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Abstract

In the last few years, researchers have started exploring the potential of deep learn-
ing methods applied to robotic grasping and manipulation tasks. Despite the many
advantages of this learning technique, the generation of vast amounts of domain-
specific data remains one of the main challenges for this field of research. To help
reduce the data collection time, Dex-Net was designed to generate synthetic depth
images, robot parallel-jaw grasps and metrics of grasp robustness based on physics
for thousands of 3D object models. The resulting dataset was used to learn Grasp
Quality Convolutional Neural Networks (GQ-CNN) models able to predict the prob-
ability of success of candidate parallel-jaw grasps on objects from depth images.
Building on top of the Dex-Net project, we generated our own datasets to train mul-
tiple GQ-CNNs, exploring new architectures and data generation methods.

Although extremely accurate, the GQ-CNN models trained by Dex-Net still rely
on discrete sampling of grasp candidates. We present a new Grasp Quality Net-
work able to predict the probability of success and grasp angle for each pixel of a
depth image, avoiding the need for grasp sampling. To the best of our knowledge,
this is the first network of this kind trained on a synthetic dataset. Thanks to our
novel training methods, the model was able to extrapolate the necessary informa-
tion from incomplete grasp quality images and correctly learn how to predict grasp
quality from a depth image. Additionally, our Grasp Quality Network is able to lo-
cate a robust grasp 100 times faster than the GQ-CNN proposed in the Dex-Net 2.0
research paper. Finally, we compared and analyzed the performances of our Grasp
Quality Neural Networks both in simulation, using our own testing and evaluation
framework, and in the real world.
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1 Introduction

Grasping is something that comes naturally to humans, people instinctively know
how to grasp an object, even if they have never seen it before. But for robots, this
is a very challenging task that involves perception, planning, and control[23, 53].
Even a simple task such as picking up a bottle requires multiple steps in order to
be completed successfully. The robot needs to use their perception abilities(such as
a camera or laser sensors) to identify the location of the bottle, calculate the best
position to grasp it, plan a trajectory for the robotic arm to get into the desired
position, close the gripper, lift, and then verify if the grasp was successful.

As robots are taking on a more important role in factories as well as our homes,
the ability to grasp objects fast, accurately and reliably has become a fundamental
skill for them to have. Particularly, the demand for more general-purpose grasp-
ing has also increased. Traditionally, these task-specific algorithms have been hard-
coded to fit very specific needs and situations. While this approach is usually fast,
it has significant limitations when we try to generalize it to fit other circumstances:
it cannot be reused in different environments and cannot react to unexpected situa-
tions(such as novel objects). The successful outcome of the task is heavily restricted
to situations predicted and accounted for by the programmer. These algorithms are
also time-consuming to write, and any error in one of the steps could cascade to the
others, causing the grasp to fail. If, for example, the object is not located correctly,
or our robot collides with the object while trying to grasp it, we will probably fail
to obtain a successful grasp(or at least obtain a less stable one). Robotic grasping
currently performs well below human object grasping benchmarks[23], but it keeps
being improved.

Recently, Deep Learning techniques have enabled significant advancements in
robotic vision, natural language processing, and automated driving applications.
Thanks to the successful results in these fields, researchers have started exploring
the potential of deep learning methods in robotic applications. Deep Learning is a
branch of machine learning, and it involves the use of an artificial neural network in-
spired by the biological nervous system. Once the data is fed to this network, a series
of parallel and simultaneous mathematical operations is applied. The goal is to learn
a set of rules that will later be used for decision making. When these techniques are
applied to a robotic system, they enable robots to autonomously perform tasks that
come naturally to humans. Thanks to deep learning, we would be able to replace the
pipeline of steps the robot has to follow, enabling it to learn how to perform actions
based purely on sensor data, such as depth images coming from cameras or gripper
joints positions. This helps in moving towards a more general approach to grasping,
rather than many hard-coded, task-specific components tailored to a certain envi-
ronment. Deep learning models are commonly used in classification and detection
problems, but there is a strong interest to apply them to new domains.

The downside of Deep Learning is that it requires vast amounts of training data
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1.1. OBJECTIVES Chapter 1. Introduction

to achieve good performance. One possible way of obtaining such data is through
human labelling or months of execution time on physical robots. In both cases,
there are considerable costs in both time and money, and recent studies suggest that
the performance of grasping systems might be strongly influenced by the amount of
data available [24]. Cheaper alternatives include: plan grasps using physics-based
analysis such as caging, grasp wrench space (GWS) analysis, robust GWS analysis
or simulation, where thousands of robots can work in parallel. Moreover, all these
methods can be computed using Cloud Computing, making them much faster than a
real-time robot, which further speeds up the data gathering process. However, these
methods use a different perception system that estimates properties such as object
shape or pose either perfectly or according to known Gaussian distributions. This is
prone to errors, may not generalize well to new objects, and can be slow to match
point clouds to known objects during execution.

Recent results suggest that it is possible to grasp a variety of isolated objects
with high precision using Convolutional Neural Networks (CNNs) trained on syn-
thetic data. Even though using synthetic data offers many advantages, as explained
above, one more thing we have to consider the difficulty of transferring simulated
experience into the real world. This is often referred to as the “reality gap”. The
reality gap is a subtle but important discrepancy between reality and simulation that
prevents simulated experience from directly transferring into effective real world
performance[8]. Recent research[20] shows it is possible to train a robot exclusively
in simulation and then apply the model in the real world without the need for fur-
ther training or adaptation, successfully crossing the reality gap. In this project, we
will implement a grasping system using Dex-Net(Dexterity Network). Dex-Net is
a research project including code, datasets, and algorithms for generating datasets
of synthetic point clouds, robot parallel-jaw grasps and metrics of grasp robustness
based on physics, for thousands of 3D object models to train machine learning-based
methods to plan robot grasps. The data generated by Dex-Net can be used to train
Grasp Quality Convolutional Neural Networks, networks trained to be able to rank
grasps and be able to distinguish stable from less stable grasps. We aim to replicate
the results achieved by Dex-Net and described in the Dex-Net research papers, as
well as gaining a deep understanding of their codebase. We plan to recreate the
Dex-Net pipeline: use the codebase to calculate possible grasps on a 3D mesh, sim-
ulate both RGB and depth images for each possible grasp, and then train a Grasp
Quality Convolutional Neural Network that we will evaluate both in simulation and
on a real robot. After this, we will explore different methods to improve Dex-Net’s
performance on known and unknown objects, as well as exploring new approaches
to building faster, more reliable Grasp Quality Networks.

1.1 Objectives

Our goal was to use Dex-Net’s findings and codebase to train a Grasp Quality Convo-
lutional Neural Network(GQ-CNN) to be able to reliably recognize robust grasps. Af-
ter replicating Dex-Net results, we would use the gained knowledge and experience
to improve on Dex-Net’s findings. Our main goals for this project are summarized

2
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here:

• Understand the Dex-Net research paper and codebase while looking into other
similar methods of data gathering for GQ-CNN training.

• Use the Dex-Net codebase to generate robust grasps for any given mesh, then
evaluate those grasps in simulation to confirm their validity.

• Recreate the Dex-Net pipeline to generate stable grasps, generate depth images
for each grasps and train a GQ-CNN with the gathered data, trying to replicate
Dex-Net’s results.

• Develop a testing framework to reliably evaluate different GQ-CNNs and grasp-
ing policies.

• Explore the Dex-Net and GQ-CNN codebase to find ways of improving the
network’s performance.

• Explore entirely new architectures, methods for data generation and GQ-CNN
training.

• Evaluate and compare the different GQ-CNNs, data creation methods and poli-
cies both in simulation and in the real world.

1.2 Challenges

Starting out, we expected that working with the Dex-Net codebase was going to be
quite straightforward. Unfortunately, due to many bugs and installation issues, this
was not the case. A number of inconsistencies between the research papers and
the codebase further contributed to slowing down our progress, especially in the
beginning. Overall, the biggest challenges we encountered during the course of the
project were:

• Inconsistencies between the Dex-Net research paper and the codebase.

• Lack of documentation for the codebase, coupled with misleading, confusing
or outdated comments and variable names.

• Incomplete installation script, outdated dependencies and library conflicts.
Bugs not only in the Dex-Net codebase but in its library dependencies as well.

• Long data generation and network training times.

• Huge amounts of data necessary for training. Some datasets measured over
80GB. With such large amounts of data, even transferring data from one ma-
chine to another became a challenge.

• Constantly changing codebase. Since we were working with the current state-
of-the-art of GQ-CNN training methods, it meant we had to deal with huge
updates to the codebase at multiple times through our project.

3
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1.3 Contributions

• Recreate Dex-Net’s pipeline and replicate their results in both simulation and
real world.

• Confirm the validity of grasps generated through Dex-Net to train a Grasp
Quality Neural Network.

• Contribute to the Dex-Net codebase with bug fixes, installation script updates
and solving library clashes.

• Create a testing framework for evaluating and comparing GQ-CNNs and poli-
cies. This was done in simulation, using V-REP and the model of a Sawyer
robotic arm.

• Create many datasets for grasp quality training. The datasets published by
the Dex-Net researchers are limited to 32×32 pixels depth images, with grasp
collisions calculated using a Yumi Robotic gripper. We generated more datasets
using a Baxter parallel gripper for collision checking. We also added RGB
images to our training data and explored different image resolutions.

• Explore different variations of the original Dex-Net architecture and trained a
network with 84% fewer parameters and similar performance.

• Develop a novel technique to train Neural Networks on incomplete data, allow-
ing them to extrapolate and only learn from relevant data. The network we
trained was able to extrapolate relevant information from thousands of par-
tial data images and correctly merge the knowledge gained from each one to
accurately predict complete grasp quality images.

• Generate datasets to train a novel Grasp Quality Auto-Encoder network, able
to locate reliable grasps on a depth image 100 times faster(0.04 seconds vs 4
seconds) than the original GQ-CNN proposed by the Dex-Net 2.0 publication.

1.4 Outline of Contents

This section will give a brief overview of the structure of the report together with a
brief summary. Given the many components of our project, the evaluation of each
one usually follows in the same chapter. For all our components, we use the same
testing framework introduced and explained in detail in Chapter 5.

• Chapter 2 gives an introduction to Neural Networks, convolutions, coordinate
frames, camera models and Inverse Kinematics.

• Chapter 3 explains the challenges of robotic grasping and discusses how other
researchers have tried to achieve fast and reliable grasping. This chapter also
includes a brief overview of some of the most popular datasets and methods
for domain adaptation, as one of our goals is to evaluate our grasp quality

4
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neural networks in real-world tasks. We will also discuss Dex-Net’s approach
to robotic grasping, their dataset creation pipeline, methodologies, and the
physics behind their grasp creation algorithm. Finally, we will briefly summa-
rize the structure of the Dex-Net codebase.

• Chapter 4. From here on, we begin talking about our work, starting with the
improvements and extensions we made to Dex-Net. This includes bug fixes,
support for RGB images and more in-depth explanations of some parts of the
codebase either overlooked or not explained clearly in the original research
paper, while also highlighting any inconsistencies we found.

• Chapter 5 introduces our testing framework to evaluate GQ-CNNs. In this
chapter, we also explain what metrics we decided to use to compare our models
and the data we evaluated our networks on.

• Chapter 6 talks about the optimizations we made to the Grasp Quality Neural
Network proposed by Dex-Net, whilst creating different networks trained on
different amounts and types of data, and comparing between them.

• Chapter 7 introduces our new Grasp Quality Auto-Encoder, talks about our
data creation process, and compares it to the Dex-Net Grasp Quality Convolu-
tional Neural Network, highlighting the pros and cons of each approach.

• Chapter 8 talks about how we used the GQ-CNN we trained to execute grasps
on a real robot, a Sawyer robotic arm. We also discuss the strengths and weak-
nesses of our application.

• Chapter 9 summarizes strengths and weaknesses of evaluations explained in
detail in Chapters 6, 7 and 8 using the testing framework and evaluation strate-
gies introduced in 5.

• Chapter 10 includes a conclusion, summarizes our findings, shares what we
learned and discusses some ideas we would like to explore in the future.
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2 Preliminaries

2.1 Deep Learning

Deep structured learning, or more commonly called deep learning, has emerged as a
new area of machine learning research. During the past several years, the techniques
developed from deep learning research have had a profound impact on a wide range
of signal and information processing work, especially in the field of image and object
recognition, or more recently speech recognition. In 2011, a fast implementation
of CNNs with max-pooling achieved superhuman performance in a visual pattern
recognition contest for the first time[18].

There exist several high-level description and definitions of deep learning, but
they all share the following characteristics:

• Deep learning is part of a broader family of machine learning methods based
on learning representations.

• It is based on algorithms for learning multiple levels of representation in order
to model complex relationship among data.

• It exploits many layers of non-linear information processing for supervised or
unsupervised feature extraction and transformation, and for pattern analysis
and classification

• High-level features and concepts are thus defined in terms of lower-level ones,
and such a hierarchy of feature is called a deep architecture.

• Typically uses artificial neural networks. The levels in these learned models
correspond to distinct levels of concepts.

Deep learning is in the intersections among the research areas of neural net-
works, artificial intelligence, graphical modeling, optimization, pattern recognition,
and signal processing[15].

The main reasons for the popularity of deep learning today are the drastically
increased chip processing abilities(e.g. general purpose graphical processing units
or GPGPUs), the significantly increased size of data used for training, and the recent
advances in machine learning[14].

These advances have enabled deep learning methods to effectively exploit com-
plex, non-linear functions, to learn distributed and hierarchical feature representa-
tions, and to make effective use of both labeled and unlabeled data[15].

6
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Figure 2.1: A simple neural network

2.2 Neural Networks

A standard artificial neural network (ANN or NN) consists of many simple, connected
units called artificial neurons, which vaguely model the neurons in a biological brain.
Each connection between two neurons(a synapse in a biological brain, an edge in
the graph of an ANN) can transmit a signal from one artificial neuron to another.

In the most common ANN implementation, the signal transmitted between neu-
rons is a real number, and the output of each artificial neuron is computed by some
non-linear function(called activation function) of the sum of the weights of its in-
puts. The activation function can be implemented so that the signal is only sent
from one neuron to the next if it crosses a given threshold[19]. Learning is about
finding weights that make the ANN manifest desired behavior, such as, in our spe-
cific case, grasping an object. The weight increases or decreases the strength of the
signal at a connection. Typically, artificial neurons are aggregated into layers. Dif-
ferent layers may perform different kinds of transformations on their input. Input
neurons receive complex data inputs, other neurons get activated through weighted
connections from previously active neurons. The output neurons may influence the
environment by triggering actions. Depending on the problem and how the neurons
are connected, long chains of computational stages(layers) may be required, where
each stage(layer) transforms (often in a non-linear way) its input.

Let’s take the example of face recognition from an image: the data will be trans-
formed by each layer of the ANN into a more and more abstract representation of
the previous layer(or the raw input, as a matrix of pixels, in the first layer). The first
layer may abstract the pixels to encode edges, the second layer may indicate and

7
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encode positions of these edges, the third layer may recognize facial features such as
nose and eyes, and the fourth layer may recognize that the image contains a face. It’s
important to note that a deep learning process can learn which features to optimally
place in which level on its own. Also, there is no need to somehow hard-code the
knowledge that, for example, faces have eyes, as the ANN would learn so on its own
based on the data used during training.

Activation Function The activation function of a node defines the function that is
applied to the input of the neuron in order to obtain a certain output. In modern
neural networks,the default recommendation is to use Rectified Linear Unit(ReLU)
activation function[19]. This function returns 0 if it receives any negative input,
but for any positive value x, it returns that value back. So it can be written as
f(x) = max(0, x).

Figure 2.2: Artificial Neuron Model

2.3 Convolutional Neural Networks

Convolutional networks, also known as convolutional neural networks, or CNNs,
are a specialized kind of neural network for processing data that has a known grid-
like topology. An example is image data, which can be thought of as a 2D grid
of pixels. This type of network uses a mathematical operation called convolution,
a specialized kind of linear operation. Convolutional networks are simply neural
networks that use convolution instead of general matrix multiplication in at least
one of their layers[19].
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2.3.1 The Convolution Operation

In the most general form, convolution is an operation on two functions of a real-
valued argument. Suppose we are tracking the location of a robotic gripper with
a laser sensor. Our laser sensor provides a single output x(t), the position of the
gripper at time t. Now, suppose the laser sensor is noisy. To obtain a less noisy
estimate of our gripper’s position, we would like to average several measurements.
Of course, more recent measurements will be more relevant, so we will want this
to be a weighted average that gives more weight to recent measurements. We can
do this with a weighting function w(a), where a is the age of a measurement. If we
apply such weighted average operation at every moment, we obtain a new function
s providing a smoothed estimate of the position of our gripper:

s(t) =

∫
x(a)w(t− a)da

This operation is called convolution. The convolution operation is typically denoted
with an asterisk:

s(t) = (x ∗ w)da

In general, convolution is defined for any functions for which the above integral is
defined and may be used for other purposes besides taking weighted averages. In
convolutional networks we have a specific terminology:

• Input: The first argument(in our example, the function x)

• Kernel: The second argument(in our example, the function w)

• Feature map: The output

In the previous example, the idea of a laser sensor that can provide measurements
at every instant is not realistic. Usually, data used in a program will be discretized.
Therefore, we will assume our laser provides data once per second. We can also
define a discrete convolution:

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a)

In machine learning applications, the input is usually a multidimensional array of
data, and the kernel is usually a multidimensional array of parameters that are
adapted by the learning algorithm. As we assume the input and kernel arrays will
be zero everywhere but for the finite set of points which we specify, we can imple-
ment the infinite summation as a summation over a finite number of array elements.
Finally, we often use convolutions over more than one axis at a time. For example,
if we use a two-dimensional image as our input, we probably also want to use a
two-dimensional kernel K:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

9
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Discrete convolution can be viewed as multiplication by a matrix, but the matrix has
several entries constrained to be equal to other entries.

Traditional neural network layers use matrix multiplication by a matrix of param-
eters with a separate parameter describing the interaction between each input unit
and each output unit. This means that every output unit interacts with every input
unit. Convolutional networks, however, typically have sparse interactions (also re-
ferred to as sparse connectivity or sparse weights). This is accomplished by making
the kernel smaller than the input. For example, when processing an image, the input
image might have thousands or millions of pixels, but we can detect small, meaning-
ful features such as edges with kernels that occupy only tens or hundreds of pixels.
This means that we need to store fewer parameters, which both reduces the memory
requirements of the model and improves its statistical efficiency. It also means com-
puting the output requires fewer operations. This results in a large improvement in
the efficiency of the algorithm and training of the network.

Convolutional networks provide a way to specialize neural networks to work
with data that has a clear grid-structured topology and to scale such models to very
large size. This approach has been the most successful on a two-dimensional image
topology. [19]

Figure 2.3: Example of convolution operation with stride equal to 2[52]

2.3.2 Pooling

Convolutional networks may include local or global pooling layers, which combine
the outputs of groups of neurons in one layer into a single neuron in the next layer.
For example, the max-pooling operation reports the maximum output within a neigh-
borhood. Other popular pooling functions include the average, the L2 norm, or a
weighted average based on the distance from the central pixel. In all cases, pooling
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helps to make the representation approximately invariant to small translations of the
input. For example, when determining whether an image contains a face, we do not
need to know the location of the eyes with high precision, we only care about the
fact that they are present. Because pooling summarizes the responses over a whole
neighborhood, it is possible to have fewer pooling units than detector units. This
improves the computational efficiency of the network because the layer has roughly
k times fewer inputs to process. When the number of parameters in the next layer
is a function of its input size(such as when the layer is fully connected and based
on matrix multiplication), this reduction in the input size can also result in reduced
memory requirements for storing parameters[19]. Reduction in the number of pa-
rameters also reduced the search space of the optimization. Fewer parameters help
prevent overfitting and result in faster and more efficient training.

Figure 2.4: Pooling with down-sampling. Here max pooling is used with a pool width
of three. This reduces the representation size by a factor of two, which reduces the
computational on the next layer[19]

2.4 Training Neural Networks

Given a target function y = f ∗(x), our model represents a function y = f(x; θ),
and our learning algorithm will adapt the parameters θ to make f as similar as
possible to f . Training a Neural Network aims to minimize the loss function L,
a representation of the difference between the current function of our model y =
f(x; θ) and the target function y = f ∗(x). A commonly used loss function is Mean
Squared Error(MSE), defined as follows:

L(θ) =
1

n

n∑
i=0

(f ∗(xi)− f(xi; θ))

2.4.1 Gradient Descent

Unfortunately, the non-linearity of a neural network causes most loss functions to
become non-convex. This means Neural Networks are usually trained using iterative,
gradient-based optimizers that drive the cost function to a minimum[19]. Intuitively,
the gradient descent method works similarly to a lost climber trying to go back to the
bottom of a mountain. He starts from a random point(random guess of parameters),
then he looks around and takes a step in the direction with the steepest descent.
After each step, he reevaluates the direction of steepest descent and takes another
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step. He repeats this process until he reaches the bottom of the mountain. In this
analogy, the mountain represents our loss function, that we aim to minimize, and at
each step we reevaluate it, calculate its gradient, identify in which direction it steps
down the most and tweaks our parameters in that direction. We repeat this process
over and over until convergence. The parameters update of one gradient descent
step is applied using the following formula:

Θk+1 := Θk − τ∇L(Θ)

2.4.2 Back-Propagation

In multi-layer neural networks, the implementation of gradient descent is achieved
through back-propagation[11]. Back-propagation is a method of updating the weights
of connections between neurons proportionally to the gradient of the networks loss
function. A generic optimization algorithm can be described as follows:

1. Forward pass: Make a prediction and measure the error

2. Backward pass: Go through each layer in reverse to measure the error contri-
bution from each connection (gradient calculation step)

3. Adjust connection weights to reduce the error (gradient descent step)

2.5 Coordinate Frames and Notations

A position vector denoted as W r S indicates the origin of F−→S(coordinate frame S)
represented in F−→W (coordinate frame W). Example: W r S could indicate the position
of a sensor S with respect to F−→W (the world coordinate frame).

A rotation matrix from F−→S to F−→W will be denoted as CWS. A rotation matrix
transforms a vector’s coordinate frame representation as follows: Wa = CWS Sa.
In the 2D case, we have only 1 angle we can change(rotation around the z-axis).
A rotation matrix from F−→A to F−→B where F−→B is rotated by γ anti-clockwise with
respect to F−→A can be written as:

C AB =

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

]
In the 3D case, we have 3 Degrees of Freedom(DoF)(i.e. rotation around x, y and z
axes). Below, the rotation matrices around the x, y and z-axis respectively by angle
γ are shown.

C x =

1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

C y =

 cos(γ) 0 sin(γ)
0 1 0

− sin(γ) 0 cos(γ)

C z =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


These rotation matrices are orthonormal, this means that:

CWS = C −1
SW = C T

SW

12
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To obtain a rotation around multiple axes is enough to multiply these matrices. A
6 DoF pose consists of position(3 DoF) and orientation(3 DoF). We can write the
transformation of a position vector Br P (position of P in F−→B) to Ar P (position of P
in F−→A) as:

Ar P = C AB Br P + Ar B
Or, we can use the homogeneous transformation matrix:

T AB =

[
C AB Ar B
0 1×3 1

]
In this case we have to turn our position vector Br P into homogeneous coordinates
to be able to apply the homogeneous transformation:

Ar P :=

[
Ar P

1

]
= T AB

[
Br P

1

]

2.6 Cameras

Figure 2.5: The pinhole camera model[51]

For the purposes of our project, we don’t need to explain in detail the physics
of the pinhole camera model, as explaining the mathematics behind it is going to
be enough. In this model, the 3D world is projected onto a plane(called projection
plane) in front of the camera center. The distance between the camera center and the
projection plane is called focal length. The projection of any point in the 3D world
onto the projection plane of the camera is obtained applying the formula below:

m′ = A[R|t]M ′

13



2.7. INVERSE KINEMATICS Chapter 2. Preliminaries

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


Where (X, Y, Z) indicate the coordinates of the point in the 3D world coordinate
frame and (u, v) are the coordinates of the projection point in pixels. A is the cam-
era matrix, or a matrix of intrinsic parameters(internal and fixed to a particular cam-
era/digitization setup, they define the location and orientation of the camera with
respect to the world frame), while [R|t] is the matrix of extrinsic parameters(external
to the camera and may change with respect to the world frame, they allow a map-
ping between camera coordinates and pixel coordinates in the image frame). (cx, cy)
indicates the center of the image(in pixels) and is sometimes called the principal
point. (fx, fy) are the focal lengths also expressed in pixel units. It’s also important
to note that the camera coordinate frame is oriented so that the z-axis points towards
the projection place, the x-axis is parallel to it and indicates the horizontal axis of
the image, while the y-axis indicates the vertical axis[51].

2.7 Inverse Kinematics

Inverse Kinematics(IK) is defined as the use of kinematic equations to determine
the joint parameters of a robotic arm so that the end-effector moves to a desired
position. While kinematics is related to the motion of points, objects, and systems
of objects, it has no consideration for what causes the motion and doesn’t consider
mass, force or torques. Inverse Kinematics, on the other hand, was initiated in order
to solve the problem of moving a redundant kinematic arm with specific degrees
of freedom(DoF) to a pre-defined target[2]. In the case of a 2D environment and
one joint, the problem is reduced to simple trigonometry. However, as the num-
ber of joints and dimensions increase, Inverse Kinematics can become a challenging
problem to solve.

Figure 2.6: Inverse Kinematics 2D problem applied to a manipulator with two joints.
This particular problem as two possible solutions[47]
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3 Background

Reliable robotic grasping is challenging due to imprecision in sensing and actuation,
which leads to uncertainty about properties such as object shape, pose, material
properties, and mass[26]. Successful robotic grasping systems should be able to
overcome these obstacles to produce useful results. A robotic grasping implementa-
tion has the following phases [23]:

• Grasp planning: A visual recognition problem in which the robot uses its
sensors to detect graspable objects in its environment. The sensors used for
perceiving the robots environment are typically 3D vision systems or RGB-D
cameras. The goal is to predict potential grasps from sensor information and
map the pixel values to real world coordinates. This is a fundamental step in
performing a grasp as the subsequent steps are dependent on the coordinates
calculated in this step.

• Trajectory planning: An optimal trajectory for the robotic arm is then planned
to reach the target grasp position. The calculated trajectory should avoid colli-
sion with the object or the surface where the object is resting.

• Execution: The planned trajectory for the robotic arm is executed using either
an open-loop or a closed loop controller.

3.1 Grasp Planning

Grasp planning consists in finding a gripper configuration that maximizes a suc-
cess(or quality) metric, taking into consideration the object shape and specific envi-
ronmental factors, such as the pose of the object on a table or an obstacle between
the robot and the object. Robust grasp planning tackles the same problem but takes
into consideration the presence perturbations in the object’s properties(e.g. object
shape, pose, or mechanical properties such as friction), caused by the imprecision in
perception and control[29]. In more detail, grasp planning includes three key tasks:

• Object Localization

• Pose Estimation

• Grasp Detection

Object localization can be achieved using object detection and segmentation meth-
ods, while pose estimation includes RGB-based and RGB-D-based methods. Grasp
detection includes traditional task-specific, hard-coded methods, and deep learning-
based methods, but in general two main categories exist, and they are based on
success criteria[27]:
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• analytic methods[39]: evaluate performance according to physical models
such as the ability to resist external wrenches[36] or the ability to constrain
the object’s motion[48]. These methods typically require knowing the object
shape and location exactly. They usually involve pre-computing a database of
known 3D objects labeled with grasps and quality metrics. Point clouds are
then matched to known 3D objects using visual and geometric similarity and
the highest quality grasp is then executed.

• empirical (or data-driven) methods[7]: typically use human labels[5] or
the ability to lift the object in physical trials[35]. They usually use machine
learning techniques to develop models that map from robotic sensor readings
to success labels from humans or physical trials.

3.2 Grasps Evaluation

The analysis of the Grasp Wrench Space (GWS) has been traditionally used to define
different quality measures [40]. GWS describes the force and momentum applied at
the point of contact. Among the different quality measures, the computation of the
largest minimum resisted wrench (Ferrari-Canny, Qε) [17] is one of the most widely
used. This metric represents the maximum perturbation wrench that a grasp can
resist in any direction[38].

According to [40] grasp synthesis algorithms take into account the following
basic properties:

• Disturbance resistance: a grasp can resist disturbances in any direction when
object immobility is ensured, either by finger positions (form closure) or, up to
a certain magnitude, by the forces applied by the fingers (force closure[22]).
Main problem: determination of contact points on the object boundary.

• Dexterity: a grasp is dexterous if the hand can successfully move the object
according to the task it has to complete. Main problem: determination of hand
configuration.

• Equilibrium: a grasp is in equilibrium when the resultant of forces and torques
applied on the object (by the fingers and external disturbances) is null. Main
problem: determination and control of the proper contact forces.

• Stability: a grasp is stable if any error in the object position caused by a dis-
turbance disappears in time after the disturbance vanishes. Main problem:
control of restitution forces when the grasp is moved away from equilibrium.

3.3 Grasp Representation

Multiple grasp representations have been used throughout the analyzed literature.
In earlier works, grasps where simply represented as points on images of real ex-
amples or 3D meshes based on simulations. The grasp point was therefore given by
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g = (x, y, z). In other words, the grasp is simply defined as a point on a 2D image
plane. A major drawback of this method is that it only determines where to grasp an
object and it does not specify how wide the gripper has to be open or its orientation.
As these parameters can severely affect the successful outcome of a grasp, another
popular representation has been proposed: the oriented rectangle representation.
This is a seven-dimensional representation containing information about grasping
point, grasping orientation, and gripper opening width. In world coordinates, their
grasp representation,G, is defined asG = (x, y, z, α, β, γ, l) . Another grasp represen-
tation introduced in more recent research is the combined location and orientation
representation. In [35], the authors used the simple G = (x, y, θ) representation and
dropped the dimensional parameters of height and width. The literature suggests
that any preference between representations is application specific.

3.4 Motion Planning and Grasp Execution

Motion planning can be achieved using analytical methods, imitating learning meth-
ods(i.e. imitate human grasping behaviour), and reinforcement learning methods.
These methods design the path from the robot hand to the grasp points on the target
object. Here motion representation is the key problem. Although there exist an in-
finite number of trajectories from the robotic hand to the target grasp points, many
areas could not be reached due to the limitations of the robotic arm. Therefore, the
trajectories need to be planned.

One of the most significant challenges in grasp execution is precise robot control.
Ju et al [21] have recommended the use of closed-loop control algorithms for accu-
rate grasping. In contrast to an open-loop controller, a closed-loop controller receives
continuous feedback from the vision system during the entire grasping task, allowing
it to take into account and potentially fix inaccuracies and unexpected movements
while moving its robotic arm. The downside of a closed-loop controller is that it can
be much slower, drastically affecting the speed of the task. This is because of the
additional processing power needed to handle the feedback. [23]

3.4.1 End-to-End Motion Planning

End-to-end motion planning is a collection of closed-loop methods where grasping
points are not given[16]. A typical functional flow-chart of end-to-end motion plan-
ning is illustrated in Figure 3.1. These methods directly accomplish the grasping
task after being given an original RGB-D image by using reinforcement learning.
The reward function is defined in relation to the state of grasping. Levine et al.
[24] proposed a learning-based method for hand-eye coordination in robotic grasp-
ing from monocular images. They utilized the grasp attempts as the reward function
and trained a large convolutional neural network to predict the probability that task-
space motion of the gripper will result in successful grasps.
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Figure 3.1: A typical functional flow-chart of end-to-end motion planning [16]

3.5 Datasets

The performance of a simple machine learning algorithm relies on the amount of
training data as well as the availability of domain-specific data. Recent publica-
tions suggest that the availability of training data is one of the main challenges
for this learning method. Some researchers combined datasets to create a larger
dataset while others collected and annotated their own data. The Cornell Grasp
Dataset(CGD)[13] is a popular grasp dataset that appeared in a number of research
studies, suggesting it has a reasonable diversity of examples for generalised grasps.
The CGD was created with grasp rectangle information for 240 different object types
and it contained 885 images, 885 point clouds and 8019 labelled grasps including
valid and invalid grasp rectangles. The grasps are defined in parallel plate gripper,
a common type of gripper found in many robots, and the type we will be using in
this project as well. By including point clouds, the CGD dataset also allows to create
RGB-D images for learning purposes.

18



Chapter 3. Background 3.6. DOMAIN ADAPTATION AND SIMULATED DATA

3.6 Domain Adaptation and Simulated Data

By using synthetic data and domain adaptation, Bousmalis et al [8] were able to
reduce the number of real-world samples needed to achieve a certain performance
level by up to 50 times, using only randomly generated simulated objects. The
authors used two different sources of objects for their experiments:

• Procedurally generated random geometric shapes: created by attaching rect-
angular prisms at random locations and orientations. The prisms were then
converted into meshes using Blender and applying random levels of smooth-
ing.

• Realistic objects obtained from the publicly available ShapeNet 3D model
repository: each object was re-scaled to a random graspable size and assigned
a reasonable random mass.

They found that simulated data always aids in improving vision-based real world
grasping performance, regardless of the number of real world samples used during
training. They also observed there was no need for realistic 3D models to signifi-
cantly improve performance. They compared the performance of two grasping sys-
tems: one trained using procedurally generated shapes and another trained using
objects from the ShapeNet[10] repository, both combined with 10% real world data
and under all randomization scenarios. They found that using procedural objects
was the better choice in all cases. These findings have interesting ramifications, as
it could indicate that the noise intrinsic of real world objects might just confuse the
model and that using simpler, more primitive shapes might aid the learning process.

Figure 3.2: (Left) Procedurally generated objects. (Center) ShapeNet objects. (Right)
Real objects[8]

3.7 CNNs for Grasp Detection

The state-of-the-art work in robotic grasp detection involves using different varia-
tions of CNNs to learn the optimal gripper configuration for different object shapes
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Figure 3.3: The effect of using 8 million simulated samples of procedural objects with
no randomization and various amounts of real data.[8]

and poses. They do so by ranking multiple grasp configurations predicted for each
object image. This is achieved by ranking multiple grasp configurations predicted
for an image of the object we intend to grasp. The ranking of configuration is done
using learnt parameters from the representation learning capability of deep learning.

Analytic and model-based grasping methods can achieve excellent generalization
to situations that satisfy the assumptions they were created on. However, the com-
plexity and unpredictability of the real world usually defy these assumptions. Many
of the grasping systems that have shown the best generalization in recent years in-
corporate CNNs into the grasp selection process.[8]

3.8 Bridging the Reality Gap

In this project, we aim to train an accurate grasping model using no real-world
images. Although learning from simulated data has significant advantages due to
the scalable, rapid, and low-cost of data collection, the model would be of little use
if the knowledge gained from simulation didn’t apply to the real world.

Discrepancies between physics simulators and the real world make transferring
behaviours from simulation challenging[12]. System identification, the process of
tuning the parameters of the simulation to match the behaviour of the physical sys-
tem, is time-consuming and error-prone. Even with strong system identification, the
real world has unmodeled physical effects(e.g. non-rigidity and wear-and-tear) that
are not captured by current physics simulators. Furthermore, low fidelity simulated
sensors like image renderers are often unable to reproduce the noise present in their
real-world counterparts. All these differences, known collectively as the reality gap,
form the barrier to using simulated data on real robots.

A simple but promising method for addressing the reality gap is called domain
randomization. Instead of training the model on a single simulated environment,
the simulator is randomized to expose the model to a wide range of environments
at training time. If the variability of the simulation is significant enough, models
trained in simulation will generalize to the real world with no additional training.
Josh et al[53] have applied this method to object localization, successfully training a
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real-world detector that is accurate to 1.5cm and robust to distractors and partial oc-
clusions using only data from a simulator with non-realistic random textures. James
et al[20] have used this method successfully to train models that not only succeed in
the real world but are also able to accomplish the task with variations in the positions
of the object, camera, and joint angles. Moreover, the model shows robustness to
distractors, lighting conditions, changes in the scene and moving objects(including
people).

Figure 3.4: Illustration of the domain randomization approach. An object detector is
trained on hundreds of thousands of low-fidelity rendered images with random camera
positions, lighting conditions, object positions, and non-realistic textures. At test time,
the same detector is used in the real world with no additional training.

3.9 Dex-Net

In this Section, we will introduce and summarize the most interesting aspects of the
Dex-Net publications. This will be done in order to give a general overview of the
methodologies, algorithms, and architectures used by Dex-Net. We will also try to
gain an understanding of some of the physics and statistics involved in the generative
process of synthetic grasps, as we will be working closely with code related to these
aspects.

3.9.1 Intro

The Dexterity Network (Dex-Net) [29, 27] is a research project including code,
datasets, and algorithms for generating datasets of synthetic point clouds, robot
parallel-jaw grasps and metrics of grasp robustness based on physics for thousands
of 3D object models to train machine learning-based methods to plan robot grasps.
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Figure 3.5: Dex-Net architecture. First, the Grasp Quality Convolutional Neural Net-
work (GQ-CNN) is trained in order to predict the robustness candidate grasps. Then,
an object is presented to the robot, though a depth camera, together with some grasp
candidates. The GQ-CNN rapidly determines the most robust grasp candidate, which is
executed by the robot.

The broader goal of the Dex-Net project is to develop highly reliable robot grasping
across a wide variety of rigid objects such as tools, household items, packaged goods,
and industrial parts.

Thanks to Dex-Net, a synthetic dataset was created associating 6.7 million point
clouds and analytic grasp quality metrics with parallel-jaw grasp quality metrics
planned using robust quasi-static GWS analysis on a dataset of 1500 3D object mod-
els in randomized poses on a table. This dataset attempts to reduce data collection
time for deep learning of robust robotic grasp plans[3]. The dataset is then used to
train a Grasp Quality Convolutional Neural Network(GQ-CNN), which can be used
to predict the robustness of grasp candidates. A summary of the Dex-Net data cre-
ation process, GQ-CNN training, and grasp execution is shown in Figure 3.5.

3.9.2 Dex-Net Research

Problem Statement Dex-Net considers the robust grasp planning problem for a
given 3D object model and parallel-jaw grasp grippers using probability of force
closure(PF ) under uncertainty of object pose, and friction coefficient as a grasp
quality metric. Object shape is given as a signed distance field(SDF) f : R3 → R
[25]. For each point in the object’s bounding box, the SDF associated the distance
from the closest surface. Therefore, the values will be equal to zero on the object’s
surface, positive on the outside and negative on the inside. The object is specified
in units of meters with given center of mass z ∈ R3. It assumes soft-finger contacts
with a Coulomb friction model[57] (the soft finger model allows the application of
the same forces as the hard contact plus a torque around the direction normal to the
contact boundary) and that the gripper jaws are opened to their maximum width
w ∈ R before closing them to attempt the grasp.
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Sources of Uncertainty Dex-Net assumes a Gaussian distribution on object pose,
and friction coefficient to model errors in registration and robot calibration.

• µξ ∈ SE(3) represents the mean object pose

• ξ is an object pose random variable defined as ξ = exp(vΛ)µξ

– where Λ is a function of the type Λ : R6 → SE(3)

– where v, defined as v ∼ N (0,Σv) and v ∈ R6, is the gripper pose uncer-
tainty with mean µv ∈ G

• The random variable γ, defined as γ ∼ N (µγ,Σγ), is a Gaussian distribution
on the friction coefficient with mean µγ ∈ R

γ̂, ξ̂, v̂ are samples of the random variables defined above.

Contact Model Given a grasp g and an object O and samples γ̂, ξ̂, v̂, let ci ∈ R3 for
i ∈ 1, 2 denote the 3D contact location between the i-th gripper jaw and the surface.
Each contact ci = x + (−1)i(w/2− t ∗ i)v where[25]:

t ∗ i = arg min
t≥0

t such that f(x + (−1)i(w/2− t)v) = 0

The surface normal at contact ci with tangent vectors ti,1, ti,2 ∈ S2 is defined as

ni =
5f(ci)
‖ 5 f(ci)‖2

To compute the forces that each contact can apply to the object for friction coefficient
γ̂, the friction code is discretized at ci[37] into a set of l facets with vertices

Fi = {ni + γ̂cos(
2πj

l
)ti,1 + γ̂sin(

2πj

l
)ti,2|j = 1, ..., l}

Each force fi,j ∈ Fi can exert a corresponding torque τi,j = fi,j×ρi where ρi = (ci−z)
is the moment arm at ci. Under the soft contact model, each contact ci exerts an
additional wrench wi,l+1 = (0,ni). Thus the set of all contact wrenches that can be
applied by a grasp g under the model is

W = {wi,j = (fi,j, τi,j)|i = 1.2 and j = 1, .., l + 1)}

Grasp Representation Dex-Net 1.0 uses a grasp representation such that g =
(x, v), where x ∈ R3 represents the centroid of the parallel-jaw grasp in 3D space
and v ∈ S2 represents an approach direction, or axis, of the grasp. The surface of
the object is represented by SDF(or singed distance field) f and includes all points
that satisfy the following equation: S = {y ∈ R3|f(y) = 0}. An SDF assigns to every
point its distance from the closest surface of the object. This means the SDF will have
value 0 for points on the surface of the object, positive value for points external to
the object and negative value for points inside it. Dex-Net 2.0 uses a slight variation
of the above representation: g = (p, ϕ), where p = x, y, z is the centroid of the grasp
and ϕ is the approaching angle.
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Figure 3.6: Grasp parameterization and contact model used in Dex-Net.[29]

Quality Metric Force closure[22] is a binary quantity that measures whether or
not a grasp can resist external wrenches (forces and torques) applied to a grasped
object in arbitrary directions when an object shape is known precisely. The Ferrari-
Canny[17] grasp metric QF measures the strength of force closure by the rela-
tive magnitude of wrenches that the gripper would have to exert to resist external
wrenches. A successful force closure corresponds to a positive Ferrari-Canny value.

Grasp sampling Because we aim to use a parallel-jaw gripper, we need to sample
antipodal grasps. A grasp is defined as antipodal when its contact points are placed
on opposite sides of the object, as shown in Figure 3.6. In order to find these grasps,
Dex-Net uses a modification of the 2D algorithm presented by Smith et al[5, 25].
Given a 3D object Oi, a maximal opening of the gripper w, a sampled friction co-
efficient γ̂ and a set of points on the surface S of an SDF f , Dex-Net generates Ng

grasps. To sample a single grasp, it first generates a contact point c1, by sampling
uniformly from S. Next, a random direction v ∈ S2 is sampled uniformly from the
friction cone and c2 is computed using c2 = c1 + (w− t∗2)v, where t∗2 is defined above,
and x = 0.5(c1 + c2) is the center of the grasp. This yields a grasp gi,k = (x, v). This
grasp is then added to the candidate set if the contacts are antipodal[25].

Dataset Generation

• 3D Models: each mesh is aligned with the standard frame of reference, re-
scaled to fit within a gripper of 5cm and assigned a mass of 1kg, centered in the
object bounding box. For each object, a series of stable poses is computed. Each
stable pose has a probability of occurrence, all stable poses with a probability
below a certain threshold are ignored and not added to the database.

• Parallel-Jaw Grasps: each object is labelled with a set of parallel-jaw grasps. A
quality metric EQ is calculated for a combination of grasp, object pose, gripper
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pose, and friction coefficient uncertainty using Monte-Carlo sampling.

• Stable poses: For each stable pose of the object a set of grasps perpendicular
to the table surface and collision-free for a given gripper model are added.

• Rendered Depth Images: Each object is then paired with a set of depth images
for each object’s stable pose. Each image is rotated, translated, cropped, and
scaled to align the grasp pixel location with the image center and the grasp
axis with the middle row of the image, creating a 32×32 pixels image.

Figure 3.7: Dex-Net database creation pipeline.

Grasp Quality Convolutional Neural Network(GQ-CNN) This network estimates
the probability of grasp success(robustness), which can be used to rank grasp can-
didates. The most robust grasp is checked for kinematical reachability and possible
collision with the table if both checks pass then the grasp is executed. The GQ-CNN
takes as input the gripper depth from the camera z and a depth image centered at
the grasp center v = (i, j) and aligned with the grasp axis orientation ϕ. This is done
so the network doesn’t need to learn rotational invariances and allows it to evaluate
any grasp orientation in the image rather than a predefined set.

The input is normalized by subtracting the mean and dividing by the standard
deviation of the training data, following standard preprocessing conventions. The
filters of the first layer appear to compute oriented image gradients at various scales,
which may be useful for inferring contact normals and collisions between the gripper
and object. The GQ-CNN has approximately 18 million parameters. The architec-
ture, shown in Figure 3.8, contains four convolutional layers in pairs of two sepa-
rated by ReLU(described in 2.2) non-linearities followed by 3 fully connected layers
and a separate input layer for the z, the distance of the gripper from the camera.
The GQ-CNN is optimized using back-propagation with stochastic gradient descent
and momentum. The weights are initialized by sampling from a zero-mean Gaussian
with variance 2

ni
, where ni is the number of inputs to the i-th network layer. In order

to expand the dataset, each image is reflected around its vertical and horizontal axes
and rotated by 180 degrees, since every one of these modifications results in a grasp
equivalent to the one we started with.
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Figure 3.8: GQ-CNN architecture.

3.9.3 Dex-Net Codebase

The Dex-Net codebase is organized in four main libraries: database, grasping, learn-
ing, and visualization. We will briefly summarize the structure of the database and
grasping libraries.

Database

The database part includes classes for access and storage of 3D models, images,
grasps, and grasp quality metrics from Dex-Net. It includes a wrapper for read-
ing and writing hdf5 databases(currently the only type supported) using the h5py

Python library. It provides functions to add, read and delete graspables(they include
name, SDF, mesh, stable poses, and mass), grasps, and images.

It also includes a Mesh Processor class, that creates a graspable object given a
mesh and some configuration parameters. This class creates the SDF corresponding
to the given mesh and a list of stable poses for the object. To create the SDF, Dex-Net
uses a library called SDFGen, that creates a file with extension .sdf. Another library,
meshpy, is then used to read the .sdf file and create a SDF3D Python object that
will then be used by Dex-Net to calculate grasps. It also provides a class to re-scale
meshes.

Grasping

Contact Each contact point is defined as a point on a graspable object’s surface
and a direction. This class can provide the surface normal at the contact point and
calculate a friction cone(takes the number of facets and friction coefficient as param-
eters).

Grasp In Dex-Net, the class ParallelJawPtGrasp3D represents a grasp in 3D space.
Each grasp has two contact points. From these two contact points we can then calcu-
late the center of the grasp, the axis, the approaching angle, the width of the grasp
and so on. Each grasp includes a transformation matrix from the grasp frame to the
object frame. The translation vector is represented by the grasp center. The class
also provides functions to calculate the distance between grasps, surface informa-
tion, and other useful features.
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Grasp Sampling Dex-Net provides three different samplers: Uniform Gaussian
Sampler, Gaussian Grasp Sampler, and Antipodal Grasp Sampler. The Uniform Gaus-
sian Sampler samples grasps by sampling pairs of points on the object surface uni-
formly at random.

The Gaussian Sampler samples grasps by sampling a center from a Gaussian with
mean at the object center of mass and grasp axis by sampling the spherical angles
uniformly at random.

The Antipodal sampler samples antipodal pairs using rejection sampling. First,
it chooses a random point on the object surface, then samples random directions
within the friction cone, then forms a grasp axis along the direction, closes the grip-
per’s fingers, and keeps the grasp if the second contact point is also in the friction
cone.

Grasp Quality Dex-Net provides multiple algorithms for evaluating grasp quality,
but the two main ones are Force Closure, and Ferrari-Canny L1. Force closure re-
turns a binary value, while Ferrari-Canny returns the strength of force closure by
the relative magnitude of wrenches that the gripper would have to exert to resist
external wrenches. Both metrics can be calculated in either Robust Static or Robust
Quasi-Static fashion. Using Robust Static means we know with certainty both the
position of the gripper and the position of the object.

The Robust Quasi-Static method takes into consideration some level of uncer-
tainty, the degree of which can be specified in a configuration file, over gripper and
object position. In particular, for grasp uncertainty we can define:

• Uncertainty over x, y, z position

• Uncertainty over x, y, z rotation

For uncertainty in object position we can define:

• Uncertainty over x, y, z position

• Uncertainty over x, y, z rotation

• Uncertainty in scale

We can also define uncertainty in friction coefficient. The Robust Quasi-Static method
is implemented by sampling n samples from a Gaussian distribution for each source
of uncertainty(e.g. gripper position on x-axis, object rotation around y-axis ...). For
each one of the n samples, the Force Closure or Ferrari-Canny metrics are calculated.
Finally, the quality metrics of each of the n samples are averaged to obtain the final
result.

If Force Closure is calculated using a Robust Quasi-Static method, it can be called
Probability of Force Closure, as grasp quality would be one if the grasp is certain
considering the given uncertainty parameters or 0 if the grasp is never going to be
successful.
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Overview

To generate grasps for a given mesh, we would first call the MeshProcessor class
in the Database library and create the corresponding GraspableObject. Once the
object and its corresponding files have been computed, we can create an Antipodal
Grasp Sampler and generate the grasps. Once we obtain the grasps, we can cre-
ate a Grasp Quality Configuration, including our quality method(e.g. force closure,
Ferrari-Canny) and quality type(e.g. quasi-static, robust quasi-static). Then we can
use the resulting Grasp Quality Function to evaluate our grasps. When we have our
grasps and quality metrics, we can use the visualization library to display the grasps
on the object, using different colors to indicate the quality of each grasp.

We can also use the database library to save our calculated grasps and corre-
sponding quality metrics in a hdf5 file, so that we can display them again in the
future without the need to compute them again. If we wanted to use this data to
train a GQ-CNN, we could use the database library to generate 2.5D(depth images)
point clouds from our computed grasps.

3.9.4 GQCNN Codebase

The GQCNN(Grasp Quality Convolution Neural Network) repository is part of the
Dex-Net project and it is developed and maintained by the same researchers at the
Berkeley Automation Lab. GQ-CNNs are neural network architectures that take as
input a depth image representing a grasp, and output the predicted probability that
the grasp will successfully hold the object while lifting, transporting, and shaking the
object. The GQ-CNN weights are trained on the datasets of synthetic point clouds,
parallel jaw grasps, and grasp metrics generated using Dex-Net. As the Github repos-
itory is named GQCNN, we will use this name to refer to the codebase, and GQ-CNN
to refer to the neural network architectures.

The GQCNN repository provides tools to train, finetune and analyze GQ-CNNs,
together with a variety of policies that can be used to successfully plan grasps start-
ing from a depth image. This repository was updated to its 1.0 version in April
2019, adding support for grasp planning in object clusters, a suction point and Fully-
Convolutional CNNs(the latest Dex-Net publication).

Training

GQCNN uses TensorFlow[1] for training. The repository allows the user to define
the GQ-CNN architecture and hyperparameters in a configuration file so that there
is no need to write any code to train new GQ-CNNs. In the configuration files it
is possible to define the GQ-CNN layers, batch size, epochs, frequency of evalua-
tion(using validation set), train/validation split, type of loss function(l2, sparse and
weighted cross entropy are supported), training mode(classification or regression)
and threshold for positive examples, among others.

GQCNN also offers the possibility of training starting from an already trained
network such as Dex-Net 2.0. This process is called fine-tuning. Because training
from scratch can be time-consuming, the most efficient way to train a new network
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is to fine-tune the weights of a pre-trained GQ-CNN model, which has already been
trained on millions of images.

Dex-Net 2.0 is trained using a batch size of 128, a momentum term of 0.9, and
an exponentially decaying learning rate step size of 0.95. The first layer of 7×7
convolution filters suggests that the network learned fine-grained vertical edge de-
tectors and coarse oriented gradients. The Dex-Net authors hypothesize that vertical
filters help to detect antipodal contact normals while the coarse oriented gradients
estimate collisions.

Analysis

A tool for analyzing trained GQ-CNNs. Calculates statistics such as training/valida-
tion errors and losses. It plots Precision-Recall Curve and ROC, and also saves True
Positives, True Negatives, False Positives and False Negatives examples from both the
training and validation sets to help with training.

Policies

All GQ-CNN grasping policies are child classes of the base GraspingPolicy. They
operate on RgbdImageStates and return a GraspAction, the grasp with the highest
probability of success according to the given GQ-CNN. The GraspAction includes a
Grasp2D object and its q-value. The q-value is the result obtained from the GQ-CNN
we are running the policy with, it is an indicator of grasp quality(i.e. probability
of success). The Grasp2D defines a grasp in terms of its center(in image coordi-
nates), grasp axis and depth(from camera). This class also provides a method for
transforming the grasp’s 2D image coordinates in 3D coordinates that can be used
to position the gripper. This is done by deprojecting the 2D grasps using the camera
intrinsic and extrinsic parameters. Multiple grasps can be obtained from the same
contact point by discretizing the height starting from the object surface to the table
surface(h=0). The grasp height(or depth) is calculated by:

1. Finding the minimum value in a window around the center pixel of the grasp

2. Uniformly sampling a depth value between a minimum and a maximum offset

There are multiple types of policies and the primary ones are listed below.

Antipodal Grasp Sampling Algorithm The Antipodal Grasp Sampling method is
designed to sample antipodal grasps specified as a center, angle, and height with
respect to the table. First, edge detection is performed by applying a Gaussian filter
with a threshold over the image, the threshold value can be tuned to detect pixel
areas with a smaller or higher gradient magnitude. Each edge pixel is also assigned
a direction, normal to the surface found by the edge detection step. After this, pairs
of pixels are uniformly sampled from the edges to generate antipodal contact points
on the object. The pairs need to be parallel to the table, their distance cannot be
greater than the maximum gripper width and the depth in the center pixel between
the two contact points must be within a given range. If any of these condition fails,
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Figure 3.9: Edge detection during antipodal grasp planning[54]

the grasp is pruned from the total set of grasps. Finally, the 2D antipodal grasps
in image space are deprojected to 3D. The algorithm is described in more details in
Listing 11 in the Appendix.

Figure 3.10: Edge detection during antipodal grasp planning[54]

Cross Entropy Robust Grasping Policy (CEM) Randomly choosing a grasp from
a set of candidates does not work well in cases where the grasping regions are small
and require very precise gripper configurations. Taking a look at the image above, we
can see that as we sweep candidate grasps from top to bottom, grasp robustness stays
near zero and spikes momentarily when we reach the good, yet narrow grasping
area. Thus, uniform sampling of grasp candidates is inefficient especially since were
trying to perform real-time grasp planning.

We can modify our sampling strategy such that at every iteration, we refit the
candidate distribution to the grasps with the highest predicted robustness. The al-
gorithm to perform this fitting is the cross-entropy method (CEM) which tries to
minimize the cross-entropy between a mixture of Gaussians and the top-k percentile
of grasps ranked by GQ-CNN. The result is that at every iteration, we are more likely
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to sample grasps with high-robustness values (grasps in the spike area) and con-
verge to an optimal grasp candidate. More formally, the algorithm can be described
as follows:

1. Sample an initial set of candidates

2. Sort the candidates

3. Fit a Gaussian Mixture Model to the top P%

4. Re-sample grasps from the distribution we obtained in step 3

5. Repeat steps 2-4 for K iterations

6. Return the best candidate from the final sample set
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4 Extending Dex-Net

In this Chapter, we will be discussing the improvements and extensions we made to
the Dex-Net and the GQCNN repositories, together with the bugs we found, reported
and fixed. We will also occasionally explain in details how some of the algorithms
work, as we often found discrepancies between what was described in the Dex-
Net publications and the codebase(although this is probably because the publicly
available code is not identical to the one the authors used in their research). To be
able to improve and extend the codebase, we had to understand how most of the
algorithms worked and how the various components interacted with each other.

We hoped reading through the research papers and the documentation would
have been enough, but since we started working with the code and found instal-
lation issues, bugs on what we thought were basic features, incompatibility issues
between libraries and outdated or misleading comments, We had to adapt our plan.
We started diving deeper and deeper not only into the Dex-Net and GQCNN code-
bases but also all of their dependencies. This took up a substantial part of our time,
especially at the beginning of the project, and we think it will be worthwhile to
describe the codebase functioning for two main reasons:

• Build a solid foundation for the reader to understand our improvements, ex-
tensions and bug fixes.

• Provide accurate documentation that could prove useful to people that might
be interested in working with this codebase in the future or plan on extending
it.

4.1 Installation Issues

As proven by the long list of open issues in the Dex-Net Github repository, installing
and getting the program to work was not as straightforward as we initially expected.
This took a couple of weeks, as the installation script was not complete and the
codebase required a number of libraries that were not listed in the requirements.

The installation environment caused further complications. we tried installing it
on Mac OS X but failed because of incompatibilities between OpenGL versions. We
also tried installing it in a Docker container, but this didn’t seem to solve the OpenGL
incompatibilities. Then, we tried the lab machines but gave up as it is impossible to
use sudo and there were lots of libraries missing. Finally, I managed to dual-boot my
own laptop to have Ubuntu 18.04 installed on it. Even this caused some problems,
as the Dex-Net codebase was developed and tested on Ubuntu 14.04 and 16.04.
A couple of libraries required (e.g. vtk) were not available on Ubuntu 18.04, but
luckily the updated libraries were backward compatible with their previous version.
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It took another week to make sure the code was working as expected. The pro-
gram kept returning errors and warnings every time it was run, but it looked like this
was normal behaviour and didn’t cause any actual problems. However, the grasps
were not rendered correctly, so we had to make sure this was not caused by any of
the initial warnings. After some debugging, we found a mistake in the visualization
library and solved it. We also suggested our fixes on the Dex-Net Github repository,
as shown in Image 4.1.

4.2 Calculating Grasps

Shortly after we got Dex-Net up and running, we realized that the code didn’t pro-
vide any direct way of calculating grasps for new meshes, but was only able to
visualize those already computed from a database. We implemented a Python script
that would call Dex-Net functions to calculate antipodal grasps for a mesh.

Unfortunately, the script wouldn’t run because of a bug in the MeshProcessing

class in the database library. This bug was related to reading and parsing the mesh
file and was easy to solve. Although the script was now running, the results didn’t
look correct. When attempting to display the grasps on the object, the rendering
window would be blank. We first tried to display the grasps alone, then the object
alone. Both renderings looked accurate, but when we tried to display them together
the visualization would return nothing.

After a bit of debugging, we noticed the coordinates of the grasps seemed to be
displaced from the mesh they were being calculated from. While the mesh was cen-
tered at [0, 0, 0], the grasps seemed to be centered somewhere around [−50,−50,−50].
We then attempted to draw a line between these two points in the visualization, and
realized it was actually displaying both the mesh and the grasps, they were just too
small to see and very far away from each other. The next step was to figure out why
this was happening. According to the Dex-Net publications and codebase, grasps
where calculated based on an SDF(signed distance field) that was generated from
the initial mesh provided. The SDF created would be centered somewhere around
[−50,−50,−50] and this was why we were getting the displaced grasps as a result.
Each SDF file provides its center at the beginning of the file, and the center provided
was not [−50,−50,−50], therefore something was wrong with the way the surface
points of the SDF were calculated.

After careful reading and analysis of the Dex-Net codebase and its dependen-
cies, we realized there was a bug in the way the SDF Python object was created
when reading from the file, causing the resulting points to be displaced somewhat
randomly w.r.t. the original mesh. This mistake seemed to be caused by an incom-
patibility between the way the SDF file was created and the meshpy library reading
it to create a Python object from it. Once this was fixed, the grasps appeared to be
perfectly aligned with the original mesh. The Dex-Net maintainers were not aware
of this problem and we suggested my fix on the Dex-Net Github repository.
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Figure 4.1: Fixes suggestions on Dex-Net Github repository. Above, installation script
fixes. Below, visualization library fixes.
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Figure 4.2: Extracts from SDF generation bug discussion on the Dex-Net Github reposi-
tory

4.2.1 Rescaling meshes

The Dex-Net codebase contains functions to rescale meshes in case they are too
big to fit in the maximum width of the robotic gripper. According to the Dex-Net 2.0
publication, each mesh is aligned to a standard frame of reference using the principal
axes and rescaled to fit within a given gripper width. Looking at the codebase, this
rescaling can be performed in different ways according to how the configuration is
set, and the paper doesn’t make clear which one of these methods is used. In the
Dex-Net codebase, in order to save a mesh into the database or calculate grasps from
it, a GraspableObject must be generated. This class take a mesh file as an input,
transforms it according to the given parameters and creates an SDF file based on the
transformed mesh.

A GraspableObject requires parameters for preprocessing the given mesh, in-
cluding a preprocessing meshlab script, object density, object scale, object rescaling
type and the amount of SDF padding to use just to mention a few. The GraspableObject
class loads the mesh and tries to clean it by removing any unreferenced vertices
and incomplete triangles. After this, the pose is standardised so that all objects are
aligned with a standard frame of reference. If rescaling is enabled in the configura-
tion than Dex-Net will check the rescaling type parameter to know which dimension
to scale along.

The rescaling process begins by going through all the vertices of the matrix and
calculating the minimum and maximum coordinates for each axis. The mesh size is
defined as the distance between the points defined by the 3 minimum and maximum
coordinates. It is important to note that these two points are not actual vertices
present in the mesh, but just the minimum and maximum value of each dimension
combined, this is mostly done just to simplify the process of calculating the relative
scale. The rescaling mode is then used to define in with what method the relative
scale will be calculated. The scale of the object(another parameter defined by the
user, normally this is set to be equal to the maximum width of the robotic gripper
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we are planning to use) is divided by the relative scale to obtain the scale factor. All
vertices in the mesh are then multiplied by the scale factor to obtain the rescaled
mesh. In total, there are 5 different rescaling modes, listed and explained below:

• Fit minimum dimension: The relative scale is equal to the dimension of the
minimum dimension of the original mesh

• Fit median dimension: The relative scale is equal to the median of the three
dimensions of the original mesh

• Fit maximum dimension: The relative scale is equal to the dimension of the
maximum dimension of the original mesh

• Relative: The relative scale is equal to 1.0

• Fit diagonal: The relative scale is set to the distance between the minimum
and maximum coordinates of the original mesh divided by 3, effectively mak-
ing the gripper size exactly one-third of the diagonal.

After the mesh is rescaled, the center of the mesh bounding box and the centroid(mean
of all vertices) are recalculated. It is important to note that during this process, the
MeshProcessor class will create a temporary file with the new object mesh and it
will use this to generate the SDF. The file has a standard name based on the name
of the object, therefore the class will attempt to save two objects with the same
name in the same file. Even though this shouldn’t be a problem in the case of a sin-
gle database, as each object needs to have a unique key, we encountered problems
when working with multiple databases, or deleting a database and creating a new
one, as all these files were being saved in the same directory, and files where not
being deleted together with the database. Even when a database was erased, using
the specific functions provided by Dex-Net, these files were not deleted. Moreover, if
the MeshProcessor class found a mesh file for a given object, it will not recompute
the mesh but it will use the file already present to calculate the SDF.

This caused a few problems with my meshes and SDFs being different before the
cause of the problem was identified. We then simply updated the database API code
so that it would delete the mesh files corresponding to the objects we wanted to
delete in the database.

4.2.2 Calculating Grasps Quality

Even obtaining the quality of each grasp proved to be a challenge. The repository
didn’t provide any example code on how to do this, so we had to implement this
functionality. The Dex-Net paper states probability of force closure was used to
train their GQ-CNN, but the configuration provided in the Dex-Net repository was
defined so that force closure was calculated using the Quasi-Static method, so that
the grasp quality function returned an integer: 1 if the force closure was successful
or 0 otherwise, not taking into account any probability. We decided we wanted to use
Ferrari-Canny rather than force closure anyway, so we tried to use the corresponding
function provided. Unfortunately, because of a bug, the function always returned
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0. After some debugging, we found out the library used to calculate the Convex
Hull(pyhull) of the mesh would fail when called. Luckily, we found an equivalent
library(scipy) that worked and returned plausible results for the quality of each
grasp.

After a while, we figured out how to set up the Grasp Quality configuration so that
both Force Closure and Ferrari-Canny could be calculated in a probabilistic fashion,
using the Robust Quasi-Static method.

4.2.3 Obtaining Grasps Parallel to Surface

The next step was to obtain grasps parallel to the table surface where the object
was resting. Any object could be resting in different poses on a given surface, and
Dex-Net, through the trimesh library, provided functions to calculate stable poses
for each mesh. Given a stable pose, we wanted to filter grasps that were parallel to
the table surface. To do this, we had to calculate the angle between the grasp axis
and the surface normal of the table. Dex-Net didn’t provide a function to achieve
this, so we had to provide our own implementation. Dex-Net also didn’t provide any
way of visualizing multiple grasps on an object in a given stable pose, so we added
the functionality, shown in Figure 4.3. To obtain grasps parallel to the surface of the

Figure 4.3: Antipodal grasps parallel to the table surface sampled from a cube. Grasp
quality is indicated by color, where green indicates a more stable grasp. Grasp qualities
in this image were calculated using the Ferrari-Canny metric, in a Quasi-Static fash-
ion(no uncertainty)

table for a given stable pose, the first step is to retrieve all the grasps(or calculate
them aren’t stored already) for a certain object from the database. Then, for each
grasp, its 3D axis(the normalized line that connects the 2 3D contact points that de-
fine the grasp) is obtained in object coordinates. Following the notation introduced
in Section 2.5 we will denote this grasp axis as g OBJ . If the object is in a stable pose
defined by a homogeneous transformation matrix TW,OBJ than the object mesh and
all its grasps will be rotated by CW,OBJ . We can leave the translation part of the
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transformation aside in this case as we are checking angles. By multiplying the axis
of the grasp by the rotation matrix we obtain the axis in world coordinate frame:

gW = CW,OBJg OBJ

We know the z-axis in the world coordinate frame is [0, 0, 1], therefore it will be
enough to calculate the dot product between gW and zW to obtain the projection of
the axis onto the z-axis(normal to the table surface). Since the both the grasp axis
and the z-axis are normalized our result will be between 0 and 1. If the result is 0,
it means the grasp axis is perfectly parallel to the table, if the result it’s 1, it means
the grasp axis is perpendicular. Once we obtain this result we can simply compare
it to a threshold and discard all grasps with a projection above a set value(5 or 10
degrees for example).

4.2.4 Checking Grasp Validity

Before moving on into the next part of the project, which consists in generating
images from the grasps to train the GQ-CNN, we wanted to make sure the generated
grasps and their quality metrics were actually accurate and a good indicator of grasp
success. This is necessary to investigate as the grasp quality metrics used in the Dex-
Net codebase(i.e. Robust Ferrari-Canny, Ferrari-Canny, Probability of Force Closure
and Force Closure) use a physics-based model that is based on strong assumptions
of the real world, object shapes and friction model of the object and gripper. A
possibility considered by [5, 7] was that these grasp quality metrics could represent
only a necessary, not sufficient, condition for a grasp to be executed successfully. As
no GQ-CNN could ever perform better than the data it was trained with, we wanted
to test the quality of our grasps in simulation, before proceeding to generate the
depth images corresponding to each grasp, object, and stable pose.

To do this we set up a simulation environment in V-REP(described in detail in
Chapter 5). For each combination of object and stable pose, we checked the Dex-Net
database for all the object’s grasps that were parallel to the table in the given pose,
following the method explained in Subsection 4.2.3. After the grasps are gathered,
the object is set to the given stable pose in the middle of the workspace.

Unfortunately, some of the poses turned out to not be very stable once the ob-
ject was loaded in the simulation. The objects would often wobble and move into
another pose before stabilizing. This meant the grasps for those specific poses could
no longer be checked accurately, as the object had moved. Consequently, we had to
discard all the poses that didn’t appear to be stable in the simulation. Luckily we
had many examples of sufficiently stable poses, so this didn’t affect our ability to
make an accurate evaluation of our grasp quality metrics. The next step was to po-
sition our gripper in the position indicated by the grasp. This meant translating the
grasp transform from object(F−→OBJ) to world(F−→W ) frame, as the grasp coordinates
and orientation were give in the object frame(F−→OBJ). This could be easily done by
multiplying the grasp transform by the pose transform TW,OBJ as follows:

Wg = TW,OBJ OBJg
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Once the grasp position is obtained in world coordinates, we can translate it to
gripper position. For 2D, projected grasps, the grasp’s coordinate frame is defined so
that the center of the coordinate frame is the center of the grasp(mid-point between
the two fingers of the gripper), the y-axis is parallel to the line connecting the two
(projected) endpoints of the grasp, the x-axis points down towards the table and
the z-axis is parallel to the table. As the grasp is represented this way, it means
the gripper will need to be positioned on the object with its fingers aligned with
the grasp’s y-axis and with the end of its fingers pointing towards the grasp x-axis.
This is coordinate frame notation is represented in Figure 4.4. Unfortunately, while
this is the convention for 2D, projected planar grasps(4 DoF), the situation is more
complicated for 3D, 6 DoF grasps. For these grasps, the x-axis doesn’t have to be
perpendicular to the table and the z-axis doesn’t need to be parallel to it. These
grasps are defined independently of the object’s pose and the only defined element
is the y-axis that connects the two (not projected) endpoints. This means the grasp
coordinate frame needs to be rotated around the y-axis so that the x-axis points
towards the table, otherwise it would be impossible to grasp the object. The Dex-
Net codebase doesn’t implement this feature, since only planar, 2D grasps would
be tested by the gripper. This meant we had to implement a function that, given
the coordinate frame of a 3D, 6 DoF grasp, would be able to transform it to a 5 DoF
grasp, effectively stopping the gripper from “rotating” around the y-axis of the grasp.
To achieve this, each grasp was rotated so that the x-axis would always be pointing
down towards the table where the object was resting. This meant maximizing the
projection of the x-axis of the grasp coordinate system onto the normal of the table
surface(z-axis of the world coordinate frame).

The results of our experiments in simulation confirmed how analytic Quasi-Static
and Robust Quasi-Static grasp quality metrics can be used as an accurate reward
function for learning antipodal grasping policies. If domain randomization is added
then these policies will also likely be robust to sensor noise and imprecision.

4.3 The Database

Dex-Net relies on 2 types of databases: one for grasp calculation and one for the
GQ-CNN training. In the research paper, this distinction is not made very clear, and
we initially thought my aim was to create one database containing object meshes,
grasps, grasp metrics(i.e. quality) and the rendered images. But after looking at the
code we found this not to be the case, as the Dex-Net database does not contain the
rendered images necessary of training, and the GQ-CNN doesn’t support the Dex-
Net hdf5 structure as input. The GQ-CNN code is built to accept a TensorDataset

class, which mostly consists of a directory full of .npz files(compressed numpy files)
containing the rendered images that will be used during training, together with
grasp metrics and information about grasp configuration(i.e. depth).
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Figure 4.4: Grasp-Gripper coordinate frame orientation. The grasp axis is shown in
pink. The y-axis(green) is parallel to the grasp axis and the table, the x-axis(red) points
down and is perpendicular to the table and the z-axis(blue) is perpendicular to the grasp
axis and parallel to the table. The gripper shown in this Figure is a Yumi gripper.

4.3.1 Grasp Calculation Database

The grasp calculation database is a hdf5 database containing object meshes, SDFs,
grasps, stable poses and grasp metrics, it can be extended as new objects and grasps
are calculated. The database’s structure is illustrated in Figure 4.5. It is important
to note that at this stage grasps are not specific to any stable pose(we don’t check
if they are parallel to the table) but just associated with an object. In the GQ-CNN
dataset, this will change, as a set of grasps is associated with a specific stable pose
for each object. A grasp is only associated with a given stable pose if the grasp is
parallel to the table in that pose. This means that the same grasp can be associated
to multiple stable poses.

4.3.2 GQ-CNN Dataset

The GQ-CNN dataset is a TensorDataset, a class defined in perception, a library
developed and maintained by the same researchers that created Dex-Net. The GQ-
CNN dataset normally contains grasps, grasp quality metrics and depth images cor-
responding to each grasp, but can also contain binary images, information about
camera intrinsics and camera pose and other info that it’s not strictly necessary for
training purposes but can be useful to verify the validity of the data. We managed
to find a script to generate the second dataset using the data from the first one only
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Figure 4.5: Dex-Net grasp calculation database’s structure

around March. At this time we had already spent some time implementing my own
version of it. This, however, turned out to be useful: the original Dex-Net script was
using OpenRave for collision checking, currently not supported on Ubuntu 18.04. The
Dex-Net developers stated many months ago they were planning on moving away
from OpenRave, as it is quite complicated to install even on older Ubuntu versions.
Also, Dex-Net is only compatible with a forked version of an older OpenRave release.
Even then, no version of Dex-Net as been officially released where the OpenRave de-
pendency was being removed, so we had to use V-REP for collision checking(more
details on this in Chapter 5). The original script also makes use of meshrender, a
rendering library to generate the depth images to use during training. At the time
we managed to find the script we had already implemented my own code that made
use of V-REP and its vision sensors to generate depth images starting from an object,
a stable pose, and a given grasp. This gave me the opportunity to compare the two
implementations: even if the resulting images were almost identical, the meshrender

library took significantly less time in gathering the images. This is why we decided
to use meshrender to generate our images.
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Figure 4.6: GQ-CNN dataset structure. Dotted components are optional. The collision
free element for each grasp can be saved explicitly or alternatively the metric value can
be set to 0.

# 1. Precompute the set of valid grasps for each stable pose:

# i) Parallel to the table

# ii) Collision-free

for dataset in datasets:

for obj in dataset:

stable_poses = dataset.stable_poses(obj.key)

for stable_pose in stable_poses:

grasps = dataset.grasps(obj.key, gripper=gripper.name)

candidate_grasps = []

for grasp in grasps:

# ignore grasp if not parallel to the table

if parallel_table(grasp, stable_pose):
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collision_free = not simulation.check_collision(grasp)

candidate_grasps.append((grasp, collision_free))

# 2. Render images

for grasp, coll_free in candidate_grasps:

# sample images from random variable

random_variable = RandomizedCameraPosition(obj, stable_pose)

render_samples = random_variable.sample(img_samples_per_stable_pose)

for render_sample, camera_position in render_samples:

depth_im = render_sample.depth

# project grasp based on randomized camera position

grasp_2d = grasp.project_camera(camera_position)

# center image at grasp center and align with grasp axis

depth_im = depth_im.transform(grasp_2d.center, grasp_2d.angle)

# crop and resize image

depth_im = depth_im.crop(96, 96).resize(32,32)

tensor_datapoint['depth_im'] = depth_im

tensor_datapoint['grasp_info'] = grasp_2d

tensor_datapoint['metric'] = grasp.metric_value * coll_free

tensor_dataset.add(tensor_datapoint)

Listing 1: Psudocode of the script used for the creation of the GQ-CNN dataset

4.4 Generating Depth Images

As mentioned before, the GQ-CNNs are trained using depth images as input and
grasp metrics as labels. Each object is paired with a set of depth images for each
object’s stable pose. Each image is then rotated, translated, cropped, and scaled
to align the grasp pixel location with the image center and the grasp axis with the
middle row of the image. For our datasets, we decided to generate 50 images for
each combination of object, stable pose, and grasp.

For each image, the camera position and rotation sampled from a uniform dis-
tribution to make the GQ-CNN more robust to uncertainties in the position of the
object and the camera and facilitate domain transfer.

In Dex-Net 2.0, 50 images are generated for each grasp and stable pose. Ini-
tially, due to time and computational power constraints, we had to limit the number
of samples calculated for our datasets of procedurally generated objects. But we
eventually managed to get to the 50 images per grasp that Dex-Net used.
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Figure 4.7: Comparison between depth images generated using V-REP(left) and
meshrender(right). At the top, we can see the rendered images(96×96 pixels). At
the bottom, the images are rotated, centered and cropped(32×32 pixels) to represent
the grasp. It is easy to see the two images are almost identical, and given V-REP takes
much more time than meshrender to render an image, we decided to use the latter for
our dataset generation.

The parameters we used for camera randomization can be found in Listing 9 in
the Appendix.

To fully understand the camera configuration parameters it is useful to remember
the camera axis are defined as shown in Figure 4.8.
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4.4.1 Sampling the camera pose

Using a configuration similar to the one presented above, we can sample a camera
pose and obtain a camera to world pose (TW,C). This 4×4 homogeneous matrix
defines the desired position of the camera in world coordinates. To calculate this
matrix, we use the algorithm in Listing 2.

# sample rotation around each axis

radius = random.uniform(min_radius, max_radius)

elev = random.uniform(min_elev, max_elev)

az = random.uniform(min_az, max_az)

roll = random.uniform(min_roll, max_roll)

# sample plane translation

tx = random.uniform(min_x, max_x)

ty = random.uniform(min_y, max_y)

# calculate camera_to_world_pose

T_world_camera = camera_to_world_pose(radius, elev, az, roll, tx, ty)

def camera_to_world_pose(radius, elev, az, roll, tx, ty):

# generate camera center and z-axis from spherical coordinates

translation = [x, y, 0]

t_world_camera = [sph2cart(radius, az, elev)] + translation

z_axis = -[sph2cart(radius, az, elev)]

z_axis = normalize(z_axis)

# find the canonical camera x and y axes

x_axis = [z_axis[1], -z_axis[0], 0]

x_axis = normalize(x_axis)

# find y-axis as cross product of z-axis and x-axis

y_axis = cross_product(z_axis, x_axis)

y_axis = normalize(y_axis)

# rotate by the roll

R_world_camera = [[cos(roll), -sin(roll), 0],

[sin(roll), cos(roll), 0],

[0, 0, 1]]

# create final transform

T_world_camera = RigidTransform(R_world_camera,

t_world_camera,

from_frame='camera',
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to_frame='world')

return T_world_camera

Listing 2: Pseudocode of camera pose randomization script
After the camera to world pose is calculated, we can use it to render the images.

Depending on which framework we use, we will have to use it in different ways.

4.4.2 Rendering Images with Meshrender

Installation

Getting the meshrender library to work correctly with Dex-Net was quite a chal-
lenge. If Dex-Net is installed following the instructions and scripts provided calling
meshrender will return an AttributeError. This error is caused by a name conflict,
In Dex-Net, there are two different libraries with the same name.

Both are necessary for the correct functioning of the Dex-Net repository, but one
of them was not building correctly. This meant Dex-Net was calling the same li-
brary(the only one working) even where the other one was needed. This was a
known issue on the Dex-Net Github repository, but nobody had published a solution
or suggested any fixes.

The first thing we did to address the problem was renaming the library that
couldn’t build to avoid the name conflict. This was a C++ library and the building
was failing because some other required libraries were missing or couldn’t be found.
After some research and debugging, we managed to track down, install and compile
all the necessary libraries to obtain a working version of the library that would link
correctly with my project.

The solution was published in the Dex-Net issues section and the other users
confirmed they managed to get the library working correctly on their machines as
well.

Implementation

First, the table is set at position at object to table pose T T,O. Then, we calculate a
transform object to world pose TW,O. When applied to the object mesh, it will set
the object resting at coordinates [0, 0, 0] in the given stable pose. To obtain the cam-
era pose in object coordinates(object to camera pose T C,O), the camera to world pose

transform TW,C is inverted and multiplied by the object to world pose transform
TW,O. In pseudo-code:

world_to_camera_pose = camera_to_world_pose.inverse()

object_to_camera_pose = world_to_camera_pose.dot(object_to_world_pose)
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Using the frame notation introduced in Section 2.5(W represents the world frame,
C represents the camera frame and O represents the object frame):

T C,W = T −1
W,C

T C,O = T C,WTW,O

Meshrender also needs the projection matrix of the camera, commonly defined as:

projection_matrix = [[ fx, skew, cx],

[ 0, fy, cy],

[ 0, 0, 1]]

Where fx represents the x-axis focal length of the camera in pixels, fy the y-
axis focal length and cx and cy define the optical center of the camera in pixels.
meshrender gives the option to set different types of lighting and material properties
for the objects in the scene. Summarizing, in this framework the object’s mesh
remains still, therefore what we aim to obtain is a transformation from the object’s
coordinates to the image coordinates, and our computations reflect this.

4.4.3 Rendering Images with V-REP

In V-REP, the object is set to the given stable pose(using the object to world pose

transform TW,O) and all we have to do is set the camera position using the camera to world pose

transform TW,C . V-REP also doesn’t need a projection matrix, as the camera parame-
ters can be set directly using the V-REP API or GUI. After gathering some images we
realized V-REP encodes images as (rows, columns, channels), and when retrieved
from the simulator the rows are inverted. We undo these transformations and return
a tensor suitable for training.

4.4.4 Aligning Images with Grasps

Once we have obtained our 2.5D images of the object in a given stable pose, we
need to rotate and crop each image for each one of our grasps and resize the images
according to our GQ-CNN parameters. The Dex-Net grasps are 6-DoF, but we can
only represent planar grasps(4-DoF) with our images, therefore we will need to
project our grasps.

Each one of the rendered images for a given object and stable pose will have
a slightly different camera position, orientation, and possibly intrinsic parameters.
Each grasp will be projected according to these parameters specific to each image.
We will then look at the angle and center of the grasp to transform the original
image(translate and rotate). Once the aligned image is obtained, we can crop it
and resize according to our parameters. In the original Dex-Net GQ-CNN these
parameters are set to 96×96 pixels(crop size) and 32×32 pixels(final image size).
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Figure 4.8: A representation of a camera’s axis. The blue arrow represents the z-axis,
and it points downwards towards the work-space. The red arrow is the x-axis, and it
points in the image’s horizontal direction. The green arrow is the y-axis and it points in
the image’s vertical direction.

The pseudocode in Listing 3 shows how to project a grasp from 3D to 2D using the
camera parameters.

# Project a grasp for a given gripper

# into the camera specified by a set of intrinsics.

def project_camera(self, T_obj_camera, camera_intr):

# T_obj_camera: rigid transform from the obj frame to the camera frame

# compute pose of grasp in camera frame

T_grasp_camera = T_obj_camera * self.T_grasp_obj

y_axis_camera = normalize(T_grasp_camera.y_axis[:2])

# compute grasp axis rotation in image space

grasp_angle = arccos(y_axis_camera[0])

if y_axis_camera[1] < 0:

grasp_angle = -grasp_angle

while grasp_angle < 0:

grasp_angle += 2 * PI

while grasp_angle > 2 * PI:

grasp_angle -= 2 * PI

# compute grasp center in image space
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t_grasp_camera = T_grasp_camera.translation

p_grasp_camera = Point(t_grasp_camera)

u_grasp_camera = camera_intr.project(p_grasp_camera)

depth_grasp_camera = t_grasp_camera[2]

return Grasp2D(u_grasp_camera, grasp_angle, depth_grasp_camera)

Listing 3: Pseducode for projecting grasp from 3D to 2D

4.5 Generating RGB images

The Dex-Net and GQCNN codebases rely entirely on depth images, as RGB images
are not even generated in the original GQ-CNN dataset generation script. Unfortu-
nately, the robot we were planning to use for real-world testing, a Sawyer robotic
arm, was not equipped with a depth camera. This meant we had to extend the code-
base to work with RGB images as well. First, we generated a new dataset of more
than 6 million data points, this time with RGB images.

Then, we had to adapt our Grasping Policy to find antipodal grasps using an RGB
image instead of a depth image. The first step was to locate all the edge pixels in
our image. The traditional edge detection algorithms are done through detecting
the maximum value of the first derivative or zero crossing of the second derivative
[56]. Even though first order differential operators (i.e. Roberts operator, Prewitt
operator, Sobel operator) and second order differential operators (i.e. Laplace oper-
ator, LOG operator) have many advantages such as simple computation, rapid speed
and easy to implement, they are more sensitive to noise and therefore not ideal in
engineering application. In 1986, Canny proposed three criteria to judge edge de-
tection operator performance: SNR criterion, localization precision criterion, and
single edge response criterion, and deduced the best Canny edge detection opera-
tor [9, 33]. Compared with common edge detection algorithm, in most cases, the
Canny algorithm has the best performance [34, 4, 49]. This is why we decided to
use the Canny edge detection algorithm for our specific application. After finding an
implementation of the algorithm in Python on GitHub[6], we proceeded to change
it slightly to adapt it to our needs and application. The edge detection capabilities of
the algorithm seemed satisfactory, at least in the case of an object of mostly uniform
color and the table color was significantly different from that of the object.

The next step was implementing a way of calculating normals from the surface of
the object for each edge pixel. After all the algorithms were set up and working accu-
rately on sample images, it was time to implement them in the GQ-CNN repository.
This was quite a challenge, as the initial aim was to include it as seamlessly as pos-
sible by making use of the ColorImage class provided by the perception library. The
goal was creating an alternative policy class to the AntipodalDepthImageGraspSampler
one, which could take a ColorImage object as input as well as a DepthImage object,
and could produce accurate results for both by calling the same functions on the
image variable, regardless of it being an RGB or depth image. Unfortunately, it was
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impossible to implement it this way without changing the perception library, which
we decided was better to avoid, as it would be hard to track changes and exten-
sions. This meant we had to use simple numpy arrays for image representations and
transformations, making my antipodal grasp sampling policy quite different from the
original from an implementation perspective, even though it was still very similar in
terms of logic. We then created a AntipodalColorImageGraspSampler, that would
be called automatically in case no depth image was passed to the sampler or in the
case it was explicitly specified in the configuration file.

4.6 Procedurally Generated objects

While considering ideas to improve the Dex-Net performance, we decided to try and
include procedurally generated shapes into our training dataset to hopefully improve
the performance of our network. This was inspired by the findings of Bousmalis et
al[8] briefly summarized in Section 3.6. We hope this addition will help with the sim-
to-real transfer, as the results of the paper indicate that including simulated data can
drastically improve vision-based grasping systems, achieving comparable or better
performance with 50 times fewer real world samples. The results also suggest that
it is not as important to use realistic 3D models for simulated training. Finally, it
indicates that including domain adaptation substantially improves performance in
most cases.

Unfortunately, we were not able to find the dataset of shapes generated used by
Bousmalis et al in their research, so we had to generate our own. In the paper, the
researchers mention they generated 1000 shapes by attaching rectangular prisms at
random locations and orientations. They then converted the set of prisms into a
mesh using Blender and applied a random level of smoothing to each mesh. Each
object was given UV texture coordinates and random colors.

We decided to try using V-REP to generate our shapes since we had already
gained some familiarity with the simulation platform. Unfortunately, V-REP doesn’t
offer the option to smooth shapes, so we had to skip this last step. This caused our
shapes to be mostly very irregular and generally quite hard to grasp. We then de-
cided to try different approaches to try and make the shapes a bit more regular, such
as mixing cylinders, prisms, and spheres at different positions and orientations. We
also tried not modifying the orientations of the prisms or combining a smaller num-
ber of shapes. All these attempts resulted in shapes that proved to be easier to grasp
in simulation and for which Dex-Net managed to generate more reliable grasps. In
Figure 4.9 some of the procedurally generated objects are shown.

Finally, we tried to download Blender and rewrite my V-REP script so it could
work in Blender. This allowed us to add smoothing to the shapes and obtain shapes
very similar to the ones described by Bousmalis et al in their paper. The pseudo-code
below is a simplified version of the algorithm we used to generate the smoothed
shapes.

def create_object(name, n_components):
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# create base object

obj = create_prism(name, radius=1.0)

# add N-1 new objects to base

for _ in range(n_components-1):

# create a new component

comp = create_prism('comp', radius=random.random(0.2,1.0))

# decide where to add it

add_pt = Vector(random.choice(possible_points))

comp.location = add_pt

# pick axis to align to and depending on this alignment

# add a new set of add points

axis = random.choice(['x', 'y', 'z'])

if axis == 'x':

# note: object created aligned with x axis

add_pts.add(tuple(add_pt + Vector((2, 0, 0))))

add_pts.add(tuple(add_pt + Vector((-2, 0, 0))))

elif axis == 'y':

comp.rotation_euler.z = pi/2

add_pts.add(tuple(add_pt + Vector((0, 2, 0))))

add_pts.add(tuple(add_pt + Vector((0, -2, 0))))

else: # z

comp.rotation_euler.y = pi/2

add_pts.add(tuple(add_pt + Vector((0, 0, 2))))

add_pts.add(tuple(add_pt + Vector((0, 0, -2))))

# add component to obj

union(obj, comp)

# smooth by random factor

smooth(obj, random.random())

return obj

Listing 4: Pseudocode for an example of the algorithms used to procedurally generate
objects

Once a significant amount of objects was generated(we ended up with around
500 objects from different generating algorithms) we created a new Dex-Net database,
calculated an SDF for each one of them and saved it in the database. After this, we
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run grasp calculations on all of them for 3 different metrics: robust Ferrari-Canny,
Force Closure, and Ferrari-Canny. This dataset was later used to create a GQ-CNN
dataset that could have been merged with other GQ-CNN datasets such as Dex-Net
2.0.

Figure 4.9: Some of the procedural objects we generated.

4.7 GQ-CNNs Training

After generating our datasets of more than 6 million data points of depth images,
grasps details and metrics based on the Dex-Net 2.0 grasp database, it was time to
start training our networks. We decided to start trying to replicate Dex-Net’s results,
therefore we wanted to use the parameters and network architecture described in
the Dex-Net 2.0 paper. In the latest GQCNN release, the developers also shared their
configuration script to train Dex-Net 2.0. In the original paper, the authors state
the network was trained for 5 epochs, using an 80-20% train-validation image-wise
split on the data, batch size 128, a momentum term of 0.9, and an exponentially
decaying learning rate with step size 0.95. They also added Gaussian process image
noise with a standard deviation of σ = 0.005 to each input image to try and make
the network more robust. According to the paper, the GQ-CNN trained on all of Dex-
Net 2.0 had an accuracy of 85.7% on a held out validation set of approximately 1.3
million data points. The configuration that was provided in the GQCNN repository
was slightly different: the batch size was set to 64 and the network was being trained
for 25 epochs. We decided to use the configuration in the GQCNN repository as we
expected it would yield better results, even if the cost was longer training time.

For training, we initially had access to lab machines with GPUs(Graphic) and
later to Tiger, a communal machine of the Robot Learning Lab. The Graphic ma-
chines in the labs support Nvidia CUDA-capable or AMD OpenCL-capable graphics
cards. The GPUs capabilities vary quite a lot between different machines, ranging
from 6GB Nvidia GeForce GTX Titan to an 8GB Nvidia GeForce GTX 1080. On the
Robot Learning Lab Tiger machine we had two NVIDIA GeForce RTX 2080 GPUs
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with 8GB of memory. The Tiger machine turned out to be a great help in train-
ing our Neural Networks. The lab machines are shared between all students in the
Department, and we would often encounter problems with people shutting off the
machines mid-training to kill our processes and use the machines for themselves. We
tried solving this problem by writing scripts that would save a version of the network
after each epoch of training, and notify us in case training had stopped, so training
could be easily resumed from the last version to be saved. This method allowed us
to train my networks for many epochs, even 20 or 25, which would have been very
hard otherwise as it might have required multiple attempts. On the lab machines,
training Dex-Net on all of its data points(32×32 pixels depth images, grasp informa-
tion and binary metrics) for 25 epochs took around 28 hours. On the Tiger machine,
the same task would take around 24 hours.
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Figure 5.1: V-REP environment set-up. Some objects are randomly placed in the work-
space area for demonstration purposes.

This chapter will discuss the new environment we built around the Dex-Net and
GQ-CNN codebase to allow for quick and easy testing of different networks and
policies. This new testing framework tries to automate and simplify evaluation as
much as possible so that minimum human intervention is required and hundreds on
grasps can be executed and their results accurately recorded with no need for any
supervision.

The testing framework can evaluate different combinations of networks, policies,
and sets of objects at once. It supports multiple testing configurations, such as grasp-
ing the same object multiple times or testing each object in multiple stable positions.
Datasets of meshes to test on can be defined either as directories containing .obj

files or as Dex-Net datasets.
We will start by discussing the metrics we chose to evaluate and compare differ-

ent Grasp Quality Networks and policies. Following, we will describe our simulation
set-up and custom environment.
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5.1 Evaluation metrics

Our aim is to create different models, with different architectures and trained using
different data or different amounts of data. We want to compare the performance
of these models using different metrics to identify their weak and strong points and
draw conclusions on which one would be most useful in a given situation. We aim
to test our grasping models both in simulation and with a real robot and comparing
performances. We expect to evaluate the model using the following metrics, some
of which are inspired by those that the Dex-Net authors[27]:

• Success Rate: The percentage of grasps that were able to lift, transport, and
hold the object after shaking.

• Accuracy: The percentage of correctly predicted grasp outcomes(above 50%
probability is considered as a predicted success, below is considered as a pre-
dicted failure).

• Precision: The success rate of grasps that have an estimated robustness higher
than a certain percentage(Dex-Net uses 50%).

• Robust Grasp Rate: The percentage of planned grasps with an estimated ro-
bustness higher than a certain percentage(Dex-Net uses 50% for this metric as
well).

• Planning Time: The time in seconds between receiving an image and return-
ing the planned grasp.

We will evaluate each model using both train and test data, in order to check for
overfitting and assess generalization properties on novel objects. We will also com-
pare the performance of our models against a more simple algorithm that doesn’t
use Deep Learning, to have a baseline to compare against. In particular, we plan on
implementing a policy that would rank sampled grasps randomly rather than using
a GQ-CNN.

5.2 V-REP

The Virtual Robot Experimentation Platform (V-REP) is a robot simulator that pro-
vides a unified framework combining many powerful internal and external libraries
that are often useful for robotics simulations. This includes dynamic simulation en-
gines, forward/inverse kinematics tools, collision detection libraries, vision sensor
simulations, path planning, GUI development tools, and built-in models of many
common robots[31].

Its Inverse Kinematics module is able to calculate a list of joint states to follow in
order to move the tip of a robot arm to a target position along a desired path. The
platform also possesses a remote API in various languages including Python. V-REP
also offered a model of the robotic arm we wanted to use (Sawyer) in the default
library and it was easy to control it from Lua scripts. V-REP provides a front-end
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to a wide variety of physics engines that can be seamlessly interchanged. It also
provides a nice interface allowing the user to create new objects, customize them
and generally control many aspects of the simulation.

The GUI was very useful to start getting familiar with the simulation environment
and its functionalities. The main scripting language V-REP uses is LUA, and not all
of V-REP’s features are available through the Python API. This meant some of the
simulation’s code had to be written in LUA, which I didn’t have any familiarity with
at the beginning of the project.

5.3 Environment Set-Up

We tried to keep our environment very simple to reduce complexity and aid process-
ing speed. Our set up, show in Figure 5.1, includes a Sawyer robotic arm fitted with
a Baxter gripper and two vision sensors to capture images(one for RGB images and
one for depth images) positioned above the work-space area and pointed towards it.

5.4 Remote API

V-REP provides a large range of functions that enables communication for various
actions in the simulated environment. Communication between our Python applica-
tion (client) and V-REP (server) are done via socket communication. The server side
is implemented via a plugin which we can communicate with via the Python bind-
ings provided. Each object in the simulation has its own unique handle that can be
obtained through specific API functions. Different objects have different properties
which can be controlled. For example, we can retrieve images from vision sensors,
move objects or set their velocities. Even though the number of functions offered by
the Python API is quite limited, V-REP offers a more general purpose function, called
simxCallScriptFunction that allows the user to call any function defined in LUA.
By utilizing these remote API functions, the simulated scene can be prepared and
manipulated completely in Python.

5.5 Physics Simulator Choice

V-REP’s dynamic model offers 4 different physics engines: Bullet, ODE, Vortex and
Newton[43]. V-REP allows the user to easily switch between the 4 through its GUI.
Initially, we tried to use the default engine, ODE, but we had some issues obtaining
accurate collisions and realistic object dynamics. This is why we decided to research
all the available engines, test them and evaluate the pros and cons of each more in
depth:

• Bullet Physics Library: Bullet physics is an open source physics engine. It
supports real-time 3D collision detection, rigid and soft body dynamics. Bullet
probably has the largest user base and most responsive community, it’s very
well documented and it’s easy to find lots of examples, including some of the
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robotic simulations. Unfortunately, collision checking and dynamics when us-
ing our meshes did not seem very accurate, so we decided not to use it.

• Open Dynamics Engine(ODE): An open source, high performance physics
engine. It supports advanced joint types and integrated collision detection with
friction. As mentioned before, when we tested it on our simulation, we noticed
the movements of the dynamic objects were not very accurate or realistic, with
objects that were supposed to be still and resting on the workspace surface
moving around or wobbling. Collision also seemed to cause problems and be
fairly unreliable, as the gripper would enter the object if it was colliding with it
for too long. This could have been due to our meshes not being very accurate.

• Newton Dynamics: The dynamics module allows simulating interactions be-
tween objects that are near to real-world object interactions.

• Vortex Dynamics: A closed source, commercial physics engine producing high
fidelity physics simulations. Vortex offers real-world parameters (i.e. corre-
sponding to physical units) for a large number of physical properties, making
this engine both realistic and precise. The Vortex plugin for V-REP is based on
Vortex Studio Essentials, which requires each user to register with CM Labs,
for a free license key. We initially tried using the other engines as obtaining
a license key wasn’t straightforward and instructions to do so were either un-
clear or hard to find, especially on Linux. Unfortunately, since none of the
other engines seemed to be accurate enough for our simulations or had unpre-
dictable errors in handling collisions between the gripper and the objects, it
was necessary to spend some time obtaining the license key and adding it to
V-REP.

5.6 Vision Sensors

Vision Sensors can detect and render the renderable entities in their field of view.
A vision sensor’s image content can be accessed via the V-REP API. The sensors can
be set to either perspective or orthogonal projection type. For our specific imple-
mentation, we set them to perspective mode as this is what Dex-Net uses by default,
although it also offers support for orthogonal projection. The near and far clipping
planes were set to 0.01 and 1 meters respectively and the perspective angle was set
to 60 degrees. These parameters are those that yielded the most similar results to
the original Dex-Net ones.

The sensor’s image content is retrieved using the V-REP Python API. Then
the depth image is modified so that the values at each pixel represent the dis-
tance from the camera in meters. This is done with the following code, where
near clipping plane and far clipping plane represent the corresponding values
in the camera configuration.
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depth_image = near_clipping_plane

+ depth_image * (far_clipping_plane - near_clipping_plane)

Listing 5: Depth image is rescaled so that the value at each pixel represents the distance
from the camera in meters

Both depth and color image are then flipped, as the rows are inverted from what
the camera sees in the simulator.

5.7 Robotic Gripper

The Robotic Gripper is composed of various components: the main body, two an-
tipodal fingers, and two joints. The gripper’s functionality is fairly counter-intuitive,
and took me some reading to figure out how to get it working correctly. Initially, I
thought the two joints were set up so that each one would move one of the fingers
either closer to the center or further away. In reality, only one of the fingers actually
moves. We will call the two joints close joint and center joint. While the close
close joint’s goal is to move one of the two fingers(either towards the center or
away from it), the center joint’s objective is to keep the two fingers equally distant
from the center. This means the center joint simultaneously moves both fingers
with respect to the body of the gripper while keeping the distance between them
equal. This creates the illusion of both fingers opening or closing synchronously
while the center of the grasp remains perfectly centered.

5.8 Collision Checking

V-REP can detect collisions between two collidable entities in a very flexible way.
The collision detection module will only detect collisions but it won’t cause any
reaction between the colliding objects(the collision response is handled by the dy-
namics module). The collision detection functionality is illustrated in Figure 5.2.
The collision detection module allows registering collision objects which are collid-
able entity-pairs (collider entity and collidee entity). Objects can be registered in the
collision module and set up so that, during simulation, each collision can be easily
visualized: the objects will change color when they collide with any of the objects
specified in the collision module. For example, a robotic arm can be registered so
that it only changes color when it collides with the table surface and doesn’t when it
collides with any other entity.

Collision can also be checked via the API, providing the object handle of each
of the two objects we want to check. It is possible to pass sim.handle all as one
of the parameters to check if one object is colliding with any other object in the
simulation. The function will return True in case of collision or False otherwise.
Checking for collisions becomes complicated in case of complex objects formed by
multiple shapes such as a robotic arm. If we want to check the collision of a robotic
arm with another object, checking the collision of every single one of the shapes that
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Figure 5.2: Simple collision detection between two manipulators(left) and exhaustive
collision detection between two shapes(right)[42]

makes up the robotic arm would be tedious and time-consuming. Luckily, V-REP
provides the option to create Collections, which are groups of shapes that can all be
indicated using the same handle. This handle can then be passed as a parameter to
the collision detection function as any other object handle.

But another problem arises: in some situations, such as inverse kinematics, we
might need to check if components of the robotic arm are colliding with each other,
as shown in Figure 5.3. When performing collision (or minimum distance) calcu-
lations between the same collection, V-REP will normally check all collection items
against all other items in that collection. Some of these components will inevitably
collide, such as two shapes connected by a joint, and we don’t want to take those
collisions into account as those are to be expected. V-REP provides a workaround to
this problem: each shape has a collision self-detection indicator parameter, that can
be set both from the V-REP GUI and API. Two items of a same collection will not be
checked against each other if their indicator difference is exactly 1, as can be seen
in Figure 5.3.

Figure 5.3: Collection self-collision indicators[44]
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5.9 Inverse Kinematics

V-REP uses IK groups and IK elements to solve inverse kinematics tasks. V-REP pro-
vides a series of example scenes where either IK is used. This is useful to understand
how they work, what they can be used for, and how to set up a similar scene. All
their example scenes were in 2D. Although this helped with understanding, as the
scenes were very simple and contained the bare minimum of necessary components,
it meant we couldn’t directly reuse their code for my simulation, which was in 3D.
In V-REP, to solve Inverse Kinematics on a simple kinematic chain, we need:

• A base It represents the start of the kinematic chain. It can be any type of
object, even a joint. In that case however the joint cannot move.

• Several links. A rigid part of the object that connects 2 joints

• Several joints

• A tip. The tip is always a dummy and is the last object in the kinematic chain.
The tip dummy should be linked to a target dummy.

• A target. The target is always a dummy and represents the position and/or
orientation the tip should adopt (or follow) during simulation.

Figure 5.4: Two kinematic chains, each describing an IK element [41]

5.10 Evaluation Data

Once the simulation was set up and working we had to decide what datasets we
wanted to evaluate our Grasp Quality Networks on. First, we decided to evaluate
on the training data. This was simple enough as all we needed to do was retrieving
meshes from the Dex-Net 2.0 database. Unfortunately, some of these meshes had
quite a few orphan and duplicated edges, both of which can cause invalid collision
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response during simulation. We also found cases of meshes with two adjacent edges
sharing no vertex or only one vertex. As we noticed invalid collision happen multiple
times during evaluation, we decided to try and fix these meshes by removing orphan
or duplicated edges. The Dex-Net repository seemed to provide a couple of functions
to do this, but they didn’t seem to work. We eventually decided to just create a “black
list” of defective meshes the simulation script would just script during evaluation.

For the test data, we decided to research some mesh datasets online. Unfortu-
nately, most of the datasets we came across online were of very big and complex
objects, from furniture to airplanes and engines. We also considered a dataset con-
taining mesh representation of the objects used in the Amazon Picking Challenge
dataset but many meshes, like those in the Dex-Net dataset, were neither accurate
nor precise. Many objects were also too big for the width of our Sawyer gripper.
Other mesh datasets we considered were the Princeton Shape Benchmark, Model-
Net, Kit and ShapeNET. In the end, we picked a mix of different objects from the
Princeton Shape Benchmark dataset and rescaled them if they didn’t fit the width of
our gripper. We also decided to test on a mix of the procedurally generated data we
generated.

Summarizing, for the evaluation of grasp quality networks, we decided to evalu-
ate performance on:

• 100 known objects the network was trained on. Each object was evaluated 4
times.

• 100 unknown objects the networks was not trained on, but were similar in
shape and size to the known objects. Each object was evaluated once.

• 100 procedurally generated objects. Each object was evaluated once.

• 200 randomly selected objects from the Princeton Shape Benchmark Dataset.
Each object was evaluated once.

In order to create a baseline, we evaluated each dataset using a random policy. This
policy used the antipodal grasp sampling algorithm to generate candidate grasps and
then selected a candidate randomly. The results for each dataset are summarized in
Table 5.1.

Success Rate
Mesh Dataset Random Policy

Known meshes 78.0%
Unknown meshes 92.0%

Procedural 61.0%
Princeton ShapeNet 78.5%

Table 5.1: Baseline for each dataset. Data gathered using a random policy
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5.11 Evaluation Script

The pseudocode to evaluate the different GQ-CNNs is shown in Listing 6. The testing
framework can evaluate different combinations of networks, policies and sets of ob-
jects at once. It supports multiple testing configurations, such as grasping the same
object multiple times or testing each object in multiple stable positions. Datasets
of meshes to test on can be defined either as directories containing .obj files or as
Dex-Net datasets.

for gqcnn in gqcnns:

for dataset in datasets:

objects = dataset.get_objects() # dataset can be hdf5 or directory

for obj in objects:

simulation.load_object(obj)

# rescale the object according to which dataset we are using

simulation.rescale(obj, dataset.scale_value)

simulation.set_random_color(obj)

if dataset.random_pose:

simulation.set_random_pose(obj)

else:

pose = dataset.get_object_pose(obj, pose_idx)

simulation.set_pose(pose)

object_is_moving = True

# wait for the object to stop moving

while object_is_moving:

object_is_moving = simulation.is_obj_moving(obj)

depth_im, color_im = simulation.get_images_camera()

# depending on the type of GQ-CNN, execute a different policy

if gqcnn.random and gqcnn.color:

grasp = RandomPolicy(color_im)

q_value = 0

elif gqcnn.random:

grasp = RandomPolicy(depth_im)

q_value = 0

elif gqcnn.color:

grasp, q_value = CEMPolicy(color_im, gqcnn)

else:

grasp, q_value = CEMPolicy(depth_im, gqcnn)

grasp3D = grasp.deproject(simulation.get_camera_pose())

# set IK target to over 0.2 meters above object

simulation.set_IK_target(grasp3D.x, grasp3D.y, grasp3D.z + 0.2)
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# send gripper to IK target avoiding collision with table or itself

simulation.IK_execute(collisions={table, robot})

# send gripper straight down to IK target

simulation.set_IK_target(grasp3D.x, grasp3D.y, grasp3D.z)

simulation.IK_execute_straight_path()

simulation.close_gripper()

# lift the object

simulation.set_IK_target(grasp3D.x, grasp3D.y, grasp3D.z + 0.6)

simulation.IK_execute_straight_path()

# grasp is successful if object is not colliding with the table

success = not simulation.is_collision(obj, table)

# save result

log.save(gqcnn.name, obj.name, success, q_value)

Listing 6: Pseudocode for GQ-CNN performance evaluation and comparison.
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6 Optimizing Dex-Net

In this Chapter, we will be discussing different approaches we tried in order to im-
prove Dex-Net’s performance and optimize training and computation times. Some
examples include:

• Train Dex-Net on subsets of a complete dataset and compare performances

• Hyperparameter search to increase performance while decreasing the total
number of parameters in the network

• Generate a new dataset containing grasp images of higher resolution and show-
ing the whole object rather than just part of it, as in some of the images in the
original dataset

• Train Dex-Net using Ferrari-Canny and Force-Closure as training labels instead
of Robust Ferrari-Canny

6.1 Training on subsets of Dex-Net

We decided to try training different GQ-CNNs on different subsets of the Dex-Net’s
dataset to analyze how the network’s performance would be affected by using dif-
ferent amounts of training data. We used scripts to generate datasets of different
sizes, all starting from the initial dataset we generated(6.7 million datapoints, as in
the original Dex-Net implementation). We created 4 datasets, containing 10%, 20%,
50% and 80% of Dex-Net’s total data. We will call these networks GQ-CNN-10, GQ-
CNN-20, GQ-CNN-50, GQ-CNN-80, and GQ-CNN-100 respectively. The split we used
to create these datasets was object-wise, so each dataset contains the same amount
of images for each combination of object, stable pose, and grasp, but contains fewer
objects.

Figure 6.4 shows the performance comparison of the 5 different GQ-CNNs across
different datasets. Taking aside the known objects dataset, the performance of the
network steadily increases as more data is added to it. The exception of the known
dataset could be easily explained noting that GQ-CNN-10 and GQ-CNN-20 are prob-
ably overfitting, performing better on these specific objects but worst on any other
kind. The analysis of the unknown objects dataset is quite straightforward, as both
the MSE and false negative rate decrease steadily as the training dataset is aug-
mented. The false positive rate remains flat, but mostly due to the very low number
of false positives across all GQ-CNNs.

In the bottom graphs of Figure 6.4, it is interesting to notice the increased amount
of false negatives in the GQ-CNN trained on 100% of the data. This is likely due
to the particular shapes and meshes contained in the Princeton Shape Benchmark
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dataset. A good subset of the meshes contained in this dataset are meshes of plants,
and often include complex representations of leaves and thin branches. GQ-CNN-
100 rates all grasps on these objects poorly, but these grasps are often successful, as
the meshes are static. Therefore, this doesn’t indicate a shortcoming on the network’s
performance, but it highlights one of the challenges of evaluating in simulation.

6.2 Different quality metrics

The original Dex-Net GQ-CNN uses the Robust Ferrari-Canny metric to generate bi-
nary labels for each grasp. If the Robust Ferrari-Canny metric is above 0.002 the
grasp is labelled as a robust grasp. We decided to train two more GQ-CNNs us-
ing Ferrari-Canny and Force Closure metrics. As Force Closure is a binary metric,
we could use it directly. For Ferrari-Canny, we decided to threshold it at 0.007, as
it seemed to give a similar ratio of good/bad grasps compared to the original Ro-
bust Ferrari-Canny implementation. Our evaluation confirmed Robust Ferrari-Canny
proved to be the best metric to use, as the two new GQ-CNNs performed worse
across all datasets, as shown in Table 6.1.

Original GQ-CNN
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.5% 75.0% 72.0% 94.4%
Unknown 99.0% 92.0% 91.0% 100.0%
Procedural 77.0% 75.0% 74.0% 85.1%
Princeton 88.5% 52.5% 56.5% 85.8%

GQ-CNN Ferrari-Canny
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.0% 84.0% 88.0% 90.9%
Unknown 96.0% 91.0% 93.0% 96.8%
Procedural 72.0% 72.0% 84.0% 76.2%
Princeton 84.0% 72.0% 84.0% 83.3%

GQ-CNN Force Closure
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.0% 85.0% 85.0% 92.9%
Unknown 94.0% 95.0% 95.0% 96.8%
Procedural 68.0% 68.0% 94.0% 69.1%
Princeton 87.0% 86.0% 86.9% 99.0%

Table 6.1: Comparing results of the original GQ-CNN trained using the Robust Ferrari-
Canny metric to label grasps vs GQ-CNN using the Ferrari-Canny and Force Closure
metrics. Metrics used for comparison include Success Rate, Accuracy, Robustness Rate
and Precision.
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Known Objects

Unknown Objects

Procedurally Generated and Princeton Dataset Objects

Figure 6.4: Results for success rate, false positive, false negative rate and mean squared
error for multiple GQ-CNNs trained on different subsets of Dex-Net, more specifically 10,
20, 50, 80 and 100% of the total data(this excludes 20% of the data used for validation
and testing). The dotted green line in the success graphs represents the success rate of
a random policy, implemented as a random selection of one of the possible antipodal
grasps. The false positive rate is shown in green, the false negative rate is shown in
red. The percentage of data the GQ-CNN were trained on is shown on the x-axis of the
graphs.
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6.3 Higher Resolution Images

In our evaluation of the Dex-Net 2.0 GQ-CNN we noticed that, for big objects in
particular, the network didn’t seem to have a strong preference for grasps closer to
the center of mass. We hypothesized this was because the images we were training
the network with were relatively small and often cut parts of the objects out of the
image. This could have prevented the network from being exposed to important
information such as the overall shape of the object, preventing it from extrapolating
any information from this data and, instead, leaving it to focus only on a small part of
the object. This was only our hypothesis, and the only way to test it was to generate
a dataset of images with more context on each object and then train a network with
it.

The images in the original Dex-Net dataset were generated by cropping the ren-
dered depth images in smaller 96×96 pixels images around the grasp axis and then
reducing the resolution to 32×32 pixels. We decided to crop our images to include
twice as much context as the original images in each direction, so we cropped the
images at 192 pixels for both height and width. We tried to resize the images at
32×32 pixels as the original dataset, but looking at the results this didn’t seem to
be enough: the images appeared very blurry and it was impossible to recognize any
detail. We reasoned that our images should have the same amount of detail as the
originals, just with more context. To achieve this, we resized our images to obtain a
final resolution of 64×64 pixels.

While this was certainly the best way to test how increased context was going to
affect network performance, we decided to save the images in a 96×96 pixels reso-
lution. This way we would have been able to also consider how increased resolution
would affect performance. We choose a 96×96 pixels resolution specifically because
this is what the authors of Dex-Net used to train their Dex-Net 4.0 GQ-CNN(this
network differs from Dex-Net 2.0 as it is specifically trained to work in a cluttered
workspace containing multiple objects).

6.4 GQ-CNNs Architecture

6.4.1 Original Dex-Net 2.0

The architecture of the GQ-CNN described in the original Dex-Net 2.0 contains 4
convolutional layers separated by ReLU nonlinearities, followed by 3 fully connected
layers and a separate input layer for the z, the distance of the gripper from the cam-
era. The filter dimensions of each convolutional layer are 7, 5, 3 and 3 respectively.
All convolutional layers have 64 filters and SAME padding(this means the output
image of each convolution is the same size as the original image, this is achieved by
adding padding around the image). A max pooling operation is performed after the
second and fourth convolutional layer. A representation of this network is shown
in Figure 6.5. The architecture defined in the configuration file released with the
GQCNN repository is very similar to what was described above, the only difference
is the addition of an extra max pooling after the fourth convolutional layer.
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Figure 6.5: Original GQ-CNN architecture.

6.4.2 96×96 Dex-Net 2.0

For the images with 96×96 pixels resolution, we decided to design the network in the
same way Mahler el al[28] did in their Dex-Net 4.0 paper. The GQ-CNN architecture
is similar to that used in Dex-Net 2.0 with a few important changes. First, local
response normalization was removed. Second, the filter dimension changed: from
7, 5, 3, 3 to 9, 5, 5 and 5 respectively. Also, Dex-Net 4.0 uses 16 filters for each
convolutional layer, while Dex-Net 2.0 uses 64. The size of the fully connected layers
was changed as well: the output size decreased from 1024 to 128. The architecture
is shown in Figure 6.6.

According to the paper, the GQ-CNN was trained using stochastic gradient de-
scent with momentum for 50 epochs using an 80-20 training-to-validation image-
wise split of the Dex-Net 4.0 dataset. The learning rate was set to 0.01 with expo-
nential decay of 0.95 every 0.5 epochs, a momentum term of 0.9, and an l2 weight
regularization of 0.0005. Other than the number of epochs we trained for(25 instead
of 50), we used the same hyper-parameters as the Dex-Net 4.0 to train our GQ-CNN.
The results are summarized in Table 6.2 and compared with the performance of the
original GQ-CNN of Dex-Net 2.0. The new network seems to perform equally well
in most datasets while performing slightly better on the known objects and slightly
worst on the unknown ones.
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Figure 6.6: GQ-CNN architecture for training on 96×96 pixels depth images.

Original GQ-CNN
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.5% 75.0% 72.0% 94.4%
Unknown 99.0% 92.0% 91.0% 100.0%
Procedural 77.0% 75.0% 74.0% 85.1%
Princeton 88.5% 52.5% 56.5% 85.8%

GQ-CNN 96×96
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 87.0% 61.0% 56.0% 96.4%
Unknown 94.0% 78.0% 76.0% 97.4%
Procedural 77.0% 71.0% 70.0% 84.3%
Princeton 89.0% 36.0% 28.0% 96.4%

Table 6.2: Comparing results of the GQ-CNN trained on 96×96 pixels images and orig-
inal Dex-Net 2.0 GQ-CNN. Metrics used for comparison include Success Rate, Accuracy,
Robustness Rate, and Precision.

6.5 Hyperparameter Search Results

Since the GQCNN codebase provided an easy to use framework for hyperparameter
search and network analysis, we decided to take advantage of it to try and improve
the performance of Dex-Net. Starting from the Dex-Net hyperparameters, we de-
cided to test some variations in filter number, dimensions, and batch size and analyze
the performance of the resulting networks over both test and validation data. An-
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other factor we considered when we decided to explore different architectures was
the total number of trainable parameters in the network. The Dex-Net 2.0 GQ-CNN
currently has over 18 million parameters. Most of these parameters are contained in
the 2 fully connected layers that follow the convolutional layers, more specifically,
almost 17 million parameters in the first fully connected layer.

Decreasing the total number of parameters could make the network faster to train
and less prone to overfitting. It would also make grasp evaluation faster, therefore
decreasing the time required to locate an optimal grasp. For the original Dex-Net
architecture, the result of the analysis is represented in Table 6.3. To save time

Analysis of Original GQ-CNN
Train Err Train Loss Val Err Val Loss
9.703% 0.289 9.850% 0.513

Table 6.3: Analysis of original GQ-CNN architecture

and make our search more efficient, we decided to train each network for 2 epochs
during our hyperparameter search, and only train the best performing ones for more
epochs. First, we decided to test for batch size, it turned out the best performing
network was the one using a batch size of 64, which was the one Dex-Net already
used. This experiment was also useful as we could record the performance of Dex-
Net after being trained for 2 epochs. The results detailed results are shown in Table
6.4. Next, we trained using different number of filters for each convolution. The

Hyperparam Search over Batch Size
Batch Size Train Err Train Loss Val Err Val Loss
16 15.469% 0.3480 15.443% 0.8310
32 15.338% 0.3470 15.326% 0.8240
64 14.402% 0.3240 14.358% 0.7720
128 15.668% 0.2770 15.687% 0.8440

Table 6.4: Analysis on GQ-CNNs with the same architecture as the original Dex-Net GQ-
CNN, only difference is batch size. The parameter in bold indicates the original GQ-CNN
configuration.

original Dex-Net architecture uses 64 filters for all its convolutional layers. We tried
to change the number of filters to 8, 16 and 32. The best performing network turned
out to be the one with a filter size of 32 for all convolutional layer. The results of
the experiment are summarized in Table 6.5. Finally, we decided to test different
convolutional filters dimensions. Smaller filters have a smaller receptive field and
are usually better suited for highly local features that don’t need much context. The
image size decreases slowly, and this makes smaller filters more suitable for deeper
networks, where the extracted information could be useful in later layers. Larger
filters are more suitable for extracting more generic features spread across the image.
They also contain a higher number of parameters, making computation and training
less efficient.
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Hyperparam Search over Number of Filters
Number of Filters Train Err Train Loss Val Err Val Loss
8 15.902% 0.3043 15.863% 0.8413
16 14.922% 0.3263 14.884% 0.7894
32 14.227% 0.3523 14.154% 0.7507
64 14.436% 0.3361 14.415% 0.7645

Table 6.5: Analysis on GQ-CNNs with the same architecture as the original Dex-Net GQ-
CNN, only difference is number of filters. The parameter in bold indicates the original
GQ-CNN configuration.

To start, we decided to use the same number of convolutional layers as the orig-
inal Dex-Net architecture. We also used the same number of filters as the original
architecture(64). From the results of our experiments, the architecture used by Dex-
Net(filter sizes of (7, 5, 3, 3)) was one of the worst performing ones. In general,
bigger convolution sizes seemed to result in worst performance. The best perform-
ing network, across all the metrics we considered, was the one with filter sizes (5, 3,
3, 3). The results of our experiments are summarized in Table 6.6. After considering

Hyperparam Search over Conv Size
conv1 conv2 conv3 conv4 Train Err Train Loss Val Err Val Loss
9 7 5 3 14.762% 0.3348 14.742% 0.7665
9 7 3 3 15.372% 0.3400 15.381% 0.7997
9 5 5 3 14.420% 0.3418 14.401% 0.7488
9 5 3 3 14.779% 0.3190 14.777% 0.7683
9 3 3 3 14.095% 0.3014 14.110% 0.7169
7 7 5 3 14.459% 0.3132 14.491% 0.7742
7 7 3 3 14.640% 0.3507 14.642% 0.7825
7 5 5 3 14.318% 0.3595 14.340% 0.7663
7 5 3 3 15.004% 0.3268 14.978% 0.8001
7 3 3 3 14.496% 0.4441 14.551% 0.7393
5 5 5 3 14.195% 0.3395 14.171% 0.7309
5 5 3 3 14.377% 0.3365 14.299% 0.7375
5 3 3 3 13.889% 0.2803 13.900% 0.7062
3 3 3 3 14.657% 0.2843 14.656% 0.7459

Table 6.6: Analysis on GQ-CNNs with the same architecture as the original Dex-Net GQ-
CNN, only difference is the size of the convolutions. The parameter in bold indicates the
original GQ-CNN configuration.

the results of our experiments, we decided to train a network for 20 epochs using
32 filters for each convolutional layer and (5, 3, 3, 3) as filter sizes. Mainly due to
the reduction in the number of filters, the total number of parameters decreased to
3 millions. The architecture of the network is shown in Figure 6.7, while the results
of the analysis are summarized in Table 6.7. Training this network on the full Dex-
Net 2.0 dataset for 20 epochs took only 8 hours, compared to the almost 30 hours
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Figure 6.7: Architecture of new GQ-CNN. This network contains a total of 3 million
parameters, compared to the 18 million parameters of the original GQ-CNN.

New GQ-CNN 3M Params Analysis
Train Err Train Loss Val Err Val Loss
11.047% 0.341 11.164% 0.581

Table 6.7: Analysis of new GQ-CNN architecture

it would usually take for the original Dex-Net architecture(for 25 epochs). We also
decided to test the new GQ-CNN in simulation.

As the result show, the new GQ-CNN with reduced number of parameters per-
formed just as well as the original architecture in grasping known objects. It per-
formed slightly worst in capturing unknown but similar objects to the one we used
during training but it performed considerably better on procedurally generated ob-
jects and objects from the Princeton Shape Benchmark dataset. This stands to show
on how the original architecture was probably overfitting to a specific type of objects.
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Original GQ-CNN
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.5% 75.0% 72.0% 94.4%
Unknown 99.0% 92.0% 91.0% 100.0%
Procedural 77.0% 75.0% 74.0% 85.1%
Princeton 88.5% 52.5% 56.5% 85.8%

GQ-CNN 3M Params
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.5% 68.0% 72.0% 96.7%
Unknown 96.0% 83.0% 83.0% 97.6%
Procedural 81.0% 78.0% 67.0% 94.0%
Princeton 91.0% 43.0% 42.0% 90.5%

Table 6.8: Comparing results of the 2 GQ-CNNs in simulation. The percentage shows
the overall success rate for a given set of objects. Metrics used for comparison include
Success Rate, Accuracy, Robustness Rate and Precision.
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Figure 7.1: Our GQ-AE network. The architecture is mostly inspired by the Grasp
Generation CNN proposed by Morrison et al.[30] in their research.

In this chapter we will analyze novel ways to make use of the Dex-Net dataset
with the ultimate goal of training Grasp Quality Neural Networks for faster and more
accurate robust object grasping.

In particular, we will implement a new type of Grasp Quality Neural Network,
to then evaluate and compare it with the GQ-CNNs we trained previously. Once the
architecture of our new Grasp Quality Neural Network is defined, we will also face
the challenges of creating new custom datasets to allow effective training.

7.1 Grasp Quality Auto-Encoder(GQ-AE)

Although Dex-Net’s GQ-CNN architecture and CEM policy proved to be a very effec-
tive approach, identifying successful grasps correctly in more than 90% of cases, it
tends to be quite slow. The antipodal grasp sampling algorithm (described in detail
in Section 3.9.4) can take between 0.2 and 0.4 seconds to return candidate grasps,
depending on the parameters chosen and the image to sample. The GQ-CNN takes
an average of 0.2 seconds to evaluate the quality of one 32×32 image(on a 2015
Mac Book Pro) but it’s also worth considering each image needs to be cropped, ro-
tated and scaled before being fed into the GQ-CNN. This also takes a considerable
amount of time(around 0.01 seconds).
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Considering this process needs to be repeated for multiple candidate grasp, and
coupled with the antipodal sampling and CEM policy, the whole algorithm takes, on
average, between 2 and 4 seconds to return a single grasp. Another drawback of the
CEM and grasp antipodal sampling policies is that they must be executed in a serial
manner, as each iteration is an improvement on the previous one.

Moreover, as Satish et al[50] noted in their research, evaluating each grasp using
a GQ-CNN requires significant computational overhead, particularly when copying
data between device and host memory every time the network is queried for a new
batch of predictions. Given the time required to identify a successful grasp, it is
impossible to implement any kind of closed-loop grasp execution, and precise robot
control is fundamental to execute the grasp successfully.

Another downside to the GQ-CNN approach is network evaluation: beyond clas-
sic measures such as loss and accuracy(or MSE) over the training and validation set,
or manually analyzing the convolutional filters of the network, it is sometimes diffi-
cult to tell if the network was trained correctly or if it will react unexpectedly to a
new object. The only way of checking is evaluating over vast amounts of data, and
even if we come across a problem or an unexpected behaviour, it’s hard to identify
its root cause and proposing possible solutions.

Another approach, that as not been explored much in research, is to create a
network able to return a grasp quality value and gripper pose(depth and angle) for
each possible pixel of an image(RGB, depth or RGB-D). This means the network
could possibly output 3 images for each input image: a grasp quality image, a grasp
angle image, and a grasp depth image.

To be clear, by grasp quality image we mean an image where each pixel has a
value between 0 and 1, depending on the predicted quality of the best grasp cen-
tered at that pixel(1 being a good grasp and 0 being a bad grasp). Only the best
grasp is considered in the grasp quality image because a grasp centered at a certain
pixel(or more precisely its corresponding 3D point in the world coordinate frame)
can have multiple orientations(grasp angles) or grasp depths, and each pose can
have different quality values.

The grasp quality image could be interpreted as representing a probability of
grasp success according to different levels of uncertainty in object shape, object po-
sition, gripper position, and gripper orientation. The grasp quality image could also
represent a value of robustness for a given grasp, such as a Ferrari-Canny metric, or
a combination of uncertainty and robustness(Robust Ferrari-Canny). A network able
to output a grasp quality, grasp angle and grasp depth images given an RGB, depth
or RGB-D image as input, could be easily implemented with an architecture similar
to an Auto-Encoder. Because of this, we will refer to it as a GQ-AE(Grasp Quality
Auto-Encoder) for here onwards.

The main reason why this approach has not been researched in depth yet is the
lack of training data and the difficulty in data generation or data gathering. Training
a network such as the one described above would require a vast number of grasp
quality images(at least thousands). This is extremely time-consuming to obtain with
real-world experiments, as well as in simulation.
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7.2 Data Generation

7.2.1 Challenges

To explain the difficulties in generating data suitable for training a GQ-AE network
we will present a simple example: if we consider an image resolution of 200×200
pixels, a camera set up and object size similar to the ones used by Dex-Net, the object
would probably take up an area of around 50×50 pixels. Although objects can have
different shapes and the overall area can change, this is a reasonable average. For
this example, we will also not consider any uncertainty, and our grasp quality image
will contain values between 0 and 1 for each pixel, representing a higher probability
of grasp success(value closer to 1) or failure(value closer to 0).

To generate the grasp quality image, we first set the quality of each pixel that is
not part of the object to 0(making the assumptions grasps not centered on the object
will fail, this is not necessarily true, but will simplify calculations). We then need to
test the grasp position corresponding to each pixel that is part of the object and test
every possible angle. We only need to test for angles in the range [0-179] degrees
since opposite angles in parallel gripper grasps are equivalent. If we consider a fixed
depth, creating a grasp quality image would require us to evaluate around 447k
different grasps. If we wanted to check angles every 5 degrees, we would have
to evaluate 87k grasps. This number could be further reduced by checking fewer
angles or not checking every single pixel, but checking only one and assuming a
small region of neighbouring pixels will have the same quality value, but this could
potentially reduce the validity of our data. Regardless, it is easy to understand how
creating a single one of these grasp quality images is not at all straightforward, and
would require a significant amount of computations.

Previous research [30, 55], when faced with this same problem, decided to gen-
erate human-labelled datasets or make use of pre-existing ones, such as the Cornell
Dataset[13]. The Cornell Grasping Dataset contains 885 RGB-D images of real ob-
jects, with 5110 human-labelled positive and 2909 negative grasps. Although this
is certainly a valid solution, the size of these datasets is incredibly small, especially
if compared to the 6.2 million datapoints dataset created using Dex-Net. Another
solution, proposed by the some of the same researchers that worked on the Dex-
Net project[50], avoids the problem entirely by training a GQ-CNN on individual
grasps and then converting all fully connected layers into fully convolutional layers,
thus creating a Fully Convolutional Network. This eliminates the need for densely-
labelled ground-truth images during training.

7.2.2 Possible Solutions

Given the number of necessary evaluations for creating a single grasp quality im-
age, we immediately ruled out real life or simulation data gathering. The synthetic,
physics-based data from the Dex-Net database could not be used either, as each im-
age only represents the quality of one possible grasp (and not each possible grasp
on the object). Even though the Dex-Net algorithm for sampling data from a mesh
is very efficient and accurate, it doesn’t provide a way of enforcing that each area
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of the object’s mesh contains at least one grasp. In particular, not all bad grasps
are saved, such as the ones where the distance between the two contact points, is
greater than the gripper’s maximum width. Furthermore, even if every point on the
mesh was sampled, this did not mean every point on the image would be evaluated,
as only grasps parallel to the table for a certain gripper pose would be added to the
image.

Regardless, we decided to use the depth images generated by the meshrender

library as our starting point. Particularly, the images generated for each object and
stable pose, randomized over different camera poses. These were the 400×400
pixels depth images from which the smaller images (representing single grasps) used
to train the GQ-CNNs were generated. We resized these images to a 200×200 pixels
resolutions, hoping to cut down on computation time while maintaining reasonable
image quality.

Using a GQ-CNN

A possible idea we considered to generate our GQ-AE dataset was to use the Dex-Net
GQ-CNN to evaluate every possible grasp on a depth image. As mentioned above,
we decided to limit the number of possible grasps to evaluate by only checking an-
gles every 10 degrees and only checking pixels that were part of the object. Even
considering these optimizations, the creation of each image took a few minutes.
Considering this, it was unfeasible to use this method to generate thousands of im-
ages. Furthermore, any GQ-AE trained on this data would have been unable to learn
anything more than the GQ-CNN, therefore limiting the learning potential of our
network.

To further speed up the process, we decided to try first add to the image all the
grasps already present in the Dex-Net database. As this did not bring any significant
improvement(on average, we had 5-10 grasps for each image), we decided to set an
area of 9 pixels(a 3x3 square centered at the grasp center) for each one of the grasps
obtained from the Dex-Net database. This further reduced computation time to an
average of 40 seconds per image. Depending on the size of the network we intended
to create, this computation time was still too high.

After careful consideration, we decided to create a dataset using the second
method(combination of grasps from Dex-Net and GQ-CNN), but on only one image
per object and stable pose combination, therefore ignoring camera randomization.
This allowed us to create a dataset of more than 13k datapoints.

Optimization It is worth mentioning the process of image creation is very easily
parallelizable. This can be achieved in multiple ways: either having multiple pro-
cesses evaluating different parts of the same image or by having multiple processes
working on different images simultaneously. We did try to implement the latter by
using Python’s multiprocessing library, but it did not seem to speed up the process
significantly on my laptop, probably due to overheating. Given the lack of sudo ac-
cess on the lab machines, it was impossible for me to install the required libraries to
retrieve grasps from the Dex-Net database. This meant that if we were to parallelize
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my data generation across multiple machines, even though we would have been able
to crop, rotate, resize and evaluate images using the GQ-CNN, we could not use the
grasps present in the Dex-Net database. Because of this, we had to use my laptop to
render images using the meshrender library, retrieve possible grasps from the Dex-
Net database, project them according to the camera position, and save them as 2D
grasps in a .npz file. This way, the lab machines were able to combine the results of
the grasps from Dex-Net and the GQ-CNN grasp evaluation on the depth image in
one grasp quality image, without having to access the Dex-Net database or rendering
depth images.

Partial Grasp Quality Images using Dex-Net

As the creation of grasp quality images dataset through GQ-CNN evaluation took a
few days, we decided to explore other options in the meantime. The main problem
we had, as explained above, was obtaining accurate grasp quality values for each
pixel in the image. On the other hand, it was relatively fast and straightforward to
obtain partial grasp quality images. First, every pixel in the image would be set to
represent an “unknown” grasp value(we used the -1 value for this) or 0(indicating
bad grasp quality), then we would add all the grasp qualities contained in Dex-Net to
the image. This could be done by either setting the value of a single pixel, centered at
the grasp center, or by setting it together with its neighbouring pixels. Even though
this approach generated very high quality, accurate images, it did leave big gaps of
unset grasp quality values on the object’s surface(the “unknown” values mentioned
above). Generating a dataset of about 660k of these images would take between 1
and 3 hours, depending on which grasps we were saving, how and in what order.

7.3 GQ-AE Loss Function

The partial grasp quality images dataset was probably the most accurate and com-
plete dataset we would have been able to generate with the given time limits and
hardware. However, these images were not suitable to be used as a training set for
a traditional auto-encoder, using a loss function such as cross-entropy(CE) or mean
squared error(MSE) between predicted image and training image.

As a workaround, we considered creating a network able to learn on partial data
from a variety of different objects, hoping it would then be able to “fill in the gaps”
by applying the knowledge learned by the partial samples provided. In order to do
this, we set any grasp quality value we didn’t know to -1. Then, we created a custom
loss function that would ignore those values when comparing the predicted image
to the provided training image, while applying a traditional loss function(such as
BCE or MSE) over all the other known grasp quality values. This meant the network
should have been able to learn only from relevant data, ignoring any gaps(marked
as -1 in the images).
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7.4 Pytorch

Even though the previous networks were implemented using Tensorflow, I had much
more experience using Pytorch, and I had used it to build auto-encoders before.
Pytorch is a Python package that provides two high-level features[32]:

• Tensor computation (like numpy) with GPU acceleration

• Deep neural networks built on a tape-based autograd system

Pytorch also offers torch.nn, a neural networks library and torch.utils, a library
offering a variety of utility functions, including Database and DataLoader classes.
torch.nn also offers multiple pre-implemented, highly optimized loss functions that
can be easily integrated in the NN’s architecture. These are the main reasons why
we decided to implement the GQ-AE network using Pytorch.

7.5 GQ-AE architecture

For our GQ-AE, we decided to use a classic auto-encoder architecture. To decide on
the initial hyperparameters, filter sizes and the number of layers of the network, we
mostly looked at the architecture used by Morrison et al. [30] for their Generative
Grasping Convolutional Neural Network and the network architectures of our GQ-
CNNs. For the encoder part, we had 3 convolutional layers, with convolution filters
of sizes 9, 5 and 3 respectively. For the decoder part, we had a mirrored version
of the encoder, using transpose convolution filters of sizes 3, 5 and 9. For our loss
function, we tried using cross entropy, binary cross entropy and mean squared error.
The final architecture for our GQ-AE network is summarized in Figure 7.1.

7.6 Training

As we created new datasets, we tried training the GQ-AE right away to see if any of
them proved to be effective. We went through many iterations and kept improving
our dataset creation algorithm until the GQ-AE started learning effectively from the
data provided. After many iterations and trials, we created over 10 datasets of more
than 660k datapoints each. We started out by focusing on the grasp quality images
and verifying the network was predicting those correctly. Once we verified this was
the case, we moved onto testing different methods for generating training datasets
of grasp angle images.

7.6.1 Grasp Quality Images Datasets

The main options we had to define when creating our datasets were:

• Only setting pixel values corresponding to examples of robust grasps or setting
pixel values corresponding bad grasps as well
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• Setting the pixel value to the exact metric of the grasp or use binary labels

• How to set the value of the pixels we did not have a corresponding grasp
for. The options we considered were to either set all these pixels to represent
an unknown value or only set pixels belonging to the object to represent an
unknown value, while all the others would be set to the minimum grasp quality
value(0).

• For each retrieved grasp, we could either set only the value of the exact pixel
corresponding to it or set the pixel and an area around it. If we decided to set
a neighbouring area, we also had to decide how big we wanted this area to be.

• Loss function used. Each loss function requires the data it’s used on to have
certain characteristics. The binary cross-entropy loss function only works with
binary data, while the cross-entropy loss function requires a different channel
for each class.

Unknown-Default, Regression Dataset

Figure 7.2: Sample datapoint in Unknown-Default, Regression Dataset.

For the first dataset, we set all pixels on the image to -1 to begin with. This way,
no assumption is made on pixels belonging to the object compared to pixels that
do not. We then retrieved all the grasps from the Dex-Net database for that specific
object, stable pose and randomized camera position and set the pixels corresponding
to the center point of each grasp to the Robust Ferrari-Canny metric divided by 0.002
and capped at 1. This meant the values of each pixel was either -1(unknown) or a
value between 0 and 1. Before setting the grasps, we would sort them from worst
to best, according to their Robust Ferrari-Canny metric, so that if multiple grasps
were laying on the same pixel we would only record the best one. An extract of the
algorithm used to create this dataset is shown as pseudocode in Listing 7.

quality_image = np.full([200,200,1], -1.0)

grasp_angle_image = np.full([200,200,1], 0.0)

metrics_grasps = sorted(zip(metrics,grasps), key=lambda x: x[0])
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for metric, grasp in metrics_grasps:

x = int(grasp[0] / 2)

y = int(grasp[1] / 2)

if (metric >= 0.002):

quality_image[x, y, 0] = 1

else:

quality_image[x, y, 0] = metric / 0.002

Listing 7: Pseudocode of algorithm for creation of Unknown-Default, Regression
Dataset.

Unfortunately, when we tried training the GQ-AE with this data(using an MSE
loss function), the network seemed to be unable to learn and predicted mostly ran-
dom values for both grasp quality and angle images. We hypothesized this could
be caused by the high amount of unknown(-1) pixels, the loss function, or the high
amount of negative examples compared to the positive ones.

Unknown-Default, Classification Datasets

Figure 7.3: Sample datapoint in the Unknown-Default, Classification Dataset

Before trying to lower the amount the unknown(-1) pixels, we decided to make
the problem simpler by reducing it to a classification problem and use a different
loss function, such as BCE and CE. BCE requires all pixels to be either 0 or 1, so we
had to create a classification dataset. This new dataset was created using the same
logic as the Low Information, Regression Dataset, but using a binary grasp quality
value. The value was set to 1 if the grasp Robust Ferrari-Canny metric was above
0.002, or set to 0 otherwise.

When trained using this dataset, the results seemed very similar to the previous
Low Information, Regression Dataset, proving the loss function of the network was
probably not the cause of the problem. The cross-entropy loss function, on the other
hand, requires a quality image for each class, so we had to create an image with
multiple channels. Each image had 2 channels for each pixel: if the grasp Robust
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Ferrari-Canny value was above 0.002, the second channel of the pixel centered at
the image center was set to 1, otherwise, the first value of the first channel was set
to 1. Unfortunately, the GQ-AE failed to learn properly even with this dataset and
kept returning random values for most pixels.

Positive Classification Dataset

Figure 7.4: Sample datapoint in Positive Classification Dataset.

As the network was failing to distinguish possible good grasps on the object from
the general background, we decided to help the network by making the assumption
that all pixels not part of the object had quality 0. All pixels part of the object are
set to -1(unknown). The grasps from the Dex-Net database are retrieved and sorted
from worst to best according to their Robust Ferrari-Canny metric value. When we
set each grasp value on the image, we also set the neighbouring area. So instead of
a single pixel, we set a 3x3 area. Only grasps with a value above 0.002 are recorded
in the image, other grasps are ignored. For grasps with Robust Ferrari-Canny metric
value above 0.002 we set the value in the image to 1. This means the image will
have either -1, 0 or 1 values.

After training this network for 30 epochs, we noticed the network started to
predict some plausible grasp quality images around the 15th epoch. Unfortunately,
after that, it went back to predicting mostly noise. From this, would could deduce
setting the background to a default value of 0 had definitely helped, but we still had
to make some more improvements.

binary_im = binary_im.resize((200, 200))

quality_image = binary_im.raw_data/255 * -1

grasp_angle_image = np.full([200,200,1], 0.0)

metrics_grasps = sorted(zip(metrics,grasps), key=lambda x: x[0])

for metric, grasp in metrics_grasps:
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x = int(grasp[0] / 2)

y = int(grasp[1] / 2)

if (metric >= 0.002):

quality_image[x-1:x+2, y-1:y+2, 0] = 1

Listing 8: Pseudocode of algorithm for creation of Positive Classification Dataset.

Classification Dataset

Figure 7.5: Sample datapoint in Classification Dataset.

We created this dataset in the same way we create the Positive Classification
Dataset, but this time grasps with Robust Ferrari-Canny metric value less than 0.002
were also recorded on the grasp quality image. These value of the pixel area corre-
sponding to these grasps was set to 0 so, similarly to Positive Classification Dataset,
the grasp quality images created had values of either -1, 0 or 1.

After training the network for 30 epochs, we could see the network started cor-
rectly predicting grasp quality images from the input depth images starting from
epoch 10, and kept improving and becoming come accurate as the training contin-
ued.

Summary

The similarity and differences between the 6 datasets are summarized the the Table
below.

Dataset Grasp Area Bkgd Value Bad Grasps Class. Regr.
Unknown-Default, Regr. 1 px -1 3 7 3

Unknown-Default, Class. 1 px -1 3 3 7

Positive Classification 3×3 px 0 7 3 7

Classification 3×3 px 0 3 3 7

Table 7.1: Summary of Grasp Quality Datasets characteristics
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7.6.2 Grasp Angle Images Datasets

After succeeding in training a network able to reliably predict grasp quality im-
ages from depth images, we started considering the options we had for generating
datasets of grasp angle images. Some of the variables we considered were:

• Either setting the whole image to represent an unknown value by default, set-
ting it all to 0 by default or only setting the pixels belonging to the object to
represent unknown value, while setting everything else to 0.

• Either setting only pixels corresponding to good grasps or setting examples of
both good and bad grasps

• Either setting an area for each pixel corresponding to a grasp or only the exact
pixel

Zero-Default, All Grasps Angle Dataset

We started by setting all pixels in the image to a value of 0. We then retrieved
all the grasps from the GQ-CNN dataset, sorted them by metric value(from worst
to best) and set the 3×3 areas around each pixel to the value of the grasp angle.
After training, although this method seemed to still return reasonable grasp quality
images, it predicted angles very close to 0 for all grasps.

Unknown-Default, All Grasps Angle Dataset

We started by setting all pixels in the image to -1(unknown). Then we proceeded to
set the grasp angle values with the same method we used while creating the Zero-
Default, All Grasps Angle Dataset. Unfortunately, even after 30 epochs, the network
didn’t converge and could not even predict grasp quality images accurately.

All Grasps Angle Dataset

For this dataset, we set pixels belonging to the object to represent an unknown value
and all other pixels to 0. Then we set the grasp angle values with the same method
we used while creating the two previous grasp angle datasets. Unfortunately, even
in this case and after 30 epochs of training the network did not converge.

7.7 Finetuning

At this point, we decided to try a different strategy. First, we trained the model for 30
epochs on grasp quality images and all 0s grasp angle images, then we changed the
grasp angle dataset to the All Grasps Angle Dataset, while keeping the same network
weights.

This allowed the network to properly learn grasp angles. Even though the results
were satisfactory, we noticed the network would often try to predict an angle that
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represented an average of good and bad grasps angles, resulting usually in a failed
grasp when executed on a real object.

This is why we decided to apply the same strategy but on a different grasp angle
dataset. We created a new grasp angle dataset using the same method we applied
to the All Grasps Dataset, but only set grasp angles of good grasps. We will call
this dataset the Positive Grasps Angle Dataset. The network we finetuned using this
grasp angle dataset proved to be our best performing GQ-AE model. Some example
predictions of our best performing GQ-AE model are shown in Figure 7.6.

Figure 7.6: Results of our best performing GQ-AE, predicting grasp quality image (cen-
ter) and grasp angle image(right) from a depth image(left). The best predicted grasp
pose in shown using the red dotted line.

7.8 Evaluation

For the evaluation of our GQ-AE networks, we used the same metrics and testing
framework introduced in Chapter 5. It is important to note that for this evaluation,
the baselines we calculated for all datasets are no longer applicable. This is because
the GQ-AE no longer makes use of the Antipodal Grasping Policy, and the GQ-AE
network is the only component of our grasp selection process. With an Antipodal
Grasping Policy(described in detail in Subsection 3.9.4), even if grasp are ranked
randomly, there is still a good chance the “best” grasp could be robust, as we have
seen when creating baselines for our datasets, where the success rate was always
above 60%.
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The Dex-Net implementation doesn’t rely solely on a grasp quality neural net-
work as we do, an uses a grasp sampling algorithm to propose candidate grasps.
Furthermore, our implementation is, on average, 100 times faster than the origi-
nal method proposed by Dex-Net. Our GQ-AE seemed to perform better than the

Original GQ-CNN
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 84.5% 75.0% 72.0% 94.4%
Unknown 99.0% 92.0% 91.0% 100.0%
Procedural 77.0% 75.0% 74.0% 85.1%
Princeton 88.5% 52.5% 56.5% 85.8%

GQ-AE
Mesh Dataset Success Rate Accuracy Robustness Rate Precision

Known 81.0% 74.0% 63.0% 93.7%
Unknown 96.0% 86.0% 90.0% 95.6%
Procedural 65.0% 61.0% 52.0% 75.0%
Princeton 34.0% 60.0% 38.0% 42.1%

Speed
Random Original GQ-AE

Policy GQ-CNN
0.1-0.3s 2-4s 0.02-0.04s

Table 7.2: Performance comparison between different approaches to the grasping prob-
lem: the Dex-Net GQ-CNN approach, that uses a sampling algorithm and then ranks
them using a GQ-CNN, and our new GQ-AE approach. Our GQ-AE doesn’t rely on an
antipodal sampling algorithm and returns a possible grasp for each pixel in a depth im-
age, together with a quality value, the grasp with the highest quality value is selected
and executed. Our GQ-AE is about 100 times faster than the original Dex-Net imple-
mentation.

GQ-CNN on small irregular objects(Figure 7.7) such as planes, where the Dex-Net
GQ-CNN seemed to struggle with. On the other hand, our GQ-AE had difficulties
grasping very thin objects, as shown in Figure 7.8. This could be caused by a lack of
robust grasp examples for this type of object, and the problem could be easily solved
by generating some more. Additionally, we noticed our GQ-AE would occasionally
fail to grasp objects due to incorrect gripper depth. This is because we did not in-
clude depth information about the grasp when training our network, this could be
easily fixed by adding this additional information.
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Figure 7.7: Example of object our GQ-AE grasped more reliably than Dex-Net GQ-CNN.

Figure 7.8: Example of failure case for our GQ-AE. We noticed the model seemed to
struggle predicting accurate grasp quality and angle on thin objects.
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8 From Simulation to Real World

Figure 8.1: The picture shows our set up for evaluating our grasping models in the real
world.

After thoroughly evaluating and testing our networks in simulation it came time
to test on a real robot. The robot used was the same we used in simulation: a Sawyer
robotic arm. This robot features a 7 degree of freedom robot arm with a 1260 mm
reach. The robotic arm also features 2 cameras: one close to the main screen at
the top of the robot and another one placed on the arm(wrist camera), closer to its
end effector. To be able to control the robot and execute grasping tasks, we had to
implement a script able to interact with ROS(Robot Operating System) and send the
appropriate commands. By using the ROS network layer API, any client library or
program that interact with ROS and control the robot directly.[46]

8.1 Intera SDK

Sawyer offers the Intera SDK, a software interface that helps developers to create
applications for their robots. The SDK interfaces with the robot via ROS. The robot
can be controlled by connecting to its stand-alone ROS Master through the ROS APIs.
One of the main features of the Intera SDK is the interface provided to control and
access all of the robot’s motors and sensors. In addition, the Intera Interface provides
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Figure 8.2: Intera SDK system overview.[45]

a Python Class-based interface library, which wraps many of the ROS interfaces in
Python Classes. First, we installed and set up the ROS workspace on our Ubuntu
machine connected to the robot. Then, after testing the robot with a couple of the
example scripts provided by the Intera SDK library, we started implementing our
own script.

8.2 Cameras and Lighting

Our robot had to be able to take a picture of the scene from the camera placed on
its arm and send it to the Dex-Net CEM policy script. The policy script would sample
possible grasps and evaluate them using our GQ-CNN network, as explained in Sec-
tion 3.9.4. The script would then return a grasp, defined using its pixel coordinates
on the image and its grasp angle. From this information, and knowing the intrinsic
parameters of the robot’s camera, together with its position relative to the robot’s
own coordinate frame, the point can be deprojected to 3D space and transformed to
obtain its 3D coordinates and gripper orientation(described as a quaternion) relative
to the robot’s coordinate frame. We would then use Intera’s IK service to calculate
the angles of each one of the 7 robotic joints in the given position. We decided to
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Wrist Camera
Description Spec

Camera Resolution 752 x 480
Lens Type Wide Angle
Chromo Grayscale

Head Camera
Description Spec

Camera Resolution 1280 x 800
Lens Type Wide Angle
Chromo RGB

Table 8.1: Sawyer embedded camera specifications [46]

implement the grasping execution similarly to how we implemented it in simulation:
we would first place the robot hoovering 20cm above the desired grasp position so
it could move down in an almost perfect straight line. The gripper would then close
and the robot would lift the object and place it in a box.

Even though the implementation of the script itself didn’t present many difficul-
ties and the robot was relatively easy to work with, we immediately noticed some
problems with the images captured by the wrist camera. Depending on the light
conditions in the room, their quality would vary greatly, often going from completely
white to completely dark images.

Luckily, the Intera SDK offers a way to regulate the exposure of the image. Adapt-
ing the exposure value to the lighting conditions proved to be effective and we man-
aged to obtain very clear images of the workspace. We also found out this camera
doesn’t support RGB and can only capture greyscale images. This further compli-
cated the adaptation process, as our policy was suddenly not able to distinguish
objects from the background, even if they were very different colors. In order to
minimize shadows, we used a green matte table cloth, but due to the very limited
contrast between the objects and the green background, we had to change our strat-
egy. We used A4, white pieces of paper to create a uniform background, as we hoped
they would create images with higher contrast. This trick worked very well, as long
as we avoided light colored objects(yellow or white). The downside to this approach
was that, unfortunately, the white paper did not minimize shadows as well as the
green table cloth did.

Regardless of this, the shadows didn’t seem to affect the network to a point where
it was unable to differentiate good grasps from bad ones in most cases. The most
common issue the shadows caused was offsetting the center of the grasps slightly
towards the side where the shadow was cast, causing some grasps to collide with
the object or miss it entirely.

8.3 Coordinate Frames

When called, the CEM policy returns the (x, y) coordinates, in pixels, of the best
grasp it has found on the given depth or RGB image, together with the grasp angle.
These (x, y) pixel coordinates had to be deprojected into 3D space. The Dex-Net
codebase implements a function to perform this operation and returns a 3D point
relative to the camera coordinate frame. In order to transform the grasp position
from the camera coordinate frame to the robot coordinate frame we had to under-
stand how both frames were defined, so we could derive their relative transformation
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Figure 8.3: Coordinate frame of robot and wrist camera.

matrix. A representation is shown in Figure 8.3.

8.4 Gripper

Our Sawyer robot was equipped with an electric parallel gripper. The gripper is
made up of:

• The base connection (the wrist) that connects the arm of Sawyer.

• 4 sets of two fingers that can be screwed to the base connector.

• 3 sets of fingers tips of different width and shape.

Depending on the set of fingers chosen and how they are screwed onto the base
connection of the gripper, the maximum and minimum width of the gripper varies,
but the difference between the maximum and minimum gripper width stays the
same at 23mm. The maximum possible gripper width for the widest set of fingers is
151mm. In Table 8.2 a summary of all the possible gripper configurations is shown.
Considering the size of our object and how our GQ-CNN was trained, we decided
to use Narrow fingers and screwed them at position 3, obtaining a gripper width
that could vary between 33mm and 56mm. For the fingertips, we decided to use
the Basic model, a simple rectangular shape, as they were the most similar to the
ones we used in training and simulation. Controlling the gripper was relatively
straightforward thanks to the Intera Interface and the examples provided. During
the first grasping attempts, we realized the gripper was closing so fast the objects
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Object Width Finger Position
0-18 mm Narrow 1
14-37 mm Narrow 2
33-56 mm Narrow 3
52-75 mm Narrow 4
71-94 mm Wide 1
90-113 mm Wide 2
109-132 mm Wide 3
128-151 mm Wide 4

Table 8.2: Possible gripper configurations and grasp width ranges. In bold, the configu-
ration we used for our experiments.

were often being moved or rotated during the grasp, causing the execution to fail.
After we changed the gripper settings so the gripper would move slower the issue
was resolved.

8.5 Objects

In order to evaluate our GQ-CNN, we wanted to test on a variety of objects the
network had never seen before. Unfortunately, since we didn’t have a depth camera,
we had to limit our choice of objects to items that were mostly uniform in color. We
also had to avoid any objects that contained reflective or transparent components.
We also had to consider the limits of our gripper, so we could only use objects with
a graspable section between 33 and 56mm. A picture of some of the objects used
during the evaluation is shown in Figure 8.4.

8.6 Evaluation

We tested grasp execution on each shape 10 times. Objects that appeared different
from different angles were considered as different shapes. Overall, we had around
15 objects, but if we considered the different positions that they could be placed in
we could test our model on over 30 different shapes. Our results showed a 100%
success rate on very simple and linear objects such as cubes and prisms. The network
also performed very well on round objects, with a 93% success rate. Examples of
round objects we tested on are shown in Figure 8.6.

The network also showed reliable grasping behaviour(≈85% success rate) on
objects with a fairly large graspable area, such as a toy hammer and toy pliers, or
other objects such as pens and screws.

Our algorithm seemed to have difficulties dealing with very small shapes where
precision was fundamental. A good example of this is a triangular shape: even
though the algorithm would always return a grasp attempting to position one finger
on a vertex and the other in the middle of the opposite edge, when executed the
gripper would often miss the vertex by a few millimeters, causing the grasp to be
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Figure 8.4: Some of the objects used during GQ-CNN evaluation on Sawyer.

Figure 8.5: Elite grasps for simple red prism on white background(Left) and best
grasps(Right).

either very unstable or to fail entirely. The success rate on this object was 60%.
Another similar example, where the algorithm achieved the same 60% success rate,
is shown in Figure 8.7.

When tested on diamond-like shapes, the algorithm performed fairly well, with
an overall success rate of ≈80%.

The final test group was composed of very irregular shapes, where multiple ro-
bust grasps could be executed and possible collision had to be taken into account. A
good example of this is the toy saw.

The algorithm performed very well in this type of shape, executing grasp suc-
cessfully ≈85% of attempts. Even though the network was able to identify areas of
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Figure 8.6: Elite grasps for round objects on a green background(Left) and best
grasps(Right).

Figure 8.7: Best grasp for multiple attempts of grasping a small irregular shape. Even
though the best grasp is identified correctly in the majority of attempts(Center, Right)
the grasps are often unsuccessful(≈30%) due to imprecision during execution.
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optimal grasp robustness correctly, it did sometimes fail in predicting possible colli-
sions. This might be caused either by imprecision in the actuation or by the network
being trained for collisions on a slightly different gripper shape than the real one.

Figure 8.8: Elite grasps(Left) and best grasp(Right) for very irregular shape where
possible collision has to be considered.

Object Type Number of Shapes Success Rate
Prisms & Similar 10 100%
Round 3 93%
Big Irregular Shapes 5 85%
Possible Collision 2 85%
Diamonds & Trapezoids 2 80%
Small Irregular Shapes 2 60%

Table 8.3: Results of grasp execution policies on a real robot grouped by type of shape,
ranked from best to worst performance.
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9 Evaluation

In this chapter we will briefly summarize the results discussed previously, and high-
light the strengths and weaknesses of each model.

9.1 Original GQ-CNN

Strengths

• High accuracy on both seen and unseen objects

• The use of antipodal grasp sampling policy helps greatly by only proposing
“reasonable” grasps to the grasp quality network.

Weaknesses

• Slow. Takes between 2 and 4 seconds to locate a robust grasp

• Has difficulties grasping small, irregular objects. This happened in both simu-
lation and real-world evaluation, but for different reasons. In simulation, the
GQ-CNN wasn’t able to accurately rank grasps on objects where the vast ma-
jority of possible grasps were likely going to be unstable. Even if grasps on
a certain object are bad, the GQ-CNN should still be able to locate the most
robust, and in this particular case, it was unable to do it and performed even
worse than random choice. In simulation, it was able to locate a robust grasp
accurately, but imprecision in grasp execution would often cause the grasp to
fail.

• Long training times(>24h)

• High number of trainable parameters(18 million)

9.2 GQ-CNN increased resolution

Strengths

• High accuracy on both seen and unseen objects

• Generally, predicts more robust grasps if compared to the original GQ-CNN
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Weaknesses

• Huge dataset(>80GB)

• Long training times(>24h)

• High number of trainable parameters

9.3 GQ-CNN 3 million parameters

Strengths

• Faster to train

• Less prone to overfitting

Weaknesses

• Slightly less accurate

9.4 GQ-AE

Strengths

• 100 times faster than original GQ-CNN in predicting a robust grasp

• Doesn’t rely on a grasp sampling algorithm

• Able to learn from incomplete data and extrapolate relevant information

• Low number of trainable parameters(≈66k), making it faster to train and less
likely to overfit

Weaknesses

• Although it has a similar performance to the original GQ-CNN on known and
unknown objects similar to the ones it was trained on, it performs significantly
worse on completely new shapes. Part of this drop in performance is likely
caused by the lack of a grasp sampling algorithm component.

• The fact the network doesn’t rely on a grasp sampling algorithm, occasionally
causes extremely bad grasps to be executed

• It has difficulty grasping thin objects, this could be likely fixed by adding more
examples of these types of objects in the dataset

• Grasps often fail because of wrong grasp depth. This is because grasp depth
was not included while training the network
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10 Conclusions and Future Work

10.1 Conclusions

In the first part of our project, we succeeded in reproducing the methodologies de-
scribed in the Dex-Net 2.0 publication: we generated a dataset of synthetic data
starting from 3D meshes and used it to train GQ-CNN that was able to reliably pre-
dict robustness of grasp candidates.

We contributed to the Dex-Net repository by suggesting bug fixes, solving library
clashes and sharing updated installation scripts. We also verified the validity of the
grasps generated by the Dex-Net codebase in simulation. Furthermore, we trained
a GQ-CNN able to accept RGB images as input and extended the Dex-Net codebase
with a policy able to sample antipodal grasp candidates from an RGB image. Then,
we tested our new RGB policy and GQ-CNN on a real robot.

We also implemented an effective testing framework for evaluating and compar-
ing different grasp quality neural networks using V-REP. We generated many vari-
ations of the original GQ-CNN dataset to train new GQ-CNNs networks, evaluated
and compared their strengths and weaknesses, tested out new architectures and suc-
ceeded in creating a new GQ-CNN with 84% fewer parameters than the original GQ-
CNN architecture and similar performance. We also trained a GQ-CNN network on
higher resolution images with more context on each object. This network achieved
slightly better performance than the original GQ-CNN in the majority settings.

In the last part of our project, we worked on an entirely new methodology, build-
ing a new type of grasp quality network able to simultaneously evaluate all possible
grasp position and locate the most robust one 100 times faster than the Dex-Net
algorithm.

This model was trained using a novel training technique we developed to allow
the network to learn successfully from incomplete data. The network was able to
extrapolate relevant information from thousands of partial data images and correctly
merge the knowledge gained from each one to accurately predict complete grasp
quality images.

Whilst the performance of our network was slightly lower than Dex-Net’s, we
believe this approach has great potential to be further researched and improved.
Furthermore, our network seemed to perform much better on certain types of ob-
jects(e.g. very small, highly irregular shapes such as small planes) that the original
Dex-Net GQ-CNN consistently struggled with.

10.1.1 Lessons Learned

• Data Generation Many times, during our data generation processes, we would
wait hours or even days for a dataset to be fully generated only to realize that

98



Chapter 10. Conclusions and Future Work 10.2. FUTURE WORK

for some reason, a small change was necessary before being able to use it to
train a network. After the first few times, we learned to test on a small subset
of the dataset before starting long computations.

• Third Party Libraries As we learned using Dex-Net, it is better to thoroughly
test research libraries such as Dex-Net before implementing it in your own
application, as they could be old versions or only partial copies of the codebases
the researchers actually used.

• Record all Experiments At the beginning of our evaluation process, we did
not record all of the information we would have needed, such as the pose we
were setting the object in when grasping it. This meant we had to repeat some
experiments as we were unsure about which object poses we evaluated in our
previous experiments.

• Constantly Back up Code and Data A few days before the end of our project,
one of the machines we were working on, Tiger, crashed and became unavail-
able. This meant the loss of the latest version of our code and models. Luckily,
we frequently backed up all data and code on multiple machines, but the latest
version we had was still a couple of days old. This caused us to waste some
time re-implementing and re-training a few models.

10.2 Future Work

GQ-CNN parameters improvement

In Section 6.5 we succeeded in training a GQ-CNN with 84% fewer parameters than
the architecture presented in the original Dex-Net 2.0 publication. We also confirmed
this new model performed as well as the original GQ-CNN in most situations. Even
though we did not have time to explore other architectures further, we believe there
could be room for improvement and it could be possible to reduce the size of the
network even further, while still maintaining similar performance.

Training with Procedurally Generated Objects

Although the procedurally generated objects we generated were useful during train-
ing, we did not have time to thoroughly evaluate their potential as training data for
our networks.

RGB Images Generation with Random Illumination

The 6.2 million datapoints dataset of RGB images we created included domain ran-
domization over object color and camera position, but not illumination. Not sur-
prisingly, this caused problems when the network was evaluated in the real world,
where shadows were hard to avoid.
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Explore different levels of Domain Adaptation

As we trained our GQ-CNN on different amounts of objects and compared their
performance, it would be interesting to train GQ-CNNs on different datasets with
different levels of domain adaptation(e.g. lower or higher numbers of randomized
camera positions for each grasp) and compare their performances.

Include Depth in GQ-AE

We decided to train our GQ-AE ignoring gripper depth information, but we noticed
this turned out to be a problem during the evaluation phase as many grasps were
failing because the depth of the gripper was incorrect. This would be straightforward
to implement and hopefully significantly boost the performance of our GQ-AE.

GQ-AE Training Optimization

Our GQ-AE training script is currently quite inefficient, as Pytorch did not offer any
built-in way of ignoring certain values while computing the loss function between
two images. This meant we had to change parts of the predicted images to match
the training images. Because Pytorch doesn’t allow in-place operations on tensors,
we had to clone each tensor before applying the loss function and this significantly
slowed down the network’s training times. In future work, we would like to optimize
this part of training by building our own version of Binary Cross Entropy or Mean
Squared Error that would consider certain pixels in the images.

GQ-AE Training Method

In Section 7.6 we explored many different ways of training our network, but we
believe we could still improve the network performance significantly by tweaking
our data generation and training methodologies further. One idea we had but were
not able to test was using some form of “confidence” metric over the value of each
grasp, so that the loss function could weight the loss of each pixel differently based
on its corresponding confidence value. We thought about this when setting values
of neighbouring areas of pixels instead of exact pixels only, as we obviously had
more confidence that the exact pixel value represented a correct grasp quality metric
compared to the area around it.

RGB and RGB-D GQ-AE

Our GQ-AE was only trained on depth images, but it would be interesting to train it
on RGB or RGB-D images and test how performance varies.

GQ-AE Applied to Complex and Dynamic Environments

Given how fast our GQ-AE network is in locating a stable grasp on an object(≈0.03
seconds), it would be feasible to apply it in a dynamic environment to try and grasp
moving objects, as well testing its performance on a real robot.
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A Pseudocode

A.1 Camera Randomization Parameters

# Camera pose

# Min-Max radius for viewing sphere

min_radius: 0.65; max_radius: 0.75 # in meters

# Min-Max elevation (angle from z-axis) for camera position

min_elev: 0.1; max_elev: 5.0 # in degrees

# Min-Max azimuth (angle from x-axis) for camera position

min_az: 0.0; max_az: 360.0 # in degrees

# Min-Max roll (rotation of camera about

# axis generated by azimuth and elevation) for camera

min_roll: -0.2; max_roll: 0.2 # in degrees

# Object pose

min_x: -0.1; max_x: 0.1 # in meters

min_y: -0.1; max_y: 0.1 # in meters

Listing 9: Parameters used for camera randomization

A.2 Obtaining Camera Image and Info with ROS

import intera_interface

camera_name = "right_hand_camera"

cameras = intera_interface.Cameras()

cameras.set_exposure(camera_name, 7)

cam_info_topic = "io/internal_camera/right_hand_camera/camera_info"

cam_info_msg = rospy.wait_for_message(cam_info_topic, CameraInfo)

cam_intr = CameraIntrisics(cam_info_msg.header.frame_id,

cam_info_msg.K[0], cam_info_msg.K[4],
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cam_info_msg.K[2], cam_info_msg.K[5],

cam_info_msg.K[1], cam_info_msg.height,

cam_info_msg.width)

cam_img_topic = "io/internal_camera/right_hand_camera/image_rect"

cam_img_msg = rospy.wait_for_message(cam_img_topic, Image)

bridge = CvBridge()

cv_image = bridge.imgmsg_to_cv2(cam_img_msg, 'rgb8')

Listing 10: Pseudocode of algorithm used to retrieve Camera Image and Camera Info
using ROS, from Sawyer robot

A.3 Antipodal Grasp Sampling

def sample_antipodal_grasps(depth_im, num_samples):

# compute edge pixels

edge_im = depth_im.apply_gaussian_filter(sigma=gauss_sigma)

# add to pixel to edge list if edge value greater than threshold

edge_pixels = edge_im.threshold_gradients(depth_grad_thresh)

# compute surface normals

edge_normals = calculate_surface_normals(depth_im, edge_pixels)

# uniformly sample pairs of edge pixels

edge_pairs = edge_pixels.uniform_sample(2)

# form set of valid candidate point pairs

valid_pairs = edge_pairs.where(

(normal_ip < -np.cos(np.arctan(friction_coef))) and

(dists < max_grasp_width_px) and

(dists > 0.0))

# prune out grasps that are not antipodal

antipodal_pairs = valid_pairs.check_antipodal(edge_normals)

k = 0

grasps = []

while k < sample_size and len(grasps) < num_samples:

p1, p2 = antipodal_pairs[k] # get the 2 contact points

k += 1
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grasp_center = (p1 + p2) / 2 # compute center and axis

grasp_axis = normalize(p2 - p1)

grasp_theta = np.arctan2(grasp_axis[0], grasp_axis[1])

# get depth in the neighborhood of the center pixel

depth_win = depth_im.get_min_value_in_window(wind_h, wind_w)

# sample depth between the min and max

sample_depth = center_depth

+ min_depth_offset

+ ((max_depth_offset - min_depth_offset) * np.random.rand())

candidate_grasp = Grasp2D(grasp_center_pt, grasp_theta, sample_depth)

grasps.append(candidate_grasp)

return grasps

Listing 11: Pseudocode of antipodal grasp sampling algorithm on a depth image
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