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Abstract

Modern times are distinguished as the Renaissance of Deep Learning, with remarkable advances
across a wide range of domains and abundant research constantly pushing its boundaries. As
models and datasets increase in size, people move to distributed clusters, which pose new challenges
to training. Distributed training systems usually use the Parallel Stochastic Gradient Descent
algorithm to scale out training. This algorithm creates large network traffic and an intensive need
for synchronising the entire system. The fundamental limitation is that they inevitably explode the
batch size and force the user to use large batches for training, in order to reduce communication
traffic and the intensive demands for synchronising the entire system. Existing systems tend to
adopt high-end specialised hardware and network such as InfiniBand, which eventually fail because
of large network traffic and large clusters reaching hundreds of nodes. The hardware solutions are
very expensive, do not scale and fundamentally, the system will suffer from large batch training,
so the user may not be able to converge training when scaling out. In this project, I aim to design
a system for Deep Learning that enables flexible synchronisation to address communication and
large batch training solutions. The system brings three new designs: it has an abstraction that
allows the user to declare flexible types of synchronisation, much more complex than Parallel SGD,
it has a high-performance communication system where workers exchange gradients and models
to collaborate for training and it enables monitoring for network and training statistics, providing
support for dynamic adaptation of synchronisation strategies. I develop two advanced synchro-
nisation algorithms based on this new system. One algorithm can exchange partial gradients if
the network experiences bottlenecks, while the other enables each worker to selectively synchro-
nise with other peers, reducing the global synchronisation overhead. These algorithms can further
benefit from monitoring and adaptation to improve convergence and performance. I run large-scale
test-bed experiments in commodity cloud to evaluate the effectiveness and performance of the pro-
posed systems and algorithms. Experimental results show that the new system can converge to
state-of-the-art accuracies while improving training performance by up to 22.5 times.
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Chapter 1

Introduction

1.1 Motivation

Current times are characterized as the Renaissance of Deep Learning (DL) [7]. With the recent
advent of DL Techniques powering most recent breakthroughs in Intelligent Games, Visual Per-
ception, Self-driving cars, Speech and Language, Art and Creativity [7], the field has experienced
a rise in popularity proportional to the scale of achievements. Biologically inspired [8] to model
human perception, DL can parallel or even exceed human performance on complex tasks. The
impressive achievement of winning the ImageNet competition [9] [10] in object recognition using
Deep Neural Networks in 2012 has later been superseeded by the success of the ResNet [11] archi-
tecture (2015). The revolution of Generative Advesarial Networks (GANs, 2014) [12] opens new
research frontiers in Visual Perception, such as image-to-image translation [13] and face generation
[14]. DeepMind’s AlphaGo further proves how a computer program can defeat a world champion
at the game of Go [15]. These achievements in DL constitute the beginning of an era of novelty and
achievement. As computational complexity of models increases and data sets become large-scale
collections. Big industry players such as Google, Uber, Baidu and Facebook are focusing their
efforts [5, 16, 17] on improving user experience by using Deep Learning at scale.

A neural network is constituted as a collection of layers capable to represent relations between
dataset inputs through a set of parameters called weights. The weights quantify non-linearities
between specific features of the data and cause neurons to fire or activate when such features are
recognised on newly fed data. After the pioneering of the perception [18] as the basic unit capable
of learning, theorems have been developed for combining these units in order to achieve better
learning capacity. One such theorem is the Universal Approximation Theorem [19], which states
that stacking perceptions can approximate any continuous function. However, width would make
it difficult to represent most complex relations between inputs in modern datasets. Therefore, the
preferred organisation of neurons considers depth of architecture. To reach good performance on
tasks, the eventual solution is to increase depth of neural networks for effective learning on big
datasets.

Deep neural networks (DNNs) are often trained using supervised learning through the use
of stochastic gradient descent (SGD) [20]. Users provide a training and testing dataset that
consists of labelled data samples. Samples are fed iteratively into a neural network which makes
a prediction. The prediction is compared against the label and then the loss is produced (i.e., the
distance between the prediction and label). The aim of the training is to minimise the loss. Based
on the loss, the training algorithm produces gradients to correct the weights of a neural network
layer-by-layer using back-propagation [21]. Today’s datasets often contain millions (ImageNet [22])
or even billions of data samples (Click Dataset [23]), to amortise per-sample training cost, people
often adopt mini-batch SGD [24]. Data samples are grouped into batches and fed into the neural
networks in an iterative manner. Gradients are produced and applied on a per-batch basis.

More recently, practitioners have paid substantial attention to accelerate training through dis-
tributed training [25, 5]. One such motivation is constituted by modern Al-backed systems with
continuous ingestion of data, for which periodic training is critical for up to date inference capabil-
ities (e.g., TensorFlow Federated, Smart Mobile Keyboards Training [26]). The problem demands
leveraging the resources of multiple machines and the fast interconnects that are usually present in
cluster setups for solving distributed optimization, which is a prerequisite mathematical problem



for large-scale learning tasks [16]. Distributed training concerns multiple replicas which train
models in parallel on distinct shards of the entire dataset. A key operation in distributed training
is to synchronise the replicas after each iteration (i.e., batch) of training. This enables replicas to
incorporate more meaningful weight updates learnt by other replicas on their distinct shard, and
thus ultimately accelerate convergence [27]. In these days, people usually use the parallel SGD
(P-SGD) algorithm to synchronise replicas. This algorithm adopts parallel training workers to dis-
tribute the cost of computing gradients. At the end of an iteration, all workers compute gradients
locally, compute a global average model and then move to the next iteration with the synchronous
average model. P-SGD has been implemented as the de-facto synchronisation approach by most, if
not all, DL platforms such as TensorFlow [28], PyTorch [29], Caffee [30], CNTK [31] and Keras [32].

1.2 Problem statement

Scaling-out training, however, often incurs a non-trivial communication bottleneck [33, 16, 34].
This is often due to the high communication requirement incurred by supporting all workers to
frequently synchronise large DL models in a commodity infrastructure. There are two major issues
resulting in this bottleneck:

e Large network bandwidth consumption. DL systems often run over data centre networks where
network bandwidth is restricted. Providing full bi-section bandwidth (e.g., 40Gbps) in data
centres is prohibitively expensive [4]. As a result, data centre providers often over-subscribe
networks, i.e., a typical over-subscription ratio is between 1:4 and 1:16 [4]. Synchronising
DL models in over-subscribed networks is particularly challenging. The state-of-the-art DL
model like ResNet-152 [11]| contains 60,344,232 parameters [35], summing up to hundreds
of mega-bytes (e.g., 244 mega-bytes [35]) of data required by each synchronisation operation.
The bandwidth challenge becomes more prominent as the performance of a GPU is quickly
evolving. For example, the contemporary V100 GPU [36] can complete several and tens of
mini-batches of training for a ResNet-50 model per second [37]. This boosts synchronisation
frequency, and thus raises the bandwidth requirement substantially.

o FEzxpensive synchronisation barriers. It is also expensive to maintain system-wide synchroni-
sation barriers for a DL training job. Every iteration, coordinating all training workers to
exchanging gradients not only creates challenging all-to-one and one-to-all communication
patterns [16, 38, 33], making the system vulnerable to bandwidth shortage and TCP in-cast is-
sues [34]. It also makes the system suffer from stragglers [39], failures [38], and competing ten-
ants [40] which are common in commodity infrastructure (e.g., Huawei Cloud Public Shared
P100 GPU Pool [41]). More importantly, the existence of this barrier makes the DL system
difficult to leverage increasingly available cost-effective preemptive GPU resources [42, 43].
These resources offer 70% discounted price compared to reserved resources [44, 45|; however,
they can be reclaimed at anytime with a short period of notice (e.g., 30 seconds). As the
availability of resources becomes unpredictable, maintaining a strict global synchronisation
barriers can bring the entire system to halt often. This is undesirable for time-consuming
neural network training which can span days or even weeks.

1.3 Existing work

Existing systems attempt to address the above two issues by either improving networking perfor-
mance or synchronisation efficiency. To improve networking performance, they resort to expensive
specialised communication infrastructures such as InfiniBand [46] and NVlink [47]. These in-
frastructures provide low-latency and high-bandwidth; by default, they have limitations to run
in large-scale cloud and Ethernet environments [48, 49] and they are predominantly deployed
at small scale. To improve synchronisation efficiency, there are efforts like Horovod [5] and Baidu
AllReduce [50] that leverage the high-performance collective communication systems such as Open-
MPT [51], to speed up the averaging computation of gradients. There are also efforts that explore
for asynchronously exchanging gradients [52], filtering out gradients [53] and compressing network
traffic [54]. These efforts, however, only mitigate the issues of P-SGD. When the system scale be-
comes large, it eventually suffers from tremendous amount of synchronisation and from overheads
of maintaining barriers [55].



More recently, there are new synchronisation algorithms being proposed to avoid communica-
tion bottlenecks while achieving the same training accuracy as P-SGD. At the high level, these
algorithms explore three novel directions: (i) they relax synchronisation barriers by letting replicas
to consolidate through a global average model in an asynchronous manner [56, 57]. This average
model corrects local replicas instead of replacing replicas as in P-SGD. This allows training work-
ers to evaluate more local minima through diverged model replicas, and thus achieve high training
accuracy; (ii) they also let replica to synchronise with selective replicas, instead of all replicas as
in P-SGD [58]. This reduces synchronisation traffic while preserving consolidation among replicas;
and (iil) they let replicas to synchronise partial gradients with peers [33] when the network band-
width is limited. Though promising, to the best of our knowledge, these emerging synchronisation
algorithms are only available on proof-of-concept systems and not supported within any popular
DL platforms such as TensorFlow, PyTorch and CNTK. These popular systems provide P-SGD
as the only synchronisation option, often through dedicated systems like parameter servers [16]
and all-reduce systems [5, 51, 50]. Implementing a new synchronisation algorithm requires largely
modifying the existing systems, which makes it often infeasible for most DL system users.

1.4 My approaches and evaluation result

In this project, I explore new system designs that can enable flexible synchronisation algorithms for
the de-facto deep learning platform: TensorFlow. My key idea is: embedding synchronisation oper-
ators into the execution graph of a training worker to transparently intercept gradients and model
variables and supporting user-defined policies to flexibly direct synchronisation among workers.

Realising this idea, however, is not trivial due to three main limitations in TensorFlow: (i)
TensorFlow requires developers to manually declare the dataflow including the operators to syn-
chronise. To adopt different synchronisation algorithms, developers have to largely rewrite their
training programs [59]; (ii) TensorFlow adopts dedicated, monolithic components such as parame-
ter servers [16] to implement synchronisation operations. This not only limits the synchronisation
policies user can specify (e.g., parameter servers only allow users to synchronise gradients not
model variables), but also incurs cross-system communication overheads; (iii) TensorFlow provides
very little, if any, support for helping developers understand the effectiveness of the underlying
synchronisation algorithm, making it hard for developers to choose synchronisation tailored for
their requirements.

To address above limitations, I propose and implement three novel designs for TensorFlow:

o A high-level yet flexible synchronisation abstraction. To enable flexible interception of gra-
dient and model variable traffic, I extended the TensorFlow Optimizer [60] interface and
develop a collection of distributed optimisers. These optimisers can be easily added to ex-
isting TensorFlow training programs (i.e., simply wrapping the existing training optimiser).
Internally, users can easily configure the places to capture gradients and model variables
at different timings of training. We show that such an abstraction is sufficient to support
all the synchronisation algorithms we are aware of by far; while incurring negligible extra
development overhead.

o A high-performance communication system that provides diverse synchronisation primitives
for parallel training workers. 1 implemented a high-performance communication system that
allow training workers to flexibly exchange the intercepted gradients or model variables.
This communication system provides collective and point-to-point synchronisation primitives
such as all-reduce and model request. The communication operations can also be easily
configured to execute synchronously or asynchronously. This allows developers to explore
different synchronisation configurations leading to various training accuracy and performance.
Last but not least, this communication system has a peer-to-peer decentralised architecture,
moving away from the conventional master-slave architecture adopted by most TensorFlow
synchronisation systems. The communication system can thus support a large number of
training devices, and even adopt the challenging preemptive GPU resource.

e Nowel monitoring and adaptation mechanisms for evaluating and controlling synchronisa-
tion algorithms online. To help developers understand the effectiveness of synchronisation,
I also implement rich monitoring and adaption support for synchronisation algorithms. In



particular, I provide online monitoring operators for network statistics and training statis-
tics. These operators can provide sufficient insights to evaluate the hardware and statistical
efficiency [57] of a synchronisation algorithm. Based on these monitoring data, I also im-
plement an adaptation mechanism that helps developers to adjust the configuration of a
synchronisation algorithm online.

I demonstrate the usage of the above novel components through two synchronisation algorithms:
partial gradient exchange and selective peer model averaging. The former algorithm allows Tensor-
Flow users to dynamically select the important gradients to synchronise every iteration when the
network bandwidth is limited. The latter allows TensorFlow users to evaluate and choose which
replicas to synchronise, which can significantly break down the synchronisation barrier and reduce
synchronisation traffic. I evaluate the performance of these two algorithms on a Cloud test-bed.
Experimental results show that they can improve the training time of state-of-the-art DL models,
e.g., ResNet, by up to 40% in a high-performance DL cluster where the network is provisioned
with InfiniBand [46]. In a more realistic Cloud network setting where network bandwidth is over-
subscribed, they can improve the training throughput by up to 22.5x. Further, we enable the
partial gradient exchange algorithm to leverage the online monitoring and adaptation primitives
to improve training accuracy. By making informed online decisions to switch between P-SGD and
partial gradient exchanging, the training time of a ResNet-50 job can be reduced by 2.9 hours
while still converging to the state-of-the-art accuracy.

1.5 Contributions

This thesis has four key contributions:

e Designed a high-level yet flexible synchronisation abstraction to help TensorFlow users declare
diverse synchronisation policies with minimal changes to their training programs.

e Implemented a high-performance communication system that can be naturally embedded
within existing TensorFlow worker implementation; while providing novel collective and
peer-to-peer synchronisation primitives that are key to realise emerging synchronisation al-
gorithms.

e Proposed novel monitoring and adaptation mechanisms to help evaluate and control synchro-
nisation algorithms online.

e Demonstrated the usage of the proposed synchronisation systems using two practical syn-
chronisation algorithm and run large-scale test-bed experiments to verify the performance
and effectiveness.
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Chapter 2

Background and Motivation

This chapter presents the background and motivation of my thesis. It first provides the theoretical
framework that enables training and explains the training components in TensorFlow. Subse-
quently, the transition to a distributed set-up is made through presenting the de-facto algorithms
people use nowadays for distributed training. From these, we identify key synchronisation chal-
lenges and describe what it means to achieve flexible synchronisation. The perspective is then
focused on existing systems where we identify a gap to be covered by a new system design for
supporting flexible synchronisation.

2.1 Deep learning

This section provides an insight into Deep Neural Networks complemented by a presentation of
the mathematical background essential for understanding how training works.

2.1.1 Deep neural networks

Since the breakthrough of the multi-layer perceptron and the back-propagation algorithm in 1986
[21], the class of problems which can be solved using neural networks becomes larger and the
problem specifications more complex. A Neural Network Model is a collection of layers and the
types of layers and their order in the Neural Network forms the architecture of the model. Each
layer consists of weights, also denoted as parameters Thus, it becomes imperative to adopt new
architectures that improve accuracy for these problems. This motivates more complex neural
networks with more than two layers called deep neural networks, which are able to represent and
learn nonlinear data features. But why is depth preferred to width in neural networks? The
Universal Approximation Theorem [19] states that stacking perceptrons [18] in a single layer of
the neural network can arbitrarily approximate any continuous function arbitrarily accurately.
However, this has two drawbacks in practice: (1) the difficulty of working with large non-sparse
matrices which leads impossibility to split the computation such that the resources are efficiently
used and (2) the complexity of modern datasets requires the neural network to make more subtle
correlations between complex features. As such, the preferred approach is to use Deep Neural
Networks for the majority of learning tasks.

There are three basic types of neural networks: feed-forward, convolutional and recurrent net-
works. These are often interwoven to achieve better performance on various learning tasks. These
are composed of layers with different functions. Fully-connected layers capture non-linearities in
data and constitute a building block for Deep Neural Networks. Individual fully-connected layers
are often the heaviest in terms of number of parameters or weights. Recurrent neural networks rely
on retaining and forgetting information fed sequentially. Our focus is on Deep Convolutional Neu-
ral Networks for supervised learning, which are biologically inspired [8] to model human perception.
This is realized through convolutions, which are designed to fire for the most prominent features
of their inputs. Convolutions are common in Computer Vision tasks, where multiple layers create
hierarchical activation maps that emphasize most relevant features of an image (edges, corners,
shapes). Because of the wide applicability there are algorithms [61] that allow efficient computation
of convolutions using simple matrix operations, benefiting from considerable hardware support for
parallel computation (GPUs).

11
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Figure 2.1: (a) Loss Landscape of Neural Networks [1], (b) Empirical Loss in Deep Neural Networks

2]

In these days, one of the state-of-the-art Deep Neural Networks is ResNet [11] which has been
successfully used for Computer Vision Tasks such as recognizing objects in Images. A notable
achievement superseeding existing Deep Neural Network architectures is made by ResNet-152,
winner of the 2015 ImageNet [10] competition involving recognizing 22,000 classes of objects in 14
million images. The building block of a ResNet model is the residual block , which constitutes a
grouping of convolutional layers. The novelty brought by this family of models is constituted by the
skip connections between residual blocks, which allows deeper layers to receive inputs from earlier
layers. The models are parameterized by the number of residual blocks, such that the training
difficulty and the complexity of the learning tasks are in direct correspondence with this number.
For example, ResNet-32 is trained on CIFAR-10 [62] dataset consisting of 50000 training images and
10000 validation images and the more complex ResNet-50 is trained on the ImageNet [22] dataset,
consisting of 1,281,167 training images and 50000 validation images. The latter models represent
benchmark Convolutional Neural Networks worth exploring when designing a new system due to
their practical applicability, robustness and the heavy computation incurred by their training.

2.1.2 Learning through gradient descent

The key mathematical concept in training is optimization for supervised learning, where in-
puts have known labels. Notable supervised learning applications are image classification, image
segmentation, scene recognition, pose recognition and speech recognition [7]. The fundamental
optimization problem is solved by an algorithm called Gradient Descent [20)].

Stochastic gradient descent Deep Learning algorithms involve optimization of the general-
ization error characterized by a function called loss function, error function or cost function [63],
terms that can be used interchangeably. The aim is to minimize the loss function with respect to
the inputs, current set of parameters, hyper-parameters and target labels. There are two types of
optimization, conver and non-convez, depending on the surface of the objective function. Deep
Learning deals with non-convex optimization where functions may have complex surfaces similar
to the illustration in Figure 2.1a using gradient-based approaches. In convex optimization, the
function surface does not have negative curvature and the global minimum can always be found by
descent algorithms. Non-convex function optimization does not guarantee global optimality, hence
the minimum found is most often local [7].

Stochastic optimization for Deep Learning does not always lead to a unique solution and instead
tries to find good approzimations of the global solution. Choromanska et al., 2015 [2| have shown
empirically (Figure 2.1b) that convergence to a minimum that is close to the global function
minimum in the complex surface of the loss function commonly shown in Deep Neural Networks
becomes less important as the number of layers increases. When the network becomes deeper,
the distribution of the loss values becomes more concentrated. In most of the experiments, the
optimization yields roughly the same minimum loss, but a different minimizer |2, 7|. This means
that there is no unique solution in stochastic optimization for Deep Learning. However, finding
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a good solution is hard and new techniques are constantly developed to improve the foundational
algorithms presented in this section [64] [65] [66].

Gradient descent [67] is the technique used to minimize the loss function. This is an iterative
algorithm used to seek an extreme point of a function. The aim of the problem is to find the
minimum of a function given a current point in its range. Assuming a multi-dimensional space,
the first step in minimization is computation of the derivative of the function with respect to
its parameters, which gives the gradients. Gradients have two key properties: magnitude and
direction. Gradient descent works by making steps of fixed size in the direction of the steepest
descent, which is the direction of opposite sign to the computed gradients. This adjustment gives
the update rule by which parameters of the function are adjusted. When a local minimum is
reached the value of the parameters at that point give the optimal solution to the optimization
problem. The formalisation of the algorithm is presented next.

Let Lp : © — R*T be the loss function defined on the whole data set, where © is the set of
parameters of the model. L is assumed to belong to the class of twice differentiable functions. The
expression for Lp for training data (z;,y;) € X x Y, i € {1... N}, some parametric model from
the hypothesis space H, fg € H, fo : X — Y’ and sample loss function [ : Y/ x Y — R, is:

. 1 &
Lp(0) = Nzl(fe(xi),yi)[”/]

The objective is to minimize L p(0) with respect to the current set of parameters, that is to
make a change d in 6 which produces the biggest decrease in the value of the loss function Lp(6)
[7]:

d = arg min L(0 + d) — L(0) such that ||d|| =1
d

~ arg min VL(0)"d such that ||d| =1
d

Coosing the o metric ball yields:

d = arg min VL(0)7d such that ||d||; = 1

After a pass through all data points in D, the following weight update rule is applied: w41 <
wy,—nV Lp(#), where n represents the learning rate and V Lp(6) is the gradient of the loss function
with respect to the parameters of the model after a full pass through the dataset. The algorithm
continues until convergence or for a pre-defined number of iterations. In Machine Learning, this is
considered a batch optimization method, where the term batch refers to the whole data set.

Mini-batch stochastic gradient descent Iterating through D is expensive for modern Deep
Learning algorithms given the scale of data sets. A more efficient approach is to use stochastic
optimization techniques. At the opposite end of the spectrum lies the Stochastic Gradient De-
scent [20] which is an online method that approximates the true gradient by drawing one random
sample from the data set [63]. Convergence is achieved by multiple passes over the data set. In
Deep Learning, the compromise method is the mini-batch Stochastic Gradient Descent [24], which
draws a random sample set (with replacement) from the independent and identically distributed
data points and computes an unbiased estimator for the true gradient at each iteration [63]. The
mini-batch size is usually a power of two. Complete processing of all mini-batches constitutes an
epoch.

Mini-batch Stochastic Gradient Descent can be formalised using the following expression for a
setting where the mini-batch size is b and the set of inputs in a mini-batch is denoted by B:

b
Wy <— W1 — %ZVIJB(J[G(%)»%)
=1

where 7 is the learning rate and Ig(fg(x;),y;) is the individual loss computed on one input in
a mini-batch.
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Key hyper-parameters One notable aspect is that the true loss function is unknown to the
optimization problem. Instead, training approximates the value of the loss function given the
data. This is one of the main reasons why training is a difficult optimization problem, but it can
be conquered by using a large data set and careful hyper-parameter tuning.

Back-propagation In supervised learning, training data are fed to the network and their known
labels used to quantify the loss of the current model, also known as forward pass [7]. These are
updated during the training process using computed gradients. The aim is to minimize the loss
function with respect to the parameters of the model using the backpropagation algorithm [21],
which computes a gradient correction for all model parameters, also known as backward pass [7].
This involves repeated application of the chain rule in differentiation in order to compute the
gradients. The correction intuitively represents new experience to be incorporated such that the
model improves on the supervised learning task.

2.2 Deep learning systems

DNN training requires specialised systems that meet the computational needs of training and pro-
vide appropriate hardware support for efficient computation. The fundamental element in neural
network training is a tensor, which represents a multi-dimensional array of numbers. Training
relies on tensor operations for the forward and backward pass, which are the most computationally
intensive operations. All layer functions reduce to basic matrix operations [61]. DL systems are
necessary because they provide mathematical optimization through wectorization for layer com-
putations and necessary compilation and hardware support (Intel Avx [68], XLA (Accelerated
Linear Algebra) [69]). More specialised, heterogeneous hardware has been developed for heavy-
weight computation required to train Deep Learning models, such as GPUs [36, 70] and TPUs [28]
(Tensor Processing Units). GPUs (Graphics Processing Units) enable stream computations [71]
i.e., where the same operation is applied for sequential independent data inputs efficiently and in
parallel. GPUs provide high-bandwidth dedicated memory and support for floating-point com-
putation [71]. These heterogeneous devices provide computations which are orders of magnitude
faster than CPUs [72]. Conventional machine learning systems such as Spark MLIib [73], however,
are designed for using CPUs. Hence, practitioners must design new DL systems that can exploit
heterogeneous devices for efficient DNN training.

TensorFlow [74] is one of the most popular systems for large-scale machine learning. It was
designed to serve research purposes and as production-level infrastructure for training and inference
at Google and to bring a novel perspective on the dataflow approach. This high-level programming
paradigm has been previously adopted by other systems such as MapReduce [75] and Theano [76].
Fundamentally, such a system consists of a high-level API where users can define the computations
in a driver program and a runtime execution graph where the specified computations get executed
on input data. However, TensorFlow proposes a new design approach [74] where: (1) the nodes in
the execution graph called operators hold mutable data called tensors which can be transmitted
from one node to another for sequential mutability using custom transmission media, (2) the
system provides low-level mathematical primitives which enable granular definition of models and
customisable training rules and (3) support for heterogeneous devices such as TPUs (TensorFlow
Processing Units), GPUs, CPUs and other lighter-weight mobile devices.

Next, we introduce some key concepts which are essential for understanding the TensorFlow
paradigm. The runtime [3] presents a layered architecture (Figure 2.2) composed of: a front-end -
high-level training and inference libraries built upon Python and C++ clients and a back-end - a
master-slave system where the master is responsible for dispatching dataflow graph execution tasks
taken over by follower services and realised on devices. The interesting feature of TensorFlow is
device placement of computation which can be determined by the TensorFlow runtime or specified
by the user. The library already provides a comprehensive collection of operators which are suffi-
cient for model specification, prediction and inference, but to be able to develop a system overlayed
on the existing infrastructure, the user can define operators with custom behaviour, which can be
run on CPUs, GPUs or even TPUs. The user can thus leverage the performance of hardware
acceleration.

The focus is on the piece of computation executed on a device. This is called kernel and
includes the logic of a TensorFlow operation. Execution takes place in a session, after the graph is
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Figure 2.2: TensorFlow architecture overview [3]

constructed and scheduling decisions are automatically made by the back-end, but the system also
allows the user to specify order constraints on specific operators using dependency control blocks
(e.g., Listing 2.1, line 12). The separation between dataflow construction and the execution entry
point must be explicitly made in code. A tensor is a multi-dimensional array and is the basic
unit of computation in TensorFlow. Operations use tensors as inputs and may return tensors as
outputs. Variables are mutable tensors.

import tensorflow as tf

X = tf.constant (tf.ones([3, 3], dtype=tf.int64))
Y = tf.constant(tf.ones([3, 3], dtype=tf.int64))

Z = tf.Variable(tf.zeros([3, 3], dtype=tf.int64))

tf.Variable(tf.zeros([], tf.int32))
tf.assign_add(global_step, 1)

step =
increment_step =
def create_assign_op_with_dependency():
with tf.control_dependencies([increment_step]]):
return tf.assign(Z, tf.matmul(X, Y))

assign_op = create_assign_op_with_dependency()

7 with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

for i in range(10):
sess.run(assign_op)

Listing 2.1: Simple TensorFlow Driver Program

Figure 2.3 is the entry point in iterative computation using TensorFlow and represents con-
ceptual translation of the driver program in Listing 2.1 into a computation graph, consisting of
tensors (lines 3, 4, 6 and 8) - elementary units of computation and operators - responsible for
tensor transformations or runtime checks. The program is designed to multiply matrices X and
Y (line 13) and to place the result in Z ten times (line 20). Z is a variable (line 6) and X and
Y are constants (line 3 - 4), which means that Z’s tensor values can change. The user-land is
aware of the number of steps required by this computation (10), but in order to keep track at
runtime new state-keeping operators are necessary, such as the global step increment are (line
9). The dependency control block (line 12) ensures that the step is always incremented before
the matrix computation is executed. The dependency are best visualised in the dataflow graph
presented in Figure 2.3. This presents two confluent branches of computation that intersect in the
control_dependency block. All branches have as leaves tensor variables or tensor constants. All
variables should be explicitly and globally initialized at the beginning of the program (line 18) and
come with a default init operator responsible for initilisation (see dataflow graph, init operator
belonging to variables Z and step). When the results of both branches are ready after possibly
asynchronous multi-device computation, other operators beyond the dependency control will be
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further executed.

Given that training neural networks is an iterative process, we further need to clarify how a
neural network is represented. Layers of neural networks are TensorFlow variables representing
multi-dimensional tensors. These are mutable during training according to the variable update rule
based on gradients, which are tensors as well. Optimizers are responsible for computing gradients
and for applying them to the model. The global step or iteration number indicates the number of
batches processed. The stopping condition for training can be a specific accuracy which measures
the generalisation power of the model or an epoch number in the case of well-known models, which
can be derived from the global step given that the mini-batch and dataset sizes are known.

2.3 Distributed deep learning

Deep Neural Networks are computationally intensive and the volume of data is large. Consider
size of datasets such as ImageNet [22], which consists of 14 million images and SQuAD [77], which
consists of over 100,000 answerable questions for NLP applications. Models such as ResNet-152 [11]
can reach over 60 million parameters [35]. Given such large volume of data and the large number
of trainable parameters, it could often take months to train a contemporary DL model (e.g., the
state-of-the-art model Google BERT [78], on SQuAD dataset [77], could take 40 to 70 days to train
even with 8 GPUs [79]). Distributed training systems are built to leverage multiple node resources.
Scaling out training comes as a natural solution when the resources available on one independent
worker cannot deliver a model ready for inference within acceptable time limits. Instead, modern
Cloud infrastructure provides clusters of nodes that range from commodity machines with modest
interconnects to high-performance multi-GPU and network accelerated machines. Distributed
systems for training offer flexible ways to support fast training on different types of clusters and
enable the models to do meaningful updates which incorporate gradient or model information
aggregated from other workers. These systems adopt different architectures for which multiple
synchronisation schemes are employed.

Data parallelism To decrease training time, DL systems often scale out training through data
parallelism. The data set is sharded across all workers and each worker runs the same computa-
tion on its assigned data partition. Workers or replicas are processes responsible for training their
local model while synchronising with other workers to send or receive updates. After each training
iteration completes, gradients are averaged and used by each model for a local update, which incor-
porates new information aggregated from all workers, which constitutes the synchronization stage.
One alternative to data parallelism is model parallelism, which involves splitting the computation
across workers, each being responsible for a subset of the task. The results at each worker enter
an aggregation phase consisting of the exchange of updated parameter values such that a complete
view of the model is available at each worker. For the purpose of a distributed Deep Learning
system, which deals with large data sets, complex computation graphs and a potentially large
number of worker machines, a data parallel approach is most suitable.
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Algorithm 1: Stochastic Gradient Descent (SGD)
input : [; training examples;
D dataset size;
T number of iterations;
7 learning rate
wy initial model weights
output: w, set of updated weights updated after T iterations

foriel...T do
Draw j € {1... D} uniformly at random;
Wg < We—1 — ﬂvwlj(lﬂj,wt—l);

end

AW N =

Algorithm 2: Parallel Stochastic Gradient Descent (Parallel SGD)
input : [; training examples;
D dataset size;
T number of iterations;
7 learning rate;
wy initial model weights;
k number of workers
output: w, set of model weights updated using aggregated gradients after T iterations
1 foriel...T do

2 for i€ 1...k in parallel do

3 gi +— SGD({ly,....lp}, 1, n)

4 Aggregate gradients from all machines G = % Zle gi;
5 wy — wi—1 — NG,

6 end

7 end

Parallel mini-batch stochastic gradient descent A popular algorithm to achieve data par-
allel training is parallel stochastic gradient descent [38]. This algorithm is MapReduce-friendly [38]
and relies on the estimation assumed by Stochastic Gradient Descent. Given a fixed number of
iterations, the algorithm makes a random choice from the entire dataset at every iteration, makes
a forward pass in the model followed by gradient computation (backward pass) and performs the
weight update rule. The algorithm is presented formally [38] in Listing 1. When there are mul-
tiple workers in the system each iteration incorporates an aggregated update from all workers,
computed using SGD for 1 iteration. The aggregation is the sum of all gradients computed lo-
cally by each worker. The formal representation in Listing 2 shows the local view at each worker.
This means that theoretically, the algorithm involves all-to-all communication. The pseudo-code
snippets adapted from [38] show how this algorithm works.

The whole data set can be naively replicated on all machines. Each machine sees a partition
of the data from the k shards assigned to each machine. This constitutes a synchronous data
parallel algorithm denoted as S-SGD or Parallel SGD and can be more generally represented by
the following equation [6] for a setting where the local batch size is b:

k
Wy = W1 — kib Z Z Vul(z,wi—1)

j=12€B, ;

where k is the number of workers, b is the local batch size, B, ; is the local batch of worker
with index n corresponding to worker j, x is a training example chosen from the current batch.

One notable achievement of the algorithm [38] is the decoupling between data set size and
training time by exploiting approximations of the true gradient through averaging, producing an
equivalent statistical estimation as Mini-Batch Stochastic Gradient Descent.

This concludes the section on fundamental principles of Distributed Training Systems. The
motivation for scaling out training due to increasing size demands from models and datasets lead
to new directions for parallelism and implicit adaptation of the baseline optimization algorithm
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called Mini-batch Stochastic Gradient Descent to the multi-worker setting.

2.4 Synchronisation challenges

Running distributed DL training in data centres is, however, challenging. The main reason is that
synchronisation among parallel training nodes produces a non-trivial communication requirement
which is hard to be fulfilled by commodity hardware adopted by data centres. In the following,
I present the popular communication infrastructure used by today’s DL systems, and conduct a
case study to analyse the impact of the communication bottleneck.

2.4.1 Communication infrastructure of deep learning systems

Data centre providers rely on a large pool of hardware resources which they lease in a diverse
range of compute services [80, 81, 42, 43| for public usage. As the providers cannot use resources
for a single task, they employ virtualisation techniques [82] - hardware virtualisation (VMs) and
OS virtualisation (containers) - in order to safely isolate multi-tenant processes. Of interest to
Distributed Deep Learning systems deployed in the Cloud is the underlying virtualisation technique
and the quality of the network links, to quantify possible performance penalties incurred during
communication.

Even with virtualisation enabled, machines need to communicate with each other to accomplish
distributed computation via a network [4, 83, 34]. This is realized usually through Ethernet links.
Network packets represent the smallest semantically loaded unit of communication. Inter-machine
communication is realized through switches, often arranged in a tree topology [84], responsible
for processing and redirecting packets from input ports to output ports, such that they reach the
destination.

There are mainly four kinds of communication infrastructure available for a DL system. Vir-
tual networks and Docker networks [85] are probably the most popular in the Cloud. They offer
ease of deployability and support the DL system to run at large scales (i.e., hundreds of nodes)
while charging modest prices. More recently, specialised communication infrastructures, such as
InfiniBand [46] and NVLink [47], also has become available in public clouds. These infrastructures
provide ultra low-latency and high-throughput, making it suitable to support synchronisation in
DL systems. They however adopt non-Ethernet-friendly techniques, e.g., Quantised Congestion
Notification (QCN) [86], for data transmission, making it unsuitable for large-scale Cloud deploy-
ment. Most importantly, they significantly increase the cost of training, making them only available
to large industry players. In the following, I will present more details about these four kinds of
networks.

Virtual networks When VM clusters are provisioned their networking stack is often controlled
by software. VMs are often grouped in logical network partitions called Virtual Local Area Net-
works (VLANSs) [87], which are software-defined. The overhead in virtual networks comes from:
(1) the virtualization technology used for network I/O, which determines how packets are pro-
cessed on the path VM-hypervisor-hardware and (2) software-based switching realised through
virtual switches within hypervisors [87, 88]. This delegates the responsibility of communication
to hypervisors, adding a new level of indirection. A common network virtualisation technique is
SR-IOV, through which the NIC (Network Interface Card) is virtualised. This gives the illusion to
each VM that it has full control over the NIC and communication is supported by direct hardware
interaction, with no hypervisor involvement for packet processing (Figure 2.4a).

Docker networks With the wide adoption of Docker [89] containers as a light-weight way of OS
virtualisation, it is important to consider their effect on performance. In some situations, commu-
nication between containers can be realised through InfiniBand [82], but this requires additional
effort [90]. In most cases, containers communicate over an overlay network [85] which adds a
new level of indirection to communication. Docker Engines handle the overlay routing and packet
processing, inducing new performance costs (Figure 2.4b).

InfiniBand InfiniBand (IB) [46] is a high-performance networking fabric realised through RDMA-
enabled [91] Network Interface Cards which allow bypass of OS kernel packet processing for in-
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Figure 2.5: Over-subscription problem [4]

creased performance. The technology provides state-of-the-art communication capabilities in mod-
ern data centers with speeds up to 40 Gbps [92]. Speed comes at a very high cost both for customers
and Cloud providers, especially when provisioning is done at scale. According to [93], the standard
does not scale well in environments with heterogeneous clusters or hot-spots, because it relies on
static routing which oftentimes requires manual configuration in software. Moreover, compatibility
with virtualisation techniques [82] or types of Ethernet is limited as IB requires dedicated switches
and Network Interface Cards (NICs) [94] Figure 2.4c.

NVLinks NVLinks [47] represent a high-performance communication fabric specific to GPUs.
This can leverage both GPU-to-GPU communication and GPU-to-CPU communication (bidirec-
tional), with speeds up to 25 Gbps. This networking technology is benefic to distributed training
synchronisation, especially for collective all-reduce gradient aggregation, which can leverage dedi-
cated collective communication libraries such as NCCL [95, 96]. The drawbacks of NVLink tech-
nology are: (1) locality, as NVLinks can only be leveraged on one server and (2) cost, because it
requires extra hardware and the Cloud provider need to invest extra money to enable this feature
(Figure 2.4d).
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2.4.2 Scaling challenges

Large communication traffic Deep Neural Networks can reach parameter counts in the order
of tens of million of parameters with sizes of a few hundred mega-bytes. For example, ResNet-
152 [11] comprises 60,344,232 parameters [35], summing up to 244 mega-bytes [35]. We have
previously seen that after each iteration, workers perform synchronously a global aggregation
operation. The gradient count is the same as the parameter count, which means that the network
has to support synchronisation for hundreds of mega-bytes for each worker. However, this is a
problem in modern data centers where networks are over-subscribed. Hosts may not dispose of the
necessary bandwidth to send the gradient data efficiently due to high over-subscription ratios of
1:4 or 1:16 [4]. This means that the link between a host and its switch may benefit from a small
fraction of available bandwidth, as other hosts are sharing the inward switch link. When all other
hosts send large amounts of data over the affected link (Figure 2.5), this becomes a significant
communication bottleneck which incurs large delays unacceptable for high-performance training
systems. The bandwidth usage becomes even a bigger issue as the performance of GPUs increase
at a fast pace. For example, the state-of-the-art V100 GPU [36] can process tens of training mini-
batches per second [37]. In such a case, it needs to synchronise several giga-bytes of data per
second, aggravating the communication problem in Cloud environments.

Expensive system-wide execution barrier Even when the Cloud infrastructure provisions
clusters with ultra-fast InfiniBand [46] links and efficient GPU training, there is still a naturally
occurring system barrier due to synchronisation. Due to heterogeneity in task execution, workers
are likely to complete their task at different times. Figure 2.6a shows four workers represented as
arrows. Short arrows are tasks that finish early. The barrier is the explicit wait imposed on all
workers of the system until all tasks are completed. The execution resumes in the next iteration,
possibly with similar task completion behaviour. When all tasks finish early and have to wait for
a single task to complete in order to move forward to the next iteration, the system suffers from
the straggler issue. This is undesirable in training systems, but the occurrence of such behaviour is
highly likely. Theoretically, Parallel SGD leverages the resources of multiple nodes and can benefit
if each worker uses training acceleration hardware (GPUs, TPUs). The algorithm in its pure form
does not employ any fault tolerance scheme [38] and suffers from the straggler issue, as it creates an
explicit synchronisation barrier enforcing accumulation of gradients from all workers.The strawman
solution of all-to-all communication does not scale [33], but this is also the case in more efficient
approaches such as all-reduce. Hardware diversity in training systems is difficult to account for and
systems that do not combat such issues by good design tend to experience significant slow-downs
when explicit barriers are enforced. Oftentimes, training jobs run in the Cloud may use public
resource pools, with links and machines not fully dedicated to the user. Dependence on the pool’s
resource utilisation makes training vulnerable to stragglers.
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2.4.3 Case study: synchronisation performance in cloud networks

In order to understand the impact of communication bottlenecks, we run distributed DL training
jobs using a state-of-the-art synchronisation system Horovod in a public cloud: Microsoft Azure
Cloud Computing Platform [97].

Experiment setup The experimental setup consists of a cluster of four virtual machines, each
dedicated with four NVIDIA Tesla M60 GPU Machines which are connected by commodity network
links and communicate over a virtual network. When VM clusters are provisioned their networking
stack is often controlled by software. VMs are often grouped in logical network partitions called
Virtual Local Area Networks (VLANS) [87], which are software-defined.

Horovod [5] implements the parallel SGD to achieve synchronisation through a high-performance
OpenMPI network stack. To test the performance of Horovod, we measure the speed of training,
also called throughput, which represents the rate of image ingestion per second. The experiments
proceed as an investigation of how changes in parameters (number of nodes, batch size) affect train-
ing time. Distributed parallel mini-batch Stochastic Gradient Descent is a widely-used strategy
which synchronises the gradients of all workers using all-reduce.

The reference Deep Neural Network used for experiments is ResNet-50 [11] which is trained
on a subset of the ImageNet dataset [22], using the benchmarking code provided by the Horovod
project [98]. In the following, a worker in the system denotes the training process run one one
virtual machine using one GPU.

Experimental result To evaluate the scalability of Horovod, we increase the number of nodes
and measure training throughput. The ideal throughput is computed by multiplying the through-
put for a training run of an independent worker (1 GPU) by the total number of workers (GPUs) in
the system. Figure 2.7 shows that the system is further from achieving the ideal throughput when
the number of machines grows. When moving from one machine to two machines, the throughput
increases by 50% for a small batch size of 8. The transition from two machines to three machines
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Figure 2.8: Horovod timeline showing frequent all-reduce barriers

shows an increase by 40%. When the scaling problem, becomes more difficult i.e., from three ma-
chines to four machines, the throughput only increases by 10%. This is a downward trend which
becomes more and more nuanced with smaller batch sizes. For larger, batch sizes (64), when the
number of machines is increased from one to two, there is a 1.25 throughput increase. From two to
three machines, it increases by 44.4%. For more difficult scaling (from two to three machines), the
throughput increase is only 30%. There exists a downward trend for larger batch sizes as well, but
the system scales better. There is a trade-off between batch size and number of machines. Training
with larger batch sizes provides higher throughput in the system, but this is artificially created.
In addition to the number of machines, batch size is another key parameter that determines the
interval of launching synchronisation. The smaller the batch size, the higher the frequency of syn-
chronisation. We measure the training throughput of Horovod using batch sizes as 8, 16, 32, and
64 in a 16-GPU cluster (4 machines). When the batch size is 16, the throughput is 59.49% lower
than ideal, when the batch size is 32, thoruhgput is 26.14% lower, while with a larger batch size
(64) the throughput is only 13.87% further than ideal.

We also record the important synchronisation events in Horovod and try to identify the per-
formance bottlenecks using the Horovod timeline. The trace study shows that training is blocked
by frequent synchronisation barriers which reduce the GPU utilisation and increase training time.
The effect can be seen in the sample timeline from Figure 2.8, presenting a snapshot of two syn-
chronisation barriers. The all-reduce phase (NEGOTIATE ALLREDUCE) can last by up to
half a second and the synchronisation barriers are much larger than training time (light green on
Horovod timeline). This is due to the centralisation employed by Horovod, where one worker plays
the role of master - all gradients are aggregated by this worker, which then broadcasts all-reduced
gradients (Appendix A.1).

Takeaway The analysis of Horovod in public Clouds has two key takeaway messages: (i) Even
though Azure networking has provided 25 Gbps connection among the 4-GPU servers, the network
still appears to be a major bottleneck during scaling. This bottleneck would become even more
serious when using contemporary GPUs like P100 [36] and V100 [70] as these GPUs can complete
each mini-batch of training faster than the M-60 GPU; (ii) Horovod uses a master node to coor-
dinate the execution barriers of all workers. Detailed trace study show that this master becomes
a main scaling bottleneck even at a relatively small scale: 4 nodes (16 GPUs). For a detailed
description of the protocol used by Horovod, Appendix A.1 can be consulted. The performance
penalty of a system-wide barrier has become a dominating factor for communication bottleneck
today as the use of hundreds of parallel GPUs is increasingly common in recent DL studies [27].

2.5 Limitations of existing synchronisation systems

Given the importance of synchronisation, we have observed a recent thrive of synchronisation
systems proposed for DL systems such as TensorFlow. In principle, all these systems adopt a
parameter server architecture [99, 16] or an all-reduce high-performance implementation [51, 27],
and have full, dedicated support for parallel SGD.

2.5.1 Parameter servers

Figure 2.9 shows the typical communication patterns of a parameter-server-based synchronisation
system. The system can run different applications concurrently, each handled by a separate worker.
Workers are coordinated by master processes, which keep track of the global model. Each worker
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Figure 2.9: Parameter Server communication overview [5]
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has access to a partition of the data used to compute gradient updates. Workers do not commu-
nicate with each other, but only with the parameter servers. They send gradient updates to their
assigned master, which aggregates and applies them to the global model in a synchronous manner.
The asynchronous parameter server scheme is preferred for large scale Deep Learning problems,
because the number of updates is high [39] and the training throughput is significantly better than
in the synchronous case. The authors of [39] show that staleness can significantly impact the test
accuracy, thus Deep Learning scientists opting for such models must impose tight bounds to avoid
model degradation.

The parameter server architecture has three key limitations in addressing the emerging syn-
chronisation challenges:

e Extra overhead of managing external synchronisation infrastructure. To use parameter servers,
DL users must manage external synchronisation infrastructure in addition to the training in-
frastructure. This requires extra mechanisms to manage failures and scale resource if need.

e Non-trivial partitioning of synchronisation and training resource. Given the sizes of DL
models being trained and the various hyper-parameters, i.e., batch size, being used, the
optimal partitioning of hardware resource between synchronisation (i.e., parameter servers)
and training (i.e., training workers) can largely vary [100]. For example, the use of small batch
sizes for training could significantly increase synchronisation frequency, and thus increase the
demand for the number of parameter servers. However, pre-configuring such a number is
non-trivial as DL users often try various settings of system parameters when tuning training
accuracy, resulting in frequent reconfiguration of the parameter servers.

e High performance overheads. When using parameter servers for synchronisation, training
workers need to copy gradients out of GPUs and and then move the average model back to
GPU memory. If parameter servers are unfortunately placed at a different node, this gradient
copy even have to go through network stacks, which can significantly increase synchronisation
latency.

2.5.2 High-performance all-reduce-based systems

Motivated by the limitations of parameter servers, practitioners have recently developed new syn-
chronisation systems like NCCL [96, 95], Horovod and Baidu AllReduce [5, 50]. These systems
let workers exchange gradients directly instead of relying on external synchronisation components,
thus removing the need for maintaining external infrastructure for synchronisation and partitioning
resources. To efficiently perform the exchange, they often adopt high-performance implementation
of the all-reduce operation which can efficiently compute the sum of all local gradients and broad-
cast the sum back to all workers. The worker themselves compute the average gradients and apply
to their local model replicas. To ensure that each worker can start all-reduce at the correct timing,
the all-reduce systems often come with a master node that coordinates the all-reduce operation
(Figure 2.10).

Figure 2.10 also shows an efficient implementation called ring all-reduce [101, 5, 50|. The
algorithm rationale relies on each node sending its gradients to the direct neighbour in its local
spanning ring. The logical spanning ring is constructed such that values can be aggregated by
successive send operations in the ring. The aggregated value eventually reaches the start node
again via the unique inward edge. At this point, the node has efficiently aggregated all values
from other nodes. To better understand the performance of ring all-reduce, we also analyse its
bandwidth usage and the detailed analysis result is presented in Appendix A.2.
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Figure 2.10: Typical all-reduce system architecture where a master coordinates parallel ring all-
reduces

Though offering improved performance, all-reduce-based synchronisation systems eventually
fail to resolve the emerging synchronisation challenges as well. These systems also have three key
issues:

e Insufficient scalability. The all-reduce algorithm assumes the network to provide full-bisection
bandwidth and thus it can achieve optimal bandwidth usage when exchanging the gradients.
This assumption is, however, rarely valid in commodity data centres where the bandwidth
in the network core is often over-subscribed. As a result, all-reduce systems can achieve the
promised performance only with specialised communication hardware like InfiniBand (this
is also verified by our previous case study for Horovod), making them an expensive solution
that can be afforded only by large DL stack-holders.

e High coordination overheads. What further compromises the system scalability is the use of
a master-slave architecture for coordinating all-reduce operations. The growing size of a DL
system can significantly increase the coordination overheads, making the system vulnerable
to single-node bottleneck.

e Dedicated support for parallel SGD. A fundamental limitation of all-reduce-based systems is
their dedicated support for parallel SGD. The all-reduce operation has a restricted semantics
and it is only suitable for computing aggregated metrics all training workers as in parallel
SGD. However, parallel SGD suffers from its inevitable changes to batch size [27], thus
enforcing users to use large batch sizes during training when using multiple GPUs. As
a result, all-reduce-based synchronisation systems poorly support the DL models that are
restricted to small batch training [102], making these systems a non-universal solution for
synchronisation.

2.6 The need for supporting flexible synchronisation

In this project, we argue that: to fundamentally resolve the emerging synchronisation challenges,
it is necessary to design a new distributed training system that can effectively support flexible
synchronisation. These new synchronisation algorithms should achieve the same training accuracy
as in parallel SGD while avoiding (i) exchanging a large amount of data for synchronisation and (ii)
maintaining expensive system execution barrier. More importantly, the new training system shall
tackle the large-batch training issue. This can be achieved by allowing DL users to implement new
synchronisation algorithms, e.g., synchronous model averaging [57], that can keep batch size con-
stant during scaling. Recent studies for DL system synchronisation have shown promising results.
These studies can be broadly classified into two classes: studies that reduce synchronisation traffic
by performing model averaging selectively [58] and studies that aim to relax the synchronisation
barriers by allowing each worker to send subset of its gradients for aggregation [33]. These create a
new synchronisation techniques where gradient or model information are partially exchanged with
workers.
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The key intuition for flexible synchronisation can be best understood through a simple example.
Figure 2.11 presents a snapshot of the state of four workers at the end of a training iteration. They
compute the gradients on the local model and they need to synchronise in order to compute the
average gradient which has value 0.5. However, it is sufficient that only two replicas synchronise
gradients to obtain a good estimation of the global average gradient. For example Workers 0 and 3
can exchange gradients, such that their aggregated gradients will become 0.5. Workers 1 and 2 will
perform the weight update rule using the local gradients, 0.6 and 0.4 respectively. This approach
naturally reduces the network traffic and relaxes the global synchronisation barrier.

Worker 0 Worker 1
gradient=0.4 gradient = 0.6
<: I Network I :>

Worker 2 Worker 3
gradient=0.4 gradient = 0.6

Figure 2.11: Partial Exchange Key Intuition

2.6.1 Synchronising partial gradients

One notable contribution is Ako [33], a novel decentralized training algorithm that relies on
partial gradient exchange between workers that train local models. Homogeneity of worker roles
eliminates the task-dependent resource allocation problem previously encountered in parameter
server approaches. Ako achieves scalable decentralized synchronisation through partial gradient
exchange and decoupled CPU & network use through independent network tasks that send ac-
cumulated gradients asynchronously. The theoretical guarantees of the Ako algorithm are: high
hardware and statistical efficiency, network link staturation and a robust fault-tolerance scheme
[33].

Partial gradient exchange is the technique by which workers can share a partition of their
local gradients with other peers. Each worker partitions the full gradient update into p disjoint
partitions, which are scheduled for sending in round robin fashion. After an iteration completes,
one partition is broadcast to all other peers. All other p—1 partitions are saved and accumulated to
the new gradient updates generated in subsequent rounds. Once other peers receive the partition,
they update the corresponding weight parameters. It takes p synchronisation rounds to transmit
the whole gradient at time ¢ [33]. Ako is a novel algorithm that relaxes synchronisation barriers,
proposing a scalable approach to Distributed Deep Learning.

Enabling flexible synchronisation strategies based on partial gradient exchange would attenuate
the major limitations of parallel training. First, by exchanging a subset of the gradients, less
network traffic is created, which can enable efficient training in multiple types of networks present
in Cloud environments. The algorithm could leverage poorer network links found in virtual machine
clusters or overlay networks in Docker containers at lower cost. The concern of large network traffic
would be thus diminished. Reducing the network traffic naturally reduces the synchronisation
barrier, which eliminates partially the training barrier bottleneck and any concerns of low hardware
utilization, for example when the batch size is small and strong GPUs complete iterations at very
fast rates.

2.6.2 Synchronising models among selective peers

One popular alternative synchronisation approach used in communication constrained envi-
ronments, such as online learning in self-driving cars, is model averaging. It works by training
models separately and exchanging parameters for synchronisation, rather than gradient updates.
The improvement does not come from the amount of information transmitted, but rather from the
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choice of communication frequency. This approach works for any model, as it treats the underlying
algorithm as a black box. [103].

We have previously stated that Deep Learning problems aim to optimize non-convex functions.
However, model averaging works only with convex functions, as any finite number of descents
is guaranteed to find the global minimum, thus the average loss is expected to be less than the
individual loss. In the non-convex case, the average model may have a worse performance than
any composing model [103]. The solution for this problem can be found by starting from periodic
model averaging, where model parameters are exchanged at fixed time intervals. Redundant com-
munication can be eliminated by considering utility of communication. Kamp et al. [104] devised
working strategies for dynamic model averaging conditional on the communication gain between
workers: when most of the losses are large, the system should synchronise, expecting to minimize
the overall loss on the average model, but when only a small fraction of workers have large losses,
no synchronisation occurs. [103]. A similar approach is taken by the Crossbow system [57], which
uses a modified approach of model averaging called Synchronous Model Averaging, designed to
run on GPUs. The principle is to use independent tasks which train the model and calculate
corrections to be applied in batches to a Central Average Model. The expectation is that replicas
reach consensus on the optimality of the average model and eventually reach the same minima
[67]. An important aspect that ensures convergence is that the gradient-based optimization takes
into consideration gradient direction consistency with past updates.

Deep Learning scientists have moved away from asynchronous synchronisation strategies be-
cause they affect convergence. A disruptive algorithm proposed by Zhang, et al. [58] brings together
the advantages of synchronous and asynchronous Parallel SGD, creating an algorithm which is ro-
bust in heterogeneous environments, does not affect convergence and benefits training speed using
asynchronous communication. This algorithm creates a visible shift to decentralized training in
which workers directly communicate with each other in a peer-to-peer fashion and where there is
no global synchronisation barrier.

2.7 Summary

In this chapter, we have presented how DL training works and we have set-up the grounds for
TensorFlow program development. Then we introduced distributed DL through data-parallelism
as a way to tackle dataset size increase and model size increase and emphasized the de-facto algo-
rithmic approach to distributed training, which is Parallel SGD or S-SGD. We have identified that
de-facto synchronisation algorithms such as S-SGD incur naturally occurring (theoretical) penalties
at the level of large network traffic and large synchronisation barriers. Then we shifted focus to
real cluster set-ups and described how they are realised in modern Cloud environments (intercon-
nects, virtualisation) and provided a case study of the performance of Horovod [5] for a commodity
VM cluster provisioned by Microsoft Azure, in order to identify the bottlencecks, concluding that
running Horovod’s version of all-reduce (based on MPI communication stack [105, 51]) in such
environment does not scale. An in-depth look at how systems realise synchronisation (Parameter
Servers, MPI-based approaches) and confirm that they have not reached a good maturity level
for flexible synchronisation. Developing partial synchronisation strategies within the TensorFlow
system is particularly challenging because it does not provide sufficient system abstraction for dis-
tributed clusters to determine which peer to communicate with for partial model synchronisation
and does not support flexible choice of gradients for partial synchronisation.
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Chapter 3

Kungfu: Enabling Flexible
Synchronisation in TensorFlow

By far, we have motivated the need for supporting flexible synchronisation in distributed training
systems. In this chapter, we describe a new distributed training system called Kungfu that can ef-
fectively enable flexible synchronisation in a state-of-the-art DL platform: TensorFlow. Our system
proposes new abstraction (Section 3.2 and 3.3) that can easily piggyback into existing TensorFlow
API while allowing easy declaration of various synchronisation policies. Also, it proposes a novel
implementation (Section 3.4) for training workers so that workers can flexibly exchange gradients
and model variables with other in a scalable fashion. We implemented two novel synchronisation
algorithms on Kungfu and end this section with comprehensive test-bed experiments.

3.1 System requirements

The design process starts from defining the requirements of the system. This focuses to improve
Deep Learning scientist’s experience of specifying training strategies (user level API) and to seam-
lessly allow distribution to scale in both high-performance and commodity clusters which suffer
from network bandwidth shortage (over-subscription, poor link quality of service). Moreover, a
system should combat explicit barriers leading to delays caused by stragglers (heterogeneous GPU
clusters, resource sharing in multi-tenant Cloud environments). To achieve this it is necessary to
provide: a high-level, yet flexible abstraction that can implement flexible synchronisation strategies
and a high-performance communication stack that allows workers to efficiently exchange gradients
and models.

(1) A high-level yet flexible synchronisation abstraction that can be integrated within
existing DL platforms Deep Learning pipelines can often become difficult to manage, especially
at scale. Thus, it is necessary to provide high-level (easy-to-use) and flexible abstractions that
enable multiple synchronisation strategies with ease.

We have previously identified that TensorFlow does not provide sufficient granularity of its
internal components of interest for synchronizatin. Essential building blocks of the dataflow graph
must be leveraged (gradient and variable tensors) and the existing cluster abstraction must be
transparently extended such that peer-to-peer communication support can be underlyingly en-
abled. The system should provide an API which enables the user to leverage these building blocks
with minimal changes to the driver program. Most common APIs, such as the ones provided
by TensorFlow [28] and Keras [32] often provide cumbersome abstractions for distributed training,
which require manual specification of cluster allocation. More recently, systems such as Horovod [5]
implement new paradigms of distributed training abstraction which enable easy specification of dis-
tributed tasks.

(2) A high-performance training worker implementation that allows efficient and flexi-
ble communication of gradients and model variables. Enhancing a system must not affect
its performance, which requires efficient implementation that ensures distributed training hap-
pens with low overhead. Thus, the schemes employed for partial synchronisation must not involve
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heavyweight computation at every iteration and dynamic decisions during training must rely on
efficient metric approximations. Most common performance issues arise to the imbalance between
communication and computation. Communication should be realised with minimal blocking of the
critical training path by using directly intercepted gradients and variables, which are efficiently
communicated to other peers.

(3) A scalable system architecture that can efficiently run on a large number of com-
modity training devices. The aim of distributed system design is scalability, which refers to
minimisation of performance penalties incurred when increasing the number of processes in the
system. While a user has at disposal clusters of tens or hundreds of machines, it may be diffi-
cult to benefit from the large number of resources due to communication bottleneck. The system
must best leverage the resources to achieve high hardware utilization subject to constraints such
as communication bandwidth. The choice of synchronisation strategy must be decoupled from the
training process: every instant spent synchronising is time taken away from computation-intensive
training.

Oftentimes, workers that benefit from hardware acceleration (GPUs, TPUs) do not benefit
from similar performance enhancements at the network level. For example, state-of-the-art V100
GPU [36] can process tens of training mini-batches per second [37], but performance may be
limited by large synchronisation barriers over commodity links or by lack of bandwidth due to
overprovisioning [34] in modern data-centers. Cloud environments often represent a challenge for
scaling distributed training system due to the communication limitations caused by the underlying
system (.e.g, Docker [89] overlay networks or virtual switches add new levels of complexity in
communication).

3.2 Synchronisation abstraction

TensorFlow and Keras have a high-level distributed training API [28, 32]. Though easy to use,
it completely masks the cluster from the users and let users only able to use parallel SGD to
synchronise replicas. More importantly, to adopt their distributed training API, developers must
largely modify their single-GPU training programs to incorporate the functionality [5, 106]. More
recently, the Horovod [5] library for distributed training is growing popular quickly. The advan-
tage of Horovod is usability, as users can minimally change their training program to support
distribution [5]. The disadvantages of Horovod are that it only provides support for parallel SGD,
similar to Keras [32] and has insufficient scalability because it makes use of a rigid MPI-based [105]
all-reduce library and a master-slave architecture.

Understanding TensorFlow abstraction The proposed non-invasive API for distributed train-
ing is motivated by tremendous simplification of the driver program, such that users can focus on
defining the model. The responsibility for distribution is completely shifted towards the system,
which transparently builds the dataflow graph, assigns tasks to hardware resources and creates an
overlay for communication. This design is founded on usability and paves the path for accessi-
ble distributed strategies. Users create a driver program according to the high-level TensorFlow
Python APT [28]. This breaks down into four main components: dataset preparation, neural net-
work layer specification, inference loss computation and optimization specification. Optimizers are
classes which implement algorithms that compute gradients and apply them to model parameters.
TensorFlow provides implementations of many stochastic optimization techniques widely used in
practice (Gradient Descent [20] [18], Momentum [66], Adam [65], AdaGrad [64]). Essentially, these
classes have the responsibility of training, as they provide functionality for the weight update rule,
by which gradients are applied to the model. Thus, optimizers are the naturally occurring choice
where the exchange seam can be inserted.

Design solution In order to achieve this in a manner that allows minimal changes to the driver
program, new classes derived from the TensorFlow’s Optimizer class [60] are created. The new
wrappers override two methods of the Optimizer base class, which are shown in Listing 3.1 and
in Listing 3.2, together with the hooks necessary for the corresponding synchronisation strategy
realized in a non-invasive manner unexposed to the user. The listings highlight the interception
point for gradients (Listing 3.1) and variables (Listing 3.2):
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1 def compute gradients(self, gradients, variables):

2 """Intercept local gradients and perform worker negotiation."

3 negotiated gradients = distributed negotiation(gradients)
A return self.base_optimizer.apply gradients(negotiated _gradients, variables)

(K]

Listing 3.1: Gradient interception before negotiation

1 def apply gradients(self, gradients, variables):

2 """Local model averaging and gradient update.
3 avg_variables = peer_model_averaging(variables)

1 apply gradients = self.base optimizer.apply gradients(gradients, avg variables)
5 with tf.control dependencies([compute average model op]):

6 return apply_gradients

nnn

Listing 3.2: Seamless variable interception before peer model request

This approach provides a simple abstraction layer as a kick-off point for flexible synchronization
strategies presented next. The PartialGradientExchangeOptimizer is responsible for wrapping
the functionality of any TensorFlow optimizer in order to exercise its responsibility for intercepting
the list of locally computed gradients, partitioning the gradient set and enabling the distribution
strategy on the deeper level of abstraction as a TensorFlow dataflow graph.

__init__(
optimizer,
budget_fraction=0.1,
device=’gpu’

Listing 3.3: Class initializer for PartialGradientExchangeOptimizer
Args:

e optimizer: an instance of any tf.train.Optimizer TensorFlow class defining the learning
algorithm by which gradients are computed.

e budget_fraction: fraction from the total size of gradients representing the capacity of a
partition

e device: device for executing the synchronisation logic. Can be one of ’cpu’ or ’gpu’. If
‘gpu’ is specified, synchronisation uses NCCL, otherwise all-reduce is done in parallel for
each tensor using the underlying networking stack.

The PeerModelAveragingOptimizer wraps TensorFlow optimizers in order and intercepts
all model variables during every iteration. Before executing the parameter update, the dataflow
logic retrieves a model from one other peer and performs model averaging.

__init__(
optimizer,
peer_selection_strategy=’roundrobin’,
request_mode=’sync’,
model_averaging_device=’gpu’

Listing 3.4: Class initializer for PeerModelAveragingOptimizer
Args:

e optimizer: an instance of any tf.train.Optimizer TensorFlow class defining the learning
algorithm by which gradients are computed.

e peer_selection_strategy: peer selection algorithm for point-to-point model requests. Can
be one of 'roundrobin’ or 'random’.

e request_mode: device where model averaging is computed. This paramater is sensitive for
training performance. Can be one of ’gpu’ or 'cpu’. ’cpu’ means that averaging is executed
within the request CPU operator. ’gpu’ means that TensorFlow operators are used to execute
averaging on GPU.
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Algorithm 3: Partial Gradient Exchange (Logical View)

input : G={go...gn-1} set of gradient tensors;
GlobalStep global step;
output: PNG ={go...gi..-Gi+k---gn—1} set of gradient tensors where only a subset of
gradients {g; ...gi1x} are negotiated via all-reduce
1 P < partitionEqualSubsets(G) /* P ={p1...px}: Vi,j size(p;)— size(p;) is
minimized */
localGradients < {};
aggregatedGradients + {};
for p; € P do
/% pi={gj...gj4p|} */
if GlobalStep mod |P| =i then
for g; € p; do
gAggregated < aggregateFromAllW orkers(g;)
aggregatedGradients « aggregatedGradients U {gAggregated}

=W N

8 end

9 else
10 | localGradients = localGradients U{g; ... gj4|p|}
11 end

12 PNG = localGradients U aggregatedGradients;
13 PNG = restorelnitialOrder();
14 end

3.3 Synchronisation operators

This subsection provides an insight into the logic behind the dataflow operators used to build
the training system and explains how distributed strategies are achieved by creating new oper-
ators which are directly plugged in the TensorFlow execution graph. Design decisions follow-up
on enhancing the functionality of newly defined optimizers and reusing existing methods called
on the training dataflow execution path. Building new operators is necessary to access the un-
derlying network stack which encapsulates cluster abstraction and communication primitives. A
new enhancement in the networking stack allows support for direct peer-to-peer communication
for further exploration of decentralised learning.

Algorithm: Partial Gradient Exchange Before diving into concrete TensorFlow dataflow
specification, it is important to understand the logical view behind Partial Gradient Exchange.
Algorithm 3 is a formalisation of the main steps required to partially exchange gradients between
peers. Initially, partitions are created (line 1) to encapsulate approximately equal sized disjoint
subsets of the total gradient set, where all gradients belonging to one partition are negotiated
at once (lines 6-8). When the global step indicates that the current partition should not be
negotiated, all local gradients belonging to the partition are used for the variable update (line 10).
The algorithm returns a set containing both aggregated gradients and local gradients (line 12),
taking care to restore initial gradient order for consensus on variable update order (line 13).

New operator roles Concrete dataflow implementations of the functions highlighted in List-
ing 3.1 and Listing 3.2, for gradient exchange (distributed_negotiation(gradients)) and for
peer-to-peer unidirectional variable exchange and averaging (peer_model_averaging(variables))
are: a partial gradient exchange negotiator - responsible to select partitions to be negotiated via
all-reduce in round robin fashion using global step and to keep track of partition index where gra-
dient is placed, synchronous and asynchronous model request and averaging operators - responsible
to engage in unidirectional model exchange with one other peer, followed by averaging and a model
store - responsible for keeping up to date copies of model variables.

Design trade-offs: conquering TensorFlow abstraction The initial design stages of the
system focus on analysis of benefits and drawbacks of the possible ways of implementing the logic
to achieve partial gradient exchange and peer-to-peer model averaging. The choices revolve around
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two options: using the TensorFlow dataflow API or using a more flexible implementation by imple-
menting custom TensorFlow operators within the C++ runtime system, which would be compatible
with the user-level API. The advantages of the former approach refer to code simplicity achieved
by an implementation in the high-level TensorFlow API. However, the drawbacks are that lack of
flexibility, as developer can not define desired custom behaviour, for example a stateful operator
with complex state-tracking data structures or an adaptive behaviour which dynamically changes
hyperparameters of the system. The latter approach may lead to possible design complications,
because they delegate the responsibility of specific operator registration for device placement to
the user (CPU operators and GPU operators). This would naturally split the concerns of operator
logic, which needs to be explicitly handled by the developer according to the device.

1 def partial exchange with gpu_all reduce(global step, gradient _tensors):

2 """Partial exchange with GPU all—reduce."""

3 partitions = partition gradient set(gradient tensors)

4 negotiated gradient tensors = ||

5 for i, partition in enumerate(partitions):

6 negotiated _partition = tf.cond(

7 tf.equal(tf.mod(gs, num_partitions), i),

8 lambda partition=partition: gpu_group_all reduce(partition) ,

9 lambda partition=partition: partition)

10 fill_with(negotiated partition, negotiated gradient tensors)
11 return negotiated gradient_tensors

Listing 3.5: Distributed negotiation: dataflow simplicity for partial exchange

In order to conquer the abstraction behind distributed negotiation, which has been presented in
the previous section, Listing 3.5 illustrates a simple way to use the high-level Python API provided
by TensorFlow to implement a static partial exchange scheme based on gradient partitioning. This
constitutes a simple bridge between the dataflow and the network stack which enables collective
communication.

Algorithm: Peer Model Averaging Before diving into the concrete TensorFlow specifics re-
quired for Peer Model Averaging, it is important to understand the logical view. Algorithm 4
formalises the steps required for direct peer interaction for model exchange. Function peerMod-
elAveragingOptimizer represents the request sender side and presents the steps for model request,
averaging and variable update. Initially, each worker enters an initialisation phase, where model
variables are identically initialised across all workers using broadcast (line 2). A first model check-
point is made in the model store (line 2), such that workers can reply asynchronously to requests
received from other peers before any training step has completed. Using the peer selection strat-
egy, a destination peer is selected (line 4) and a request is issued to this peer (line 5). In the
synchronous case, execution blocks until the requested model is delivered. A model average is per-
formed element-wise on the two variable lists of requester variables and destination peer’s variables
(line 8), followed by a an update of the average model with the locally computed gradients (line
9 - 11). After the training iteration completes, the updated model is checkpointed in the model
store (line 12). Function handleRequest is executed on the destination peer’s side by: concurrent
access to the model store (lines 15-17) for model retrieval and direct reply to the requesting peer.

The design of peer-to-peer model averaging becomes problematic, as TensorFlow does not pro-
vide sufficient cluster abstraction and the API does not include lightweight request - reply operators
which can be used to directly communicate with a worker while training. At this point, the pro-
posed API becomes disruptive. It introduces a model request operator which has two modes of
operation. One is synchronous and blocks training until a reply containing a serialized model is
delivered, while the second one is asynchronous and leverages concurrency features enabled by the
flexible network stack implementation. The request dataflow hooks are now able to delegate a re-
quest while being integrated into the execution graph. Subsequent logic leverages the TensorFlow
API and provides three benefits: (1) when the graph is placed on the GPU, execution leverages
a high-degree of parallelism and a basic operation such as tensor averaging becomes inexpensive
through GPU optimizations provided by the TensorFlow library, (2) simplicity of dataflow specifi-
cation and dependency control on operation executions using the special control_dependencies
TensorFlow block, which ensures that gradient updates are applied after the average is computed
and (3) tensors are easy to manipulate, which also enables users to define other model mutation
techniques, for example the momentum-based model averaging defined in the Crossbow system
[57]. Another component of the peer-to-peer model averaging is model serving. In order to ensure
fast replies, an in-memory model store is designed. Workers save a serialized copy of their model
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Algorithm 4: Peer Model Averaging (Logical View)

1 function peerModelAveragingOptimizer(V, G, n, strategy, requestMode)
input : V ={vy...vny_1} set of variable tensors (the model);
G ={go...gn-1} set of gradient tensors;
7 learning rate;
strategy peer selection strategy;
request M ode request mode;
output: V* = {vj...vx_;} updated model after average with one selected peer

/* Executed once, at the beginning of training */
2 initializeModelV ariables(V);

/* First checkpoint, initialize Model Store (executed once) */

3 saveModel(V);
4 p + selectPeer(strategy);

/* PV ={pvy...puvny_1}, peer p’s model */
5 PV « requestModel(p);

6 if requestMode is synchronous then
‘ blockUntil Reply Delivered();
8 (g ... vi_1] < [5(vo+pvo) ... 2 (pun—1 + pon—1)];

/* Update average model */
9 forie {0...N -1} do

10 ‘ vf = v — 1 gi;
11 end

12 saveModel(V*);

13 return V*;

14 function handleRequest (srcPeer, connection, modelStore)
input : srcPeer request source;

connection communication channel (TCP connection);
modelStore referene to local Model Store;
/* Access Model Store */

15 lock(model Store);
16 V' « retrieveLocal M odel(model Store);
17 unlock(model Store);

/* Reply */

18 replyWithM odel(connection, srcPeer, V');

first after weight initialization and subsequently at the end of each iteration. As this is a custom
addition compatible only with the base networking stack of Kungfu, a new operator was created
to bridge this interaction.

3.4 Worker implementation

Next, we describe why the proposed design achieves homogeneous workers able to communicate in
a decentralised manner. First, we highlight new contributions to the worker modules. We detail the
implementation and motivate design choices, followed by concrete examples of worker interactions.

3.4.1 Overview

The new modules of the system support partial gradient synchronisation (Partial Gradient Ex-
change (PGX)) through collective communication and model synchronisation through direct peer-
to-peer communication (Synchronous and asynchronous Peer Model Averaging (SPMA and APMA)).
These components comprise new dataflow logic capable of interacting with the underlying com-
munication stack while being executed by the TensorFlow runtime. The approach most effectively
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tackles this challenge by using existing operators and when needed, defining new TensorFlow op-
erators which can be plugged in the dataflow graph. We present how these components integrate
by isolating the main stages of distributed training using our system (support Figure 3.1) are

described next:
- ﬂ ata \
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Figure 3.1: Worker architecture: PGX is the Partial Gradient Exchange strategy, SPMA is the
Synchronous Peer Model Averaging strategy and APMA is the Asynchronous Peer Model Averaging
Strategy

1. Workers load a data shard into memory and create an iterator to efficiently process batches.
This is done by all workers on different shards of the entire dataset.

2. User-specified driver program is interpreted and the runtime execution graph is created. This
stage is realised by the TensorFlow runtime system.

3. The model iteratively trains on batches of data, computing a new gradient set at each itera-
tion. This is the model training stage, realised locally by each worker.

4. Variables and gradients are delegated to the synchronisation strategy, which saves them
in the Model Store or passes them directly to the Router for negotiation. This is depends on
the user’s choice of synchronisation strategy and represents new functionaliy enabled by the
system.

5. Communication between workers is realised through a light-weight overlay networking
stack or through NCCL. The networking stack is deployed as a wrapper of the training job
and is initialised on deployment on each worker. The entire cluster abstraction is accessible
from the communication stack provided by the wrapper process.

The implementation is focused on encapsulation and homogeneity, creating a decentralized
training system in which a worker can flexibly enable specific components subject to cluster con-
straints. The principal modules allow workers to play distinct roles during training. All new
operators that augment the TensorFlow operator set are built using C++ as classes derived from
SyncOpKernel and AsyncOpKernel [107]. A kernel defines the runtime computation of an oper-
ator and allows it to maintain state. As described in Section 2.2, kernels can be registered for
a specific device type to leverage training acceleration hardware. An important mention is the
difference between the two types of kernel. While the synchronous version blocks the critical path
of computation, the asynchronous version allows free execution of other kernels until the output of
asynchronous kernels has been computed. This insight reflects implementation decisions for partial
gradient exchange and for peer-to-peer model averaging.

The logic within the networking stack for supporting peer-to-peer interactions is implemented
in Go [108]. This programming language provides useful concurrency features needed to support
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asynchronous I/0 required by the synchronisation communication stack through goroutines, which
represent lightweight green threads managed by the runtime system and through Go channels,
which are thread-safe data types which enable message passing between goroutines. These features
meet the requirements of the network stack: (1) handle all complex collective communication
components (broadcast and gather graph, gradient receiving, aggregation and sending) and (2)
handle asynchronous I/O for flexible TCP connection handling.

3.4.2 Partial Gradient Exchange

Partition

if Global Step MOD #partitions == partition index

false frue CPU
AII—reducai
apply gradient aII—re_d_uce NCCL
pariition JAll-reduce
....... F-%
apply aggregated

Figure 3.2: Partial gradient exchange dataflow

This synchronisation strategy uses existing TensorFlow operators for defining the logic of partial
gradient synchronisation through round robin scheduling of partitions. During training, gradients
are first intercepted and partitioned into approximately equal-sized buckets. These are scheduled at
runtime using the global step as a partition selector. When a partition is selected, all its gradients
are negotiated using all-reduce. The design supports easily both NCCL all-reduce and CPU-based
all-reduce. This collective communication is handled by the communication stack of Kungfu.

Partitioning The partial gradient exchange component intercepts the set of gradients computed
for each trainable variable of the model. In order to exchange less gradients during synchronisation,
the set is partitioned. An important decision at this stage is the choice of partitioning algorithm:
one approach inferred in the Ako algorithm [33] is that of partitioning the entire serialised gradient
set (a byte buffer) into a number of chunks equal to the number of workers, while the other
approach is to partition the gradient set directly by the number of bytes of the gradient tensor. As
the level of granularity employed by the former approach is likely to affect convergence because it
assumes an asynchronous setting with gradient accumulation, the latter approach is chosen. First,
an approximation of the K-partitioning algorithm - implementation based on [109]) - is explored,
which places variables in K bins constrained to have approximately equal sizes (where possible).
However, this approach proves to be model dependent and bins turn out to be disproportionate
across different models.

Partitioning design choice Although dependence on model architecture is not completely elim-
inated, a new solution, which is more intuitive for the user relies on the bin-packing problem [110]
- algorithm implementation adapted from [111]. The algorithm finds the minimum number of bins
of fixed capacity required to fit all variables according to variable size. This algorithm does not
impose any constraints on variable placement in bins such as placement by variable type which can
be convolution or fully connected layer tensors. The motivating choice for this type of offline
partitioning is to obtain a set of equally sized bins conditioned on the user-provided budget, which
is important for balanced network usage.
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Dataflow implementation The partitioning step is run before the dataflow is created. Each
gradient tensor belongs to a unique partition. Each partition is negotiated in a round robin
fashion, depending on the global step - this logic is run in the TensorFlow execution graph. As
described in Section 2.2, the global step TensorFlow variable is used to keep track internally of the
training step. The dataflow graph in Figure 3.2 is replicated for all gradient partitions, which is
a subtle detail of the dataflow paradigm. Using a TensorFlow conditional operator, the runtime
behahviour branches: if the current partition must not be negotiated, all gradients within which
represent local worker-computed gradients are applied to the model, otherwise all grdients enter
an all-reduce phase which can leverage NCCL GPU acceleration or run on the CPU, using the
networking stack for communication. One special requirement needs to be met in the case of NCCL
all-reduce: all GPU devices must agree globally on the order of execution, which is realised by
defining an order group such that all-reduce can be done identically for all partitions across devices.
This is supported by the Kungfu implementation of NCCL collective communication. Partition
scheduling is best shown in Figure 3.3 where the step ¢ deterministically selects the gradient
partitions P.; mod numberOfPartitions for synchronisation, where numberO f Partitions = 3.

GradientPartitions of Worker 2

terationi B .
lteration | + 1 7 h

——————— Iteration i + 2
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Figure 3.3: Round-robin partition synchronisation

Worker interaction Figure 3.4 represents a conceptual interaction with topology abstracted
away. Workers take part in the all-reduce algorithm as explained in Appendix A.2 with less
gradients. This algorithm is efficient because it considers only multicast interactions with direct
neighbours of a worker in the spanning tree of the topology graph. Our focus is to improve
communication system-wide and this is best shown in the diagram. There are three gradient
variables in the system summing up to a total size of 8. Assuming the user desires partitions with
half the capacity of the total model size, there will be two gradient partitions who will halve traffic
created in the network compared to a full exchange system.

3.4.3 Peer Model Averaging

There are two components for peer-to-peer model averaging which rely on a common mech-
anism: after each iteration workers issue a request to another peer selected according to a user-
specified strategy, the peer prepares a response from its local model store containing a serialised
model and the requester updates its local model by plain model averaging. The distinguishing
feature between the synchronous and asynchronous implementation is the latter’s leverage of con-
currency features of the underlying networking stack.

The final implementation is a result of decisions on: (1) design of the communication protocol,
(2) integration of the communication protocol in the TensorFlow dataflow graph:

1. Defining how workers communicate is a requirement for a predictable protocol. An asyn-
chronous communication protocol in which there exists no flow control becomes problematic
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Figure 3.4: System-wide communication reduction through partial exchange

in cases where the system is sensitive to data staleness. As, such the protocol implemented
relies on TCP connection reuse for requests and replies. This way, the model receiver knows
precisely that delivered model is not stale and can pass it to higher-level layers in the system.

2. The implementation proceeds from the interception point of the model variables represented
as multi-dimensional tensors. But how can these variables be averaged with another peer’s
variables? This is achieved through a new TensorFlow operator delegated with the respon-
sibility for the request. The request can be made for each individual variable or for the
entire model. The first approach is likely to lead to suboptimal network usage or to high
contention on the model store, which leads to the simple solution of coarse granularity for
model representation.

Model Buffer ModelBuffer is a C++ utility class which is responsible for serialisation and
deserialisation of the list of variables which constitute a model. The class contains the data bytes
of all tensor variables of the model and a reconstruction vector which keeps track of byte offsets.
Each offset is the starting point where data bytes of a variable are found. This object is unique for
operators responsible for model averaging and model saving and is doubled by a prefetch buffer for
the asynchronous operator. The implementation is based on the global ordering of model variables
across workers, such that correct reconstruction of variables can be achieved using offsets and
variable sizes.

Peer Selector Given that a training iteration has completed, how does a worker know which peer
to request a model from? It is hard given only local knowledge of the model to make an informed
decision. We employ two strategies that make use of the cluster abstraction: (a) random selection,
achieved using the global cluster knowledge registered in the communication stack, represented by
peer IDs also known as ranks and (b) round robin peer selection, using the same cluster knowledge
and the training step. These strategies represent a good starting point to discriminate which peer
selection strategy is better: one that is unpredictable and is likely to achieve a better approzimate
trajectory close to the global average model or one that is ordered and may show benefits of periodic
synchronisation with peers. Peer selector is implemented as an abstract class extended by two
strategies: random peer selector and round robin peer selector. The random selector uses a uniform
integer distribution utility class to select uniformly at random an element from the list of peer ranks.
The round robin selector keeps track of the global step using an integer variable incremented with
every call for selection and uses this variable to index into the vector of peer ranks.

Model Request There is a unique model averaging operator per worker. Both synchronous and
asynchronous versions are implemented as TensorFlow OpKernel derived classes. On construction,
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Figure 3.5: Synchronous peer-to-peer model averaging dataflow

the class initializes variable meta-data (sizes, byte offsets) for recovery of model variables from
the model store. The logic of the operator is placed in the overriden Compute function and called
at runtime during every iteration when the dataflow graph is executed. The synchronous version
illustrated in Figure 3.5 blocks training for a duration equal to the request latency. When another
peer’s model is received, the model buffer is populated and the variable tensors are reconstructed
(See figure: peer wariable) to be further processed by other operators in the dataflow graph for
model averaging (Figure pointer: avg operator).

This approach is optimized through a second prefetch buffer which acts as a cache. This
architecture decouples the training task from the model serving task and the blocking request task
for less overhead during training, according to Figure 3.6. Although the model request operator
is an OpKernel, background requests are achieved through registering C++ callbacks delegated
to the networking stack through cross compatibility enabled by CGo. When such a callback is
provided go launches a goroutine for the process and calls the provided C++ callback after the
request completes. Goroutines are light-weight green threads which enable flexible concurrency in
the Go programming language. Because of the large number of iterations required to train neural
networks, launching a background request every time overloads the Go runtime, which supports
a maximum of 10000 goroutines. This demands a mechanism for request rate limiting to ensure
that no redundant background tasks are spawned. This is achieved through an atomic boolean
flag which is reset after an existing background task completes. This mechanism also ensures that
the cache is always up to date.

Model serving is realized through TCP connection reuse. This means that when a requester
establishes a TCP connection with a destination peer, this connection is kept alive and the message
from the receiver is delivered using the same connection. The underlying networking stack provides
flexibility for connection handling through a connection pool conceptualized through a Go channel,
which can receive messages of from multiple connection types according to the type of interaction
which can be one of peer-to-peer or collective. A model is served from the local model store,
implemented as a thread-safe byte buffer. This is done when the peer-to-peer connection is handled,
always acquiring a lock on the model store. The benefit obtained from placing the model store
deep in the networking stack is to minimise the latency incurred by constructing a reply message.
One advantage of the serialised model store is reduced contention when peers are flooded with
requests and are updating the store frequently at every training iteration.

Model Saving Workers need to periodically update the model store such that other peers are
not served stale models. This is done during every iteration through a similar callback-based
mechanism with background task rate limiting as for model requests. Model saving is a simple
buffer copy from the C++ buffer allocated by the ModelBuffer object to the Go-land model store
buffer.

Decentralised interaction Figure 3.7 illustrates a snapshot of the decentralised interaction in
which Worker 3 randomly selects Worker 0 to engage in a unidirectional model exchange, while all
other workers continue their training process. This approach reduces network traffic and allows
training to progress while synchronisation takes place in parallel. This interaction is based on the
algorithm developed by Zhang, et al. in the paper Asynchronous Decentralized Parallel SGD [58],
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Figure 3.6: Asynchronous peer-to-peer model averaging dataflow

2018, however they present a variant in which there exists a bidirectional model exchange between
peers.

3 Retrieve Model from Store

Train Async( ) Worker 0 Worker 1 { ) Train Async

4 Send Local Model

MNetwork 2 Request Local Model
(TCP Connection) 1 Select Random Worker 0
Train Async() Train Async
Worker 2 Worker 3 e Y

5 Average with received model

Figure 3.7: Unidirectional Peer Model Averaging

3.4.4 ‘Worker Architecture

The natural question is how can synchronisation be effective when it is not strict and there is
no single entity responsible for strictly collecting gradient information from all workers? Deep
Neural Network training does not yield a unique solution due to its stochastic nature, which is an
avenue worth exploring for decentralised training, where barriers are relaxed with the confidence
of maintaining convergence properties. In a decentralised setting, all workers are capable of the
same behaviour and periodically bring contributions to the system. To achieve this behaviour in
our system, the design is focused around encapsulating the same functionality in all workers.

Homogeneous Deploying Deep Learning jobs in the cloud can often be a cumbersome process,
sometimes requiring users to manually map the cluster resources to specific roles in the training
process (e.g., resource partitioning in parameter servers). As [33] describes, finding the optimal
resource partitioning is not an easy task and it tightly depends on a number of factors which users
are unable to control or may not be aware of. The paper [33] also shows empirically that resource
partitioning focused on improving specific metrics such as iteration completion time (hardware
efficiency) or model improvement per iteration (statistical efficiency), degrades the quality of a
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Figure 3.8: Shift to a decentralised architecture

model [33]. Users may not always benefit from ready-made cluster configurations for their model
and even if they do, they may not dispose of the necessary hardware resources.

Our aim is to design a homogeneous system for ease of deployment. Kungfu’s architecture is
scalable and easy to deploy. Workers are built as independent entities with homogeneous func-
tionality, so there is no resource partitioning as in parameter servers. This eliminates the need
for manual training configuration. When starting a Kungfu process, users need to specify only
the host IPs and how many workers they wish to deploy on a host (e.g., for an 8 GPU machine,
a user can specify any number of workers between 1 and 8, each training on one GPU). This is
convenient, as the cloud usually provisions different types of resources and people want to easily
deploy distributed training jobs without the burden of resource partitioning.

Decentralised The system fits in the paradigm of decentralized architectures. Previous systems
such as Horovod rely on a master node to determine when synchronisation is complete, which
makes training vulnerable to failure with no fault tolerance mechanism in place. When DL clusters
increase it is often cumbersome to have master nodes in the system. Systems such as Horovod
exhibit scaling difficulties even on a small number of machines mainly due to the master node.
Figure 3.8 shows two types of decentralised interactions realised by the Kungfu system, where
the master role is completely eliminated. The new type of interaction is realised by collec-
tive communication and direct peer interaction. All-reduce is often realised through bandwidth-
optimal [101, 50] ring all-redue algorithms, where the overlay topology graph is a set of rings for
each peer - every peer in the ring aggregates gradients from all peers by successive send operations.
All-reduce can alternatively generalise (Appendix A.2) to other overlay topologies such as tree,
star and clique. The user choice can depend on specific cluster knowledge, but by defult the sys-
tem does not require such changes. This approach provides significant communication adaptation
benefits (dynamic cluster overlays, cluster cliques) that could benefit flexible synchronisation. In
the proposed system, control is delegated uniformly to workers. For direct peer interactions, which
requires reliability, TCP sockets are used assuming overlay neighbors are known. These enable the
system to become resilient to worker failures and to easily employ fault tolerance schemes such as
TCP connection timeouts (for peer interactions) or back-up overlay graphs for collective all-reduce.

The proposed worker architecture shows that partial gradient exchange and unidirectional model
averaging can be achieved in a fully asynchronous, decentralised way. They do not require a
coordinating process and can instead autonomously perform all operations required for flexible
synchronisation - gradient aggregation through all-reduce and direct interactions with peers.

3.5 Evaluation

In this section, we evaluate the system performance. The first question to answer is: does flex-
ible synchronisation hurt convergence of a DL model compared to parallel SGD? To answer this
question, we perform convergence experiements that compare the model averaging techniques and
partial gradient exchange with parallel SGD, and show that some flexible synchronisation strate-
gies can maintain the accuracy bounds tight. Once resolving the convergence question, we turn
our focus to evaluate the effectiveness of resolving communication bottlenecks by using a flexible
synchronisation system. The evaluation is organised as follows: we start by presenting the ex-
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perimental set-up consisting of Cluster hardware, models and their chosen hyperparameters, then
describe the datasets.

Goals of the experimental evaluation are: (i) to explore convergence properties of the system
when using proposed flexible synchronisation strategies on state-of-the art DNNs, (ii) to quantize
the benefit obtained from flexible synchronisation compared to baseline systems, (iii) to explore
scalability in high-performance Cloud environments dedicated for DNN training and in multi-
machine GPU clusters with commodity network links, (iv) to explore the impact of new hyperpa-
rameters introduced for synchronisation on convergence and scalability (v) to explore convergence
under different conditions (multiple machines, varying batch size).

3.5.1 Cluster Hardware

To demonstrate the effectiveness of flexible synchronisation, three cluster set-ups are used. The first
cluster setup uses latest-generation GPUs and network interconnects and is used for convergence
and scalability tests. The second cluster setup is for multi-machine scalability tests, over virtual,
commodity network. The third setup involves a server machine where smaller models such as
ResNet-32 are run.

Cluster choice motivation The cluster choice emphasizes wide benefits users can obtain through
flexible synchronisation in different settings. Firstly, the choice of a GPU cluster with Infini-
Band [46] interconnect provides high bandwidth and ultra-low latency, so the user might be less
motivated to use flexible synchronisation, so if we show existence of a benefit, the system becomes
more likely to be used in practice. This was indeed achieved by showing training time reduction
in the DGX-1 cluster. Secondly, the 16-machine cluster is a more realistic set-up, providing best-
effort network services over commodity links. This fits in the types of clusters where switches are
over-provisioned, likely creating bandwidth shortage for the hosts involved. This cluster is used in
order to quantify how much benefit we obtain in an unpredictable environment with lower quality
links. This is useful when analysing flexible synchronisation strategies, as its builds a complete
view of the performance benefits motivating its practical use.

Hardware description The technical specification of the cluster setup is summarised below:

1. Cluster of 2 NVIDIA DGX-1 [112] machines, each dedicated with 8 Tesla V100 GPUs, with
InfiniBand [46] interconnect, Dual 20-Core Intel Xeon E5-2698 v4 2.2 GHz and 256 GB
system RAM.

2. Cluster of 16 machines, each dedicated with one NVIDIA P100 GPU, used for scalability
tests. The cluster belongs to a public resource pool, which means that there is not Quality
of Service. The network service is best-effort.

3. Server machine dedicated with 4 GeForce GTX TITAN X (Pascal) GPUs and 20 Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz

Cluster set-ups 1 and 2 provisioned by Huawei Cloud’s [41] cluster deployments rely on the Ku-
bernetes [113] container orchestrator to manage and schedule Docker [89] containers encapsulating
training jobs on multiple machines.

3.5.2 Models and Datasets

Models and datasets choice motivation The experiments aim to show that flexible synchro-
nisation strategies can benefit training of a wide range of reference DNNs which have been well
studied. These are chosen to create sufficient computational load on the system in order to enable
a more accurate performance evaluation and to provide a sufficiently difficult training algorithm
which is sensitive to any problem introduced by the system. Showing that the implemented strate-
gies work with a wider range of models and datasets reinforces the motivation for practical use of
the Kungfu system.
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Kungfu all-reduce (CPU) Kungfu all-reduce (GPU)
all-reduce in parallel for each tensor all-reduce operators do not overlap, NCCL benefit
Horovod (MPI) TensorFlow Replicated
centralised all-reduce with no parallel execution, blocking tensor fusion centralised all-redue with no parallel execution

Table 3.1: Summary of baseline systems

Models and datasets details Experiments are run using an adapted version of the TensorFlow
benchmarks project [59], which includes models for Deep Convolutional Neural Networks. The
benchmarks version is compatible with TensorFlow version 1.12.0, which uses CUDA 9.0.

The main models used to run experiments are from the ResNet family [11]. Two models are
used for evaluation. ResNet-32, a deep and low-dimensional network [57], which is trained on the
CIFAR-10 [62] dataset (50,000 training images and 10000 validation images) and ResNet-50, a deep
and low-dimensional large network [57], which is trained on a subset of the ImageNet dataset [22]
containing 1, 281, 167 images for training and 50,000 images for validation. All ResNet experiments
share the same hyperparameter settings: weight decay 0.0001, momentum 0.9. Each training run
is preceded by a warm-up stage of 20 batches, which is not timed. ResNet-32 is trained for 140
epochs and ResNet-50 is trained for 90 epochs in all experiments. In order to test the accuracy of
the model, a checkpoint is created after every epoch - checkpointing time is subtracted from the
training time. After training completes, all checkpoints are restored and used for testing on the
validation set. The training instant (seconds from the beginning of training) where a checkpoint
is made is used as a data point for physical time in the reported results.

It is important to understand a few common properties of ResNet models for a more clear
view of the experimental results. First, they use a learning rate schedule [114], which encompasses
pre-defined learning rate adjustments in order to overcome plateaus in validation accuracy. The
effect of the learning rate schedule can be observed in the jumps in validation accuracy made at
specific epochs during training. In ResNet-32, the learning rate is multiplied by 0.1 at epochs 80
and 120 [57] and in ResNet-50, the learning rate is multiplied by 0.1 at epochs 30, 60 and 80.
Second, they use batch-normalisation [115] which is used to eliminate input similarities (covariate
shift) in convolutional layers. They work by normalising the inputs of convolutions using batch
statistics (mean and variance). Numerical instability leads to differences in model parameters
across workers. This has a visible effect in the validation accuracy of parallel SGD, where there is
variance in the validation accuracy computed by each worker.

3.5.3 Overview

All convergence results presented gather validation accuracies of all workers employed in the dis-
tributed training run. ResNet-50 convergence tests are run with 8 GPUs (workers). ResNet-32
experiments are run with 4 GPUs (workers). Each data point in a validation accuracy plot rep-
resents the average validation accuracy of all workers in the system. We also show the minimum
and maximum validation accuracy achieved by a worker. Results presented in this manner pro-
vide a better understanding of how well the system behaves overall. Where the span of validation
accuracies per worker is large, it means that there exists instability in the system.

Experiment design In designing the experiments, two factors are considered: (1) providing
realistic convergence results comparable to the ones achieved by state of the art Deep Learning
systems, (2) emphasizing the benefit of flexible synchronisation strategies by increasing the fre-
quency of synchronisation in the system, while ensuring that hardware utilisation does not degrade
significantly. To meet all these requirements, we choose small batch sizes, similar to [57]. All peer
model averaging experiments are run with a batch size of 64 (ResNet-32 and ResNet-50). A small
batch size ensures that workers perform model averaging more frequently, creating thus a better
estimate for the theoretical global average model. For Partial Gradient Exchange experiments the
batch size choices are: B = 64 for ResNet-50 and B = 32 for ResNet-32. The motivation for this is
stress test the system when synchronisation could indeed become a bottleneck (e.g., in commodity
networks such as the one underlying the P100 cluster).

Baselines One baseline is the MPI-based all-reduce implemented by Horovod, which is cen-
tralised, with the rank zero worker being the master. A version of Parallel SGD using collective
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Figure 3.9: (a) Async Peer Model Averaging vs TensorFlow Replicated over epochs, (b) Sync Peer
Model Averaging vs TensorFlow Replicated over epochs

all-reduce (Kungfu-provided baseline) is used for performance comparison, which coexists in the
same system with Partial Gradient Exchange. Kungfu Parallel SGD uses collective all-reduce for
CPU and NCCL synchronisation (Appendix A.2). This is performed in parallel for each gradient
tensor, with the tensor name as global key. The key mechanism is the use of broadcast and gather
graphs for each worker, where workers communicate with their direct neighbours in the spanning
tree. One other baseline used is TensorFlow Replicated [116, 117] strategy with default all-reduce
settings for the multi worker case (one machine, multiple GPUs): a centralized all-reduce algorithm
is performed by cross-device aggregation of gradients at worker 0, followed by a broadcast. The
default benchmark setting is pscpu/pscpu with an all-reduce shard size of 2. This means that
there is a hierarchical all-reduce happening in parallel, each dealing with two shards of the dataset.
The baselines are summarised in Table 3.5.3.

3.5.4 Peer Model Averaging

Evaluation shows that flexible synchronisation strategies do not affect convergence. The baseline
is TensorFlow 1.12 Replicated strategy, which does a cross-device aggregation of gradients across
GPUs. We use short names to denote the new peer-to-peer strategies for brevity of description:
APMA denotes P2P Asynchronous Peer Model and SPMA denotes P2P Synchronous Model Av-
eraging. We have decided to also showcase the peer selection strategy in the worst case, which
can occur in the asynchronous version of model averaging, where employing distinct peer selection
strategies could balance the workloads on the network and on background request and serving
tasks. APMA uses a fixed stratgy for peer selection - random.

Convergence

The experiments show that the implemented flexible synchronisation strategy Peer Model Averag-
ing converges similar to the baseline. Results are shown for ResNet-32, ResNet-50. All strategies
used for training ResNet-50 are deployed on Cluster Setup 1, while for ResNet-32 Cluster Setup 3
is used.

Figure 3.9 aims to compare convergence of the two implemented strategies (synchronous and
asynchronous version of Peer Model Averaging) with TensorFlow Replicated. Figure 3.9a shows
that APMA with two different peer selection strategies has similar convergence properties as Ten-
sorFlow Replicated. A small decrease in accuracy (2%) at convergence can be observed for APMA
selection, being explained by an expected small deviation from the global model trajectory due
to asynchrony. Figure 3.9b shows that SPMA similarly has the same convergence properties as
TensorFlow Replicated (76%), with only a 1% decrease. It is interesting to observe in these plots
that the early stages of training are unstable (high worker variance +5% in accuracy and lower
accuracy than TensorFlow Replicated over the first 10 epochs) for SPMA and APMA. This is
expected, as workers train on different data shards and their pairwise model stabilisation requires
time.

Figure 3.10a aims to compare convergence of APMA and SPMA, where the APMA version
has distinct peer selection strategies (round robin and random) and SPMA has round robin, as
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Figure 3.10: (a) Sync Peer Model Averaging vs Async Peer Model Averaging with peer selection
strategies over epochs (ResNet-50), (b) Peer Model Averaging vs Parallel SGD (ResNet-32)

discussed previously. The conclusion is that both flexible synchronisation stragies converge to
similar accuracies: Synchronous Model Averaging (75%) and Asynchronoyus Model Averaging
(74%). For diversity of exploration, convergence is also tested on the smaller ResNet-32 model
(Figure 3.10b), where the baseline is the Kungfu implementation of Parallel SGD and the result
proves that SPMA and APMA are robust irrespective of peer selection strategy. All strategies
converge to an accuracy of 83%. The convergence results on ResNet-50 and ResNet-32 show that
the new strategies are slightly sensitive to model size (lower than baseline by 1-2% for ResNet-50
and same as baseline for ResNet-32).

Performance Benefit

Next, we show the training speed benefit obtained by the proposed strategies. For ResNet-50,
it is shown that the decentralized learning approach can improve the time to convergence. The
comparison also brings focus on the difference between the two variants of peer-to-peer model
averaging. As the asynchronous version is an optimization of the synchronous one, it is expected
to achieve better performance, which is confirmed by the experimental result. As the peer selections
strategy has very low overhead, performance is not affected by this factor.

Figures 3.11 and 3.12 aim to provide a comprehensive study of the performance benefit brought
by Peer Model Averaging. First, we compare SPMA and APMA with TensorFlow Replicated and
observe clear improvement in training speed (2.7 hours faster for SPMA and 4.1 hours faster for
APMA). We also want to compare the two new strategies and this deserves an isolated comparison
- APMA is faster than SPMA by 1.4 hours. Figure 3.12 clearly shows that APMA performs better
than SPMA in terms of time to convergence. Now that the benefits are quantised, we can begin
analysing why the plots show this improvement. First, we need to restate the mechanism by
which TensorFlow replicated performs the aggregatation: this is a 2-thread (pscpu/pscpu) inter-
GPU transfer via RAM (no NCCL), using a centralised approach that waits for all devices to
send their gradients. In comparison to our approch, where there are less messages in the system
(model request and model reply) and workers are allowed to train with very small synchronisation
strategies, the Replicated approach has a strict barrier that incurs penalties. Now, to motivate why
the synchronous version is slower than the asynchronous version, we refer mainly to the blocking
training due to the lack of background tasks (as present in the asynchronous version).

Convergence under different conditions We also investigate the convergence properties of
Peer Model Averaging in a multi-machine setting, on two DGX-1 machines (Figure 3.13). As a
baseline, we use a version of Parallel SGD based on the TensorFlow Replicated strategy. The
strategies are run for 30 epochs on ResNet-50 (checkpoints are done every two epochs). We
report the maximum validation accuracy among all workers in the system. The synchronous
version of Peer Model Averaging shows a slight improvement of training time (approximately 10
minutes). The target accuracy of 56.4% is reached 10 minutes faster when using Peer Model
Averaging. However, Parallel SGD (Replicated) eventually trains to 60.06% accuracy. Training
time reduction is the notable benefit for this short run. The result provides confidence that the
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Figure 3.11: Peer Model Averaging strategies vs TensorFlow Replicated over physical time
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Figure 3.12: Sync Peer Model Averaging vs Async Peer Model Averaging with peer selection
strategies over time
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Figure 3.13: ResNet-50 Validation accuracy on two DGX-1 machines (Peer Model Averaging vs
Parallel SGD (Replicated))
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Figure 3.14: Peer Model Averaging scalability test on DGX-1 machines

system maintains convergence properties of the model even when synchronisation is done among
16 GPUs, maintaining the positive trend established by the single-machine run.

Scalability

It is important to understand the behaviour of the system in a setting with more workers. The
bar graph in Figure 3.14 is a high-performance test of total (system-wide) training throughput for
Synchronous and Asynchronous Peer Model Averaging on cluster set-up 1. The conclusion is that
this approach leverages the hardware very well for training in the asynchronous case, which can
be best quantified by the small difference (19% for both one and two machines) from the ideal
throughput achieved by an independent learner.

The second bar graph in Figure 3.15 shows a similar behaviour at scale for the asynchronous
version, when 16 machines are used. The system achieves linear scalability in the number of
workers. The synchronous version of Peer Model Averaging shows scaling difficulty when the
system is composed of a large number of workers. This difference is caused by the blocking
training phase inherent to our design, aggravated by large network latency jitter. As measured in
the 16-machine bare-metal cluster set-up 2 with Docker overlay network for inter-machine container
communication, the request latency varies between 100 microseconds and one second. High variance
indicates a heterogeneous environment where communication instability should be a decision factor
when issuing requests. The penalties come from the tail of the latency distribution: even though
frequency of large request latencies is low, this is significant enough to degrade performance of
the system. The asynchronous version evades this problem through non-blocking training and
background tasks.

Model averaging device placement

This subsection is a study of the effect of operator device placement for model averaging. Because
flexible synchronisation strategies are introduced in a system where operator device placement is
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Figure 3.15: Peer Model Averaging multi-machine scalability test

a degree of freedom, it is important to understand how this can affect performance of the system.
GPUs enable a high degree of parallelism in computation, but when flexible synchronisation strate-
gies are enabled, the device placement for synchronisation becomes critical for training performance
and is conditioned on factors such as the model size and hardware characteristics.

H Sync P2P (CPU) Parallel SGD (CPU) Async P2P (CPU) Ideal H
H 2100 imgs/sec 2500 imgs/sec 3000 imgs/sec 3100 imgs/sec H

Table 3.2: ResNet-32 training throughput

For example, training ResNet-32 with four workers (1 GPU per worker) on cluster setup 3
when CPU model averaging is enabled provides near-ideal throughput for asynchronous peer model
averaging (Table 3.2). However, when training the larger ResNet-50 with more workers on more
powerful GPUs (cluster setup 1), frequent data transfers between the GPU and the CPU create a
bottleneck for training, decreasing training throughput per worker.

The result is also visible when training on 16 machines, each with one P100 GPU (cluster
setup 2), where CPU execution of model averaging incurs performance penalties per worker (Ta-
ble 3.3, first row compared to second row):

H Sync Model Averaging Async Model Averaging  Parallel SGD Ideal H
CPU 87 & 2 imgs/sec 136 £ 2 imgs/sec 10 £1 imgs/sec 235 imgs/sec
GPU 148 + 32 imgs/sec 225 + 2 imgs/sec 10 £1 imgs/sec 235 imgs/sec

Table 3.3: ResNet-50 training throughput per worker (16 machines, each with 1 V100 GPU)

The takeaway is that the TensorFlow approach of letting the user specify the placement of
operators on GPU vs CPU can significantly affect training performance. As this degree of freedom
is present in our system, the result provides a solid reason to allow the user to configure where
performance-critical and frequent operations such as model averaging are executed.

3.5.5 Partial Gradient Exchange

Partial Gradient Exchange is one other component of flexible synchronisation that deserves explo-
ration from the perspectives of performance and convergence. Evaluation shows that this strat-
egy enables performance and degrades convergence of the model. However, the convergence gap
through flexible techniques for enabling partial synchronisation can be covered through smarter
synchronisation, as described in Chapter 4.

Convergence

The plot compares the convergence of ResNet-50 for Horovod, Parallel SGD and Partial Gradient
Exchange. This plot is important for the algorithm evaluation in order to validate the key insight
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Figure 3.16: Partial Gradient Exchange convergence
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Figure 3.17: Benefit of Partial Gradient Exchange in large batch conditions

on which Partial Gradient Exchange is based: each peer has sufficient information locally to make
progress and does not need to exchange its full gradient set. Experimental results (Figure 3.16)
show that this insight overlooks some aspects important for training, as partial gradient exchange
affects convergence by around 9% (Horovod and Parallel SGD 76% and Partial Gradient Exchange
67%). However, this gap can be closed by employing smarter synchronisation techniques to deter-
mine when partial synchronisation should kick-in, which is a new challenge for more flexible and
effective partial gradient exchange.

3.5.6 Convergence under different conditions

Partial Gradient Exchange shows the same convergence properties when larger batch sizes are used.
The time to accuracy, however, is much smaller in the large batch regime, where the frequency of
synchronisation decreases, so the network is less likely to become a bottleneck. This is shown in
Figure 3.17, where we first show that large batch regimes do not have an effect on convergence
(Figure 3.17a), but they have a negative effect on training performance for Partial Gradient Ex-
change, where training reduction times are much lower (See small benefit in Figure 3.17b). It is
fair to state that the breaking point of the Partial Gradient Exchange is large batch training and
this type of synchronisation strategy should be preferably used when training with small batches.

Performance benefit

Partial gradient exchange provides a performance benefit when compared to Horovod and Parallel
SGD. Compared to Horovod, the throughput increase is 5%, which is significant when considering
lengthy training times spanning tens of hours. However, the comparison of interest is between
Parallel SGD and Partial Gradient Exchange, which coexist in the same system called Kungfu.
The aim is to show the effect produced by the change of algorithm in the system, while all other
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Figure 3.18: (a) ResNet-50 Partitions for partition budget fraction 0.1, (b) Accuracy improvement
through coarse-grained Partial Gradient Exchange

underlying components remain unmodified, the evaluation result compares the validation accu-
racy over physical time between Partial Gradient Exchange and Kungfu Parallel SGD. The 30%
throughput increase (Figure 3.18b) is reflected in the plot of validation accuracy over physical time
as an acceleration of training.

Figure 3.18a represents the distribution of model variables in the partitions negotiated in round
robin manner every iteration. In a real setting, the user desires to achieve maximum performance
and large generalisation power of the model. Introducing the budget fraction as a hyperparameter
of the system can be difficult to manage by the user, as behaviour is model dependent. For
example, the illustration presents the maximum number of partitions of the set of gradient tensors
in ResNet-50. This consists of 11 partitions: 10 partitions are filled with convolutions and batch
normalisation layers and one partition is filled with a large tensor variable corresponding to the
fully connected layer. Exchanging these smaller partitions in round robin manner relaxes the
synchronisation barrier, where only gradients belonging to one partition are exchanged and thus
attenuates the large system barrier usually created by synchronisation.

In these experiments, training is done on 4 TITAN X (Pascal) GPUs from Cluster setup 3
and synchronisation operators use all available 20 CPU cores of the server machine. The findings
in Section 3.5.4 about synchronisation operator device placement affecting performance and the
difference in all-reduce mechanism explain the performance difference between the Parallel SGD
and TensorFlow replicated baselines, where the latter uses direct sequential GPU aggregation. The
effect of gradient partitioning is further explored for the smaller ResNet-32 model, which consists
of the same blueprint architecture as ResNet-50, but contains only 32 residual blocks 2.1.1 which
consist of tensor variables with smaller size. This makes it much easier to train for less complex
tasks. Both plots show that employing partial synchronisation in smaller models does not affect
convergence and provides a performance benefit compared to baseline systems. Using the same
partitioning budget as in ResNet-50 yields the same gradient tensor distribution as in ResNet-
32 3.20a. The distribution gives a training speed improvement of 10%, as the model is much
smaller and the amount of network traffic is reduced.

To further explore the effect of Partial Gradient exchange in ResNet-32, a new experiment is
run on Cluster setup 3 to test the hypothesis that less partitions capture the tendency of the
algorithm to behave similarly to the Kungfu Parallel SGD algorithm, which belongs to the same
underlying system. A larger partitioning budget of 0.4 ensures that three partitions are created.
Although one of them is smaller, amounting for only 20% of the total size of tensors, it contains
the large, fully-connected tensor variable, which makes its contribution significant for aggregation
every three iterations. The plot (Figure 3.20b) proves that the hypotheses for ResNet-32 is tested:
increasing the number of partitions in the system reduces training throughput and has a benefit
on convergence. However, this approach is model-sensitive, as the hypothesis does not verify for
larger models such as ResNet-50, where at scale, failing to incorporate big gradient sets can affect
convergence.

The conclusion for Partial Gradient Exchange training runs on ResNet-32 and ResNet-50 is
that although we obtain a performance benefit, skipping to negotiate gradients incurs accuracy
penalties for large models. The new hyperparameter introduced is difficult to control without
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0.4

sufficient knowledge of the Deep Neural Network architecture, but it opens up a new chapter for
design of smart algorithms that can close the gap.

Scalability

This section presents the scalability results for multiple partitioning fractions when run in a two-
machine GPU cluster (Cluster setup 1) with InfiniBand interconnect. In this case, creating network
traffic is unlikely to reduce training performance, as the network has enough network bandwidth,
the performance benefit is given by relaxed synchronisation barriers. The batch size used for
training is 64 (unless otherwise specified in generalisability experiments), which is a small batch
size enabling frequent synchronisation. The reason for choosing a small batch size is to analyse
the behaviour when synchronisation is more frequent, in order to emphasize performance when
synchronisation can indeed become a bottleneck for training.

One DGX-1 machine First, results are shown when running on one DGX-1 machine with 8
GPUs. According to NVIDIA, this type of machine provides the most advanced data center GPU
built to date [36], which makes this test valuable to quantify performance of the system on the large
ResNet-50 model. In Figure 3.21, the number local workers (GPUs) is varied and the scalability
properties are determined based on gradient partitioning. TensorFlow Replicated and Parallel
SGD show similar scalability properties. The trends from 1 to 8 peers can be quantified as follows:
(a) TensorFlow Replicated shows increases in throughput by 136% from 1 to 2 peers, by 95% from
2 to 4 peers, by 25% from 4 to 8 peers and (b) Parallel SGD shows increases in throughput from
1 to 2 peers by 93%, from 2 to 4 peers by 92% and from 4 to 8 peers by 14.7%. There is a clear
performance benefit given by Partial Gradient Exchange, quantified for 8 peers as a 47% increase
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Figure 3.21: Partial Gradient Exchange scalability on one DGX-1 machine
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Figure 3.22: Partial Gradient Exchange scalability on two DGX-1 machines

when compared to TensorFlow replicated and by a 75% increase from the throughput achieved
by Parallel SGD. One important observation is that Partial Gradient exchange with 1 partition
behaves exactly the same as Parallel SGD.

Two DGX-1 machines On two machines, the number of workers is varied. There is an equal
number of workers on each machine. Similarly, the system scales linearly in the number of workers,
with better performance exhibited by more granular partitioning. We observe in Figure 3.22 that
more granularity in gradient partitioning provides increased performance: (a) when moving from
f = 0.3 (4 partitions) to f = 0.1 (11 partitions), the throughput gain is 16% (b) when transitioning
from f = 0.5 (3 partitons) to f = 0.1 (11 partitions), the throughput gain is 27%. The conclusion
of this experiment is that Partial Gradient Exchange performs well at with a large number of
workers conditioned on the partitioning budget, so the adopted direction is worth exploring for
achieving high-performance in multi-resource Cloud environments.

We further analyse the performance of Partial Gradient Exchange in a high performance cluster
(Cluster set-up 1) and base the discussion on Figure 3.23. We can observe that high-performance
GPUs and good network conditions enable near-linear scalability when NCCL is enabled. The
environment is controlled and the system can very well leverage its compute power. When syn-
chronisation is done on the CPU, however, small performance penalties are incurred by frequent
GPU-to-CPU tensor transfers. Parallel SGD, which has strict synchronisation barriers has diffi-
culties scaling even in this environment. On one machine, synchronisation using partial exchange
provides a 36% throughput increase from Parallel SGD case when synchronisation is done on the
CPU and a 45% increase when using NCCL. On two machines the increase are quantified as 45%
(CPU) and 55% (NCCL), when compared to Parallel SGD.
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Figure 3.24: Partial Gradient Exchange CPU scalability 16 P100 Machines

16-Machine Cluster When the network conditions change and the performance of GPUs is
lower (Cluster set-up 2), we can observe in Figure 3.24 that Partial Gradient exchange does not
scale linearly in the number of workers. With the underlying Parallel SGD paradigm of collective
communication, the barrier relaxation is not sufficient to enable the system to scale. This consti-
tutes the breaking point of Partial Gradient Exchange, where the scaling properties are determined
by the amount of gradients exchanged in an iteration. This is a largely model-dependent problem
and represents a limitation for the designed system.

3.6 Summary

Flexible synchronisation strategies represent an enabler for systems to scale in cluster environments
with a diverse range of hardware characteristics and network links. From individual multi-GPU
machines and public resource pool commodity machines in the cloud to latest generation GPU
and network accelerated clusters, flexible synchronisation strategies pave the way for scalability of
Deep Learning training.

These benefits are conferred by a simple, yet robust design that provides the user with a rich set
of options for flexible synchronisation enabled for one of the most popular Deep Learning systems of
the present, TensorFlow. This was possible first by defining the system gap in TensorFlow, which
provides rigid means of synchronisation such as parameter servers and MPI-based approaches.
We identified the need to cover this gap by a high-performance and flexible system which can
incorporate multiple synchronization strategies.

The intuition for designing such a system was that of partial synchronisation, which is based
on a key insight of training: each peer has sufficient information locally to make progress. The
advantage of designing such a system is that of determining smartly when specific synchronisa-
tion strategies need to be enabled. The main contributions are: (1) creating an abstraction for
the user by creating new TensorFlow optimisers, shown to suffice simple specification of flexible
synchronisation (with single partitioning scheme, single peer selection strategy) and (2) creating a
high-performance communication framework with a lower level of abstraction that allows workers
to exchange gradients and variables through partial collective communication and point-to-point
communication.
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First, the design proposes a transparent way of enabling flexible synchronisation by intercepting
variables and gradients with new wrapper optimisers. This design enables exploration of decen-
tralised training through: (1) gradient exchange and (2) model exchange between peers. For (1), we
show how PGX we propose a formal algorithm for partial exchange and provide a concrete imple-
mentation as a TensorFlow dataflow graph with support for CPU and NCCL collective all-reduce.
For (2), we propose an algorithm for synchronous and asynchronous selective and unidirectional
peer model exchange and a concrete implementation in TensorFlow. The contribution here is
three-fold: (a) providing configurable ways of realising these strategies (CPU, GPU), (b) detailing
design optimizations that lead to asynchronous training, which can be generically applied by future
systems and (c) building a new level of abstraction for point-to-point communication to leverage
more granular a more granular cluster abstraction where peers can bidirectionally any data.

All strategies are evaluated in a high-end Cloud environment [41] which allowed analysis of
convergence and scalability properties of PGX and SPMA. We have quantified performance benefits
in comparison with industry-standard distributed training strategies such as Horovod [5] and a
benchmark TensorFlow’s version of P-SGD called Replicated [116, 117]. Experimental results
show that by enabling the new strategies we manage to improve training performance to state-
of-the-art accuracies and by enabling partial gradient exchange, the model generalization power
decreases by 9%. We further incorporate active network and gradient noise monitoring (based
on [118]) for online estimation of training quality and propose a direction to guide creation of
dynamic synchronization policies such that the model inference gap can be covered.
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Chapter 4

Supporting Users to Choose the
Right Synchronisation

By far we have described a scalable implementation of a flexible synchronisation system and shown
that this system can help DL models to accelerate training. However, there is a key question
remained: given rich options of synchronisation, which synchronisation should be used? In this
chapter, we try to provide comprehensive system support for helping users make the right choice.
To achieve this, our key idea is to provide online system monitoring for both communication
infrastructure and training statistics. Based on these two kinds of complementary monitoring
metrics, we can further provide support to help users change the configuration of a synchronisation
algorithm, and even switch to a new synchronisation. In the following, we discuss how we implement
this idea and evaluate the proposed implementation.

4.1 Design principles

In this section, we introduce two key design principles that can lead to the anticipated system
support for choosing synchronisation.

Monitoring of network and training statistics To evaluate a synchronisation algorithm, DL
users often rely on network statistics and training statistics. The former statistics help describe the
available network resource and the communication performance, implying the severity of network
bottlenecks. The latter statistics is useful for determining the progress of a training job and thus
help DL users, for example, adjust the synchronisation frequency. These two kinds of statistics are
often complementary and must be provided at the same time. For example, when configuring the
bin packing ratio of the partial gradient exchange algorithm, DL users not only need the network
statistics to estimate the latency of exchanging a certain amount of gradients. They also require
statistics that can reflect the convergence status of gradients so that the algorithm can correctly
filter out gradients that have converged when bandwidth is limited.

Supporting the adaptation of synchronisation parameters. With monitoring data, we
question how to leverage these data to improve the performance of synchronisation. Synchroni-
sation algorithms often have hyper-parameters, e.g., the bin packing ratio of the partial gradient
exchange algorithm and the number of peers to participate in model averaging in the EA-SGD
algorithm, [56] that affect both hardware utilisation and learning behaviours. The optimality of
these hyper-parameters are often determined by environment, model and dataset: resource allo-
cation for parameter servers [33|, HOROVOD_FUSION_THRESHOLD byte count for the capacity of the
tensor set to be batch all-reduced in the Horovod Tensor Fusion Operation [5, 98], TensorFlow
all-reduce specifications using a flexible BNF grammar [117] specifying how all-reduce should be
executed depending on device support. The optimal settings of these hyper-parameters are often
adaptive, similar to other hyper-parameters like learning rate and batch size which are usually
dynamically adjusted during training to improve training performance [114, 118]. As a result, DL
users expect the training system to support the adaptation of synchronisation parameters during
training, and ideally, incurring negligible performance overheads.
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4.2 Network statistics monitoring

The communication performance of a synchronisation algorithm can be determined by both the
global execution barrier and the actual traffic that travel through network links. In order to
precisely evaluate the performance, we aim to provide global and local monitoring for network
usage.

Monitoring metrics Network monitoring is a field that has been extensively studied. From
the perspectives of reflecting the network performance as a whole, availability metrics describe
the robustness of a network and refer to the state of hosts, devices and links found in a network
that can potentially affect the quality of service (QoS) [119]. From the perspective of evaluating
link-wise quality, the maximum amount of data that can be sent through the network in a time
unit is called bandwidth [119]. However, during transmission losses may occur (e.g., possibly due
to routers dropping packets or switches dropping data frames), so the link is not fully utilised.
The amount of data that can be sent through the network in a time unit is called throughput. It is
also important to quantify segment losses by counting out of order TCP segments, as this gives a
good measure of network conditions (e.g., congestion, parallel paths) [119]. Link quality can also
be measured as the amount of time necessary for one packet to be transmitted between two fixed
points in a network - this is called latency and largely depends on congestion status, delays due to
packet processing along the path or even transmission media.

Existing monitoring options Fast advances in network monitoring create new state-of-the art
techniques that increase the complexity of network monitoring. Of interest to us are data center net-
works, where operators have shifted to Software Defined Networking (SDN) for simplifying network
management at data center scale. The new metrics provide a holistic view of the network through
granular query interactions with the data plane to gather network metrics [120]. Adaptive query-
ing techniques have been developed to improve how monitoring is done and to tackle granularity:
threshold-based adaptation, prediction-based adaptation and newer self-adaptive techniques [120]
which do not require manual tuning. Dedicated software products have been developed to handle
monitoring infrastructure in systems [121] and these often involves hundreds of giga-bytes of mon-
itoring data represented as a time-series database [121]. Modern operating systems also come with
a wide range of network monitoring tools that rely on blocking packet captures. Some provide
immediate accessibility to the user and provide high-level network usage information iftop [122]
and others present network information at packet level Wireshark [123]).

Though easy, adopting host-level network monitoring tools out of box in Kungfu, however, is
not effective. These tools often provide metrics that down to the packet level and must enable
disruptive traffic inspection within the OS. This is realised by low-level network libraries which are
part of the OS kernel and allow users to register hooks for packet processing in user-space [124].
These handlers can be blocking (Netfilter Queue [124]) or can instead pass packet copies to user-
space (Netfilter Log [124]), but in any situation the overhead created is considerable. Adding a
new level of indirection in user-space is not acceptable for DL applications which require high-
performance.

Integrating monitoring with DL synchronisation The packet-level metric is often too gran-
ular for a synchronisation algorithm which often adopts collective communication and high-level
point to point communication (i.e., requesting remote model). Its network performance can be only
judged by taking application semantics into account. More importantly, using existing network
monitoring tools often comes with heavy performance overheads for large clusters of hundreds of
nodes each with hundreds of metrics (e.g., Prometheus Instrumentation Costs [121] or Netfilter
Log/Queue user-space overhead [124]). These non-negligible overheads are particularly detrimental
in the case of monitoring synchronisation algorithms. Synchronisation algorithms, such as asyn-
chronous parallel SGD [39] and asynchronous peer model averaging, often adopt asynchronous
designs to tolerate communication latency and enable model replicas to diverge in order to im-
prove training accuracy. The extra non-negligible overhead on the data transmission path could
significantly change the network performance under monitoring and non-deliberately alter the be-
haviours of asynchronous algorithms, making the resulting monitoring data less useful to guide the
configuration of the algorithm when monitoring is disabled.
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Figure 4.1: Overview of new network monitoring features for direct peer communication in Kungfu

Enhancing the Kungfu network stack As a result, in this project, we aim to implement
application-specific light-weight network monitoring within the Kungfu worker implementation. In
order to do this efficiently, we have decided to enhance the communication stack. This separates
the application logic realised by C++ implementations of TensorFlow operators (kernels) from the
metrics monitoring logic. The trade-off comes from the CGo interface which can enable specification
of monitoring configuration using the internal API exposed to the C+-+ kernel classes.

The contribution of this work is building a new point-to-point communication primitive, which is
complementary to the existing collective communication primitives for all-reduce provided already
in the Kungfu project. The CGo API exported by the networking stack allows direct usage of
functions in the C++ tensorflow namespace, where they can be directly used by the operators
responsible for model requests. The exported API consists of one Go function:

GoKungfuRequest(peer int, model _buffer unsafe.Pointer, count int, dtype C.KungFu_ Datatype, callback *C.callback t)
Listing 4.1: CGo API for model requests

Design of the peer-to-peer communication protocol In order to explain how monitoring is
enabled, we first explain the communication protocol. The design decisions that lead to the final
API are mainly lead by designing a valid protocol for point-to-point communication. The protocol
is valid if Peer i sends a message to Peer j and registers a listener such that it is then able to receive
messages from Peer j. The first considered solution for implementing this protocol is to register a
callback to handle the request in the background. This means that the first TCP connection used
to send the request is closed and the receiver reopens a new TCP connection to send the reply. One
obvious drawback is sub-optimal network usage, due to new handshakes required to establish the
TCP connection. The main drawback of this approach is contention on objects such as the model
store when callbacks are triggered aggravated by unpredictable calls to the TensorFlow operator
(kernel) scheduled by the runtime we have no control over and for which there is no guaranteed
compatibility with default synchronisation primitives (mutexes, semaphores, condition variables).
Therefore, the solution maintains flow control by reusing TCP connections. Background request
tasks (blocking) are dispatched as goroutines to receive the reply on the same connection.

Implementation of light-weight monitoring in Kungfu The networking stack has full con-
trol of concurrent execution and of the communication flow. This creates a proper setup for
acquiring metrics for the quality of communication. The destination_peer is the randomly cho-
sen peer where the request is directed, uniquely identified in the cluster abstraction. The reply is
written to the model buffer using required metadata (count and data type). A background request
task is spawned. When this terminates, a termination signal is generated through a callback. The
request latency measured is the time necessary to complete a request command using a single TCP
connection for bidirectional communication 4.1. A frequency table is built after every outbound
request succeeds. This keeps track of frequency of communication with other peers.

4.3 Training statistics monitoring

The training quality in a distributed training system is determined by the progress of the learning
algorithm per iteration, also known as statistical efficiency. This can be quantified by observing
statistical properties of gradients. In order to enable a holistic view of the system, we aim to
integrate efficient online monitoring of training statistics in the Kungfu system.
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Training statistics and their possible applications in synchronisation. Training statistics
capture the quality of training and there are two views on how these can be computed, a temporal
view and a spatial view. The temporal view is the local view of a worker, which can compute
variance of previous gradient tensors and decide when it is a good time to synchronise them with
other workers (similar approach to [125]). It is important to clarify the meaning of variance when
considering tensors of the same dimensions. As tensors are multi-dimensional, they need to be
flattened into vectors. The statistic computed on vectors is the co-variance matrix, which intuitively
captures how aligned are the values across the sample vectors. The variance metric of interest in
this case is the aggregated statistic obtained as the trace of the co-variance matrix, which represents
the sum of diagonal elements. When the variance is small, meaning that previous gradients are
aligned, the peer should send its local gradients for synchronisation. When the variance is large,
local gradients should only be applied locally. A sliding window can be used. However, in this
approach a worker never regards the training quality of other workers, being responsible only for
sending its local gradients, approach likely to lead to divergence. The spatial perspective considers
to quantify the variance between its local gradient and other peers’ local gradients. This is hard
to achieve efficiently without centralisation, but there are efficient computations of metrics such
as gradient noise, which exhibit predictive properties. Gradient noise predicts the critical point of
diminishing return for the largest batch size that the system can use to find the trade-off between
statistical efficiency and hardware utilisation [118]. These predictive properties can be similarly
leveraged by synchronisation for devising adaptation policies.

Main requirement of monitoring in DL systems Robust monitoring schemes for distributed
training systems should provide efficient monitoring at local and global levels. These need to be
computed in a decentralised manner and if needed, global metrics should be expressed in a collective
communication paradigm like all-reduce.

Gradient noise in distributed training Because we are considering a data-parallel distributed
training system, the spatial view is more suitable and the only way to achieve computation of
a global variance metric is by piggybacking computation on existing communication, such that
additional traffic is not generated. McCandlish, et al. provide a solution in the paper titled An
Empirical Model of Large-Batch Training [118]. This solution is based on a training statistic called
gradient noise which can be efficiently approximated.

The key intuition behind gradient noise is that it represents a noise-to-signal ratio (mathemati-
cally), where the noise quantifies the dissimilarity between locally computed gradients and globally
aggregated gradients and the signal is the magnitude of updates - how much new information is
the worker incorporating after training on a new batch. The is essential for developing an under-
standing of how gradient noise can serve synchronisation. Of interest is the stability of training,
which can be easily quantified using the gradient noise. When the gradient noise is large, the
gradient signal is low and vice-versa. Therefore, we can infer that training becomes more stable
when the gradient noise is large, because the magnitude of updates is small meaning that learning
plateaus. This moment can be exploited by flexible synchronisation techniques such as Partial
Gradient Exchange.

Implementation of gradient noise monitoring in Kungfu The implementation relies on
the approximation tailored for distributed training proposed by OpenAl [118], detailed in Ap-
pendix A.3. This presents the computation of the noise-to-signal ratio captured by the for-
mula [118]:

tr(X)
Bsimplified = W

where ¥ is the co-variance matrix of the gradients across workers and the denominator repre-
sents the square of the Ly norm of the gradient vector |G|? = Zi’;l |G?|. One of the challenges
was the computation of |G| from two sets of gradients: the locally computed gradients (denoted as
G B, ) and the the set of all gradients (denoted as G'g,,,) obtained via all-reduce. The proposed
solution is to concatenate and flatten the gradients in each of these lists, obtaining G and
G'B,,, respectively. This can now enable computation of the biased estimates.

small
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def all _reduce with monitor(grads, b_small, n_workers):

"""Intercept local gradients for all—reduce and noise monitoring.""" . all-reduced
negotiated grads = [all reduce(t) for t in grads] gradients gradients
G_b_small = _concat_reshape(grads)

G_b_big = _concat_reshape(negotiated grads) th.concat + tf.concat +

ti.reshape
noise_op = build_noise_op(b_small, G_b_small, b_big, G_b_ big)

with tf.control dependencies(|noise op]):
return tf.group(negotiated grads)

L. A . . gradient_noise

Listing 4.2: TensorFlow dataflow specification and dataflow graph

The Listing 4.3 and the accompanying conceptual dataflow isolate the implementation contri-
bution. These show how the abstractions enabled by our system are used to create an efficient
trainining monitoring framework. In order to implement the computation formally defined above,
the TensorFlow API is used to compute only the biased estimators of the gradient variance and the
gradient norm respectively. These estimators are not sufficient for computing an unbiased estima-
tion of the gradient noise. The paper [118] indicates that separate exponentially moving averages
(EMAS) should be computed. This requires state keeping across iterations, which best translates
into the need to create a new TensorFlow operator in C++. Its functionality is rather simple and
involves computing the EMAs and the noise-to-signal ratio that yields the final approximation of
the gradient noise.

We have shown how the implementation of the gradient noise is expressed in the dataflow
paradigm, isolating the contribution. The computation is achieved locally by each worker using
local gradient information and aggregated gradient information. This provides each worker with
statistic useful for further control of the training process (e.g., for a possible adaptation scheme
conditioned on gradient noise values).

4.4 Adaptation of synchronisation parameters

Existing systems such as TensorFlow provide support for hyper-parameter adaptation during train-
ing. Most commonly, adaptation techniques are required for hyper-parameters responsible for
driving accuracy of the model, such as the learning rate. Learning rate adaptation requires math-
ematical understanding of the model and schedules are often predefined or explored by tuning.
Tensorflow enables the user to define specific epochs/iterations for changing hyper-parameters into
new constants or for decaying hyper-parameters throughout training [126]|. This is realised through
a simple API that requires only the boundaries of training and the specific changes desired for the
hyper-parameter. The key limitation of the TensorFlow approach is lack of expressivity, as it con-
siders changes in tensors only, disregarding how complex configuration changes can be otherwise
transmitted to the system. Moreover, the approach may not fit in a system where adaptation
is done based on conditions that locally characterise the worker’s state only. We propose a new
system design with generic applicability to dynamic runtime changes in TensorFlow programs. For
this purpose, we use Partial Gradient Exchange as a concrete example of how dynamic changes
can be achieved for hyper-parameters specific to synchronisation.

Overview One requirement of the system refers to low cost hyper-parameter changes. Meeting
this requirement provides more flexible behaviour which can be controlled by user-specified policies.
This constitutes a preliminary step in building adaptive algorithms. Dynamic hyper-parameter
changes are implemented for Partial Gradient Exchange, extending the static partitioning scheme
by schedule-based re-partitioning. People have used schedules for distinct hyper-paramters of train-
ing algorithms to release full learning capabilities in Neural Networks. These are often empirically
determined [114] and have limited applicability across wider families of models, but their narrow
effect is a beam towards better learning.

Towards generic adaptation In order to provide schedule support in Partial Gradient Ex-
change, it is important to identify where this could fit within the system, starting from the highest
level of abstraction. The API is a non-invasive wrapping optimizer. This requires a string match-
ing a simple regular expression: (EPOCH:FRACTION) (;EPOCH:FRACTION)*, which is called schedule.
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Figure 4.2: Dynamic partitioning for Partial Gradient Exchange

This indicates the ranges where a specific partitioning budget fraction is enabled. This means that
there exists a partitioning scheme enabled for pre-defined intervals, which controls the number
of gradients synchronised at every iteration. This flexibility is enabled through the lower system
abstraction responsible for intercepting gradients. The TensorFlow API does not easily support
generic design for periodic runtime changes. TensorFlow is built around the dataflow paradigm,
which builds all operators before executing the computation graph. This is analogous to compi-
lation of the program logic for every training iteration, such that the policy can be enabled by
directly using TensorFlow operators. There are multiple drawbacks to this approach: (1) all op-
erator calls happen on the critical path of training, (2) the number of dependencies for execution
order of operators creates execution barriers, which can last as long as an all-reduce, as empirically
determined and (3) further support for adaptation is impeded by the rigid datflow model.

A new partial negotiator The proposed solution relies on a flexible design which can be fully
controlled. The logic is written as a C++ AsyncOpKernel. This decorates the behaviour of the
base AllReduce operator. There is one such operator for every gradient tensor, in order to enable
dispatch of background all-reduce tasks in parallel for all tensors, such that the critical training
path is not blocked. To understand the mechanism for partial negotiation via all-reduce within
the C++ operator, the simple schedule 0:0.1 is considered. This specifies that bin packing is
executed once at the beginning of training (beginning of epoch zero, equivalent to iteration 0) - bin
packing algorithm implementation is adapted from [111]. As discussed in the previous description
of Partial Gradient Exchange, the global step is used for selecting which partition is negotiated in
a round robin manner. Each operator can efficiently query an entity called the Partial Exchange
Manager to learn if its gradient tensor belongs to a partition which requires negotiation. If it is
the case for negotiation, the operator is responsible for returning the all-reduced tensor, otherwise
it simply returns its unchanged input representing the locally computed gradient.

Runtime adaptation logic Extending the use-case for a more complex schedule which spec-
ifies more than one repartition, we can describe the full interaction between operators and the
Partial Exchange Manager. Initially, each operator registers its tensor meta-data with the Par-
tial Exchange Manger: tensor name, tensor size in bytes. They also inform the Manager what is
the user-specified schedule, in parsed form (i.e., where epochs are converted to iterations). The
schedule is globally unique and is initialised only once through the first registration message to
arrive. The Plan is a class containing the next re-partitioning step as an integer and the collection
of partitions as a vector of unordered sets (C+- standard data structure with constant time re-
trieval and insertion). Note that the Plan does not hold any memory-heavy data structures. The
partitions contain tensor names only. The Plan is always shared by the Partial Exchange Manager
with the follower operators. The main role of the Partial Exchange Manager is to supply a concise
re-partitioning plan. The Plan can be efficiently implemented by all operators. These are called
once during every training iteration. They are responsible for checking their local plan and if the
global step has not reached the next re-partitioning step specified by the plan, partial negotiation
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is realised on the current plan in effect. If re-partitioning should happen at the current global step,
all operators notify the Partial Exchange Manger that re-partitioning is necessary. The interaction
is summarised in Figure 4.2.

4.5 Use case: adaptive synchronisation based on training
statistics

Leveraging flexible synchronisation strategies often comes at a cost in DL model quality. Such
strategies require system-provided guidance for hyperparameter settings. We describe next the
motivation to use gradient noise as a guiding metric for Partial Gradient Exchange. We then
analyse the feasibility of approximating gradient noise for the ResNet model family and use the
empirical observation to devise a schedule that closes the convergence gap for Partial Gradient
Exchange.

4.5.1 Key idea

Fundamentally, Partial Gradient Exchange is based on the intuition that each peer has sufficient
information locally to make progress and can only synchronise a subset of gradients which should
suffice a global approximation of the true gradient at that iteration. As shown in the experimental
results, this intuition does not enable complex models such as ResNet-50 to converge to high
accuracies, because it maintins a constant rate of change of gradients throughout training. This
is a monotone approach to Partial Gradient Exchange that fails to leverage the current status of
training for decisions on partial synchronisation.

To address the above issue, the key idea is to leverage gradient noise to measure the noise
of gradients in different stages of training, and optimise the configuration of the bin packing
ratio in the partial gradient algorithm. The intuition here is: gradient noise as a statistic for
the quality of distributed training is drawn from its basic mathematical property: it represents
a noise-to-signal ratio (refer to Appendix A.3) which has low values at the beginning of training,
correlated with more intense learning (higher gradient magnitudes) and which has high values
at the end of training, correlated with a learning plateau. The aim is to synchronise fully in
the beginning of training, in order to enable more meaningful gradient updates and to relax the
synchronisation barrier and periodically rely only on the locally computed gradients, which provide
sufficient information to make progress, in the later stages of training. Experiments have been
conducted to analyse the properties of gradient noise, in order to conclude their relevance as
guiding metric for synchronisation.

4.5.2 Dynamic policy design

This is an analysis of gradient noise properties aimed to check whether the intuition that gra-
dient noise increases during training verifies in a real practical setting. The aim is to find good
monotonous and increasing estimates that could steadily guide adaptation policies for flexible
synchronisation. Observations of these estimates are used to empirically guide design of a fixed
(user-specified) policy for the Partial Gradient Exchange partitioning scheme.

Related work: adaptation based on gradient noise The online prediction properties of
the gradient noise have been previously analysed [118] in the context of adaptive batch training.
Building on the previous argument, the authors argue that gradient noise provides a good approx-
imation for a dynamic training hyperparameter called critical batch size, which aims to satisfy two
constraints simultaneously: maximise hardware utilisation throughout the whole training duration
and maximise the loss decrease per iteration for more effective learning. Training with a big batch
size decreases the number of updates made to the parameters of the neural network [27], but it is
hard to manually define good general policies for batch size increase without affecting convergence
of the system.

Experimental setup Experiments are conducted to verify the claims made in [118] with the
implementation made in our system. We use one server machine dedicated with 4 GeForce GTX
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Figure 4.3: Gradient noise estimation for ResNet-32: raw gradient noise (orange), estimated critical
batch size(blue). First column shows local worker estimations using running average over window of
100 iterations. Second column shows local worker estimations using exponentially moving average
with decay o/ = 0.2. Gradient noise estimated using decay o = 0.8. Warm-up batches discarded
from noise estimation window.

TITAN X (Pascal) GPUs and 20 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Cluster Setup 3).
All experiments are run with four workers, each training on one GPU.

Smooth online estimation in Kungfu The first step involves obtaining the raw gradient noise
(Figure 4.3), for which the implemented system provides direct support. However, the raw signal
shows high variance. This is controlled by the decay parameter mentioned in the paper: small
decay provides less variance. However, using this high level-approximation is biased to consider
the noise at the current iteration with higher weight or otherwise to discard most of the noise at
the current iteration. Therefore, another level of indirection is introduced for estimation. The blue
line in Figure 4.3 is a smooth estimation of the critical batch size from gradient noise, as described
in the paper. We compare two methods for obtaining this estimate: running average across a
window of iterations or EMA on gradient noise values. As shown in the plot, the running average
is smoother than the EMA for one particular setting of window and decay factor, but both require
additional tuning for controlling desired curve shape.

Remarks on gradient noise for synchronisation The experiment shows that our system can
efficiently do online estimations of training statistic metrics based on simple scalar computations.
The guiding trend for adaptation captured using another light-weight estimation layer supported
by the Kungfu system. The monotonous increase of gradient noise can be captured using the
realised implementation and its value used for devising adaptive synchronisation techniques with
awareness of the training progress.

The increase in gradient noise is common within and even across families of models [118]. As
this work has shown results for the ResNet family, the further concern is improving the convergence
gap obtained by Partial Gradient Exchange using ResNet-50. We can thus leverage the knowledge
of gradient noise increase and determine an intuitive policy to boost training.

Policy design Training becomes more sensitive when partial exchange is enabled for large mod-
els. This strategy provides performance benefits, but degrades convergence. This means that
Partial Gradient exchange should be selectively enabled during training in order close the conver-
gence gap. In order to do this, we can use gradient noise to guide adaptation of hyperparameters
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Figure 4.4: Closing the gap with dynamic partial exchange

introduced by flexible synchronisation. The gradient noise represents a noise-to-signal ratio. Be-
cause gradient magnitude decreases during training, the gradient noise will increase, meaning that
training becomes stable. This could be a good moment to enable Partial Gradient Exchange. But
how can this threshold be precisely determined? We use empirical observations to design a dynamic
policy for Partial Gradient Exchange in order to test whether enabling this flexible synchronisation
strategy late during training closes the convergence gap while still obtaining the benefit of faster
training times. The policy designed changes the bin packing fraction from 1 to 0.1 at epoch 60
during training. This is equivalent to exchanging all gradients during the first 60 epochs, then only
exchanging 0.1 of the total gradient set size.

4.5.3 Experimental result

This subsection is an extension to the evaluation result presented in Chapter 3 for Partial Gradient
Exchange and shows that it is possible to close the convergence gap through policies guided by
empirical metrics. This represents a starting point in developing adaptive algorithms based on
monitored metrics. Figure 4.4 shows that using the designed policy, the accuracy gap is closed
by approximately 5% (initial accuracy gap of approximately 9%) for the best performing workers.
The validation accuracy achieved by the baseline is 76%, while simple Partial Gradient Exchange
achieves 67%. With the new policy in effect, the validation accuracy is 71.9%. Moreover, training
with a dynamic policy obtains a training time improvement of approximately 2 hours and 45
minutes.

In spite of the promising result, it is cumbersome to determine the best training schedule for
each model, given the large diversity of models intended to run on the implemented system. The
presented approach provides a good direction for adaptation and future work could involve a study
of the noise scale heuristic to dynamically adapt flexible synchronisation strategies.

4.6 Use case: optimising peer selection based on network
monitoring

We have seen that training statistic monitoring is promising for flexible synchronisation and it
can help convergence for partial gradient exchange. Next, we will present how adaptation can
be leveraged when models are exchanged between peers. We first describe experimental results
showing instability in commodity networks in the Cloud, then propose an adaptive approach that
takes into account selective peer communication based on network link quality.

4.6.1 Key idea

Cloud environments often provide unpredictable network conditions when Quality of Service is not
defined. One such example is the 16-machine cluster used to run scalability experiments in Chapter
3. This uses Docker network on top of modest interconnects. This unprivileged environment clearly
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Figure 4.5: Distribution of request latencies registered by one peer across different runs

affected scalability for Synchronous Peer Model Averaging, where the scaling difficulty is visible
when transitioning from 8 machines to 16 machines (Figure 3.15).

The scaling bottleneck can be addressed by employing network monitoring techniques to deter-
mine the optimal network conditions that allow model exchange between peers. This is based on
the intuition that random or even round robin peer selection do not smartly determine which peer
to send the request to. Instead, they blindly use links which may have poor quality. This problem
can be tackled by enabling peers to monitor previous interactions and to take decisions for peer
selection based on training statistics that indicate the quality of communication.

4.6.2 Measuring network variability in commodity cloud

The infrastructure facilitates efficient gathering of such statistics, which can be used for smarter
peer selection strategies. For example, the new metrics can be aggregated to create a multi-
attribute discriminator metric in communication. This would enable better use of network links
and uniform peer-to-peer communication, where cliques are not likely to form. The example
provides a key intuition of how these metrics can be used, but it is important to first understand
specific insights gained from monitored metrics in a real cluster.

The metrics are gathered on a 16-machine cluster provided by Huawei Cloud Platform [41],
each dedicated with one P100 GPU [70]. The cluster is part of a public resource pool, so there
are no guarantees on the Quality of Service (QoS) of the network which is likely over-provisioned.
This creates a good setting to study unpredictability in distributed training using flexible synchor-
nisation. The DNN used is ResNet-50 (large, computationally intensive), which simulates training
on synthetic data for 500 mini-batches, each of size 64. We isolate only Synchronous Peer Model
Averaging (SPMA) for testing because: (i) the expected behaviour across peers is identical due to
synchronous training and an assumed uniform distribution of peer choice, i.e., on expectation a
specific peer is not flooded with requests and (ii) it exhibits scalability problems, for example when
training on the same 16-machine cluster, the total system throughput increase when transitioning
from 8 peers to 16 peers is only 42% and it is worth exploring if this problem is a network link
problem.

The first experiment investigates the difference in request latency distributions for a single
worker across two different runs. This experiment is relevant for modern Cloud envrionments
where users are responsible for creating jobs, but the decision for job placement on machines is
exclusively delegated to the cluster management software (e.g., Kubernetes [113]). This means that
across two different runs, a worker can be placed on a machine whose switch is not over-provisioned,
while another worker is placed on a machine affected by reduced bandwidth. The experiment shows
that request latency (time to complete the request command) distributions differ slightly: on run
1, mean 389.2ms and standard deviation 207.8ms; on run 2, mean 356.5ms and standard deviation
176.5ms (Figures 4.6.2 and 4.5b). Computing the standard deviation on the whole population of
request latencies confers robustness to outliers. However, the outliers’ effect is likely responsible
to introduce performance penalties in the system. The takeaway is that non-uniform distributions
characterised by slightly different statistics are expected on repeated runs of a training job in a
multi-machine commodity cluster.
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Figure 4.7: (a) Average variance registered by all links, (b) All destination peers in the system

When decreasing the number of machines, the latencies center around a smaller value (mean
332.8ms), but the spread is similar (standard deviation 180.6ms). Also, the frequency of commu-
nication increases because system throughput increases, which means that on average the system
benefits from better latencies. The closeness of standard deviations in the 8 machine case and
the 16 machine case shows that request latency variance is preserved irrespective of the scale of
computation.

A cluster of 16 machines is interconnected by 256 links. A link is a conceptual representation
of the path between two workers, abstracting away networking elements in-between (e.g., switches,
overlay handling and other layers of indirection). Monitoring all pair-wise links in the system
provides a view of the overall network quality. Figure 4.7a shows the distribution (as a histogram)
of the average network latencies registered for every link in the system. The distribution shows a
bi-modal tendency, where the second, less populated mode consists of high latencies. This means
that the average quality of some links is lower than the average of the distribution. This result
shows that the variant behaviour is present in the global view of the links and provides a solid
motivation to combat non-uniform link quality. When isolating subsets of links, as in Figure 4.7,
we observe that some links have low latency variance, while others have a much higher variance.
Links of both types are isolated in Figures 4.8a and 4.8b. The box plots show the quartiles of
the distribution. The green diamonds represent outliers, preserved in the figure for illustrating
their large number. Outliers are samples which are outside the inter-quartile range by a margin of
1.5 - InterQuartile Range [127].

A peer-wise view of request latencies illustrates that some peers have better QoS for communi-
cation: (i) less variance in requests which addressed to themselves and (ii) less spread in outliers.
This motivates the need to employ selective strategies and to communicate with peers which pro-
vide better service in terms of reachability and response. Selection should be fair (do not form
cliques) and should consider network latencies and communication frequency to best discriminate
where the model should be requested from.
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Figure 4.8: Isolated links: smallest request latency variance and largest request latency variance

4.6.3 Optimising the selection of peers online

Empirical measurements of request latency in two different cluster setups show that there is high
latency variance. Measured locally on one server machine dedicated with 4 GeForce GTX TITAN X
(Pascal) GPUs and 20 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Cluster Setup 3), the latency
range is between 500 microseconds and 20 milliseconds. Measured in a 16-machine bare-metal
cluster (provisioned by Huawei Cloud [41]) with Docker network bridges , the request latency varies
between 100 microseconds and one second. High variance indicates a heterogeneous environment
where communication instability should be a decision factor when issuing requests. Additionally
workers should avoid imbalanced communication, where cliques are formed. The factor as stake is
ineffective synchronisation through model averaging. The aim is to build a robust system which is
able to perform well in varied environments, therefore it is important to integrate these observations
when designing the algorithm for peer selection.

Two metrics are necessary to implement a policy for effective synchronisation which can be
enabled locally by each worker in a decentralised manner, without external interaction: request
latency, which represents the time measured from the moment the request is sent until the moment
when a reply is delivered and peer interaction frequency, which is a count of previous interactions
with a peer. The algorithm is implemented in Go, within the networking stack. This provides
sufficient cluster abstraction to support adaptive peer selection. In the first training iteration,
each worker engages in unidirectional model exchange with one random peer. Subsequently, each
interaction is registered in a priority queue (implementation based on the Go heap standard pack-
age [108]) as an Aggregated Metric, presented below:

type AggregatedMetric struct {
Rank int
Frequency int64
Latency float64
Index int

Listing 4.3: Aggregated metric used as peer discriminator in communication

This data structure holds the Frequency of synchronisation with peer identified by Rank and
the last registered request latency. The Index refers to the index in the priority queue, implemented
as an array. In order to decide which is the next peer to communicate with, this aggregated metric
determines the Rank’s priority. The first considered metric is frequency of communication. If
this is small the Rank has high priority, as workers desire to receive models from peers they have
seldom communicated with and incorporate their learnt information through model averaging.
The second discriminating metric (in case of latency equality) is the communication frequency.
Previous requests which register smaller latencies have priority.

Algorithm 5 is a proposal for adaptive peer model averaging. It presents the logical steps
required for random peer selection, while abstracting away most of the model request logic. This
is a global algorithm, where T iterations are executed in parallel and the data structures support
concurrent access. The algorithm relies on a priority queue (min heap) which is an efficient data
structure allowing insertion and removal of elements in logarithmic time. The comparator used for
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Algorithm 5: Adaptive Peer Model Averaging (Logical Worker View)

input : aggregatedMetrics PQ concurrent priority queue (min heap) of metrics;
aggregatedM etricsComparator discriminator by latency and frequency;
frequencyTable concurrent hash table representing a frequency table;
T total training iterations;
output: V* = {v§...v5_;} updated model after T" iterations
/* Lines 1-2 executed once, at the beginning of training */
1 initPriorityQueue(aggregatedMetricsPQ, aggregatedMetricsComparator);

/* Initial request sent to random peer, monitored and inserted in heap */
2 foriel...T in parallel do
/* Pop operation retrieves and removes top min heap element */
3 destRank <« pop(aggregatedMetricsPQ)

4 latency < launchTimedRequest(dest Rank)

updateFrequencyTable(destRank);
updatedFrequency < get(frequencyTable, dest Rank)

7 metric < newAggregatedMetric(dest Rank, updated Frequency, latency)

push(aggregatedMetricsPQ, metric);
end

©

10 return V*;

the priority queue (line 1) relies on the previously described discriminating metrics: latency and
frequency of communication. When the priority queue is empty, the first request is directed to a
random peer. Subsequently, a peer which previously had a small latency value (or in case of equality
a lower communication frequency), is removed from the priority queue (line 3). Communication
with this peer is likely to show good network conditions and the base logic for timed model request
is executed (line 4). The frequency map is updated (lines 5 - 6) and a new metric is registered in
the heap (lines 7 - 8).

4.6.4 Ongoing work

This algorithm is presented as a proposal and there is ongoing work aimed at observing the benefits
of adaptive peer model averaging. Features that could make the algorithm more robust involve:
using a sliding window for considering only recent history, creating a more complex peer ranking
algorithm ensuring that cliques are not formed in the system and that worker collaboration is uni-
form, edge case likely to occur if a subset of links are of significantly better quality. Conquering the
adaptation mechanisms in peer-to-peer model synchronisation may become critical to scalability in
constrained Cloud environments and we believe that dedicating effort towards solving this problem
can push the boundaries of scalability even more.

4.7 Adaptation beyond synchronisation

The monitoring and adaptation techniques can benefit a broader range of hyperparameters, such
as the batch size, the weight decay or the learning rate. In the following, we start from the
learning rate adaptation intuition, then focus on batch size as the main metric that can benefit
from adaptive training.

According to the authors of [114], the well-established learning rate schedules used for training
Deep Neural Networks have equivalent batch increase schedules which touch the learning potential
of several reference models such as ResNet-50. This means that all learning rate changes specified
in the schedule are replaced by batch size changes. The authors argue that a batch size change
during training which is proportional to the equivalent pre-set learning rate schedule has a similar
effect on escaping learning plateaus (i.e., when learning rate is decayed by a constant, batch size
should be increased by the same constant). When training with large batch sizes, there are less
updates made to the model {114, 27], which is likely to affect the progress made per iteration.
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Figure 4.9: (a) Gradient noise scale and batch size estimation for ResNet-32, (b) Benefit of adaptive
batch [6]

Training with such batch sizes often requires a large pool of GPUs [27] to ensure that aggregated
updates increase the amount of gradient information incorporated in the model. As such, large
batch training is not widely used in practice because it affects convergence in the early stages
of training. Starting with small batch sizes which are gradually increased is a solution that best
exploits the trade-off between accuracy and hardware utilisation and this can be effectively guided
by adaptive batch training.

Experimental setup FExperiments are conducted to verify the effectiveness of training with
adaptive batch sizes based on the gradient noise and critical batch estimations implemented in
Kungfu. We use one server machine dedicated with 4 GeForce GTX TITAN X (Pascal) GPUs
and 20 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz (Cluster Setup 3). All experiments are run
with four workers, each training on one GPU. We use ResNet-32 model as reference, trained on
the Cifar-10 dataset [62].

Case study: benefit of adaptive algorithms To test the claims on the effectiveness of dy-
namic adaptation following successful noise and critical batch estimations, further experiments
are conducted on ResNet-32. The starting point is finding smooth approximations for the raw
gradient noise and for the estimated batch size, derived from the raw gradient noise by EMA. This
is achieved by tuning the new EMA decay factors introduced in the system. Figure 4.9a shows
the scale of estimations across epochs. The estimated (critical) batch size is used for successive
1-epoch training runs with a newly estimated batch size. After each epoch a model checkpoint is
created and restored for a run on the validation set. There are no warm-up batches. Experiments
show that adaptive batch indeed helps the model converge faster (Figure 4.9b): improvement of
47.5% when compared to the run with a static batch size of 256 and improvement of 99.4% when
compared to a run with static batch size of 4096. The global batch size range during adaptation is
B € {256...4096}, but the transition between epochs is made by gradual batch size increase. The
result proves benefits from two perspectives when training with adaptive batches: (1) model accu-
racy does not suffer, because small batches are used in the beginning of training and (2) hardware
utilisation increases during training at the same time with batch size increases, thus ensuring that
resources are not wasted.

4.8 Summary

By adding monitoring metrics and by enabling flexible synchronisation strategies, we provide a
robust framework by which people can benefit from more scalable training systems. The system
should enable users to run distributed training more efficiently, rather than create a burden for
choosing synchronisation hyperparameters. The responsibility of specifying synchronisation hy-
perparameters shifts to the system, which smartly decides how to do synchronisation based on
training quality and cluster conditions.

We present the principles for designing a system that supports the user in choosing the right
synchronisation by providing monitoring and adaptation layers. The monitoring layer is designed
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to provide a lightweight framework for enabling a complete view of communication quality and
of training quality. Communication quality in the peer-to-peer paradigm adopted by Kungfu is
determined mainly by request latency and frequency of communication. We use gradient noise [118§]
to determine training quality in the case of collective commmunication. It represents a noise-to-
signal ratio quantifying the magnitude of gradient updates, with similar properties across families
of DNN models. The adaptive layer proposes two use-cases that: (i) facilitate scalable Deep
Learning training in commodity Cloud envrionments by actively using online network metrics to
rank peers based on their link conditions and (ii) enable scalable synchronisation strategies with
minimal convergence degradation due to poor choice of hyperparameters. Finally, we go beyond
synchronisation and showcase an example of adaptive algorithm which leverages gradient noise to
dynamically change batch sizes.
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Chapter 5

Conclusion and Future Work

Working on Kungfu was an intense engineering experience which challenged us to combine tech-
niques and knowledge from two distinct domains: Deep Learning and Systems, in order to design
solutions for flexible synchronisation. Building distributed training systems requires to deal with
aspects from both fields. Firstly, we become familiar with training pipelines, new Cloud envi-
ronments which require in-depth understanding for explainability of performance results and new
models and datasets, for which we dedicated time to understand from an algorithmic perspective
as well (architecture, hyperparamter settings, optimization methods, schedules). Secondly, the
system component dominated. The behaviour of Kungfu during training was mainly affected by
our design and implementation decisions. These challenged us in: concurrency, software design in
a project built using three programming languages (Python, C++ and Go), performance consid-
erations on the critical training path. These challenges were driving the project forward and we
enjoyed tackling such deep problems.

For future Deep Learning systems, flexible synchronisation can resolve current challenges by
conquering scaling and large batch training. The new approaches we propose for flexible syn-
chronisation show capability of improving training speeds on state-of-the art Deep Neural Net-
works by up to 40% and of increasing system-wide training throughput 22.5x. The achievement
motivates practical applicability of flexible synchronisation in varied cluster environments, from
high-performance GPU-accelerated hosts interconnected by ultra-low latency InfiniBand links, to
clusters of tens of machines for which scarce network provisioning has become a true source of
communication bottleneck for distributed training. Wide availability of such strategies, that can
be non-invasively integrated into training programs would allow users to train their models faster
and to better leverage any type of Cloud resource, providing ease of deployability through a ho-
mogeneous worker architecture where there is no single entity that controls synchronisation. Users
are even supported by the system to use the correct synchronisation strategy, in order to release
the burden of manual tuning. This is shown to close the convergence gap of 9% created by fixed
hyperparameters in ResNet-50, favoring an accuracy gain of 5%.

Throughout the project, our system achieved notable experimental results on state-of-the art
Deep Neural Networks, but it is key to acknowledge that these are complemented by limitations.
For example, we have identified breaking points in Partial Gradient Exchange, such as tight model
dependence caused by the design choice to use budget-based partitioning. Breaking points are also
identified in Synchronous Peer Model Averaging, where blocking model requests happen on the
critical training path, so the system does not scale well. Our aim was to explore techniques that
solve problems in the base system using smart heuristics based on monitored network and training
statistics. Although devised, heuristics based on monitored metrics are currently leveraged in an
empirical manner. Users need extra effort and successive training runs to be able to design an
effective training policy: one run for monitoring interleaved with a policy design phase, followed
eventually by the full training run with the policy in effect.

We look forward to extending the Kungfu project and with continued development effort, we
aim to improve the system and to create a robust distributed training framework widely accessible
to the public. For this, we need to address the main limitations concerning adaptive training and
to fully address dynamic adaptation in distributed training.
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So far, we provide interesting findings on monitored statistics to motivate more advanced flexible
synchronisation strategies:

e Peer Model Averaging The proposed algorithm for selective peer interactions based on
network monitoring metrics requires concrete integration in the Kungfu system. The current
proposal creates a simple peer ranking algorithm, but there are many edge cases likely to
occur in unpredictable Cloud environments, such as repetitive communication patterns or
worker isolation. Isolating the benefits of such a system requires careful experimental set-
up in a fully-controlled environment where adverse network conditions can be artificially
generated.

e Partial Gradient Exchange The next step is to integrate the monitoring component with
the partial exchange component and to build new algorithms for decision making in syn-
chronisation. This avenue distinctively deserves dedication of future research resources and
exploration for pushing the boundaries of smart synchronisation.
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Appendix A

Appendix

A.1 Horovod All-reduce Protocol Analysis

The following provides a detailed explanation of the implementation [98] of Horovod confirming
the observations made in the scalability experiments. These insights are made based on analysis
of the publicly available Horovod source code [98].

As seen in the Horovod Timeline, the negotiation phase is the most expensive. We will focus on
NEGOTIATE_ALLREDUCE, which is done for all gradient tensors computed during a training iteration.
The distributed setup employed by Horovod consists of workers, one of which (Rank 0) plays the
role of master.

Horovod runs the same copy of the training process on multiple 4-GPU machines, using a
distinctly shuffled dataset per training process. After each forward pass through the neural network,
the weight updates computed using gradient descent are back-propagated. Before each weight
tensor is updated locally, the global negotiation phase is triggered, resulting in computation of the
average of all local gradients. The steps followed to compute [98] all-reduce with operator MPI_SUM
on tensor; are the following:

e Worker sends MPI_Request for tensor; to master.

e After worker sends the MPI_Request for all trainable tensors, it sends a DONE message so that
master should stop expecting any more messages from that worker.

e Master updates its message_table, which is a hashmap from tensor name to all times-
tamped requests received for that tensor. This is done by the function IncrementTensorCount.

— When the first request for tensor; has been received the Horovod Timeline registers the
beginning of the negotiation phase for request type ALLREDUCE (start of NEGOTI-
ATE ALLREDUCE)

— When the size of the requests vector for tensor; is equal to MPI_SIZE, i.e. the number of
workers running copies of the program, it means that the tensor is ready to be reduced.
This is the end of the negotiation.

The three-phase message receive operation is synchronous and initiated by the master: get
message lengths from every rank (MPI_Gather), compute offsets and collect messages from
every rank (MPI_Gatherv, which is the generalized gather version which accounts for an
uneven number of messages received from workers).

e The master creates a vector of tensors ready to be reduced and for each tensor, it constructs
an MPI_Response containing also potential error messages related to the worker’s request.

e The master performs the optimization called Tensor Fusion, assembling a single stacked
response for tensors with the same response type, devices, data type and with a joint size
less than
TensorFusionThresholdBytes ()

e The names of the tensors reduced at the current step are broadcast to all workers
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e The all-reduce operation is executed by the function PerformOperation on all tensors ready
to be reduced

— In the MPI_ALLREDUCE case, all tensors of the TensorTable are copied to the Fusion
Buffer. The TensorTable stores TensorTableEntries uniquely identified by tensor name,
each containing all necessary data to do the reduction: input tensor, pre-allocated
output tensor, the GPU/CPU ID to do reduction on, root rank for broadcast operation,
etc.

— The allreduce operation is done in place (MPI_IN_PLACE flag), so the result of the re-
duction is present in the same buffer at the end of the computation.

— The resulting tensor is copied to the pre-allocated output Tensor of the TensorTableEn-
try (See Timeline MEMCPY_IN_FUSION_BUFFER)

e In the end, the Master performs a stall check on all tensors that were reported as ready for
reduction by some ranks (workers), but not by others. Such tensors may cause deadlock of
the system.

e Worker sends to root rank the message length and the message in MPI_Gather and MPI_Gatherv
(response operations to the Master-initated operations presented previously). The message
is received via the Worker’s local message queue.

e When the Master has decided that a tensor is ready to be reduced, it sends an MPI_Response
to the Worker containing tensor meta-information, received via the MPI_Bcast primitive. The
worker performs the operation indicated by the master, which can be one of: MPT Allreduce,
NCCL Allreduce or hierarchical all-reduce (MPI & NCCL).

A.2 Collective All-reduce Communication Theory

Peer-to-peer systems that implement Stochastic Gradient Descent rely on collective commu-
nication to average the gradients for all workers. The key technique is the collective all-reduce
communication, whose theoretical framework is presented next.

The all-reduce algorithm is frequently used in parallel computing. Each process combines values
from all other processes and broadcasts the result. To formalize [128], let Py, P; ... Px_1 be the
set of processes and assume each process holds a row vector v of N values af ... afv ~1 for all
i€{0... K —1}. [101] We want to compute the reduce function

reduceg : AX — A

across processes, for all vector positions ¢ € 1...N. The operation ¢ is commutative and
associative.

Without loss of generality, computing the final result for vector element at index j € {0... N —
1}, yields a) ;o =aj @ al ®--- @ al%_;. At the end of the computation, the result is gathered
a single node called the root, which will then broadcast it to its peers.

The reduce operation can be represented as a linear transformation:

[aga{;...r"aé...Kq] = [a?"'ai\fil] ~JIn

where Jy is an N X N upper diagonal transformation matrix used to select the previous partial
result for the reduction with the current vector value. By associativity of matrix multiplication,
we can represent the series of transformations done at each step in the distributed computation.
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According to Patarsuk et. al [101], the number of partial results to be communicated to
complete a one-item all-reduce is 2 * (K - 1), where K is the number of nodes. By the previous
decomposition, there exists a series of K - 1 transformations that leads to the one-item all-reduce.
For any connected undirected graph G with K nodes, there exists a spanning tree with K - 1
vertices. A directed spanning tree (DST) of G rooted at R, is a subgraph T of G such that the
undirected version of T is a tree and T contains a directed path from R to any other vertex in
the set of vertices. [129] T is called the broadcast graph. Reversing the directed edges of T yields
the gather graph, T’. Therefore, the K - 1 transformations will gather the result at the sink of T’,
following a broadcast in T.

Figure A.1: Gather Graph with Sink R and Broadcast Graph with source R

We use the illustration in Figure A.1 to show how all-reduce works for one data item a; with
i€{A,B,C,D,E,R}:

Step 1: All-gather

e C gathers values ag and ap. C computes intermediate value ac ® ap ® ag

e B gathers intermediate value from C. B computes intermediate value ag @ ac ® ap @ ag

e R gathers value a4. R computes final value as ® agr ® ap ®ac ®ap ® ag

e R gathers intermediate value from B. R computes intermediate value ar $ap Pac Pap Pag

Note that a non-root node does not send the intermediate result until it has received a message
from all upstream nodes.

Step 2: Broadcast

e R sends final value to A and B. Both A and B assign this value to the data-item under
reduction

e B sends the final value to C. C assigns the final data-item value.
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e C sends the final value to D and E. Both D and E assign the final data-item value.

Similarly, no node forwards assigns the final value and forwards any message unless it has been
notified by the upstream node. The result of the distributed computation is that all nodes have
the final data-item value a4 @ ar ® ap D ac Bap P ag.

A.3 Gradient noise estimation proposed by OpenAl

The implementation of the gradient noise scale is done according to Appendix A in the OpenAl
paper [118]:

tr(X)
Bsimplified = G2

where Y is the covariance matrix of the gradients across workers and the denominator represents
the square of the Ly norm of the gradient vector |G| = Zi’;l |G?|. This can be approximated by
S

1G1*"
The paper specifies that # € RP. As the shape of the parameters tensor is the same as the shape
of the gradients tensor from the TensorFlow implementation perspective, it follows that G € RP.
S and |G|? are computed at every iteration:

1
2 - (B |G 2_RB . 2
|g‘ Bbig Bsmall( b | Bb139| smell |GBS"”“”|)

1

S =
l/Bsmall - l/Bbz'g

(|GBSma,ll |2 - |GBb1',g 2)

The computation is suitable for the collective communication paradigm of Kungfu in which the
all-reduce operation is applied across devices. As such, By, represents the batch size per worker
which is constant for all workers, By, is the aggregated batch size equal to workerCount - Bsmair,
GB,,.an 18 the gradient locally computed by each worker and Gp,,, is the negotiated gradient
obtained through all-reduce.

The values S and |G|? computed at every iteration are not unbiased estimators for #r(X) and
|G|? respectively. To obtain unbiased estimators, we need to calculate the exponentially moving
average Sgara and |G|%,, 4 as follows:

Gl Eonra, = alGl; + (1 = a)|GlErra,

Sema, =aSi+ (1 —a)Sema,_,

where « represents the decay coefficient that weighs the contributions of the currently calculated
value and of the previous exponentially moving average. It is an additional hyperparameter which

needs to be tuned. The unbiased estimation of the noise scale is B,,pise = \SIEZM A
EMA
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