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Abstract

Convolutional Neural Networks (CNNs) have revolutionised the Computer Vision
discipline in the last few years. CNNs now are state of the art methods to solve al-
most all classification, segmentation, or detection tasks. In parallel, domain specific
architectures have been developed for Computer Vision applications, and amongst
others, a new form of hardware has emerged: Focal Plane Sensor Processors (FPSPs).
FPSPs consist in merging the light sensor and the the processing unit of a traditional
vision system, by enabling each photo-diode with rudimentary analog computation
capabilities.

In this work, we implement CNNs on an FPSP, a goal previously pursued only twice
to the best of our knowledge [49] [5]. To benefit from the low latency and energy
efficiency of existing FPSPs, the main challenge is the limited register availability and
the inaccurate nature of their computations. An in-depth FPSP-specific optimisation
of all components constituting a CNN allows us to beat the previous baseline by a
margin of more than 4%. Our AnalogNet2 architecture reaches a testing accuracy
of 96.9% on the MNIST dataset, at a speed of 2260 FPS, all for a cost of 0.7
mJ per frame. We also experiment two techniques to implement multi-layer CNNs
on an FPSP - quantisation and pooling. The resulting accuracy is however gravely
hindered by noise, for which we provide a quantitative study. Finally, we prove
the impact of this work on a real application, with a proof-of-concept that extracts
steering directions from a scene, for a wheeled robot platform.
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A note on terminology

This report is about implementing programs on a particular class of vision systems,
that we refer to as Focal Plane Sensor Processors (FPSPs). Specialists also designate
FPSPs as Cellular Processor Arrays (CPAs), or Pixel Processor Arrays (PPAs). Seman-
tic subtleties exist between FPSPs, CPAs and PPAs, but for the purpose of this report,
we choose to use the term FPSPs to designate this class of hardware.
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Chapter 1

Introduction

Classical image capture devices rely on two distinct hardware components: a sen-
sor, that transforms incoming light into an array of analog voltages approximately
proportional to the incoming photon counts, and a digital processing unit, that acts
on a digitised version of this array. Due to this digitisation and data movement,
this traditional approach achieves relatively slow frame rate and is quite power hun-
gry. New imaging devices have been designed to tackle these issues. Focal-Plane
Sensor-Processors (FPSPs) merge the two above steps, by allowing computation to
take place directly on analog photon counts, on the sensor. An FPSP can be consid-
ered as a light-sensitive processor, or, equivalently, as a computation-enabled image
sensor. FPSPs empower each pixel with an independent, low power, low memory
Processing Element (PE). At each clock cycle, one instruction is broadcast to the
whole pixel-parallel array of PEs. FPSPs thus belong to the Single Instruction Multi-
ple Data (SIMD) family of computer architectures. Various researchers have success-
fully demonstrated their very low power and high throughput capabilities for low
level Computer Vision tasks.

In parallel, in recent years, the availability of powerful computation hardware and
our finer understanding of their underlying mathematical optimisation have allowed
Deep Neural Networks (DNN) to beat state of the art methods for Artificial Intelli-
gence (AI) problems. In many contexts, Convolutional Neural Networks (CNN) are
nowadays the standard method to solve many image-related problems (detection,
segmentation, classification...). These methods being very computationally inten-
sive, a focus has recently been on efficient ways to run CNNs, regarding energy con-
sumption, but also processing power and memory requirements. The fields of appli-
cations for lightweight CNNs ranges from mobile phone, low powered autonomous
systems, to Internet of Things (IoT) devices.

Despite being very constrained in terms of memory, and only allowing for noisy
computations because of their analog nature, FPSPs appear as good contenders for
embedding high speed CNNs in very tiny power budget environment. To the best
of our knowledge, only two attempts to do so have been successful. Both imple-
ment rudimentary CNNs for digit classification, using the MNIST dataset as a test
bed. Technical details and a thorough study are only available for one of the two
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Chapter 1. Introduction

attempts, and we will mostly rely on it. It achieved unprecedented speed and energy
efficiency, at the price of a decrease in accuracy. We intend to try and port more opti-
mised and complex CNNs to FPSPs, aiming towards useful real-life implementations.

The main contributions we present are organised as follows:

We provide an in-depth review of the parts and program components needed to
build CNNs on an FPSP. We detail their efficient implementations on SCAMPS5,
given the particular limitations of the device - in terms of available registers,
noisy computations or limited digital performance.

We put these efficient building blocks into application to improve AnalogNet, a
previously-published single layer CNN running on the SCAMPS5 device. Among
other things, the resulting network, that we call AnalogNet2, uses an unrolled
loop for the fully connected layers’ computation, and a new output events’
binning layout. It yields both an increased throughput and a better accuracy,
and forms the new baseline with which we compare to when testing other
CNN:s.

We report on the technical feasibility of two layer CNNs on an FPSP, using
quantisation and pooling techniques to overcome hardware limitations. We
demonstrate two possible implementations of two layer CNNs on the SCAMP5
device, none of them beating the single layer baseline set by AnalogNet2. The
practical results we get suggest that computations are seriously hindered by
noise.

We design new experiments to quantify noise accumulation on the focal plane,
and quantitatively show that circuit depth increase leads to very large amounts
of noise. These experiments are standardised, and can be used to explore the
design space of FPSPs for a less noisy future version of a SCAMP device.

The above contributions are based on academic test beds and theoretical perfor-
mance assessment. To provide a real world use case for these findings, in Chapter 7,
we develop a proof-of-concept in which an FPSP is used for robot navigation. Steer-
ing directions are directly extracted from a scene using a CNN, with a very low
latency and power consumption.




Chapter 2

Background

In this chapter, we provide an overview of the concepts, methods and ideas on which
our work is based. After presenting how FPSPs work and the one we have at hand,
we describe Convolutional Neural Networks, and the recent efforts of embedding
them in portable devices.

2.1 Focal-plane sensor-processors

Standard digital cameras are most often designed and built with image quality as
one of the first criteria, to produce images that match human visual perception. This
can be expressed in terms of colour fidelity, amount of noise, optical deformations, or
resolution of the output images. The requirements for Computer Vision tasks might
be different, since the ultimate goal here is rarely to produce high fidelity images,
but rather to extract meaningful information from a scene. Traditional RGB cameras
and images are however often used as inputs for computer vision methods.

Computers and algorithms might not require images to be visually appealing to the
human eye to perform efficiently. This fact suggests efforts should be made towards
a joint sensor, algorithm and processor design. This idea has recently started to
emerge as a guideline for future works [15].

FPSPs are a good materialisation of this principle: a single silicon chip that is both an
image sensor and an analog processor [51]. This allows for vision tasks to happen
closer to where the image was captured, even before it is converted to digital values.
This improves speed and energy efficiency, at the expense of introducing noise in the
computations’ results. One of the latest instance of such a vision chip is the SCAMP5,
designed by Carey et al. at the University of Manchester [7]. We have one available
for our study, and will be conducting experiments on it.

While our work aspires to contribute to the broad space of FPSPs program design,
we here focus on some of the specific details of the SCAMP5 device. Despite only
being one particular instance of an FPSP, it presents some general issues that are
valuable to address.
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2.1.1 SCAMPS5 hardware

The SCAMPS5 device is made of a traditional digital micro-controller, connected to
a light sensitive analog processor chip (the vision chip). As described in the official
online documentation [10], the micro-controller has two cores, referred to as MO
and M4. In our case, we write and compile C++ vision programs for the MO core,
while the M4 core is in charge of other miscellaneous tasks (such as interfacing).

The vision chip is composed of a grid of 256*256 pixel-processors, or Processing
Elements (PEs). Arithmetic and logic operations executed in parallel on the PEs are
written in special sections among the MO source code. The MO core sends corre-
sponding instructions to the whole array of PEs.

usB
interface
( Micro-controller \ f Analog vision chip \
Two Cores Grid of 256*256 processing elements
Shared RAM:64kKB |} |} A~ A~
M4 Core, MO Core, g:g - g:g
misc. tasks vision alg. Instructions > ro Co
32 KB RAM 40 KB RAM o ;
512 KB Flash 512 KB Flash g:g g:g

Figure 2.1: SCAMPS5 vision system architecture

On the vision chip, each PE has a light sensitive diode, so the array functions as an
image sensor. Each PE is enabled with an Arithmetic Logic Unit (ALU), that acts on
its PE’s memory registers, which are composed of:

* 13 digital registers, referred to as DREGs RO to R12. Each of them stores a bit.

» 7 analog registers, referred to as AREGs A to F. Each of them stores a voltage,
to represent values between -127 and +127.

On top of that, the PE array is also provided with a propagation network, allowing
each PE to access values stored in its 4 neighbouring PEs’ registers. These values
transit through a specially reserved AREG, the NEWS register (for North East West
South).
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Figure 2.2: SCAMP5 Processing Elements registers.

2.1.2 SCAMPS5 instruction set

The digital controller MO can broadcast one instruction at a time to all PEs simultane-
ously. Each PE then independently executes it, on the data it holds locally. The com-
putations are massively parallel, at the pixel level: as for every FPSP, the SCAMP5
device is a Single Instruction, Multiple Data (SIMD) computer.

The set of vision chip instructions is limited, and composed of three categories:

* logical instructions, such as OR, AND, or NOT, acting on DREGs. Their effect is
pretty self-explanatory: for instance, the instruction AND(C,B,A) will perform
a boolean and operation. Each of the 256*256 PEs will store the result of and-
ing registers B and A into register C. This single instruction in fact leads to
256*256 and operations being carried out - one at each PE.

e arithmetical instructions, such as addition (add), subtraction (sub), or division
(div2), acting on AREGs. Note that multiplications can only be performed by
iterative additions, and divisions are only possible by a factor of 2. Moreover,
contrarily to conventional processors, these arithmetical instructions are acting
on analog values. For example, adding two values corresponds to physically
adding the charges stored in two AREGs. These operations are both imprecise
and noisy.

* shifting instructions, for PEs to access a value stored by of their neighbouring
PE. For instance, mov(A,B,west) will store in a PE’'s AREG A the content of its
west neighbour’s AREG B (A := B,.s). It is as if the 256*256 array of values
stored in AREGs B was shifted east once, and the result stored in AREGs A.

Predication is allowed thanks to a special DREG, the FLAG register, that can be set
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using the WHERE instruction. For every clock cycle, instructions are only performed
by PEs whose FLAG register is 1. Section 4.2 provides an example for this.

In addition to the photo-diode, input values can also be provided by the micro-
controller. There are instructions to either load a value in the -127,+127 range to
an AREG, or draw simple shapes and patterns on DREGs. There also exist partial
addressing instructions, to selectively load 1s in some PE’s DREG, based on their
coordinates on the focal plane (load 1s in DREG R5 of PEs whose x-coordinate is
even, Os everywhere else for example).

On top of that, readout operateven,ions can transfer digitised values of requested
PEs’ registers to the adjacent micro-controller. Whole arrays can thus also be trans-
ferred. DREGs can also be scanned for events, ie. coordinates of PE where the DREG
isset to 1.

2.1.3 Performance and benefits over traditional vision systems

The idea behind an FPSP is to minimise data movement: computations happen on
chip, in parallel, directly where each pixel was collected. The computation is said to
happen in the focal plane. Power-hungry Analog to Digital (A/D) converters are only
involved when a readout is required, and possibly on a subset of the PEs. Instead of
slowly transferring each frame to a sequential processor, one can transfer the sparse
result of a pixel-parallel computation on this frame.

A SCAMPS device can, for instance, easily be turned into an event based camera, only
outputting pixels that have changed between two frames. Classical event cameras
such as the DAVIS240 [6] or the Gen3 ATIS [40] only record per-pixel intensity
changes.

In [7], the authors demonstrate the capabilities of the SCAMP5 device by tracking
a letter ‘o’ amongst distractors (‘") on a spinning wheel, at 100 000 frames per
second (FPS), only outputting the coordinates of the letter for each frame. In [35],
the authors compute the depth map of a scene using multiple frames taken through
a lens changing focus at a very high speed. Only the depth map is transferred, but
not every intermediate frame used to compute it. In a 2 Watts power budget, their
system operates at up to 150 output FPS.

2.2 Convolutional neural networks

Artificial neural networks were originally proposed some time ago, but they have
only recently been successful, becoming state-of-the-art methods for most Computer
Vision tasks. We here intend to rapidly present their historical development and key
ingredients.

2.2.1 Early neural networks principles

Inspired by a simplification of our brain’s structure and the way neurons work, Ar-
tificial Neural Networks (ANN, or NN) have been around for a few decades. One
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of the first implementations was the Perceptron, by Rosenblatt in 1957 [46], and it
established general principles that are still in use nowadays.

Mathematical framework

As any machine learning technique, an artificial neural network can be seen as a
function f,, that takes an input = and produces an output § (most often vector data).
0 is the set of the network’s parameters, or weights. The network is composed of n
layers f; to f,, and each of them takes the previous layer’s output as its input.

Let z;_; be the vector output of the (i — 1)-th layer (z; = z) of length %, K, the
o x k weights’ matrix of the i-th layer, B; its bias vector of size o, and a; the activation
function of this layer. K; and B; both belong to the set of the network’s parameters 6
Then the i-th layer’s output is a vector of size o, and its j-th component is:

zij = fi(zi-1);
k
=q; (Z(Ki)j’l * L1+ (BZ>J>
=1

Figure 2.3 shows a graphical representation of such a computation.

Li—1,1 .
* (K1 Bi

Ti—1,2 BJV

x (KG)1,2 !

’ :a/l . —)xi,l
* (Ki)1,3 2 . ()

Ti—1,3
Ti—1,4 * (Ki)1’4

Figure 2.3: Computing the first activation of layer i, with layer ¢ — 1 having 4 compo-
nents.

The computation of a fully connected layer can be represented as a matrix-vector
multiplication. If we note A; the point-wise application of a; to a vector of length o,
we have:

zi = fi(wi-1)
= A (Ki* 21+ B;)

The output of the network can in fact be rewritten as § = f,, (f,—1(...f1 (z))). Orig-
inally, typical activation functions were threshold functions. Each of the considered
layers producing outputs whose components depend on every component of its in-
put, through independent weights (only the bias is shared), they are called fully
connected layers (see Figure 2.4).

7
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Figure 2.4: Schematic example of a fully connected network with 3 layers, respectively
with 4, 3 and 1 node(s) or component(s).

The more layers [ a network has, and the larger each layer is, the more complex
is the ANN. It allows it to model more complex behaviour. These so called hyper-
parameters are set by a human operator, expert in the machine learning field. Once
the structure of the network is chosen, the parameter set § = { K;, B;|1 < i <[} must
be chosen. This process is automated, for the final network to mimic the desired
behaviour. During the training phase, the weights are optimised to satisfy a desired
criterion.

Optimisation procedure

For a typical supervised learning problem, one has a dataset composed of a number
of (input, label) pairs. A typical pair could be (written digit, digit value) [29]. Dur-
ing a training phase, the weights value are optimised for the network to output the
correct label. As presented in [36], the general idea is to minimise a mathematical
loss function that quantifies the current error of the network. By deriving the partial
derivative of the loss value according to each weight, a so called back-propagation
algorithm incrementally shifts each weight towards a value minimising the loss func-
tion.

In [19], the authors prove that in theory, with sigmoids as activation functions
(a(x) = H%), a finite neural network can uniformly approximate any continu-
ous function. This sets the theoretical guarantee that neural networks are suited for

well defined supervised learning problems.

Worked minimal example of gradient descent

A whole ANN can be represented as a very large computational graph, composed
of weights and inputs being used and combined in differentiable operations. As
an example of how back-propagation works, Figure 2.5 shows a very minimalist
computational graph.
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LII1:7

LIZ‘2:5 Z1:28

LIZ‘3:9

Figure 2.5: Minimalist computational graph, of which z; is the output.

During a typical training process, the computational graph gives a loss as an output,
which measures how poorly the network performs in doing its intended task. In this
example, if we define the output as z;, the training process should minimise it. To
this end, partial derivatives of the output according to all parameters are computed
using the chain rule (see Figure 2.6). It is here crucial that the whole computational
graph only uses differentiable operations.

821_321,33/1_14 921 _ 14
Ox1 = Oyi1 Ox1

331:7

821 I 821 . 8y1_|_

Oxy — Oy1 Oxe ' X9 = O z21 = 28
9z1  0y2 _ 19
Oy2 Oxz
T3 — 9
8z1_8z1.8y2:2 %:2

Oxz ~ Oy Oxs

Figure 2.6: Computing the partial derivatives of the output according to all the param-
eters, in computational graph 2.5.

The use of the chain rule requires the value of the partial derivatives according
to a nodes children to be available when the derivative according to this node is
computed. For this reason, the graph is traversed backwards, from the final output
value to the inputs - hence the name of back-propagation.

Once all these partial derivatives have been computed, weights can be updated to
follow a gradient descent. The most straightforward and unsophisticated way of
doing it is to subtract to each parameter the corresponding partial derivative, scaled
by a constant step €. In our case, with ¢ = 0.1, the update would be:

2 =7-01-14=56
2y =5+01-12=6.2
2, =9-01-2=288

We can indeed verify that with these parameters as inputs, the output of the compu-
tational graph is now z| = —9, which is strictly inferior to z; = 28.

9
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2.2.2 Convolutional neural networks

Due to the lack of computing power and effective algorithms for the training pro-
cess, the early neural networks did not meet with tremendous practical success.
Both these constraints have been enormously alleviated in the past few years. The
democratisation of massively parallel and powerful processing units called General
Purpose Graphics Processing Units (GPGPU, or GPU) and the development of frame-
works such as Tensorflow [1] or Pytorch [39] that make use of these devices to
efficiently train and run neural networks allowed almost anyone to tinker with sim-
ple forms of NNs. Secondly, new mathematical optimisation procedures such as
Adam [27] or AdaGrad [17] allowed for a more stable and reliable convergence of
the training process. This gave rise to the creation of Deep Neural Networks (DNNs)
architectures, involving many more layers than previously.

The final ingredient that permitted DNNs to beat state-of-the-art methods in almost
all computer vision related tasks was the introduction of convolutional layers. In-
spired by traditional image processing, where convolutions are used for edge detec-
tion, sharpening and more, they consist in doing a convolution between a kernel and
an image (see Figure 2.7).

Source pixel

Convolution kernel )
<~ _ (emboss) New pixel value

Figure 2.7: Creating an embossing effect on an image by convolving it with a kernel
(from Apple Developer Documentation [4])

Used in DNNs, convolutional layers take advantage of the spatial coherency and
structure of an image. What is being manipulated in a convolutional layer are no
longer flat vectors, but rather arrays that explicitly represent images.

Using convolutional layers is also a great way to achieve weight sharing and thus
reduce the total number of parameters of a network [26]. In such a Convolutional
Neural Network (CNN), kernel values are the weights of the network, and a kernel
is applied to all its input pixels with the same weights. Instead of multiplying each
component (or ‘pixel’ in our case) of an input by an independent set of weights, the
same kernel is applied to every input components: the transformation is convolu-
tional. Moreover, since the spatial extent of a kernel is generally smaller than the
2D array it is convolved with, an output component typically depends of a small

10
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number of inputs (and not all of them) that are spatially close: the transformation is
local. Similarly to what is presented above, after this dot product operation, a bias
is added before applying an activation function.

2.2.3 Typical architectures and ingredients of CNNs

Values transiting between convolutional layers are typically 4 dimensional arrays,
and are called tensors. The dimensions of a tensor are usually annotated as N, C, H
and W (or equivalently in the order N, H, W and C). The first dimension of a tensor,
N, corresponds to the number of inputs being simultaneously computed. For each
of these inputs, the 3 remaining dimensions form what is called a feature space,
composed of C feature maps. H and W are the spatial extent (height and width) shared
by all the feature maps in this feature space. A convolution layer transforms a feature
space with C4 feature maps to one with Cp feature maps using C,*Cp convolution
kernels (see Figure 2.8).

Wy

\‘\\ HB

CA*CB - ﬂ/il
V4

Wpg

N o

—>

Ca

Figure 2.8: A kxk convolution layer, transforming a Hq*xW*C,4 feature space into a
Hp*Wp*Cp one. Each block of size kxk*C 4 is vectorised, and multiplied by a matrix with
Cp* (kxk*C4) weights, to generate one ‘fiber’ in the output layer: a vector of length Cp.
The same matrix of weights is applied to every block of size k*k*C4 in the input feature
map.

What unequivocally marked the advent of CNNs as state of the art methods was the
release of AlexNet [28] in 2012, that outperformed all other methods submitted so
far for the ImageNet classification contest.

11
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S ‘ -l
NNE ! | —
mhY N 192 192 128 204 s5as \dense
1 ; 48 P 204
NN 13 13
N - 1 NIFT] EN Q“ 3 35 ' 13 dense’| |densé]
N 155 \( AN 1600
\11 192 192 128 Max
- . 2048
224\|l1&tride Max 128 Max pooling 2048
of 4 pooling pooling
3 48

Figure 2.9: An overview of AlexNet’s architecture, from [28]

As can be seen in Figure 2.9, AlexNet does not just use convolutional layers. This is
generally true for CNNs, that most often also use the following ingredients:

* pooling operations, to reduce the spatial dimensions of feature spaces. Most of
the time they are either averaging the values of each adjacent & * k activations
square to produce a single value (average pooling, or AvgPool), or taking the
maximum of these & * k activations (maximum pooling, or MaxPool).

* fully connected layers, as presented above, to map the result of successive con-
volution layers to the desired output space (a probability, a set of one-hot en-
coded labels, a single fixed-length vector...)

Some use cases such as image segmentation [31] require to output whole images. In
these cases, fully connected layers are omitted, and the network is a so-called Fully
Convolutional Network. Some architectures use upsampling layers called deconvo-
lution layers, after having learned sparse representations of the input. This is useful
for image segmentation [45], or auto-encoders that learn sparse feature representa-
tions of the inputs, and can be used as denoiser or as a part of a broader network.
CNNs have also been used in the area of generative modelling [18] [41], but this
might not be of interest for our present work.

2.3 Embedding CNNs

In view of the success of CNNs for numerous Computer Vision tasks, the need to
implement them in power constrained environments without compromising for la-
tency has naturally risen. Be it for smartphones, tablets, robots, or wearable devices,
the number of possible use cases is very large. Two research areas are concurrently
being pursued in that direction: devising CNNs that have lower computational cost
by design, and devising specialised hardware.

2.3.1 Lighter CNNs design

In [22], the designers of MobileNet proposed a CNN using depthwise separable con-
volutions. Introduced in [47], depthwise separable convolutions consist of depth-
wise convolutions, followed by point-wise 1*1 convolutions (see 2.10). This way
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of doing convolutions is not strictly equivalent to what has been described above,
but greatly reduces the number of parameters and instructions. In addition to that,
MobileNets make use of a lighter and thinner architecture than usual. By doing so,
they get a model with fewer parameters (smaller model) and requiring fewer oper-
ations to operate (smaller complexity at inference time). The accuracy trade-off is
very limited.
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Figure 2.10: A k*k depthwise separable convolution layer, transforming a Hao*W*Cy4
feature space into a Hp*Wp*Cp one. Each feature map of a block of size kxk*C, is
convolved with an independent k*k kernel (k*k*C 4 total weights), to generate one 'fiber’
in the intermediate layer: a vector of length C,4. This fibre is then multiplied by a matrix
with C4*Cp weights to generate one fibre in the output layer: a vector of length Cp.

Another possible approach to reduce the memory footprint and optimise the infer-
ence latency of a CNN is to use lower precision (or quantised) values for its compu-
tation. Numerous attempts at it have shown an acceptable accuracy trade-off. Some
approaches such as [20] or [52] quantise only the weights of the networks they
are interested in, mainly for on-device storage and memory consumption reduction
purposes.

Others, such as [14] or [24], develop whole mathematical optimisation frameworks
that allow for both weights and activations to be stored in a reduced number of bits
(only one in the case of [14]). In these two cases, they push their work further, and
even propose an efficient computation model for their networks that also reduces
inference latency. In the case of [14], this is in the form of a specialised GPU kernel,
optimised to compute 1 bit convolutions. In the case of [24], this is in the form of
an optimised integer-only matrix multiplication procedure.

2.3.2 Specialised vision hardware

There have recently been multiple attempts at developing specialised hardware for
computer vision tasks, and especially for CNN inference. Globally, they all trade off
generic computation capabilities for the following advantages in running CNNs:
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* energy efficiency: a recent GPU used in a high end desktop PC draws tens of
Watts. For example, an Nvidia GeForceGTX 1080Ti (the top of the line con-
sumer grade GPU of the previous generation from Nvidia) draws around 10
Watts at idle, and more than 150 Watts under full load [3]. This cannot rea-
sonably be powered in an embedded system. By giving up on generic compu-
tation capabilities that are of no interest in our case (3D shaders, raytracing...),
and specialising it for computer vision and CNN inference purposes only, new
devices use a far reduced amount of power for our use cases.

* portability: on the one hand, a desktop PC or a laptop cannot easily be fitted
on an usual size robot or a drone, and even less in a wearable device. On
the other hand, tinier micro-computers such as Raspberry Pi lack the necessary
computing power to run CNNs at a decent frame rate. This opens the way for
small sized computers embarking specialised computing power for CNNs.

* reduced latency: a practical solution to use the outputs of a CNN on a power
and size constrained device is to rely on an auxiliary PC. A portable device can
wirelessly stream the frames acquired by its on-device camera to a PC, then the
PC can sequentially run a CNN on these frames, before sending the output of
the network back to the device. The said PC can either be nearby, and form a
local network with the device, or in the cloud. In that latter case, an internet
connection is required, and privacy issues arise. Moreover, in addition to sacri-
ficing the autonomous nature of such a device, latency is greatly increased by
data transmissions, and is the main issue of this kind of setups.

We can identify two types of solutions to these problems. The first one consists in
accelerators chips, that can be plugged into generic micro computers to enable them
with advanced CNN computing capabilities. In that category fall Google’s Coral
Edge TPU [13], Intel’s Neural Compute Stick 2 [23], the DaDianNao computer [11]
or MIT’s Eyeriss [12]. Referred to as Vision Processing Units (VPU), these hard-
ware devices are designed with speed and power efficiency for CNN inference in
mind. Each of them exploits different optimisation techniques such as limited data
movements, data reuse, parallel computations, or specialised hardware operators
for convolutions. As a result, when associated to low power micro-computers, the
Eyeriss accelerator was demonstrated to run AlexNet at 35fps with a 278mW power
consumption, and the Edge TPU to run MobileNet v2 at almost 400fps while being
powered over USB only.

The second type of solutions consists in integrated platforms, providing both a gen-
eral purpose micro computer and an accelerator chip (and sometimes even a cam-
era) in a co-designed and bundled manner. In that category fall Nvidia’s Jetson Nano
[37], or the JeVois Smart Machine Vision Camera [25]. For example, the latter com-
bines a mobile CPU, GPU and a camera in a power budget of 3.5W, and weighs less
than 20 grams. Despite being quite lightly powered, it is fairly optimised, and can
run a quantised version of MobileNet v1 at around 35 fps.

A typical application for these devices is to use them for robot navigation. The
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authors of [43] use an Nvidia Jetson TK1 (previous generation integrated platform
by Nvidia) to run a CNN that is directly controlling the direction of an autonomous
wheeled robot. In [38], an ultra light quadcopter drone is controlled by a CNN out-
putting stirring commands based on the video stream acquired by its front facing
camera. The CNN runs at around 10 fps, in a power budget of 7 mJ per frame,
directly on an embedded accelerator that was specifically designed for this purpose.

Each one of these low power hardware implementations has its competitive advan-
tage, be it low latency, minimal dimensions and weight, or small power budget.
However, none of them is freed from A/D conversions nor from camera to processor
data movements. Despite being far less generic because of their noisy computations,
limited memory space and instruction sets, FPSPs do not suffer from A/D conver-
sion’s toll on latency and power efficiency. As a result, they still deserve a room in
the space of efficient and specialised vision hardware.

As explained below, they have been demonstrated to successfully run primitive forms
of CNNs, at a frame rate and energy per frame beating all of the above solutions.
With some more improvement on the performances of the CNNs that can be imple-
mented on current FPSPs, they could be very competitive. Some problems could
greatly benefit from the advantages of analog computation, such as the ones requir-
ing an extremely high frame rate (high speed robot navigation), or a very tightly
restricted power budget (constrained on battery life, such as autonomous loiterer
detection as in [8]).

We have here presented the new computing paradigm offered by FPSPs. We have
also explained the present state of the art method of Al for imaging (CNNs), and the
challenge to embed them in low-powered low-latency devices. In the next chapter,
we show one way to tackle this challenge, and detail on how an FPSP can be used
to run already trained CNNs.
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Chapter 3

Literature review

In this chapter, we critically review and further explain then main pieces of work
on which ours will be built. The first one is a kernel code generator for FPSP hard-
ware. It will serve as a kind of compiler for our convolution kernels to run on the
SCAMPS5 device. Then we will thoroughly describe the structure and training process
of AnalogNet, a CNN running on SCAMPS5. Finally, we will quickly evoke a statistical
noise model that has been built for the SCAMPS5 device.

3.1 Kernel code generator

As explained in Subsection 2.1.2, the set of instructions available on the SCAMP5
device is very limited. In particular, divisions are only available by factors of two,
and multiplications are only possible through iterative additions. On the other hand,
as any FPSP, the SCAMPS5 device presents the unusual ability to shift data in any of
the four cardinal directions on a register, and by default uses the SIMD paradigm.
These constraints being given, it seems quite arduous to convolve images with ker-
nels in a traditional manner, despite convolutions being a typical operation in image
processing and the key ingredient to CNNs.
In view of that, the authors of [16] present AUKE (AUtomatic KErnel code genera-
tion), a code generator for computing convolutions on FPSP hardware. For instance,
for the kernel :
—-0.25 —0.25 0.25
kernel = 0 —-0.25 0.25
0 —-025 0

the program in Listing 1 is convolving the content of AREG C, using registers D and
E for intermediate computations.
Their ingenuous algorithm for code generation runs as follows:

1. Given a convolution kernel with generic floating point values as coefficients, it
approximates it. Because of the above mentioned restrictions on multiplications
and divisions, each coefficient is approximated as a sum of negative powers of
2, up to 2-P, where D characterises the approximation depth (or precision) of
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C = div2(C)
= div2(C)

D = neg(C)

C = east(C)

C = add(C, D)

D = west(D)

C = add(C, D)

C = add(C, D)

D = south(D)

C = add(D, ©)

D = east(D)

E = east(D)

D = add(D, E)

C = add(C, D)

D = north(D)

D = north(D)

C = sub(C, D)

Listing 1: Convolving the content of AREG C with kernel, using registers D and E for
computations. We here use a standard notation for FPSP code, APRON. It is not the one
in use in SCAMPS5 code, but is trivially equivalent: C=add(C,D) translates to add(C,C,D)
for example.

the process. For example, with D = 3,

0.11 0.23 0.13
k=1 0.26 053 0.26
0.12 0.25 0.11

becomes
0.125 0.25 0.125

1 21
K=1] 02 05 025 | = 5] x| 2 4 2
0.125 0.25 0.125 1 21

2. This approximate kernel is transformed into a sum of partial value represen-
tative (SOPVR), which is a multiset representation. It represents the set of
relative coordinates of neighbours that have to be summed for each pixel to
compute the convolution between the kernel and the image. For example, for
the above

DO =

K= —x

[N )

1
we get the following representation (with matching colours):

(- 1,1) (, )
(—1,0), 0
(0,0), ( ,0),

(0,—1), (0,=1), (1,-1)

, (0,1),
), (0,0),  (0,0),
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The next steps operate on this representation, because each FPSP operation
easily maps to a transformation on SOPVRs. For instance, the sum of two
registers results in the union of their SOPVRs, etc.

3. A reverse splitting method generates a graph showing how to reach the initial
state SOPVR ({(0,0)}) from the above final state SOPVR, by means of a suc-
cession of allowed operations, while reusing intermediate results. Heuristics
guide this graph search, all while taking into account the limited number of
registers on our device. The resulting optimal plan is then reversed for a way
to construct the final state from the initial one.

4. A relaxation technique, inspired by circuit design, optimises the number of
operations on the optimal plan above. Reducing the number of instructions
allows for a faster execution, but most interestingly a less noisy one. Indeed,
as each operation accumulates some noise, the less intermediate steps are in-
volved, the more precise the result is.

5. A graph colouring algorithm is run on the obtained plan, as a mean of per-
forming register allocation. It is constructed using the notion of liveliness, ie.
the set of nodes required to compute a node (and itself).

The optimal nature of this method in terms of output instruction count is not proven.
However, the authors demonstrate its validity by showing that the program length
for a box filter of dimension d increases linearly with d, and not quadratically (as
it would for a serial computation paradigm). Despite introducing noise because of
the analog computations, the convolution of an image with a kernel greatly benefits
from the pixel-parallel architecture. Compared to usual implementations on CPU or
GPU, most experiments of convolving an image with standard filters ran by the au-
thors show an improvement of between 180 and 2100 times less energy per frame,
all while always being faster.

As a practical demonstration of the usefulness of their code generator, they imple-
ment a Viola-Jones face detector in an FPSP simulator. Because of the limited pro-
gram size, they could not run all stages of the Haar cascade involved (they used 7 of
the 25 stages). However, their implementation is still performing reasonably well,
and achieves a classification rate, recall and precision comparable to the OpenCV
implementation restricted to 7 stages. The estimated speed of this face detector on
the SCAMP5 does not compete with a high end Intel processor (22.77ms estimated
on the SCAMPS5, 4.42ms measured on an E5-1630), but is highly competitive when
it comes to energy per frame (28.0mJ estimated on the SCAMP5, 221.9mJ mea-
sured on an E5-1630). Without their generator, they would have had to manually
code each one of the almost 50 convolution kernels they use - which is a highly
non-trivial task to do for a human programmer.

3.2 AnalogNet

Based on the now available kernel code generation, the authors of [49] train and
implement a rudimentary CNN, AnalogNet, that ultimately runs on the SCAMP5
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device. They aim at solving the MNIST digits classification task.

3.2.1 Architecture

Figure 3.1 shows a schematic diagram of AnalogNet’s architecture. Because of the
limited number of registers available, their architecture is very light: three 3*3 con-
volution kernels acting on a single channel input image, followed by the addition of
a bias for each of the 3 obtained feature maps, the application of a ReLU function,
and a 9*9 sum pooling on the focal plane, in an analog manner. The result of this
computation is then outputted to the adjacent digital micro-controller, that runs a
50 nodes fully connected layer, followed by a 10 nodes one, whose output is the
network’s output.

On the focal plane (analog computations) Micro-controller
(digital)
[
input \
image |
! olutbpl,llt
input 3 thresholding, ! abe
N - - - . —+— > E—
blinarization convolutions sum pooling

fully
connected

Figure 3.1: AnalogNet Architecture

Input binarisation

In order to remove the dependency on the environmental lighting conditions, the
authors binarize the input image in the focal plane. The original exposure is read
from the photo-diodes, and transferred to an AREG - A for instance. There, the
image is stored using the full possible range of analog values, from -127 to +127.
To remove any constraint on the exposure of the digit compared to its background,
the image is binarized.

It is expected that the digits are displayed in black, on a white background. Using
this fact, each PE’s AREG A is compared to a fixed threshold: if the value stored in
A is inferior to this threshold, the PE stores a 1 in its DREG R7, a 0 otherwise (see
Listing 2).
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scamp5_get_image (A) ;
scamp5_in(D, threshold_value);
scamp5_kernel_begin() ;

add(A, A, D);
CLR(RT) ;
where(A) ;

OR(R5, FLAG, R7);
ALLQ);
NOT(R7, R5);

scamp5_kernel_end();

Listing 2: Acquiring an analog image to AREG A, and negatively binarizing it to DREG
R7.

As a result, DREG R7 contains a binarized negative of the original image: pixels
belonging to the digit are marked positively (see Figure 3.2).

sH

Figure 3.2: Input binarization. Left: original analog image (AREG A). Right: corre-
sponding binarized image (DREG R7).

Running the convolutions

The binarised input image is then restored from R7 to AREGs A, B, and C, using
a fixed mapping such as 0 being restored as 0, 1 being restored as 120. Each of
the 3 convolutions is sequentially applied, each time using AREGs D and E to store
intermediate results that are needed during the computation (see Listing 1 for an ex-
ample). AREG F is reserved for some instructions that cannot be executed in-place.
For instance, a division by 2 in fact splits the charges of a source register between
two target registers, and hence needs a ‘garbage’ register in addition to its desti-
nation register. AREG F is called the hardware workaround register. Eventually, all
AREGs are occupied, despite only 3 convolutions being computed (see Figure 3.3).
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Restore binal‘y Binary Binary Binary
input image R input 5 input c input 5 . -
First Conv. Binary Binary Computation | Computation | Hardware
. 1 input input register register workaround
convolution | 4 . s o e e e F
oo
Auxiliary registers
Second Conv. Conv. Binary Computation | Computation | Hardware
. 1 P input register register workaround
convolution | , 8 o 5 E F
o
Auxiliary registers
Third Conv. Conv. Conv. Computation | Computation | Hardware
nv 1 ion 1 2 3 registers register workaround
co olutio A B (o} D E F

Auxiliaerregisters

Figure 3.3: Sequentially computing the 3 convolutions in AREGs A, B and C, using
AREGs D, E and F. Steps are represented in chronological order, from the top to the
bottom.

Outputting to the micro-controller

At this stage, AREGs A, B and C each contain an analog feature map. The content
of these 3 feature maps needs to be vectorized and transferred to the digital micro-
controller MO to compute the fully connected layers.

To this end, each feature map is first thresholded. Only strong activation values
are kept, and the PEs where register A is superior to a fixed threshold store a 1 in
their DREG R7 (see Figure 3.4). A similar process is run on AREGs B and C, whose
binarized versions are respectively stored in DREGs R8 and R9.

Figure 3.4: Output binarization. Left: result of the first convolution, analog feature map
(AREG A). Right: corresponding binarized feature map (DREG R8).

A SCAMPS5 primitive is then used to gather events from these DREGs: the coordinates
of the PEs where one DREGs is set to 1 is sent to the micro-controller. The maximum
number of events to be gathered is set to 100 per feature map. These coordinates
are then binned as shown on Figure 3.5 to form 3 vectors of size 9 (one per feature
map). These 3 vectors are concatenated and passed as a single vector of size 27
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to the first fully connected layer. These operations are equivalent to binarizing the
feature maps, and sum-pooling them in 9*9 regions.

Figure 3.5: Event binning process. Events fall into nine 9*9 bins, and the last row and
column are discarded. Black pixels correspond to a possible events configuration: in this
case the output vector is (0, 3,0,0,6,4,1,7,2).

This process is successful in minimising data movement from the focal plane to the
digital micro-controller. As a result, for a 28*28 input image (standard MNIST digit),
only (up to) 3*100 2D integer coordinate values are transmitted from the focal plane
to the micro-controller, where the fully connected layers computations is carried on,
as standard matrix-vector multiplications. These coordinates correspond to locations
where significant features are detected on the focal plane.

This division of labour, as the authors call it, allows for the fully connected layers
to be computed noiselessly on the digital micro-controller, at the price of minimal
data transfers. The fully connected layers could otherwise have been computed in
the focal plane, by transforming them into 1*1 convolution layers (as in [31]). This
would however have required complex data movements in the focal plane (the 27
values would have been considered as 27 1*1 feature maps), not benefiting from
pixel-parallel computations (a different set of weights is applied to each value), and
introducing additional noise.

3.2.2 Training

To account for all the specificity of this unusual architecture, an atypical training
process had to be devised. It is sequentially rolled out in phase, using the framework
Keras (with a Tensorflow backend):

1. Astandard training process is run: using the Adam optimiser to minimise cross-
entropy between the network’s outputs and the ground truth labels. The only
unsual bit here is the binarisation of input MNIST digits, that are normally 8
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bits greyscale images (values ranging from 0 to 255). Here, to take account of
the target hardware, the input images are thresholded, and only take 2 possible
values (0 or 120). This first phase produces standard network weights for both
the convolution kernels and the fully connected layers.

2. In view of the rounding operation that is applied by AUKE (see Section 3.1),
not all convolution kernel weights are possible. In a second, separate training
process, a new regulariser is added to force kernel weights to take values as
close as possible to ‘acceptable ones’. This means that a new loss is added to
what the Adam optimiser is minimising: in addition to cross-entropy, a peri-
odic differentiable function of the kernel weights now contributes to the total
loss. This regulariser, based on a cosine function, is minimal when the ker-
nel weights are closer to multiples of 2=, with D being the approximation
depth (D = 2 in their implementation). As a result of this custom regularisa-
tion re-training, kernel weights converge close to multiples of 0.25. The two
fully connected layers are not subject to this constraint, and are hence free to
change values to take into account the convolutions modified results. After
this re-training, kernel weights are rounded to their closer 0.25 multiple and
frozen.

3. At this point, two specific constraints have not yet been taken into account,
namely the noise introduced by the convolutions’ computations, and the thresh-
olding that takes place just before data is transmitted to the micro-controller.
To account for these two effects, the kernels codes are generated by AUKE, and
loaded on the SCAMPS5 device. Placed in front of a PC monitor that sequen-
tially displays the whole MNIST dataset, the SCAMP5 device performs all the
computations that happen on the focal plane (from input binarisation to output
thresholding, see Figure 3.1). For each input digit, the resulting 27 values are
sent to a nearby computer, and aggregated to form a new dataset. This freshly
acquired dataset corresponds to ‘mid-computation’ data of the network. It is
then utilized to train only the two fully connected layers on a computer, since
training is not technically possible directly on the micro-controller.

At this point, the full training process is done, and the weights can be loaded on the
SCAMPS device.

It is worth mentioning that the authors have also developed a way to account for
analog noise during training without having to actually run the convolutions on the
focal plane. Taking place right after step 2., their Noise in the loop technique con-
sists in converting the convolution kernels to SCAMP5 instructions using AUKE, and
adding simulated synthetic noise accordingly for each instruction, directly in the
Keras framework. Despite being much simpler than having to capture a new data
set as in 3., their technique relies on a synthetic noise model that is very crude, and
does not give interesting results in reality. It is thus not put into application.

As a side note, step 2. is an unusually simple quantisation technique compared to
what has been cited above (such as in [52]), but it works well (the testing accuracy
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of the network reportedly remains at a value around 93% before and after). This
might be a benefit of the very simple one-layer architecture that is used, and the
relative independence of the weights being quantised.

3.2.3 Performance

To assess the performance of their implementation of AnalogNet on the SCAMP5
device, they compare it to the plain digital implementation of a similar network ar-
chitecture in Keras. The digital version does not include any hardware specificity of
the SCAMP5 device, except for the input binarization (no restriction on the kernels’
values, no noise, no output thresholding). Except for speed and power consumption,
the digital version runs similarly on a CPU (Intel Core i7-4930K 3.40GHz), a GPU
(NVIDIA GTX 1080), or a VPU (Intel Movidius Myriad 2 Neural Compute Stick, in
combination with a Raspberry Pi Zero).

In terms of accuracy, they report a 93.16% testing accuracy for their digital version
(independently of the hardware it is run on), a 92.65% accuracy for the SCAMP5
version at 15 fps, and 90.2% at 3000 fps.

In terms of latency, they report an inference time of more than 2000 us for the digital
version running on a CPU, a GPU, or a VPU. Meanwhile, running at 3000 fps on the
SCAMP5 device achieves an inference time of around 330 ys.

In terms of power consumption, they report a 18.9 mJ per frame energy consump-
tion on the CPU, 88.6 mJ on the GPU, 3.69 mJ for the VPU, and only 0.567 mJ on
the SCAMPS5 device.

Despite not being very competitive in terms of its accuracy, an AnalogNet running on
a SCAMPS5 camera achieves state of the art inference speed, and in a very competitive
restricted power budget.

3.3 Noise model

In the last part of their work, the authors of [49] conduct a statistical evaluation of
the noise introduced by each analog instruction on the focal plane of the SCAMP5
device. Using a dataset containing the results of the running of 753,000 SCAMP5
instructions, they devise a noise model consisting in the sum of:

1. A Systematic Error Model, polynomially modelled, and fitted with regression.
This term is responsible for taking into account consistent and systematic shifts
in the results of analog instructions.

2. A Random Error Model, modelled as a sum of Gaussian kernels, fitted using
Kernel Density Estimation. This term is responsible for taking into account
the random variations in the results of analog instructions, with a stochastic
model.
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Using the above method, they create one parametrised noise model per analog in-
struction. Despite not including any spatial dependency, structure, or thermal con-
tribution, it is constructed using real data and could be used when and if a noise
estimation is needed.

There already exists a tool-chain to train, simulate and implement a rudimentary
CNN on the SCAMPS5 device. Our work builds on this foundations, to bring im-
provements in performance and functionality. In the next chapter, we add new CNN
primitives to our collection, and describe how some already existing ones can be
optimised.
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Adapting CNN components

As presented in Section 3.1, we can build on previous work to generate SCAMP5
kernels for the convolutional layers involved in CNNs. If we wish to enrich the
architectures of the CNNs we run on the SCAMP5, we have to craft the corresponding
new building blocks. In this chapter, we present the construction of such small parts
that are later used. Practical aspects of the prototyping and training processes are
also evoked. We believe these to be useful for future works.

4.1 Streamlining AUKE’s output

AUKE [16] can process convolution kernels to produce generic FPSP code to exe-
cute them. Being generic and aimed at all FPSPs, it is not specific to the SCAMP5
vision system we have at hand. As a consequence, the code it generates is expressed
in CSIM or APRON, which are FPSP simulators’ languages, not accounting for any
hardware specificity. There exist differences between both these languages and the
standard SCAMPS5 library.

Some of these differences are just syntactic sugar. For instance, shifting instructions
in CSIM are of the form

west(B, A);

to shift the content of AREG A to AREG B, whereas the SCAMP5 library requires it
to be written as

mov(B, A, west);

Other differences concern semantically incorrect instructions. For instance, many
operations cannot be executed in-place on the SCAMPS5 system, whereas CSIM does
not have any such restriction. As an example,

neg(A, A);

is a perfectly valid CSIM code which negates the content of AREG A. On the SCAMP5
device, this must be rewritten using the hardware workaround register into

mov(F, A);neg(A, I);
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Similar workarounds must be used for the add(target, sourcel, source2) and sub(target,
sourcel, source2), whose target and source2 cannot be similar. Likewise, CSIM code
includes an in-place division instruction,

div2(A, A);
whereas SCAMP5 code needs two ‘trash’ registers to split the content of an AREG:
diva(A, E, F);

Previously, the work of rewriting CSIM into SCAMP5 code was done manually. This
was feasible for the three kernels involved in an AnalogNet. This however turns
into a laborious obligatory step for each kernel of larger networks, or even iterated
versions of small ones. We thus believed it valuable for our prototyping process to
streamline this part, using automated scripts for efficiency purposes.

To this end, we wrote an overlay to AUKE, consisting in two successive parts:

1. a Python script, which ensures all instructions can validly be executed on a
SCAMP5 device. When an invalid operation such as inplace division is encoun-
tered, it is replaced by an appropriate SCAMP5 shim.

2. a set of C++ macros, to handle minor syntactic discrepancies between AUKE
and the SCAMPS5 library. Listing 3 provides one example for this.

#define south(X,Y) {mov(X,Y,south);}
#define neg_inplace(X,Y) ({\

mov (F,Y);\

neg (X,F);\
})

Listing 3: Portion of the C+ + macros to interface AUKE with SCAMP5.

This work is focused on practicability only, and allows us to directly copy and paste
code from AUKE’s output to MO source code. It preserves the generic nature of AUKE,
all while enabling us to quickly prototype.

4.2 ReLU and leaky ReLU

A very common activation function used in CNNs is the Rectified Linear Unit (ReLU)
one:
aperv(x) =2 -1 (x >0)

Pretty simple to compute, it consists in clipping negative values to 0, and provides
very satisfying results. ReLU can be considered as the standard activation function
for CNNs, with many famous architectures relying on it, such as AlexNet [28], or
ResNet [21]. As used in [49] for AnalogNet, there exist pretty straightforward im-
plementations of the ReLU activation function for AREGs. The code in Listing 4 is
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one of them. It simply performs a comparison on the AREG values, and replaces
negative values by 0.

scamp5_in(F, 0);
neg(E, A);
where(E) ;

mov(A, F);
all();

Listing 4: Implementation of a ReLU activation function on AREG A, using auxilliary
AREGs E and F.

A Rel.U activation function however has what can be considered as a flaw: its deriva-
tive for z < 0 is equal to zero:

dagerv (f )
dx

As a consequence, there is no effective back-propagation (see the worked example
in Subsection 2.2.1) for neurons that are not activated, and all their previous ones
in the computational graph. Corresponding weights are not updated for these ‘dead
neurons’, and this can be seen as a defect of the learning process.

For this reason, a very similar activation function was crafted, but with a non-zero
derivative for negative values. Called the leaky ReLU (or LReLU, [33]), it has a
small slope for negative values. This slope is a fixed parameter «, with typical values
between 0.01 and 0.2:

=1(x>0)

arperv(x) =2 -1(x >0)+a-z-1(x<0)
This time, the derivative is nowhere equal to zero:

daLReLU(OU )

dx

This eliminates the issue of dead units during back-propagation. LReLU is commonly
used in modern CNN architectures, such as in UNets to denoise images [9].

It can also be implemented easily on the focal plane of an FPSP. Using the SCAMP5
device, o is however restricted to negative powers of 2. The code in Listing 5 shows
how it can be done, for o = 0.25.

=1(z>0)+a-1(z<0)

neg(D, A);
where (D) ;
diva(A,E,F);
diva(A,E,F);
all();

Listing 5: Implementation of a .25 leaky ReLU activation function on AREG A, using
auxilliary AREGs D, E and F.
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The community’s opinion on ReLU versus LReLU is not definitive [50]. There is no
absolute advantage of LReLU on ReLU, with the latter performing slightly better in
some contexts. In our case, despite the division being reputed as imprecise, LReLU
might yield some advantages in passing down information from a layer to subse-
quent ones. We propose to test it in our implementations of multi-layer CNNs on the
SCAMPS.

4.3 Pooling

As presented in Subsection 2.2.3, it is common to use pooling operations in CNNs.
A pooling operation is used to reduce the height and width dimensionality of the
feature maps, by locally combining neighbouring activation values. Such clusters of
values - typically 2*2 or 3*3 squares - are each summarized into a single activation
that is fed to the next layer. The down-sampled feature map is more synthetic and
robust to small changes in the input image.

As stated before, only single convolutional layer architectures have been imple-
mented on the SCAMP5 vision system. As a result, no such pooling operation has
been designed for it. We here present our implementation of the two most common
pooling operations.

4.3.1 Average pooling

In an average pooling operation, clusters of neighbouring activation values are sum-
marized into their average. We have implemented an average pooling operation that
runs on the focal plane, and acts on clusters which are squares of size 2*2. It uses
the standard SCAMPS5 instructions of division by 2, shifting and summation.

// Divide the content of A by 4
diva(AL,E,F);

diva(A,E,F);

// Sum along z-axis

mov(F, A, west);

add(A, A, F);

// Sum along y-axis

mov(F, A, south);

add(A, A, F);

Listing 6: Implementation of a 2*2 average pooling on AREG A, using auxiliary AREGs
E and F. As a result, each PE in the new AREG A contains the average of the 4 previous
values of the 2*2 square of which it is the top right corner.

As a result of algorithm in Listing 6, each value in the new AREG A is the average
of the previous values of the 2*2 square of which it is the north east component.
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Figure 4.1 depicts this process: all the content of the AREG is processed, and each
PE’s AREG A corresponds to a local average.

O101010
O1010710
O1010710
O101010

Figure 4.1: Average pooling process. Upon execution of algorithm in Listing 6, each
PE’s AREG contains the average of the old values of the three PE’s pointing to itself and
itself.

The AREG to which the pooling operation is applied with code in Listing 6 can of
course be changed from A to any other AREG, as can the auxiliary AREGs E and F.
More interestingly, the shifting directions can also be changed. The code in Listing 6
uses directions west and south, which computes the average in the top right corner,
as shown in Figure 4.1. The other cardinal directions can be used, to consequently
change the final location of the pooled value in each 2*2 square. This point is
summarised in Table 4.1. The reader is reminded that shifting directions can have a
counter-intuitive effect, as explained in Subsection 2.1.2.

X-axis y-axis final position of
shifting direction | shifting direction | the pooled value
east north bottom-left
east south top-left
west north bottom-right
west south top-right

Table 4.1: Influence of the pooling directions on the location of the pooled value in each
2*2 square.

With this method, every 2*2 square is averaged, with the result stored in one of its
corners. For our purpose, not all PE’'s AREGs are of interest: what matters is only
the average of disjoint and adjacent 2*2 squares, forming an exhaustive cover of the
whole feature map, with no repetition. To get the 2*2 average pooled version of the
original feature map, one must keep only one quarter of the locations, and the rest
can be discarded.

To achieve this, we use the partial addressing capabilities of the SCAMP5 device,
mentioned in Subsection 2.1.2. With one MO instruction, we load a sparse chequer-
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board pattern in a DREG - loading 1s to PEs whose x and y coordinates are both
even, Os everywhere else, see Figure 4.2. We use this method to discard values
in the above averaged feature map, at locations marked as Os in the chequerboard
like DREG. As a result, we get a 2*2 average pooled feature map, that is sparsely
distributed on an AREG.

Figure 4.2: 42*42 crop of the content of one DREG, after executing one
scamp5 _load _pattern instruction. One quarter of the PEs are selected, based on the parity
of their coordinates, to get this sparse chequerboard pattern.

On such an average pooled feature map, only one quarter of the PEs store a rele-
vant information on the corresponding AREG. To take advantage of this sparsity, we
can store up to 4 pooled feature maps on a single AREG. By shifting the sparse che-
querboards and partially copying AREGSs’ content, we can interleave multiple feature
maps on one AREG. Table 4.2 shows a schematic example of it. As an alternative
to shifting pooled feature maps, results can also be directly computed to the right
location by changing the pooling directions, as explained in Table 4.1.

A A A

B B B
D D D
A|B|A|B|A|B
D D D
A|B|A|B|A|B
D D D

Table 4.2: Four feature maps can be interleaved on one single AREG. A, B, C and D
schematically represent four different feature maps.

Interleaving sparse feature maps requires very few shifting instructions compared to
densely grouping each feature map in one region. This helps in reducing the number
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of instructions used in our programs, and hence the resulting amount of noise. As
explained in Section 4.4, computations can still easily be done on interleaved feature
maps, again using partial addressing.

4.3.2 Maximum pooling

In addition to doing average pooling, a standard way of reducing the dimensionality
of a feature map is through maximum pooling, also known as max-pooling. In this
case, the greatest activation value of each input cluster is chosen as its representa-
tive in the pooled feature map. For instance, a 2*2 max-pooling only preserves the
greatest of the 4 values in each adjacent 2*2 square.

Though a little bit more complex than average pooling, max-pooling can also eas-
ily be implemented on a SCAMP5 vision system. Using shifting instructions, local
subtractions, comparisons to 0 and conditioned additions, we designed the code in
Listing 7 as our implementation of max-pooling.

// Pooling along z—azis
sub(F, A, west, A);
where(F) ;

add(A, A, F);
all(Q);
// Pooling along y—-azis
sub(F, A, south, A);
where (F) ;

add(A, A, F);
all(Q);

Listing 7: Implementation of a 2*2 maximum pooling on AREG A, using auxiliary AREG
F. As a result, each PE in the new AREG A contains the maximum of the 4 previous values
of the 2*2 square of which it is the top right corner.

Again, after executing the code in Listing 7, the whole content of the AREG corre-
sponds to local maxima. As presented in Subsection 4.3.1, we use partial addressing
to select relevant locations only, and interleave up to 4 sparse feature maps on one
single AREG.

4.4 Convolutions on pooled data

As a result of the pooling operation presented in Section 4.3, feature maps are
sparsely stored on AREGs. Values that are neighbours in the pooled feature map
are in fact separated on the focal plane, by one row and one column of data be-
longing to another feature map (see Table 4.2). The traditional implementation of a
convolution on the focal plane is therefore no longer relevant and must be adjusted.
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Conceptually, applying a 3*3 convolution kernel on a sparse chequerboard feature
requires to transform the kernel into a sparse 5*5 one. For example, the kernel

a b ¢
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This transformation can easily be done as a preprocessing step, before feeding the
kernel to AUKE. The kernel explicitly imitates the spacing of the feature map to ac-
count for it. The corresponding output of AUKE can directly be applied to an AREG
that contains a sparse feature map, whose content will correctly be convoluted with
the kernel.

We developed another approach to tackle the issue of convolution on sparse feature
maps. Inspired by [34] super-PE technique, we consider each 2*2 square of the
pooled feature map as a group forming a virtual super Processing Element. Each
super-PE is equipped with with four times more registers than a normal PE. Fig-
ure 4.3 shows an example of this grouping scheme.

Figure 4.3: Grouping 4 PEs to form a super-PE. Figure from [34].

This data layout is similar to the one we create by interleaving feature maps (as
in Table 4.2), and it presents the same trouble: neighbouring values are instead
separated by one PE. Computations cannot be carried as usual. The authors of [34]
developed a double-shifting procedure to replace traditional shifting instructions for
super-PEs. We implemented them on the sCAMPS5 vision system, using an auxiliary
AREG. As presented in Listing 8, the idea is to shift the content of the original AREG
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twice, but only copy the content of one selected position (1, 2, 3 or 4). This set of
instructions are encapsulated in macros, for a greater ease of use.

// Assuming DREG R5 contains a sparse chequerboard-
// like pattern, with ones at positions 1 only.

// This can be achieved with:
scamp5_load_pattern(R5, 0, 0, 254, 254);

scampb_kernel_begin() ;
// Shift the whole content of A twice, to AREG F.
mov (F,A,west) ;
mov (F,F,west) ;
// Selectively copy shifted values at position 1 only
WHERE (R5) ;
mov(A,F);
ALLQO);
scamp5_kernel_end();

Listing 8: Double shifting the content of A in position 1 only. This is equivalent to
shifting once for super-PEs, and is normally called through a double_west(A); macro.

Replacing traditional shifting instructions by these double shifting instructions al-
lows to almost transparently use super-PEs as if they were normal PEs. The new,
sparse data layout is abstracted. Some simple macros and the overlay to AUKE pre-
sented in Section 4.1 take care of transforming the SCAMP5 code for a 3*3 kernel
to one that uses double shifts. It only remains for the developer to specify which
position in the super-PE (1, 2, 3 or 4) the kernel is applied to, i.e. to which feature
map. The code in Listing 9 shows the structure of such a kernel.
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// Assuming DREG R5 contains a sparse chequerboard-
// like pattern, with ones at positions 1 only.
WHERE (R5) ;
/* AUKE's output for the desired 3%3 kernel, in which shifting
* instructions are replaced by double shifting instructions.
* For example: */
double_north(A, A);
div2_inplace(A, A);
div2_inplace(A, A);
double_west (B, A);
add(A, A, B);
double_south(B, B);
double_south(B, B);
add(A, A, B);
ALLQO;

Listing 9: Example of a kernel being applied to a sparse feature map, stored in position
1 on AREG A. Thanks to the double shifting instructions and partial addressing, other
values (in position 2, 3 and 4) in AREG A are preserved.

The main, and most important improvement of this super-PE technique over the
transformation of a 3*3 kernel into a 5*5 sparse one is that it is not destructive for
other values. With these double shifts, data is preserved in PE that are on the same
AREG plane, but not affected by the kernel that is currently computed. To make it
clearer, in Figure 4.3, a 3*3 convolution kernel can be applied to values in position
1, with values in position 2, 3 and 4 kept unchanged. This allows for a more efficient
use of AREGs, since we can compute results in-place, without destroying neighbour-
ing PEs’ content.

Most of the time, AUKE gives results on sparse 5*5 that are similar to 3*3 in which
we replace shifting instructions by double shifting instructions. However, we found
it faster and more reliable explicitly use the double shifting trick. The search tree of
AUKE is indeed smaller in this case, and less subject to undesirable pruning. More-
over, with explicit double shifting instructions, data conservation is guaranteed for
locations where no kernel is applied, despite being on the same AREG.

The restricted memory footprint of computing a kernel with these super-PEs makes
some room for new optimisation. For instance, if we have 4 interleaved feature maps

stored in AREG A, we can compute one feature map of the next convolutional layer
by:

1. Applying kernel k; to position 1 in A, using auxiliary registers D, E and F for
computations. Values at positions 2, 3 and 4 in A are preserved.

2. Applying kernel k, to position 2 in A, using auxiliary registers D, E and F for
computations. Values at positions 1, 3 and 4 in A are preserved.
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3. Applying kernel k3 to position 3 in A, using auxiliary registers D, E and F for
computations. Values at positions 1, 2 and 4 in A are preserved.

4. Applying kernel £, to position 4 in A, using auxiliary registers D, E and F for
computations. Values at positions 1, 2, and 3 in A are preserved.

5. Summing the four activation values in each super-PE.

In this process, AREGs B and C are not used, and can each store other persistent
feature maps. There is no spare space on AREG A during these computations, and we
take advantage of their in-place nature to efficiently work out a new convolutional
feature map.

4.5 Quantisation

As seen on Figure 3.3, after computing three feature maps of a single layer CNN,
there is no more available AREG for subsequent layers computations on the SCAMPS5.
Register availability is a very strong constraint in designing CNNs for such an FPSP.

To free some AREGs for computations, we propose to store intermediate results in
DREGs. Values typically stored in an AREG, in the [—127, 127] range can be digitised,
and stored on multiple bit values in DREGs. For a full resolution quantisation, 8 bits
are required to store these 255 possible values. However, given that computations
are imprecise and noisy in AREGs, we suggest an approximated quantisation could
be enough. Storing a small number Most Significant Bits (MSB) only decreases the
number of required DREGs, with a toll on precision that might not even be percepti-
ble.

The binary representation of an AREG can easily be computed on the focal plane,
by iterative subtractions and comparisons to fixed thresholds. This process can be
stopped at the desired precision level. Listing 10 presents such an example. To re-
store to an AREG a digitised content stored across multiple DREGs, only one addition
per DREG is required.

Figure 4.4 shows an example of the lossy quantisation of an AREG to 4 DREGs: one
for the sign, 3 for the 3 MSB (corresponding to values 64, 32 and 16).

If we assume all the AREG values are positive - which is typically the case after
applying a ReLU on the result of a convolution - it is possible to cut down the number
of used DREGs by one: there is no purpose in storing a constant sign. Figure 4.5
displays such an example of the unsigned lossy quantisation of a positive AREG to
three DREGs. The corresponding code is shown in Listing 10.

36



Chapter 4. Adapting CNN components 4.5. QUANTISATION

reconstruct

Figure 4.4: Capture of a quantisation on 4 bits processed on the focal plane of the
SCAMPS vision system. Top-left: acquired input image. Top right: DREG storing the
sign. Bottom right: DREG storing the first Most Significant Bit. DREGs storing the
second and third MSBs are not shown here. Bottom left: reconstructed image.
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Figure 4.5: Capture of an unsigned quantisation on 3 bits processed on the focal plane
of the SCAMPS5 vision system. Top-left: absolute value of an acquired input image. Top
right: DREG storing the sign: not in use here. Bottom right: DREG storing the first Most

Significant Bit. DREGs storing the second and third MSBs are not shown here. Bottom
left: reconstructed image.
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/* Second MSB in targetl */
scamp5_in(E, 64);
scampb_kernel_begin() ;
CLR(targetl);
abs (D, source) ;
sub(F, D, E);
where (F) ;
MOV (targetl, FLAG);
mov(D, F);
allQ);
scamp5_kernel_end();
/* Second MSB in target2 */
scamp5_in(E, 32);
scamp5_kernel_begin() ;
CLR(target2);
sub(F, D, E);
where(F) ;
MOV (target2, FLAG);
mov(D, F);
allQ);
scamp5_kernel_end();
/* Third MSB in target3 */
scamp5_in(E, 16);
scampb_kernel_begin() ;
CLR(target3) ;
sub(F, D, E);
where(F) ;
MOV (target3, FLAG);
all();
scamp5_kernel_end () ;

Listing 10: Unsigned and approximated quantisation of AREG source to 3 DREGs: tar-
getl, target2 and target3. target]l stores bits corresponding to the first MSB (value of
64), target2 to the second MSB (value of 32) and target3 to the third MSB (value of 16).

We now have code to quantise the content of an AREG to multiple DREGs. This
quantisation can be signed or unsigned, and can be done at a chosen precision level.
We intend to use it to store intermediate results of 2-layer CNNs, using unoccupied

DREGs to our profit.

4.6 Output thresholding

As explained in Subsection 3.2.1, output convolutional feature maps of AnalogNet
are thresholded, to create binary activation maps. These are in turn sent to the
digital micro-controller in the form of an events’ list, for the computations of the
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fully connected layers. This output binarisation is effective in reducing data trans-
fers from the focal plane to the digital micro-controller. This however establishes a
difference with traditional CNNs: with AnalogNet, output feature maps consist in
binary activations. This characteristic will also be shared by our other CNN architec-
tures, since this is the best (to our knowledge) way not to transmit full AREG copies
to the digital micro-controller.

In this section, we detail how it is possible to account for this specificity during the
training process, and why a manual adjustment is still needed after training.

4.6.1 Simulating output thresholding during training

In the legacy AnalogNet training process, the output thresholding (or binarisation)
is only taken into account once the convolution kernels have been frozen and loaded
onto the SCAMP5 device, preventing them to account for it. We here propose to
include the effects of output binarisation during the training process, and before the
network weights are frozen. We let the Adam optimiser find the most suitable way
for convolution kernels to account for it.

All operations applied to the input of a CNN to get the corresponding output must
be differentiable, to allow for back-propagation and training (see Subsection 2.2.1).
Thresholding is not differentiable as such, and thus we must approximate it. To this
end, we use a sigmoid function as the activation function of our output convolutional
layer, instead of the ReL.U function. The sigmoid was standardly used as an activation
function of DNNs, before being replaced by simpler and more efficient ones. In
our case, it however provides a differentiable manner to simulate binarisation, in a
standard way:

1
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The steepness of the sigmoid function can be parametrised by «, and as seen in
Figure 4.6, a high value for « is nearly indistinguishable from a standard binarisa-
tion. The thresholds values are represented by the biases added before applying the
convolution.
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Figure 4.6: Activation function sigmoid,,, for different « values.
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In our new training process, the parameter « is set to 1 for the first training epochs.
After a few standard training epochs, « is increased, to a high value such as 50.
Eventually, the network can be tested without simulating the binarisation by a steep
sigmoid, but with a genuine thresholding.

During our tests, we found out that the final testing accuracy does not seem to
depend on the order custom regularisation (presented in Subsection 3.2.2) and out-
put binarisation are applied during training. Results also seem quite insensible to
the way the sigmoid’s steepness is increased, whether it is brutally or progressively
changed.

Using this technique, we are able to train CNNs whose outputs are binarised, in an
end-to-end manner in Tensorflow. The training does not involve any simulator nor
the actual SCAMP5 camera. Used along with the custom regularisation technique of
[49], the produced CNNs take every hardware specificity of our FPSP into account,
except the noisy and imprecise nature of its computations.

The resulting testing accuracy of the AnalogNet architecture in Tensorflow was 91.1%.
As such, it cannot really be compared to any baseline, since this is the first digital
implementation of AnalogNet (in the sense that it runs on an actual computer) that
accounts for output binarisation.

4.6.2 Adjusting thresholds to noise

With the above method, the Adam optimiser finds optimal threshold values, i.e. one
value per output feature map above which a pixel is considered as activated. These
proposed thresholds however do not take noise into account, and for this reason,
they need to be manually adjusted once the kernels are implemented on the camera.

We found out that the most efficient way to do it is to plug the camera to a host
computer, and adjust through sliders in the host application. A good rule of thumb is
to choose a value that removes noisy spiking activation, and preserves feature local-
isation around the desired object (a digit with the MNIST test-bed). See Figure 4.7
for an example.
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Figure 4.7: Capture of the SCAMPS5 host program. The first column shows the content
of AREGs A, B and C, storing three different feature maps. The second column shows
the thresholded feature maps, according to the threshold values on the sliders. The third
column shows the input image at different pre-processing stages. In this example, the
first threshold value is too low (we notice noisy activated pixels in the binarised feature
map in DREG R8), the second seems correct (in R9), while the third seems too high
(there is almost no activated pixel in the binarised feature map in R10).

This step, despite being manual, is not very laborious - there is only one slider to
adjust per output feature map. Pre-computing useful values for the thresholds would
require having a precise noise model, which is not available at the moment.

4.7 Noisy data acquisition

The CNN weights given by a digital training process cannot account for the noise in-
duced by analog computations. For this reason, and as explained in Subsection 3.2.2,
once the network is trained with Tensorflow, we load the kernel weights onto the
SCAMPS5 vision system and gather noisy retraining data. This consists in showing
each digit class (0 to 9), and set (testing and training) to the vision system, and
recording the outputs of the convolutional part. With these flat vectors, we retrain
the fully connected layers, so that they can account for noise.

The authors of [49] place the camera in front of a computer’s screen and display
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all the instances of one digit and one set at a time. Using the host program, they
save one file per class/set pair, i.e. 20 files - one of them for instance corresponds to
the testing ‘5’s, another to the training ‘7’s. This process requires the action from a
human operator after each digit has finished recording, to save the file and launch
the display and recording of the next digit. This was needed to correctly label data
and know which digit was displayed when which output was acquired. The whole
process takes approximately one day of intermittent action, and the fully connected
layers can easily be retrained on this labelled data.

Judging this process too heavy and hindering the ease of prototyping, we propose
to automate it and to carry out the full MNIST dataset capture in one run, without
requiring an human operator.

Since there is no way to simply synchronise the display program and the SCAMP5
camera, the main issue is to label acquired data. To solve this, the classes and subsets
are displayed in a pre-determined order, and separated by an empty screen lasting 30
seconds. The display program for example shows the digits in the following order:

1. training ‘O’s;

2. empty screen of 30 seconds;
3. testing ‘O’s;

4. empty screen of 30 seconds;
5. training ‘1’s;

6. empty screen of 30 seconds;

38. empty screen of 30 seconds;
39. testing ‘9’s.

In addition to recording the vectors corresponding to the binned events (see Sub-
section 3.2.1), for each output we also record a single value corresponding to the
number of positive pixels in the input image. A low number (between 0 and 2)
means the camera acquired an empty screen; an amount greater than 10 implies
that a digit was shown. Figure 4.8 displays the evolution of this count during an
acquisition process. Using this indication combined to the predefined order in which
the digits are shown, it becomes straightforward to label training data.
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Figure 4.8: Number of positive input pixels for each saved output, during noisy data
acquisition. A number inferior to 3 means the camera did not capture an input digit, but
an empty screen instead. The alternating pattern shows 20 clearly defined periods, each
of them corresponding to a different class and subset: the first one consists in training
‘0’s for instance, etc.

The display and acquisition process are loosely synchronised to each other, with the
SCAMPS5 capturing 12 frames per second, and the display program showing 6 im-
ages per second. This relatively low speed ensures a consistent illumination and a
well controlled exposure time for the camera. The whole acquisition can be done in
under 4 hours, to get data ready to use for the fully connected layers training.

This method can of course easily be generalised to any other visual supervised learn-
ing task, and is not restricted to the MNIST dataset.

4.8 Fully connected layers

The fully connected layers of our CNNs are computed on the digital micro-controller,
once the binary feature locations have been collected on the focal plane, and binned
into flat a vector. SCAMP5’s micro-controller offers precise computations that are not
subject to noise - just as any digital micro-controller, but as opposed to the analog
vision chip - yet has some speed and capabilities limitations that we will discuss in
this section.

In this work, only one fixed architecture of the fully connected layers is used, com-
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posed of two layers, with 50 hidden units and 10 output units, using a ReLU activa-
tion function. The following remarks however remain valid with other architectures.

4.8.1 Rounding weights

SCAMP5’s digital micro-controller offers no floating point computations’ capabilities,
whereas any machine learning framework’s weights for a fully connected layer are
stored in single-precision floating-point format with 32 or 16 bits. To avoid any dif-
ficulty with a custom training that would yield integer weights, we instead decide to
scale and round them before using them on the micro-controller.

Suppose the first layer has a weight matrix K; and a bias vector B, and the second
layer a weight matrix K, and a bias vector B,. Then, for an input vector z, the
output of the fully connected layer y is:

y:KQReLU[K11'+Bl]+BQ

If all weights and biases are scaled by a factor s, except for B, being scaled by s?,
then

s y=25"(Ky- ReLU[K, - 7 + By] + By)

=5 Ky ReLU[s- K| -z +s- B+ By)
Using the integer part of the up-scaled weights and biases allows for an approxima-
tion of the up-scaled output:
s°y~|s Ky ReLU[|s-Ki| -z + |s-Bi|] + |s° - Bs]

This shows that the fully connected layers’ computation can be approximated by
integer computations (x corresponds to counts in bins, and is already composed of
integers). This allows for the fully connected layers to be implemented on the micro-
controller. To this end, it suffices to up-scale K, B; and K, by s, and B, by s?, before
rounding them. In this approximation, the error is a function of the input values z,
but also of s: the larger s is, the smaller the error.

The loss of precision is controlled by s, and can be acceptable for large enough
values. As an example, with an original bias vector

(K3)T = (—1.4000176, 4.7173615, ..., —2.3324227, —2.3793328)
and a scale factor s = 10, we get
(|s* K>|)" = (—141,471, ..., —234, —238)
With s = 100, the same bias vector gets approximated by
(|s* - Ka|)" = (—14001,47173, ..., —23325, —23794)
and the error is reduced.
Getting an up-scaled version of the output y is not an issue here. During inference

time, what indeed matters is the index of the maximum in the output vector, which
is the predicted label.
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4.8.2 Profiling

Table 4.3 reports the breakdown of the elapsed time during one forward pass of
AnalogNet on the SCAMP5 device, after an image is captured.

Step Time taken Total elapsed time
(micro-seconds) | (micro-seconds)
Input binarisation 13 13
3 Convolutions and output binarisation 68 81
Events reading and binning 273 354
Fully connected (2 layers) 389 743

Table 4.3: Profiling AnalogNet.

As we can see, a considerable amount of time is spent gathering events (i.e. trans-
ferring data from the vision chip to the micro-controller), and computing the fully
connected layers result. The former cannot really be improved, as we use the already
optimised official SCAMPS5 library to interface with the analog vision chip.
However, there is some room for improvement on the latter point. The legacy
AnalogNet implements very standard double loops for matrix-vector multiplication.
The current and standard implementation is in the form of Listing 11.

int weights[IN_SIZE] [OUT_SIZE] = {{...},{...},...};
int biases[QUT_SIZE] = {...};

for (int j=0; j<OUT_SIZE; j++){
partialSum = O;
for (int i=0; i<IN_SIZE; i++){
partialSum += in[i]*weights([i] [j];
+

out[j] = partialSum + biases[j];
}

Listing 11: Standard matrix-vector multiplication, as implemented in the legacy
AnalogNet.

We scripted the generation of C++ code for defining int arrays, based on Python
objects. This script takes a Python 2 dimensional array as input that corresponds to
the weights matrix of one of the fully connected layers, and simply re-parses it into a

valid C++ array. It can then be directly copied and pasted into our SCAMP5 source
code.

4.8.3 Improving speed

In our case, we can take advantage of two things:
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* The fact we know in advance (at compilation time), the number of iterations
needed in each loop. This is because our vectors are all of fixed size.

* The fact that we do not use all of the available 512KB flash memory for storing
the program and constant data.

Based on these two points, we propose to unroll the loop before compilation, and
to hard-code the weights in the unrolled loop. Loop unrolling eliminates delay from
controlling the loop, and is a long known idea of program optimisation [2]. More-
over, instead of declaring a global constant array for the weights and accessing them,
we replace them by their actual value. This removes the overhead of accessing
memory, and even frees some RAM. The resulting implementation of matrix-vector
multiplication is in the form of Listing 12.

int input[IN_SIZE], output[OUT_SIZE];

out [0] =
in[0]*(322) +
P
in[IN_SIZE-11%(77) +
(-47);

out [OUT_SIZE-1] =
in[0]*(18) +
P
in[IN_SIZE-1]1%(27) +
(20);

Listing 12: Unrolled loop for matrix-vector multiplication, with hardcoded weights.

Using a Python script, we generate C+ + code that corresponds to the linear program
equivalent to the loop of code in Listing 11. The length of our program is consider-
ably increased, but still largely within the limit of 512 KB. The resulting speed-up is
substantial, as presented in Table 4.4 and Table 4.5. Loop unrolling in itself does not
bring a significant improvement, but is a requirement for using hardcoded weights.

Time for fully-connected

Method s . % of baseline
computation (micro-seconds)
Standard loop (baseline) 389 100
Unrolled loop 374 96.1

Unrolled loop +

hardcoded weights 109 28.0

Table 4.4: Comparison of the time taken for the computation of a 2 layers fully con-
nected network (27 input units, 50 hidden, 10 output), with three different methods
used for matrix-vector multiplication.
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Time for AnalogNet forward

Method . % of baseline
pass (micro-seconds)
Standard loop (baseline) 743 100
Unrolled loop 728 98.0

Unrolled loop +

hardcoded weights 463 62.3

Table 4.5: Comparison of the time taken for a forward pass on AnalogNet on the
SCAMPS5 vision system, with three different methods used for the matrix-vector mul-
tiplication involved in the fully connected layers.

This technique is equivalent to putting some manual optimisation upstream of the
compiler. It yields longer programs, but exploits the freely available ROM space to
drastically decrease the inference time on the SCAMP5 device. The frame rate is
increased by 60% for AnalogNet. Further optimisation would maybe require parallel
computations, which are not easily possible here on the MO core.

We designed Python scripts to generate unrolled loops from Python arrays storing
the fully connected layers weights and biases. The output can directly be copied
and pasted into MO C++ source code. The optimisation we presented here is very
generic and applicable for other architectures of fully connected networks than the
one we used.

This chapter provided useful and optimised implementations of CNN building blocks.
Prototyping CNNs is now easier thanks to the work in Section 4.1 (Streamlining
AUKE’s output) and Section 4.7 (Noisy data acquisition). Digital simulations are
more precise thanks to what is presented in Section 4.6 (Output thresholding).
Moreover, we are now equipped with new building blocks to include in our CNNs’
architectures, presented in Section 4.2 (ReLU and leaky ReLU), Section 4.3 (Pool-
ing), Section 4.4 (Convolutions on pooled data) and Section 4.5 (Quantisation).
Finally, Section 4.8 (Fully connected layers) provides a major improvement in infer-
ence speed on the SCAMPS5 device. In the next chapter, we use this to substantially
improve the baseline of CNNs on the SCAMPS5 device, and further explore the archi-
tecture space for 2 convolutional layer networks.

47



Chapter 5

MNIST experiments

Equipped with refined and new CNN primitives for the SCAMP5 device, we test
these on the classical MNIST dataset. The goal we pursue is double: increasing raw
performance (accuracy, inference time) and demonstrating the feasibility of multi-
layer CNNs.

5.1 AnalogNet2

Taking a close look at AnalogNet’s implementation and architecture as we did in Sec-
tion 3.2 let us see some room for improvement. Before experimenting with radically
new CNN architectures that have 2 layers in further chapters, we here review some
refinements we brought to AnalogNet. We created a very similar single layer CNN
for the SCAMP5 device that we call AnalogNet2.

5.1.1 Output event binning process

As presented in Figure 3.5, the legacy AnalogNet implementation bins events into
9 different squares. With this binning procedure, features located in the central
area all fall within the same bin, and cannot be differentiated by the fully connected
layers. We assess this as detrimental for the accuracy of the network, and propose
a new binning procedure. Using the prior knowledge that MNIST digits are located
in the central area of the 28*28 square, we suggest to discard events located in
the four corners, and to use different bins for the central events - to preserve more
information about their location.

As seen on Figure 5.1, the new binning procedure uses 12 overlapping bins instead
of 9 adjacent ones. Each convolutional feature map thus yields one third more values
for the fully connected layers, and first of the two fully connected layers takes 33%
more time to compute. However, the data rate from the analog vision system to the
micro-controller still remains exactly the same - up to on hundred 2D coordinates
of events per output feature map. As shown on Table 5.1, having more input values
(36 isntead of 27) indeed increases the time required to compute the fully connected
layers’ output. It is however still faster than the legacy method by a large margin,

48



Chapter 5. MNIST experiments 5.1. ANALOGNET2

1 2
u B
|
5
7 10
|
. f
B 3o
|| I
11 12

Figure 5.1: New binning process. Events fall into twelve 9*9 overlapping bins. Black
pixels correspond to the same possible events configuration as in Figure 3.5: in this case
the output vector is (3,0,0,5,2,1,1,2,6,4,5, 3).

and the increase in time is negligible compared to what loop unrolling brings (see
Subsection 4.8.3).

Time for fully-connected

Method # of input values computation (micro-seconds)
Standard loop 27 389
Unrolled loop +
hardcoded weights 27 109
Unrolled loop +
hardcoded weights 36 136

Table 5.1: Comparison of the time taken by the fully connected layers’ computations on
the SCAMP5’s micro-controller, for different matrix-vector multiplication methods and
number of input values.

Replacing the legacy binning process with this one brings a very substantial im-
provement of more than 3% in testing accuracy, once implemented on the SCAMP5
device. As explained in the next sections, we were indeed able to train networks
that reach between 96% and 97% testing accuracy, compared to 92%-93% for the
simpler pooling operation (as reported by [49]).

Our Tensorflow fully digital simulation of a single layer network with this pool-
ing technique reaches 97.3% testing accuracy, which is significantly superior to the
91.1% we reported in Subsection 4.6.1, with the standard pooling operation.

This new output pooling is specifically designed for the MNIST digit classification
task, in which the corners of the image are far less relevant than the center. The
general idea of trying specically designed binning layouts is however valuable for

49



5.1. ANALOGNETZ2 Chapter 5. MNIST experiments

other use cases.

5.1.2 Analog register management

In AnalogNet’s legacy implementation, the input image is first transferred to AREGs
A, B and C, where the three convolution kernels are independently applied using
AREGs D, E and F for computations. After this computation, there is not enough
remaining AREGs to carry on computations on the focal plane, and feature maps are
therefore thresholded and sent to the micro-controller. This is shown on Figure 3.3
in Subsection 3.2.1.

We propose a new AREG management, to reduce congestion on the focal plane. The
idea is to sequentially copy the input image to AREG A, then run the computations
for a convolution kernel using AREGs B to F, before outputting the thresholded fea-
ture map to the micro-controller. This sequence of operation, shown on Figure 5.2,
can be run as many times as needed, for as many kernels as we want.

Restore binary| ginary
input image | , """ | | c b E F

Output to micro-controller

First Conv. Computation | Computation | Computation | Computation | Hardware
luti 1 register register register register workaround
convolution | 5 B c D E E

Auxiliaerregisters

Restore binary| sinary
input image | , ™" | G b E F

Output to micro-controller

N—th Conv. Computation | Computation | Computation | Computation | Hardware
luti N register register register register workaround
convolution | 5 B c 5 . i

Auxi]iaerregisters

Figure 5.2: New AREG management: each convolution is computed using AREGs. The
input image is each time loaded from a persistent DREG.

The first consequence of this new organisation is that it increases the number of
AREGs that are available as auxiliary registers for the convolutions’ computations.
This should enable AUKE to possibly find shorter programs, and hence enhance sig-
nal quality. This however does not bring such an improvement in reality. We were
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indeed not able to witness any real decrease in instruction count in codes produced
by AUKE, and hence no noise reduction.

Besides, the main positive consequence is that the number of convolutions in the
first and only convolutional layer is no longer limited to 3. We can indeed iterate
the procedure as many times as required, once for each convolution. The only cost
incurred is the computation time of the convolutional part, which scales linearly
with the number of feature maps it has.

5.1.3 Increasing the number of kernels

Freed from the constraint of having at most 3 convolutions in the first layer thanks to
the new AREG management, we here explore the architecture space of 1-layer CNNs.
We study the accuracy of single layer CNNs, using increasingly many convolutions.
All other parameters - such as the size of the fully connected layers - are fixed, and
similar to the ones used by the legacy AnalogNet. To sum it up, the differences
between AnalogNet and these networks are the use of:

* a varying number of kernels in the convolutional layer (between 1 and 7),
allowed by a new AREG management (see Subsection 5.1.2).

* a new output binning layout, with 12 bins instead of 9 (see Subsection 5.1.1).

* unrolled loops for the fully connected layers, for faster execution (see Sec-
tion 4.8).

Figure 5.3 reports the resulting testing accuracy, both for a digital implementation in
Tensorflow, and for a final implementation on the SCAMP5 device. For each kernel
number between 1 and 7, the full training process is run - including custom regulari-
sation, output binarisation and fully connected layers retraining with noisy data. As
one could expect, a network with more kernels reaches a higher accuracy, but the
returns of adding new kernels is diminishing.

We notice that such high testing accuracy seen on Figure 5.3 were previously unre-
ported. Compared to the 92.65% testing accuracy of AnalogNet reported in [49],
even a CNN using 2 kernels only achieves higher performance. With 3 or more
kernels, the reached accuracy is above 96%, which is an unprecedented level of
precision. A 7 kernels CNN even beats the 98% mark. These very substantial im-
provements are the result of both the new pooling layout (as confirmed by the testing
accuracy of the 3 kernels CNN) and the feasible increase in kernels number.

The drawbacks of using more kernels are an increased latency and power consump-
tion. Using Tables 4.3 and Table 4.4, that report the time spent at each stage of a
standard AnalogNet, we devise a very crude approximation of the inference time for
these new networks using a variable number of kernels k.

The time spent in binarising the input is constant in k, the total duration of the
convolutions scales linearly in £ (including kernel execution, output thresholding,
events reading and binning), and in varies in an linear manner with % for the fully
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Figure 5.3: Testing accuracy, with increasingly many kernels in a single layer CNN

connected layers (only the first matrix multiplication is impacted, the second layer
remains constant in time). We can therefore estimate the required time for one for-
ward pass of the network on the SCAMPS5 device as a function of &, in microseconds:

68 273 12 k- 50+ 50 - 10
time(k) = 13+ k- — + k- =2 1109 - 5.1
ime(k) theg ket 2750 4 50 - 10 .1

Figure 5.4 presents estimated inference duration and frames per second derived
from Equation 5.1. The trade-off between inference speed and accuracy is presented
on the Pareto diagram in Figure 5.5.
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Figure 5.4: Estimation of the time required for one forward pass of a single layer net-

work with increasingly many kernels, and the resulting FPS
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Figure 5.5: Visualisation of the trade off at stake: an increase in accuracy yields a
decrease in FPS. A higher accuracy is better (vertical axis), a higher FPS is better (hori-

zontal axis).
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This systematic search of the architecture space of single layer CNNs clearly exhibits
the trade-off at stake. We consider the 3 kernels, single layer CNN to be at the sweet
spot of this design space. With more kernels, the networks fall below the landmark
of 2000 FPS. Being at the inflexion point on Figure 5.3, adding more than 3 kernels
gives diminishing returns in terms of testing accuracy.

Moreover, there is still some room for improvement in the intrinsic learning process
variability. The figures reported above are indeed the result of one training process
per network. Launching several training processes for networks with 3 kernels, and
keeping only the best of them might lead to a testing accuracy slightly above the
96.3% reported on Figure 5.3.

5.1.4 Final result and architecture

Based on the above findings, we propose an updated version of AnalogNet, that
we call AnalogNet2. Using a single convolutional layer with 3 kernels, an updated
binning layout and optimised fully connected layers computations, it reaches 96.9%
accuracy on the MNIST test set. With a measured inference time of 442 micro-
seconds, it can run at up to 2260 FPS on the SCAMP5 device, in a power budget of
0.7 mJ per frame.

AnalogNet2 uses the same number of convolutions as AnalogNet (3 kernels). In the
case of AnalogNet, this figure was a consequence of hardware limitations - namely
a limited number of AREGs. This hardware limitation now being overcome, having
3 convolutions in AnalogNet2 is a choice of design. Depending on use cases, it can
easily be adjusted upwards for an increased accuracy, or downwards for an increased
throughput.

5.2 Implementing two layer CNNs

AnalogNet2 achieves unprecedented accuracy and efficiency on the MNIST test bed,
with a single convolutional layer. This architecture is extremely simple compared to
modern CNNs, which include tens of convolutional layers, each with tens of feature
maps. Having this many convolutions helps in extracting complex hierarchical fea-
tures, and is required to perform high level tasks such as object detection [44] or
pose estimation [48].

For this reason, we here explore the feasibility of implementing a two layer CNN on
the SCAMP5 device. It is indeed the first step towards implementing more than one
convolutional layer. For practical reasons and for a fair comparison with AnalogNet2,
we decide to also use the MNIST dataset to assess the performance of our models.

The main design issue that arises is caused by limited register availability. Each
feature map in the second convolutional layer is indeed the sum of the results of
convolutions applied to each feature map in the first layer, as presented in Subsec-
tion 2.2.2. This creates the need to store many partial results, since all feature maps
of the first layer are required until the very last feature map of the second layer is
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computed. We found two possible ways of overcoming this issue, and hence propose
two two-layer CNN architectures for the SCAMPS5 device in this section.

5.2.1 Two layers with quantisation

Our first attempt at making a two layer CNN consists in duplicating the convolutional
part of AnalogNet2. This results in the very basic architecture of a two layer network,
both layers having three feature maps. In the second layer, each feature map is the
sum of all first layer feature maps, each one convoluted with a different kernel.
Figure 5.6 shows an example of such computations.

Second conv.
la}{er

First conv.
layer

Figure 5.6: Computations involved in the convolutional part of a two layer CNN, each
layer having three feature maps. It requires the application of 3+3*3=12 convolution
kernels. The fully connected layers are omitted here.

To illustrate the challenge of implementing even this very basic architecture, suppose
that convolutions are computed in lexicographical order on their numbering in Fig-
ure 5.6. Assume C,, C15, C1 3 and C5 have already been computed on the focal
plane, and C5; 5 should now be calculated. On SCAMP5’s focal plane, one AREG is
reserved for the hardware workaround, and one AREG must be reserved for storing
each of the already computed convolutions - since all of these results will be required
at a later point. Out of 6 AREGs, 5 are occupied, and only one remains available for
computing C5 1 2, Which restricts it to be an extremely simple kernel.

To answer our newly created need of storing many partial result, we propose to
store some AREG’s content in DREGs for later use, when not presently needed for
any computation. Using the quantisation procedure presented in Section 4.5, one
AREG’s content can easily be digitised and moved to multiple DREGs. The AREG
can then be freed and used for current computations, while its content is saved and

55



5.2. IMPLEMENTING TWO LAYER CNNS Chapter 5. MNIST experiments

available for later use. The precision level of the quantisation procedure can easily be
adjusted, to choose between very frugal DREG use and high precision quantisation.

Architecture

We use the quantisation procedure to binarise the first layer’s feature maps when
required. Since these feature maps are applied a ReL.U activation function, they only
contain strictly positive values, and hence unsigned quantisation can be used. This
decreases the count of DREGs needed to store one AREG content by one (the sign is
no longer required).

Quantisation is an idea that has already been explored to reduce the memory foot-
print of CNNs, as presented in Subsection 2.3.1. Since then, Tensorflow already
includes quantisation instructions, and these exotic CNNs can be trained without
much hassle. This helped us simulating them, and determining the best amount of
DREGs (or bits) needed to store one AREG. Given the limited number of DREGs,
we can use up to 4 DREGs per feature map. Table 5.2 sums up our experiments for
digital networks, in Tensorflow. The best trade-off is reached with using convolution
kernels trained with the 4 bits quantisation architecture on the 3 bits quantisation
one, and retraining only the fully connected layers. It provides a network that can
be used with 3 DREGs per feature map at inference time, with only a minimal de-
crease in theoretical (i.e. digital) testing accuracy - 0.1%. We thus decide to use 3
DREGs per feature map, since having one more DREG does not seem to bring any
improvement.

| CNN implementation | MNIST testing accuracy |

unquantised 97.6%
quantised on 4 bits 97.0%
quantised on 3 bits,

using convolution kernels 96.9%
of the above 4 bits network

Table 5.2: Testing accuracy comparison of a 2 layer CNN, in Tensorflow. Each layer
has 3 feature maps. The reported figures include all side-effects of the SCAMPS5 de-
vice (input/output binarisation, limited convolutions, ...), except noise. The last line
corresponds to re-using the weights obtained with the 4 bits architecture with 3 bits
quantisation, and retraining only the fully connected layers.

The program flow of the convolutional part of the network is presented in Chap-
ter A of the appendix. It is composed of two convolutional layers, each one having
3 feature maps. The convolution kernels used are of size 3*3, and the fully con-
nected layers’ structure remain unchanged compared to AnalogNet and AnalogNet2
(2 layers, 50 hidden units and 10 output units).

One of the first layer’s feature does not need to be quantised, and its original version
can be used in full precision analog form. Besides, when an output feature map has
been computed, it is immediately binarised and sent to the micro-controller. This
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principle is very similar to what was presented in Subsection 5.1.2, and frees AREGs
for remaining computations.

Results

The twelve convolution kernels are loaded onto the SCAMP5 device, and a full ac-
quisition of the MNIST data set is run. As explained in Section 4.7, this is done to
retrain the fully connected layers.

When implementing the two layers, a bias should normally be applied to each fea-
ture map between the first and the second layer. However, bias values resulting from
the training process in Tensorflow are small (between -5 and +5) compared to the
inaccuracy and noise of the device. For this reason, bias addition is omitted.

The final implementation on the SCAMP5 device reaches 95.8% accuracy on the
MNIST test set. With an inference time of 803 micro-seconds, it can run at up to
1245 FPS on the SCAMPS5 device, in a power budget of 1.5 mJ per frame.

The 80% increase in inference time compared to AnalogNet2 is mainly due to a
change in collected events per feature map: from 100 to 150. The output feature
maps of this two-layer CNN are indeed denser, and more events are required to
capture them.

In-situ results on the SCAMP5 device are deceivingly lower than with the fully digital
implementation (TODO% decrease), and than AnalogNet2 (1.1% decrease). Our
intuitive explanation is that it is caused by the accumulation of noise on the focal
plane, due to the increased depth of our computational graph.

5.2.2 Two layers with pooling

As explained in Section 4.3 and Section 4.4, we are now enabled with an efficient
implementation of feature map pooling - from the pooling itself, the interleaving of
four pooled feature maps on a single AREG, and the execution of convolutions on
interleaved feature maps.

In this section we propose a two-layer CNN that makes use of this, to reduce the
dimensionality of feature maps and be able to fit on our FPSP, the SCAMP5 vision
system. Storing multiple feature maps on a single AREG makes the implementation
of a two layer CNN possible on our heavily memory-constrained device, without
requiring to quantise any intermediate result. This is a different approach as the one
explored in Subsection 5.2.1, aimed at the same objective. It presents the advantage
of using a much more common ingredient than quantisation - pooling, which one
can easily argue to play a useful role in selecting the most important features of a
feature space.

Architecture

We choose to implement a 2 layer CNN composed of 4 convolutions in the first layer,
followed by a 2*2 pooling operation, and 8 convolutions in the second layer. The
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convolutions are all composed of 3*3 kernels, and Section 4.4 explains how convo-
lutions are run for the second layer.

The most usual pooling operator used in CNNs is average pooling. However, our sim-
ulations in Tensorflow yield better results with maximum pooling, which we there-
fore use in our proposed architecture. One possible explanation for this resides in
the fact that our CNN uses a limited set of convolution kernels’ weights, for which
it might be easier to deal with a restricted set of input values. Taking the maximum
value in each 2*2 activation cluster from the first layer indeed creates fewer distinct
values than combining them in an average.

The pooled feature space of the first layer can fit on a single AREG, with interlaced
feature maps. The 8 feature maps of the second layer must be separated in two
groups of 4, each one fitting on an AREG. Half of the output feature space can thus
be transferred to the digital micro-controller with a single event read. Based on the
parity of its coordinates, an event can easily be attributed to its feature map. Since
the output feature maps now have size 14*14, the binning layout must be changed
accordingly. Guided by our observation in Subsection 5.1.1 that differentiating cen-
tral pixels is helpful for the subsequent fully connected layers, we divide a feature
map in four quarters, one in each corner. The corresponding layout is shown in Fig-
ure 5.7. Each of the 8 feature map is hence transformed in a vector of size 4, with
the input to the fully connected layers hence being of size 32.

"
> B

Figure 5.7: Binning process. Events fall into four 7*7 disjoint bins. Black pixels corre-
spond to a possible events configuration: in this case the output vector is (0, 3, 1, 4).

SCAMPS5 excessive program length

Implementing the above architecture on the SCAMP5 device, we faced an unex-
pected issue: we hit the limit of vision chip instructions count. As explained in
Subsection 2.1.1, the MO core is responsible for controlling the analog vision chip.
Corresponding instructions - or kernels - are written in special sections among the
MO source code, and compiled into SCAMP5 machine code on first encounter.

A SCAMPS5 kernel is defined using either a lambda function of type scamp5_kernel,
or scamp5_kernel_begin() / scamp5_kernel_end() delimiters. Upon the first ex-
ecution of a scamp5_kernel, it is first compiled, and then sent to the vision chip.
The compiled version is stored, so that further executions are faster: the code can
directly be sent to the vision chip. The compiled SCAMP5 Kernels are stored in a
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specific part of the memory, that can only store 1024 instruction words. Once that
limit is reached, the whole program stops functioning. For relatively long programs
such as ours, this limit is quickly reached. We indeed have to use 4 (first layer) +
4*8 (second layer) = 36 convolutions, whereas our previous models only had 3 or
12.

The official SCAMP5 library [10] describes one possible solution to this issue. It
consists in using the move_to_heap keyword when creating a SCAMP5 kernel, which
allows kernels to be stored in a new memory location that is larger than the default
one. It however still is too small for our needs.

The new idea we developed to circumvent that issue is to dynamically allocate
SCAMPS5 Kernels. It offers a virtually unlimited amount of instructions to be ex-
ecuted on the vision chip, with a technique known as overlay [30], allowing to
execute programs that do not fit in the live memory. The general idea is to cut a
long program in blocks, and sequentially transfer them to a computer’s memory for
execution. In our case, a scamp5_kernel is in turn:

1. Created, in the heap (using the C++ new() instruction);
2. Compiled,;
3. Sent to the vision chip for execution (as many times as required);

4. Deleted.

This frees us from the above limitation: one can cut his program in sub-parts, virtu-
ally as many as one wants or needs. The new limitation is the 512 KB flash memory.
The only drawback of that method is speed. Indeed, vision algorithm are often infi-
nite loops, in which the same kernels are run at each iteration. With our solution, the
kernels are recompiled each time, which slows down the main loop of the program.
This however yields frame rates that are still in hundreds of frames per seconds, and
has the great advantage of allowing the creation of prototypes and proof of concept
programs.

Note: when using such dynamically allocated SCAMP5 Kernels, one should not use
‘traditionally’ defined Kernels. Mixing the two leads to highly erratic behaviours.

Results

The accuracy on the MNIST test-set of this architecture is of 96.4% for the digital
implementation in Tensorflow. Once implemented on the SCAMPS5 device, and after
retraining the fully connected layers with noisy data, the final in-situ testing accu-
racy is of 92.9%. Because of the slow overlay technique, the inference time of 2762
microseconds only allows for 360 FPS. The power budget also suffers from cutting
the program in blocks at 6.6 mJ per frame.

Even if the digital implementation of the network does not perform better than
AnalogNet2 in-situ (96.9% accuracy on the SCAMP5 device), we considered it valu-
able to test it on the SCAMPS5 device. AnalogNet2 indeed uses a specific binning
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trick designed for MNIST, whereas this CNN is generic and does not use this prior
information. In some cases, devising an optimised handcrafted pooling operation
might be difficult, and for this reason, generic architectures also must be explored.

Once again, we explain the important accuracy degradation between the digital im-
plementation and its in-situ counterpart with noise. To the best of our knowledge,
this is indeed the only missing part of our digital simulations. The difference be-
tween the simulation and the actual implementation would surely be even worse
were we shifting AREGs’ content instead of interlacing them, since it requires more
instructions and longer computation circuits.

The 3 CNN implementation we have on the SCAMP5 device (AnalogNet2, 2 layers
using quantisation, 2 layer using pooling) tend to exhibit a more important degrada-
tion when the instruction chain between the input and the output on the focal plane
is longer.

The results of our experiments on multi-layer CNNs call for a more thorough analysis
of focal plane’s noise, which is presented in the next chapter.
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Noise analysis

The two attempts to introduce a second convolutional layer (using quantisation or
pooling) yield deceptive and counter-intuitive results on the SCAMPS5 vision system.
Despite being implemented using two very different approaches, both in situ testing
accuracy figures suffer a significant decrease compared to digital computations, on
a standard computer. However, as described above, our fully digital computations
account for all specific aspects of our FPSP except noise. We hence conclude that
both experiments call for the same diagnostic: analog noise hinders computations
in such proportions that prevent the reliable implementation of traditional two layer
CNNs.

In this chapter, we explore further the impact of noise on analog computations hap-
pening in the focal plane, and discuss how it could possibly be restrained.

6.1 Noise accumulation

As long as we restrict the architecture space of CNNs to single layer network such as
AnalogNet, noise remains within acceptable amounts. Retraining the fully connected
layers with real data produced by the convolutional layers implemented on the focal
plane was enough to tackle this issue. In this case, the in situ testing accuracy is
extremely close to fully digital CNNs. Once a second layer is added, this retraining
process is no longer enough to maintain an acceptable accuracy. This suggests that
noise has accumulated in such a way that it can no longer be accounted for by the
fully connected layers only. The second layer acts on already noisy data, and noise
is added on top of noise. The computation chain between the input image and the
output feature maps is longer, and the information is supposed to be refined, but is
in reality diluted in increasing amounts of noise. What really is detrimental here is
the accumulation of noise.

In this section, we gather experimental results and provide quantitative indicators
to support the claim that our two layer CNNs fail to beat or even compete with
AnalogNet because of noise accumulation.
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6.1.1 Depth separable layers

One can argue that our implementations of 2 layer CNNs both rely on newly intro-
duced techniques (quantisation and feature map interlacing) which might cause the
large decrease in testing accuracy between digital version of the networks and real
implementation on the SCAMP5 device. To fully isolate their potential side effects,
we here assess the performance of multi-layer CNNs that are not relying on such
primitives.

Since it is not possible to execute multiple standard convolutional layers on the
SCAMPS5 device because of hardware limitations, we here use depth separable convo-
[utions. With such layers, feature maps are not combined with summation as with
traditional convolutional layers (shown on Figure 5.6). Instead, series of convolu-
tions and non-linearities are applied to the input images, each one forming an inde-
pendent thread in the computational graph. This greatly decreases the requirement
to store partial results on the focal plane.

Since feature maps are not combined, feature extraction is not as powerful and
efficient as with standard convolutional layers. However, the accumulation of non-
linearities and convolutions still helps in improving testing accuracy.
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Figure 6.1: MNIST testing accuracy of CNNs using increasingly many layers of depth
separable convolutions. Each layer is made of 3 3*3 convolutions, and a ReLU activation
function. The case with 1 layer corresponds to AnalogNet 2.

Figure 6.1 shows the MNIST testing accuracy of CNNs using increasingly many lay-
ers of depth separable convolutions, both in our noiseless digital simulations and
on the SCAMP5 device. In simulations, having more depth separable layers yields
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better results, with diminishing returns. On the SCAMP5 device, the exact inverse
phenomenon happens, with results getting worse each time a new layer is added.

This results confirm our intuition that despite being more powerful in theory -
i.e. with noiseless and precise digital implementations - networks involving longer
chains of computation perform poorly on the SCAMPS5 device.

6.1.2 Composing noise-inducing operations

The accumulation of noise on the focal plane is not specific to the computation of
convolutional feature maps. Any analog computation is subject to noise. In this
experiment, we repeatedly run a very simple operation on an uniform AREG con-
tent, and witness the results deterioration. The results we present here are very
generic, and remain valid in broader contexts not related to CNN implementations,
nor specific to the SCAMP5 device.

Data collection

We define the kernel presented in Listing 13, that should in theory be equivalent to
the identity operation.

scamp5_kernel id_kernel ([]{
using namespace scampb5_kernel_api;
diva(A,E,F);
mov(F,A);
add(A,A,F);
Ik

Listing 13: Supposedly identity kernel

If analog computations were precise and not subject to noise, this kernel should not
have any side-effect on AREG A. It is indeed:

1. dividing the content of analog register A by 2;
2. duplicating the content of A to F;
3. adding the content of A and F into AREG A.

It will serve as our basic operation that is repeatedly applied to uniform AREGs.
While being very short and generic, it uses three basic operations very commonly
used in convolution kernels produced by AUKE (division by 2, copy and addition).

This kernel is applied up to 32 times, on original input values of 0, 5, 10, 60, 100 and
120. For statistical relevance, this operation is repeated 100 times. Pseudo-code in
Algorithm 1 presents the complete process, and an example is shown in Figure 6.2.
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for INPUT_VALUE in (0, 5, 10, 60, 100, 120):
for ITERATION in (1...32):
for K in (1...100):
AREG_A = uniform(INPUT_VALUE)
save AREG_A as input

apply id_kernel ITERATIONS times on AREG_A
save AREG_A as result

Algorithm 1: Noisy data collection

Figure 6.2: Left: crop of 10*10 pixels on a supposedly uniform input value of 100.
Right: result after applying our identity kernel 4 times on the input. We can notice a
global shift (right image is darker), and an increased amount of noise (right image has
more internal variability).

The resulting images can be saved within the host application. We use this to collect
100 input/result pairs for each input value, for a total of 2¥*100*6*32=38400 im-
ages. We believed it important to not only save results, but inputs too, as they also
are subject to random noise.

Given one input value (in (0,5, 10,60, 100, 120)) and one iteration value (in [0, 32]),
we have at hand 100 input/result pair. Each pair is composed of 2 256*256 arrays,
saved as 8 bits grey scale .BMP files. As in [49], we assume a noise model that is
composed of a constant bias and a centered random component, as follows:

result = id_kernel™ ™" (input) = input + bias + random_noise

with E[random_noise] = 0. We seek to quantitatively characterise both the bias and
the random noise.

Systematic bias computation

Using the centered nature of the random noise, we simply compute the average of
the mean difference between the inputs and the results to get an unbiased estimate
of the bias, for each original input value 7 and iteration count j:

100

. 1 1 .
bzasm = m : Z m : Z ((ZnPUti,j,k)x,y - (Tesuui,j,k):c,y)

k=1 1<z,y<256
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Signal to Noise Ratio computation

A common measure of image degradation between a clean target image and its noisy
version is the Peak Signal to Noise Ratio (PSNR). It represents the similarity between
two images. Expressed in dB, the higher its value, the less noise is introduced by
computations.

For a given input/result pair, the PSNR is calculated as:

val
PSNR =20 - logy ( maxr-vatue )
mean,square,error

255

=20- lOglo
1 . .
\/—256_256 . Z1gx,yg256(mpm:c,y — result,, — bias)?

Notice that the mean square error is in fact calculated on images on which the sys-
tematic bias previously computed is subtracted, to compensate for it.

To get a more synthetic and meaningful result, we only report the average of the 100
values computed for one input value 7 and iteration count j.

Standard deviation computation

To measure the random variability introduced by stochastic noise, we compute its
standard deviation (STD) within one image.

i — Zlgi,j§256 (input; ; — result; ; — bias — mean,dif)2
256 - 256 — 1

where
1

256 - 256 Z (input, , — result,, — bias)

1<z,y<256

mean_dif =

As is done with the PSNR metric, the 100 values of standard deviations we compute
for one input value ¢ and iteration count j are averaged.

Results

The results of the above computations are respectively reported in Figures 6.3, Fig-
ure 6.4 and Figure 6.5.
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Figure 6.3: Evolution of the systematic bias when iterating a supposedly identity kernel
up to 32 times, on 6 different input values.
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Figure 6.4: Evolution of the PSNR when iterating a supposedly identity kernel up to 32

times, on 6 different input values.
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6.1. NOISE ACCUMULATION
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Figure 6.5: Evolution of the standard deviation when iterating a supposedly identity

kernel up to 32 times, on 6 different input values.

We can notice that the more we iterate our supposedly identity kernel, the more
noise is introduced, since the PSNR decreases and the STD increases. Moreover, the
systematic bias is dependent on the input value in a seemingly increasing manner:
the higher the original input value, the higher the systematic bias.

In addition to that, we can discern two phenomena that are slightly out of the general

trend:

* With an input value of 120, there is a stronger than usual signal degradation

when running the kernel 6 to 9 times. This is shown by the drop in PSNR value
and the surge in STD value for these iteration numbers.

With an input value of 60, the PSNR values seem considerably lower than with
all other input values. This would suggest a stronger than usual signal degra-
dation. However, as seen on Figure 6.5, the input image we create contains
a lot of internal variability (ie. noise): the STD value for O iteration is ab-
normally high. A further investigation shows this noise appears in the form
of multiple spiking pixels, as seen on Figure 6.6. Those pixels are averaged
out by applying our almost-identity kernel, which explains why the STD values
for iteration counts strictly superior to zero rejoin the general trend. However,
the corresponding PSNR values are heavily distorted, since result images are
compared to base images that are already noisy.
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Figure 6.6: Left: crop of 40*40 pixels on a supposedly uniform input value of 60. Right:
result after applying our identity kernel 3 times on the input. We can notice abnormal
spiking pixels on the input, that are averaged out in the result.

The causes of these two observations remain unexplained, and multiple runs of the
experiment all exhibit the same singularities. This seems to suggest that the camera’s
behaviour cannot be approximated by a linear model. Complex side effects come
into play, and specific input values, combined with specific instructions result in out
of trend results.

Comparison with the existing noise model

As explained in Section 3.3, the authors of [49] created a noise model for the
SCAMPS5 camera, which quantifies the systematic bias and the stochastic contribu-
tion for many low-level instructions. We here focus on the former, and compare their
theoretical predictions with our empirical results.
To quantify the noise in advance, they fitted first order polynomials and created a
Systematic Error Model, which notably describes the division and addition opera-
tions:

div2(z) = 0.482x + 3.39 (6.1)

add(a, b) = min(0.958a + 0.930b + 6.86, 127) (6.2)

Combining Equation 6.1 and Equation 6.2 for an input value of 100 gives the follow-
ing derivation:

id_kernel(100) = add(div2(100), div2(100))
= add(0.482 - 100 + 3.39,0.482 - 100 + 3.39)
= add(51.59,51.59)
= min(0.958 - 51.59 + 0.930 - 51.59 + 6.86, 127)
= min(104.26, 127)
= 104.26

This gives a theoretical value for the systematic bias of 4.26 for one iteration of
id kernel on an input value of 100. The experimental data we collected exhibits an
empirical value of 7.16, which is almost 70% more.

This major difference could partly be explained by the absence of such a polynomial
noise model for the MOV operation, and for the creation of an uniform AREG content
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- which both surely introduce noise and imprecision. Added to this, first order poly-
nomials are incompatible with our observation that noise cannot be approximated
as a linear phenomenon.

This calls the existing noise model into question. It might have been devised us-
ing another SCAMP5 device than ours, with some minor hardware differences, or
in other environmental conditions - ambient temperature is for instance known to
influence noise level of physical measurements. As a result, these polynomials are of
no help in reliably approximating noise level in our case.

6.2 Tackling the issue of noise

In this section, we evoke possible future research tracks to attempt to tackle this
issue of noise, given the current hardware capabilities. We did not have time to
implement any of the following, but identified some possibly interesting ideas.

6.2.1 On the difficulty of accounting for noise during training

On possible idea would be to directly train convolution kernels that are robust to
noise, by simulating an accurate synthetic noise in our digital computations - i.e.
one that realistically simulates the inaccuracy of a SCAMPS5 device.

The pitfall here would be differentiability. As presented in Subsection 2.2.1, the com-
putational graph of a CNN needs to involve differentiable operations only, to allow
for back-propagation and training. At the moment, the noise models we consider,
in addition to being inaccurate as explained in Subsection 6.1.2, are all at the in-
struction level - i.e. they simulate noise for each FPSP instruction, such as addition,
shifting or division. Using them for convolution kernels therefore requires the use of
AUKE, to compile a kernel into FPSP code. As it is currently formulated, AUKE uses
traditional branching instructions (if, then, else...) which are not differentiable.
As seen from an optimiser such as Adam [27], AUKE is a black box breaking the com-
putational graph, through which back-propagation and weights update is impossible.

A potentially very interesting future work could therefore be to devise a differen-
tiable noise model, in the sense that it is usable during training. A way of doing so
would be to learn it. For instance, a neural network could be trained to predict the
standard deviation and bias when given a convolution kernel as input. Alternatively,
a neural network could even be trained to be a full FPSP simulator, taking a convolu-
tion kernel and the content of an AREG as inputs, and predicting the content of the
AREG as if it was convolved on the focal plane. Both cases would require gathering
a lot of training data from a real FPSP, but present the great benefit of being fully
differentiable by nature once trained.

6.2.2 Averaging methods for noise reduction

The most common practice to reduce random noise due to physically noisy mea-
surement is to average results. Averaging n independent measurements results in a
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scaling of the standard deviation in /.

Temporal averaging

A possible solution to achieve this averaging would be to run the network several
times on one input image, and average all the results. The stage at which averaging
would take place still remains an open question, both in terms of technical feasibility
and experimental optimality: one could average the final outputs, or each layer, or
even collected events through a voting mechanism.

Spatial averaging

Another possible solution to implement this noise reduction technique would be with
spatial averaging. For example, a CNN could be run on up-sampled inputs - say a
56*56 image instead of a 28*28 one, with each pixel optically duplicated 4 times.
The convolutions could be applied using the technique developed in Section 4.4, and
a voting process performed in each 2*2 square when collecting events.

This solution is basically equivalent to running the same network four times, but in
only one pass. It takes the benefit of an advantage of our hardware (pixel parallel
computations) to compensate for its major defect (noisy computations).

We have here discussed the issue of noise, and proposed new experiments to quantify
it. We explained why it is the most serious obstacle to implementing multi-layer
CNNs on the SCAMPS5 device, and what could potentially by done to mitigate it. In
the next chapter, we present a concrete real-world use case for the SCAMP5 device.
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Demonstration: steering direction
prediction

In this chapter, we provide a new demonstration and use case for the SCAMP5 de-
vice, by using the vision sensor for an embedded robotic application. We use its
capabilities to run simple CNNs at a very low power consumption and very high
frame rates. As opposed to a traditional camera, an FPSP should provide meaningful
and refined information extracted from a scene, and not a raw image that has yet
to be interpreted by some central unit. We here apply knowledge and techniques
developed earlier in these report, to prove their generic nature.

The high frame rate and low power consumption of the device make it a good fit for
robotic applications. Typical network architectures used for robot navigation such as
in [38], [43] or [32] involve tens of layers, each of them with tens of feature maps.
This is far beyond what can currently be implemented on a SCAMPS5 device. For this
reason, we focus on a very simple example: robot line following. It is long known
how to achieve it with very basic sensors and micro-controllers, but these solutions
require domain specific knowledge. Here, we intend to demonstrate a completely
novel approach by learning to solve this task in an end-to-end manner. The only
requirement is that the SCAMPS5 vision system should see the floor on which the
line is drawn. To put it in a nutshell, we provide a proof-of-concept that uses a new
paradigm applied to an otherwise long solved task.

7.1 Implementation

We use an existing robot platform, running ROS, an open-source Robot Operating
System [42]. The wheeled platform is controlled by a Raspberry Pi running Rasp-
bian. We aim at interfacing the SCAMP5 vision system via USB, and to have it issuing
steering commands based on what the camera sees. Figure 7.1 shows our wheeled
platform equipped with the SCAMP5 device.
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Figure 7.1: The wheeled robot, with the SCAMPS5 vision system attached to it, interfaced
via USB. We can also see the white line on the floor, made of paper strips.

7.1.1 CNN architecture

We use our standard AnalogNet2 architecture: a single layer CNN, composed of
three 3*3 convolutions followed by a two layer fully connected network - with 50
hidden units and 3 output units. The three output units each correspond to a steering
direction, that can either be to turn left, turn right, or continue straight. As such,
this CNN is a classifier that recognises the direction to follow.

The most notable difference with AnalogNet2 used for MNIST is that we here need to
preserve the whole visual field of view of the camera, and not the central 28*28 pix-
els. Preserving input images of size 256*256 pixels would imply reading too meany
events on whole 256*256 DREGs, which would considerably slow down our infer-
ence time. To avoid this, we propose a slight optimisation, and only use the central
192*192 input pixels, that we downsample by a factor of 2 along each direction. To
do this, we simply:

1. mask out 32 pixel borders on the input images,

2. mask out 1/4 of the pixels of the remaining central area, with a pattern similar
to what is used for pooling (see Section 4.3),

3. use double shift instructions for running the 3*3 kernels, with values that are
no longer neighbouring on the focal plane (see Section 4.4).

Moreover, we no longer use the new binning layout presented in , as each part of the
image is judged equally important here. Each output feature map is hence divided
into nine equally distributed bins, and the input of the fully connected layers is a
vector of size 27.
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7.1.2 Getting training data

To get training data, we remotely control the robot so that it follows a line we draw
on the floor, with the SCAMP5 mounted on it. We then manually annotate the
acquired frames, depending if it corresponds to a right or left run, or a straight line.
The images are then down-sampled by a factor of 2 along each direction.

On these labelled images, a severe data augmentation process is run, in the form of
random tilts of angles between -5 and +5, and random crops of size 96*96 pixels.
The final dataset includes 1600 labelled sampled, of which 30% is reserved for test-
ing, and the rest for training purposes. In our digital simulations, our very simple
architecture reaches 75% testing accuracy.

Once the convolution kernels have been implemented on the SCAMP5 vision system,
we once again collect training data, but this time in the form of vectors of size 27,
which are the outputs of the convolutional part of the network. This noisy, in-situ
data is used to re-train the fully connected layers.

7.2 Results

The full network running on the SCAMP5 device correctly interprets the scene to
extract steering directions. Figure 7.2 shows a capture of the host program record-
ing live data from the vision system, and a video is available at https://youtu.be/
xQ4vnRv100Y. With a latency at 8.8 ms, the system can run at 110 FPS, with a power
budget of 15.2 mJ per frame, or 1.7 Watts at full speed (including USB communi-
cation).

As seen on Figure 7.2, input images are extremely dense, with a lot of activated
pixels. As a result, so are output feature maps, and an unrealistically high number
of events has to be used to collect them - 5000 events per feature map, or 15000 in
total. This is drastically higher than the previous architectures we explored, which
required between 300 and 450 events to be collected to feed the fully connected
layers. This explains why computations are much slower and voracious in energy
in this case compared to AnalogNet2 for MNIST digits recognition, all other things
being equal. As a comparison, the author of [49] report the Intel Movidius Myriad 2
Neural Compute Stick to be able to run AnalogNet in a power budget of 3.7 mJ per
frame, which is strictly inferior to the 15.2 mJ we report here.

The very first improvement that one could bring to this architecture could be to
extract and only preserve the borders of the input images before running the CNN.
This can basically be done for free on the focal plane, and would make the input
images much sparser. We could expect the output feature maps to also be sparse,
and to possibly be collected in fewer events.
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Figure 7.2: Capture of the SCAMPS5 host program. Top: input image, showing the white
line making a right turn, as seen from the vision system. Bottom: USB text message,
corresponding to a right turn (3). Other possibilities not shown here are going forward
(2) and turning left (1).

7.3 Robot control

Unfortunately, we were unable to make the SCAMPS5 vision system control the robot.
A lack of time and engineering issues related to powering the camera through the
Raspberry Pi constituted obstacles we could not overcome in time. Our experiments
also proved that setting a correct illumination and keeping it constant was also a
topic on its own, as for temporally averaging and smoothing the SCAMP5’s steering
commands.

Sadly, we could not fully carry out this demonstration with the robot following a line
on its own, based on instructions issued by the SCAMPS5 vision system. However, we
are confident enough to say that the CNN is able to accurately extract steering direc-
tions, which in addition to demonstrating serious computing capabilities in terms of
network inference, provides an improvement in functionality - whereas AnalogNet2
mainly brought an improvement in performance.
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Conclusion and future work

We have presented the unusual computation paradigm of FPSPs, be it for its ben-
efits and its restrictions. Despite being hard to apprehend and noisy, their pixel-
wise parallel analog computations allow for the most competitive latency and en-
ergy consumption for some computer vision tasks. We have a clearer view of the
broader landscape this work contributes to, at the intersection of deep-learning and
re-configurable computing.

8.1 Contributions summary

Diving into technical implementation details, we were able to push the boundaries
of CNN classification ever achieved on the SCAMPS5 device - to the best of our knowl-
edge. AnalogNet2 defines the new baseline on MNIST, with an in-situ testing accu-
racy of 96.9%. We also provided valuable advice for future CNNs on FPSP, be it
the SCAMPS5 device or another one. It takes the form of improvements in training,
simulation, implementation easiness, inference speed and final accuracy.

Moreover, we explained the limitations we face in trying to port regular CNNs to
our instance of an FPSP, the SCAMP5 device. We have clearly identified the issues
that have to be overcome to implement a second convolutional layer, and the most
promising way of doing it is using pooling operations or quantisation.

Finally, we devised reproductible experiments to quantify noise accumulation on the
focal plane.

8.2 Future work

Software-wise, the most promising future work we see is to create a differentiable
noise model. It could be used during the training phase, to create convolution ker-
nels robust to noise, that could potentially be chained to create multi-layer CNNs
performing better in-situ. It would help narrowing the gap between digital simula-
tions and focal-plane computations, and ease the training process - the re-acquisition
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and re-training process for the fully connected layers would no longer be needed.
We see a potential solution in using deep learning to simulate noise. As explained
in Section 6.2, another possibility would be to re-think network architectures and
executions to mitigate noise, with averaging techniques for example.

Hardware-wise, the priority would be to develop a less noisy FPSP. This can easily
be quantified with the experiments we provide, which could potentially be used to
navigate the design space to propose a more accurate future version of SCAMPS5.
We can accommodate the limited number of instructions on the focal plane (such as
the absence of multiplication or division) and on the MO core (such as integer only
multiplications). We would however greatly benefit from an increased capacity in
AREGs and DREGs, from the ability to write longer programs for the vision chip, and
from a faster MO core. Finally, having a dynamic range on AREGs centered around
zero seems unoptimised for CNN applications, since half of it (the negative part) is
wasted after applying a ReLU activation function.

Finally, for new interesting demonstrations, we could imagine pairing the SCAMP5
device with a latest generation VPU such as Googles Edge TPU [13] to run an
encoder-decoder architecture. The encoder part would run on the focal plane, only
the code would be transmitted to the VPU that would execute the decoder. This
association could allow an unbeatably low latency and power consumption for such
diabolo networks.
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Appendix A

Two layer network using quantisation

The following pages present the complete program flow of the CNN presented in
Subsection 5.2.1. Each one of the 32 steps is numbered in the lower right corner,
and shows the current operation and registers’ content.
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Appendix B

Ethical and professional
considerations

Our exploratory work can be considered as providing new primitives for very high
throughput and low energy embedded CNN inference. It hence opens the way to po-
tentially new and unforeseen applications. A small, embedded vision system, with
advanced feature extraction capabilities and extremely long battery life can be used
for numerous applications. Some, such as wildlife protection or crop surveillance,
could be a boon for tackling modern days issues. Others, such as hidden autonomous
snooping, could arguably raise important privacy concerns, and be used for criminal
purposes. The range of potential applications even extends to the military domain,
be it for area of operations surveillance or in the form of new wearable vision sys-
tems.

We however consider this considerations to be relevant for any ‘foundational’ work,
especially when related to image processing and computer vision. It should therefore
not refrain us in pursuing our work.

The following two pages include the ethics checklist provided by the College.
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Yes No
Section 1: HUMAN EMBRYOS/FOETUSES
Does your project involve Human Embryonic Stem Cells? v
Does your project involve the use of human embryos? v
Does your project involve the use of human foetal tissues / cells? v
Section 2: HUMANS
Does your project involve human participants? v
Section 3: HUMAN CELLS / TISSUES
Does your project involve human cells or tissues? (Other than from “Human
Embryos/Foetuses” i.e. Section 1)? \
Section 4: PROTECTION OF PERSONAL DATA
Doesyour project involve personal data collection and/or processing? N
Doesit involvethe collection and/or processing of sensitive personal data
(e.g. health, sexual lifestyle, ethnicity, political opinion, religious or v
philosophical conviction)?
Doesit involve processing of genetic information? v
Doesit involvetracking or observation of participants? It should be noted
that thisissueis not limited to surveillance or localization data. It also v
applies to Wan data such as IP address, MACs, cookies etc.
Does your project involve further processing of previously collected personal
data (secondary use)? For example Does your project involve merging v
existing data sets?
Section 5: ANIMALS
Does your project involve animals? v
Section 6: DEVELOPING COUNTRIES
Doesyour project involve developing countries? v
If your project involves low and/or lower-middleincome countries, are any v
benefit-sharing actions planned?
Could thesituation in the country put theindividuals taking part in the v
project at risk?
Section 7: ENVIRONMENTAL PROTECTION AND SAFETY
Does your project involve the use of elements that may cause harm to the v
environment, animals or plants?
Doesyour project deal with endangered fauna and/or flora /protected areas? v
Does your project involve the use of elements that may cause harm to v
humans, including project staff?
Does your project involve other harmful materials or equipment, e.g. high- v
powered laser systems?
Section 8: DUAL USE
Does your project have the potential for military applications? v
Doesyour project have an exclusive civilian application focus? v
Will your project use or produce goods or information that will require v
export licensesin accordance with legislation on dual use items?
Does your project affect current standards in military ethics—e.g., global ban
on weapons of mass destruction, issues of proportionality, discrimination of v

combatants and accountability in droneand autonomous robotics
developments, incendiary or laser weapons?

Section 9: MISUSE




Doesyour project have the potential for malevolent/criminal/terrorist
abuse?

Does your project involve information on/or the use of biological-, chemical-
, huclear/radiological-security sensitive materials and explosives, and means
of their delivery?

Does your project involve the development of technologies or the creation of
information that could have severe negative impacts on human rights
standards (e.g. privacy, stigmatization, discrimination), if misapplied?

Does your project have the potential for terrorist or criminal abuse e.g.
infrastructural vulnerability studies, cybersecurity related project?

SECTION 10: LEGAL ISSUES

Will your project use or produce software for which there are copyright
licensingimplications?

Will your project use or produce goods or information for which there are
data protection, or other legal implications?

SECTION 11: OTHER ETHICS ISSUES

Arethere any other ethicsissues that should be taken into consideration?
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