Imperial College
London

FINAL PROJECT REPORT

DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

An Investigation into Adding
Exception Handling to Haskell

Author: Supervisor:
Calin Farcas Steffen van Bakel

June 9, 2020

Submitted in partial fulfillment of the requirements for the MEng Computing
Degree of Imperial College London

Abstract

We explore the possibility of adding the notion of exception handling by name to
Haskell. We begin by presenting some relevant formal systems, such as the A-
Calculus, Ay and, notably, A%, which is a calculus that models exception handling.
We then review the previous work done on the subject, which involves translating
A" into Ay and A into a calculus called CDC' in order to obtain a Haskell imple-
mentation of \'¥ based on an existing C'DC library. Unlike the previous work, we
do not follow the A\ and C'DC' path, but seek out a more direct implementation,
possibly involving extensions to the language itself. We present a \'"¥ Haskell evalu-
ator based on the Either data type and prove that it preserves reduction. We review
GHC, the Haskell compiler, and explore the calculi that it is based on: Hindley-
Milner and System FC. We outline that we do not believe a translation from ¥
to Hindley-Milner or System FC is possible and develop our evaluator into a fully
fledged extension to Hindley-Milner which allows the mapping of \'¥ to it. We
prove that our mapping preserves reduction. We conclude with an evaluation of our
results and an outlining of some possibilities for further development.

Acknowledgements

I would like to thank my supervisors, Steffen van Bakel and Nicolas Wu, for our very
fruitful discussions and the continuous support that they have provided during these
trying times. I have had a wonderful experience working on this project and it would
not have been possible without them.

I also want to thank Bianca for her patience with my countless hours of being lost

in theoretical proofs in the last months - and, not least, I would like to thank my
parents for supporting me in the last 4 years.

ii

Contents

1 Introduction

2 Background
2.1 Formal Systems
2.1.1 Alphabet
2.1.2 Grammar e e e e e e e e e e e e e e e e
2.1.3 DerivationRules
2.1.4 Significance
2.2 XCalculus e
2.2. 1 AteImS e e e e e e e e e e e e e e e e
2.2.2 ReductionRules
223 Types . . .o e e e e e
2.3 Ap-Calculus e
2.3.1 Terms e e e e e e e e e
2.3.2 ReductionRules
2.3.3 Types . .. e e e e
2.3.4 Significance
2.4 MNr-Calculus e
2.4.1 Terms e e e e e e e e e e e e e
2.4.2 ReductionRules
243 Types . . .o e e e e e e e
2.4.4 RepresentatioNnin At v v v v v vt vt e e
2.5 Haskell Monads i e
2.5.1 Haskell Types i ittt et
2.5.2 Definition e
2.5.3 Benefits
2.6 Existing Haskell Implementation
2.6.1 Calculus of Delimited Continuations
2.6.2 AMutoCDC e e e e
2.6.3 FinalResult

3 A Haskell Evaluator
3.1 Definitions o o e e e e
3.2 Implementation e
3.3 Preservation of Reduction

iii

N

AP~ WWWW

CONTENTS

CONTENTS

4 GHC and System F
41 GHC
4.2 Core and System F
4.2.1 Before System FC
4.2.2 System FC

6

Extension to Hindley-Milner
5.1 Motivation
5.2 Following the Evaluator
5.3 Extensions
5.3.1 To the syntax of terms
5.3.2 To reduction rules
5.4 Translation
5.5 Examples
5.6 Preservation of Reduction

Conclusion

6.1 Evaluation
6.2 Conclusion
6.2.1 Future Work

Bibliography

Chapter 1

Introduction

What does it mean to compute something? This is a question of utmost importance
for computer scientists, and there have been many ways that people have attempted
to deal with this matter. Two of the more well-known approaches were Alan Turing’s
Turing Machines and Alonzo Church’s \-Calculus, both of which were introduced to
model computation.

In particular, the A-Calculus has become the basis for the functional programming
paradigm, perhaps also due to its simple nature: everything is either a variable, an
abstraction, or an application. This is powerful enough to model a very large subset
of the computation that might occur in a computer program, but also simple enough
to be reasoned about. In its basic form, however, it is still not expressive enough to
meaningfully model certain concepts, one of these being exception handling.

In [1], van Bakel presented A% - an extension of the \-Calculus which formally
models exceptions and exception handling in a functional style. Part of the novelty
that this brings is that exceptions are being discriminated by name, instead of the
usual approaches - which are discrimination by type (Java, Haskell and others), or
not discriminating them at all (Javascript).

This calculus (in an earlier version) has been studied along the years: various prop-
erties were proven by Baciu in [2], and Griffiths further studied and developed cer-
tain extensions of it in [3]. In particular, in [4], Fisher explored an implementation
of the \"¥-Calculus in Haskell. This implementation did work as a proof of con-
cept - however, as mentioned in his paper, the end result suffered from a number of
shortcomings, many of which were due to the fact that, in order to come up with
an implementation in Haskell, the original *"¥-Calculus was first translated through
two other systems. This proved that a translation to Haskell was possible, while leav-
ing open ended the issue of the existence of a direct, more practical implementation.

This project aims to explore the possibility of such an implementation and what level
of language modification it would imply, as well as to further study any relevant
properties of it.

Chapter 2

Background

This chapter sets the context for the whole project and outlines previous work re-
lated to the implementation of A% in Haskell.

2.1 Formal Systems

A formal system [5] is a mathematical tool used to model some domain in order to
predict, extract, prove and illustrate various properties of the domain.

Formal systems come in many forms and flavours. For the purpose of this report, we
are going to assume the following (reasonable) definition: a formal system is given
by an alphabet, a grammar and a set of derivation rules. We explain each of them
below.

2.1.1 Alphabet

The alphabet of a formal system is a set of symbols that defines the vocabulary of
the system: everything that the system can ”talk about”, it has to do so using only
symbols that exist in the alphabet.

For example, an alphabet could be the set of digits {0, 1,2, 3,4,5,6,7,8,9} or the set
of upper case letters {A, B, ..., Z}.

Then, a concatenation of symbols from the alphabet is called a formula - for the
example alphabets above, some possible formulas are 007 and XY Z, respectively.

2.1.2 Grammar

A grammar is a set of rules that specify how to construct more complex formulas
from simpler formulas. It is common that the rules have the following form:

3

2.1. FORMAL SYSTEMS Chapter 2. Background

Fuo=fi| ... | fa
F is a symbol that stands for the formulas that are being described by the rule,
fi, fa,..., fn are sub-rules, and the interpretation of the whole rule is that a formula

F can be obtained via any of the sub-rules f; to f,,. The sub-rules themselves take
the form of basic formulas (using only the symbols in the alphabet), with the caveat
that they are also allowed to contain the symbol F - in that case, they are recursive,
meaning that the F in them stands for any other formula that is described by the
same rule.

In a formal system, the grammar is a way of specifying which formulas are well-
formed and which are not. A formula is said to be well-formed if it can be constructed
using the grammar of the system. Consider, for example, the alphabet given by the
set of digits mentioned above. Then, a possible grammar is:

M :=1]12]60

In this case, M is the general notation for a well-formed formula. The rule is read as:
1 is a well-formed formula, 12 is a well-formed formula, 60 is a well-formed formula
and nothing else is.

The rule above does not look incredibly useful. However, as mentioned, sub-rules
can also be recursive, for example:

M :=1]| MO

This is to be read like this: 1 is a well-formed formula and any formula obtained by
appending a 0 to a well-formed formula is also well-formed. Thus, we could say that
the well-formed formulas generated by this rule represent all of the natural powers
of 10: 1, 10, 100 and so on. In contrast, 123 is not well-formed here, because we
have no way of constructing it with our grammar.

Given a formula, the situation might not be as clear as in the example above: there
has to be some precise decision procedure in order to establish whether the formula
can be constructed with the existing rules or not. When talking about well-formed
formulas from now on, we will assume the existence of such a procedure.

Grammars give us a way to talk about only a subset of all of the possible formulas
given by the alphabet. Typically, we do not care about the others, as a formal system
is mostly concerned with formulas that are well-formed: anything else is invalid
and can not be reasoned about, just as if we were to ask what the result of the
mathematical expression 01)(? was.

2.1.3 Derivation Rules

For the rest of this report, we will refer to formulas as terms.

Chapter 2. Background 2.1. FORMAL SYSTEMS

We have seen how to construct well-formed terms in a formal system. Derivation
rules (also called reduction rules) provide us with a way of manipulating these terms,
effectively by replacing one term with another. This is useful if we want our formal
system to be able to express something about the workings of the domain that we
are trying to model.

Reduction rules specify how term rewriting can take place. They have the form
LHS — RHS

where LHS and RHS take the form of sub-rules (similar in appearance to the ones
found in the grammar rules). A well-formed term is said to match the LHS of a rule
if, were we to have the LHS as a sub-rule in our grammar, we could use it to con-
struct the term. The RHS represents what we can replace a term that matches the
LHS with - importantly, if the LHS is recursive (which means that it contains a sym-
bol that stands for another well-formed term), then that symbol is “captured” and
can also appear on the RHS. Wherever the LHS is matched, such symbols on the LHS
and RHS stand for the same term (whose exact form will be determined by actually
constructing the term to be reduced using the LHS). Consider the following example:

Let our alphabet be {e, o, ¢} with the following grammar:
M,N:=e|lo|MtN

M and N both stand for well-formed terms in the rules above: we use two letters in
order to not give the impression that M and N have to be the same in the rule M ¢ N.

Then, take the reduction rules:

etM —e (even)
ot M — M (odd)

If we have a (well-formed) term that matches the left hand side of any of the re-
duction rules, we are allowed to replace it with the right hand side of the rule. This
process is called reduction. Below are a few examples of valid reductions:

(even)

et(oto)

(odd) (even)

eto

et(oto)

(odd) (odd)
> o o

ot (oto) ot

The rule that we have used is written above the arrow for each step. Note the use
of brackets to remove the ambiguity - without them, the term e ¢ (o ¢t 0) could be
parsed in two different ways. Also note that, starting with that term, we were able
to apply two different derivation rules (the first two reductions above). This means

5

2.2. \-CALCULUS Chapter 2. Background

that, in this case, we also allow reductions for subterms that appear as part of the
term on the left hand side - we can reduce the whole term using the (even) rule, or
first choose to reduce the (o ¢ 0) subterm using the (odd) rule. In general, a formal
system often specifies some reduction strategies, which make clear how reduction is
allowed to happen in any situation.

Note that, if we try to reduce the terms as much as we can, we reach a point where
we can no longer reduce them. This final form that we reach is called the normal
form. In general, a term is said to be in normal form if we can not reduce it any
further using the given reduction rules.

2.1.4 Significance

We have already mentioned that formal systems are tools used to model certain
domains. As such, they should have a connection with the domain they represent
and they should provide an abstraction that facilitates reasoning about and proving
properties of the domain.

The last example we have shown models the parity of integers and what happens
when multiplying numbers of various parities. The reduction rules express that mul-
tiplying an even number with anything yields an even number, and multiplying an
odd number with anything does not change its parity.

We are now going to present a series of formal systems that are central to this project
- however, these systems model something slightly more interesting: computation.

2.2)\-Calculus

The A-Calculus [6] is a formal system developed in the 1930’s by Alonzo Church
with the intention to model the mathematical notion of computable functions. It is
remarkable because of its elegance and simplicity and it has become the basis for
many functional programming languages such as Haskell and ML. The mechanisms
of the A\-Calculus, as presented in [6], are described below.

2.2.1 \-terms

In the A\-Calculus, terms are obtained from a set of term variables - {z,y, z, ...} - and
two operations: abstraction and application. Thus:

M,Nz= z | (M) | (M-N)
variable abstraction application

From a mathematical/computational point of view, these rules can be interpreted as
a \-term being one of the following:

Chapter 2. Background 2.2. \-CALCULUS

e avariable;

* a function that takes one input parameter and acts on it, producing another
term;

* an application of a term to another term, where M can be viewed as a function
and N as its argument.

Below are some examples of valid A-terms:

A\x.
Azyz. zy(zz)
(Axy. zy)(Az. 2)

There are some notational conveniencies visible above that we are going to follow
through this report. Firstly, we omit the dot between the terms in an application,
as the dot is the only possible operation between two terms. Secondly, we omit the
leftmost, outermost brackets and only use them to remove ambiguity in certain cases
(application is left associative): for example, the zy(zz) above stands for ((zy)(zz)),
and yzz would stand for (yz)x, not y(zx). Lastly, we contract consecutive abstrac-
tions under a single lambda: Azyz. ... stands for Az. (Ay. (Az. ...)).

Note that abstractions in the A-Calculus are anonymous, in that they do not possess
a name - they are identified only by their input parameters and their effects. For ex-
ample (note that numbers and mathematical symbols are not part of the A\-Calculus
by definition), if we were to represent the mathematical function double, defined as
double(z) = 2 % x, we could do so using the A-term Az. 2 * x. Moreover, the call
double(3) would be represented as (Az. 2 *)3, which we could argue should "eval-
uate” to 6 - we are going to make this notion more precise in the coming paragraphs.

First, we define the notions of free and bound variables. For a term M, we denote its
bound variables by bu(M). Thus:

buv(z) =@
(fﬂM)Zb() U {z}
bu(MN) = bu(M) U bu(N)
The free variables are denoted by fv(M). Then:

folz) = {$}
fo(Az. M) = fo(M) — {z}
Jo(MN) = fo(M) U fo(N)
Intuitively, a variable is bound if it appears anywhere under the influence of some
lambda which abstracts over it, and a variable is free if it appears anywhere and it is

not under the influence of any lambda that abstracts over it. A variable can appear
in multiple places, so it can be both bound and free in the same term.

7

2.2. \-CALCULUS Chapter 2. Background

2.2.2 Reduction Rules

We are now going to give the reduction rules of the system. The most important rule
is that (Az. M)N should reduce to the body of M in which all occurences of = are
replaced by N, which essentially works the same way as a mathematical function.
In the A-Calculus, this is expressed through the notion of substitution. Denote by
MIN/z] the term obtained from M by replacing all occurrences of x with N. This is
defined inductively, thus:

z[N/x] =N
yIN/xl =y if (z # y)
(MP)[N/x] = M[N/x|P[N/x]
(Ax.M)[N/z| = \e.M
[V/z]

(Ay.M)[N/x] = Ay (M[N/z]) if @z # y)

However, the last rule might pose a problem: for example, using it, we have that
(Ay.yx)[y/x] = Ay.yy. The y that was originally free in N has become bound af-
ter the substitution - this is called a variable capture and is considered bad, as it
changes the meaning of N. In order to avoid this problem, we assume Barendregt’s
Convention: free variable names and bound variable names are always different.
This implies that, in the last rule above, since y € bv(\y.M), y can not also appear
free in N, which makes the substitution safe. However (as we will see), Baren-
dregt’s Convention is not necessarily preserved by reduction and we may still end
up in a situation similar to the example we just gave (for example, when reducing
(Azy.zy)(Ary.zy), the convention holds at the start, but after two reduction steps
it does not hold anymore). In these situations, to enforce Barendregt’s Convention,
the notion of a-conversion is employed: informally, it means that we are free, at
any point, to rename the binding occurrence of variable in a term (and all of the
occurrences that it binds) to a fresh variable, without changing the meaning of the
term. This is necessary in order to proceed with reduction - in our example above,
we would first rename A\y.yx to \z.zz, after which the substitution will happen cor-
rectly: (Az.zx)[y/z] = Az.zy. We assume that a-conversion, whenever necessary,
happens silently.

We now define the notion of reduction for the A-Calculus - it is called S-reduction
and it is denoted by — 4. There is one main rule:

(Ax.M)N —3 M[N/x]

Additionally, there are 3 other inductive rules, which specify that we allow reduction
for subterms and under abstractions:

PM —3 PN
M —3 N=<{MP —3 NP
o.M —g Av.N

Chapter 2. Background 2.2. \-CALCULUS

The reflexive, transitive closure of — 4 is denoted by —7.

These rules model how computation works in the A-Calculus - essentially, progress
happens by applying a function to an argument. Below are some examples of valid
reductions:

(Az. 2)y =5y
(Azy.)y —5 Az. y
(Az. zx)(Az. xx) =5 (Ax. z2)(A\e. xx) =5 ..
(Azy. zy)(Az. z)(Az. 2)) =5 (Azy. 2y)(Az. 2) =5 Ay. (A\z. 2)y =5 Ay. y

As mentioned before, a term which we can no longer reduce is said to be in normal
form. We can already notice in the third reduction above that, in this calculus, not
all terms can be brought to a normal form - the interpretation of this could be that
there exist computer programs that never terminate.

2.2.3 Types

A very useful extension to the A-Calculus comes in the form of typing information:
that is, we may try to assign a type to each term and deduce something about those
terms that can be typed, and those that can not.

Such information is useful because it provides an abstraction of a program by distill-
ing all of the terms to the type level, which is less detailed and easier to reason about:
the focus is on the kind of input and output of the terms. From a programming per-
spective, type information is also important for a compiler - if it has information
about the types of functions and variables, it can give more detailed error messages
at compile-time, for example to warn the programmer about a function designed for
integers that is mistakenly applied to a string. It therefore also provides a way to
sanity-check a program before it is actually run.

We present here the type assignment system for the A-Calculus, as given in [6].

The set of types, ranged over by A, B, C, ..., is defined inductively over a set of type
variables {p, T, ...} via the following rule:

A B:=¢ | (A— B)

The main feature of this system is that A-abstractions will be assigned a type of the
form A — B, adhering to the fact that we think about them as being functions (that
take a parameter of type A and return something of type B).

A statement is an expression of the form M : A, which is read as "the A\-term M has

type A”.

A context, T', is a set of such statements that concerns types only for distinct, indi-
vidual variables, such as = or y. We write x € I if there exists some A such that

9

2.2. \-CALCULUS Chapter 2. Background

x:Ael,and x ¢ I" otherwise. We also write I', z : A for I' U {z : A}. Contexts will
be used for tracking the types of free variables while typing a term.

As a notational conveniency (arrow type chains are right associative), when writing
types, we omit the rightmost, outermost brackets, such that the type ¢ — 3 — ©3
stands for (¢1 — (p2 = ©3))-

We now give Curry’s type assignment system, which is defined using three derivation
rules:

(A Dw:AbeM:B gl THM:ASB ThN:A

I - o E
Iz:Abcz: A I M\ M:A— B =D I't.MN:B =B

The rules take the form of a natural deduction system, their meaning being: if the
statements above the line (the premisses) hold, then we can deduce the statement
below the line (the conclusion). When we write I' -, M : A, we mean that there
exists some derivation constructed using the rules above that has that statement as
the conclusion - this derivation proves that, in the context I', we can assign the type
Ato M.

To illustrate the rules, we give below an example derivation for the term Axy.xy:

(Ax) (Ax)
T:ip1— P2,y o1 bexipr = o T — P, Yty 1 & B)
TP P2,y 1Ty o
— 1)
TP = P2 e AYTY o1 = oo
(= 1)

O b Axy.xy : (p1 — p2) = p1 — P

Note that this is not the only type that we could have assigned to this term; in fact,
replacing all of the occurrences of any of the type variables in the derivation by
something else also yields a correct derivation. The derivation is by no means an
algorithm for finding all of the types we could assign to a term: it is merely an illus-
trative justification that a particular type works.

There are also terms that can not be typed in the A-Calculus. A very simple ex-
ample is provided in [6]: the self-application xz. We would like a derivation for
I'+. zx : B, for some B. Looking at our derivation rules, this could only have come
from an application of (— F), which means that our context would have to assign
the type A — B (for some A) to the left hand side x, and the type A to the right hand
side z. However, this would mean that we would either need to have two distinct
statements for x in our context, which is not allowed, or we would need to find a
solution for A — B = A, which is impossible. Hence the term can not be typed.

This type assignment system enjoys many interesting properties, such as subject re-
duction: if M —7% N and there exist a context I' and a type A such that I' -. M : A,
thenI' -, N : A.

10

Chapter 2. Background 2.3. \u-CALCULUS

There have been many extensions brought to the A-Calculus. We present two of
them that are relevant to this project in what follows.

2.3 \p-Calculus

In this section we present the \u-Calculus, which is an extension to the A-Calculus
introduced by Parigot in [7]. It is strongly related to a subset of logic called minimal
classical logic, in the sense that there is a correspondence between natural deductive
proofs in minimal classical logic and type derivations for terms in Au. This is called
a Curry-Howard isomorphism and, as mentioned by Griffiths in [3], others exist be-
tween different calculi and logics as well. In minimal classical logic, proofs have one
active conclusion and a number of alternative conclusions: this is reflected in Ay in
the form of the typing judgements. A judgement will have the form I" : M : A | A,
where M : A corresponds to the active conclusion and A (consisting of pairs of
names and types) holds the alternative ones. To model changing between conclu-
sions (activation and deactivation), Parigot introduces new constructs: named terms
(or commands), [a]|M (where « is the name), and p-abstractions, pa.[5]M. Through
their reduction rules, which, as we will see, are significantly different from normal
A-Calculus ones, they capture the ”algorithmic meaning” of proofs in minimal clas-
sical logic and, in a sense, they model control flow manipulation. We present the
version of Ay given by Griffiths in [3]:

2.3.1 Terms

Terms in Ay are defined as for A\, with an additional construct:

M,N == ... | (pa.[B]M)

The novelty is called the p-abstraction. Constructions of the form [3]M are usually
called commands and are treated as terms when convenient. « and [are called
names, and the notion of bound variables and names is defined similarly to \:

bu(z) =@
bv(Ax. M) =bu(M) U {x}
buo(MN) = bu(M) U bv(N)
bu(pa.[BIM) = bu(M)
bn(x) =@
bn(Ax. M) = bn(M)
bn(MN) =bn(M) U bn(N)
bn(per.[FIM) = bn(M) U {a}

Names and variables are called free if they appear in a place where they are not
bound by any abstraction.

11

2.3. \u-CALCULUS Chapter 2. Background

logical (5): (Az.M)N —p,, M[N/z]
structural (p): (ud.C)N —p, py.C{N -~v/d} (v fresh)
(erasing): po. 0| M —p, M (0 ¢ M)
(renaming): [v]10.C =g, C{v/d}
M sy N = { MP 2 NP
po. [BIM =gy, puo [BIN

Figure 2.1: Ay call-by-name reduction rules

2.3.2 Reduction Rules

The Ap-Calculus introduces new reduction rules to deal with the new construct.
First, we informally define a new kind of substitution: the naming substitution. It can
be denoted by M{~/a}, which stands for the term obtained from A by replacing all
commands of the form [«] N with [y]N. Moreover, we denote by M{P-~/a} the term
obtained from M by replacing each command of the form [a|N with [y] N P. This last
operation can be seen as a way of passing new information, P, to all the commands
associated with the name « and then giving them a new name, ~. Formally, this is
defined inductively:

x{P-v/a}=x
O M){P - y/a} = Aa.(M{P - y/a})
(MN)KP-v/a} = M{P - y/a}N{P - y/a}
[]M{P - y/a} = B)(M{P - y/a}P)
[BIM{P - ~y/a} = [BI(M{P -~y/a}) (B #a)
(n6.CH{P - y/a} = pd.(C{P-~/a})

Term substitution is defined as for the \-Calculus. With these notations, we can now
define the reduction relation — 4, for Ay, which is shown in figure 2.1.

The reduction strategy we take is called call-by-name - note that we only allow re-
duction for the first subterm in an application, and we do not allow reduction under
A-abstractions.

As before, we define the multi-step reduction relation —7 . as the reflexive, transitive
closure of —g,.

These rules make clear the difference between the two types of abstractions. Unlike
A-abstractions, which express computation via applying functions, u-abstractions
specify direction: they direct the incoming information to the relevant channels.
As such, they have proven very useful in modelling control flow manipulation.

Below is a worked example of a \i; reduction, also presented in [3]. Note that the
notation p_.M is used to denote a name that does not appear free in M, and the _

12

Chapter 2. Background 2.3. \u-CALCULUS

(Az)
Dx:AbFz:A]A
Fe:AFM:B|A z¢T T'FM:A—-B|A TEN:A|A
(= 1) (= E)
TFaxeM:A—B|A TFMN:B|A
FEM:A|la:AA a¢A() 'FM:Bla:ApB:B,A agéA()
TrFpalM:A|A @ TFpalQlM:A|B:B,A o

Figure 2.2: Type assignment rules for A

does not count for binding. Assume that a ¢ M and «a # f:

(nev.[B)(Az.pu]a]x) M)N
= 17-(([BI(Az.p-.[a]2) M){N - y/a}) by (1))

(
= . [fl(Az.u_[y]xN)M (by def. subst., note a ¢ M and « # 5)
— g - [Blp-[y|MN (by (5), reducing under y-abstraction)
—pu 17-([VJMN){B/-} ~ (by (renaming))

= uvy.[yJ]MN (by def. subst. and _)

—gu MN (by (erasing))

2.3.3 Types

We now present the type assignment system for Ay, as laid out in [1] and [3]. In
order to deal with the new constructs, a new notion is introduced: the naming con-
text, usually denoted by A. It is defined exactly the same as the usual I" context form
the A\-Calculus, but it specifies the types for names instead of variables. In the new
system, conclusions will have the form I" - M : A | A - the naming context will
be used to keep track of the types of the names, enforcing the principle that names
should have the same type as the term they are naming. The rules are given in figure
2.2.

It has been proven that there is a direct correspondence (also called a Curry-Howard
isomorphism) between type derivations in this system and natural deductive proofs
in a subset of logic called minimal classical logic, however we do not go into details
here. We show below an example given in [3] of a type derivation for the term
Ay.pe[aly(Ax.pB.[a]x) (which, in fact, would correspond to a proof of Peirce’s Law
from logic):

y ASB) S Az Az A|f: Ba A
y:(A—)B)—>A,x:Al—,uB.[a]az:B\a:A(ua’e)
(Az) (= 1)

y:(A—-B)—>AFy:(A—=B)—>A|la: A y:(A—=B)—> AF) z.pb.lojz: A—- Bla: A
y: (A= B) = At yQa.pblajz): Ala: A ()
y:(A— B) = AF pafajyAe.pb.lalz) - A @ e
@+ Ay.pa o]y Ae.pb.lalz) : (A— B) - A) - A| @

13

(—

E)

2.4. \TRY _CALCULUS Chapter 2. Background

2.3.4 Significance

Due to its reduction rules, the Au-Calculus proves to be useful for modelling control
flow manipulation in a program, including exception handling. The next section
details this link.

2.4)\'"Y-Calculus

In this section we present the \'"¥-Calculus for recoverable exceptions as introduced
by van Bakel in [1].

A'"Y is an extension to the \-Calculus that aims to model traditional exception han-
dling in a functional style, introducing a new way of discriminating exceptions: by
name. "Throwing” an exception is represented by the term throw n(M), which stands
for throwing M to a named handler called n. ”Catching” is modeled via the term
try M; catch n;(x) = N;, which defines a series of named handlers to be taken into
account during the ”"execution” of M: if a throw to one of the handlers occurs dur-
ing said execution, then any remaining execution in the try block is disregarded and
replaced by the execution of the corresponding handler, which uses the information
passed over by the throw. The new terms and their operation are reminiscent of im-
perative languages such as Java, with the mention that exceptions are discriminated
by name, rather than by type. We give the main features of \'"¥ below, as introduced
by van Bakel in [1].

2.4.1 Terms

The set of pre-terms in A"V is defined as follows:

Catch Block ::= catch m(x) = M | Catch_Block;catch n(xz) = N
M,N =V | MN | try M; Catch_Block | throw n(M)
Vi=zx| M

We call the n in catch n(x) = M a declared name and we will write catch n;(z) = N;
for the catch block

catch ny(x) = Ny; catch ny(x) = Noj ...; catch ny(x) = N,,.

Then, terms are defined to be pre-terms that satisfy two additional conditions:

1. In catch n;(z) = M;, the names n; do not occur inside the exception handler
M; (for any i and j from 1 to n) and all of the declared names n,, ..., n,, are
distinct.

2. For each throw n;(N) that occurs in M in the term try M; catch n;(z) = N,
none of the names n; occur in N.

14

Chapter 2. Background 2.4. \T'FY_.CALCULUS

(B): (Ax.M)N — M[N/x]
(throw): (throw n(N))M — throw n(N)
(try-throw): try throw ny(N); Catch_Block; catch n)(x) = M; — M;[N/x]
(try-normal): try N; catchn;(x) = M; - N (n; ¢ N)
Vo N {MP — NP
try M; catch n;(x) = M; — try N; catch n;(z) = M;

Figure 2.3: \""Y call-by-name reduction rules

Note that the new constructs resemble exception-handling syntax that one might
expect to find in a programming language such as C++ or Java. However, in this
case, exceptions are discriminated by name: a throw happens to a named handler,
which in turn expects an argument from the throw and does something with it.

2.4.2 Reduction Rules

The original paper [1] presents various reduction strategies. We give here the rules
for call-by-name reduction on \"¥: —X.... They can be found in figure 2.3.

The first main rule is the basic one from the A-Calculus. The other 3 main rules
express the exception handling mechanisms that one would expect: the code after a
throw does not execute (hence the throw consumes the terms after it), if a throw to a
handler named n; happens in a try block, then the corresponding exception handler
(M) is invoked, and if no relevant throw happens inside a try block, then the try
block can be ignored. Note that reduction under A-abstractions is not allowed: this
is because, from a computational point of view, it would mean allowing an exception
to be raised just because it appears in a function definition, disregarding whether
program execution has actually led to the exception (and additionally, as shown by
van Bakel in [1], subject reduction would fail instantly).

2.4.3 Types

We give here the type assignment system introduced by van Bakel in [1] (see figure
2.4). The notions of context I' and naming context A are defined in the same way
as for A\u. A characteristic of this system is that, for successfully typing a try term,
it demands that all of the exception handlers return the same type as the one of
the main term: this makes exceptions recoverable, in the sense that, if the try term
has a type, a computer program will be able to rely on it regardless of whether any
exceptions were raised or not. If they have, they will have been handled correctly.

The first 3 rules are the same as in the normal A-Calculus. The rule (throw) allows
us to assign any type to a throw term, provided that there exists a suitable exception
handler of the correct type. The rule (try) states that a try term can be typed only if

15

2.4. \TRY _CALCULUS Chapter 2. Background

Fe:AFM:B|A z¢T

(Az) -1
Lo:AFz:A[A TroawdAsBla
'FM:A—-B|A TEN:A|A 'EN:A|n:A— B,A
(— E) (throw)
'FMN:B|A I'kthrown(N):C|n:A— B,A

'FM:B|n;: A — B,A Tyo: A FN;: B|AMie{l,...n}) (n; ¢ A)
'+ try M; catch n;(x) = N; : B| A

(try)

Figure 2.4: \'"Y type assignment rules

all of the exception handlers return the same type as that of the main term.

This type assignment system has the property of subject reduction.

2.4.4 Representation in \y

We now give the translation of the \"¥-Calculus into \p as presented in [1]. This
will prove useful in the coming sections. It is based on two observations (which were
already made by Crolard in [8]):

1. Throwing M to handler n can be represented by the Au-term p_.[n|M (n ¢ M),
as it correctly models the reduction rule (throw) (the consuming of contexts):
(u_.[n]M)N — p_.[n]M, as _ does not occur in M.

2. Catching on (and giving scope to) the name n can be represented by un.[n],
which, in combination with the representation of the throw, reduces to M:

pn.n]p_.[n]M (renaming) pn.[n]M \ M (asn ¢ M).

These observations outline a possible interpretation into A\y.. However, due to the na-

ture of \ix and the observations above, when interpreting the term try M; catch n;(z) = N;
we actually have to bring all of the exception handlers inside the representation of M.

This is achieved by introducing a new variable ¢,, for each handler catch n(z) = M,
which is dealt with by substitution. The interpretation [[- ||, is then given below:

(erasing

T || =
Az M ||5, = M. [[M |5,
TMN [[a £ TMATN Ll
Tthrow (M) |, 2 p-.[nle,TM |,
Ttry M; catch n(x) = N, = (un[n][[M x) A2 TN |y /el
Tery M; Catch Block; catch n(z) = Ny, = (un.[n][[M; Catch Block ||x,)[Az. [N ||x./cn]

Thus, wherever there was a throw in the original term, there will be a special variable
(like ¢,,) in the translation, which, after substitution, will become the translation of

16

Chapter 2. Background 2.5. HASKELL MONADS

the corresponding handler. The two previous observations then kick in, with terms
reducing as desired. This is illustrated through the following example:

[try throw n(z); catch n(z) = x|,
= (pn.[n|p-.[n]c,z)[Ax.x/c,] (by def. trans.)
= pn.[n|p_.[n](Az.z)z (by def. subst.)

Note how, through the use of ¢, and substitution, the interpretation of the handler n
has been brought inside the interpretation of throw; n(z). Then, exactly as in obser-
vation 2 above, the above reduces to (Ax.z)z via the rules (renaming) and (erasing),
and then to z by rule (5).

This shows that \'"¥ is expressible in Ay, and the interpretation above also enjoys
two important properties (as shown by van Bakel in [1]): it preserves reduction and
it preserves assignable types (under the type assignment system shown in the previ-
ous section).

Before we explore the previous work that was done by Fisher in [4], it is necessary
to present some useful Haskell notions.

2.5 Haskell Monads

Monads are structures that originate from the domain of category theory - however,
they turned out to have a wide range of applications in functional programming lan-
guages such as Haskell. We give first a formal definition of the Haskell Monad class,
followed by a discussion of their benefits via some examples.

2.5.1 Haskell Types

Haskell natively supports types such as Int, Char or List[String] (representing a
list of strings). In addition to these, we also have the possibility to define our own
data types, like this:

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

Here, Day is a type and Mon, ..., Sun are values of that type, just like 6 is a value of type
Int. This is an example of enumerated type. Data types can also be parameterized
with type variables, like in the following example:

data Maybe a = Nothing | Just a

This is Haskell’s built-in Maybe type, which is very useful in computations where we
might want to account for the fact that something "went wrong” (such as a table
lookup that might return Nothing if no corresponding entry was found, or Just a if
an entry - of type a - was found). An equivalent type in Java would be Optional<T>.
In the above definition:

17

2.5. HASKELL MONADS Chapter 2. Background

1. Maybe is called a type constructor: it takes another type, a, and it generates a
new type: Maybe a - for example, Maybe Int;

2. Nothing and Just are called data constructors: they construct values of type
Maybe a, possibly taking some arguments. Nothing does not take any argu-
ments - it is a value of type Maybe a, for any a. Just, however, takes one
argument (of type a, for some a): thus, Just 3 would be a value of type Maybe
Int.

A powerful feature of Haskell are type classes. A type class is the collection of types
over which certain functions are defined - an equivalent concept from OOP would
be interfaces. A class declaration might look like this:

class Eq a where
(==) :: a -> a -> Bool

This could be the class of types that have an equality method, ==, defined over them.
The method takes two values of the same type and returns a boolean value represent-
ing the result of the comparison. We might want to add a notion of "comparability”
to values of the type Day that we have defined above. Then, we could simply add
our type to this class by implementing an "equals” method:

instance Eq Day where

Mon == Mon = True
Tue == Tue = True
Sun == Sun = True

== = False

This specifies the equality of days in the way we would expect it to; now, we can
write x == y if x and y have type Day, and, additionally, the type Day could be used
in any place where Haskell expects something that is a member of Eq (meaning that
values of that type can be tested for equality).

2.5.2 Definition

Let a and b be two types. A monad, then, is defined as a triple consisting of:

1. A type constructor, M, which constructs the monadic type M a;

2. A function, called return, that takes a value of type a and embeds it in the
monad, yielding a monadic value;

3. A binding operator, usually denoted by >>=, which describes how to obtain
a new monadic value from an existing one and a function that acts on an
unwrapped value.

18

Chapter 2. Background 2.5. HASKELL MONADS

class Monad m where

return :: a —> m a
(>>=) ::ma->(a->mb) >mb
(>>) ::ma->mb ->mb

X >>y=x>>=_->y

fail :: String -> m a
fail s = error s

Figure 2.5: Monad type class in Haskell

In Haskell, monads are represented by the type class given in figure 2.5.

Note that, in the definition, m is not a type, but a type constructor. Thus, m a should
be viewed as a type, just like Maybe Int.

The definition says that a type constructor m is a monad if there are functions with
the corresponding type signatures implemented for it. Essentially, a monad can
be viewed as a piece of computation wrapped around a value (of type a, say) -
the binding operator, then, specifies how two such pieces of computation are to be
sequenced (the value wrapped in the first computation is bound to the second one,
which might use it). The meaning of these functions is as follows:

1.

return: the purpose of this function is to construct monadic values from "nor-
mal” values; in the case of Maybe, this is achieved by mapping x to Just x;

>>=: this is a function that takes two arguments: the first one is a monadic
value, and the second one is a function that takes a normal, unwrapped value
and generates a new monadic value from it. The binding operator then speci-
fies how the two of them are combined: it might choose to ignore the second
argument completely, or it might try to unwrap the value contained in the first
argument and then pass it to the second one, which would use it in some way.
In any case, the operator must return a new monadic value that represents the
effect of combining the two pieces of computation;

>>: this operator does the same as the one above, except that we know for
sure that the second argument does not use the value wrapped in the first
one, hence it is not included in the type signature anymore (see the default
implementation in the class definition);

fail: the purpose of this function is to deal with pattern matching errors. This
is because Haskell provides the following syntactic sugar (do-notation):

do x <- ml; m2

is equivalent to

19

1

2.5. HASKELL MONADS Chapter 2. Background

1 ml >>= \x -> m2

However, the x on the left hand side is also allowed to be a pattern: if pattern
matching fails for the value returned by the first computation, then the result
is a call to fail with some meaningful error message - by default, fail itself
calls error, but it can be made to do more useful things.

We illustrate the concept further using Maybe, which is a built-in monad in Haskell.
In its case, the instance statement is:

instance Monad Maybe where
return = Just

Nothing >>= _ = Nothing
Just x >>=f = f x
fail _ = Nothing

The meaning of >>= for Maybe is now clear: if the first argument (a monadic value)
is Nothing, then it returns Nothing regardless of the second argument: there is no
unwrapped value to bind to it! If, however, the first argument is a Just, then we
can unwrap the value from it and feed it to the second argument (a function - see
type signature in Monad class definition), which uses it to return a new piece of
computation (monadic value). Furthermore, note how fail in this case just returns
Nothing instead of throwing an error: this might be because we want to signal the
fact that something has gone wrong like this, instead of terminating the program on
the spot.

2.5.3 Benefits

Consider the following case: we want to implement a function mult that multiplies
together two Maybe Int values, returning Nothing if any of them is Nothing, and
Just result otherwise. This is the direct way of doing it:

mult ma mb =
case ma of
Nothing -> Nothing
Just a -> case mb of
Nothing -> Nothing
Just b -> Just (a * b)

And here is a way of doing it with monads:
mult ma mb = ma >>= (\a -> mb >>= (b -> return (a * b)))

Or even better, using the do-notation:

20

Chapter 2. Background 2.6. EXISTING HASKELL IMPLEMENTATION

mult ma mb = do
a <- ma
b <- mb
return (a * b)

Thus, the role of the monad is to make the code clearer and more readable by pro-
viding a pipeline: the initial value is passed from one step to another, potentially
changing its form, and the bind operator describes what happens to it between two
steps: in this case, the handling of Nothing happens in the monad, which does not
apply any future computation to it, but returns it straight away (if any of ma or mb
were to be Nothing).

Therefore, monads provide a way to abstract away computational details regarding
computations on a specific type (in the case above, Maybe, where Nothing entails
Nothing); they incorporate various information that is passed down along the com-
putation. Furthermore, they can also isolate various side effects of the computations,
which is useful for modelling things like input and output in a purely functional lan-
guage (note that IO in Haskell is done using monads).

2.6 Existing Haskell Implementation

We are now going to show how Fisher [4] produced an implementation of \'¥ in
Haskell.

The implementation is based on the interpretation of A% in Ay (which we have
already shown) which is then composed with an interpretation of Ay into CDC (Cal-
culus of Delimited Continuations) - a different calculus which we are going to explain
next and for which there already existed a Haskell library at the time [9].

2.6.1 Calculus of Delimited Continuations

We first explain the notion of continuation, as shown in [3]. Essentially, a continu-
ation represents the remaining reduction steps to be applied to a term after it has
been reduced. Consider the following example, where M —7 M':

(Compound term) MN

(Decomposition) M N
(Reduction) M'ON
(Refill hole) M'N

Here, M is called a dominant term and CON is called a context or a continuation,
because it represents the future computation of M: what will happen to it after it
has been reduced. Now, if we consider a more complex term, we may have multiple
continuations:

21

2.6. EXISTING HASKELL IMPLEMENTATION Chapter 2. Background

(MN)P
MN OP
M ON OP

Here, continuations are maintained separately, in a stack. When M has reduced,
the result is returned to the first continuation on the stack, then the result of that is
returned to the second continuation, and so on.

We could have also combined all of the continuations in a single continuation:
(ON)P.

If a programming language has control operators that allow the manipulation of in-
dividual portions of the continuation stack, then they are called delimited continua-
tions. If, however, only manipulation of the entire remaining continuation is allowed
(as in the “combined” continuation above), the continuations are called undelimited.

In order to properly express these concepts, Peyton Jones et al. have introduced what
they call a monadic framework for delimited continuations in [9]. This framework is
presented in the context of the A-calculus, and Fisher [4] refers to it as the Calculus
of Delimited Continuations, or C' DC' for short, which we will do as well. We give
below its syntax as presented in [9]. The terms are called expressions and z,y, ...
range over a set of variables.

ex=ux | Ar.e | e | newPrompt | pushPrompte e
| withSubCont e e | pushSubCont e e

In short, the new constructs allow for manipulation of the continuation stack: they
model pushing certain prompts onto it, and retrieving portions of it until a certain
prompt is found. We do not give a complete operational semantics here - for our
purpose, it suffices to keep in mind that the reduction rules borrow some notation
from Haskell, in which C DC was implemented in the form of a library [9].

2.6.2 \uto CDC

The final piece that we need is an interpretation of Ay into C'DC'. We give below the
one introduced by Fisher in [4]. We will abbreviate the new constructs in CDC' by
NP, PP, WSC and PSC, respectively.

As shown by Fisher, in order to run a full A program, say M, in CDC, it is assumed
that there exists a global prompt, say F,, that has already been pushed onto the
stack. Therefore, the ”initialization” is given by

(\Py. PP Py [[M]]) NP

where;:

Tz| = 2

22

10

11

Chapter 2. Background 2.6. EXISTING HASKELL IMPLEMENTATION

Mz M| = \z.[M]|
TMN| £ [M]TN]
Tua. M| = WSC Py (Aa.. PP Py [[M]))
[[8)M] = PSC B [[M]]
This interpretation corresponds to A\ with the notion of lazy reduction. Fisher pro-

ceeds to prove various properties of the interpretation - we present the Haskell im-
plementation of \'"¥ yielded by this translation, as obtained in [4].

2.6.3 Final Result

We have mentioned the existence of a C'DC library for Haskell [9]. We give below
the interface of this library, as presented by Fisher in [4]:

data CC ans a
data Prompt ans a
data SubCont ans a

instance Monad (CC ans)

The control operators have the types:

runCC :: (forall ans. CC ans a) -> a
newPrompt :: CC Ans (Prompt ans a)
pushPrompt :: Prompt ans a -> CC ans a -> CC ans a

withSubCont :: Prompt ans b -> (SubCont ans a b -> CC ans b)
-> CC ans a
pushSubCont :: SubCont ans a b -> CC ans a -> CC ans b

We have seen a translation from A% to A\ in subsection 2.4.4 and a translation from
A to C'DC in subsection 2.6.2. By straightforwardly composing the two translations
and using the library illustrated above, Fisher obtains the following implementation
of the try and throw constructs of A% in Haskell:

try :: Prompt ans b
-> ((t -> CC ans a) -> CC ans al) -> (t -> CC ans al)
-> CC ans al
try pO m handler = withSubCont p0 (\n ->
pushPrompt pO (pushSubCont n (m $ \x -> throw pO n handler x)))

throw :: Prompt ans b
-> SubCont ans al b -> (t -> CC ans al) -> t
-> CC ans a
throw p0 n ¢ m = withSubCont p0 (_ ->
pushPrompt pO (pushSubCont n (c m)))

23

2.6. EXISTING HASKELL IMPLEMENTATION Chapter 2. Background

As explained in [4], this suffers from a number of shortcomings. For example, note
the absence of the catch construct. This is because, with this implementation, the
exception handlers are being passed as an argument directly to the try function.
Furthermore, it also means that the number of exception handlers is not allowed to
vary - instead, a new function (such as try2, try3 and so on) has to be defined for
each number of handlers. The try2 function defined in [4] is:

try2 :: ((a -> CC ans al) -> (a3 -> CC ans a4) —-> CC ans a2)
-> (a3 -> a2) -> (a -> a2) -> CC ans a2
try2 m hl h2 =
try (\t1 ->
try (\t2 -> m t1 t2) hi)
h2

It would then be used like:

try2 p (\namel -> \name2 -> return 1)
(\x -> return $ x+2)
(\x -> return $ x+4)

Notice how the two handlers, namel and name2, are passed as arguments to try?2
in the form of anonymous functions - the first handler is bound to name1 and the
second one to name2. This is also different from the A% syntax, where names are
bound dynamically.

The paper then gives an improved, more aesthetically pleasing implementation, but
which still suffers from the problems illustrated above. Nevertheless, as a proof of
concept, it shows that a translation from A% to Haskell is possible.

It concludes with the remarks that ”C'DC was not the correct choice of calculus to
facilitate a translation from \Y to Haskell” and that, in order to model *¥ more
accurately, some extensions to the language itself would be needed, rather than just
making use of the C'DC library. Essentially, the syntax we would like to end up with
is this (given in [4]):

try body
catch namel handlerl

catch nameN handlerN

Then, throw would specify a name and a value to throw to it, and the corresponding
handler would act accordingly. For example (also given in [4]):

try (parseFile pathName)
catch fileNotFound (\x -> L)
catch parseError (\x -> L")

24

Chapter 2. Background 2.6. EXISTING HASKELL IMPLEMENTATION

Presumably, then, in the body of the try, some exceptions could be raised - in this
case, parseFile could contain a throw (that would be caught by the first handler,
which in turn might attempt some recovery action):

throw fileNotFound pathName

The aim of this project is to explore what such a language extension would imply.

25

el o ~ (o)} 9] » w N -

Chapter 3

A Haskell Evaluator

To explore the possibility of expressing A% in Haskell, we first introduce an evaluator
for it.

3.1 Definitions

The following data structure declarations are used to represent A\"¥ terms:

type Var = String
type Name = String

data TryExpr = Ident Var

| Abs Var TryExpr

| App TryExpr TryExpr

| Throw Name TryExpr

| Try TryExpr Name Var TryExpr

deriving (Eq, Show)

The first two type synonyms mean that variables and names are both represented as
strings. The recursive data type definition closely mimics the syntax of A%, The full
mapping, denoted by [—|, maps \'"¥ terms to values of type TryExpr in Haskell. It is
defined as follows:

[z] £ Ident "x"
[A\z.M] £ Abs "x" [M]
[MN) 2 app [M] [N
[throw n(N)] = Throw "n" [N]
[try M; catch n(x) = N] £ Try [M] "n" "x" [N]
[try M; Catch_Block; catch n(x) = N] = Try [try M; Catch_Block] "n" "x" [N]

3.2 Implementation

Traditionally in Haskell, exception handling is done using data types, such as Either:

26

Chapter 3. A Haskell Evaluator 3.2. IMPLEMENTATION

data Either a b = Left a | Right b

It is parameterized over two types: a and b. A value of type Either a b is either a
Left with an associated value of type a, or a Right with an associated value of type b.

This is because, in Haskell, there is no traditional notion of "throwing” something,
like, for example, in Java. Instead, whenever the programmer wants to signal that
something has gone wrong (the place where we might usually expect an exception
to be thrown), it is usual to incorporate this information in some data type, taking
advantage of the powerful typing features of Haskell (as shown in [10]).

For example, we might have a function that looks up a key in a map from strings to
integers. While, in Java, this function could throw an exception if the key does not
exist, a common approach in Haskell would be to return a Nothing in this case. The
return type of the function would be Maybe Int: either the key was not found and
Nothing was returned, or the key was found and a Just Int was returned (with the
corresponding integer wrapped in the Just). Thus, the possibility that something
might have gone wrong is included in the type itself, and whoever uses the function
will be forced to deal with that possibility by the type system. The Either data type
can be used for similar purposes: one option would be to include an exception mes-
sage or some other useful information as the argument to the Left.

This leads us to explore the possibility of encoding \'"¥ terms using the Either data
type: an intuitive approach is to represent throws as Left’s (as they are the terms
that require special treatment in terms of reduction rules) and everything else as
Right’s.

The evaluator takes a term of type TryExpr and runs it, returning one of the follow-
ing: a Right TryExpr, if there was no uncaught throw while evaluating the term
- in this case, the result is stored in the argument to Right - or a Left (TryExpr,
Name), if an uncaught throw was encountered while evaluating the term - in this
case, the first argument in the pair represents the computation to do after the throw
is caught (the execution of the handler), and the second argument is simply the
name to which the throw occurred.

Thus, Left and Right are used as markers - one representing a throw that needs to
be handled, and the other a successful computation. The full code of the evaluator
can be found in figure 3.1.

There is one main entry point - the eval function. It takes a TryExpr and then
delegates to an auxiliary function, evalAux, which also carries around a context (a
map from names to expressions), which is used when evaluating Throw’s. The cases
are explained below:

1. Ident x - this corresponds to a single variable, which is a value in \'"¥, so there
is no reduction to be done; the context is irrelevant and Right (Ident x) is
returned immediately.

27

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

3.2. IMPLEMENTATION Chapter 3. A Haskell Evaluator

-- main evaluation function
eval :: TryExpr -> Either (TryExpr, Name) TryExpr

eval e = evalAux e empty

-— auziliary evaluation funciion
evalAux :: TryExpr -> Map Name TryExpr -> Either (TryExpr, Name) TryExpr

evalAux (Ident x) _ = Right (Ident x)

evalAux (Abs x m) _ = Right (Abs x m)
evalAux (App (Abs x m) q) env = evallAux (subst m q x) env
evalAux (App p q) env =
case evalAux p env of
Left thr -> Left thr
Right p' -> if (p == p') then Right (App p q) else evalAux (App p' q) env

evalAux (Throw n m) env = Left ((App (env ! n) m), n)

evalAux (Try m n x catchRes) env =
case evalAux m (insert n (Abs x catchRes) env) of
Left (res, m) -> if (m == n) then evalAux res env else Left (res, m)
Right res ->
if (occurs n res) then Right (Try res n x catchRes) else Right res

Figure 3.1: A Haskell evaluator

2. Abs x m - again, abstractions are values in \'"¥, so we proceed similarly to the
previous case.

3. App (Abs x m) q - this corresponds to (Az.M)Q; to run this term, we do the
substitution (see subst function below) and then run the result.

4. App p q - in this case, we do not know what p is (although we know it is
not an abstraction, otherwise we would have followed the previous branch);
therefore, we first evaluate p, and then: if p evaluated to a Left (representing
a throw), it needs to consume its applicative context (q), so we disregard q
and return the Left. Otherwise, we check if the result of running p is different
from p itself - if it is not, then we stop and return Right (App p q), because
there is nothing more to be done and we want to avoid an infinite cycle (our
aim is to not introduce non-termination); otherwise, we plug the result in the
application and run it in the new form.

Note: lines 14-17 in the evaluator can also be expressed in monadic fashion,
since Either a is a Haskell monad:

28

10

11

12

Chapter 3. A Haskell Evaluator 3.2. IMPLEMENTATION

1

2

evalAux (App p q) env = (evalAux p env) >>=
(\p' -> if (p == p') then Right (App p q) else evalAux (App p' q) env)

5. Throw n m - this throws m to the name n, so we look the latter up in the envi-

ronment, which should give us an abstraction to which we can apply m; we put
this application (that represents the execution of the handler), without run-
ning it (it will be run when the throw is caught), in a Left, together with the
name n, to remember the targeted handler. (Note that the evaluator assumes
the required name will always be present in the environment, which is to say
that all the terms on which eval is called are closed in this respect; it is not
hard to modify the evaluator to take the other case into consideration as well,
for example, by using a new variable instead when the name is not present,
and the assumption makes our lives easier.)

Try m n x catchRes - this represents a try with a single handler; we first cre-
ate a new context by inserting the handler into the existing one (by represent-
ing catch;n(z) = N as Az.N and storing it as the entry for name n) and then
evaluate m in the new context - there are two cases to consider:

(a) m runs to a Left - this means that there was a throw inside: we check if
the throw was to the handler of our current Try block; if it does, then the
throw is caught here and we proceed with evaluating the execution of the
handler, which was stored in the Left; if not, we just pass the Left along
to the outer Try blocks (until the responsible handler is found).

(b) mrunstoaRight - in this case, there was no throw when running m, and to
comply with the \'"¥ reduction rules we need only check (see occurs func-
tion below) whether the current handler name still occurs in m (despite it
having not run to a Left); if yes, then we can not proceed with evalua-
tion and we simply return Right (Try res n x catchRes), to make sure
that the evaluator will terminate; if, however, it does not, then the result
is free to escape the Try and we return it instead.

The subst and occurs functions are given below:

-— substitution function
subst :: TryExpr -> TryExpr -> Var -> TryExpr

subst (Ident x) sub y

X ==y = sub
otherwise = Ident x

subst (Abs x m) sub y

X =3 = Abs x m
otherwise = Abs x (subst m sub y)

subst (App p q) sub x = App (subst p sub x) (subst q sub x)

29

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

subst (Throw n m) sub x = Throw n (subst m sub x)

subst (Try m n x catchRes) sub y
| x ==y = Try (subst m sub y) n x catchRes
| otherwise = Try (subst m sub y) n x (subst catchRes sub y)

-— check if a mame occurs in a TryEzpr
occurs :: Name -> TryExpr -> Bool

occurs _ (Ident _) False

occurs n (Abs x m) occurs n m

occurs n (App p q) = (occurs n p) || (occurs n q)
occurs n (Throw n' m) = n ==n' || occurs n m
occurs n (Try m n' x catchRes) = n == n' || occurs n m || occurs n catchRes

Note that subst makes no attempt at a-conversion: we operate under the assump-
tion that any term that eval or evalAux are ever called on are such that a-conversion
is not necessary for correct reduction. This assumption is strong and may seem un-
justified, however we only aim to demonstrate the feasibility of our evaluator, and
for this purpose it makes matters easier.

3.3 Preservation of Reduction

In what follows, we take f x | to mean that the Haskell call £ x terminates, and
f x | y to mean that it terminates with the value of y (where y is a value or is
known itself to terminate). We are now going to prove the main property of our
evaluator:

Theorem 3.3.1 (Evaluator Preserves Reduction) For any A"V terms P and () such
that P —* @ and Q) is in normal form (with respect to call-by-name reduction), it holds
that eval [P] | eval [Q)].

The result follows from a number of auxiliary lemmas which we give below.

Lemma 3.3.2 For any A"V term N and name n, n € N <= "n" € [N] <
occurs "n" [N].

The lemma above is stated without proof.

Lemma 3.3.3 For any \"Y terms M and N and variable x, [M{N/xz}] = subst [M] [N] "x".

30

Chapter 3. A Haskell Evaluator 3.3. PRESERVATION OF REDUCTION

The proof is by induction on the structure of terms and is given below:
(): [x{N/z}] = [N] = subst [z] [IV] "x" (by definition of substitution and subst)
(y # x): [y{N/z}] = [y] = subst [y] [IV] "x" (by definition of substitution and subst)

(Az.M): [(Az.M){N/z}] = [Ax.M] = Abs "x" [M] = subst (Abs "x" [M]) [N] "x"
= subst [Az.M] [N] "x" (by definitions)

(Ay-M, y # x): [(A\y M){N/w}] = [Ay.M{N/x}] = Abs "y" [M{N/x}]
= (IH) Abs "y" (subst [M][N] "x") = subst (Abs "y" [M]) [N] "x"
= subst [Ay.M]| [N] "x" (by def. subst and mapping)

(PQ): [(PQ){N/x}] = [P{N/x}Q{N/x}] = App [P{N/x}] [Q{N/x}]
= (IH) App (subst [P] [N] "x") (subst [Q] [N] "x")
= subst (App [P] [@Q]) [N] "x" = subst [PQ] [N] "x" (by def. subst and mapping)

(throw n(M)): [(throw n(M)){N/z}] = [throw n(M{N/x})] = Throw "n" [M{N/z}]
= (IH) Throw "n" (subst [M][N] "x") = subst (Throw "n" [M]) [N] "x"
= subst [throw n(M)] [N] "x" (by def. subst and mapping)

(try M; catch m(z) = L):

[(try M; catch m(z) = L){N/x}]
= [try M{N/a:} catch m(x

(

)= L] = Try [M{N/z}] "n" "x" [L]
= (IH) Try (subst [M][N]"x") "m" "x" [L]| = subst (Try [M] "m" "x" [L]) [N] "x"
= subst [try M; catch m(z) = L] [N] "x" (by def. subst and mapping)

(try M; catch n;(x) = N;; catch m(z) = L):
[(try M; catch n;(z) = N;; catch m(z) = L){N/x}]
= [try M{N/x}; catch n;(z) = N;; catch m(z) = L]
= Try [try M{N/xz}; catch n;(x) = N;| "n" "x" [L]
= Try [(try M; catch ni(x) = N;){N/x}] "n" "x" [L]
= (IH on the num. of catches) Try (subst [try M; catch n;(x) = N;] [N] "x") "m" "x" [L]
= subst (Try [try M; catch n;(z) = N;] "m" "x" [L]) [N] "x"
= subst [try M; catch n;(x) = N;; catch m(z) = L] [N] "x" (by def. subst and
mapping)

Note: for the last case, there is an implicit IH on the number of catches in the
catch block (due to the nesting nature of the mapping). Additionally, in the last two
cases, if we substitute for y with y # x, the proofs are almost identical (except for
additional applications of the IH on the outer handlers), so we do not show them
here. QED.

Lemma 3.3.4 For any terms P and @ such that P — @ and Ve. evalAux [Q] € |, it
holds that Ve. evalAux [P] € | evalAux [()] e

The proof is by induction on —-:

31

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

Assume P — () and Ve. evalAux [()] € |. Take an arbitrary context e. We must show
that evalAux [P] € | evalAux [Q)] €.

Base Cases:

(B): then P = (Ax.M)N, Q@ = M{N/z} and we have (abbreviating evalAux by eA
for brevity):

eA [P] e

=eA (App (Abs "x" [M]) [N]) € (by def. of mapping)
= el (subst [M] [N] "x") ¢ (by def. of algorithm)
=eA [M{N/x}] e (byLemma 3.3.3)

= eA [Q)] € |, as required.

(throw): then P = (throw n(N))M, Q = throw n(N) and we have:

eA [P] €
= eA (App (Throw "n" [N]) [M]) e (bydef. mapping)
= case eA (Throw "n" [N]) € of
(by def. algorithm)
= case Left (App (e "n") [N], "n") of
Left thr -> Left thr
(by def. algorithm)
= Left (App (e "n") [N], "n" (by Haskell rules)
= eA (Throw "n" [N]) e (bydef. algorithm)
= eA [throw n(N)] € (by def. mapping)
— en [Q) €}

(try-throw): then P = try throw n;(N); catch n;(x) = N;; catch n)(z) = M, Q =
AL{AUx}

Note that, in what follows, we will write I',, for the context
"ny" : Abs "x" [Mi],"ny" : Abs "x" [My],...,"n," : Abs "x" [M,]}. We have:

ed [P] €
= eA (Try [try throw ny(N); catch n;(x)
= case eA [try throw n;(N); catch n;(x)
Left (res, m) ->
if (m == "n;") then eA res ¢ else Left (res, m)

(by def. algorithm)

Nﬂ nmﬁ " Mﬂp €
Ni] eU{’n,” : Abs "x" [M;]} of

— case
case

case eA [throw ny(N)] eU{'ny” : Abs "x" [M;]} UT,, of

32

Chapter 3. A Haskell Evaluator 3.3. PRESERVATION OF REDUCTION

Left (res, m) ->
if (m == "n;") ... else Left (res, m)
Right res -> ..
of Left (res, m) ->
Right res ->

of Left (res, m) ->

if (m == "n,") ... else Left (res, m)
of Left (res, m) -> if (m == "n;") then eA res ¢ else
Right res -> ... (by def. algorithm, unfolding)
= case
case

case Left (App (Abs "x" [M;]) [N], "my") of
Left (res, m) ->
if (m == "n;") ... else Left (res, m)
Right res -> ..
of Left (res, m) ->
Right res ->

of Left (res, m) ->

if (m == "n,") ... else Left (res, m)
of Left (res, m) -> if (m == "n;") then eA res ¢ else
Right res -> ... (evaluating the throw)

Note that \'"¥ rules say that the names ny, no, ..., n, and n; have to be pairwise
distinct.

Consider, then, the first if-test that is going to be executed above: it is going to be
if ("my" == "n;"), which is going to fail because of the reason stated above. The
else branch will be taken, and the Left is going to go unchanged into the second test,
which has "n," instead of "n;", and so on. Therefore the Left is going to escape the
first n case constructs unchanged, and continuing from the last point, we have:

= case Left (App (Abs "x" [M;]) [N], "m") of
Left (res, m) -> if (m == "my") then eA res ¢ else
Right res -> ... (by Haskell rules)

= eA (App (Abs "x" [M;]) [N]) e (by Haskell rules)

= eA (subst [M;] [N] "x") e (bydef. algorithm)

= ea [M{N/z}] ¢ (byLemma 3.3.3)

— ea [Q] !

g

o

(try-normal): then P = try N; catch n;(x) = M;, @ = N, n; ¢ N and we have:

33

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

eA [P] ¢
= case

case eA [N] eUl, of
Left (res, m) ->
if (m == "n;") ... else Left (res, m)
Right res ->

if (occurs "n;" res) ... else Right res
of Left (res, m) ->
if (m == "n,") ... else Left (res, m)
Right res ->
if (occurs "n," res) ... else Right res

In the above, we have unfolded the algorithm similarly to what we had in the previ-
ous case. Note that, by assumption, we know eA [N] eUT’, |. There are two cases to
consider:

1. eA [N] eUT, evaluates to Left (res’, m’). In this case, we have that m’ can
not be any of "n;", ..., "n,". We can prove this by contradiction: if it was equal
to some "n;", it would have to have come from evaluating some Throw "n;"
[M] while evaluating [N], which by Lemma 3.3.2 implies that NV contains the
name n,;, which we know is false.

Given that all of the if-tests will be of the form if (m’ == "n;"), from the
previous argument, it follows that they will all fail and the Left will escape
them all unchanged. Continuing from the last point, then:

= Left (res', m') (by the above and assumption)
= eA [N] eul, (byassumption)

However, note that [N]| does not contain any of the names defined in I',,, so
there will never be a usage of any "n;". As such, removing I",, can not make
a difference to the evaluation, because it is never used. Continuing, then, we
have:

— en V]

= eh [(]
O

(by the above)
!

€
€

2. eA [N] eUT, evaluates to Right res’. By Lemma 3.3.2, we know [/V] does not
contain any "n;" - therefore, res’, which is the result of evaluating [N], can
not contain any "n;" either. We can prove this by contradiction: assume res’
contained some "n;" - since it was not in [/V] to begin with, it follows that it
must have somehow been introduced during evaluation, and the only possibil-
ity is if this happened via some lookup in the context. There are two options:

34

Chapter 3. A Haskell Evaluator 3.3. PRESERVATION OF REDUCTION

either it came from some handler in ¢, implying that a handler in an outer try
block references a handler in the inner one, or it came from some handler in
I',,, implying that a handler in the current try block references another handler
in the same try block. None of these options are allowed under *¥ rules.

We therefore have that res’ does not contain any "n; " and by Lemma 3.3.2 all
tests of the form occurs "n;" res’ are going to fail, so the Right is going to
escape all the case blocks unchanged. Continuing from the last point:

= Right res' (bythe above and assumption)
= eA [N] euTl, (byassumption)
= eA [N] e (similar reasoning to case 1)

= eh [Q] €]

Inductive Cases:

(P —- Q = PM — QM): assume (IH) that, if Ve. eA [Q] € |, then Ve. eA [P] € |
ehA [Q] e.

Must show that if Ve. eA [QM] € |, then Ve. eA [PM] € | eA [QM] e.

Assume (assl) that Ve. eA [QM] € |. We must now show the right hand side of the
implication above. For any ¢, we have that:

eA [QM] €
= eA (App [Q] [M]) e (bydef. mapping)

If @ is an abstraction, then it is clear from the algorithm that eA [Q] ¢ | for any ¢
(line 11 in the evaluator). Otherwise, the above becomes:

= case el [Q] e of

which we know from (ass1) must terminate for any €. Since the term inside the case
is first evaluated before proceeding, it follows that it must also terminate for any e,
meaning Ve. eA [Q)] € |.

Therefore, in both cases we have Ve. eA [Q] ¢ |, and by the IH we have that
Ve. ehA [P] ¢ | eA [Q] e. (*) We now take an arbitrary ¢ and we must show
eA [PM] e | eA [QM] e. We have:

eA [PM] €
= case eA [P] ¢ of ... (bydef. algorithm)
= case eA [Q] € of ... (by(¥)

= eA [QM] e¢] (bydef. algorithm and (ass1))

Ul

(P — @ = try P; CB — try Q; CB): the IH is the same as before. We must show
that, if Ve. eA [try @); CB] € |, then Ve. eA [try P; CB] € | eA [try Q; CB] e. Assume

35

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

(ass1) the left hand side of the implication above. Then we must show the right
hand side.

Note that, for any ¢, we have:
eA [try Q; CB] €

= case
case eA [Q] eUT, of

of

which we know from (assl) must terminate. Since the term inside the innermost
case is evaluated first, it follows that it must also terminate for any context e U I',,.
However, we can take I',, to contain only names that do not appear in (), and there-
fore, as argued previously, not making a difference to the evaluation. If we take such
aly,, then eA [Q] eUT, = eA [Q] ¢, which we deduce must terminate for any €. So
Ve. eA [@Q] € | and we can apply the IH to obtain that Ve. eA [P] € | eA [Q] €. (¥)

We now take an arbitrary ¢ and must show that eA [try P; CB| € | eA [try Q; CB] e.
We have:

eA [try P; CB] €

= case
case eh [P] UT, of
of . ' (by def. algorithm, unfolding)
= case
case eA [Q] cUT, of
of ... by ()

= eA [try Q; CB] €| (by def. algorithm and (ass1))
U

This completes the proof of Lemma 3.3.4.

Lemma 3.3.5 If a term H is in normal form with respect to CBN reduction, then
Ve. eA [H] € |.

The proof is direct, using the structure of terms in normal form. Note that these can
be described by the following rules:

H :=aM,..M, | \x.M | throw n(N) | (try H; CB)M,...M,,

where the H in the last case is not allowed to be a throw and must contain at least
one of the names defined in the catch block, M; are regular \'¥ terms and n > 0.

36

Chapter 3. A Haskell Evaluator 3.3. PRESERVATION OF REDUCTION

We also define a related syntax, called H,:

where the conditions on H, in the last case are as above, except that H, contains all
the names in the catch block. We will see that H, represents, in a sense, the fixed
points of the evaluator. Note that this syntax generates a subset of what the first one
generates. We will employ the following result:

Lemma 3.3.6 The result of running eA [try H; CB| ¢ (where try H; CB is as described
in the syntax H) is going to be of the form Right [try Hs; CB,] for some H, and CB,
(where try H,; CB, is as described in the syntax H>).

This is because the evaluator models a slightly stronger reduction than stipulated
in \"? - specifically, it allows the removal of any handler catch n;(z) = ... from the
catch block in the term try M; CB if it satisfies n; ¢ M. This happens because, when
mapping terms to Haskell, try-terms are translated as nested Try expressions, each
with a single handler. The evaluator has no global information and evaluates each
handler in part, discarding the ones that are unnecessary, as opposed to stopping
straight away (with all handlers intact) if any of the names exist in the term (as
described in \"Y).

This is a price that we pay for the simplicity of the data structure, which employs
nesting to map try-terms. It could be fixed by making the data structure more com-
plex, by adding an explicit list of handlers to the Try expression instead of a single
handler, however the current solution suffices for our purpose. This lemma can be
proved by induction on the structure of H, however we do not give a proof here.

Pick an arbitrary e. We must show eA [H] € |. The proof of Lemma 3.3.5 proceeds as
follows:

(.I‘Man)
If n =0, then eA [z] ¢ = Right (Ident "x"), so it terminates.

If n > 1, then we have:
eA [zM;..M,)] €

— cCase

case Right (Ident "x") of

Left ->
Right p' -> if (Ident "x" == p') then
Right (App (Ident "x") [M;]) else

of Left ->
Right p' -> if (App,, == p') then Right App, else
(by unfolding and evaluating Ident "x")

37

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

where by App, we mean
App (App (... (App (Ident "x") [Mi]) [My]) ...) [M]

The innermost if-test will be successful, and the innermost case construct will re-
turn Right App,. The second if-test will test for equality with App, and it will
be successful, thereby returning Right App,. The process will go on until, in the
end, Right App,, is returned, which proves that the call terminates (and in fact
App,, = [xM,...M,)).

(Az.M): then eA [A\x.M] e = Right (Abs "x" [M]), so it terminates.

(throw n(N)): then eA [throw n(N)] e = Left (App (e "n") [N], "n"), so it termi-
nates.

((try H; CB)M,...M,), where H can not be a throw and must contain at least one
name defined in CB:

If n = 0: then, by Lemma 3.3.6, we have that eA [try H; CB| ¢ = Right [try Hy CBs]
for some H, and CB, as described in the lemma, so it terminates.

If n > 1: we first prove an additional statement by induction on the structure of
H,: for any H, (where we disregard the throw from the syntax) and ¢, we have that
eA [H,] € = Right [Hs] (*) - this is what we mean when saying that H, (where we
disregard throw’s from the syntax) are the fixed points of the evaluator.

We have already seen proofs for xM;...M,, and \z.M above (it is easy to check that
the result of the evaluation is the translation of the term we started with, encased in
a Right). The remaining (inductive) case is (try Hy; CB)M,...M, where H, is not a
throw. Assume (IH) that Ve. eA [H] ¢ = Right [H,]. Let us consider the case when
n = 0 - we must show eA [try Hy; CB] € = Right [try H,; CBJ:

eA [try Hy; CBJ| e

= cCcase
case eA [Hy] eUT,
of
of ... (unfolding the catch block)
= CcCase

case Right [Hs] of
Left ->
Right res -> if (occurs "n;" res)
then Right (Try res "my" "x" [M;]) else
of Left ->
Right res -> if (occurs "n," res)

38

Chapter 3. A Haskell Evaluator 3.3. PRESERVATION OF REDUCTION

then Right (Try res "n," "x" [M,]) else
(by the TH)

In the above, we have applied the IH and unfolded the catch block - note how
each catch block introduces a check: if its name exists in the term, then it is kept,
otherwise it is discarded. We know by definition that H, contains all of the names
in the catch block, ie. all of n;, ny, ..., n,, so by Lemma 3.3.2 all of the if-tests
will be successful. It is easy to see that the i innermost case construct will return
Right Try,, where Try, is defined as:

Try (Try (‘.. (Try LHﬂ "n1" nyn {Aﬂl) '..) uniu nyn "[M_i]"

The last case construct will therefore return Right Try,, which is the final result of
the call; note that Try, = [try H,; CB], as required.

If n > 1, we have (try Hy; CB)M,...M, - the proof will proceed in a similar fashion,
except that there are n applications to unwrap first. This is exactly the same rea-
soning as the proof for xM;...M,, above, with the derivation for the case n = 0 (that
we have just finished) appearing as part of it once the applications are unwrapped.
Therefore we do not show it here. This completes the proof of the auxiliary state-

ment.

Back to the main proof, we now have to deal with (try H; CB)M,...M,,. We have:
eA [(try H; CB)M,...M,] €

case

case eA [try H; CB] ¢ of

(unfolding the applications)

case

case Right [try Hy; CBs] of
Left ->
Right p' -> if ([try H; CB] == p"')
then Right (App [try H; CB] [M;])
else eA (App p' [Mi]) €

(by Lemma 3.3.6)

At this point, there are two cases:

1. There is a chance that the initial try H; CB already conformed to H, syntax

(which says that every term that is in a try references all of the names in the

catch block). Then, by (*), we would have that [try H; CB] == [try H,; CB].

The if-test in the innermost case construct will be successful and Right [(try H; CB)M;]
will be returned. The other case constructs will behave similarly, with the
innermost one returning Right [(try H; CB)M;M,...M;]. The final result will

be Right [(try H; CB)M;M,...M,], therefore the algorithm terminates.

39

3.3. PRESERVATION OF REDUCTION Chapter 3. A Haskell Evaluator

2. Otherwise, we have that [try H; CB] # [try H,; CB;]. The innermost if-test
will detect the difference and return a re-evaluation: eA [(try Hy; CBs)M] e.
Following the reasoning from case 1, this will return Right [(try Hs; CBs)M,]
(since we definitely know that try H,; CB, conforms to H, syntax now). This
will be returned to the second innermost case construct, which in turn will also
re-evaluate, having spotted a difference: it returns eA [(try Hs; CBo)M;Ms] e,
which by the same reasoning from case 1 is going to be Right [(try Hs; CBg)M;M,).
This happens all the way until the outermost case construct, which returns a fi-
nal re-evaluation (and the final result of the call): Right [(try Hs; CBs) M M,...M,].
So the algorithm terminates.

In both cases, the algorithm terminates and this completes the proof of Lemma 3.3.5.
Lemma 3.3.7 If P —* @ and @ is in normal form, then Ve. eA [P] € | eA [Q)] e

This follows directly from Lemma 3.3.4 and Lemma 3.3.5. We have the following
reduction path:
P—->P—..—P —Q

where () is in normal form. Applying Lemma 3.3.5 to), we have that Ve. eA [Q)] € |.
Then, applying Lemma 3.3.4 to P, and @), we have that Ve. eA [P,] € | eA [Q)] €.

Applying Lemma 3.3.4 to P,_; and P,, we have that Ve. eA [P, 1] € | eA [P,] ¢, but
since we know that Ve. eA [P,] € | eA [Q)] ¢, it follows that Ve. eA [P,_1] € | eA [Q)] €.

We can keep this up until we reach P, which yields Ve. eA [P] € | eA [Q)] € as required.

Main result

In particular, by setting e to the empty context in Lemma 3.3.7, we obtain Theorem
3.3.1: For any \"Y terms P and @ such that P —* @) and (is in normal form (with
respect to call-by-name reduction), it holds that eval [P] | eval [@]. This completes
the proof of the main result.

40

Chapter 4
GHC and System F

GHC [11] is one of the best-known Haskell compilers and the one that we will pre-
occupy ourselves with. The key idea is that GHC contains an intermediate language
called Core, to which all compiled Haskell code is eventually translated to. While
Core used to be an implementation of a variant of a calculus called System F ([12],
[13]), it has been extended in various ways over time. Eventually, System F has
evolved into another calculus, called System FC, which, at the time of writing this
paper, is implemented in GHC (in the form of Core) [14]. This chapter reviews the
main structure of GHC and presents the above-mentioned calculi that it is based on.

4.1 GHC

In order to see what it would mean to make Haskell implement \'"?, it is required to
understand the workings of one of the best-known Haskell compilers: GHC [11].

Broadly speaking, GHC adheres to the traditional structure of a compiler: the source
code is first parsed into an intermediate representation, various transformations are
run on said representation, and the process ends with the code generation phase,
which yields machine code.

A detailed explanation of the whole compiler pipeline is given in [15]. We present
below a summary of it:

1. The Haskell source code is parsed into an intermediate, much simpler lan-
guage, called Core

2. A number of Core-to-Core transformations are run on the result of the previous
step

3. The code is further simplified and converted into another intermediate lan-
guage called STG

4. STG is converted into a subset of C called C--, after which the code generation
phase follows one of three paths:

41

4.2. CORE AND SYSTEM F Chapter 4. GHC and System F

(a) The C-- code may be pretty-printed as stylised C, for compilation with
GCC (the C compiler)

(b) If generating native machine code, the native code generator is invoked

(c) If generating LLVM [16] code, the LIVM code generator is invoked

GHC is where features of the normal \-Calculus are already implemented, for exam-
ple term substitution. In principle, one could directly extend GHC with everything
that A% introduces: new syntax, new reduction rules and new type assignment
rules. However, this would involve major changes on all of the compiler levels de-
tailed above and the effect of such an approach on the existing Haskell features is
unpredictable.

Therefore, it makes sense to wonder if such a major extension is actually needed to
accomplish our goal: is it not possible to express A% using whatever GHC already
has to offer? To this extent, we further explore the expressive power of the compiler.

4.2 Core and System F

We have mentioned that, as a first step, Haskell source code is converted into an
intermediate language called Core. Therefore, if we were able to translate our new
language features (that would be added by \"¥) into Core, we would not have to
touch any other lower level of the compiler.

4.2.1 Before System FC

Core is a very simple language compared to the Haskell source code. As we have
mentioned, it used to be the case ([12], [13]) that Core was an implementation of
a variant of a calculus called System F. We present it, together with some examples,
below, by adapting the information in [13] and [17].

System F specification

The main feature of System F is that it formalizes parametric polymorphism by in-
troducing the type-level lambda. It is also worth noting that System F is a typed
language: when abstracting over a variable, that variable has to be annotated with
its type. Thus, types are now part of the syntax of terms: this is unlike any of the
calculi we have presented so far.

Types are given by the following grammar:

A B:i=p|A— B|Va.A

where ¢ and « range over the set of type variables.

Terms are given by the following grammar:

42

Chapter 4. GHC and System F 4.2. CORE AND SYSTEM F

M, N:=z| x* M| MN | Ap.M | MA

Va. A is a polymorphic type and it can be viewed as the collection of all the types that
can be obtained from A by replacing the free occurrences of « in it with any other
type. For example, we might expect a polymorphic identity function to have type
Va.ao — «, because it takes an object and it just gives it back (and this works for
any type « that the object may have, hence the Va). The terms that have such types
are characterised by the A operator: this has the same meaning as A in the normal
abstraction \xz.M, except that it is for types. Ap.M can be viewed as a function
that takes a type as an input parameter and that type may be used later inside M
- this passing of a type as a parameter is represented by the application M A (M is
expected to be a A-abstraction, and A a type).

Note that the z in the usual Az.M now has to be explicitly annotated with its type
A (which can also include type variables bound by A-abstractions). Also note that,
given the new constructs (type application, specifically) types are partly treated as
ordinary terms in System F.

The same conventions (regarding brackets and associativity) that we employed for
the normal \-Calculus apply here.

System F adds the following reduction rule:
(Ap. M)A — M[A/y]

where type variable substitution is defined similarly to term variable substitution
(also taking place in type annotations), taking into account Barendregt’s Convention
and assuming that a-conversion takes place silently whenever necessary.

There are also two new type assignment rules, one for each new construct (we also
show the one for the normal A\z.M, which is slightly different because of the type
annotation):

Fx:AF-M:B x¢T '-M:A I'-M:Vo.B
(—1) (VI) (VE)
I'-XeA.M:A— B

Tk Ap.M : V. A T+ MA: B[A/y]

For example, the polymorphic identity function (which takes an = and gives back the
same x) can be represented in System F as Aa.Az“.z, which has type Va.ao — «. The
advantage of polymorphism then becomes clear: if we were to denote this function
by f (and if Int and Char were types), then the expression ((f Int) 1, (f Char) 'a’)
would typecheck, whereas if f was just Az.x, the expression (f 1, f'a’) would not,
because f it would need to have both type Int — Int and Char — Char (so we would
end up having to implement two different identity functions, one for each type).

As mentioned in [13], type checking (the problem of deciding whether a type can
be assigned to a particular term or not) for this system is straightforward because of
the type annotations contained in the terms; however (also as mentioned in [13]),

43

4.2. CORE AND SYSTEM F Chapter 4. GHC and System F

it has been proved that the same problem for a variant of this calculus without the
annotations is undecidable, which makes it not very practical for serving as the basis
of a functional programming language. Instead, a relaxation of this system, called
Hindley-Milner, was used.

Hindley-Milner specification

Here we present the main feature of Hindley-Milner, as described in [6] and [18].

The principal difference from System F is that Hindley-Milner only allows V quanti-
fiers for types to appear on the top level of the type. This makes type checking (the
problem of deciding whether a type - either any type at all or a specific type - can
be assigned to a particular term) efficiently decidable. Thus, types are classified into
monotypes:

A B:=¢p|A—B

and polytypes:
ogu=A|Vp.o

The general form of a type is therefore Vi, ... Vp,.A, n > 0, where A is a monotype.
Terms are defined as for the \-Calculus, with the addition of:
M, N:=...|letx=Min N
The notion of reduction is extended by:
letx =Min N — N[M/z]
The typing rules deal with the new construct and new kinds of types:

(Az) x:AFM:B x¢T s 'rM:A—-B TTEFN:A

. . — —F
Leiokz:o Trowa-ass Y T'FMN:B =)
'rM:o Thx:cFN:B z¢T '-M:o0 ¢o¢T I'EM:Vyp.o

- ¢ (let) ¢ (vl) —————— (VE)

I'kletz=MinN:B I'-M:Vp.o I'EM:o[A/g]

The rule (let) is where polymorphism is introduced: note that it allows x to have a
polytype, while the rules (— 7) and (— E) do not allow polytypes. Additionally, the
last two rules deal with the generalisation and specialisation of types: broadly speak-
ing, one can generalise a type by introducing a V quantifier over a type variable in
it, and one can specialise a V type by using a type substitution over the variable that
is bound.

For example, this typing system is powerful enough to express self application for the
polymorphic identity function: let i = Az.z in ii can be shown to have type A — A
for any A.

This system can also be extended with recursion, as shown in [6] and [18], but we
do not give the details here.

44

Chapter 4. GHC and System F 4.2. CORE AND SYSTEM F

Relationship to Core

Due to its expressivity and practical solution to the type checking problem, Hindley-
Milner was implemented in many functional programming languages, such as ML or
Haskell [18].

In particular, Core used to be an implementation of Hindley-Milner used in GHC
[12], although it has been extended in various ways over the years [18].

4.2.2 System FC

At the time of writing this report, Core is an implementation of System FC ([14],
[19]), which is an extension to (and also a superset of) System F that we describe
below.

As mentioned in [14], System FC builds upon System F by introducing type equality
coercions. A coercion is a piece of evidence that can be passed around and symbol-
izes that two types can and should be considered equal.

There are also many additional features, such as data constructors (with case expres-
sions), type functions and value type constructors. We give below the fragment of
the syntax that shows expressions, taken from [14].

e :=u (Term atoms)
| Aa: k.e | e ¢ (Type abstraction/application)
| Az : 0. | e; eo (Term abstraction/application)
|letz: 0 =einey
| case e; of p—= &3
| e» v (Cast)

In the above, u stands for term atoms (which are either variables or data constructors
- not shown here), « is a kind (not shown here) that accompanies the type « in the
A-abstraction, p is a pattern (not shown here), ¢ stands for a type or a coercion (not
shown here), o is a type and ~ is a coercion. The full syntax is quite complex and
can be found in [14], on page 4.

Most of the constructs have familiar forms: we have already seen variables, vari-
able/type abstraction/application and let-terms. The case construct resembles Haskell
syntax and allows different actions to be taken based on the form of e; (patterns and
data constructors are also something new that the syntax introduces), and casts are
statements (involving an expression and a coercion) which are used to implement
advanced typing features in the compiler.

For reasons of brevity, we do not give the type assignment rules or operational se-
mantics, although they can be found in [14] on pages 5 and 9, respectively.

45

10

11

12

13

14

15

16

17

18

19

4.2. CORE AND SYSTEM F Chapter 4. GHC and System F

The authors go on to show how several features can be implemented in System FC,
such as generalised abstract data types (GADTs) and associated types.

A Core data type

As mentioned before, Core is an implementation of System FC [14]. In concrete
terms, since GHC is itself written in Haskell, this means that Core consists on data
types (and functions on them) that represent System FC: Haskell source code is
parsed into these data types, and machine code is then generated from them (fol-
lowing the compiler pipeline).

Here is how the Core data type looks like for expressions (taken from [20]), which
would correspond to the fragment of the syntax that we have given above:

type CoreExpr = Expr Var

data Expr b -— "b" for the type of binders,
= Var Id
| Lit Literal
| App (Expr b) (Arg b)
| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b Type [Alt b]
| Cast (Expr b) Coercion
| Tick (Tickish Id) (Expr b)
|

Type Type
type Arg b = Expr b
type Alt b = (AltCon, [b], Expr b)

data AltCon DataAlt DataCon | LitAlt Literal | DEFAULT

data Bind b

NonRec b (Expr b) | Rec [(b, (Expr b))]

The correspondence between this data type and the System FC syntax is clear from
the names of the constructors.

As mentioned in [20], all of Haskell is eventually compiled down to this relatively
small data type.

Ideas for \"V translation

Since all of Haskell is compiled down to Core, which is an implementation of System
FC, it follows that what we should be looking for is a suitable translation from \""¥ to
System FC (or a version of it with as few extensions as possible). Such a translation
would then pave the way for adding actual language features (based on \¥) which
should then straightforwardly translate into Core.

46

Chapter 5

Extension to Hindley-Milner

In this chapter, following our previous reasoning, we present an extension to Hindley-
Milner (as presented previously) that allows A\'"¥ to be mapped to it. We have chosen
to target Hindley-Milner, rather than System FC directly, as it is much simpler and
we think it provides a good starting point to see what a translation from \"¥ could
look like.

5.1 Motivation

Firstly, note that, although we do not prove this, we think that it is unlikely that *"¥
could be mapped to the normal Hindley-Milner. Recall that terms are given by the
following syntax:

M,N:=xz | Xx.M | MN |letx =M in N

If we were to translate A*¥ to this, a most obvious question is how we would deal
with the term throw n(M) in the presence of the (throw) reduction and type assign-
ment rules.

Assume that the translation of the term throw n(M) was some term N in Hindley-
Milner. If we were to translate application in A\"¥ as application in Hindley-Milner
(which seems to be the most natural option), then, in order to preserve the notion
of reduction and because of the (throw) reduction rule, N would have to satisfy
NP — N for at least some P (that would also be produced by the translation). This
would imply, by the Hindley-Milner type assignment rules and subject reduction,
that NV can be assigned both of the types A — B and B (for some A, which would
be the type of P, and some B).

Furthermore, the type assignment rule (throw) allows throw n(M) to be assigned
any type at all (provided that M is typeable and there is a suitable name in the con-
text). If we aim to preserve type assignment (which is desirable), this implies that
we also need to be able to assign any type at all (in the right conditions) to N.

47

5.1. MOTIVATION Chapter 5. Extension to Hindley-Milner

These observations suggest that N would have to be a polymorphic term to which
we can assign any type, which is to say that we can assign the type V. to it. Look-
ing at our terms and type assignment rules in Hindley-Milner, however, there is no
obvious candidate for such a term.

At this point, we are stuck. It is worth considering whether a popular extension to
Hindley-Milner, which deals with recursion, could help. As presented by van Bakel
in [6], it sees the addition of fix g.M to the syntax of terms, with the reduction rule

fix g.M — M](fix g.M)/g]

and the type assignment rule

Ig:A-M: A

I'tfixg.M: A (fiz)

This helps express recursive functions. An informal example would be the factorial
function, F', which could be defined as fix fac.An. if (n = 0) then 1 else n x fac (n—1).
Then, for example, it is easy to show that F' 5 reduces to 5 x F' 4 and F' 0 reduces to
1, conforming to the mathematical definition of the factorial.

More importantly, this provides a polymorphic term that we can assign any type to:
fix g.g. Note:

—— (A
F,g-ww-sﬁ(ﬁz)
I'Ffixgg:o 1)

L'k fixg.g:Vo.p

Could the translation of the throw be a term with such a form? Unfortunately, just
using fix g.g does not work. While it is true that we can assign any type to it, it is
not so useful with regards to reduction, as it will just keep reducing to itself forever.
If our previous N would be this term, then, instead of the desirable NP — N, we
would have NP — NP — ...

Another approach could be representing the context consuming nature of the throw
with a term such as fix g.Az.g. In this case, if this was our N, we would have that
NP — (Ax.N)P — N, which satisfies the (throw) rule. However, this term is still
problematic: we can no longer assign all types to it, since any type we could assign
would have to include an arrow type (because of the lambda). Furthermore, even if
the (throw) rule is satisfied, dealing with the (try) reduction rules seems harder: how
would one encode the name and payload of a throw, and how would one ”catch” a
term like fix g.\x.g?

The answer to these questions is not obvious, and, even with the recursion extension,
it seems that it is hard to translate \'"¥ (at least in the presence of the assumption
that application in \'"? is translated as application in Hindley-Milner - but what else
to translate it as is, again, not obvious). To address this, we further introduce some
additional extensions and discuss their feasibility.

48

Chapter 5. Extension to Hindley-Milner 5.2. FOLLOWING THE EVALUATOR

5.2 Following the Evaluator

We have seen in Chapter 3 that there might be some merit to the idea of encoding
A" using the Either data type from Haskell.

This suggests that a good first attempt in our search could be to formalise our evalu-
ator into a target language for the translation, where this target language should be
an extension to Hindley-Milner.

The most important features introduced by the evaluator are the Left and Right
terms, together with the ability to perform a case deconstruction on them. As shown
in the evaluator, this provides an answer to the question (form the previous section)
of what A% application should be translated as: with these features, it could be
translated as a case construct which first “evaluates” the first term in the application
and then, if it is a throw, provides special treatment for it. Furthermore, the try
construct can be translated in a similar fashion.

This seems to suggest a first set of extensions that our target language should have.
Starting from Hindley-Milner, we add to the syntax of terms

Lefta:—>ML

M,N == ... | Left (M) | Right (M) | case M of {Righta: M,
Left and Right are used as syntactic markers. With regards to the case statement,
note that the arrows have nothing to do with reduction rules: they are simply part
of the syntax (this is similar to the Haskell syntax for the case statement, and a sim-
ilar approach can also be found in System FC [14]). The words Left and Right are
fixed, x is a variable, and M; and M}y are other terms produced by the syntax (the
subscripts are used in order to avoid giving the impression that the terms have to be
the same, or identical to the M immediately after the case keyword - this is similar to
the possible use of subscripts when defining application as M; M,, rather than M M).
We consider the z to be bound in M; and Mp.

The additions to the reduction rules are

Left v — M,
Left (M M| M
case Left (M) of {Rightx—>MR — MMl
. Left:z:—>ML
Right (M Mg|M
case Right (M) of {Rightm—>MR = MalM/x]

M — N = case M of --- — case N of ...

These rules say that, when dealing with the case construct, say case M of ..., we
are allowed to reduce the M as much as we wish - if such reduction leads to a term
of the form Left (P) or Right (P), then the case statement and the syntactic markers
are escaped and reduction follows the corresponding branch. The result of reducing
M is not lost: P is available to each branch in the form of the variable z, which it

49

5.2. FOLLOWING THE EVALUATOR Chapter 5. Extension to Hindley-Milner

substitutes.

The syntax for types is also extended with the construct
A, B ::= ... | Either A B

and we add the following type assignment rules:

rEM:A '-M:B
, (Left) . . (Right)
'k Left (M) : Either A B I' F Right (M) : Either A B
I'H M :Either AB T'F Xx.Mp:A—C Fl—)\x.MR:B—>C()
case
Left:c—)ML
I+ case M of :C
Rightl’*)MR

These rules allow the introduction of the Either type (for Left and Right terms, pro-
vided the encased term can also be typed), and its elimination (in order to type a
case construct, M needs to have an Either type, and each branch must take its corre-
sponding type from the Either and produce the same type, C).

What we have defined here is a variant of the extension for the disjoint union (or
sum) type constructor, which is also presented by van Bakel in [6], on page 48. He
gives the following extensions to the syntax of \-terms:

E:=...|inl (E)|injr (E) | case (Ey, By, Es)
The new reduction rules are

case (ln]l (El), EQ, Eg) — By E,
case (injr (E,), Ey, E3) — E3E,

The syntax of types is extended with
AB:=...|A+B

and the new type assignment rules are:

r-E: A '-E:B
— (ingl) — (injr)
I'Hinjl (E): A+ B I'kinjr (M): A+ B

I'rE1:A+B T'FEy:A—C THE;:B—C
I+ case (E1, Es, E3) : C

(case)

Our extension and the extension given by van Bakel [6] are very similar. To see this,
all we need to do (informally) is map Left (M) to injl (M), Right (M) to injr (M),
Left v — My,

Right x — Mp
Then, the reduction rules and type assignment rules match completely, except for the

case M of to case (M, \x.Mp, \x.Mp) and Either A B to A + B.

50

Chapter 5. Extension to Hindley-Milner 5.2. FOLLOWING THE EVALUATOR

fact that, in [6], van Bakel does not allow reducing under the case construct (mean-
ing that there is no rule of the form M — M’ = case (M, N, P) — case (M', N, P),
while in our case, there is).

These extensions are enough to explore how our translation could look like. We
would like it to have two properties:

1. The translation of any \"¥-term should reduce to a term of the form Left (M) or
Right (M). This is to be consistent with the evaluator, which always produces
a Left or a Right.

2. The translation should be proper, in the sense that when translating a term,
the translation should also be passed down recursively to all of its subterms.
This is a key difference from the evaluator: unlike in that case, this time A\ is
not part of our target language.

For example, in the case of our evaluator, when evaluating Az.M, it would
simply produce Right (\z.M), without touching the M. This was acceptable,
because A" was part of the return type and the types would match. For our
translation, however, this would not work, as it would not be well-typed: in-
stead, we would have to translate the M as well. The same idea applies to all
A'"Y-terms.

A consequence of this is that whatever evaluation steps the evaluator took
before, we would have to represent via reduction rules in our extended system.
Then, a full call to the evaluator would correspond to a reduction sequence that
ends in a term as described in property 1.

With these properties in mind, we can start translating. Denote the translation with
[-]. Then we may reasonably have that

[x] = Right (x)

as we must produce a Left or a Right (and we would like to reserve the Left’s for
throws, as in the evaluator). Further, it also seems that the only reasonable option
for the A-abstraction is to have

[Az.M| = Right (\z.[M])

Going further, it is time to deal with application. Assume for now that we translate
throw n(M) as Left (N) for some N. Then the reasonable approach for application
would be:

Left x — Left x

[MN] = case [M] of {Right .7

The translation above means that we reduce [M] until it becomes a Left or a Right,
and then we act accordingly. If we get a Left, then that corresponds to a throw, so we

51

5.3. EXTENSIONS Chapter 5. Extension to Hindley-Milner

simply leave it as it is and we ignore N, in the spirit of the (throw) reduction rule.
However, what should we do if we obtain a Right? Even with only the translations
we have so far, we see a problem.

If [M] reduces to something of the form Right (\z.P), then we want to apply \z.P
to the translation of NV, in order to fulfill the (3) reduction rule. This would sug-
gest replacing the question mark with z|[N] (note that this is normal application in
the extended system, which can be straightforwardly defined starting from Hindley-
Milner). Importantly, note that we can not say [x/N] (which seems similar to the
evaluator approach), because the translation would recurse infinitely, and even if
we were to assume that z would be somehow substituted with a term in the target
language before the translation being applied, the types would not match (we would
be applying a translated term to an untranslated one). Continuing, then, we would
obtain (Az.P)[N], which should reduce to a Left or a Right.

On the other hand, if M reduces to something of the form Right (z), the approach
above would not work: after reducing the case, we will be left with x[N], which does
not reduce any further, and so does not reduce to a Left or a Right. Instead, it is
clear that in this case we should be able to tell that there is nothing more to be done
and we should add the Right ourselves: this corresponds to replacing the question
mark with Right (z[N]). However, this approach does not work for M-abstractions:
note that, by adding the Right ourselves, we would enclose the application in it, but
we can not reduce under Right, so no further reduction will take place (where it
clearly should, according to the (/) rule). Furthermore, even if we were to add such
reduction under Right, what if the application inside reduces to a Left? Should we
treat Right (Left ...) as a throw or not?

Instead, what emerges from here is that the ability to discriminate terms according to
Left of Right is not enough. There are clearly different actions to be taken depending
on whether a term reduces to a variable or a A-abstraction, despite the fact that both
reside under a Right. Therefore, this suggests the need for a case statement that
can discriminate according to more general term structures, which could potentially
eliminate the need for Left and Right altogether. This is what we present in the next
section.

5.3 Extensions

This section combines the evaluator in Chapter 3 with the observations in the pre-
vious section and introduces a more general case construct, as well as any other
constructs from the evaluator that need a formal definition. Call the extended sys-
tem H M+. The extensions are as follows:

52

Chapter 5. Extension to Hindley-Milner 5.3. EXTENSIONS

M,N == ... |Thr (M,n) | Stuck M; catch n;(x) = N;
Thr (I't, nt) — Mt
Abs z, — M,
| case M of 5

VarApp x, — M,
StuckApp ©, — M,
| if B then M else N | lookup n in catch n;(z) = N;

B:i=nem|meM

Figure 5.1: H M+ syntax extensions

5.3.1 To the syntax of terms

The additions to the syntax can be found in figure 5.1.

We extend the syntax of terms with a set of names ranged over by n, m, ...

For simplicity, we also add special variables x;, x,, x,, xs (which are specific to this
system and do not appear in \''¥) and the name n; (which similarly does not appear
in A'"¥). All of these are only allowed to appear within the case construct.

The new constructs are heavily inspired by the Haskell evaluator in Chapter 3 and
are explained below:

1. case M of

Thr (x4, ng) — M,
Abs x, — M,
VarApp x, — M,
StuckApp x, — M,

This is the most important addition, so we explain it first. With regards to syn-
tax, it is closely related to the simpler case construct we saw in section 5.2. In
each of the four branches, everything on the left hand side of the arrow is fixed
(including the special variables z;, z,, x,, x5 and the special name n; that we
have already mentioned, which do not appear in A\'"¥). Note that the things on
the left hand side of the arrows are not terms (despite the fact that Thr (z;, n;)
looks like one) - they are just part of the syntax for the case construct. The
arrows themselves are part of the syntax and have no relation to reduction
rules, while the terms M;, M,, M, and M, represent other terms produced by
the syntax (they are differentiated with a subscript, in order to not give the
impression that they have to be the same, or perhaps identical to the M/ imme-
diately after the case keyword). We consider z; and n; to be bound in M;, z, to
be bound in M, and similarly for the last two branches.

The motivation for the form of this construct stems from the observations in
section 5.2: if we try to force the translations of A% terms into Left’s and

53

5.3. EXTENSIONS Chapter 5. Extension to Hindley-Milner

Right’s, we saw that we can not define a proper translation - specifically, we
could not translate application in a way that would guarantee the production
of a Left or a Right.

Consider the problem of translating the application M N. In section 5.2, we
tried to reduce the translation of M until a Left or Right was reached, but we
came to the conclusion that this was not enough: as such, we deduced that
the case construct needed more specific information about the structure of the
term that the translation of M reduced to. Knowing it was a Right was not
enough: we actually needed to distinguish between, for example, a variable or
an abstraction.

This leads to the question: what termination cases does the case statement need
to be aware of? The reason for this is the same as before: we need to be able
to tell when the translation of M has reduced to something that represents a
throw, and when it has not (however, most importantly, forcing the Left and
Right divide does not work, as already argued).

If simplifying matters with Left and Right is not good enough, perhaps we
should look at what A% terms reduce to as they are: if reduction ever fin-
ishes, then the final result is a term in normal form. If we can identify the
structure of such terms, it would give us a good (sufficient) candidate for what
our case structure needs to consider: we could make it distinguish between
final reduction results of the translations of A% terms in normal form. This
would definitely include differentiating between variables and abstractions,
which would solve our previous problem.

Taking into consideration the reduction rules of A%, we state (but do not
prove) that \'"¥ terms that are in normal form (with respect to call-by-name
reduction), denoted by H LT ry, are given by the following syntax:

HLTry ::=throw n(N) | HLTry
HLTry ==aMy..M, | \e.M | (try HLTry'; CB)M,...M,

where n > 0 (n = 0 implies there is no application), the M’s are any \""Y terms,
CB stands for the catch block and H LTry’ in the last case must contain at least
one of the names defined in the catch block.

We can now think about what we would like the translation of an H LTry term
to reduce to, and make our case be able to distinguish between all the possible
cases. The solution that we have identified is as follows:

(a) throw n(N): We have already seen that there is no easy way to translate
this term without some extension to the syntax. Thus, we add the Thr

54

Chapter 5. Extension to Hindley-Milner 5.3. EXTENSIONS

(b)

(©

(d

term to the syntax for this specific purpose, and this is the first branch of
our case construct. With regards to z; and n;, they act in a similar manner
to the z in the previous case construct from section 5.2: if the translation
of the first term in the application reduces to a Thr (M, n), they make sure
that the M and n are available to the term M, (M will substitute z,, and
n will substitute n;).

Axz.M: It is not unreasonable to expect the translation of this to also be
an abstraction. Therefore, we make the abstraction the second branch in
the construct (which we denote by Abs). Note that the word Abs is fixed
and does not appear anywhere else in the syntax: it only acts as a marker
for this branch. Thus, it is not yet clear what the variable z, does, as
there is no obvious ”pattern matching” happening anywhere (as was the
case for the Thr construct). Instead, since we still need to use the result
of the reduction on the right hand side of the arrow (in order to have
preservation of reduction), we will see that it suffices if the whole abstrac-
tion substitutes x, (because we only care that it is an abstraction, but not
about specific information in it, like, for example, what variable is being
abstracted on).

The exact operational workings (which is the place where the actual recog-
nising of the structure of terms takes place) will be made clear once we
give the reduction rules. So far, we are only justifying the structure of the
case construct.

xM;i...M,: It would be satisfying if the translation of this term would
eventually reduce (if we denote the translation by square brackets) to
x[My]...[M,]. As we will see, this is possible. This corresponds to the
third branch in our construct, denoted by VarApp (because it is a variable
potentially followed by a series of applications). The variable x, behaves
exactly the same as the z, in the previous branch.

(try HLTry'; CB)M,...M,: This case is less obvious, as we have not tack-
led the translation of the try yet. If we translate a try that can no longer
reduce, we would like the translation itself to reduce to something that
is in normal form and has a recognisable structure for the case construct
(like the other translations so far). As it is not obvious what this should
be, we introduce a new term to the syntax for this specific purpose: the
Stuck term. This denotes a try that is stuck and can not further reduce,
and is easy for the case statement to recognise.

This being said, we will have to make sure that the translation of such
a try reduces to a Stuck. The whole purpose of the Stuck is to mark the
last type of \'¥ term in normal form, which we have no obvious way
to distinguish. With the addition of the Stuck, it would be desirable for
the translation of (try HLTry'; CB)M,...M, to eventually reduce to (if
translation is denoted by square brackets) (Stuck P; CB')[M]...[M,] for
some P and CB’, which we will see is possible. Finally, this gives the last

55

5.3. EXTENSIONS Chapter 5. Extension to Hindley-Milner

branch in our case statement, which is denoted by StuckApp (because it
is a Stuck term potentially followed by a series of applications). The z,
variable behaves similarly to the previous 2 branches.

We will see that the 4 branches we have identified are enough to model all
of the reduction rules introduced by A%, and both application and try terms
will be translated to a case construct in our system. They will both reduce the
translation of a term until it corresponds to one of the four branches above
(which we will prove always happens), and the branch will then be followed.
In practical terms, we only care if reduction finishes with a Thr or not (and
indeed the last 3 branches in the case construct will always do the same thing
in our translation), but, in order to be able to tell this, we needed to identify
what else reduction could finish with (which yielded the 4 branches above).
Had we not done this, it would not have been possible to formulate proper
reduction rules (that we will see), because it is hard to design a rule that says
”in all other cases, do this” - at what point will we definitely know that we are
not dealing with a throw?

Something worth noting is also the fact that there is no need for Left and Right
anywhere in the syntax. Despite the fact that we tried to use them to achieve
the same purpose (namely, figuring out when we are dealing with a throw and
when we are not), it was not possible to do so without further considering the
structure of the terms - and once we consider the structure of the terms, which
is the current approach, we already have enough power to represent the \'"¥
reduction rules.

2. Thr (M, n): This represents the result of translating a throw and can be seen as
the equivalent of a Left term from the evaluator. The pair consists of the term
to be passed to the handler and the name of the handler. The role of this term
is explained together with the case construct.

3. Stuck M; catch n;(z) = N;: This is used to mark a try term that can no longer
participate in reduction; we would like the translation of such a term to reduce
to this. The reason for having this term is explained together with the case
construct. Note that we could have used any other term instead of this, as long
as it is recognisable by the case statement and it does not participate in any
reduction (other than in the case statement) - for example, a special constant
defined specifically for this purpose. We have chosen to keep the term M and
the catch block for informative purposes.

4. if B then M else N: This is the usual if statement - in our case, it will only
be used with tests that check whether a name n occurs in a set of names or
any name in a set of names occurs in a H M+ term. The reason for having this
term is that, when translating try, we will need to reduce to different things
depending on whether a name occurs somewhere: the most obvious way to
achieve this is to introduce a dedicated boolean construct such as this, and

56

Chapter 5. Extension to Hindley-Milner 5.3. EXTENSIONS

(I;) ifnemn;then Melse N — M, ifn € {ny,...,n,}
(I;) ifnemn;then Melse N— N,ifn ¢ {ny,...,n,}
(I3) if n; € M then N else P — N, ifanyn;, € M
(1) if m; € M then N else P — P,ifnon; € M

(Cy) (case Thr (M, m) of Thr (xy,ne) — My; ...) — My[M/x][m/n,]
(Cy) (case \y.M of ...; Abs xq — My; ...) — My y.M/z,]
(Cs) (case yM;...M, of ...; VarApp x, — M,; ...) = M,[yM;...M,,/x,]
(Cy) (case (Stuck M; catch n;(x) = N;)M;..M,, of ...; StuckApp x5 — M) —
M;[(Stuck M; catch n;(x) = N;)My...M,,/x]
(Ly) lookup n in catch n;(x) = N;; catch m(x) = M — Ax.M, ifn=m
(Lo) lookup n in catch n;(z) = N;; catch m(z) = M —
lookup n in catch n;(z) = Ny, if n #m
(L3) lookup n in catch m(z) = M — Ax.M, if n =m

(context) M — N = case M of --- — case N of ...

Figure 5.2: H M+ reduction rules extensions

have reduction rules for it that take into account name occurrence (in \"¥, this
was part of the reduction rules for try, but we do not have that here, as the
rules for the case statement will be more general and it will be unaware of the
fact that it is the translation of a try).

5. lookup n in catch n;(z) = N;: This term is used to formalise the looking up of a
name in a catch block in order to retrieve the corresponding handler. Again, in
'Y this was part of the reduction rules for try - however, our case statement
will not be aware of the fact that it is the translation of a try and it has no
concept of handler lookup. As such, we have to introduce this construct, with
dedicated reduction rules, to model it.

5.3.2 To reduction rules

The extensions to the reduction rules can be found in figure 5.2.

We use square brackets for substitution in H M +. We do not define it formally, but
instead give a straightforward informal definition: substitution is defined similarly
to A%, where all of the new constructs (including booleans) simply pass the substi-
tution on to the subterms inside (including booleans). The Stuck and lookup terms
are treated similarly to the try term in \'"¥ with regards to bound and free variables
and names. The 2’s (and the n,) in the case term act as binders for the terms on
the right hand side of the case arrows (like the x in Az.M for the M), and note
that, by construction, they can not appear free anywhere in our system. We assume
Barendregt’s Convention and the fact that a-conversion takes place silently wherever
necessary.

57

5.3. EXTENSIONS Chapter 5. Extension to Hindley-Milner

We use the same notation to define name substitution. This is only defined where the
name being substituted is n;, and is denoted by M [m/n,| for some name m, meaning
that m replaces n; in M. As before, all of the constructs pass this substitution on to
the subterms inside (taking into account that n, acts as a binder, which is also men-
tioned above) - the only places in which it has a meaningful effect are Thr (M, n),
the names in the boolean tests, and the n in the lookup construct (in which any free
occurrence of the name n; would be replaced by m given the substitution [m/n]).
Note that we could have defined substitution in a more general way (with the ability
to substitute any name), but, as we will see, the current definition suffices for our
translation. Furthermore, this has certain advantages, such as not having to worry
about Barendregt’s Convention and a-conversion in this case (this is because, as will
be made clear by the translation, the name n; will never occur free in the translation
of any \""¥-term).

We assume the CBN reduction strategy throughout. Note that we keep the normal
(B) reduction rule, which, in HM+, uses the notion of variable substitution as we
have defined it above.

The extensions are explained below:

If construct

The meaning of these rules is straightforward: if the test is true, we reduce to the
first term, and if it is false, we reduce to the second one. Of course, we assume
that there is some procedure to check whether a name appears in a set of names or
any member of a set of names appears in a H M+ term. This approach is similar to
the one in the reduction rules for try terms in A% (which are also conditioned by
name occurrence tests), and occurrence can easily be checked in our system: when
checking if a name appears in a term, all of the constructs pass the check on to the
subterms inside, taking into account any new occurrences introduced by themselves
(such as the name in Thr or the names in the boolean tests).

Case construct

There are 4 rules for the case construct, one corresponding to each branch (we only
show the relevant branch in each rule). The last two rules have n > 0, where n = 0
implies there is no application at all. We also extend contexts to allow reduction
under the case statement (this is the (context) rule).

These rules make clear exactly how the case statement operates and are consistent
with the explanations given in subsection 5.3.1. They say that, when dealing with
the term case M of ..., we are allowed to reduce M as much as we want, and, if
such reduction leads to a term that has one of four forms, we can reduce the whole
case construct to a term of our choosing, in which the result of the reduction of M is

58

Chapter 5. Extension to Hindley-Milner 5.3. EXTENSIONS

also available (in the form of variables that are substituted).

For example, in the first rule, if M reduces to a term of the form Thr (N, m) for some
N and m, then the case construct reduces to the term M,, in which N substitutes z;
and m substitutes n;. This allows us to provide special treatment for the throw. Note
also that, in a sense, the Thr is deconstructed, as the pieces of information contained
in it (N and m) are available separately. As explained in 5.3.1, this is not the case
for the other 3 branches: if reducing M leads to one of their corresponding forms,
then the result is not deconstructed in any way, but rather it is used as a whole in
the terms on the right hand side of the arrows (M, M, and M,). This is because we
do not care about specific information in it - we are only interested in the fact that a
specific form has been reached (this suffices for the translation).

It is important to clarify the meaning of n in the reduction rules: it signifies the
number of applications that a term is followed by (for example, in yM;...M,). In
this sense, one could argue that, in fact, the third and fourth case rules each stand
for an infinity of rules, one corresponding to each n from 0 to infinity. However, this
is not our intention: the terms following the keyword case are meant in a "pattern
matching” way, meaning that the rule is to be applied if M in case M of ... has
that specific structure (note that a term M can not satisfy more than one of the
patterns in the rules). For the third rule, for example, we mean that the rule is
to be applied if M consists of any variable potentially followed by any number of
applications - this form is captured by the rule and is available for use on the right
hand side of the reduction arrow, where we use it in the substitution. The "pattern
matching” reasoning is similar for all four branches. Thus, implicitly, our system
has the capability to perform a form of pattern matching on its terms, and it can
distinguish the number of applications in an application chain.

Lookup construct

The rules model the looking up of a name in a context. They serve the only purpose
of guaranteeing that, if n is defined in the catch block, then

lookup n in catch n;(z) = N; =" Az.N;

where n; is the unique name defined in the catch block that satisfies n; = n. Denote
this fact by (L). This represents the looking up of a handler in a list of handlers.
Note that the name that is being looked up does not have to be defined in the catch
block: if this is the case, then reduction simply does not proceed further and we are
stuck with the lookup term (however, in our translation, we will use the if construct
to make sure that we only ever do a lookup where the name is defined).

Notes

Importantly, note that the forms that are being considered in the reduction rules for
the case construct (the terms following the word case) are all in normal form with

59

5.4. TRANSLATION Chapter 5. Extension to Hindley-Milner

respect to reduction in H M +. Thus, there is no ambiguity - once one of those forms
has been reached (and not earlier!), exactly one of the rules will be able to be ap-
plied (and no other rules, since we can not reduce any further inside the case). The
rules for the if construct and the lookup construct also do not introduce ambiguity,
so we can safely conclude that the same property holds for the whole of the reduc-
tion system: at any point in the reduction of a term M, we can apply at most one
reduction rule (in other words, reduction paths can not split). This can be proven
formally by induction on the structure of contexts.

Also note that there are deliberately no reduction rules for the Stuck construct (other
than within a case). This is because it is only used as a marker for a \'"? try term that
can no longer reduce: it is easily recognisable (as a pattern) and in normal form, as
explained in 5.3.1.

This concludes the additions to the reduction rules.

5.4 Translation

We now give the translation from \"Y to H M+, which we denote by |-].

lz] ==z
| Az. M| = \x.| M]

Thr (x4, ny) — Thr (x4, ny)
Abs x, — x,| N

VarApp x, — x,| N|
StuckApp xs — x5| N

| MN| = case | M| of

|throw n(N)| = Thr(|N1],n)

|try M; catch n;(x) = N;| =
Thr (z¢,n:) — if ny € W; then (lookup n; in catch n;(x) = | N;|)z; else Thr (xy,nt)
= | N;] else z,
VarApp x, — if n; € x, then Stuck z,; catch n;(x) = | N;| else z,
StuckApp xs — if n; € x then Stuck xg; catch n;(x) = | N;]| else x4

Abs x, — if m; € x, then Stuck z,; catch n;(x)

case | M of

Although inspired by our previous evaluator, there is a very important difference be-
tween it and our translation: unlike the evaluator, which only evaluates terms when
needed, the translation is applied to everything from the beginning (note that it is
passed down recursively onto each subterm). Thus, like the translation from A%
to Ay, it is a translation in the proper sense of the word: the constructs introduced
by A% do not appear anywhere in the translation, other than the fact that we have
chosen to keep the same appearance for the catch block (the same can not be said

60

Chapter 5. Extension to Hindley-Milner 5.4. TRANSLATION

about the evaluator, where \'"¥ was part of the target language).

Another important observation is that the RHS’s of the last 3 branches of each case
construct in the translation are practically identical. As we have already mentioned
in 5.3.1, we only need to give special treatment to the throw terms: the other
branches serve more as termination criteria, as once we have reached a term of
one of the forms that they define, we definitely know that we are not dealing with
a throw (and, knowing this information, we proceed in the same way for all three
of them). The case construct makes sure we reduce the argument to the case until
there is no ambiguity left about which rule to apply.

The non-trivial cases are application and try terms:

1. M N: The intuition behind the translation of M N is as follows: as we have
already explained in previous sections, we need to reduce [M] until we know
whether we are dealing with a throw or not. To this extent, we make [)/] the
argument of a case construct, which accomplishes just that. Then, if we end
up with a Thr, we simply ignore [/V] and "return” the Thr. This corresponds to
the (throw) reduction rule from \“¥. If we end up with something that is not
a throw, we apply the result to [N], which, in the case of the abstraction, will
correspond to the (/3) rule (and in the other two cases, reduction of the term
on the right hand side of the arrow after substituting z, or =, will simply not
be able to proceed further).

2. try M; catch n;(x) = N;: Similarly, when translating this term, we need to re-
duce [M] until we know whether we are dealing with a throw or not.

If, in the case statement, we end up with a Thr (first branch), then we check
if it can be caught by the current try (or case) block (this is the purpose of the
if statement). If it can, then we simply use the lookup construct to find the
relevant handler, and we apply the payload of the Thr to it. If it can not, we
just "return” the Thr itself, which symbolizes upward propagation of it (until
the proper case block can catch it).

On the other hand, if we end up with something that is not a throw, we have to
check whether the try (or case) block can be escaped. A\ rules tell us that this
is only possible if none of the names defined in the catch block appears in the
result, and this is exactly what the if statements in the last 3 branches test. If
no such occurrence exists, we are free to "return” the result of reducing [M]. If
any name does, however, occur even after we have reduced [M| as much as we
could, then the try block can not be escaped. As we have explained previously,
the solution in this case is to wrap the reduction result in a Stuck term, whose
only purpose is to act as a marker for any future case blocks.

As we will show, all of the reduction rules in \'"¥ are incorporated by the new case
construct.

61

5.5. EXAMPLES Chapter 5. Extension to Hindley-Milner

5.5 Examples

We present here some examples of \'"¥ terms, their translation and the complete
reduction path for the translation.

1. (A\z.z)(Ay.y):

Thr (l’t, nt) — Thr (th’ nt)

|(Az.x)(A\y.y)| = case \xz.x of Abs 74 = Ta(Ay)
VarApp Ty — %()xyy)
StuckApp x5 — x,(\y.y)

— (zo(A\y.y)[(A\z.x)/2,] (by rule (Cs))
= (Az.z)(Ay.y) (by def. subst.)
— Ay.y (by normal application rule (/3))

Note that the case statement acts as a wrapper: after making sure that we are
not dealing with a throw, it delegates to normal application (recall that it still
exists in H M+, as it is an extension of Hindley-Milner, except that it uses the
notion of substitution that we have extended to include the new constructs).

2. (throw n(z))y:

Thr (I’t, nt) — Thr (I’t, nt)

Ab a a
| (throw n(z))y]| = case Thr (z,n) of § Ta = Tay
VarApp x, — x,y

StuckApp v, — x4y

— (Thr (x4, ny))[x /2] [n/n] (by rule (C1))
= Thr (z,n) (by def. subst.)

Note that the y in the application is discarded.

3. try (throw n(z))y; catch n(z) = x:
|try (throw n(z))y; catch n(x) = x|

Thr (x;,n¢) — if ny € {n} then (lookup n, in catch n(x) = x)z, else Thr (x;,n;)
= case | (throw n(z))y] of Abs x, — ...
VarApp z, — ...
StuckApp x5 — ...

Thr (z¢,n:) — if ny € {n} then (lookup n in catch n(x) = z)x; else Thr (z:,n:)
Abs z, — ...
—* case Thr (z,n) of S a7
VarApp z, — ...
StuckApp x5 — . ..

(as per previous example, reduction happening under the case here)

62

Chapter 5. Extension to Hindley-Milner 5.5. EXAMPLES

— (if ny € {n} then (lookup n; in catch n(x) = x)x, else Thr (x,n:))[z/x¢|[n/n4]
(by rule (C}))

— if n € {n} then (lookup n in catch n(x) = x)z else Thr (z,n) (by def.
subst.)

— (lookup n in catch n(x) = x)z (by rule (1))
— (A\z.z)z (by (L))
—z (by (8))

Note that the name n; was substituted by the name to which the throw oc-
curred (all occurrences on the right hand side of the first branch arrow), and
x; was substituted by the payload of the throw, which was =.

Also note the role of the if test in determining whether the throw was to a
name defined in the current try block (which, in this case, it was) and the role
of the lookup in retrieving the handler. Normal application takes place in the
end. If the throw had been to a different name, then the else branch of the if
would have been followed, and the final result would have been Thr (z,n).

. try M\y.y; catch n(x) = x:

|try \y.y; catch n(z) =]

Thr (ﬂft, nt) — ...
Abs x, — if {n} € x, then Stuck x,; catch n(z) = x else x,

= case \y.y o
vy of VarApp ©, — ...

StuckApp s — ...

— (if {n} € z, then Stuck z,; catch n(x) = x else z,)[(\y.y)/z.] (by rule
(C2))

— if {n} € \y.y then Stuck \y.y; catch n(x) = x else \y.y (by def. subst.)
— A\y.y (byrule (1))

Note that z, is replaced by the whole abstraction. As the name n does not occur
in it, the reduction rule for the if statement says that the else branch should be
taken, so we reduce to the abstraction itself. This corresponds to the try block
being escaped.

If, instead of A\y.y, we had A\y.throw n(z), a different path would have been
taken. The if test would have checked whether the name n occurred in

Ay.Thr (z,n) (which it does), the then branch would have been followed, and
the final result would have been Stuck \y.Thr (z,n); catch n(z) = x. This is

63

5.6. PRESERVATION OF REDUCTION Chapter 5. Extension to Hindley-Milner

how the Stuck marker is introduced - it corresponds to a try that can no longer
reduce, and, indeed, in \""Y, try \y.throw n(z); catch n(x) = x can not reduce
further, because the throw is under an abstraction.

5. xyz:

Thl” (It, nt> — Thr (It, nt>

Abs x, — x,

|xyz] = case |zy] of . fa®
VarApp ©, — x,z

StuckApp v, — x4z

Thr (.Tt, nt) — Thr (.Tt, nt) Thr (I’t, nt) — Thr (I’t, nt)
Abs x, — x.y) of
VarApp z, — x,y VarApp x, — x,z

Abs v, — 1,2
= case (case x of

StuckApp v, — xgy StuckApp r, — x5z

Thr (I’t, nt) — Thr (I’t, nt)

Abs 1, — 1,2

— case ((z,)y)[z/x,] of (by rule (C3) and re-

VarApp x, — x,2

StuckApp ©, — w4z
ducing under the first case - note that the term x matches the pattern for the
VarApp branch with n = 0)

Thr (It, nt) — Thr (It, nt)
Ab a a

= case xy of § o =7 TaZ (by def. subst.)
VarApp x, — x,z

StuckApp ©, — x4z

— (z,2)[(zy)/x,] (by rule (C3) - note that the term zy matches the pattern
for the VarApp rule with n = 1)

=xyz (by def. subst.)

Note that terms with different numbers of applications can match the same
pattern (zM;...M,), so the same rule (C3) ends up being applied. The final re-
duction result is the same as the term we started with, but note that it has been
passed through two case statements which would have detected any throws.
Since they did not, they delegated back to normal application.

5.6 Preservation of Reduction

We show here that the translation presented in section 5.4 satisfies a version of
reduction preservation. Consider the following syntax, which generates a subset of

64

Chapter 5. Extension to Hindley-Milner 5.6. PRESERVATION OF REDUCTION

H M+ terms that are in normal form:

H :=xM,...M, | (Stuck M; catch n;(x) = N;)M;y...M,, | \x.M | Thr (M, n)
where n > 0 and n = 0 implies there is no application.

Theorem 5.6.1 (Translation Preserves Reduction) If \'"Y terms P and @ satisfy
P — @ and @ has a normal form, then there is a unique HM+ term H given by
the syntax above such that |QQ] —* H and |P| —* H.

The form of this result is motivated by a key difference between \'¥ and HM+: re-
duction paths in A% can split (for example, in the term try M; CB, if M can reduce
further, but does also not contain any of the names in the catch block, then we can
either further reduce M under the try, or first escape the try and reduce M outside
of it), while in H M+, as we have already argued, they can not (M would be first
reduced as much as possible before checking if it can escape the case). As such, our
preservation result can only talk about final reduction results, not about the specific
paths.

The proof is based on some auxiliary lemmas which we prove first.

We begin by showing that substitution is preserved by the translation. For clarity, we
denote substitution in the original \'"¥ with curly brackets and substitution in H M+
with square brackets:

Lemma 5.6.2 For any \""Y terms M and N and variable y, we have that | M{N/y}] =
LM[LNT/yl-

The proof is by induction on the structure of \'"¥ terms:

(y):
Ly{N/y}]
= | N (def. subst. ')

= y[|N]/y] (def. subst. HM+)

= ly|[[IV]/y] (def. transl.)
U

(z #y):

[{N/y}]

= |z] (def. subst. \'"¥)

=z (def. transl.)

= z[|N]/y] (def. subst. HM+)
= |z][|N]|/y] (def. transl.)
|

(Ay.M):
[(Ay-M){N/y}]

65

5.6. PRESERVATION OF REDUCTION Chapter 5. Extension to Hindley-Milner

>

<

5
M ~— 7
=

ef. subst. A% and transl.)
NT/y] (def. subt. HM+)
/y] (def. transl)

1
1

&
=

—
>
=
5

|

(T [

(Ae.M,x # y):

LAz M){N/y}]

= \xv.| M{N/y}] (def. subst. A% and transl.)
= Az.[M][[N]/y] (IH)

(Az.|[MT)[|N1/y] (def. subst. HM+)

| Ax. M [|N1/y] (def. transl.)

o

(PQ):
L(PQ{N/y}]
= | P{N/y}Q{N/y}] (def. subst. \"¥)

Thr (x4, ny) — Thr (x,ny)

Abs x, — z,|Q{N/y}]

VarApp x, — x,|Q{N/y}|

StuckApp zs — x| Q{N/y}]
Thr (x4, ;) — Thr (z,, 1)
Abs 1, — x4 |Q1[NT/y]
VarApp x, — z,|Q][|N1/y]
StuckApp xs — x| Q1| N]/v]

Thr (s, ;) — Thr (24, n;)

Abs x, — 2, Q]

VarApp z, — ,| Q]

StuckApp xs — 4| Q]
the binders in the branches can not be equal to y by construction)

= case | P{N/y}] of (def. transl.)

= case | P|[|N]/y] of (IH)

= case |P]| of [|N]/y] (def. subst. HM+, note that

= | PQ][|N/y] (def. transl)
O

(throw n(M)):

[throw n(M){N/y}]

= |throw n(M{N/y})] (def. subst. \'"¥)

= Thr (|[M{N/y}],n) (def. transl.)

— Thr (| M[LN7/y], n) IH)

(Thr (| M],n))[|N]/y] (def. subst. HM+)
|throw n(M)][| N/y| (def. transl)

o

(try M; catch n;(x) = Nj,x # y):

66

Chapter 5. Extension to Hindley-Milner 5.6. PRESERVATION OF REDUCTION

[(ery M; cateh mi(z) = N){N/y}]

= |(try M{N/y}; catch n;(x) = N;{N/y})] (def. subst. \'¥)

Thr (z¢,n:) — if ny € W; then (lookup ny in catch n;(z) = [N;{N/y}])x: else Thr (x¢,ny)
Abs z, — if m; € x, then Stuck x,; catch n;(z) = | N;{N/y}] else x,

VarApp z, — if m; € x, then Stuck z,; catch n;(x) = | N;{N/y}] else z,

StuckApp x5 — if m; € x5 then Stuck x; catch n;(x) = | N{N/y}] else z,

= case | M{N/y}] of

(def. transl)

Thr (x¢,n:) — if ny € ; then (lookup ny in catch n;(z) = | N;|[|NV]/y])x: else Thr (z¢,ny)
Abs x, — if ; € x, then Stuck x,; catch n;(x) = | N;|[|N]/y] else z,
[

— case | M1[[N1/4] of

VarApp z, — if m; € x, then Stuck z,; catch n;(z) = | N;|[|N]/y] else z,
StuckApp zs — if ; € x4 then Stuck x,; catch n;(x) = | N;|[|N]/y] else
(IH)
Thr (z¢,n:) — if n, € W; then (lookup ny in catch n;(z) = | N;|)z; else Thr (x4, ny)
Abs x, — if m; € x, then Stuck z,; catch n;(x else z,
= case | M of d o =] LV1/3)

VarApp z, — if m; € x, then Stuck z,; catch n;(x) = | N;] else z,

StuckApp x; — if m; € x, then Stuck xg; catch n;(xz) = | N;]| else x4
(def. subst H M+, note that the binders can not be equal to y by construction)

= |try M; catch n;(x) = N;|[|N]/y] (def. transl.)
U

In the last case, the proof for x = y is similar, except that there is no substitution
in the catch block, so we do not show it here. This concludes the proof of Lemma
5.6.2.

Lemma 5.6.3 If a \'"Y term P is in normal form, then there exists a HM+ term H
given by the previous H syntax such that | P| —* H.

Recall the syntax of \'"¥ terms in normal form:

HLTry ::=thrown(N) | HLTry'
HLTry :=aMy..M, | \e.M | (try HLTry'; CB)M,...M,

where the HLTry in the last case must contain at least one of the names defined
in the catch block. The proof is in two parts, one for each case in the definition of
HLTry:

1. (throw n(N)):
Then |throw n(N)| = Thr (| N],n) and this is our H. [J

2. (HLTry'):
In this case the proof proceeds by induction on the structure of HLTry/, but
we make the proposition stronger: we also require that the H that we find is
not a Thr, and also that it contains all of the names that the original *"¥ term
contained.

67

5.6. PRESERVATION OF REDUCTION Chapter 5. Extension to Hindley-Milner

We make use of the following result, denoted by (*): if a A% term M contains
name n, then | M] also contains n (translation does not eliminate names). This
can easily be proven by induction on the structure of A% terms. Then:

(.I'Man):
If n =0, then || = 2 and we have found our H: z.

Thr (x4, ng) — Thr (x4, ny)
Abs x, — x| M|

VarApp x, — x,| M|
StuckApp x5 — x| M|

Otherwise, consider the case forn = 1: |xM | = case z of

— x| M| (by rule (Cj3))

So our H is x| M| (note that, by (¥), it contains all the names that xM con-
tains). The pattern is clear and it is not hard to prove by induction on n that
|xM;... M, —* | M;]...| M,], which is the H we were seeking. [J

(A\x.M):
In this case [Az.M| = Az.|M] and this is our H (again by (*), note that it
contains all the names the original term contains). [

((try HLTry'; CB)M,...M,,) :

Consider first the case when n = 0. Then |try HLTry'; CB]

Thr (z¢,n;) — if ny € ; then (lookup n, in catch n;(z) = | N;])z, else Thr (x;,ny)
Abs x, — if m; € x, then Stuck x,; catch n;(x) = | N;] else z,

VarApp x, — if m; € x, then Stuck z,; catch n;(x) = | N;] else x,

StuckApp x5 — if m; € x, then Stuck xg; catch n;(x) = | N;]| else x4

Thr (z¢,n:) — if ny € T; then (lookup n, in catch n;(x) = | N;])z: else Thr (xy,ny)

Abs z, — if n; € x, then Stuck xz,; catch n;(z) = | N;] else x,

VarApp x, — if m; € x, then Stuck z,; catch n;(z) = | N;] else x,

StuckApp s — if m; € x5 then Stuck x; catch n;(x) = | N;] else x;

= case |HLTry'"] of

—* case H' of

for some H’ that is not a Thr (by the IH). Note that any such H’ would corre-
spond to exactly one of the last 3 branches in the case, which all do the exact
same thing. Thus, by an application of one of rules (C,), (C3) or (Cy), the
above will reduce to:

if m; € H' then Stuck H'; catch n;(x) = | N;|[H'/xy) else H'

where z; is one of the binders. Note that, by construction, the binders do not
occur free in | M| for any M , so we can disregard the substitution. Also note
that we know H LTry’ must contain some name n; defined in the catch block -
therefore, by the IH, H' also contains it, which makes the test 7; € H’ true. So

68

Chapter 5. Extension to Hindley-Milner 5.6. PRESERVATION OF REDUCTION

by rule (/3) the above reduces further to:

Stuck H'; catch n;(x) = | N;|. This is the H that we were seeking (remember
that the syntax for H generates a subset of the general syntax for terms M).
Note that by the IH and (*), it also contains all the names that try HLTry’; CB
contains, as required.

For the case when n > 0, the proof proceeds similarly to the case xM;...M,,,
except that the StuckApp branch in the case will be used instead of the VarApp
one. It is easy to show by induction on n that: |(try HLTry'; CB)M,...M,|

—* (Stuck H'; catch n;(x) = [N;])|Mi]...| M,], where H' is as in the case n =
0. This is the H that we were seeking, and by the IH and (*) we know that it
also contains all of the names (try HLTry'; CB)M,...M, contains, as required.

In each case we have found a suitable H. This completes the proof of Lemma 5.6.3.

Lemma 5.6.4 If P and Q are \'"Y terms such that P — @ and there is a term H given
by the H syntax such that |Q)] —* H, then | P| —* H.

The proof is by induction on the structure of —:

(B): Then P = (Ax.M)N, Q = M{N/z} and there is a suitable H as described in the
lemma. We have:

|(Az.M)N]

= case \z.| M| of

Thr (x4, n;) — Thr (x,ny)
Abs x, — x| N

VarApp ©, — x,| N|
StuckApp xs — x5 N]

(def. transl)

— (Az.|M])[N] (by rule (Cs), also recall that x, can not appear free in | N])
— | M][|N]/z] (reduction in HM+)
= |M{N/z}] (by Lemma 5.6.2)
|@Q] (by assumption)
* H (by assumption)

Oy |

(throw) : Then P = (throw n(N))M and @) = throw n(N). We have:

| (throw n(N))M |

Thr (z¢,n¢) — Thr (x4, 1)
Abs x, — x| M|

VarApp x, — x,| M|
StuckApp xs — x| M|

— Thr (| N],n) (by rule (C}))

= case Thr (| N1,n) of (by def. transl.)

69

5.6. PRESERVATION OF REDUCTION Chapter 5. Extension to Hindley-Milner

|@] (by assumption and def. transl.)
* H (by assumption)

O

(try-throw): Then P = try throw n;(N); CB; catch n;(z) = M, and QQ = M {N/z}.
We have:

|try throw n,(N); CB; catch ny(xz) = M;]
= case Thr (| N],n;) of
Thr (z,ny) — if ny € m; U {ny} then (lookup n; in catch n;(x) = | N;]; catch ni(x) =
| M;])x; else Thr (z4,n,);... (by def. transl., only showing relevant branch)
—* (lookup n; in catch n;(z) = | N;|; catch ny(x) = |M;])|N] (by rule (C}) and then
rule (1), given that n, € m; U {n;})
—* (e[M) V] (by (L))
— | M;][|N]/z] (reduction in HM+)
= |M;{N/x}| (by Lemma 5.6.2)
|@Q] (by assumption)
* H (by assumption)

O

(try-normal): then P = try N; CB and (Q = N, where n; ¢ N. As explained previ-
ously, the existence of this case is what dictates the form of the result that we are
trying to prove. We have:

|try N; CB]
Thr (z,ny) — if ny € Wy then ... else Thr (xy,ny)

Abs x, — if m; € x, then ... else x,

= case | N] of (by def. transl.)

VarApp z, — if m; € x, then ... else x,
StuckApp x, — if m; € x, then ... else x,
Thr (x¢,ny) — if ny € 1; then ... else Thr (x4, 1)

Abs x, — if m; € x, then ... else x,

—* case H of (by assumption)

VarApp ©, — if n; € x, then ... else x,
StuckApp r, — if n; € x, then ... else x,

We know H has one of 4 forms by assumption. We consider 2 possibilities.

1. Hisa Thr (M,n). Then the above will reduce, by rule (C}), to:
if n € m; then ... else Thr (M,n)

Note that translation does not introduce any new names (other than the n;,
name binder in case, which we assume to not exist in *¥). Since we know
n; ¢ N, this means that n; ¢ | N].

70

Chapter 5. Extension to Hindley-Milner 5.6. PRESERVATION OF REDUCTION

Note also that reduction does not introduce any new names, other than through
the silent a-conversion, which we assume always introduces fresh names.

Therefore, if the n above was equal to any n;, because of the previous fact, it
could not have been introduced by reduction, so it must have been in | N'| from
the beginning. But we also know this to be impossible (as reasoned above).

Thus, we can safely conclude that the n is not equal to any n;, and the else
branch will be taken, further reducing to Thr (M,n). But this is just H, as
required. [J

2. H is not a Thr (M,n). One of the other case branches will be therefore taken,
the above will reduce to (using one of the rules (C5), (C3) or (Cy)):

ifn; € H then ... else H

However, using the same reasoning as in the previous case, we can conclude
that none of the names n; can appear in H. So, as before, the else branch will
be taken and the above will further reduce to H, as required. [J]

(M — N = MR — NR) : This is the first inductive case. We have that P = MR,
QQ = NRand |[NR| —* H. We assume (IH) that, if | N| —* H,, then |M] —* H..

We know | NR| —* H, which is to say that:

Thr (x¢,n) — Thr (z¢,n4)
Abs z, — z,| R]

VarApp =, — x,| R]
StuckApp xs — 4| R]

case | N| of

Given the syntax that generates H, it is clear that the above is not possible unless
| N'| reduces until one of the rules (C) to (C}) can be applied. Because of the direct
correspondence between the rules and the H syntax, this means that there exists
some H, such that | N| —* H,. Thus:

Thr (z¢,ny) — Thr (x4, 1)
Abs x, — x4| R]
VarApp x, — x,| R]
StuckApp xs — x5| R]
Thr (x4, n) — Thr (x4, n4)
Abs x, — x4| R]
VarApp =, — x,| R]
StuckApp xs — xs| R]

case | N of

—* case H; of

71

5.6. PRESERVATION OF REDUCTION Chapter 5. Extension to Hindley-Milner

This also implies that we can now use the IH to obtain that | M| —* H,. With this in
mind, we have that:

Thr (.Tt, nt) — Thr (.Tt, nt) Thr (.Z't, nt) — Thr (.Z't, nt)
Abs z, o R Abs z, o R

case | M| of S T = a| F] —* case Hy of S 2o = 2o B
VarApp x, — x,| R] VarApp ., — z,| R]
StuckApp xs — 4| R StuckApp xs — x| R]

But we know from the previous reasoning that the above reduces to H, as required.
U

(M — N = try M; CB — try N; CB): This is the second inductive case. The proof is
completely identical to the one above, except that the content of the case construct
is different, so we do not show it here. [J

This completes the proof of Lemma 5.6.4.

Main result

We can now proceed with the proof of Theorem 5.6.1: If A% terms P and () satisfy
P — @ and () has a normal form, then there is a unique H M+ term H given by the
H syntax such that |Q] —* H and | P| —* H. The proof follows from Lemma 5.6.3
and Lemma 5.6.4.

Assume P — (). By assumption, we know () has some normal form ;. Thus:
P5Q—=Qi— = Qun—Qu

Applying Lemma 5.6.3 to ()i, we have that there exists a term H as described by
the H syntax such that |Qy| —* H.

Then, applying Lemma 5.6.4 to), and @y, we also have that |Q, | —* H.

Continuing, if we apply Lemma 5.6.4 to ,,_; and @,,, we also have that |Q, 1] —*
H.

We can keep this process up until we reach both P and @, which will yield | P] —* H
and |(Q)] —* H, as required. Recall also that reduction in H M+ is deterministic and
H is in normal form: this implies that H is unique (there is no other term in normal
form that P or () can reduce to). This completes the proof of Theorem 5.6.1.

72

Chapter 6

Conclusion

6.1 Evaluation

* Investigation: One question of particular importance for this project has been
what kind of extensions would be necessary in order to be able to implement
'Y in Haskell. We have shown that this boils down to being able to translate
A'"Y to System FC in a way that satisfies some form of preservation of reduction
and assignable types. We believe to have brought strong evidence that \'¥ can
not be translated to Hindley-Milner in such a way without extending Hindley-
Milner, and, because of the relationship between it and System FC, we believe
this is a strong indicator that the same holds for System FC. However, until
proven otherwise (which we have not been able to do), the possibility (of
translation without extension) remains.

* Evaluator: We believe the evaluator that we have introduced accurately mod-
els \'"¥ via means of the Either data type, as we have proved that it preserves
reduction. This shows that there is some connection between A\ and the tra-
ditional way that exceptions are handled in Haskell (through data types, for
example by representing an exception through a Left). As one of the more
interesting parts of the evaluator can also be expressed in terms of monadic
operators (Either a is a monad in Haskell), this implies that there might be
a link between A% and monads. We would have liked to explore this idea
further (and perhaps through a more theoretical lens), however, as we have
turned the evaluator into a proper language extension, it seems the connection
with monads was lost.

* Extension and Translation: The extension and translation we have presented
highlight a possible solution to the meaning of the constructs in \"?. It seems
that throwing and catching as modeled there are indeed not expressible in
standard calculi (such as Hindley-Milner) - in both A% and Ay (into which it
can be translated), there is an implicit case construct that allows dealing with
throws. This is present, for example, in the reduction rules for the application:
'Y specifically treats application one way if the first term in it is a throw and
another way if it is an abstraction, while A\ treats application one way if the

73

6.2. CONCLUSION Chapter 6. Conclusion

first term is a A-abstraction and another way if it is a u-abstraction. This can
be seen as a form of case construct - our extension and translation have made
this fact clear by having the case explicitly as part of the syntax, instead of the
reduction rules.

The translation seems feasible, as we have proved that it preserves reduction.
We believe our extension is a nice bridge between System FC as it is and \"": it
is general enough to be reasonably be implemented in GHC as part of the for-
mer, and specific enough to accurately model the latter (as opposed to blindly
adding A% to System FC directly, which would obviously give us a way to
translate \'%, but the GHC implementation of which we believe would be of
questionable feasibility).

On the other hand, it can also be said that the extension we have ended up with
is rather verbose and complex. This has been an obstacle in tackling an actual
GHC implementation, which has led us to deal with mostly the theoretical side.
In this respect, the implementation obtained by Fisher [4] is more practical
(even if it is based on a library with data types that model C DC, meaning
that it can be considered a form of evaluator, rather than making Haskell do
reduction the way that is stipulated in \'"¥).

6.2 Conclusion

We explored the possibility of adding the feature of exception handling by name to
Haskell, based on van Bakel’s A" [1]. We defined a Haskell evaluator for A" based
on the Either data type and monad and proved that it preserves reduction. We
have learned that adding features that precisely model A% to Haskell would imply
translating \'"¥ to System FC, on which Haskell is based on, in a way that preserves
reduction and types in some form. We have also deduced that \"¥ is most likely
not able to be translated to Hindley-Milner or System FC without extending those
systems as well. Using our evaluator, we have developed an extension to Hindley-
Milner that allows A% to be mapped to it and we have proved that it preserves
reduction. This project takes the form of an investigation and it brings some clarity
to the issue of implementing \"¥ as part of Haskell’s internal reduction engine.

6.2.1 Future Work

* Compacting the translation: Our case construct has 4 branches - however,
as we have seen, this level of expressive power is not needed, because the
last 3 serve as termination criteria and they always do the same thing. A nice
improvement would be to replace them with a single branch, to which the 3
different reduction rules (each of which previously corresponded to a different
branch) would now apply.

74

Chapter 6. Conclusion 6.2. CONCLUSION

* Proving type preservation: We have not proved any kind of type preserva-

tion results for our evaluator and our translation. Doing so would provide
more insight into the problem and would be necessary if our extension is to be
implemented in GHC.

Tackling GHC implementation: As already mentioned, we have not made
any significant progress with regards to implementing our extension in GHC.
This is, of course, a very important practical issue and we would have liked to
explore this side more. We believe an implementation could be developed one
step at a time (for example, we could first try to add a simple case construct,
that deals only with normal application, without any of the new *"¥ constructs,
and work from there).

Implementing Ay in GHC: Because we have tried to avoid the path taken
in Fisher’s previous work [4] and come up with a direct translation, we have
not focused very much on Ay in this project. However, it is known that A\
can be translated to Ay, and Ay is much more compact than our extension.
Furthermore, as van Bakel remarks in [1], only a small subset of A\ is used
to translate A" - we can see in the translation that, for example, the only
kinds of u-abstractions that are used start with un.[n] and p_.[n|. This raises
the question of whether it would not be easier to add the relevant parts of \u
to System FC and then translate \'"¥ using those.

Exploring alternative routes: Although we do not think it is unreasonable
to implement our extension in GHC, it remains a possibility that alternative,
simpler routes exist. We started from an evaluator based on Either, as the
Left and Right categorisation seemed promising with regards to handling the
throws, and we also found a monadic connection on the way. However, in
the process of developing our extension, we have had to give up the Left
and Right distinction and replace them by more complicated machinery. We
believe it is worth investigating if an evaluator could be implemented using
different concepts, which could, in turn, give rise to other forms of extensions.

75

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. van Bakel. “Exception Handling and Classical Logic”. In: Proceedings of the
21st International Symposium on Principles and Practice of Programming Lan-
guages 2019. PPDP ’19. Porto, Portugal: Association for Computing Machinery,
2019. 1SBN: 9781450372497. DOI: 10.1145/3354166.3354186. URL: https:
//doi.org/10.1145/3354166.3354186 (visited on May 28, 2020).

A. Baciu. “Exception Handling for Haskell via Delimited Continuations with
Preservation of Types”. Master’s thesis. Imperial College London, 2017.

J. R. Griffiths. “A Curry-Howard Correspondence for Failing Exceptions”. Mas-
ter’s thesis. Imperial College London, 2018.

W. S. Fisher. “Exception Handling in Haskell Using the A" Calculus”. Master’s
thesis. Imperial College London, 2016.

Wikipedia. URL: https://en.wikipedia.org/wiki/Formal_system (visited
on May 29, 2020).

S. van Bakel. Type Systems for Programming Languages. Course notes (revised
edition 2016). 2001. URL: https://www.doc.ic.ac.uk/~svb/TSfPL/notes.
pdf (visited on Jan. 19, 2020).

M. Parigot. “Classical Proofs as Programs”. In: Proceedings of the Third Kurt
Godel Colloquium on Computational Logic and Proof Theory. KGC ’93. Berlin,
Heidelberg: Springer-Verlag, 1993, pp. 263-276. 1SBN: 3540571841.

T. Crolard. “A confluent A-calculus with a catch/throw mechanism”. In: Jour-

nal of Functional Programming 9.6 (1999), pp. 625-647. poi: 10 . 1017/
S0956796899003512. URL: http://cedric.cnam.fr/sys/crolard/publications/
jfp.pdf (visited on June 3, 2020).

R. K. Dyvbig, S. Peyton Jones, and A. Sabry. “A Monadic Framework for De-
limited Continuations”. In: J. Funct. Program. 17.6 (Nov. 2007), pp. 687-730.
ISSN: 0956-7968. DOI: 10 . 1017 /S0956796807006259. URL: https://doi.
org/10.1017/S0956796807006259 (visited on May 28, 2020).

Haskell Wiki. URL: https : //wiki . haskell . org / Exception (visited on
May 18, 2020).

GHC website. URL: https: //www .haskell . org/ghc/ (visited on Apr. 15,
2020).

S. Peyton Jones. The Haskell 98 Language Report. 2002. URL: https://www.
haskell.org/onlinereport/index.html (visited on Apr. 15, 2020).

76

https://doi.org/10.1145/3354166.3354186
https://doi.org/10.1145/3354166.3354186
https://doi.org/10.1145/3354166.3354186
https://en.wikipedia.org/wiki/Formal_system
https://www.doc.ic.ac.uk/~svb/TSfPL/notes.pdf
https://www.doc.ic.ac.uk/~svb/TSfPL/notes.pdf
https://doi.org/10.1017/S0956796899003512
https://doi.org/10.1017/S0956796899003512
http://cedric.cnam.fr/sys/crolard/publications/jfp.pdf
http://cedric.cnam.fr/sys/crolard/publications/jfp.pdf
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://wiki.haskell.org/Exception
https://www.haskell.org/ghc/
https://www.haskell.org/onlinereport/index.html
https://www.haskell.org/onlinereport/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

Wikipedia. System F. URL: https://en.wikipedia . org/wiki/System_F
(visited on Apr. 15, 2020).

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly. “Sys-
tem F with Type Equality Coercions”. In: Proceedings of the 2007 ACM SIG-
PLAN International Workshop on Types in Languages Design and Implemen-
tation. TLDI ’07. Nice, Nice, France: Association for Computing Machinery,
2007, pp. 53-66. 1SBN: 159593393X. DOI: 10.1145/1190315.1190324. URL:
https://doi.org/10.1145/1190315.1190324 (visited on May 28, 2020).

GHC documentation. URL: https : // gitlab . haskell . org/ ghc / ghc/ -
/wikis/commentary/compiler/hsc-main (visited on Apr. 15, 2020).

LIVM Project website. URL: https://11lvm.org (visited on Apr. 15, 2020).

P. Nogueira. A Short Introduction to Systems F and F,. 2006. URL: https :
//babel .1s.fi.upm.es/~pablo/Papers/Notes/f-fw.pdf (visited on
May 28, 2020).

Wikipedia. Hindley-Milner type system. URL: https://en.wikipedia . org/
wiki/Hindley-Milner_type_system (visited on Apr. 16, 2020).

R. A. Eisenberg. System FC, as implemented in GHC. Tech. rep. MS-CIS-15-09.
University of Pennsylvania, 2015. URL: https://repository.brynmawr.edu/
compsci_pubs/15/ (visited on May 28, 2020).

GHC documentation. URL: https : // gitlab . haskell . org/ ghc / ghc/ -
/wikis/commentary/compiler/core-syn-type (visited on Apr. 16, 2020).

77

https://en.wikipedia.org/wiki/System_F
https://doi.org/10.1145/1190315.1190324
https://doi.org/10.1145/1190315.1190324
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/hsc-main
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/hsc-main
https://llvm.org
https://babel.ls.fi.upm.es/~pablo/Papers/Notes/f-fw.pdf
https://babel.ls.fi.upm.es/~pablo/Papers/Notes/f-fw.pdf
https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://en.wikipedia.org/wiki/Hindley-Milner_type_system
https://repository.brynmawr.edu/compsci_pubs/15/
https://repository.brynmawr.edu/compsci_pubs/15/
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-syn-type
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-syn-type

	1 Introduction
	2 Background
	2.1 Formal Systems
	2.1.1 Alphabet
	2.1.2 Grammar
	2.1.3 Derivation Rules
	2.1.4 Significance

	2.2 -Calculus
	2.2.1 -terms
	2.2.2 Reduction Rules
	2.2.3 Types

	2.3 -Calculus
	2.3.1 Terms
	2.3.2 Reduction Rules
	2.3.3 Types
	2.3.4 Significance

	2.4 try-Calculus
	2.4.1 Terms
	2.4.2 Reduction Rules
	2.4.3 Types
	2.4.4 Representation in

	2.5 Haskell Monads
	2.5.1 Haskell Types
	2.5.2 Definition
	2.5.3 Benefits

	2.6 Existing Haskell Implementation
	2.6.1 Calculus of Delimited Continuations
	2.6.2 to CDC
	2.6.3 Final Result

	3 A Haskell Evaluator
	3.1 Definitions
	3.2 Implementation
	3.3 Preservation of Reduction

	4 GHC and System F
	4.1 GHC
	4.2 Core and System F
	4.2.1 Before System FC
	4.2.2 System FC

	5 Extension to Hindley-Milner
	5.1 Motivation
	5.2 Following the Evaluator
	5.3 Extensions
	5.3.1 To the syntax of terms
	5.3.2 To reduction rules

	5.4 Translation
	5.5 Examples
	5.6 Preservation of Reduction

	6 Conclusion
	6.1 Evaluation
	6.2 Conclusion
	6.2.1 Future Work

	Bibliography

