi-branch architecture to process the inputs in
several different ways, very similar to the AGIL Gaze Prediction Network discussed in
the Background chapter [37]. The original DR(eye)VE architecture contained three
branches: one for processing RGB images, one for optical flow images, and one for
semantically segmented images. In this project, we omit the semantic segmentation
branch, as we were not able to attach both RGB and Semantic Segmentation cameras
to the vehicle while maintaining an acceptable frame rate to allow humans to drive
naturally, as explained in Chapter 3. An ablation study performed by the authors of
the DR(eye)VE model in order to inspect the effect of each branch on the model’s
predictions showed that the semantic segmentation branch contributed very little to
the final predictions of the model in comparison to the optical flow and RGB image
branches, thus we do not expect that omitting this branch will significantly impact
the performance of the network.

39

4.1. GAZE PREDICTION MODELS Chapter 4. Deep Learning

The overall model is therefore composed of two identical saliency branches, the first
of which processes clips of raw RGB images, and the second of which processes clips
of corresponding dense optical flow maps, pre-computed as described in Chapter 3.
The two branches are first trained independently, and subsequently fine-tuned by
training both branches simultaneously, such that the network learns to weight the
contributions of each branch and optimize its performance. The overall architecture
is depicted in Figure 4.3. The final prediction of the network is the normalized
average of the individual branch predictions.

FoA
from

ﬂ . color) final

prediction
" A\ FoA
N K P
f from

: R \ motion . \
\ NS . .
- _ _ - B
\

Figure 4.3: Multi-Branch DR (eye)VE Network Architecture (taken from [23])

RGB
clip

. FLow . flow
ESTIMATOR dlip

The individual architecture of each saliency branch consists of two training streams,
each taking a different input and producing their own outputs. Given an input tensor
with N frames of size X,,,, Yorig, the first stream simply takes this tensor, resizes
the images to X,.,, Y,.s, and processes it with a 3D Convolutional network which
produces a fixation map of size X,.,, Y;.,. This network is referred to as the COARSE
module, and is strongly based on the C3D architecture of Tran et al. [31] - the
exact details of this network are given in Table 4.4. The resulting fixation map is
then upsampled to the original size X,,;,, Y,i,, concatenated with the final frame
of the input clip (the frame for which the prediction is being made), and further
refined by a series of 2D convolutional layers (the REFINE module), producing a
full-frame saliency map prediction for the input clip. The second stream, rather than
resizing the input images, takes as input a randomly cropped section of the images,
also of size X,.s, Y,cs. It then processes this random crop using the same COARSE
network as the first stream, with shared weights, and directly outputs a saliency
map prediction for the area which was chosen by the random crop. The full-frame
and cropped losses are computed separately for the two streams, and summed to
calculate the final loss for the branch.

The reasoning behind this unusual architecture, shown in Figure 4.4, is that drivers
tend to exhibit a strong central bias when driving - that is, the majority of the time,
they are looking directly in front of the car. If the network is trained only on full
images, it learns to minimize loss by reproducing this central bias and often misses
important features that would have attracted the attention of a human. This can stall
the training process early on and prevent the network from being able to accurately

40

Chapter 4. Deep Learning 4.1. GAZE PREDICTION MODELS

input : COARSE : REFINE } output

___CrROP___

share
weights

N
==y

RESIZE

163 last frame

Figure 4.4: Individual Saliency Branch Architecture (taken from [23])

learn to predict gaze [23]. The random cropping strategy can be thought of as a
form of data augmentation which forces the network to pay attention to features
within the image rather than simply the spatial location of the labels; the majority
of the cropped areas are outside of the center of the image, and by including the
loss from these predictions in the branch’s overall loss, the network is penalized for
attempting to only predict in central regions. At test time, the cropped output is
discarded, and only the full-frame prediction is used to ouput a predicted saliency
map.

The loss function used by the DR (eye)VE network is the Kullback-Liebler Divergence
between the ground truth (Y) and predicted (V) attention maps for all pixels i,
defined as below (note that ¢ is simply a small-valued constant added for numerical
stability):

D (YY) = ZY log(fi?@) (4.3)

The individual branch loss for a single sample is therefore calculated as follows:

Lyranen(Y:Y) = Dier(@(Y)|C(6(Y) + Drr (V)IIR(C((Y)),Y) (4.4)

In this calculation, C' and R refer respectively to the COARSE and REFINE modules
defined above, while ¢ and 1 represent the random cropping operation and resizing
operations. The final loss of the network is simply the average of the losses from the
two individual branches.

Intention-Branched DR(eye)VE Model

In this project, we propose an addition to the above model, which we refer to as the
Intention-Branched DR(eye)VE Model. Drawing inspiration from the Conditional

41

4.1. GAZE PREDICTION MODELS Chapter 4. Deep Learning

Imitation Learning (CIL) model of Codevilla et al.[6], we hypothesize that giving
the Gaze network access to a high-level signal that indicates the driver’s intentions
for a given input clip will lead to more accurate predictions about where the driver
will look. This is a logical assumption given the top-down nature of the task; a
driver intending to make a left turn at the upcoming intersection, for example, will
likely spend more time inspecting the left lane for oncoming traffic or pedestrians.
As this intention signal is already being provided for the autonomous driving agent
which the Gaze network is intended to augment, it can be easily provided to the
Gaze network as well.

The intention-branched model is trained in a similar manner to the CIL model, with
each output branch trained only on samples labeled with the corresponding high-
level intention. Given the lower number of samples labeled with Left, Right and
Straight intentions in comparison to the Follow intention, we choose to bootstrap the
individual branches as normal, using all training samples, and only begin branching
the model during the fine-tuning process which trains both branches simultaneously.
This decision is made to avoid overfitting to the small number of samples for these
actions, allowing the convolutional networks to learn general features before spe-
cializing for individual high-level intentions.

Layer Output | Output | Output | Output Number of Parameters
Depth | Height | Width | Channels
Input 16 56 56 3 0
Conv3D (3x3x3) 16 56 56 64 64x((3x3x3)x3)+64 = 5,248
Pool3D (1x2x2) 16 28 28 64 0
Conv3D (3x3x3) 16 28 28 128 128x((3x3x3)x64)+128 =
221,312
Pool3D (2x2x2) 8 14 14 128 0
Conv3D (3x3x3) 8 14 14 256 256x((3x3x3)x128)+256 =
884,992
Conv3D (3x3x3) 8 14 14 256 256x((3x3x3)x256)+256 =
1,769,728
Pool3D (2x2x2) 4 7 7 256 0
Conv3D (3x3x3) 4 7 7 512 512x((3x3x3)x256)+512 =
3,539,456
Conv3D (3x3x3) 4 7 7 512 512x((3x3x3)x512)+512 =
7,078,400
Pool3D (4x1x1) 1 7 7 512 0
UpSample x 8 1 56 56 512 0
Total 13,499,136

Table 4.4: DR (eye)VE COARSE Network Architecture

42

Chapter 4. Deep Learning 4.2. DRIVING MODELS

Layer Output | Output| Output Number of Parameters
Height | Width | Channels

] Full Frame Prediction

COARSE Model 56 56 512 13,499,136
Output (Small)
Conv2D (3x3) 56 56 1 1x ((3x3)x512)) + 1 = 4,609
UpSample x 8 224 224 1 0

Input (Full) 224 224 3 0

Concatenate 224 224 4 0
Conv2D (3x3) 224 224 32 32x((3x3)x4)) +32=1,184
Conv2D (3x3) 224 224 16 16 x ((3x3) x32)) + 16 = 4,624
Conv2D (3x3) 224 224 8 8x ((3x3)x16)) + 8 = 1,160
Conv2D (3x3) 224 224 1 1x((3x3)x8))+1=73

| Crop Prediction

COARSE Model 56 56 512 13,499,136
Output
(Cropped)
Conv2D (3x3) 56 56 1 1x ((3x3) x512)) + 1 = 4,609
| Total | | | 13,515,395

Table 4.5: Individual Saliency Branch Architecture for DR (eye)VE Network

4.2 Driving Models

4.2.1 Conditional Imitation Learning

To train our imitation learning agents for autonomous driving, we start with the Con-
ditional Imitation Learning (CIL) framework of Codevilla et al. [6]. The architecture
of this model is quite straightforward in comparison to the Gaze models previously
discussed. The network receives two inputs: an RGB camera image, and a float
indicating the current speed of the vehicle. The RGB image is processed by a 2D
Convolutional Network, while the speed input is processed by two fully-connected
layers. These outputs are then concatenated and fed into one of five branch heads,
selected based on the high-level command associated with the input frame, as shown
in Figure 4.5. Each branch head is associated with one of four commands: Follow,
Left, Right, and Straight, with the fifth branch used in the rare case that no high-level
command is provided (this sometimes occurs for a small number of frames when the
expert demonstrator has reached its target destination but the episode has not yet
terminated). Each branch consists of two fully-connected layers, and outputs four
floats representing the actions for the Steer, Throttle and Brake commands, as well
as the predicted current speed of the vehicle.

The inclusion of the ’Speed’ output signal is not immediately clear, as simply pre-

43

4.2. DRIVING MODELS Chapter 4. Deep Learning

dicting speed without any associated action does not actually affect the behaviour of
the vehicle. While this information was not published in the official CIL paper, the
authors, who are very active on GitHub and Discord, have explained that this output
was included to help solve a particular issue which was observed in fully trained
models; occasionally, after the vehicle has come to a stop for any reason, it remains
still and will not start again. The speed prediction was introduced as a workaround
to this issue - when actually driving a vehicle in CARLA, if the network outputs 0.0
for the throttle action but has a predicted speed above a certain threshold, the throt-
tle is manually activated with a small value, giving the vehicle a small push forward
which resolves the stalling problem and gets the agent to drive normally again.

)
J
I(i) 01
=
' _J
(A)
Measurements > ‘ = | .
o (HY) M(m) Action

Command C

Figure 4.5: Conditional Imitation Learning Model Architecture (taken from [6])

The loss function used for training the network is a weighted combination of the
mean-squared errors between each predicted control value (gas, brake, steer and
speed) and its ground-truth label as given by the expert demonstrator. This can be
calculated simply as follows:

Ltot(y y) Agas (ygas ggas)Q + Abrak:e (ybrak:e - lgbrake)Q

R X (4.5)
+)\steer(ysteer — ysteer)2 + Aspeed(yspeed — yspeed)2

The lambda values allow the user to configure the importance of each task, based
on observation of the vehicle’s driving behaviour, e.g. if the vehicle tends to drift off
the road, the steering lambda may be increased to force the network to pay more
attention to optimizing this control signal. The lambdas used in this implementation,
as suggested by the authors of the network, are \,,s = 1.66, Aprare = 1.66, Agteer =
14.29, Aspeea = 0.00001. The speed lambda is set close to zero as we do not actually
use it to control the car’s actions, only to restart the vehicle in the event of stalling
as explained above.

44

Chapter 4. Deep Learning 4.2. DRIVING MODELS

4.2.2 Attention-Guided CIL

We experiment with two main methods of integrating the attention maps produced
by the best-performing gaze prediction model, the Intention-Branched DR (eye)VE
network, into this CIL architecture. The first method, visualized in Figure 4.6, simply
replaces the input to the CIL network with one that has been masked by the output of
the Gaze network. We test this model with hard, soft and baseline attention masking
as defined in Section 3.2.3.

A 4

\ 4
Optical Gaze .
Flow |—>{Prediction —>| si','l"""y
Frames Network ap
A A Fully
° Concat Connected —>
:L|_| A Layers
-
Ros | | fap
Frames Femm

Speed

Figure 4.6: Single Branch Attention-Masked CIL Model

v
Optical Gaze "
Flow —>{ Prediction —> Sﬂ:"cy 2
Frames Network P =
Fully
— Concat Connected —)
- vy Layers
inal
Res |, o g [potons_|
Frames Frame z
Speed

Figure 4.7: Dual Branch Attention-Masked CIL Model

The second method, visualized in Figure 4.7, uses a dual-branch architecture to pro-
cess both the original images and the attention-masked images in parallel. The fea-
tures of each network are then concatenated and processed by two fully-connected
layers before being input to the separate branch heads as usual. This architecture
was inspired by the AGIL network described in the Background chapter [37], which
achieved improved performance on Atari games compared to a single-branch ver-
sion without attention. Two main differences exist between our model and the AGIL
model: first, we concatenate our branch outputs rather than averaging them, as we
do not wish to lose any information in the averaging process. Second, we continue
to branch our output heads as with the previously discussed CIL models, rather than
directly predicting actions from the fully connected layers. This model is tested only
with hard attention masks as the input to the second branch.

45

Chapter 5

Results and Evaluation

5.1 Gaze Networks

In this section, we provide details on the training, evaluation and observed be-
haviours of each gaze network, followed by a side-by-side comparison of all net-
works. Due to the large number of deep models which we train from scratch on
our dataset and the amount of training time required for each, we are not able to
perform an extensive hyperparameter search for every network. In general, we be-
gin with the parameters suggested by the authors of the papers from which these
networks were taken, and experiment with a few alternative values to optimize per-
formance on our data. All networks are trained on episodes 1 to 48 from the Gaze
dataset and tested on episodes 49 to 54. Our validation set is composed of 500
frames from the middle of each episode, from frame 2500 to 3000. This ensures a
fair balance of different drivers’ behaviours and different environmental conditions
between the training and validation sets. Please refer to Chapter 5 for the specifics
of each network’s individual architecture and loss function.

5.1.1 DeepGaze II

As noted in Section 4.1.1, we use a fully pre-trained version of DeepGaze II to pro-
vide a baseline for bottom-up prediction performance on our test set. As such, we
did not need to do any training or hyperparameter tuning for this network, and sim-
ply used the pre-trained version to make predictions for the test set episodes. Per
our discussion on saliency model evaluation in Section 2.2.3, we evaluate model
predictions based on two metrics: Kullback-Liebler Divergence (KLD) and Pearson’s
Correlation Coefficient (CC). The predicted attention maps from Deep Gaze II had
an average KLD of 1.287 and a CC of 0.511 when compared to the ground truth
attention maps for the six test set episodes.

46

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

Ground Truth DeepGaze Il

Figure 5.1: Sample test set predictions from the pre-trained Deep Gaze II Model. Note
how the model predicts fixations for unimportant objects such as the mailbox in the top
figure and the house in the middle figure, showing its lack of task-specific knowledge.

The influence of the pre-trained VGG-16 model which performs feature extraction
for DeepGaze II can be clearly seen in the outputs for this network, several of which
are shown in Figure 5.1. The model does a very good job of identifying high-level
objects in the image such as pedestrians, other vehicles and traffic lights. However,
since it was not trained specifically for the driving task, it pays equal attention to ob-
jects which are less relevant to driving, such as mailboxes, fences, or house windows.
These results highlight the limited use of generalized bottom-up saliency networks
for specific task-oriented settings.

47

5.1. GAZE NETWORKS Chapter 5. Results and Evaluation

5.1.2 MLNet

Training

The MLNet model is trained using the stochastic gradient descent algorithm with a
Nesterov momentum of 0.9 and a Dropout value of 0.5 for the single dropout layer
present in the network. The initial learning rate was set to n = 1073, as in the official
code for the MLNet model at https://github.com/marcellacornia/mlnet[7]. We
then varied the learning rate, testing values of n = {1073,1072,10~'} obtaining the
results displayed in Figure 5.2. We found that a significantly higher learning rate
of n = 107! produced the best validation set results for this network - any further
increase in the learning rate led to divergences in the loss while training. As the
network is quite large, we were limited to a maximum batch size of 4; larger batches
resulted in crashes due to out of memory errors. To minimize the amount of time
spent training, we use an Early Stopping callback which halts the training process
if 5 consecutive epochs show no improvement in the validation set accuracy. This
typically occurs after 20 to 25 epochs, which corresponds to about 3 hours of training
on an NVIDIA GTX 1070 graphics card.

MLNet - Validation Set Loss for Different Learning Rates

—— n=1le-1
— n=1le-2
0.045 - n=1le-3
0.040 -
0.035 -
0.030 -
0.025 - ; 1 : ! ; ;
0 5 10 15 20 25

Epoch

Figure 5.2: Comparison of 3 tested learning rates for the Multi-Level Net, with n = 10~}
providing the best results.

48

https://github.com/marcellacornia/mlnet

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

Results and Behaviour

Using the above parameters, the fully trained model which achieved the lowest val-
idation error was used to make predictions for all test set episodes, achieving an
average KLD of 1.222 and an average CC of 0.553, only slightly outperforming the
DeepGaze II model despite being fully retrained on our data. This is likely due to
the fact that, as with DeepGaze II, the feature extraction in MLNet is performed en-
tirely by a frozen VGG-16 model, with only a small number of convolutional layers
actually being trained by the new dataset. This does not appear to be sufficient for
adapting to the task of top-down prediction, as the network displays the same be-
haviour of focusing on objects and image regions which have no relevance to driving
(e.g. the Coca-Cola machine in the center prediction of Figure 5.3). One notable
difference between the outputs of these two bottom-up models is that MLNet tends
to spread out its predicted areas more, with a few areas of high fixation probability
and a large number of regions with low fixation probability, as is clearly visible in
the top and bottom predicted maps in Figure 5.3. DeepGaze II, on the other hand,
typically predicts fixations with high probability in one or two focused regions and
zero probability in all other areas. This can likely be attributed to the different fea-
ture maps which were extracted from VGG-16 between the two architectures. As
described in Section 4.1.2, MLNet extracts features from 3 different convolutional
blocks, mixing high and low-level features, which may explain why more attention
is paid to low-level features such as the curving of the road while DeepGaze II tends
to focus exclusively on high-level recognizable objects.

5.1.3 RMDN

Training

As suggested by the authors in [2], we train RMDN using the RMSProp algorithm
and a value of 0.5 for the network’s single Dropout layer following the LSTM module.
Each model was trained for 30 epochs, taking roughly 4 hours to train fully on
our setup. Once again, due to the very large size of the network, our batch size
was limited to a maximum of 4 to avoid encountering out-of-memory issues. We
experimented with learning rates of = {3 % 1072,3 x 1072, 3 % 10~*}, with the best
validation set results obtained by = 3 * 1072. We then fixed the learning rate to
this value and varied the number of Gaussian mixture components produced by the
LSTM, testing values of C = {5, 20, 40}. The number of components used did not
seem to affect performance significantly after the first 10 epochs of training, with all
models having equal loss on the validation set. Figure 5.4 shows the training history
for these hyperparameter variations.

49

5.1. GAZE NETWORKS Chapter 5. Results and Evaluation

Ground Truth MLNet

-

Figure 5.3: Sample test set predictions from the fully trained MLNet Model. Similar
to DeepGaze II, MLNet is distracted by objects such as the Coke machine in the middle
image, lacking the ability to identify which objects are important for the driving task or
predict where a human would look while executing certain actions, such as the left turn
in the bottom image where the human uses lane markings to guide their movement.

Results and Behaviour

The fully trained RMDN model received an average KLD of 1.029 and an average
CC of 0.600 on the test set, outperforming both MLNet and DeepGaze II. Upon
visually inspecting the predictions, however, we observed that the model appears to
have strongly overfit to the mean of the dataset, and overall does a very poor job of
tracking important objects in a scene. Clear examples of this behaviour can be seen
in Figure 5.5, where the model twice ignores pedestrians on the road very near the
vehicle. Unlike the previously evaluated networks, RMDN has no built-in mechanism
for avoiding bias in its predictions, and thus is not penalized for reducing its overall
loss by predicting one or two overlapping, highly-weighted central Gaussians for
every frame, with all other mixture components having near-zero weights in the

50

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

RMDN - Validation Set Loss for Different Learning Rates RMDN - Validation Set Loss for Different Number of GMM Components
650 - — Gm=2 [
— C=20

650 - C=5

— n=3e-3
n=3e—4

600 -

Loss
w
v
)

500 -
500 -

450 - 450 -
———— e~

0 5 10 EpolCSh 20 25 30 0 5 10 Epolc.:sh 2 25 20
Figure 5.4: Comparison of validation loss for (left) 3 different learning rates and (right)
3 different numbers of GMM components for the Recurrent Mixture Density Network

mixture. The recurrent nature of the network likely worsens the problem, with
short-term objects such as pedestrians being ignored in favor of the long-term near-
certainty that the driver will return their gaze to the center of the road. To confirm
that the model is indeed overfitting to the mean, we computed the average KLD
between all RMDN predictions and the mean fixation map of the training dataset,
obtaining a value of 0.179, significantly better than the average performance on the
test set. We conclude that RMDN’s capabilities are severely limited for this task,
despite its reasonably good test set performance.

5.1.4 DR(eye)VE
Training

The DR (eye)VE model is trained using the Adam optimization algorithm, with 3; =
0.9, B2 = 0.99, ¢ = 10~%. We use a batch size of 8 when training individual branches,
reducing to 4 during the fine-tuning stage as the size of the network increases. Each
branch is trained for 40 epochs, and the checkpoints with the lowest validation set
loss are then used to train the combined model for an additional 20 epochs. Train-
ing this model in its entirety takes significantly longer than the previously discussed
models, as each branch must be individually trained before the fine-tuning phase
which trains both branches simultaneously. The total training time comes to about
18 hours on our setup, with each individual branch requiring 6 hours to train, and
the fine-tuning stage taking an additional 6 hours. As such, to avoid spending un-
reasonable amounts of time testing hyperparameter configurations for all training
stages, we tune our learning rate only on the Image branch, under the assumption
that these parameters will provide good performance for the Flow branch and fine-
tuning stage given the identical network structures and training data.

We experiment with learning rates of n = {1072,1073,107%,1075}. As discussed in

51

5.1. GAZE NETWORKS Chapter 5. Results and Evaluation

Ground Truth RMDN

Figure 5.5: Sample test set predictions from the fully trained RMDN Model. Clearly
having overfit to the mean of the dataset, RMDN gives very inflexible and uninforma-
tive predictions, missing key features such as the pedestrians in the middle and bottom
images.

Section 4.1.4, the loss function used to train individual saliency branches combines
the Kullback-Liebler Divergence for both the cropped and full-frame (fine) predic-
tions of the branch. While training, these individual losses are recorded in addition
to the total loss. The results for each of these losses under different learning rates
are displayed in Figure 5.6, while the combined loss is depicted in Figure 5.7. The
optimal learning rate was found to be n = 1073,

We also examined the effect of random cropping, the strategy described in Section
4.1.4 to avoid overfitting to the central bias in the attention maps. Two networks
were trained with identical hyperparameters, with one using the random cropping
strategy while the other took a fixed crop from the center of each training image.
We compare the full-frame prediction loss of the two networks in Figure 5.8, ob-
serving that the random cropping strategy indeed results in better validation set

52

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

DR(eye)VE - Validation Set Loss (Cropped) for Different Learning Rates DR(eye)VE - Validation Set Loss (Fine) for Different Learning Rates

20 — n=107 — n=1072
,_/\/\/\/\/\/\/\/\/‘/_ I — n=10"

18 - n=10-* 51 n=107*
— n=10" — n=10-°

\

0.8 - \\/\
"N A A AN /A
06 | d 7 \/\ D aaaave SV 1-

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
Epoch

Epoch

Figure 5.6: Comparison for different learning rates of (left) cropped prediction loss and
(right) full-frame prediction loss for the DR (eye)VE network’s Image branch

DR(eye)VE - Validation Set Loss (Combined) for Different Learning Rates

—_ =102
7 - n
— =103
n=10"*
6 - —— n=10"°%
5 -
[}
3
- 4 -
3 -
2 -

-

—_———T

0 5 10 15 20 25 30 35 40
Epoch

Figure 5.7: Comparison of the total validation set loss of the DR(eye)VE Network’s
Image Branch for 4 different learning rates

performance. Note that we only consider the full-frame loss, as the cropped loss is
no longer a fair measurement when the two networks take different crops, and this
change is also reflected in the total loss, which combines the two terms. Indeed,
since the central crop model has an easier task, its combined loss values are actually
lower than those of the random crop model. This does not accurately reflect its abil-
ity to predict gaze, as is made clear by evaluation on the test set: the random crop
model has an average KLD of 0.654, while the central crop model has an average
KLD of 0.740.

53

5.1. GAZE NETWORKS Chapter 5. Results and Evaluation

DR(eye)VE - Validation Set Loss (Fine), Central vs. Random Crop

2.2 - — central
— random
2.0 -

18 -

16 -

Loss

1.2 -
1.0 -

0.8 -

0 5 10 15 20 25 30 35 40
Epoch

Figure 5.8: Comparison of full-frame validation set loss for the Random and Central
cropping strategies

Results and Behaviour

The DR(eye)VE model significantly outperformed all other models on the test set,
achieving an average KLD of 0.654 and a CC of 0.761. The model appears to have
gained a solid understanding of human attention dynamics, consistently paying at-
tention to other vehicles, traffic lights and nearby pedestrians while ignoring ob-
jects which distracted the bottom-up networks such as Coca-Cola machines, trees
or buildings which were irrelevant to the driving task. Sample outputs are dis-
played in Figure 5.9. The top image shows the very commonly observed human
behaviour of using lane markings to guide their turns, with the DR(eye)VE net-
work clearly having learned to predict this behaviour. The central image shows the
network splitting its attention between the traffic light and the pedestrian crossing
the road in front of it, while in the bottom image attention is split between the
vehicle directly in front of the car and the upcoming road sign. As with RMDN,
we also compared the model’s predictions to the mean fixation map of the training
dataset, obtaining a KLD of 0.644, roughly equal to the test set score. This indi-
cates that the model has not overfit to the mean in the same manner as RMDN,
and its high scores on the test set therefore indicate an actual understanding of the
nature and dynamics of the task. A driving sequence blended with this model’s
predictions can be found at https://www.youtube.com/watch?v=A2cy70abxtg. The
same sequence is also shown using hard attention masking rather than blending at
https://www.youtube.com/watch?v=n4PdE_oEqgE, in order to easily see what infor-

54

https://www.youtube.com/watch?v=A2cy70a5xtg
https://www.youtube.com/watch?v=n4PdE_oEqgE

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

mation is being kept and removed by the hard masking process.

Ground Truth DR(eye)VE

Figure 5.9: Sample test set predictions from the fully trained DR (eye)VE Model. This
model shows a much greater understanding of the driving task, correctly fixating on lane
markings when turns are being executed and showing the ability to split its attention
between multiple important objects in a scene, such as the traffic light and pedestrian in
the center image.

Individual Branch Contribution

To see the effect of the DR(eye)VE model’s multi-branch architecture, we com-
pare the performance of the overall network with the individual performances of
its two branches. This is easily done by extracting the individual predictions of
the two branches from the model before they are combined into the final predic-
tion. The results are summarized in Table 5.1. We observe that the Image branch,
on average, outperforms the Flow branch in both the KLD and CC metrics, but
their combined predictions result in significantly improved performance for the full

55

5.1. GAZE NETWORKS Chapter 5. Results and Evaluation

DR(eye)VE model. This strongly indicates that the two branches are capturing differ-
ent sets of important information, and each providing a unique benefit to the overall

model, validating the multi-branch design.

Configuration Kullback-Liebler Correlation Coefficient
Divergence (|) ™M
Image Branch 0.785 0.725
Flow Branch 0.839 0.705
Image + Flow 0.654 0.761

Table 5.1: Comparison of individual and combined branch performance for the fully
trained DR(eye) VE model

Intention-Branched DR(eye)VE

As described in Section 4.1.4, we have also implemented the Intention-Branched
DR (eye)VE model, which takes into account the high-level command currently be-
ing executed by the driver when making saliency predictions. We train the Intention-
Branched model using the same parameters as the non-branched model, and com-
pare the performance of the two on the test set. Ultimately, we found that the
Intention-Branched model outperformed the non-branched model, but only by a
very small margin, obtaining a KLD of 0.642 in comparison to 0.654, and a CC of
0.763 compared to 0.761. This slight increase is in line with our expectations, as the
non-branched model already does quite a good job of predicting gaze without the
high-level command, and it was unlikely that this extension would drastically im-
prove performance. To see where intention branching provided the most benefit, we
also compared the average KLD between the two models for the "Lane Follow” high
level command, which comprises the large majority (88.5%) of the dataset, and the
"Left”, "Right”, and ”Straight” high level commands, which are significantly less rep-
resented. As expected, we found that the underrepresented commands benefit more
from the branching process, with an average KLD of 0.660 and CC of 0.758 for the
Intention-Branched model, compared to a KLD of 0.684 and a CC of 0.743 for the
non-branched model. These improvements are still very small, but account for the
majority of the overall performance increase between the two models, with the KLD
and CC of the "Lane Follow” command for the two models being almost exactly the
same. One example of an improved prediction from the Intention-Branched model
is shown in Figure 5.10.

Effect of Environment

We compare the performance of the DR(eye)VE model for the six individual test
episodes, each of which has a different environmental setting in the CARLA environ-
ment. The results are displayed in Figure 5.11. The model performs best in the Clou-

56

Chapter 5. Results and Evaluation 5.1. GAZE NETWORKS

Ground Truth DR(eye)VE Intention-Branched DR(eye)VE

Figure 5.10: Example of an improvement in saliency prediction by the Intention-
Branched DR(eye)VE model

dyNoon and WetNoon settings, approximately equal in the ClearNoon, ClearSunset
and HardRainyNoon settings, and worst in the RainySunset setting. In general, how-
ever, the difference in performance between all settings is quite small, and it does
not appear that the model is strongly affected by these environmental conditions.

Active vs. Traffic Sequences

As described in Section 3.1.6, a significant portion of the collected driving data con-
sists of periods where the driver is waiting at a traffic light. We hand-labeled each
frame to distinguish between ”active” frames, where the driver must constantly pay
attention to avoid a collision, and ”traffic” frames, where minimal attention needs to
be paid. Our assumption was that Gaze Prediction models would perform better for
active sequences, as humans would be far less likely to let their attention wander in
an unpredictable manner for these frames. We confirm this assumption by compar-
ing the KLD and CC of the DR (eye)VE model on the two groups of frames. For active
sequences, the model scored an average KLD of 0.600 and CC of 0.787, while for
traffic sequences the results are noticeably worse, with an average KLD of 0.749 and
CC of 0.723. Since we are not overly concerned with the model’s predictions while
sitting still in traffic (as no driving actions are executed in these scenarios), this is
quite an encouraging result, showing that the model performs even better than its
average test set metrics indicate for the sequences which are most important to us.

Failure Cases

While the DR (eye)VE model outperforms all other tested models, there is still room
for improvement. Figure 5.12 displays some failure cases in which the DR (eye)VE
model fails to predict the correct image regions or misses important objects which
the human paid attention to (i.e. pedestrians). These images were selected from the
set of ’active’ driving frames with the highest individual KLDs in comparison to the
ground truth fixation maps.

57

5.2.

DRIVING NETWORKS

Chapter 5. Results and Evaluation

0.7 -+

0.6 -

05 -

0.4 -

0.3 -

0.2 -

01 -

0.0 -

Kullback-Liebler Divergence for

o
w

Different Weather Settings

.. oo

0.0

ClearNoo Clou ayNnun F.amys nsel WetNom CIearS nselHdrdRamyNoun

I I | I I I

arMoon

Correlation Coefficient for Different Weather Settings

CloudyNoo inysunse setHardRainyNool
Wi

Figure 5.11: KLD (left) and CC (right) on different weather settings for the DR(eye)VE
model

5.1.5 Side-by-Side Comparison

Here we provide a summary of the test set performance of all Gaze Prediction mod-
els, side by side for easy comparison. Table 5.2 shows the average KLD and CC
of each model, while Figure 5.13 shows a set of 5 driving images and the pre-
dicted attention map from each model. These images have been selected to show-
case the major differences in behaviour between the models; a longer driving se-
quence showing the behaviour of each model side by side is made available at
https://www.youtube.com/watch?v=CU-K_NVssCO& We do not show predictions
for both the DR (eye)VE and Intention-Branched DR (eye)VE models because, as pre-
viously discussed, they are extremely similar.

Network Kullback-Liebler Correlation Coefficient
Divergence () (@)

Deep Gaze I1[18] 1.287 0.511
MLNet[7] 1.222 0.553
RMDN|[2] 1.029 0.600

DR (eye)VE[23] 0.654 0.761
Intention-Branched 0.642 0.763
DR (eye)VE (ours)

Table 5.2: Test Set Performance Comparison for all Gaze Prediction Networks

5.2 Driving Networks

Using the outputs of the Intention-Branched DR (eye)VE model, we applied three
types of attention masking to our Driving Dataset frames, as described and visualized
in Section 3.2.3: hard masking, soft masking, and baseline masking. We then trained

58

https://www.youtube.com/watch?v=CU-K_NVssC0&

Chapter 5. Results and Evaluation 5.2. DRIVING NETWORKS

Ground Truth DR(eye)VE

Figure 5.12: Some failure cases for the DR(eye)VE model. In the top image, the model
is looking behind the oncoming car rather than at the road ahead of it, while in the
center and bottom images it ignores pedestrians which the human driver chose to look
at.

and evaluated a total of five different autonomous driving agents on these masked
images. Four of these agents use the Conditional Imitation Learning architecture of
Codevilla et. al[6]; one of these agents is trained using raw, unaltered images, one
on hard-masked images, one on soft-masked images, and one on baseline-masked
images. We refer to these agents henceforth as the raw, hard, soft, and baseline
agents respectively. Our fifth agent uses a dual-branch architecture reminiscent of
the AGIL network of Zhang et al.[37], with the top branch receiving raw images as
input and the bottom branch receiving hard-masked images. This agent is referred
to as the dual-branch agent. Figure 5.14 shows an image from the training set and
its appearance with each type of masking applied, and describes which masks are
used to train each agent. To ensure a fair comparison between models, all agents
are trained with the same parameters, for an equal number of steps and using the
same loss function.

59

5.2. DRIVING NETWORKS Chapter 5. Results and Evaluation

Raw

Ground
Truth

DR(eye)VE

RMDN

MLNet

DeepGaze |l

Figure 5.13: Side-by-side comparison of all Gaze Model predictions for 5 driving frames.
We can see that the bottom-up DeepGaze II and MLNet models are easily distracted by
objects which are not relevant to the driving task, such as the Coke machine in the fifth
column and the house in the second column. The RMDN model is very inflexible, always
making predictions in the central region of the image. The DR(eye)VE model is clearly
superior, closely matching the ground truth attention maps and focusing only on image
regions which are relevant to the driving task, such as the lane markings in the first column,
the pedestrian and leading vehicle in the third column, and the traffic light in the fifth
column.

60

Chapter 5. Results and Evaluation 5.2. DRIVING NETWORKS

Figure 5.14: We train autonomous agents on driving images masked by the attention
maps produced by our gaze prediction network. The raw agent is trained on unmasked
images (left), the hard agent on hard-masked images (second from left), the soft agent
on soft-masked images, (second from right), and the baseline agent on baseline-masked
images (right). The dual-branch agent is trained on both the unmasked and hard-
masked images.

The imitation learning agents are trained using the Adam optimization algorithm
with 8; = 0.7, 5, = 0.85. We use the following hyperparameters recommended by
the authors for the same task in [6]: batch size of 120, learning rate of 0.0001,
and the A values specified in Section 4.2.1 for the multi-task training loss (Equation
4.5). During training, we randomly augment images in the following ways and with
the given probabilities: Gaussian blurring (9%), Gaussian noise (9%), pixelwise
dropout (30%), brightness adjustment (30%), saturation adjustment (30%), and
contrast adjustment (30%). Each agent is trained for 300,000 training steps, taking
approximately 24 hours to train fully on our setup. We also encountered a bug
in which model predictions would occasionally skyrocket, predicting values in the
range of millions instead of the 0-1 range, despite individual batch losses appearing
to be unaffected. Whenever this occurred, we were forced to abort training and
restart the process from the most recent uncorrupted model checkpoint.

Due to time constraints and the extensive training time taken by these networks, we
were not able to perform hyperparameter tuning for our autonomous driving agents.
We do not believe that this significantly affected the outcome of our experiment for
the following two reasons: First, we can assume that the parameters used by [6]
will be close or identical to the ideal parameters for our network due to the high
similarity in terms of model architecture and training/testing environment. Second,
our primary interest is to see how these agents perform in comparison to each other,
rather than to maximize their overall performance as much as possible. Since they
are all trained using the same parameters, we are still able to accurately judge their
relative performance and thus see the effect of our applied attention masking, which
is the ultimate goal of this project. Because we do not perform tuning based on
validation set performance, we do not require a validation set, and instead split our
dataset simply into 80% training frames and 20% testing frames, with the training
set containing only frames from Town 1 and the testing frames containing a mixture
of frames from Town 1 and Town 2.

We evaluate each agent’s performance on the full test set every ten thousand training
steps in order to track both training speed and overall performance. Figure 5.15
shows the multi-task test set loss (Equation 4.5) throughout each agent’s training
process, averaged across three runs for each agent. As expected, the baseline agent

61

5.2. DRIVING NETWORKS Chapter 5. Results and Evaluation

Test Set Loss for Five Autonomous Driving Agents

0.045 -
0.040 -
0.035 -
—— Soft
0.030 - —— Hard
& Base
- —— Raw
0.025 - Dual
0.020 -
0015 —
0 50000 100000 150000 200000 250000 300000

Training Steps

Figure 5.15: Test set loss for each agent, evaluated throughout the training process.
Early training stages (10000-50000 steps) show an improved learning speed for the
dual-branch and soft agents. After this point, however, the dual-branch agent continues
to quickly learn and reduce its error, while the soft agent’s performance slows to match
that of the raw and hard agents.

has a very high loss compared to all other models, as the static masking process
obscures crucial information from the agent. We observe that in the early stages
of training, the soft agent appears to learn more quickly on average than the raw
and hard agents, with loss values close to those of the dual-branch agent. After
40k training steps, however, the loss for the soft, hard and raw networks evens out,
remaining approximately equal for the remainder of the training. Finally, our dual-
branched agent was able to both reduce its loss more quickly and achieve a lower
overall loss than all other agents, seemingly verifying the design of the dual-branch
architecture for incorporating attention maps into an agent’s learning process. We
report the final multi-task test set loss for all agents in Table 5.3, as well as each of
the individual task losses. The dual-branch agent achieves the minimum loss in all
tasks, showing that the benefits of learning with attention are pervasive, improving
all aspects of the agent’s performance.

As discussed in Section 2.1.4, the weighted MSE loss function which we use to train
these agents is often a poor indicator of actual driving ability. We therefore perform
our final evaluation of these models using the mean average error of the predictions,
which has proven to be significantly more correlated with driving performance[5].

62

Chapter 5. Results and Evaluation 5.2. DRIVING NETWORKS

Agent Steer MSE Brake Throttle Speed Weighted
MSE MSE MSE Multi-Task
Loss
Raw Agent[6] | 3.366+ 1074 | 82291072 | 0.0231 5.878 0.0143
Baseline 5.003 %1073 0.0121 0.0358 13.73 0.0381
Agent (ours)
Hard Agent | 4.594%107% | 9.690% 107 | 0.0214 6.186 0.0146
(ours)
Soft Agent 3.878%107% | 9.777 %1073 0.0210 6.773 0.0142
(ours)
Dual-Branch | 1.596%10~%| 8.063«10~2| 0.0205 5.848 0.0125
Agent (ours)

Table 5.3: Test set loss values (lower is better in all categories) for each fully trained
autonomous driving agent on all driving actions. Results highlight the superiority of the
dual-branch agent, which achieves the lowest prediction loss for all four tasks. Individual
task performance between the raw, soft, and hard agents varies by task, with the overall
performance of these three models being very similar. The baseline agent, as expected,
is the worst by a large degree for all tasks.

The results, depicted in Figure 5.16, further verify the superiority of the dual-branch
agent, which learns faster and achieves a significantly lower MAE than all other
models, achieving a 25.5% decrease in error with respect to the raw agent. When
evaluated using this metric, the raw image agent also begins to slightly outperform
the hard-masked and soft-masked agents when evaluated using MAE, although the
gap in performance between these agents is still much smaller than the gap between
the single and dual-branch agents. The results for the fully trained agents are given
in Table 5.4.

Overall, the improved performance of the dual-branch model verifies our hypothesis
that integrating a human-inspired attention mechanism into an autonomous driv-
ing agent’s learning process can improve both performance and learning speed. In
addition to this result, some other interesting observations can be made from the rel-
ative performance of the hard-masked, soft-masked and raw image agents. Prior to
running the experiment, we had expected the soft-masked agent to outperform the
raw image agent, as it contains the attention information produced by the Intention-
Branched DR (eye) VE model while also retaining all of the original image data. How-
ever, the agent does not appear to take advantage of this extra information, and is in
fact marginally outperformed by the raw image agent. The difference between the
soft-masked agent and the dual-branch agent, both of which have access to the same
total information, highlights the importance of model architectures when incorpo-
rating attention to machine learning systems. Finally, we were surprised to discover
that the hard-masked agent performed approximately equal to the soft-masked and
raw image agents, given the extent of the information which is removed during the
image masking process. The baseline and hard-masked agents had approximately
the same amount of overall information removed, but while the baseline agent was

63

5.2. DRIVING NETWORKS Chapter 5. Results and Evaluation

Test Set Multi-Task MAE for Five Autonomous Driving Agents

0.045 -

0.040 -

0.035 -
g —— Soft
2 0.030 - —— Hard
z Base
f':t —— Raw
E 0.025 Dual

0.020 -

0.015 -

0.010 -. ; ; : ; x :

0 50000 100000 150000 200000 250000 300000

Training Steps

Figure 5.16: Test set MAE for each agent, evaluated throughout the training process.
There is an even more pronounced improvement shown by the dual-branch agent over
all other agents for this metric, which has been shown to correlate more strongly with
online driving performance than MSE[5]. The raw agent can now be seen to have a
slight performance gain over the soft and hard agents.

Agent Steer MAE Brake Throttle Speed Weighted
MAE MAE MAE Multi-Task
MAE
Raw Agent[6] | 7.161 %1073 0.0250 0.0757 1.693 0.0153
Baseline 0.0288 0.0393 0.121 3.096 0.0385
Agent (ours)
Hard Agent | 8.212x107° 0.0303 0.0764 1.753 0.0168
(ours)
Soft Agent 7.955% 1073 0.0299 0.0733 1.877 0.0162
(ours)
Dual-Branch | 4.576x10°3| 0.0192 0.0626 1.620 0.0114
Agent (ours)

Table 5.4: Test set MAE (lower is better) for each fully trained autonomous driving
agent on all driving actions. As with the test set losses, these results show that the dual-
branch agent performs best in all four tasks. A slightly more pronounced difference can
now be seen between the performance of the raw agent and the soft/hard agents, with
the raw agent outperforming the others by a slightly larger margin than before.

64

Chapter 5. Results and Evaluation 5.2. DRIVING NETWORKS

severely affected by this removal, the hard-masked agent continued to perform well
due to the selective nature of the masking. This is a compelling affirmation of the
Intention-Branched DR (eye)VE model’s ability to correctly identify the regions of an
image which are important to the driving task.

65

Chapter 6

Conclusion

6.1 Summary

Autonomous driving promises to be a beneficial and highly transformative technol-
ogy in the near future. While modern approaches to high levels of autonomy use a
modular approach to perform well in highly controlled, well-defined environments,
end-to-end autonomous driving has recently emerged as a possible alternative which
may have the potential to scale beyond what modular approaches are capable of.
This approach relies on the ability to understand and react to highly complex real-
world scenes captured by the vehicle’s sensory systems, with no explicit instructions
or behaviours defined beforehand - an ability that humans excel at and perform
on a daily basis. By quickly and purposefully directing eye movements to objects
of interest, humans can quickly acquire the information needed to perform a task
while filtering out unnecessary details. This skill would provide clear benefits to any
system which has to parse complex scenes as part of a task.

To create a system capable of replicating human visual attention, we collected sev-
eral hours of simulated driving data from human drivers while recording their eye
movements. We then evaluated four recently published approaches to predicting
human gaze on our dataset[18][7][2][23], finding that the most successful archi-
tecture used a combination of raw images and preprocessed optical flow maps to
provide multiple source of information to the model. We further extended this model
by providing the high-level intentions of the driver for each frame, boosting perfor-
mance even further. Our fully-trained model is able to identify key regions in images
which are relevant to the driving task, as measured by its high performance in pre-
dicting human gaze for an unseen set of test episodes.

Motivated by other works which have improved the performance of machine learn-
ing systems by incorporating attention-focusing mechanisms into their learning pro-
cesses [34][37], we tested several methods of introducing this information to an au-

66

Chapter 6. Conclusion 6.2. FUTURE WORK AND IMPROVEMENTS

tonomous driving agent. Five conditional imitation learning agents[6] were evalu-
ated, with substantial performance increases being attained by a dual-branch model
which trained using both raw driving images and masked images produced by ele-
mentwise multiplication of these images with the gaze network’s produced attention
maps. We note the importance of architecture choice when incorporating attention
maps into these systems, as our soft-masked agent which in theory had access to the
same information as the dual-branch agent did not see any performance increase as
a result. Finally, we found that an agent trained solely on the information retained
by a hard masking of the original images with the gaze network’s attention maps suf-
fered almost no decrease in performance in comparison to a network trained with
full driving images, validating the effectiveness of the gaze network in extracting all
of the necessary information from these images for the driving task.

6.2 Future Work and Improvements

Several extensions and improvements could be made to our experiments to fur-
ther increase performance in both the gaze prediction and driving tasks. One factor
which may have impacted our ability to faithfully record all eye movements was the
fact that since we record gaze location by tagging the position of a GazeCursor ob-
ject within CARLA, we are limited to sampling gaze locations at the refresh rate of
the server (25 frames per second), while our gaze tracking technology is capable of
recording at a significantly higher rate. While it is unlikely that we miss any actual
gaze fixations in the 40 milliseconds between frames, we may be missing some in-
formation encoded in the saccades (rapid movement of the eyes between fixations)
of the driver. Due to the lag present in the simulation when recording with more
than one camera, we were also unable to take advantage of CARLA's ability to pro-
vide ground-truth segmentation maps of driving scenes. While Palazzi et al. found
that semantic segmentation added very little to their gaze prediction model[23], this
may be more reflective of the pre-trained segmentation algorithm they used to pro-
cess their images, rather than the somewhat non-intuitive conclusion that semantic
labels would not provide important information to a driving system. It would be in-
teresting to see if having access to this information could resolve some of the failure
cases for our gaze prediction model. Finally, due to time constraints, we were not
able to perform online evaluation of our driving agents, which could provide more
specific insights into the effect of incorporating attention into driving systems such
as collision rates, navigation episode completion statistics and more.

One important strategy for end-to-end learning which we did not investigate in this
project is the reinforcement learning approach. Reinforcement learning provides a
framework for models to continuously improve their performance with experience,
but tends to suffer from extreme sample inefficiency in complicated environments
with continuous action spaces. For this reason, pure reinforcement learning attempts
to train self-driving agents have not met with much success. We believe that incorpo-

67

6.2. FUTURE WORK AND IMPROVEMENTS Chapter 6. Conclusion

rating visual attention masking into a reinforcement learning agent could potentially
have great benefits in terms of sample efficiency, as the agent should be able to much
more rapidly associate highlighted image regions with the reward signals it receives
as a result of its actions. We believe this to be a promising direction for future
work. Beyond autonomous driving, the ability to infuse machine learning systems
with human expertise in a natural, data-driven way holds enormous potential. The
same principles and strategies implemented in this project could be applied to any
vision-based task that we may wish to automate such as street cleaning or construc-
tion. While eye movement data is not trivial to collect, portable, battery-powered
eye tracking systems have made the collection of high-quality gaze data increasingly
viable over the last decade, and we hope to see future works benefiting from visual
attention systems such as ours.

68

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

The six official levels of autonomous vehicles explained. https://boingboing.
net/2017/03/03/the-six-official-levels-of-au.html. Accessed: 2019-
09-01. pages 2

BAzZzANI, L., LAROCHELLE, H., AND TORRESANI, L. Recurrent mixture density
network for spatiotemporal visual attention. CoRR abs/1603.08199 (2016).
pages 36, 37, 49, 58, 66

BoJARSKI, M., TESTA, D. D., DWORAKOWSKI, D., FIRNER, B., FLEPP, B.,
GovyAL, P., JACKEL, L. D., MONFORT, M., MULLER, U., ZHANG, J., ZHANG,
X., ZHAO, J., AND ZIEBA, K. End to end learning for self-driving cars. CoRR
abs/1604.07316 (2016). pages 5, 6

BYLINSKII, Z., JUDD, T., OLIVA, A., TORRALBA, A., AND DURAND, F. What
do different evaluation metrics tell us about saliency models? CoRR
abs/1604.03605 (2016). pages 16

CODEVILLA, F., LOPEZ, A., KOLTUN, V., AND DOSOVITSKIY, A. On offline eval-
uation of vision-based driving models. CoRR abs/1809.04843 (2018). pages 9,
10, 30, 62, 64

CODEVILLA, F., MULLER, M., DOSOVITSKIY, A., LOPEZ, A., AND KOLTUN, V.
End-to-end driving via conditional imitation learning. CoRR abs/1710.02410
(2017). pages 5, 7, 9, 42, 43, 44, 59, 61, 63, 64, 67, 80, 81, 82

CORNIA, M., BARALDI, L., SERRA, G., AND CUCCHIARA, R. A deep multi-level
network for saliency prediction. CoRR abs/1609.01064 (2016). pages 12, 13,
34, 48, 58, 66

DOSOVITSKIY, A., ROS, G., CODEVILLA, F., LOPEZ, A., AND KOLTUN, V. CARLA:
an open urban driving simulator. CoRR abs/1711.03938 (2017). pages 5, 9,
18

FARNEBACK, G. Two-frame motion estimation based on polynomial expansion.

In Image Analysis (Berlin, Heidelberg, 2003), J. Bigun and T. Gustavsson, Eds.,
Springer Berlin Heidelberg, pp. 363-370. pages 26

69

https://boingboing.net/2017/03/03/the-six-official-levels-of-au.html
https://boingboing.net/2017/03/03/the-six-official-levels-of-au.html

BIBLIOGRAPHY BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

GATYS, L. A., KUMMERER, M., WALLIS, T. S. A., AND BETHGE, M. Guiding hu-
man gaze with convolutional neural networks. CoRR abs/1712.06492 (2017).
pages 82

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural
computation 9 (12 1997), 1735-80. pages 37

HoPPE, D., AND ROTHKOPF, C. A. Multi-step planning of eye movements in
visual search. Scientific Reports 9, 1 (2019), 144. pages 25

HUANG, X., SHEN, C., Boix, X., AND ZHAO, Q. Salicon: Reducing the semantic
gap in saliency prediction by adapting deep neural networks. In 2015 IEEE
International Conference on Computer Vision (ICCV) (Dec 2015), pp. 262-270.
pages 12

JIANG, M., HUANG, S., DUAN, J., AND ZHAO, Q. Salicon: Saliency in context.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2015), pp. 1072-1080. pages 34

JOHNSON, L., SULLIVAN, B. T., HAYHOE, M. M., AND BALLARD, D. H. Predict-
ing human visuomotor behaviour in a driving task. In Philosophical transactions
of the Royal Society of London. Series B, Biological sciences (2014). pages 15

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, Eds. Curran Associates, Inc., 2012, pp. 1097-1105. pages 12

KRUTHIVENTI, S. S., AYuUSH, K., AND BABU, R. V. Deepfix: A fully
convolutional neural network for predicting human eye fixations. CoRR
abs/1510.02927 (2015). pages 12

KUMMERER, M., WALLIS, T. S. A., AND BETHGE, M. Deepgaze II: reading fixa-
tions from deep features trained on object recognition. CoRR abs/1610.01563
(2016). pages 12, 33, 34, 58, 66

KMMERER, M., THEIS, L., AND BETHGE, M. Deep gaze i: Boosting saliency
prediction with feature maps trained on imagenet. pages 12

LEcuN, Y., CosarTto, E., BEN, J., MULLER, U., AND FLEPP, B.
Dave: Autonomous off-road vehicle control using end-to-end learn-
ing. Tech. Rep. DARPA-IPTO Final Report, Courant Institute/CBLL,
http://www.cs.nyu.edu/"yann/research/dave/index.html, 2004. pages 5

MAKRIGIORGOS, A. Independent study option: Autonomous driving systems
and human visual attention, 2019. pagesi, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 81

MEHTA, A., SUBRAMANIAN, A., AND SUBRAMANIAN, A. Learning end-to-end
autonomous driving using guided auxiliary supervision. CoRR abs/1808.10393
(2018). pages 8, 82

70

BIBLIOGRAPHY BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

PaLAzzZI, A., ABATI, D., CALDERARA, S., SOLERA, F., AND CUCCHIARA, R.
Predicting the driver’s focus of attention: the dr(eye)ve project. CoRR
abs/1705.03854 (2017). pages 15, 26, 39, 40, 41, 58, 66, 67

POMERLEAU, D. A. Alvinn: An autonomous land vehicle in a neural network.
In Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed.
Morgan-Kaufmann, 1989, pp. 305-313. pages 4, 7

SHALEV-SHWARTZ, S., SHAMMAH, S., AND SHASHUA, A. Safe, multi-agent, re-
inforcement learning for autonomous driving. CoRR abs/1610.03295 (2016).
pages 5

SIMONYAN, K., AND ZISSERMAN, A. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Rep-
resentations (2015). pages 12, 33

SPRAGUE, N., AND BALLARD, D. Eye movements for reward maximization. In
Advances in Neural Information Processing Systems 16, S. Thrun, L. K. Saul, and
B. Scholkopf, Eds. MIT Press, 2004, pp. 1467-1474. pages 14

SULLIVAN, B., JOHNSON, L., BALLARD, D., AND HAYHOE, M. A modular re-
inforcement learning model for human visuomotor behavior in a driving task.
pp. 33-40. pages 15

SULLIVAN, B., JOHNSON, L., ROTHKOPF, C., BALLARD, D., AND HAYHOE, M.
The effect of uncertainty and reward on fixation behavior in a driving task.
Journal of Vision 12 (08 2012), 1259-1259. pages 15

TATLER, B. The central fixation bias in scene viewing: Selecting an optimal
viewing position independently of motor bases and image feature distributions.
Journal of vision 7 (02 2007), 4.1-17. pages 34

TRAN, D., BOURDEVY, L. D., FERGUS, R., TORRESANI, L., AND PALURI, M. C3D:
generic features for video analysis. CoRR abs/1412.0767 (2014). pages 36,
37,40

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ,
A. N., KAISER, L. U., AND POLOSUKHIN, I. Attention is all you need. In Ad-
vances in Neural Information Processing Systems 30, 1. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Cur-
ran Associates, Inc., 2017, pp. 5998-6008. pages 8

ViG, E., DORR, M., AND CoOX, D. Large-scale optimization of hierarchical
features for saliency prediction in natural images. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition (June 2014), pp. 2798-2805. pages
12

Xu, K., BA, J., Kiros, R., CHO, K., COURVILLE, A. C., SALAKHUTDINOV, R.,
ZEMEL, R. S., AND BENGIO, Y. Show, attend and tell: Neural image caption
generation with visual attention. CoRR abs/1502.03044 (2015). pages 8, 66

71

BIBLIOGRAPHY BIBLIOGRAPHY

[35] YARBUS, A. L. Eye Movements and Vision. Plenum. New York., 1967. pages 11

[36] You, Y., PAN, X., WANG, Z., AND Lu, C. Virtual to real reinforcement learning
for autonomous driving. CoRR abs/1704.03952 (2017). pages 5

[37] ZHANG, R., LIU, Z., ZHANG, L., WHRITNER, J. A., MULLER, K. S., HAYHOE,
M. M., AND BALLARD, D. H. AGIL: learning attention from human for visuo-

motor tasks. CoRR abs/1806.03960 (2018). pages 8, 15, 16, 39, 45, 59, 66,
81, 82

72

Appendix A

Implementation

In this chapter, we provide details on the programming implementation process for
the various parts of the project. The code for this project was developed on a per-
sonal ASUS laptop with an Ubuntu 18.04 operating system, an NVIDIA GeForce GTX
1070 graphics card and an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. All code
has also been tested and verified to run on the Brain and Behaviour Lab’s remote
machines. All of the code for this project is made available in the submitted code
archive, and is also currently uploaded to the Brain and Behaviour Lab’s computing
servers.

A.1 Project Setup & Development

This code for this project was written in Python, in the form of Jupyter Notebooks.
The libraries and packages most frequently used throughout the development pro-
cess were:

e NumPy for fast computations and creating, saving and loading large data ar-
rays

e OpenCV for image reading, writing and manipulation, as well as the creation
of video files from image sequences

e Matplotlib for visualization of dataset features
e Keras, Tensorflow and Theano for deep learning

e os and glob for reading directory contents and generating/writing new file
names

73

A.2. DATASET CREATION & PREPROCESSING Chapter A. Implementation

Virtual Environments

Much of the deep learning code used to train and compare different models for this
project was taken from published code repositories provided by the authors of those
models. The programs in these repositories are written for specific versions of deep
learning libraries such as Tensorflow, Theano and Keras, which are incompatible with
newer versions. To avoid compatibility issues and keep the models working exactly
as they worked when published, we create virtual environments using the Anaconda
platform, allowing us to run the networks with the packages and versions in which
they were originally run. Any Anaconda virtual environment can be described by
a .yaml configuration file containing the exact packages and their version numbers
which are used in that environment. All of the configuration files used for this project
are available in the submitted code archive or on the Brain and Behaviour Lab’s
remote servers, and using these files the virtual environments can be automatically
recreated by Anaconda. The ipykernel package was used to allow Jupyter to easily
create Notebook servers which execute in Anaconda virtual environments.

Here we describe the contents of the python modules used to collect data for both
the Gaze and Driving datasets.

A.2 Dataset Creation & Preprocessing

In this section we describe the contents of the notebooks used to create and prepro-
cess the Gaze and Driving datasets.

e run_gaze collection.py

This file is used to collect data for the Gaze experiments. It allows users to
connect to a running CARLA server using the Python Client and drive a vehicle
using a Ferrari 458 Italia USB steering wheel. A pygame controller was written
to read the values from the steering wheel and send them to the server via the
Python Client. Weather settings can be changed by pressing ’C’ button on the
laptop’s keyboard. The script can be run with or without data recording using
the command line argument --images-to-disk. If enabled, it records the
camera images, extrinsic and intrinsic matrices for each frame, storing them
in a buffer of size 1000 which is flushed to disk when full to avoid lag in the
simulation, as described in Section 3.1.2.

e Gaze.ipynb

This notebook contains the code for converting the collected subject data into
a preprocessed, organized dataset which can be directly used by the gaze pre-
diction models. It contains functions to perform the following tasks:

74

Chapter A. Implementation A.2. DATASET CREATION & PREPROCESSING

— Convert consecutive 1000x400x300 NumPy arrays into into image se-

quences of 4500 images in PNG format, given an absolute starting frame
number. Store the images in a directory in the format "Data/episode_number/
frames/frame_number.png”.

Store the recorded extrinsic and intrinsic camera matrices for each frame
as a single numpy array in the format "Data/episode_number/extrinsic.npy”.

Parse and split the binary files containing subjects’ eye movement data
into separate episodes (given starting frame numbers for each episode),
convert them into NumPy arrays, and save them in the format "Data/
episode_number/eyesXYZ.npy”.

Convert a set of (X,Y,Z) gaze coordinates into (X,y) camera coordinates
as described in detail in Section 3.1.3. If a list of (X,Y,Z) coordinates is
passed in, returns a list of gaze coordinates corresponding to the given
intrinsic and extrinsic matrices (used when computing fixation maps).

Display an image sequence as a video, overlaying the camera frames with
red circles at the locations of the subject’s gaze within a 1 second time
window of the current frame. Useful to confirm there are no errors in the
eye tracker before writing final fixation maps.

Compute the fixation maps for each frame of an episode as described in
Section 3.1.4 and save them in the format “Data/episode_number/fixations/
frame _number.png”. Requires all previously described functions to have
been run for the current episode, such that the gaze information and cam-
era matrices are stored in the episode’s directory in NumPy array format.

Compute the dense optical flow maps for each frame of an episode as de-
scribed in Section 3.1.5 and save them in the format “"Data/episode_number/
optical _flow/frame number.png”. Requires the camera frames to have
been written for the current episode.

Display an image sequence as a video with four simultaneous views: Raw
camera images, computed fixation maps, computed optical flow maps,
and a blending of camera images with fixation maps. Useful for verify-
ing a full episode has been correctly written and all frame numbers are
synchronized.

Calculate the mean camera frame and fixation map for an episode or for
the entire dataset. This is used for preliminary analysis of the collected
data and in the DR(eye)VE network, which subtracts the mean from all
samples when training.

Accumulate the distribution of subjects’ gaze within the camera frame
across all episodes and display a histogram with the results. Used when
determining which image regions to crop as described in Section 3.1.7.

Crop all images, fixation maps and flow maps based on the conclusions
drawn from the data visualization. In the case of fixation maps, re-
normalize such that they remain probability distributions.

75

A.2. DATASET CREATION & PREPROCESSING Chapter A. Implementation

— Convert lists containing hand-labeled frame numbers for high-level com-
mands and traffic light stopping into NumPy arrays and save them in
the corresponding episode directories, to be used for analysis and by the
Intention-Branched DR (eye)VE model.

e Drive.ipynb

This notebook contains code for producing the Driving dataset from episode
data generated by CARLAs expert demonstrator agent. It contains functions
for the following tasks:

— Convert the contents of an episode recorded by the expert demonstrator
into an episode which can be used for prediction by the DR(eye)VE net-
work. For each frame, the dense optical flow map is computed, the three
frames (RGB, Semantic Segmentation, Optical Flow) are cropped and re-
sized to the dimensions used by the DR(eye)VE network, and the JSON
metadata file is read and the necessary control signals for autonomous
driving are read. All outputs are then rewritten to a new directory, in the
same format and structure as the DR(eye)VE dataset directories.

- Read the contents of all episodes generated by the previous function, as
well as the attention maps predicted by the DR (eye) VE network, downsize
the images by a factor of two for input to the CIL network, and write the
outputs to a single combined directory with a subdirectory for each data
type (RGB frames, attention maps, metadata files). Requires the fully
trained DR (eye)VE network to have recorded predictions for all episodes.

— Using the master directory created by the previous function, precompute
hard, soft and baseline attention masks as described in Section 3.2.3, and
write the outputs to new subdirectories.

- Display an image sequence as a video containing four views: Raw images,
soft masks, hard masks, and baseline masks. Useful to ensure that all di-
rectories have been written correctly and are synchronized before writing
the files into TFRecord format.

— Convert the contents of the master directory into TFRecord format for
use by the CIL network. Each set of frames (RGB, soft, hard, baseline
masks) is serialized to string format and added to a dictionary of features.
Each target value from the corresponding metadata file is then added
to the feature dictionary, and the entire dictionary is converted into a
single TF Example. A batch size of 2000 is used, such that each generated
TFRecord file contains 2000 TF Examples. The final output is a directory
of TFRecords which can be universally used by the CIL networks described
in Section 4.2 by accessing any TF Example feature by its dictionary key.

76

Chapter A. Implementation A.3. GAZE NETWORKS

A.3 Gaze Networks

In this section, we provide details on the notebooks used to construct, train and
evaluate each of the Gaze Prediction models used for this project. The virtual envi-
ronment utilized for all of these networks is the one described in the ’gaze.yml’ file
in the code archive. Of most importance is the fact that these notebooks are written
in Python 2.7, and the models are trained and tested in Keras 1 using the Theano
backend. First we will describe the functions which are present in every notebook,
followed by a short description of each specific notebook with any unique details.

e Common Functions

Here we list the functions which are common to all implemented Gaze Predic-
tion models.

- Image Utils: A set of common utility functions is used for image manipu-
lation. read _image reads an image from an input file path, reshapes the di-
mensions so that the channel dimension is first as required by Theano, op-
tionally converts between RGB and BGR color schemes, optionally resizes
the image to any specified dimensions, and finally returns the image as
a Numpy array. normalize takes a NumPy array as input and normalizes
the values to lie between 0 and 255 and converts them to uint8 format.
write image takes NumPy arrays in this normalized format and writes
them as PNG images to a specified filepath. Finally, stitch together
takes any number of equal-sized images and a tuple indicating a desired
layout scheme and combines the images into a grid so that they can be
visualized side by side.

— Callbacks: When training networks, Keras makes use of functions called
”Callbacks”, which are called at regular intervals throughout the training
process. The History and BaseLogger callbacks are automatically applied
to every Keras model to record metrics about the model performance
such as loss and validation accuracy. In addition to these, the follow-
ing callbacks are used by the Gaze Prediction models: (1) Checkpointer,
which saves a checkpoint of the model’s weights in an h5 file after each
epoch, (2) ReduceLROnPlateau, which decreases the learning rate by a
factor of 10 if no improvement is seen in the validation loss after 5 train-
ing epochs, and (3) PredictionCallback, a custom-defined callback which
writes a small number of predictions from the validation set to an output
directory after each epoch. This allows the user to monitor the model’s
progress over time.

- Batch Generators: Custom functions are defined for all networks which
yield batches of data for training and evaluation when called by Keras’
fit_generator function. Given a batch size, the generators randomly select
that number of frames from the Gaze dataset, along with their fixation
map labels. The frames are chosen from a specified range depending on

44

A.3. GAZE NETWORKS Chapter A. Implementation

whether the network is performing training or evaluation. Data augmen-
tation is also performed at this stage in the form of randomly mirroring
images and their fixation maps. In the case of RMDN and DR(eye)VE,
a clip of 16 frames is returned instead of a single frame. Additionally,
DR(eye)VE batches include pre-computed dense optical flow maps for
each frame.

— Training All models use Keras’ fit_generator function to train. This func-
tion takes as input generator functions (as described above) for training
and validation data, number of samples to train and validate on for each
epoch, the total number of epochs to train for, and all callbacks to be used
when training the model.

- Inference Once each model has been fully trained, predictions are made
for each image in the six test set episodes of the Gaze dataset. For each
predicted image, the Kullback-Liebler Divergence and Correlation Coeffi-
cient metrics are calculated between the predictions and the ground truth
fixations, and these metrics are recorded in a text file.

e MLNet.ipynb

This notebook is used to build and train the Multi-Level Network. An h5 file
containing a pre-trained VGG-16 model is required to initialize the weights
of the Feature Extraction network. These layers are set to non-trainable. A
custom layer is used in this notebook, named EltWiseProduct, which defines a
coarse, learned bias which is upsampled and multiplied elementwise with the
output of the feature encoding network as described in detail in Section 4.1.2.

e RMDN.ipynb

This notebook implements and train the Recurrent Mixture Density Network.
In addition, it contains a function which computes C3D encodings for the Gaze
dataset - this function loads a pre-trained C3D model, iterates over all images
in the Gaze dataset, and predicts a C3D encoding for each sequence of 16
images which is saved as a compressed NumPy array. A download script for
the pretrained C3D network is also included. The RMDN then trains using
these C3D encodings as input, and a function is used to convert the Gaussian
parameter outputs to probability maps. When training, the Prediction Callback
writes an image for each Gaussian predicted by the network, as well as the
weighted output of the Mixture Model.

e Dreyeve.ipynb

This notebook is used to construct and train the DR(eye)VE network. The
network must be trained in stages as described in Chapter 5.1.4, first training
branches individually before fine-tuning the full model by training the branches
together. As such, unique training functions and batch generators are used
depending on which branches are currently in use. The Prediction Callback
used while training this network includes predictions from both the cropped
and full-frame image regions.

78

Chapter A. Implementation A.4. DRIVING NETWORKS

e Dreyeve-Branched.ipynb

This notebook extends the Dreyeve notebook to allow the model to train on
specific high-level commands. The main changes are made in the batch gen-
erators, which are modified to only select image sequences which correspond
to the high-level command for the branch currently being trained. In addition,
because this model had the best performance of all the Gaze Prediction net-
works, it was used to make the predictions for the Imitation Learning episodes
produced in the Drive notebook. The code for making those predictions is
therefore also included in this notebook.

A.4 Driving Networks

This section provides details for the notebooks used to train the two autonomous
driving networks implemented for this project, named CIL_TF.ipynb abd CIL_TF_Branched.ipynb.
The virtual environment necessary to run these notebooks can be created with the
‘cil.yml’ file in the code archive. The model is constructed and trained using Ten-
sorflow Estimators, with Tensorflow version 1.12 and Python 2.7. The structure and
content of the two notebooks used is nearly identical, with the only significant dif-
ferences found in the construction of the network and the processing of the input
data, as detailed below. The major functions of the two notebooks are the following:

e Config: The configuration settings for the CIL notebooks are written in a con-
figuration file labeled ’config-train-production.yaml’. These include training
parameters such as number of training steps, filepaths for reading and writing
data, and the lambdas to be used for each output action when calculating loss
as described in Section 4.2.1. These values are read and saved as TensorFlow
Flags before training begins.

e Hooks: The TF Estimator equivalent of Callbacks, Hooks are used to perform
certain actions throughout the training process. After every ten thousand train-
ing steps, the model first saves a checkpoint file containing its current param-
eters, and then evaluates its performance on both the training and validation
sets, saving the results in a TFEvent file. The mean squared error and mean
average error are recorded for each task separately, in addition to their lambda-
weighted sum. These metrics can then be easily visualized using Tensorboard,
an interactive visualization suite provided by TensorFlow.

e Image Augmentation: Random augmentations are applied to input images
throughout the training process to make the model more robust and avoid
overfitting. These augmentations are applied by the ProbabilisticImageAugmentor
class. This class is initialized with a probability value p between 0 and 1, and
an augmentation to perform, augments the image with probability p, and re-
turns the output. More details on the augmentations used can be found in
Section 5.2.

79

A4.

DRIVING NETWORKS Chapter A. Implementation

Batch Generation: The batch generator creates a TensorFlow Dataset ob-
ject from the TFRecord files specified, deserializes the TF Examples contained
within, applies a series random augmentation to the image features, and fi-
nally yields batches of images and labels when called by the training function.
In the case of the CIL_TF_Branched notebook, two sets of images are returned
with each set of labels, as this branched architecture requires both the raw RGB
camera inputs and the hard-masked images.

Loss Function: For each input batch, all five branch heads make their own sep-
arate predictions. However, when calculating the loss to train the network, we
only wish to consider the predictions made by the branch head corresponding
to the current high-level command. Therefore a custom loss function is writ-
ten to select only the relevant predictions and compare them to the training
labels. The mean-squared error is then calculated for each task, weighted by
the lambdas defined in the configuration file and summed for the total loss.

Model Definition: The two CIL models previously visualized in Figures 4.6
and 4.7 are constructed with a convolutional architecture identical to that of
the original paper [6] and initialized as Estimators with the given configuration
file parameters.

Training: The networks are trained via the TF.Estimator.train function, which
simply takes as input a generator, number of train steps, and a set of Hooks
to apply during training. Outputs are automatically saved to a new directory
each time a new training run begins.

80

Appendix B

Relationship to ISO

This work done in this project builds upon my Independent Study Option[21], which
was carried out in the Winter term of 2019 under Dr. Aldo Faisal’s supervision. In
this ISO, I conducted a literature survey of the history and current state of the art in
both end-to-end autonomous driving technology and human gaze prediction tech-
niques. The ISO concluded by suggesting that a model which integrates learned
visual attention to an autonomous driving system could potentially improve training
speed, performance or both, and proposed some theoretical ways in which this inte-
gration could be performed. No data collection or experimentation was performed
during the ISO.

This project follows up on the ideas discussed in the ISO by implementing a system
which combines visual attention with training autonomous agents. All of the data
collection experiments, model implementations, and evaluations contained in this
report were carried out solely during the course of the MSc project and do not over-
lap with the work done in the ISO. We do not actually implement the integration
strategies proposed in the ISO for our final models, opting instead to use single-
branch masking strategies and the dual-branch strategy of [37] combined with the
CIL driving architecture of [6].

Although some of the ISO’s content is beyond the scope of this project (e.g. sensor
fusion, domain shift from simulation to reality), the core ideas surrounding end-to-
end driving and gaze prediction remain central to this work. As such, much of the
content of the ISO report is rewritten and included in the Background chapter of this
project to preserve coherence, with citations included where necessary. The report
additionally contains background sections which did not appear in the ISO, such
as descriptions of the techniques used to evaluate gaze and driving systems and a
comprehensive description of the CARLA environment. We now proceed with a brief
summary of each section of the ISO report, making a note of which section topics
were also included in this thesis.

Section 2 of the ISO reviewed the Actor-Critic reinforcement learning algorithm as

81

Chapter B. Relationship to ISO

well as some techniques for visualizing feature map activations in neural networks.
These sections were included as key concepts for the theoretical contributions of the
ISO, which in the end were not implemented in this project as they largely dealt with
reinforcement learning techniques, while we instead focus on imitation learning.
This section is therefore not included in any form in this report.

In Section 3 of the ISO, we reviewed advances in autonomous driving in the areas
of imitation learning, reinforcement learning, sensory fusion, simulation-to-reality
domain shift techniques, and finally existing attention models. From this section,
we retain the topics of imitation learning and attention models. Codevilla’s imita-
tion learning model reviewed in the ISO[6] is the model which we use to compare
performance between agents with and without attention. The Guided Auxiliary Su-
pervision Network discussed in [22] is the only example of which we are aware that
attempts to incorporate attention to driving in some manner, and is discussed to
highlight the fact that this is a relatively unexplored area.

Section 4 reviews bottom-up and top-down gaze prediction strategies, as well as
some applications for both areas such as exploiting bottom-up saliency features to
guide human gaze in[10] and the AGIL framework for playing Atari games[37],
which inspired our successful dual-branch attention model. We reproduce nearly
everything from these sections in this project’s report due to their high relevance
and the fact that we end up implementing several of the gaze models discussed.

The report concludes by suggesting methods for integrating a visual attention model
with autonomous driving architectures. We propose applying attention models to an
Actor-Critic algorithm to improve the sample of reinforcement learning techniques
for self-driving, as well as the computation of a similarity score between a model’s
current feature map activations and the attention map recorded by a human which
could be included in a model’s loss function. These proposals were not carried out
in this project, thus they are not included in this report.

This project contains considerable contributions and efforts which are independent
of the work done in the ISO. We collected and labeled a high-quality gaze dataset
from human drivers, trained and compared performance for four deep gaze predic-
tion models, and introduced a novel addition to the best-performing model to further
boost its prediction scores. We then collected a driving image dataset, computed at-
tention masks for each frame, and trained/evaluated five autonomous driving agents
using different attention masking techniques to examine the effects of masking and
different architectures on prediction performance. All of this work was done during
the summer months of the MSc project.

82

Appendix C

Ethical and Legal Considerations

Fully autonomous vehicles are rapidly becoming a reality, and are poised to bring
many transformative changes to society and infrastructure in the near future; re-
duced accidents, fewer CO2 emissions, more productive commuting, and reduced
traffic congestion to name a few. There are several legal and ethical implications,
however, that must be well considered before releasing fleets of driverless cars onto
public roads. Easily the most debated ethical question with regards to autonomous
vehicles is the issue of determining whose safety to prioritize in the event of an
unavoidable collision. Imagine a scenario in which a child runs out in front of an
autonomous vehicle driving on a two-lane road: should the vehicle swerve into on-
coming traffic in order to avoid hitting the child, risking the safety of the driver and
people in other vehicles? If a human were driving in such a scenario, their reaction
would be instinctive and panicked, but an Al would be forced to make a deliberate
decision about whose safety to prioritize. The question of how to weight human
life is extremely delicate, and as of yet there is no clear solution to this problem.
Another ethical issue to consider is the unemployment which may occur if driverless
taxi services become widely available, as they are likely to be cheaper than taxis
or ride hailing services. This is an increasingly prevalent issue as machine learning
begins to automate more and more tasks.

The legal issues surrounding autonomous vehicles are chiefly focused on insurance -
if an accident occurs as a result of a software malfunction, who is liable - the owner
of the car, the manufacturer of the car, the developer of the driving software? What
if a driverless vehicle collides with a human-operated vehicle? Factors which cur-
rently determine liability in accidents such as risky versus safe driving are far less
clear when control has been handed over to the computer, and insurance protocols
concerning these types of accidents will likely have to be reevaluated. As with other
smart technologies, data protection is another important legal issue which will re-
quire some consideration as our cars become more intelligent and learn more about
our routines and the places we travel. Outside of these general issues in regards
to autonomous driving, we do not believe that this project has any specific legal or
ethical implications to further consider.

83

Appendix D

Ethics Checklist

Yes | No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? X
Does your project involve the use of human embryos? X
Does your project involve the use of human foetal tissues / cells? X
Section 2: HUMANS
Does your project involve human participants? X \
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than X
from Human Embryos/Foetuses i.e. Section 1)?
Section 4: PROTECTION OF PERSONAL DATA
Does your project involve personal data collection and/or process- X
ing?
Does it involve the collection and/or processing of sensitive per- X
sonal data (e.g. health, sexual lifestyle, ethnicity, political opin-
ion, religious or philosophical conviction)?
Does it involve processing of genetic information? X
Does it involve tracking or observation of participants? It should X
be noted that this issue is not limited to surveillance or localiza-
tion data. It also applies to Wan data such as IP address, MACs,
cookies etc.
Does your project involve further processing of previously col- X
lected personal data (secondary use)? For example Does your
project involve merging existing data sets?

Section 5: ANIMALS

Does your project involve animals? | X
Section 6: DEVELOPING COUNTRIES

Does your project involve developing countries? X
If your project involves low and/or lower-middle income coun- X
tries, are any benefit-sharing actions planned?

84

Chapter D. Ethics Checklist

Could the situation in the country put the individuals taking part
in the project at risk?

Section 7: ENVIRONMENTAL PROTECTION AND SAFETY

Does your project involve the use of elements that may cause
harm to the environment, animals or plants?

Does your project deal with endangered fauna and/or flora /pro-
tected areas?

Does your project involve the use of elements that may cause
harm to humans, including project staff?

Does your project involve other harmful materials or equipment,
e.g. high-powered laser systems?

Section 8: DUAL USE

Does your project have the potential for military applications?

Does your project have an exclusive civilian application focus?

Will your project use or produce goods or information that will
require export licenses in accordance with legislation on dual use
items?

<[| P

Does your project affect current standards in military ethics
e.g., global ban on weapons of mass destruction, issues of pro-
portionality, discrimination of combatants and accountability in
drone and autonomous robotics developments, incendiary or laser
weapons?

Section 9: MISUSE

Does your project have the potential for malevo-
lent/criminal/terrorist abuse?

Does your project involve information on/or the use of biological-
, chemical-, nuclear/radiological-security sensitive materials and
explosives, and means of their delivery?

Does your project involve the development of technologies or the
creation of information that could have severe negative impacts
on human rights standards (e.g. privacy, stigmatization, discrimi-
nation), if misapplied?

Does your project have the potential for terrorist or criminal abuse
e.g. infrastructural vulnerability studies, cybersecurity related
project?

Section 10: LEGAL ISSUES

Will your project use or produce software for which there are
copyright licensing implications?

Will your project use or produce goods or information for which
there are data protection, or other legal implications?

Section 11: OTHER ETHICS ISSUES

Are there any other ethics issues that should be taken into consid-
eration?

Table D.1: Ethics Checklist

85

	1 Introduction
	2 Background
	2.1 End-to-End Autonomous Driving
	2.1.1 Lane Following with DAVE-2
	2.1.2 Navigation with Conditional Imitation Learning
	2.1.3 Attention Models
	2.1.4 Evaluating Autonomous Agents

	2.2 Human Visual Attention
	2.2.1 Bottom-Up Gaze Prediction
	2.2.2 Top-Down Gaze Prediction
	2.2.3 Evaluation Metrics for Saliency Prediction

	2.3 CARLA Driving Simulator
	2.3.1 Architecture
	2.3.2 Environment
	2.3.3 Measurements

	3 Data Collection & Preprocessing
	3.1 Gaze Dataset
	3.1.1 Experimental Setup and Procedure
	3.1.2 Data Collection
	3.1.3 World-to-Camera Gaze Projection
	3.1.4 Fixation Map Generation
	3.1.5 Optical Flow Map Generation
	3.1.6 Data Labeling
	3.1.7 Analysis, Curation

	3.2 Driving Dataset
	3.2.1 Expert Demonstrator
	3.2.2 Data Collection
	3.2.3 Preprocessing

	4 Deep Learning
	4.1 Gaze Prediction Models
	4.1.1 Deep Gaze II
	4.1.2 MLNet
	4.1.3 Recurrent Mixture Density Network
	4.1.4 DR(eye)VE

	4.2 Driving Models
	4.2.1 Conditional Imitation Learning
	4.2.2 Attention-Guided CIL

	5 Results and Evaluation
	5.1 Gaze Networks
	5.1.1 DeepGaze II
	5.1.2 MLNet
	5.1.3 RMDN
	5.1.4 DR(eye)VE
	5.1.5 Side-by-Side Comparison

	5.2 Driving Networks

	6 Conclusion
	6.1 Summary
	6.2 Future Work and Improvements

	A Implementation
	A.1 Project Setup & Development
	A.2 Dataset Creation & Preprocessing
	A.3 Gaze Networks
	A.4 Driving Networks

	B Relationship to ISO
	C Ethical and Legal Considerations
	D Ethics Checklist

