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Abstract

The Winograd Schema Challenge (Levesque et al., 2012) is a set of 273 expert-crafted pro-
noun resolution problems which form a benchmark for commonsense reasoning. In recent
years, several approaches to the WSC using neural language models have signi�cantly pushed
forward the state-of-the-art accuracy on the dataset. However, the performance of these ap-
proaches on certain subsets of problems with strong statistical hints, as well as their reliance
on extensive �ne-tuning procedures, has brought into question whether these models are truly
demonstrating commonsense reasoning, or whether they are instead exploiting spurious bi-
ases present in the dataset. One frequently proposed method to test whether an approach to
the WSC demonstrates true commonsense capabilities is to require it to explain its answers,
but there is currently no published approach that does this.
In this project, we propose an approach to the WSC that uses inductive logic programming
to learn explanations from similar examples that are sourced automatically. In particular,
we make use of answer set grammars to automatically generate structured representations
for natural language texts, and propose a fully-automated approach to generating induction
tasks which learn commonsense rules directly within these grammars. We are then able to
determine the answers to Winograd schemas by applying these learned rules. Our work makes
two main contributions. Firstly, we show that answer set grammars can be used to elegantly
encode the syntax and semantics of natural language, producing structured representations
for texts that are richer than dependency parses, but can be generated without a signi�cant
decrease in accuracy compared to a dependency parse alone. Secondly, we demonstrate that
our end-to-end approach to the WSC is comparable in accuracy to most previous approaches,
but is additionally able to generate natural language explanations to support our answers,
which are valid in 85% of cases.
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Chapter 1

Introduction

Improving the ability of computational agents to reason with commonsense has been a long-
standing challenge in Arti�cial Intelligence research, with its origins tracing as far back as the
1960s. Such reasoning has far-reaching applications in areas such natural language processing
(NLP), vision and robotics, where many problems present innate ambiguities, capable of being
resolved only with a rich understanding of the world. Despite this, progress in the area has
been frustratingly slow, and even today there are few commercial systems which make any
signi�cant use of automated commonsense reasoning (Davis and Marcus, 2015).
In this project, we focus our attention on a subset of particularly di�cult coreferencing prob-
lems, called Winograd Schemas, which are often presented as a modern-day alternative to the
Turing Test (Levesque et al., 2012). We combine state of the art approaches from natural lan-
guage processing, deep learning and logic-based learning in order to develop a novel method
for performing the kind of commonsense reasoning required by these problems.

1.1 Motivation

A Winograd Schema is a small reading comprehension test with a single binary question,
intended to assess a system’s ability to perform commonsense reasoning. An example might
be:

The �sh ate the worm. It was tasty. What was tasty?
Answer 0: the �sh
Answer 1: the worm

While most humans have no di�culty understanding that it was the worm that was tasty,
AI systems have traditionally struggled to determine the correct answer, which requires the
machine to both obtain and apply the commonsense knowledge that “something you eat can
be tasty”. In fact, until recently, state-of-the-art approaches have barely performed better than
chance on these kinds of problems, and even today there is no approach that is able to achieve
human-level performance.
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Historically, approaches to commonsense reasoning problems of this kind have been based
heavily on formalizations using mathematical logic. Signi�cant work has been done on de-
veloping large, structured commonsense knowledge databases, and methods for automated
reasoning over them. Generally these resources have been built by hand (Lenat et al., 1990),
crowd-sourcing (Speer et al., 2017), or web-mining (Mitchell et al., 2015), and as such, they
often su�er from missing rules and/or inconsistencies.
In recent years, advances in deep learning have enabled new state of the art results for many
commonsense reasoning problems, including theWinograd SchemaChallenge (WSC) (Levesque
et al., 2012). Most notably, neural language models, which learn probability distributions over
word sequences, when trained over huge text corpora, are innately able to provide some con-
jecture as to whether a sentence makes sense or not (Trinh and Le, 2018). However, despite
their state-of-the-art performance, these approaches also su�er from several limitations. In
particular, their performance on certain classes of Winograd schemas seems to suggest that
in many cases language models exploit very simple statistical patterns (e.g. the �sh is tasty is
more likely than the worm is tasty), and as such they can struggle to solve problems which
require a deeper understanding of the context introduced by the sentence (e.g. the fact that
the worm was eaten). In light of these observations, many have questioned the commonsense
reasoning capabilities of language models (Da and Kasai, 2019; Petroni et al., 2019), and advo-
cated for an approach to the WSC which is able to explain its answers (Morgenstern and Jr.,
2015; Zhang et al., 2020).
In an attempt to develop an explainable approach, we propose combining neural approaches
for natural language understanding with a symbolic approach for learning commonsense
rules. Our approach is motivated in particular by recent advances in deep learning, which
have enabled highly accurate parsers for natural language (Clark et al., 2018; Zhou and Zhao,
2019), and recent research in inductive logic programming, which has demonstrated the ca-
pability to learn answer set grammars (ASGs) (Law et al., 2019). In brief, ASG induction allows
the semantic constraints of a language, in the form of Answer Set Programming (ASP) an-
notations, to be learned, given the language’s syntax and examples of semantically valid and
invalid sentences.
In light of this work, we propose a novel approach which learns semantic constraints on-top
of an automatically generated grammar for natural language. Such a system would bene�t
from intrinsic structural knowledge of the text, making the semantics easier to infer, and
would learn ASP rules, allowing complex and context-sensitive concepts to be learned. These
learned rules would encode commonsense knowledge, that could be applied to Winograd
schemas in order to resolve their coreferencing ambiguities, and additionally could be used
directly as explanations.

1.2 Objectives

The goal of this project is to explore the applicability of answer set grammars in developing
an approach for solving di�cult coreferencing problems which require commonsense knowl-
edge. At a high-level, the objectives of this project are to:
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1. Investigate the applicability of ASGs to natural language understanding in gen-
eral. In particular, we ask whether it is possible to automatically generate base ASGs
capable of representing the structure of natural English language, and whether there
is any bene�t in doing so. To be applicable to the WSC in particular, the process for
generating base ASGs would need to be domain-independent and the generated gram-
mar would need to be able to accurately parse training and test examples. Furthermore,
these grammars would need to be annotated with as much semantic information as can
be reliably determined, in order to allow complex semantic rules to be learned.

2. Develop an approach for automated retrieval of relevant examples, which could
then be used to learn the commonsense knowledge required to solve a given corefer-
encing problem, as per the third objective. This involves developing methods for both
searching for and selecting related texts, based on their commonality and relevance to
the original text.

3. Investigate the use of ASG induction for learning commonsense knowledge.
We aim to explore the idea of automatically generating ASG learning tasks capable of
extending a base grammar with commonsense rules, given relevant examples. This
would require training texts to be automatically translated into positive and negative
examples. Also key to this objective is the need to automate the speci�cation of the
hypothesis space, which must be large enough to contain the intended rules, but small
enough as to be e�ciently searchable.

4. Evaluate anASG-based approach to coreference-resolution. Finally, we ask whether
the natural language understanding capability of ASGs can be combined with inductive
learning of commonsense knowledge and applied in order to solve Winograd schemas.
In addition to quantitative evaluation (i.e. what accuracy can be achieved?), a key part
of this objective is a qualitative evaluation of the rules learned (i.e. can the system o�er
su�cient explanation for its choices?), and a critical analysis of the approach compared
to the many existing approaches to the WSC.

1.3 Project Overview

Figure 1.1 provides a very brief overview of our proposed approach for learning commonsense
knowledge to solve coreferencing problems, which we will discuss in detail in Chapters 5 and
6. We �rst use deep learning models and existing knowledge bases to generate a knowledge
graph structure for the problem, which encodes its semantics. This knowledge graph is then
used to search for and select semantically similar examples with unambiguous coreferences,
in a knowledge hunting process. An answer set grammar is generated to encode the com-
positional semantics of the examples, and a learning task is generated, in which the learner
attempts to extend the ASG with a hypothesis that is able to explain the coreferencing in the
selected examples. Finally, the resulting ASG is used to parse the problem text, and resolve
its ambiguous coreference. Crucially, the resolution made by the approach can be explained
in terms of the learned hypothesis.
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6

Winograd Schema
and Example Texts

Knowledge Graphs Provides a structured, logical representation for the re-
sults of deep-learning based NLP techniques

Relevant Knowledge Graphs Gathers semantically similar examples, with analogies to
the original schema that we can atttempt to learn from

Answer Set Grammar
Encodes semantic composition: acts as a domain-speci�c
semantic parser, allowing the semantics of similar but
unseen examples to be determined

ASP Hypothesis
Encodes learned commonsense knowledge, which extends
the ASG so that the semantic parse also resolves corefer-
encing ambiguities

Explainable Answer

Knowledge Graph Generation
(Section 5.1)

Knowledge Hunting
(Section 6.1)

ASG Generation
(Section 5.2)

ASG Learning
(Section 6.2)

ASG Solving
(Section 6.3)

Figure 1.1: An overview of our approach for learning commonsense knowledge to solve coref-
erencing problems.



1.4 Contributions

Our contributions in this project are threefold:

1. We propose a formalism for expressing natural language using answer set gram-
mars, which is linguistically motivated by head-driven phrase structure grammar. It
encodes both syntactic and semantic composition in a single structure, and so can both
express complex grammatical constraints and be used directly for semantic parsing.
We also describe and implement a fully automated and domain-general approach for
generating domain-speci�c ASGs for natural language which are both accurate and
semantically-rich. We evaluate our approach on the WSC dataset and show that it en-
codes signi�cantly richer semantic information than a dependency parse alone, but with
an accuracy that is comparable to state-of-the-art dependency parsing approaches.

2. We propose and implement a novel semantics-guidedknowledgehunting approach,
which selects semantically similar knowledge texts which are highly relevant for learn-
ing by analogy.

3. We propose an approach toWinograd-style coreference resolutionusing the learn-
ing from answer set grammars paradigm, which is based on the goal of learning
the commonsense knowledge required to solve each problem. We implement a fully-
automated system for solving Winograd schemas based on the approach, which to our
knowledge is the �rst such system which supports its answers with explanations. Fur-
thermore, unlike other approaches, our results can be �ne-tuned by incorporating exist-
ing or hand-engineered background knowledge. We evaluate our approach on the full
WSC dataset and show that it is both highly precise and capable of handling schemas
that state-of-the-art approaches cannot.
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Chapter 2

Datasets

This project focuses mainly on two datasets for natural language understanding: the bAbI
tasks dataset and the Winograd Schema Challenge (WSC). The WSC consists of particularly
challenging coreferencing problems, and does not provide any training examples. As such, we
initially focus on the bAbI tasks dataset, which has a smaller vocabulary and provides a large,
noiseless set of training examples. This should make the learning process easier, allowing us
to initially attend to the development of a robust and �exible approach to representing natural
language understanding problems using answer set grammars.

2.1 bAbI Tasks

The bAbI tasks (Bengio and LeCun, 2016) are “a set of prerequisite toy tasks” for testing text
understanding and reasoning. The dataset is made up of 20 di�erent tasks, each testing a
single skill. Each task features 1000 training examples and 1000 testing examples, all of which
are noiseless. The goal is not only to achieve high accuracy on the test examples, but also to
use as few training examples as possible.
In particular, we choose to focus on tasks 11 (basic coreference) and 13 (compound coreference).
Examples from each task are shown below:

Task 11 (basic coreference)
John went to the bathroom.
He then journeyed to the o�ce.
Where is John? A: o�ce

Task 13 (compound coreference)
Sandra and John went to the bedroom.
Following that they went to the hallway.
Where is John? A: hallway
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2.2 Winograd Schema Challenge

The Winograd Schema Challenge (WSC) (Levesque et al., 2012) is commonly presented as an
alternative to the Turing Test, a test proposed by Alan Turing in 1950 for deciding whether
or not machines are able to think. The idea of Turing’s test is that if after a long unrestricted
conversation with a machine in natural English, a human interrogator is unable to tell whether
they are dealing with a machine or a human, then we should consider this as evidence that the
machine is capable of thought. Such a test, however, has conceptual and practical drawbacks,
most notably, that machines can merely rely on simple means, built around deception and
evasiveness, to maintain a realistic conversation (Weizenbaum, 1966).
The WSC is instead a test made up of a set of 273 Winograd Schemas. Each WS is a small
reading comprehension test with a single binary question.

Example 2.1. Levesque et al. (2012) give the following example of such a question:

The town councillors refused to give the angry demonstrators a
permit because they feared violence. Who feared violence?

Answer 0: the town councillors
Answer 1: the angry demonstrators

Each question must satisfy four conditions:

1. Two parties are mentioned in the text by noun phrases (e.g. “the town councillors” and
“the angry demonstrators”). We call these the candidate referents.

2. A pronoun or possessive adjective is used to reference one of the parties (e.g. “they/them/their”).
Importantly, it must be the right sort for both parties (e.g. both parties must be groups).
We call this the target pronoun.

3. The question asks the test-taker to determine the referent of the target pronoun, by
choosing between the two candidate referents.

4. There is a special word in the text, which when replaced by another word (the alternate
word), forms a valid question, but with the opposite answer.

To explain the fourth condition, consider again Example 2.1. For this example, the special
word is feared, and the alternate word is advocated:

The town councillors refused to give the angry demonstrators a
permit because they advocated violence. Who advocated violence?

Answer 0: the town councillors
Answer 1: the angry demonstrators

It is the fourth condition which the authors of the challenge claim requires thought to get
a correct answer. The contexts of where the special and alternate word may appear tend
to be statistically similar, and thus it is argued that the test-taker needs to have background
knowledge not expressed in the sentence in order to correctly resolve the reference.
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Non-examples Whilst a Winograd Schema should be easily disambiguated by a human
reader, there are some examples that are “too easy”. One commonly cited example is:

The women stopped taking the pills because they were
[pregnant/carcinogenic]. Which individuals were
[pregnant/carcinogenic]?

Answer 0: the women
Answer 1: the pills

The trick with this example is that only the women can be pregnant and only the pills can
be carcinogenic, and so there is no need to fully understand the sentence. These restrictions
are called selectional restrictions, and can easily be learned by considering a large-enough text
corpus.
Similarly, consider the example, again from (Levesque et al., 2012):

The race car zoomed by the school bus because it was going so
[fast/slow]. What was going so [fast/slow]?

Answer 0: the race car
Answer 1: the school bus

Although there is no selectional restriction to be applied in this case, clearly a fast race car is
much more common than a fast school bus. Such examples are sometimes called associative.
It is for this reason that Winograd schemas should be non-associative, i.e. there should be no
statistical properties of the special and alternate words that would allow the correct answer
to be selected with large text corpora alone.
Finally, consider the commonly-cited example:

Frank was pleased when Bill said that he was the winner of the
competition. Who was the winner?

Answer 0: Frank
Answer 1: Bill

The issue with this example is instead that it is genuinely ambiguous — Frank could be pleased
about his own or Bill’s success.

Associativity, One-Way Ambiguity and Switchability Despite best attempts, it can be
argued that there are several examples present in the WSC dataset that do not meet these
conditions.
An analysis by Trichelair et al. (2019) �nds that 37 of WSC’s 286 examples actually are asso-
ciative: i.e. the answer is given away by statistical correlation alone.
Furthermore, a human baseline conducted by Glass and Kim (2015) identi�ed several partic-
ularly di�cult questions. One example is:
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I couldn’t put the pot on the shelf because it was too tall. What was
too tall?

Answer 0: the pot
Answer 1: the shelf

For this question, more than half of the respondents incorrectly answered that it was the
shelf that was too tall. We will refer to questions as one-way ambiguous if less than 75%
of respondents were unable to determine the correct answer. The dataset contains 19 such
examples.
Finally, an example is called switchable (Trichelair et al., 2019) if the positions of the two
candidate referents can be swapped and the example still makes sense. Since switching the
referents should trivially switch the question’s answer, these examples can be used to deter-
mine whether an approach reasons consistently. Trichelair et al. (2019) identi�es 131 such
examples.

Similar Datasets The WSC is a small dataset with no training data. As such, many attempts
have been made at producing larger datasets of similar examples, mainly for the purpose of
training statistical models. We brie�y mention some examples:

1. The DPR dataset (Rahman and Ng, 2012) is made up of 1,882 sentence pairs, in the
same format as the WSC problem. Users have consistently noted that DPR is easier
than the WSC itself, with a much higher proportion of associative examples.

2. The GLUE-WNLI dataset (Wang et al., 2018) transforms the existing WSC problems
into an entailment problem. An evaluation set consists of new examples derived from
�ction books, however these examples have been found to be signi�cantly easier than
those in the WSC.

3. The SuperGLUE-WSC dataset (Wang et al., 2019) rephrases the GLUE-WNLI prob-
lems back into a more-standard coreference resolution task.

4. The KnowRef dataset (Emami et al., 2019) consists of 8,724 Winograd-like examples.
These examples were scraped from Wikipedia, OpenSubtitles and Reddit comments,
and �ltered by hand.

5. TheWikiCREM dataset (Kocijan et al., 2019a) consists of 2,438,897 examples sourced
by masking the second occurrence of repeated names in sentences from Wikipedia. It
is noted that roughly 20% of the examples are deemed to be unsolvable, since there is
no human �ltering.

6. The WinoGrande dataset (Sakaguchi et al., 2020) consists of 43,972 Winograd-like
examples, which are collected and validated via crowdsourcing, and then go through a
process of adversarial �ltering — essentially reducing bias in the dataset by removing
the examples found easiest by current approaches. The �nal examples appear to be
considerably more di�cult than WSC problems.
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Challenges The most signi�cant challenge of the WSC comes from the diversity of com-
monsense knowledge and reasoning ability required to answer the questions correctly. Each
question requires a di�erent snippet of commonsense knowledge, and human test-takers intu-
itively use a combination of spatial, temporal, causal, epistemic and other kinds of reasoning
to guide themselves to an answer. For this reason the most successful approaches usually
avoid direct reasoning, instead favouring a statistical approach.
However, the authors of the challenge note that demonstrating this kind of complex reasoning
is precisely the goal (Levesque, 2014). For example, consider the schema:

The large ball crashed right through the table because it was made of
[styrofoam/steel]. What was made of [styrofoam/steel]?

Answer 0: the large ball
Answer 1: the table

Suppose, as Levesque (2014) does, that the special/alternate word was replaced with “XYZZY”,
and we were told several facts about this XYZZY material, including that it is mostly air.
Richard-Bollans et al. (2017) note that a human should still be able to answer this new ques-
tion, whilst most statistical approaches will simply learn that “things made out of styrofoam
are more likely to be crashed through than to crash through things” — a clearly insu�cient
explanation which does not generalize to the invented XYZZY material. For this reason, Mor-
genstern and Jr. (2015) point out that the best approaches should be able to explain their rea-
soning.
We discuss existing (statistical and reasoning-based) approaches to the WSC in more depth in
the following chapter.
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Chapter 3

Related Work

In this chapter, we provide an in-depth analysis of the existing work on the Winograd Schema
Challenge. There is a signi�cant amount of published work on the WSC and other related com-
monsense reasoning problems, with a diverse range of approaches having been proposed. We
classify these approaches into �ve broad categories: logical reasoning (Section 3.1), knowledge
hunting (Section 3.2), traditional machine learning (Section 3.3), machine learning with pre-
trained language models (Section 3.4) and hybrid (neural and symbolic) approaches (Section
3.5).

3.1 Logical Reasoning

Many approaches have been proposed to the WSC which involve some form of logical rea-
soning (Schüller, 2014; Bailey et al., 2015; Sharma, 2019). However, the reasoning required
to determine the correct candidate referent in many cases is complex, and the commonsense
knowledge is speci�c and thus di�cult to source. For this reason, most approaches explicitly
provide the required knowledge, and limit their evaluation set to just a small number of Wino-
grad schemas, which do not require complex social, situational and spatio-temporal reasoning
and default assumptions.

Figure 3.1: Example of the graphical representation proposed by Schüller (2014)
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Knowledge Graphs Schüller (2014) de�nes a kind of knowledge graph, over which reason-
ing is performed. An example from the paper, corresponding to the sentence “Sam’s drawing
was hung just above Tina’s and it did look much better with another one below it.”, is shown
in Figure 3.1. The constraints that vt 6= vs, ve 6= vo and vt = ve ∨ vs = ve are also included by
the proposed formalism.
Similar graphs are constructed, say, to represent the commonsense knowledge such as that
“if v1 is above v2, then v2 is below v1”. The reasoning process then takes the form of two
steps. First, isomorphisms are identi�ed between the knowledge graphs, to determine which
knowledge is useful for solving the WS. The identi�ed knowledge graphs are then combined
by aligning the matching nodes.
Arguably the most signi�cant drawback of this approach is that both the input and back-
ground knowledge graphs must be manually constructed, i.e. only the reasoning process
itself is automated. While constructing the input graph for each Winograd schema should be
possible using state-of-the-art parsing techniques, automating the generation of highly accu-
rate and relevant background knowledge appears to be a much more daunting task, as often
this knowledge is incredibly speci�c.
One challenge faced by the approach is that, in many cases, there may be enough evidence
to prove either of the two candidate referents is correct. In these cases, there needs to be
a method to determine which answer is more relevant. Schüller (2014) identi�es features of
more relevant explanations:

1. The background knowledge integrates well with the input (the schema’s knowledge
graph). I.e. most of the nodes from the background can be combined with input nodes.

2. The background knowledge forms contextual implications, by connecting parts of the
input graph that were not originally connected.

This use of relevance theory to decide how to integrate background knowledge shows particu-
lar promise. For evaluation, schemas with ambiguities were speci�cally selected. For example,
for the sentence “Sam’s drawing was hung just above Tina’s and it did look much better with
another one below it”, one could imagine a case where there are three drawings. It is shown
that the features described handle the disambiguation process and yield the correct answer
for all evaluated schemas.
It is these kinds of default assumptions that present the most signi�cant challenge to logic-
based approaches to the WSC. Whether to accept or reject default assumptions requires world
knowledge and pragmatic understanding. For example, Richard-Bollans et al. (2017) point out
the di�culty of the Winograd schema:

Tom threw his school bag down to Ray after he reached the
[top/bottom] of the stairs. Who reached the [top/bottom] of the stairs?

Answer 0: Tom
Answer 1: Ray

Here, to derive the correct answer, one must make assumptions regarding the initial position
of Tom and Ray (we usually assume that Tom and Ray are initially at the same location),
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the movement of the person who reaches the top of the stairs (we assume they have gone
up the stairs), and the other person (we assume that they have not moved). Clearly, other
assumptions are possible. Furthermore, as noted by Richard-Bollans et al. (2017), it is di�cult
to formalize the commonsense knowledge required. For example, any knowledge regarding
the relation at_the_top_of would need to handle the vagueness of the concept — if one is at
the top of a building, are they on the top �oor or on the roof?

Automated Approaches Sharma (2019) describes a very similar, but more automated ap-
proach, which is able to handle 200 WSC problems, by reasoning with additional knowledge.
A semantic parser is used to generate a graphical form for each Winograd schema. To do this,
a dependency parser is used, and then the parsed text is annotated with additional semantic
information. Speci�cally, a rule-based system is used to map syntactic dependencies into se-
mantic dependencies, and discourse connectives are assigned labels (e.g. “and”, “but”, comma
and period are labelled as next_event; “because” is labelled as causes; and “so” is labelled as
caused_by). Finally, WordNet (Miller, 1995) is used to annotate each node with classes (e.g.
“man” would be assigned the class person).
Consider, for example, the schema:

Example 3.1. The man could not lift his son because he was so
weak.

The graphical representation produced by the parser for this schema is shown in Figure 3.2a.
The additional knowledge is provided in a similar format, with additional is_same_as labels
resolving the reference. For example, for the example above, the additional knowledge would
take the form of:

Example 3.2. IF person1 cannot lift person2 because person3 is
weak THEN person1 is the same as person3

The graphical representation of this additional knowledge is shown in Figure 3.2b.
Again, the reasoning process involves aligning the two graphical representations1. If the
most natural alignment connects the target pronoun with one of the candidate referent with
is_same_as edges, the answer may then be trivially returned.
The main limitation of this approach, is that the additional knowledge should be of the form
shown in Example 3.2. This restriction limits the approach to just 240 of the WSC problems,
since 26 problems require multiple pieces of knowledge, and a further 25 require the knowl-
edge that one scenario is more likely than another. Additionally, the parser fails to parse a

1As noted by Sharma (2019), this is an instance of the NP-complete graph-subgraph isomorphism problem.
It can be solved e�ciently for small problem sizes using an answer set solver such as clingo.
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(a) Representation for the schema shown in Example 3.1.

(b) Representation for the additional knowledge shown in Example 3.2.

Figure 3.2: Examples of the graphical representation generated by the semantic parser, K-
Parser (Sharma, 2019)

further 40 problems, due to errors in syntactic dependency parsing and part-of-speech tag-
ging. For these problems, the graphical representation had to be derived by hand.
We also note that the proposed form of knowledge is both rather unintuitive (presumably not
many people attempting to resolve the reference in Example 3.1 would provide the knowledge
of Example 3.2 as their justi�cation) and speci�c (and as such especially di�cult to generate).
For example, it may often be possible to answer commonsense knowledge questions with
knowledge in this format, but far more natural to use multiple pieces of knowledge. Consider
Levesque’s commonly-cited question “Can a crocodile run a steeplechase?”. In this case, the
speci�c knowledge that crocodiles cannot run steeplechases is su�cient, but clearly not as
natural as combining the more general knowledge that crocodiles have short legs, animals
with short legs cannot jump high, and that jumping is a requirement of a steeplechase.
Sharma (2019) also brie�y explored the idea of knowledge hunting, with the goal of generating
the additional knowledge. They �nd that the knowledge could be generated in 120 cases,
and the correct answer was returned in every case where the knowledge could be found. We
discuss knowledge hunting approaches in more detail in the following section.

3.2 Knowledge Hunting

In an attempt to automate the extraction of common sense knowledge, many approaches
propose knowledge hunting methods which make web searches, or searches through large text
corpora, in an attempt to �nd evidence that supports one candidate referent over another.
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Sharma et al. (2015), for example, describe an approach which combines semantic parsing of
the problem text with a knowledge hunting module. In their approach, they focus on two
speci�c categories of schema, which cover 71 of the 286 schemas making up the WSC:

1. Event-event causality. This category applies to examples in which the candidate ref-
erent participates in one event, and the target pronoun in another. The required com-
monsense knowledge is that one event causes the other. E.g. the sentence “Sid explained
his theory to Mark but he could not convince him” would be in this category, since it
can be solved with the knowledge that “ifX explained s to Y but Z could not convince,
then Z = X”.

2. Causal attributive. This category applies to examples which can be solved with the
knowledge that an event is causally related to some attribute. E.g. the sentence “Pete
envies Martin because he is successful” can be solved using the knowledge that “X
envies Y because Y is successful”.

We now describe the process of knowledge hunting itself. Consider again Example 3.1. First
this sentence would be parsed, and then a set of queries are generated. This is done by sub-
stituting all nominal entities and certain stop words with wildcards, in this case generating
the sentence “.*could not lift.*because.*weak.*”. Additional queries are created by replacing
the verbs in the query with their respective synonyms, for example, generating “.*could not
raise.*because.*weak.*”. These queries are inputted to the Google Search API, which acts here
as a huge text corpus. As an example, Google may return the sentence:

She could not lift it because she is a weak girl.

We will refer to such a sentence as a knowledge text. Importantly, the references in this knowl-
edge text are unambiguous.
Both the WS and the knowledge text are then parsed by a semantic parser. An example of the
generated parse tree, corresponding to the schema in the example, is shown in Figure 3.2a.
Solutions are again found by identifying graph-subgraph isomorphisms between the parsed
representations of the WS and the knowledge text.
This approach was able to determine an answer for 53 of the 71 schemas which �t the in-
vestigated categories, and out of those 53 answers, 49 were correct. Incorrect answers were
returned in four cases because the knowledge text was inappropriate, Sharma et al. (2015)
found that the schema

Bob paid for Charlie’s college education, he is very grateful.

was answered incorrectly as their system found the knowledge text “I paid the price for my
stupidity. How grateful I am.”.
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Generalized Knowledge Hunting Emami et al. (2018) propose a more general knowledge
hunting method. Their approach consists of four steps:

1. The schema is partially parsed. In particular, the following components are extracted
based on a very shallow syntactic parse:

C1, C2 the candidate referents
VC the context predicate (e.g. verb before the discourse connective)

Conn the discourse connective
P the anaphor
VQ the query predicate (e.g. verb after the discourse connective)

For example, for the problem “The trophy doesn’t �t into the brown suitcase because it
is too large.”, we have:

C1 = the trophy
C2 = the suitcase
VC = doesn’t �t into

Conn = because
P = it
VQ = is too large

2. Queries are generated of the form

+TermC + TermQ − ”Winograd”

where TermC and TermQ are derived from VC and VQ. Speci�cally, WordNet is used to
�nd synonyms for each, and each set is �ltered to those elements with a lexical similarity
score (also from WordNet) to the original term exceeding some threshold. The threshold
is derived from performance on the DPR dataset.

3. The search results are partially parsed, and �ltered to those matching one of the follow-
ing patterns

C ′1 Pred
′
C C

′
2 Conn C

′
3 Pred

′
Q

C ′1 Pred
′
C C

′
2 Conn Pred

′
Q C

′
3

C ′1 Pred
′
C Conn C

′
3 Pred

′
Q

C ′1 Pred
′
C Conn Pred

′
Q C

′
3

It is hoped that the references in this sentence are unambiguous — either they repeat
the noun phrase explicitly, or the reference can be determined using gender/plurality
alone. Then, if C ′3 refers to C ′1, this is treated as evidence that the target pronoun P
references C1, otherwise if C ′3 refers to C ′2, this is seen as evidence that P references
C2. There are two important exceptions:
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(a) If the event occurs in the passive voice (e.g. “was called”), then the reference must
be swapped.

(b) In some cases the verb may be used by transitively and intransitively (e.g. “he
opened the door” vs “the door opened”). Such verbs are called causatively alter-
nating. This may also cause the order of the referents to be swapped.

4. Each example is weighted. Speci�cally, Emami et al. (2018) propose a weight of

LenScore(e) +OrderScore(e)

where

LenScore(e) =

{
2 if len(TermQ) > 1 or len(TermC) > 1

1 otherwise

OrderScore(e) =

{
2 if TermC precedes TermQ

1 otherwise

The weights of examples supporting each candidate referent are summed, and the ref-
erent with the greater value is returned as the answer.

This system was able to �nd valid knowledge texts, and hence determine an answer for 199
problems. Of these problems, 119 (60%) were answered correctly.
To understand the performance of the knowledge hunting process itself, the referents of 876
knowledge texts were manually labelled. Of these 876 texts, 703 (81%) were found to be la-
belled correctly by the knowledge hunting system. Of the 173 incorrectly-labelled texts, 110
were found to have insu�cient evidence for either conclusion. This is one of the major chal-
lenges for knowledge-hunting based approaches. Language is used in an e�cient way and
commonsense knowledge is often left implicit. Richard-Bollans et al. (2017), for example,
provide the example “Sam chopped down the tree”. Here there is a default assumption that
chopping is done with an axe. Often extra information is added only in the unusual cases
where the default assumption is incorrect, e.g. “Sam chopped down the tree with a sword”.

3.3 Machine Learning

Formalizing the kind of reasoning required to tackle the WSC is notoriously di�cult, and so
naturally many of the earliest approaches to the WSC instead opt for simple machine learning-
based approaches. For example, Rahman and Ng (2012) propose training a ranking support
vector machine (SVM), using the DPR dataset. Speci�cally, each example is transformed into
an ordered pair of feature vectors, one for each of the candidate referents, and the ranker is
trained with the goal of assigning the vector corresponding to the correct referent in each pair
a higher rank.
Their approach uses linguistic features or six kinds:
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1. Narrative chains. Events are extracted from the text and compared against a large set
of narrative chains. Narrative chains (Chambers and Jurafsky, 2009) are composed of a
sequence of temporally-ordered events that tend to occur together. One example might
be:

arrested(obj)→ charged(obj)→ convicted(obj)→ sentenced(obj)

where “obj” indicates that the object of the verb is common across the sequence.

2. Semantic compatibility. This feature extracts from the sentence the two candidate
referents (C1 and C2), the verb applied to the target pronoun (V ), and the words follow-
ing that verb (W ), as well as the adjective (J ) if V is some conjugation of the verb to-be.
It then generates up to six Google queries, whose result counts are compared against
each other as features. For example, for the sentence “the �sh ate the worm because it
was hungry”, the following queries would be generated:

(a) C1V : “�sh was”.
(b) C2V : “worm was”.
(c) C1VW : “�sh was hungry”.
(d) C2VW : “worm was hungry”.
(e) JC1: “hungry �sh”.
(f) JC2: “hungry worm”.

3. FrameNet. In the case, for example, where C1 and C2 are names, clearly the Google-
based features are not particularly helpful. In this case, FrameNet (Ruppenhofer et al.,
2006) is used to determine the roles of C1 and C2, and the Google queries are generated
instead using these roles. For example, for the sentence “John killed Jim, so he was
arrested”, C1 (John) has the role “killer” and C2 (Jim) has the role “victim”.

4. Polarity. Sentiment analysis is applied to the two candidate referents and the target
pronoun, and their values are compared. Consider, for example, the sentence “John was
defeated by Jim in the election even though he is more popular”. Here “John” is assigned
a negative sentiment (having been defeated), “Jim” is assigned a positive sentiment and
“he” is assigned a positive sentiment (being more popular). In this case, the discourse
connective “even though” would suggest that the polarity should be reversed, and hence
the target pronoun is resolved to “John”.

5. Connective-based relations. A triple of the from (V,Conn,X) is produced, where
V is the verb from the �rst clause, Conn is a discourse connective and X is a verb or
adjective in the following clause. For example, “Google bought Motorola because they
are rich” generates the triple (buy, because, rich). This triple is then checked against a
large set of relations extracted from large text corpora.

6. Lexical features. These features count single word occurrences, word pairs separated
by a discourse connective, and word pairs relating to each candidate referent.
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The system was evaluated only on the DPR dataset, and not on the harder WSC dataset, but
was the �rst system to achieve signi�cantly greater-than-chance performance (73% accuracy)
on these kind of di�cult coreference problems.
Feature analysis demonstrated that their Google-based semantic compatibility features were
among the most important. Since WSC problems are designed to be “Google-proof”, this likely
suggests de�ciencies in the DPR dataset — namely that many examples are associative, and
hence we expect that the system might not perform nearly as well on the WSC itself.
Furthermore, the achieved accuracy of 73% on DPR is still signi�cantly below that of human
performance and more recent approaches, demonstrating that while the features discussed
may be helpful, they alone are not su�cient to fully capture the semantics of the problems.
Richard-Bollans et al. (2017), for example, note that the FrameNet-based features do not take
into account the discourse connective, and thus would be identical for the sentences “John
killed Jim, so he was arrested” and “John killed Jim after he was arrested”. Other features
su�er from similar de�ciencies.

3.4 Language Models

Most recent approaches to the WSC rely on high-capacity language models, trained on a large
amount of unlabelled data. They are usually optimised to predict the next token in a sequence,
and appear to e�ciently store a vast amount of linguistic knowledge, which has been shown
to be useful for several downstream tasks.

Recurrent Language Models Trinh and Le (2018) outline a remarkably simple and direct
approach to the WSC using recurrent language models. First, the pronoun in the original
sentence is swapped out with each of the candidate referents. For example, the schema:

The trophy doesn’t �t into the brown suitcase because it is too large.
What is too large?

Answer 0: the trophy
Answer 1: the suitcase

is translated into two candidate sentences:

Example 3.3. The trophy doesn’t �t into the brown suitcase because
the trophy is too large.

and

Example 3.4. The trophy doesn’t �t into the brown suitcase because
the suitcase is too large.
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A recurrent language model, which predicts a distribution over a large vocabulary of words,
conditioned on the preceding words, is trained on large text corpora. Each of the candidate
sentences is then scored based on its probability, and the referent occurring in the sentence
with the higher probability is selected as the answer.
Trinh and Le (2018) also propose several of minor enhancements to the system to improve its
accuracy:

1. A key limitation of the approach is that measuring the sentence’s probability as the
joint probability of each word in the sentence occurring at its respective position may
result in a bias due to a di�erence in the commonality of each of the candidate referents.
For example, “the trophy” is much rarer in text corpora than “the suitcase”, which in
this case would result in an incorrect preference for candidate sentence 3.4. In order to
resolve this issue, a partial scoring method is proposed, in which the probability of the
words following the candidate referent, given the preceding words, is calculated. E.g.
the score for candidate sentence 3.3 under this approach would be

P (is, too, large|the, trophy, doesn’t,�t, into, the, brown, suitcase, because, the, trophy)

2. They develop a customized training dataset, based on questions in commonsense rea-
soning tasks — speci�cally this corpus is made up of the documents from their selected
corpora which contain the most overlapping n-grams with the Winograd schemas.

3. An ensemble of 14 language models, trained on several di�erent text corpora, is used
to make a �nal decision.

This approach, with the adjustments described, achieves a 63.7% accuracy on the WSC. Fur-
thermore, Trinh and Le (2018) note that their language model was able to correctly identify
the special word for 64.6% of the correctly-answered questions — in these cases it was the word
that made the greatest contribution to the di�erence in probabilities between the two candi-
date sentences. They claim that this “indicates a good grasp of commonsense knowledge”.
However, the approach has been noted to have several �aws. Statistical language models,
especially the kind used by Trinh and Le (2018), have been shown to have di�culty learning
complex concepts, particularly those which are context-sensitive. Saba (2018) notes, for exam-
ple, that the statistical approach does not easily capture type similarities, and so claim that the
approach needs to many possible combinations individually, instead of a single generalised
concept. For example, the trophy, the ball, and the laptop all co-occur in quite di�erent ways,
and so each of these concepts might appear markedly di�erent to a recurrent language model:

The trophy doesn’t �t into the brown suitcase because the trophy is
too large.
The ball doesn’t �t into the brown suitcase because the ball is too
large.
The laptop doesn’t �t into the brown suitcase because the laptop is
too large.

This might explain why such a huge volume of textual data is required by the language model
to make good predictions, and why a specially-constructed dataset with overlapping n-grams
was found to be necessary.
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Transformer-Based LanguageModels In the last couple of years, transformer-based lan-
guage models have signi�cantly advanced state of the art results on many natural language
tasks. Examples include OpenAI’s GPT and subsequently GPT-2 models (Radford et al., 2019),
which use deep (up to 48-layer) transformer architectures (Vaswani et al., 2017) and huge
amounts of training data (over 8 million documents). These language models have also shown
signi�cant promise in solving commonsense reasoning problems. For example, GPT-2 has
been applied to the WSC, using the same approach as in (Trinh and Le, 2018), but achieving a
signi�cantly improved accuracy of 70.7% (Radford et al., 2019).
With such large volumes of training data, an obvious question is whether the corpora include
the exact problems in the WSC. Radford et al. (2019) evaluated their training set to �nd only
10 schemas with signi�cant overlaps and only 1 schema present in its entirety.

Bidirectional Transformers While GPT and GPT-2 are auto-regressive models (i.e. they
are trained to predict the next token, given knowledge of only previous tokens, similar to in
a recurrent language model), Google’s BERT (Devlin et al., 2019) takes a di�erent approach.
It pre-trains bidirectional transformers, using context from both sides of the token to be pre-
dicted. For example, a training example might take the form of “Mary bought [MASK] for the
�lm”, where the goal is to predict the original value of the masked token. Klein and Nabi (2019)
show that BERT is able to achieve an accuracy 60.3% on the WSC using the out-of-the-box
BERT-base model, without any customized training data or �ne-tuning.

Fine-Tuning A common approach to many NLP tasks in recent years has been to apply
transfer learning. First, a language model such as BERT or RoBERTa is pre-trained on vast
amounts of textual data, using training tasks such as the masked token prediction method
discussed earlier. Then, starting from the pre-trained model’s weights, a task-speci�c model
is developed through a process of �ne-tuning, during which the model is trained on tasks
much closer to its intended usage.
Ruan et al. (2019) �rst investigated �ne tuning approaches for the WSC. They use the DPR
dataset (Rahman and Ng, 2012), consisting of 1886 Winograd-like examples, to �ne-tune the
BERT-large model, achieving 71.1% accuracy. They �nd that �ne-tuning is particularly impor-
tant, providing a 10-20% improvement in accuracy, presumably by combining the knowledge
from Winograd annotation with the extremely diverse linguistic knowledge present in the
out-of-the-box BERT models.
Several approaches have since advanced the state of the art with small-tweaks to the �ne-
tuning process:

• Kocijan et al. (2019b) use their masked Wikipedia dataset, WikiCREM, for �ne tuning,
achieving 72.5% accuracy. Their �ne-tuning process is slightly optimised: the pronoun
to be resolved is masked out of the sentence and the language model is used to predict
the correct candidate referent out of C1 and C2. This approach has consistently been
used to achieve state-of-the-art results on the similar GLUE WNLI and SuperGLUE WSC
tasks.
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• Ye et al. (2019) used ConceptNet to generate a commonsense focused �ne tuning task.
Their process �nds triples from ConceptNet, aligns the triples with sentences from the
English Wikipedia dataset, and masks one token from the ConceptNet relation. The
task involves selecting the original value of the masked token. This approach achieves
75.5% accuracy, demonstrating its improved commonsense reasoning capability.

• Sakaguchi et al. (2020) used their large crowd-sourced Winograd-like dataset, Wino-
Grande, in their �ne tuning process, achieving state-of-the-art accuracy of 90.1% on the
WSC. However they note that the results “may need to be taken with a grain of salt”,
as their work suggests that the WSC may contain dataset-speci�c biases, causing their
models to be “right for the wrong reasons” and hence “running the risk of overesti-
mating the true capabilities of machine intelligence on common sense reasoning”. The
signi�cant advancement in performance can be attributed to the volume of common-
sense knowledge present in their large, Winograd-like dataset. In particular we note
that their dataset contains many schemas which are extremely similar to those present
in the WSC dataset, often with just di�erent noun-phrases, or a small grammatical twist.

Embedding Sentence Structure Ruan et al. (2019) note that the WSC, with its limited
training data and sensitivity to sentence structure, is well-suited to approaches which explic-
itly incorporate dependency structure. They generate a dependency tree for each sentence and
modify BERT so that each word attends only to its parent, its children and itself, rather than
all words in the sentence. They �nd that structural information is important, consistently im-
proving accuracy by ~3%, but especially helps for the tricker, non-associative problems, which
language models traditionally do poorly on.

Language Models as Knowledge Bases Petroni et al. (2019) provide an explanation as to
why language models perform so well on commonsense reasoning tasks, showing that pre-
trained language models such as BERT capture accurate relational knowledge. They explore
the idea by building a simple sentence and using a language model to predict a masked token.
For example, to generate the relational concept “CapableOf”, one might build a sentence such
as:

Raven can [MASK].
for which BERT will predict the tokens “�y”, “�ght”, and “kill”, in descending order of proba-
bility.
In fact, the out-of-the-box BERT-large model was found to consistently generate “surprisingly
reasonable and syntactically correct” commonsense knowledge, often comparable to crowd-
sourced rules present in ConceptNet (Speer et al., 2017).
However, since some abstract concepts are uncommon in BERT’s training data (largely com-
posed of English Wikipedia articles), and many obvious concepts are often left implicit in text,
BERT does struggle on certain examples. One example from (Petroni et al., 2019) might be

A pond is for [MASK].
for which BERT predicts “swimming”, whilst ConceptNet proposes “�sh”. Da and Kasai (2019)
also �nd that �ne-tuning BERT with commonsense knowledge embeddings from Concept-
Net, WebChild and ATOMIC does improve its performance on commonsense reasoning tasks,
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which seems to suggest that while language models do encode some commonsense rules, they
do not completely cover the examples present in large relational knowledge bases.

Language Models for Commonsense Reasoning Although language models do seem to
encode some commonsense knowledge, they exhibit some surprising behaviour on the WSC,
which seems to suggest that they are not truly applying commonsense. Firstly, Trichelair
et al. (2019) �nd that while some language models are able to achieve over 90% on associa-
tive problems (those with strong statistical hints), they barely perform better than chance on
harder, non-associative problems. Secondly, they �nd that when the two candidate referents
are swapped for switchable problems, most language model-based approaches swap their an-
swer accordingly less than half of the time. This poor performance on non-associative exam-
ples and generally inconsistent reasoning seems to suggest that, in many cases, the language
models learn only basic lexical patterns, and do not apply general commonsense knowledge
as well as one might hope.

3.5 Hybrid Approaches

Prakash et al. (2019) describe an approach which combines knowledge hunting and language
model based methods.
The knowledge extraction approach is very close to what is described by (Sharma et al., 2015).
From the results, text snippets with less than 30 words are considered, and the 10 snippets
most similar to the WSC sentences are kept. Snippets containing 80% or more words from the
WSC problem are excluded.
This is followed by an entity alignment step — which attempts to align the target pronoun
and each of the candidate referents from the WSC problem with an entity in the knowledge
text. The entities are said to align if they are arguments of the same verb (or a synonym of
that verb) and have the same semantic role (e.g. agent or recipient) with respect to that verb.
Consider, for example, the problem

The trophy doesn’t �t into the brown suitcase because it is too large.

and the knowledge text

The CPU fan would not �t in because the fan was too large.

Here, the trophy aligns with the CPU fan, it aligns with the fan, and the brown suitcase does
not align with any entity of the knowledge text. Thus the two facts are derived:

aligned_with(trophy, fan)
aligned_with(it, fan)

The reasoning approach then uses probabilistic soft logic (PSL). Logical atoms in PSL have
soft truth values in the interval [0, 1]. This makes PSL well-suited to determining the most
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probable explanation, given some evidence. In particular, this approach relies on a PSL rule of
the form:

w : aligned_with(c, e1) ∧ aligned_with(p, e2) ∧ similar(e1, e2)→ coref(p, a)

where w is the weight of the rule, c is a candidate referent, p is the target pronoun, and e1
and e2 are entities (noun phrases) from the knowledge text. The similar predicate is used
to represent how similar the two entities in the knowledge text are to each other; its value is
determined by BERT. In this example, the truth value of similar(fan, fan) should be 1 since
the entities are identical.
Finally, the language model is also used to generate two more grounded coref atoms, cor-
responding to the two possible answers. The truth value of each grounding is simply the
probability for the answer, according to the BERT language model.
The �nal conclusion is determined by which grounding of the coref atom has the higher truth
value. As such, this approach relies on a weighted combination of the kind of statistical lan-
guage model-based reasoning introduced by Trinh and Le (2018) and the kind of knowledge-
hunting reasoning introduced by Sharma et al. (2015).
Such an approach bene�ts from the high precision demonstrated by knowledge-hunting ap-
proaches, especially for non-associative problems, which are di�cult for language models.
It also bene�ts from a recall improvement over pure knowledge-hunting methods, since the
language model’s prediction is used to come up with an answer, even when no suitable knowl-
edge texts can be found. Overall, it achieves 71% accuracy on the full WSC dataset, represent-
ing a signi�cant improvement over knowledge hunting or pre-trained language model-based
approaches alone.
However, it is also important to note that the approach also su�ers from problems associated
with both approaches: the language model requires a huge volume of textual data and an
expensive training process, and the knowledge hunting approach still occasionally invalidates
the correct conclusion by choice of unsuitable knowledge texts. Furthermore, the system’s
statistical reasoning approach means that it cannot explain the reasoning behind its answers.

3.6 Discussion

When evaluating the di�erent approaches to the WSC, we identify three main criteria: how
accurate the approach is, what data it relies on, and whether it demonstrates real common-
sense understanding. These criteria are discussed in detail below, and a summary is presented
in Table 3.1.

Accuracy The most accurate approaches to the WSC tend to be direct reasoning or knowl-
edge hunting approaches, since these approaches tend to focus on a small subset of problems
that they are able to answer with near-perfect accuracy. However, clearly a trade-o� is being
made by these approaches to favour precision over recall, as they often choose not to answer
questions for which parsing is di�cult or no relevant knowledge can be found.
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When considering the full WSC, �ne-tuned language models have consistently achieved state-
of-the-art accuracies in recent years. Hybrid approaches have also been shown to be capable
of addressing the poor recall of pure knowledge hunting approaches.
Meanwhile, language models without �ne-tuning and other simpler machine learning ap-
proaches have signi�cantly trailed behind in terms of accuracy.

Data Approaches that use less training data and are able to generalize quickly should clearly
be preferred over those that require tens or hundreds of thousands of examples before they
demonstrate any commonsense reasoning capabilities.
Of particular interest are entirely unsupervised approaches, or approaches which require par-
ticularly few or no labelled training examples. Knowledge hunting approaches have a clear
advantage in this respect, often relying on ten or less example sentences per problem, which
are discovered on-the-�y. Language models without �ne tuning are also attractive since the
learning is entirely unsupervised. However, the kinds of language models used in approaches
to the WSC generally have been trained on tens of gigabytes of cleaned textual data, in a
process than can take several hours on clusters of GPUs.
Simpler, feature-based, machine learning approaches and �ne-tuned language models are
even less attractive in this respect, requiring thousands or tens of thousands of labelled,
Winograd-like example problems, which are di�cult and expensive to source, and mean that
these approaches are unlikely to generalize as well to other tasks.
Another issue is whether the training data is too similar to the WSC problems, meaning the
actual learning required of the models is more limited than one might expect. In particu-
lar, �ne-tuned language models are likely to see problems very similar to those in the WSC,
multiple times during their training process.

Understanding This leads on naturally to the question of whether the approaches actually
demonstrate commonsense reasoning, or are simply learning shallow statistical rules. This
can be di�cult to determine, especially in the case of language model-based approaches. Al-
though language models have been shown to capture some commonsense knowledge, their
poor performance on non-associative problems and often inconsistent answers seems to sug-
gest that their commonsense reasoning capabilities are limited.
One way to prove that a system is doing real commonsense reasoning is by asking it to explain
its answers. None of the approaches we have seen, except perhaps those using direct logic-
based reasoning approaches, would be able to do this.
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Approach Advantages Limitations

Logical reasoning
(Schüller, 2014; Bailey

et al., 2015; Sharma, 2019)

+ High precision
+ Consistent
+ Explainable

- Requires manually
constructed knowledge

- Poor recall
Knowledge hunting

(Sharma et al., 2015; Emami
et al., 2018)

+ Often high
precision

+ Uses unlabelled
examples,
discovered
on-the-�y

- Poor recall due to di�culty of
�nding relevant knowledge

- Inconsistencies from
contradictory knowledge
texts

- Cannot explain answers
Machine learning
(feature-based)

(Peng et al., 2015; Liu et al.,
2017)

+ No expensive
pre-training

- Poor accuracy compared to
LMs

- Requires labelled training data
- Cannot explain answers

Language models (no
�ne-tuning)

(Trinh and Le, 2018;
Radford et al., 2019; Klein

and Nabi, 2019)

+ Unsupervised
approach

- Poor accuracy compared to
�ne tuning

- Expensive pre-training
- Answers inconsistently
- Cannot explain answers

Language models
(�ne-tuning)

(Ruan et al., 2019; Kocijan
et al., 2019b; Ye et al., 2019;

Sakaguchi et al., 2020)

+ State-of-the-art
accuracy

- Expensive pre-training
- Requires labelled training data
- Answers inconsistently
- Cannot explain answers

Hybrid (knowledge
hunting and LM)

(Prakash et al., 2019)

+ Unsupervised
approach

- Expensive pre-training
- Cannot explain answers

Table 3.1: Comparison of selected approaches to the WSC



Chapter 4

Background

4.1 Natural Language Processing

A key requirement of this project is to be able to accurately parse both Winograd schemas and
example sentences, in order to construct answer set grammars that are able to represent them.
In this section, we provide a brief overview of modern approaches for processing, parsing and
representing natural language.

4.1.1 Preprocessing Methods

Before almost any natural language processing task can be performed on a body of text, the
raw text must be normalised into a consistent format. Usually this involves at least: tokenisa-
tion of individual words and punctuation, normalisation of word formats and segmentation
of sentences. More complex tasks, however, might require further pre-processing such as
part-of-speech tagging, named entity recognition, and word sense disambiguation.

Tokenisation and Sentence Splitting Tokenisation is the process of splitting text into a
sequence of tokens, roughly corresponding to individual words or punctuation. This is mostly
a simple process, with the only major hurdle being the need to distinguish between punc-
tuation internal to a word, from the punctuation determining the sentence structure. For
example, abbreviations (“Ph.D”), dates (“01.01.2020”) and numbers (“100,000”), are generally
assigned a single token. Meanwhile, clitic contractions, such as “doesn’t” are often split into
two tokens, “does” and “n’t” (Jurafsky and Martin, 2009).
A related problem is that of sentence segmentation, which is important to many NLP tasks,
such as parsing, which usually operate on single sentences at-a-time.
Traditionally, tokenisation and sentence segmentation have been implemented by determinis-
tic algorithms based on carefully-crafted regular expressions, which are compiled into e�cient
�nite state automata. However in recent years, neural approaches, often using bidirectional
long short-term memory networks (BiLSTMs) have become more common (Qi et al., 2018).
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Part-of-Speech Tagging Part-of-speech tags (POS tags) classify words according to their
role in a sentence. For example, common POS tags include DT (determiner, e.g. “the”), NN
(singular noun, e.g. “worm”) and VBD (verb in the past tense, e.g. “ate”). The role of a POS
tagger is to assign each token one of these tags.
Modern POS taggers achieve accuracies in the range of 97-98%. State-of-the-art approaches
generally take into account context from both sides of the word being tagged, for example by
using BiLSTMs (Qi et al., 2018).

Lemmatisation Lemmatisation is the task of identifying the lemma for each word in a text.
The lemma is the base or dictionary form for a word. For example, the words “am”, “are” and
“is” all share the lemma “be”. The process must take context into account, so for example,
the word “saw” may be assigned the lemma “see” or “saw” depending on if it is used in the
place of a verb or a noun (Jurafsky and Martin, 2009). Many approaches to lemmatisation use
a simple lookup table from word/POS pairs to their lemmatised forms (Qi et al., 2018).

Named Entity Recognition Another related problem is that of named entity recognition
(NER), in which the goal is to �nd the proper names in a text and label each with a type. For
example, a named entity might be assigned the type person, place, organisation, etc.
NER is often treated as a word-by-word sequence labelling task, in which the tags state the
type of each token. As such, modern approaches generally make use of sequence classi�ers
such as a BiLSTMs or transformers (Jurafsky and Martin, 2009).

4.1.2 Syntactic Parsing

4.1.2.1 Constituency Parsing

Constituency parsing is a task that involves assigning a syntactic (phrase) structure to a sen-
tence, by producing a parse tree that groups words together into constituents. Typically, these
parse trees serve as an intermediate representation in the process of semantic analysis (Juraf-
sky and Martin, 2009).

Context Free Grammar Most commonly, constituency parsing builds the kind of struc-
tures assigned by a context-free grammar (CFG) (Hopcroft et al., 2007).

De�nition 4.1. (Context free grammar) A context free grammar consists of:

• A set of terminal symbols (corresponding to the vocabulary of the grammar),

• A separate set of non-terminal symbols (which express abstractions over the terminal
symbols),

• A set of production rules (which express how a given non-terminal symbol can be rewrit-
ten as a sequence of terminal and non-terminal symbols), and
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ROOT

S

NP VP "."

DT NN

"the" "fish"

VBD NP

"ate" DT NN

"the" "worm"

Figure 4.1: A constituency parse tree for the sentence “the �sh ate the worm.” according
to the context free grammar de�ned in Example 4.1. Terminal nodes are shown by ellipses,
non-terminal nodes are shown by rectangles.

• A distinguished non-terminal symbol called the start symbol.

A grammar is said to accept a string, if it is possible, starting from the start symbol, to use
the production rules to generate that string; i.e. it is possible to produce a parse tree for the
string.

Example 4.1. (Context free grammar) Consider a CFG with the following production rules:

ROOT -> S
S -> NP VP "."
NP -> DT NN
VP -> VBD NP
DT -> "the"
NN -> "fish"
VBD -> "ate"
NN -> "worm"

In this example, the terminal symbols are {the, fish, ate, worm, .}, and the non-terminal
symbols are {ROOT, S, NP, VP, DT, VBD, NN}, which represent di�erent kinds of constituents.
NP and VP, for example, refer to constituents of the type “noun phrase” and “verb phrase”
respectively. The start symbol is ROOT. As an example, this grammar accepts the string “the
�sh ate the worm”, as demonstrated by the parse tree in Figure 4.1. The process of �nding
such parse trees given a grammar and a sentence can be done be e�ciently, for example by
using the CKY algorithm (Jurafsky and Martin, 2009).
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ROOT

"ate"

root

"the"

"fish"

det

nsubj

"worm"

dobj

"the"

det

Figure 4.2: A dependency parse tree for the sentence “the �sh ate the worm.”

4.1.2.2 Dependency Parsing

Dependency grammars are a family of grammar formalisms that instead describe the structure
of sentences in terms of just their words and a set of grammatical relations (Jurafsky and
Martin, 2009). For example, Figure 4.2 shows the dependency tree for the sentence “the �sh
ate the worm.” We see that “ate” is the root of the tree, and “the �sh” is marked as the verb’s
(nominal) subject, while “the worm” is marked as the verb’s (direct) object.

Head Finding Many methods for dependency parsing �rst perform constituency parsing.
The dependency structure can then be determined through a process of head �nding (Jurafsky
and Martin, 2009).
Each syntactic constituent is associated with a lexical head, which is the word in the phrase
which is grammatically the most important (Pollard et al., 1994). For example, the head of a
verb phrase is the verb, and the head of a noun phrase is the noun. Heads are passed up the
tree as shown in Figure 4.3. The remaining words are called dependents. As shown in Figure
4.2, a dependency tree marks these head-dependent pairs (Jurafsky and Martin, 2009).
The most common method for identifying the heads in a parse tree involves walking the tree
and using a rule-based approach to determine the head at each non-terminal node (Jurafsky
and Martin, 2009).

4.1.2.3 HPSG Parsing

Context free grammars su�er from several limitations when used to parse phrase structure.
Many of these limitations arise from a lack of lexical information (information to do with
individual words). Lexical features include, for example, agreement (e.g. number and gender)
and subcategorisation (the number and type of arguments a verb may take) (Jurafsky and
Martin, 2009). For example, “eats” is a transitive verb which usually has one argument (“The
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ROOT

S (ate)

NP (fish) VP (ate) "."

DT (the) NN (fish)

"the" "fish"

VBD (ate) NP (worm)

"ate" DT (the) NN (worm)

"the" "worm"

Figure 4.3: A constituency parse tree for the sentence “the �sh ate the worm.” including the
head (shown in brackets) at each node. The heads are passed up the tree, as demonstrated by
the bold arrows.

�sh eats the worm”), while “gives” is a ditransitive verb which usually takes two arguments
(“Jane gives Joan candy”).
Lexicalised grammars rely more heavily on this kind of lexical information. A popular class
of lexicalised grammars are categorial grammars, such as combinatory categorial grammar
(CCG), which assigns tokens functional categories and de�nes rules for application, compo-
sition and type raising (Jurafsky and Martin, 2009). We will instead focus on a separate class
of constraint-based grammar: head-driven phrase structure grammar.

Head-Driven Phrase Structure Grammar Head-driven phrase structure grammar (HPSG)
(Pollard et al., 1994) is a highly-lexicalised, constraint-based grammar. HPSG has several im-
portant properties which strongly in�uence our own approach to representing natural lan-
guage using answer set grammars:

1. Based on typed feature structures. HPSG replaces the atomic categories of a CFG
with more complex data structures called feature structures. Each feature structure is a
simple set of attribute, value pairs, where the value may be either atomic, or another
feature structure (Muller and Sag, 2007). For example, a (simpli�ed) feature structure of
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type word for the verb “eats” might look like:

word
PHON 〈eats〉

HEAD


verb
VFORM �n

AGR
[

NUM sg
PER 3

]


SUBCAT 〈NP [nom], NP [acc]〉


Here, the HEAD feature structure encodes the syntactic category of the word: its a �nite
verb (VFORM �n) in its third-person (PER 3) singular (NUM sg) form. The subcate-
gorisation (SUBCAT) value tells us that eats is a transitive verb which must be assigned
two arguments which are a nominative (subject) and an accusative (direct object) noun
phrase.

2. Highly lexicalised. The grammar consists of a large and rich lexicon: each word is
associated with a complex feature structure, such as the entry for “eats” shown above,
which encodes phonological and syntactic information (such as the POS, agreement and
subcategorisation), and often the word’s semantics.
Words have a di�erent representation compared to phrases, which are made up of a
HEAD-DTR (the head of the phrase) and NON-HEAD-DTRS (a list of the dependents)
(Muller and Sag, 2007).

3. Constraint-based. HPSG replaces the generative rules of CFGs with a set of grammat-
ical constraints which must be satis�ed. For example a basic grammar rule might look
like: 

head-complement-structure
SUBCAT 1

HEAD-DTR
[
sign

SUBCAT 1 ⊕
〈
2
〉 ]

NON-HEAD-DTRS
〈
2
〉


where⊕ represents concatenation, and values marked by the same boxed number must
be identical (Muller and Sag, 2007). In short, this schema encodes “the using up of
arguments”. An possible instantiation could look like:

V P [SUBCAT 〈〉]→ NP [nom] V P [SUBCAT 〈NP [nom]〉]

Here, the NP is a non-head daughter and the VP is the head daughter. Since the category
of the NP is the same as the last entry in the VP’s subcategorisation value, as per the
grammar rule, we can form a phrase from these two constituents with a subcategorisa-
tion value that no longer requires the NP argument.

4. Head-driven. The constituent structure of HPSG follows the head feature principle
(HFP):  headed-stucture

HEAD 1

HEAD-DTR|HEAD 1


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ROOT

CAT <S>
HEAD ate

CAT <NP>
HEAD fish

CAT <VP>
HEAD ate

.
"."

DT
"the"

NN
"fish"

VBD
"ate"

CAT <NP>
HEAD worm

DT
"the"

NN
"worm"

Figure 4.4: A joint span structure for the sentence “the �sh ate the worm.”. It encodes both
the constituency (�lled lines) and dependency (dashed lines) information.

As per Pollard et al. (1994), this enforces that “the value of any headed phrase is structure-
shared with the HEAD of the head daughter. The e�ect of HFP is to guarantee that
headed phrases are really projections of their head daughter.”

Note that the �nal point means that HPSG encodes both constituency (phrasal) and depen-
dency structure (Zhou and Zhao, 2019). The former is useful for specifying and classifying
sub-phrases within a text, and can easily be represented using a context free grammar, while
the latter more transparently encodes predicate-argument structure and thus is much closer
to representing the semantics of a text.
HPSG parsing is di�cult in practice, as it is highly sensitive to the accuracy of the supertagger
(which assigns lexical entries to each word): just one or two errors will often cause a parse
failure. Thus most approaches use a CFG to approximate the HPSG (Matsuzaki et al., 2007), or
use a heavily simpli�ed representation (Zhou and Zhao, 2019) which ignores a lot of lexical
information, and focuses mainly on the core of HPSG: the heads (we take the latter approach).
An example of such a simpli�ed structure, which focuses solely on the lexical head of each
constituent, is shown in Figure 4.4.

4.1.3 Semantic Parsing

Semantic parsing is the process of assigning meaning representations (traditionally in the form
of �rst-order logic formulae) to linguistic inputs (Jurafsky and Martin, 2009).
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4.1.3.1 Semantic Representation

The �rst challenge of semantic parsing is �nding a representation that re�ects the meanings
of texts in a transparent way.

Semantic Content As noted by Abend and Rappoport (2017), good semantic representa-
tions must be able to encode a large variety of semantic content. This content includes, but is
not necessarily limited to:

1. Events (sometimes called frames, propositions or scenes), which include a predicate
(main relation, frame-evoking element), arguments (participants, core elements) and
secondary relations (modi�ers, non-core elements) (Abend and Rappoport, 2017).

2. Predicates, which are the main determinants of what events are about. Most predi-
cates are verbal, but some schemes also have nominal and adjectival predicates, e.g. by
de�ning relations based on the noun “president”. Several verbs may be assigned to the
same predicate; for example, FrameNet assigns the same ingestion predicate to both of
the verbs “eat” and “consume” (Ruppenhofer et al., 2006).

3. Arguments, which are usually distinguished between core and non-core. Core argu-
ments are conceptually necessary components of an event, while non-core arguments
introduce additional relations such as “time, place, manner, means and degree” (Rup-
penhofer et al., 2006).

4. Semantic roles, which are categories of arguments. Some approaches use di�erent
semantic roles for di�erent predicates. For example, FrameNet uses the semantic roles
ingestor and ingestible for the ingestion predicate (Ruppenhofer et al., 2006). Other ap-
proaches de�ne a closed set of abstract semantic roles, such as agent and patient (Kipper-
Schuler, 2005).

5. Discourse relations, which mark the relations between events. Some examples in-
clude succession (“after”), reason (“since”), juxtaposition (“while”) and conjunction (“and”)
(Prasad et al., 2008). Determining discourse relations is not always straightforward; for
example, “since” may be used in either a temporal (“I haven’t eaten since yesterday”) or
a causal (“I’m hungry since I haven’t eaten”) sense (or both). Proper understanding of
these relations is vital for correct temporal, causal and spatial reasoning.

6. Logical structure, which handles issues such as quanti�cation and negation (Abend
and Rappoport, 2017). For example, a sentence such as “�sh eat” implies universal quan-
ti�cation, ∀f.fish(f)→ eats(f) while “the �sh eats” implies existential quanti�cation,
∃f.fish(f) ∧ eats(f).

Event-Based Semantics Most modern schemes for semantic representation of text are
based on event semantics. These schemes are distinguished by the notion that predicates take
an implicit variable over events as an argument (Lasersohn, 2012). For example “the �sh eats
the worm” might be represented as

∃e.eats(e, fish, worm) (4.1)
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instead of the more traditional representation
eats(fish, worm)

The formulation presented in (4.1) is usually referred to as a Davidsonian representation, after
Davidson (1967). The motivation for representing sentences in this way is that modi�ers may
be treated simply as additional conjuncts: e.g. “the �sh eats the worm at midnight” and “the
�sh eats the worm o� the seabed” may be expressed as

∃e.eats(e, fish, worm) ∧ at(e,midnight) (4.2)
and

∃e.eats(e, fish, worm) ∧ off(e, seabed) (4.3)

respectively. This representation has multiple bene�ts: �rstly, it avoids the ambiguity that
arises from attempting to express (4.2) and (4.3) as eats(e, fish, worm,midnight) and eats(e,
fish, worm, seabed) respectively — when clearly midnight and seabed are very di�erent
kinds of participants; secondly, it handles an arbitrary number of adjuncts in a straightforward
manner; and �nally, it naturally captures that (4.2) and (4.3) both entail (4.1).
The neo-Davidsonian approach (Parsons, 1990) further extends this idea by expressing the core
arguments of the verb in a similar way: “the �sh eats the worm” becomes

∃e.eats(e) ∧ agent(e, fish) ∧ patient(e, worm) (4.4)
There are two things to note here. The �rst is that the sentence “the �sh eats” is now repre-
sented as ∃e.eats(e) ∧ agent(e, fish) instead of ∃ex.eats(e, fish, x). The latter implies that
there is something that is eaten, whilst the former does not. The implication happens to be
valid here, but this is not always the case. The second thing to note is that the predicates agent
and patient in (4.4) express thematic roles, abstracting away from grammatical roles such as
the subject or object of the sentence. Thus the passive construction “the worm is eaten by
the �sh” should share the representation of (4.4) — as we will see, this is a particularly useful
quality of the approach.

Abstract Meaning Representation In recent years, many concrete schemes for seman-
tic representation have been proposed for use in broad-coverage semantic parsers. One of
the most widely adopted of these schemes is the Abstract Meaning Representation (AMR)
(Banarescu et al., 2013), which implements a neo-Davidsonian semantics.
AMRs are directed acyclic rooted graphs, specifying the main events of a sentence using
PropBank frames, and their arguments. Core arguments are assigned values 0 through 5,
corresponding to agents, patients, instruments, starting points, ending points and modi�ers
respectively . Additionally, a number of general semantic relations are provided such as age,
bene�ciary, cause, compared to, degree, example, etc.
Example 4.2. (Abstract meaning representation) The AMR for “The boy wants to go.” is
shown in Figure 4.5.

Notably, AMR does not depend on syntactic structure, and in fact many approaches to gen-
erating AMRs do not make use of any syntactic features. The authors note that “he described
her as a genius”, “his description of her: genius” and “she was a genius, according to his
description” should all be assigned the same AMR.
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want-01

boy

ARG0 go-01

ARG1

ARG0

Figure 4.5: AMR for “The boy wants to go.”

4.1.3.2 Lexical Semantics

Any compositional approach to determining the semantics of text must �rst address the issue
of lexical semantics: how to represent and determine the semantics of individual words.

WordNet By far the most widely known and used resource for lexical information is Word-
Net (Miller, 1995). WordNet is a large lexical database of English. Its key contribution is to
group English nouns, verbs, adjectives and adverbs into synsets, each of which expresses a
distinct concept. It is important to note that the relationship between words and synsets is
a many-to-many one: clearly one synset may contain multiple words, but the reverse is also
true: one word can have multiple senses — this property is called polysemy. For example,
the single synset comfort.v.01 (“give moral or emotional strength to”) consists of the lem-
mas comfort, soothe, console and solace, but the lemma comfort can also be assigned the sense
comfort.v.02 (“lessen pain or discomfort; alleviate”).
In addition to assigning synsets, WordNet describes a small number of “conceptual relations”
between synsets. These include:

1. Hypernymy and hyponymy. All verbs and nouns in WordNet are arranged in a hier-
archy based on generality. A hyponym is a word whose semantic �eld is included in that
of another word (i.e. it is more speci�c), whilst a hypernym is the reverse (more gen-
eral). As an example, a hyponym of eat (consume food) might be devour (eat greedily)
whilst the verb consume would be an example of a hypernym.

2. Antonymy. Adjectives are organised very di�erently to verbs and nouns. Instead of
a hierarchical relationship, they are organised solely based on antonymy. Similar ad-
jectives can be determined only by �nding antonyms of antonyms, but we note that
this process can result in many spurious matches. For example, using this method, the
adjective tasty is deemed to be similar to acid-tasting!

3. Entailment. For verbs, WordNet also de�nes an entailment (implication) relationship:
for example the verb buy entails pay.

4. Meronymy. For nouns, WordNet also de�nes a meronymy (is part of) relationship: for
example handle is a meronym of suitcase.
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5. Cross-POS relations. Finally, WordNet de�nes several cross-POS relations, mainly
consisting of morphosemantic links that hold among semantically similar words sharing
a stem with the same meaning (for example between the noun eater and the verb eat),
although we �nd these are rarely useful since the relationship between these words is
not usually speci�ed.

Word Sense Disambiguation The issue of polysemy (one word being able to take multiple
senses) gives rise to the problem of word sense disambiguation (WSD): how to determine a
word’s sense (usually WordNet synset) given its context (Jurafsky and Martin, 2009). There
are various approaches to WSD, but current state of the art approaches use machine learning
techniques to �ne-tune pre-trained language models. WSD is, however, a di�cult problem for
machine learning approaches, particularly as it is extremely di�cult to �nd enough labelled
training data to cover each of WordNet’s 117 000 synsets su�ciently. Indeed, even the current
state of the art models, which use tricks such as sense compression to partly alleviate this issue
(Vial et al., 2019), achieve an accuracy of 77.8% on SensEval 3 dataset. Meanwhile, simple
heuristics alone, such as choosing the most common sense, achieve 66% accuracy on the same
dataset.

4.1.3.3 Compositional Semantics

Compositional approaches to semantics are approaches which conform to the principle of
compositionality, which states that the meaning of a phrase can be derived through some
combination of the meanings of its sub-phrases (and thus eventually its individual words).
This implies a close relationship between semantics and syntactic structure.

Semantic Parsing with CCG A common approach to compositional semantic parsing is
to use CCGs (Bos, 2008; Chabierski et al., 2017; Reddy, 2017). In CCG, each word is assigned
a category, which de�nes the expected types and positions of its inputs. For example, the
determiner “the” might be assigned the category NP/N , meaning that when it precedes a
noun, it forms a noun phrase. A set of combinatory rules can then be used to parse a sentence.
For example, forward application (>) can be used to combine two constituents of type X/Y
and Y to produce a single constituent of type X . An example of a full derivation is provided
below:

Fish

NP

eat

(S\NP )/NP
worms

NP

S\NP
>

S
<

The main bene�t of using CCG for semantic parsing is that it provides a transparent and well-
studied syntax-semantics interface: it is possible to obtain the semantic properties of a phrase
from its syntactic properties. To demonstrate this, let us return to our example:

Fish

λx.fish(x)

eat

λfge.∃xy.eat(e, x, y) ∧ f(y) ∧ g(x)
worms

λx.worms(x)

λge.∃xy.eat(e, x, y) ∧ worms(y) ∧ g(x)
>

λe.∃xy.eat(e, x, y) ∧ worms(y) ∧ fish(x)
<
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We note that lexical semantics, in terms of lambda calculus expressions, may be determined
from a word’s category. For example, a word with an atomic category such as �sh (NP), is
assigned a function with a single argument, λx.fish(x).
Combinatory rules are treated similarly: for example, the forward application rule corre-
sponds to functional application in lambda calculus (Reddy, 2017):

X/Y : f Y : g =⇒ > X : f(g)

In our example, eat and worms are combined as shown to produce

λfge. (∃xy.eat(e, x, y) ∧ f(y) ∧ g(x)) (λx.worms(x))
→β λge.∃xy.eat(e, x, y) ∧ worms(y) ∧ g(x)

The main drawback of using CCG for semantic parsing is the di�culty of accurate supertag-
ging (the automated assignment of lexical categories), and its inability to cope with supertag-
ging errors and ungrammaticality, which may make it impossible to �nd a valid derivation
for a sentence (Reddy, 2017).

Semantic Parsing with HPSG An alternative grammar-based approach to semantic pars-
ing is to use HPSG. HPSG has an integrated view of grammar, which expresses phonology,
syntax and semantics in the same structure: feature structures are simply extended to encode
this additional information (Muller and Sag, 2007). As before, this means that we rely heavily
on the lexicon. Returning to our lexical entry for eats, we might encode the semantic content
(CONT) as follows:

word

CAT


HEAD


verb
VFORM �n

AGR
[

NUM sg
PER 3

]


SUBCAT
〈
NP [nom] 1 , NP [acc] 2

〉


CONT

 eat

AGENT 1

PATIENT 2




expressing that the nominative (subject) argument is the AGENT (eater) and the accusative
(direct object) argument is the PATIENT (eaten) of the verb.
Compositionality of semantics is encoded by extending the grammatical constraints in a sim-
ilar fashion. There are two key principles that guide HPSG’s treatment of semantics (Sag and
Wasow, 1999), both of which heavily in�uence our own treatment of semantics. Informally,
these are:

1. Semantic inheritance. In headed phrases, the semantics are based on the head daugh-
ter’s semantics.

2. Semantic compositionality. The context (entities and situation) described by a phrase
corresponds to the sum of all the contexts described by all of its daughters.
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Semantic Parsing fromDependency Structures Finally, let us discuss the problem of de-
termining semantics from dependency structures alone. The closeness between dependency
structures and semantics is well-known and has motivated the use of dependency parses as a
substitute for full semantic parses in a variety of upstream tasks, such as co-reference reso-
lution and question answering. However it is only recently that there has been any work on
developing a semantics interface for dependency syntax. Reddy et al. (2016) propose a seman-
tic parsing approach that uses lambda calculus to derive logical forms from dependency trees.
The approach di�ers from CCG-based semantic parsers in two main ways: �rstly, all con-
stituents have the same type; and secondly, there is no distinction between core and non-core
arguments. It consists of three main stages:

1. Binarisation. The dependency structure is mapped to a binary structure which indi-
cates the order of semantic composition. For example, the sentence “the �sh ate the
worm” would be assigned the structure “(nsubj (dobj ate (det worm the)) (det �sh the))”.

2. Substitution. Each node in the binary structure is substituted with a lambda expression
encoding its semantics. For example, the word “worm” would be assigned the expression
λx.worm(xa) and “ate” would be assigned λx.ate(xe). The subscripts ·a and ·a denote
the type Ind and Event respectively, whereas x denotes a paired variable (xa, xe). To
simplify the type system, every constituent is assigned a type of Ind×Event→ Bool.
Expressions for dependency labels tend to take one of four forms:

(a) Copy. λfgx.∃y.f(x)∧ g(y)∧ rel(x, y). This kind of expression assigns a relation
between two child nodes. For example, the dobj label in “(dobj ate (det worm the))”
will result in a copy expression of the form λfgx.∃y.f(x) ∧ g(y) ∧ arg2(xe, ya).

(b) Invert. λfgx.∃y.f(x) ∧ g(y) ∧ reli(y, x). This expression is used when the stan-
dard dependency direction is reversed — e.g. for the amod label in “(amod horse
running)”, where the event follows the individual.

(c) Merge. λfgx.f(x) ∧ g(x). This expression is used to merge two sub-expressions
without introducing any relations — e.g. for the amod label in “(amod horse beau-
tiful)”, where there is no event.

(d) Head. λfgx.f(x). This expression simply returns the semantics of the parent
expression. For example, it would be used to replace a punctuation label, “punct”.

3. Composition. Finally, the logical form is computed by beta reduction. For example
“(dobj ate (det worm the))” would result in λx.∃z.ate(xe) ∧ worm(za) ∧ arg2(xe, za).
This process continues up the tree, resulting in a �nal logical form of λx.∃yz.ate(xe)∧
fish(ya) ∧ worm(za) ∧ arg1(xe, ya) ∧ arg2(xe, za) for the sentence “The �sh ate the
worm.”.

Such an approach bene�ts from the pace of improvement in dependency parsing, as well as
the simplicity of having nodes of a single type. In particular, the approach proposed by Reddy
et al. (2016) was found to be extremely robust, with an 80% reduction in parser errors on the
WebQuestions dataset, compared to a CCG-based approach.
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4.2 Answer Set Programming

Answer set programming (ASP) is a form of declarative programming, primarily oriented
towards di�cult (NP-hard) search problems (Lifschitz, 2008). ASP programs consist of Prolog-
like rules, but their semantics are based on the stable model semantics of logic programming
(Gelfond and Lifschitz, 1988).

4.2.1 Answer Set Programs

4.2.1.1 Syntax of Answer Set Programs

The syntax of ASP is very similar to that of Prolog, with a few small modi�cations. Speci�cally,
an ASP program consists of a set of rules:

De�nition 4.2. (ASP rule) An ASP rule r has the form (Gebser et al., 2012):

H ← B1, . . . , Bm, not Bm+1, . . . , not Bn.

We call
head(r) = H

the head of the rule. The head may be empty (⊥), an atom a, or an aggregate of the form
lb{l1, . . . , lk}ub, where each li is a literal (an atom, or the negation by failure of an atom), and
lb and ub are integers1. If the head is empty, the rule is called a constraint. If the head is an
aggregate, the rule is called a choice rule.
We call

body(r) = {B1, . . . , Bm, not Bm+1, . . . , not Bn}

the body of the rule. Each body component Bi is either an atom or an aggregate. Also note
that the set of body components may be empty; in this case r is called a fact.

4.2.1.2 The Stable Model Semantics

We now provide the de�nition of a stable model (or answer set), which provides a semantics
for grounded ASP programs (ASP programs without variables) (Gelfond and Lifschitz, 1988).
The �rst step to determining the stable models or answer sets of a program with variables is
to eliminate the variables through a process of relevant grounding. This is a simple (although
possibly in�nite) process which �nds all possibly useful groundings of the rules in a program.
In order to de�ne the stable models for a ground program, we �rst explain the concept of a
(minimal) Herbrand model (again, using de�nitions based on those in (Gebser et al., 2012)):

De�nition 4.3. (Herbrand base) The Herbrand baseA of a program P is the set of all ground
atoms which can be made from predicates, functions and constants appearing in P .

1In reality, the head may be a disjunction over atoms, and aggregates may be more complex than what we
present here. We omit these other possibilities for brevity.
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De�nition 4.4. (Herbrand interpretation) A Herbrand interpretation X of a program P as-
signs a truth value to every ground atom in the Herbrand base of P . Usually it is expressed
as a set X ⊆ A of atoms speci�ed to be true.

De�nition 4.5. (Satisfaction) A rule r is satis�ed by a Herbrand interpretation X (written
X � r) if X � head(r) or X 6� body(r). The � relation is de�ned as follows:

1. X � a if a ∈ X .

2. X � not B if X 6� B (negation as failure).

3. X � lb {l1, . . . , lk}ub if lb ≤ |{li|1 ≤ i ≤ k,X � li}| ≤ ub.

4. X � body(r) if X � li for all li ∈ body(r).

De�nition 4.6. (Herbrand model) An interpretation X is a Herbrand model of P if X � r for
every rule r ∈ P . A Herbrand model M of a program P is minimal if there is no model M ′

of P such that M ′ ⊂M .
Note that if P is a de�nite logic program (contains no negation as failure), then there exists a
unique minimal model, called the least Herbrand model, M (P ).

A stable model of a program is then de�ned as a minimal model of its own reduct:

De�nition 4.7. (Reduct) The reduct of a ground ASP program P with respect to an interpre-
tation X , PX is constructed from every rule r ∈ P whose body is satis�ed by X , by:

1. Removing any negation as failure of body conditions whose atoms are not in X .

2. Removing any remaining rules which still have negation as failure conditions.

3. Replacing the rule’s head, if it is an aggregate, with individual atoms belonging to X .

Note that PX is a de�nite logic program, and so has a least Herbrand model.

De�nition 4.8. (Stable model)X is a stable model ofP ifM(PX) = X (Gelfond and Lifschitz,
1988).

We will use the terms stable model and answer set interchangeably. Answer sets de�ne the
semantics of ASP programs. Speci�cally, an answer set program P is said to be satis�able if it
has at least one stable model, and unsatis�able otherwise. Since a single answer set program
may have multiple answer sets, there are two di�erent kinds of semantics for whether an atom
is entailed by a given program:

De�nition 4.9. (Brave and cautious entailment) A program P bravely entails an atom a (writ-
ten P �b a) if a is true in at least one answer set of P . A program P cautiously entails an atom
a (written P �c a) if a is true in every answer set of P .
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Example 4.3. (Answer sets and entailment) Consider the program:

P =


a← not b.
b← not a.

c.


This program has two answer sets: {a, c} and {b, c}. This can be veri�ed by considering the
reduct of P with respect to each answer set. For example,

M(P {a,c}) =M(

{
a.
c.

}
) = {a, c}

Since a is true in at least one answer set, P �b a, but since it is not true in every answer set
P 6�c a. c is true in every answer set and so P �b c and P �c c.

4.2.2 Answer Set Grammars

Law et al. (2019) introduce answer set grammars (ASGs), which are a class of context sensitive
grammars. These grammars are formed from context-free production rules with ASP anno-
tations. These ASP annotations are able to express context-sensitive constraints, by means of
annotated atoms which refer to atoms in a speci�c child of a node in the parse tree. Formally,
an ASG can be de�ned as follows:

De�nition 4.10. (Answer set grammar) An answer set grammar (Law et al., 2019)G is a tuple
(GN , GT , GPR, GS) where:

• GN is a set of non-terminal nodes, corresponding to symbols that are replaced by termi-
nal symbols according to the production rules.

• GT is a set of terminal nodes, disjoint from GN , corresponding to symbols from the
grammar’s alphabet.

• GPR is a set of annotated production rules of the form n0 → n1 . . . nk P where n0 is a
non-terminal node, n1 through nk are either non-terminal or terminal nodes, and P is
an annotated ASP program, with integer annotations in the range [1, k].

• GS is a distinguished non-terminal node called the start node.

To explain the concept of annotated atoms, consider the following example from (Law et al.,
2019):

Example 4.4. (Answer set grammar) The context-sensitive language anbncn can be de�ned
by the ASG:
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start -> as bs cs {
:- size(X)@1, not size(X)@2.
:- size(X)@1, not size(X)@3.

}
as -> "a" as { size(X+1) :- size(X)@2. }
as -> { size (0). }
bs -> "b" bs { size(X+1) :- size(X)@2. }
bs -> { size (0). }
cs -> "c" cs { size(X+1) :- size(X)@2. }
cs -> { size (0). }

In this example, each of the non-terminal symbols as, bs and cs can be produced by two rules.
The �rst rule produces each non-terminal symbol from an empty set of symbols, producing
a node with just the fact size(0). The second rule is more complex. size(X)@2 means that
the size of the string represented by the second child is X. So this rule adds a terminal symbol
“a”, “b” or “c” to the front of the string represented by the second child, and increments its
size by 1.
The start node’s ASP program encodes two constraints, namely that the number of a’s (size
of the �rst child) must not be di�erent to the number of b’s (size of the second child) and
that the number a’s (size of the �rst child) must not be di�erent to the number of c’s (size
of the third child). A string is accepted by the grammar as long as it produces a parse tree that
satis�es these two constraints. As such, this grammar accepts strings of the form anbncn. A
graphical representation of the accepted string “abc” is shown in Figure 4.6.
In general, an ASG accepts a string, if that string produces a parse tree with respect to the
grammar, whose annotated ASP programs are satis�able. Formally:

De�nition 4.11. (Acceptance) A string of terminal nodes s is accepted by an answer set gram-
mar (Law et al., 2019) G if there exists a parse tree T of G for s such that G [T ] is satis�able,
where

• G[T ] is the program {rule(n)@trace(n)|n ∈ T}.

• rule(n) is the annotated production rule of node n in the tree T .

• trace(n) is the parse trace of node n in the tree T . The trace of the root is the empty
list [], the ith child of the root is [i], the jth child of the ith child of the root is [i, j] and
so on.

• For a production rule r = n0 → n1 . . . nk P and trace t, r@t is constructed by:

– Replacing all annotated atoms a@i in P with the atom a@(t++[i]), and
– Replacing all unannotated atoms in P with the atom a@t.

Example 4.5. (Acceptance) Let G be the grammar shown in Example 4.4 and T be the parse
tree shown in Figure 4.6. Then, by translation each non-terminal node in T according De�ni-
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start
:- size(X)@1, not size(X)@2.
:- size(X)@ 1, not size(X)@3.

size(1)@1. size(1)@2. size(1)@3.

as
size(X+1) :- size(X)@2.

size(0)@2. size(1).

1

bs
size(X+1) :- size(X)@2.

size(0)@2. size(1).

2

cs
size(X+1) :- size(X)@2.

size(0)@2. size(1).

3

"a"

1

as

size(0).

size(0).

2

"b"

1

bs

size(0).

size(0).

2

"c"

1

cs

size(0).

size(0).

2

""

1

""

1

""

1

Figure 4.6: A graphical representation of the parse tree for the input “abc” using the grammar
de�ned in Example 4.4. Non-terminal nodes are shown as tables; terminal nodes are shown as
ellipses. For each non-terminal node, the �rst row gives the non-terminal symbol produced
by the node, the second row gives the annotated ASP program at the node, and the third row
gives the atoms which hold at the node.



tion 4.11 we have:

G[T ] =



← size(X)@[1], not size(X)@[2]. ← size(X)@[1], not size(X)@[3].
size(X + 1)@[1]← size(X)@[1, 2].
size(X + 1)@[2]← size(X)@[2, 2].
size(X + 1)@[3]← size(X)@[3, 2].

size(0)@[1, 2].
size(0)@[2, 2].
size(0)@[3, 2].


Now we note that, by treating each annotated atom as a distinct atom, the program G[T ] has
the single answer set:

AS(G[T ]) =

{
size(0)@[1, 2] size(0)@[2, 2] size(0)@[3, 2]
size(1)@[1] size(1)@[2] size(1)@[3]

}
Hence G[T ] is satis�able, and so the parse tree T is accepted by G.

4.3 Inductive Logic Programming

Inductive logic programming (ILP) is a sub�eld of machine learning which uses �rst-order
logic to represent hypotheses and data. In particular, it aims to �nd a hypothesis (a set of
rules) which covers a set of positive examples and does not cover any negative examples,
taking into account background knowledge (Muggleton, 1991).
Formally, given a language of possible hypotheses LH , a background theory B, a covers
relation specifying when an example is covered by a hypothesis (often taking into account
the background knowledge), and a set of positive and negative examples E = E+ ∪ E−, the
goal is to �nd a hypothesis H ∈ LH such that for all e ∈ E+, covers(B,H, e) = true and
for all e ∈ E−, covers(B,H, e) = false (Raedt, 2017). This condition that all examples are
correctly classi�ed is sometimes weakened in order to handle noisy examples.
The most common setting for ILP is learning from entailment, where examples are ground
facts, the covers relationship is de�ned such that covers(B,H, e) = true if and only if B ∪
H � e, and typically the hypotheses are de�nite clauses (Raedt, 2017). However, in this section
we will focus on a more modern paradigm, called learning from (partial) answer sets (Law et al.,
2014), which is an approach that integrates notions of brave and cautious semantics and �nds
hypotheses that are ASP programs.

4.3.1 Inductive Learning of Answer Set Programs

In this project, we use ILASP, a system developed by Law et al. (2015) which solves such
learning from (partial) answer sets tasks.
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4.3.1.1 Learning from Partial Answer Sets

In the learning from answer sets (ILPLAS) paradigm (Law et al., 2014), examples are no longer
ground facts, but instead partial interpretations.

De�nition 4.12. (Partial interpretation) A partial interpretation e is a pair of sets of ground
atoms (einc, eexc) called the inclusions and exclusions respectively. A set of ground atoms X is
said to extend the partial interpretation (einc, eexc) if and only if einc ⊆ X and eexc ∩ I = ∅.

The goal of a LAS task is to �nd an answer set program, that when combined with some
background knowledge, has answer sets that extend all the positive examples, but no answer
set which extends any negative example. Formally:

De�nition 4.13. (Learning from answer sets) A learning from answer sets task T is a tuple
(B, SM , E

+, E−) where B is an ASP program called the background knowledge, SM is the
hypothesis space de�ned by some language bias M and E+ and E− are positive and negative
examples respectively.
A hypothesis H is said to be an inductive solution of T if and only if:

1. H ⊆ SM .

2. For all e ∈ E+, there exists an answer set A of B ∪H such that A extends e.

3. For all e ∈ E−, there does not exist any answer set A of B ∪H such that A extends e.

Note that the ILPLAS task can express both brave induction tasks (by use of a single positive
example) and cautious induction tasks (using negative examples).
Also note that in order to help make the search process tractable, the search space for the
inductive hypothesis is constrained to SM . This is achieved by providing a language bias
M speci�ed by mode declarations. For example, a modeh declaration declares the kinds of
ground atoms that may appear in the head of a learned rule, and amodeb declaration declares
the kinds of ground atoms that may occur in the body of a learned rule.

Example 4.6. (Mode declarations) Given the mode declarations:

M =

{
modeh(p)
modeb(q)

}
the hypothesis space would be limited to:

SM =

{
← q. ← not q.

p. p← q. p← not q.

}
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4.3.1.2 Learning from Context-Dependent Examples

In traditional ILP approaches, all examples must be explained by a single hypothesis and
shared background knowledge. However, sometimes examples may be context dependent;
i.e. they should have slightly di�erent background knowledge. An extension to the ILPLAS
task, called context-dependent learning from answer sets ILP context

LAS (Law et al., 2016) allows
the use of contexts to structure the background knowledge in this way. This increases the
�exibility and often the performance of the learning task.
In context dependent learning from answer sets, examples become context-dependent partial
interpretations (CDPIs):

De�nition 4.14. (Context-dependent partial interpretation) A context-dependent partial in-
terpretation (Law et al., 2016) is a pair e = (epi, ectx) where epi is a partial interpretation and
ectx is an ASP program. An answer set X of P ∪ ectx to be an accepting answer set of e with
respect to P if and only if X extends epi.
The ILP context

LAS learning task itself is de�ned in the same way as the ILPLAS , except answer
sets must now be accepting answer sets of each example e, instead of extending each example
e as in De�nition 4.13.

4.3.2 Answer Set Grammar Induction

Using the ILASP system, Law et al. (2019) demonstrate an approach for learning answer set
grammars. In particular, they propose a framework that takes as an input an ASGG, a hypoth-
esis space SM , and two sets of strings E+ and E− called the positive and negative examples
respectively, and learns an ASG G′ (with the same context-free grammar as G) such that G′
accepts every string in E+ and none from E−.
Informally, this approach is intended to learn the semantic constraints of a language (in the
form of ASP annotations), given the syntactical form of the language (de�ned by the CFG of
the existing grammar G) and a set of semantically valid and invalid examples (E+ and E−
respectively). This is done by translating the ASG learning task into an equivalent ILP context

LAS

task, as described in De�nition 4.15.
Let us note that the representation of an ASG learning task is slightly di�erent to the ILP
frameworks we have seen so far. Firstly, its examples are strings instead of partial inter-
pretations. Another important modi�cation is that the mode declarations which form the
hypothesis space SM have an additional parameter called the scope. The scope speci�es the
production rules to which the mode declaration applies. For example, the mode declaration
#modeb(p, [1, 2]) is used to enforce that the atom p may appear in the body of rules learned
in the two annotated ASP programs belonging to the �rst two production rules for an ASG.
A limit is also applied to the depth of the parse tree in order to make the task tractable.

De�nition 4.15. (ASG learning task) An ASG learning task (Law et al., 2019) 〈G,SM , E+, E−〉
is equivalent to the ILP context

LAS task
〈
B, SLASM , E+

LAS, E
−
LAS

〉
where:

• Each production rule PR in G takes the form n→ n1 . . . nk P and has its own unique
ID PRid. The �rst production rule is assigned the ID 1, the second 2, and so on.
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• Let RX (PRid) be the rule formed from R by:

– Replacing each annotated atom a@[t1, . . . , tn] with the atom a@X ++[t1, . . . , tn]
(and treating each annotated atom as a distinct atom, as before).

– Adding the atom node_rule(PRid, X) to the body of the rule (this is used to de-
termine which production rule is used at each node in the parse tree).

• B is then de�ned to be the set of rules RX (PRid) for each ASP rule R ∈ P in each
production rule PR in G.

• SLASM is de�ned similarly to be the set {RX (PRid) |〈PRid, R〉 ∈ SM }. Note that here
each PRid de�nes the scope for each rule R in the hypothesis space.

• E+
LAS contains one CDPI 〈〈∅, ∅〉 , C〉 for each string s ∈ E+. Given a set of possible

parse trees PT1, . . . , PTm for s, then C ensures that at least one of these parse trees is
accepted. Speci�cally, C is formed of the rules:

– 1 {pt1, . . . , ptm} 1 (chooses one parse tree).
– node_rule(rule(n)id, trace(n)) ← pti for each i ∈ [1..m] and for each node n ∈
PTi (ensures satis�ability of the chosen parse tree).

• E−LAS is a set of CDPIs 〈〈∅, ∅〉 , {node_rule(rule(n)id, trace(n)) |n ∈ PT }〉 for each
parse tree PT for each string in E−, thus ensuring that no such parse tree is accepted.

Example 4.7. (ASG learning task meta-representation) Let G be the grammar shown in Ex-
ample 4.4. Then by translating each production rule according to De�nition 4.15 we get:

B =



← size(X)@Y ++[1], not size(X)@Y ++[2], node_rule(1, Y ).
← size(X)@Y ++[1], not size(X)@Y ++[3], node_rule(1, Y ).
size(X + 1)@Y ← size(X)@Y ++[2], node_rule(2, Y ).

size(0)@Y ← node_rule(3, Y ).
size(X + 1)@Y ← size(X)@Y ++[2], node_rule(4, Y ).

size(0)@Y ← node_rule(5, Y ).
size(X + 1)@Y ← size(X)@Y ++[2], node_rule(6, Y ).

size(0)@Y ← node_rule(7, Y ).


Now suppose the string “abc” is provided as a positive example. “abc” has a single parse tree,
which is the one shown in Figure 4.6. Hence it would produce the context:

C =



1{pt1}1.
node_rule(1, [])← pt1.
node_rule(2, [1])← pt1.
node_rule(3, [1, 2])← pt1.
node_rule(4, [2])← pt1.
node_rule(5, [2, 2])← pt1.
node_rule(6, [3])← pt1.
node_rule(7, [3, 2])← pt1.


Note how B ∪ C’s single answer set is identical to G [T ]’s answer set from Example 4.5.
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Chapter 5

Representing Natural Language

In this chapter, we discuss our approach to translating a set of natural language sentences into
a base answer set grammar, which is capable of parsing and determining the semantics of any
sentence with the same linguistic structures. We �rstly describe and motivate the design of
a formal graph-based representation for the semantics of natural language. We then present
an automated approach to constructing these graphs using existing deep-learning-based NLP
techniques to automatically generate base answer set grammars that are able to produce them.

Qualities of a Good Representation The primary focus of this chapter is to �nd an ex-
pressive formal representation for natural language texts that can be automatically generated.
Bearing in mind that we intend to use the learning from answer sets framework to learn com-
monsense rules related to the texts, a good representation should have the following qualities:

1. Structured. Since our learning method is logic-based, it is necessary to de�ne some
predicate structure.

2. Semantics-based. Since we want our results to be explainable, we must ensure that
our representation is adequately close to the text’s semantics. Otherwise, explanations
are likely to be both shallow and di�cult to interpret.

3. Has canonical forms. Furthermore, it is desirable that sentences that have the same
semantics have the same representation, even if their syntax di�ers. This concept is key
to our logic-based learning approach: in order for a logical rule to generalise to similar
examples, we must be able to specify the similar part of those examples, and as such
they need to have the same logical representation.

4. Unambiguous. Words and phrases can be ambiguous: that is, they have di�erent
meanings according to their context. Our representation should not introduce any more
ambiguities than those that exist in the original text. Ambiguities make learning much
harder, as the learner will be required to resolve them in addition to learning the desired
knowledge.

5. Forms small hypothesis spaces. A �nal challenge is that of making sure that the
representation is well-suited to automated approaches for generating hypothesis spaces
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for learning. In particular, we want to minimise the number of literals, variables and
constants generally necessary to explain a solution. This prescribes that we use a small
number of general predicates, minimise the need for variables to be shared between
predicates, and minimise the number of constants in our representation.

We note that the direct outputs of the most common existing NLP processing techniques are
not well-suited to logic-based learning approaches. Most state-of-the-art approaches, while
generally able to capture some of the semantics of a text, are based on vector embeddings and
thus fall at the �rst hurdle: they do not have any clear predicate structure. More traditional
approaches, such as parsing, o�er the structure we require, but their results tend to be much
more distanced from the semantics of the text.

5.1 Knowledge Graphs

We propose a graph-based representation scheme, in which each text is represented by what
we will call a knowledge graph. This graphical structure is in�uenced both by previous work
on the WSC (Schüller, 2014; Sharma, 2019) and popular representations for broad-coverage
semantic parsing (Banarescu et al., 2013), however we make signi�cant changes, both to im-
prove the ease of its automatic construction and ease of use for inductive logic programming.
These changes largely build upon previous work done by Reddy et al. (2016) and Chabierski
et al. (2017) respectively.

Predicate Structure We propose a predicate structure which describes an acyclic, directed
graph representation for a sentence.

Example 5.1. (Predicate structure) The sentence “Jim yelled at Kevin because he was so up-
set.” would be mapped to the following logical structure

event(e1, yell, n1)

∧event(e2, upset, n3)
∧nominal(n1, person)
∧nominal(n2, person)
∧nominal(n3, he)

∧modifier(m1, at, e1, n2)

∧modifier(m2, because, e1, e2)

∧modifier(m3, so, e2)

We call the �rst argument of each literal the identi�er of that literal, the second its lemma and
the rest its core arguments.

This approach closely resembles the classical Davidsonian approach to event semantics, but
similarly to Chabierski et al. (2017), we signi�cantly reduce the number of predicates in our
representation by making the lemma an argument of each literal, rather than the predicate
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name, which instead corresponds to one of a small number of semantic categories (i.e. we
write nominal(n1, person) rather than person(n1)). Our representation di�ers from the
Chabierski et al. (2017) approach in both the number and kinds of categories. We use just
three predicates: events capture the main verbal or adjectival meaning of a phrase, nominals
are used for core arguments (i.e. generally corresponding to noun phrases), and modi�ers are
used both for non-core arguments (such as prepositional modi�ers) and for linking events
together (i.e. discourse connectives).
Each event has up to four core arguments. In order, these are the subject, direct object, indirect
object, and what we refer to as the “control argument”. The control argument is used to handle
control verbs such as tried in “Paul tried to call George,” which we represent as1

event(e1, try, paul, e2) ∧ event(e2, call, paul, george)
In our representation, the �rst three core arguments must be nominals, whilst the last, where
present, must be an event.
Each modi�er has either one or two core arguments, which may be of any type. The �rst
is the event/nominal/modi�er being modi�ed, and the second, where present, is the object of
the modi�er.
Nominals make up the most straightforward category as they do not have core arguments,
just an identi�er and a lemma.

Reasoning behind our Predicate Structure This design is signi�cantly in�uenced by the
need to make the hypotheses generated by a learning approach as simple as possible. The
implementation of a Davidsonian semantics rather than a neo-Davidsonian one means that
in many cases, we generate rules with fewer literals and variables. For example the knowledge
that “the person who is upset is the person who yells” could be expressed simply as

same(N1, N2)← event(_, yell, N1), event(_, upset,N2)

rather than
same(N1, N2)← event(E1, yell), event(E2, upset), agent(E1, N1), agent(E2, N2).

Meanwhile, the advantages of making the lemma an argument rather than a predicate name
are twofold. Firstly, this representation is more expressive since the lemma may be replaced
by a variable. This allows us to express, for example, knowledge such as “a person hires
somebody to do something for them”
same(N1, N2)← event(_, hire,N1, _, E1), event(E1, _ , _),modifier(_, for, E1, N2).

which is only possible as the boxed anonymous variable allows us to refer to any event. Sec-
ondly, this change makes the de�nition of the hypothesis space more straight forward by
adding an additional layer of abstraction through use of constants. If, for example, we wish
to allow some adjective to be modi�ed by either “less” or “more”, rather than requiring two
mode declarations less(var(m), var(e)) and more(var(m), var(e)), we can instead de�ne a
single mode declaration with an appropriate constant: modifier(var(m), const(c), var(e)).

1Note that in reality, it is necessary to add placeholder arguments in any unused slots so that core arguments
of the same kind are always in the position and can be matched, however we omit them here for brevity and
clarity. This means that the try event in “Paul tried to call George”, for example, would actually be represented
as event(e1, try, paul, null, null, e2).
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Jim yelled at Kevin because he was so upset .

yell

person

Subj

at

Mod

person

Obj

because

Mod

upset

Obj

he

Subj

so

Mod

Figure 5.1: Knowledge graph corresponding to Example 5.1. We represent events with ellipses,
nominals with rectangles, and modi�ers with hexagons.

Knowledge Graphs Knowledge graphs are simply graphical representations of the predi-
cate structure we have described so far.

Example 5.2. (Knowledge graph) The predicate structure of Example 5.1 corresponds to the
knowledge graph shown in Figure 5.1.
Each node in the knowledge graph corresponds to an identi�er in the logical representation,
and each outgoing edge from a node corresponds to a core argument of the literal with that
node’s identi�er. We represent events with ellipses, nominals with rectangles, and modi�ers
with hexagons.

5.2 Answer Set Grammars for Natural Language

In this project, we make use of answer set grammars to represent natural language. We pro-
pose that these answer set grammars are used to simultaneously perform a syntactic and
semantic parse of a text, generating both a phrase-structure parse tree and knowledge graph
structure respectively.
The motivation for this approach is threefold:

1. Syntax-mediated semantics. Firstly, any approach which uses a grammar-based ap-
proach to determine the semantics of a text bene�ts from intrinsic structural knowledge
of the text. Previous work (Reddy, 2017) has demonstrated that this structural knowl-
edge is useful for accurately determining the semantics of the text, due to the close
relationship between syntax and semantics. Additionally, it forces the semantics to be
encoded in a compositional way which can be easily understood by the user.
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2. ASP rules and constraints. Secondly, ASG-based approaches additionally bene�t
from being able to use ASP rules to express not only semantic composition, but also
constraints over both the syntax and semantics of texts accepted by the grammar. Im-
portantly, since the ASG itself encodes the compositionality of the semantics of the text,
these rules and constraints can be applied not only to the text as a whole, but also at
the phrase-level. In contrast to most existing constraint-based grammars used in lan-
guage processing, the computational foundation of ASGs, answer set programming, is
widely-used and well-supported by a wide range of sophisticated tooling. In particular,
inductive logic programming systems such as ILASP can be used to learn semantic rules
and constraints directly within the grammar, which is an idea that we explore in detail
in this report.

3. Reusability. Finally, and most importantly, we see the main bene�t of ASGs in natural
language processing as domain-speci�c semantic parsers. That is, since an ASG encodes
how to build up the semantics from individual words, we can reuse it to determine the
semantics of di�erent, previously unseen sentences, as long as the linguistic structures
of those sentences were considered when building the base ASG. This has an additional
bene�t when considering learning with answer set grammars. If a system such as ILASP
is used to extend an ASG with automatically learned knowledge or constraints, these
newly-learned rules or constraints can then be applied directly to any parseable sen-
tence, without the need to �rst run complex machine learning models to generate a
semantic parse.

To demonstrate our ASG-based formalism for natural language, and support the claim that it
can be used to build domain-speci�c semantic parsers, let us consider a very simple example
motivated by the bAbI tasks dataset.

Example 5.3. (ASG for natural language) A very simple answer set grammar capable of per-
forming a semantic parse of the pattern “{person} {went/travelled/moved} to the {location}.”
could take the form

% Grammar
start -> np vp "." {

event(ID , Lemma , Arg0) :- event(ID , Lemma)@2, nominal(Arg0 , _)@1.
nominal(ID, Lemma) :- nominal(ID , Lemma)@1.
modifier(ID , Lemma , Arg0 , Arg1) :- modifier(ID, Lemma , Arg0 , Arg1)@2.
nominal(ID, Lemma) :- nominal(ID , Lemma)@2.

}

np -> nnp {
nominal(ID, Lemma) :- nominal(ID , Lemma)@1.

}

vp -> vbd pp {
event(ID , Lemma) :- event(ID, Lemma)@1.
modifier(ID , Lemma , Arg0 , Arg1) :- modifier(ID, Lemma , Arg1)@2,

event(Arg0 , _)@1.
nominal(ID, Lemma) :- nominal(ID , Lemma)@2.

}
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pp -> to np {
modifier(ID , Lemma , Arg1) :- modifier(ID , Lemma)@1,

nominal(Arg1 , _)@2.
nominal(ID, Lemma) :- nominal(ID , Lemma)@2.

}

np -> dt nn {
nominal(ID, Lemma) :- nominal(ID , Lemma)@2.

}

% Lexicon
nnp -> "Mary" { nominal(mary , person ). }
nnp -> "John" { nominal(john , person ). }
nnp -> "Daniel" { nominal(daniel , person ). }

vbd -> "went" { event(went , go). }
vbd -> "travelled" { event(travelled , go). }
vbd -> "moved" { event(moved , go). }

to -> "to" { modifier(to , to). }
dt -> "the" { }

nn -> "bedroom" { nominal(bedroom , bedroom ). }
nn -> "garden" { nominal(garden , garden ). }
nn -> "kitchen" { nominal(kitchen , kitchen ). }
nn -> "office" { nominal(office , office ). }

The grammar rules encode how to compose the semantics of the words in the sentence. To
see this, let us consider the �rst production rule (start -> np vp “.”). Here, the �rst ASP
rule sets the agent of the event from the verb phrase (goes) to be the nominal from the noun
phrase which precedes it (the person who goes). The remaining three rules simply pass up
the semantics of the person, location and prepositional modi�er (goes to the location), which
are all �nalised at lower nodes in the parse tree by other rules. Let us also consider the cor-
respondences between our approach and the HPSG formalism: in every production rule, the
literal at the head of the �rst ASP rule comes from the head daughter — this literal gives the
actual meaning of each constituent, as per the semantic inheritance principle, and is the part
which is modi�ed by any dependents; the remaining ASP rules then encode the semantic com-
positionality principle, by combining all of the existing context from all of the constituent’s
children.
The lexicon encodes the semantics of each individual word. As we will see, our approach is
not really limited by the lexicon, since lexical entries are extremely straightforward to gener-
ate automatically, so unseen vocabulary is not a signi�cant issue for the approach.
We note that, as originally claimed, this grammar is capable of doing a semantic parse of any
sentence of the form “{person} {went/travelled/moved} to the {location}.” For example, “Mary
went to the bedroom.” produces the semantic representation

event(went, go,mary) ∧modifier(to, to, went, bedroom)

∧ nominal(mary, person) ∧ nominal(bedroom, bedroom)
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at the root node. As we will demonstrate in this report, this approach can be extended to
automatically handle much more di�cult patterns with large vocabularies and many complex
linguistic structures.

5.3 Automated Translation from Dependency Structures

We now detail an approach for generating knowledge graphs, using automatically-generated
answer set grammars to encode semantic composition.

Qualities of a Good Translation Approach We initially identi�ed four main require-
ments for the translation approach.

1. Grammatical compatibility. Since we intend to learn with ASGs, it is necessary to
construct a base CFG with enough semantic annotations to allow relevant semantic
constraints to be learned. Thus the ASG production rules need to encode both syntactic
and semantic composition, and the latter must therefore be linked cleanly to the former.

2. Domain-generality. Winograd Schemas use a large vocabulary and are not constrained
to any speci�c domain, thus our approach must be domain general.

3. Robustness. The WSC includes a very diverse set of linguistic constructions, some of
which are complex. For example negation, conjunction, relative clauses, passives, rais-
ing and control are all constructions that occur frequently in the WSC. Furthermore,
many of the examples that we �nd through automated approaches for knowledge hunt-
ing may actually be ungrammatical. It is important that our approach can handle all of
these complex and ungrammatical texts gracefully.

4. Accuracy. It is vital that the automatically generated graphs are very often correct.
Since we intend to use a logic-based learning approach, even small amounts of noise
in the �nal results can make knowledge contradictory, causing our learning tasks to
become unsatis�able and hence hindering our ability to learn anything.

Dependency-Guided Semantic Composition We settled on an approach that uses both
constituency and dependency structures, inspired by the HPSG formalism. The constituency
structure is used mostly to determine syntactic composition and generate the base CFG, and
so we will largely ignore it here. Meanwhile the dependency structure is largely used to
determine how to compose the semantics, and generate the knowledge graph structure itself.
This part of the approach is in�uenced by the previous work of Reddy et al. (2016), although
our �nal representation is very di�erent to theirs, and we use the ASG directly to encode the
composition of semantics, rather than using intermediate forms based on lambda calculus.
The motivation behind using the dependency structure is twofold. Firstly, its close relatedness
to the constituency structure (which we highlighted in Subsection 4.1.2.2) is a useful prop-
erty with regards to the goal of grammatical compatibility, since the constituency structure
is very easily expressed with a CFG. Secondly, there are many large dependency treebanks
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which have led to the development of highly robust and accurate parsers. State-of-the-art
dependency parsers achieve accuracies of over 96% for labelled dependencies, and over 97%
accuracy for unlabelled ones. Traditionally, the accuracy of alternatives, such as CCG pars-
ing, has somewhat lagged behind, presumably due to training data being less widely available.
Previous work (Reddy, 2017) has shown that this translates to dependency-based approaches
outperforming their CCG-based counterparts on the task of semantic parsing, particularly for
complex and ungrammatical texts.
Our dependency-guided approach consists of four stages:

1. Dependency parsing. We use existing machine learning models for tokenisation, lem-
matisation, POS-tagging, and constituency and dependency parsing. The exact choice
of models is discussed in Section 7.1.

2. Lexicon generation. A lexicon is generated which substitutes each token for a literal
which encodes the type and meaning of the token, as well as any other lexical features.

3. Grammar generation. A grammar is generated which substitutes each dependency
structure for a production rule with ASP annotations which compose the semantics of
its children.

4. Composition. The knowledge graph structure is generated by parsing the original text
with the answer set grammar. At each node in the parse tree, the set of atoms that hold
express the semantics of the phrase parented by the node. The atoms which hold at the
root node express the semantics of the full text.

Lexicon The �rst stage of our approach generates a lexical entry for each word in the origi-
nal text. Currently this is a simple process that uses the token’s POS tag and lemma to generate
a base literal of the correct type with no core arguments.

Example 5.4. (Lexical entry) The word “yelled” in the text “Jim yelled at Kevin because he
was so upset .” produces the lexical entry

vbd -> "yelled_1" {
event(yelled_1 , yell , null , null , null , null).

}

There are several things to note here.
The �rst is that the entry has the event type, which is deduced based on its POS tag being
VBD (verb, past tense). Each POS tag is associated with a type: verbs and adjectives create
events, nouns and pronouns create nominals, and most other tags, including adverbs, prepo-
sitions, subordinating conjunctions and coordinating conjunctions create modi�ers. Certain
tags, such as most punctuation tags, are ignored entirely.
The second is that the event’s identi�er is yelled_1. This is formed of the token name for
readability of the generated grammar, as well as the token’s index in the original sentence to
ensure that the same word does not receive the same identi�er when used in several positions.
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The third is that the second argument, yell, comes directly from the token’s lemma. To han-
dle proper nouns, where the lemma is unlikely to capture any useful semantic information, we
instead assign an NER class of person, organization or location. Tense, person, number,
mood, aspect etc. are currently all ignored. This allows us to match the meaning of words,
even when they are present in di�erent forms, which expands the amount of knowledge that
might be applicable to a certain problem. If this additional lexical information were to be
added to the lexicon, then it would be provided through additional arguments to ensure this
property is maintained. However, we found that such information is almost never useful for
the problems we choose to focus on.
Finally, we note that the event has four null core arguments. There are four arguments here
since, as discussed earlier, an event literal may have up to four core arguments. For a modi�er
there would be two, and for a nominal, none. These arguments contain a placeholder value
so that we can tell which ones have been assigned values. This property is useful thanks to a
linguistic principle named the theta criterion (Barany, 2017), which states that each thematic
role is assigned one and only one argument. Thus if a core argument has been assigned, we
know that it is the only such argument and that it can be treated as �nal. Further subcate-
gorisation information can easily be added by using a di�erent value for core arguments that
are never used, and/or additional literals to assert properties of certain arguments. For ex-
ample, a non-control verb which is monotransitive and hence never has an indirect object or
control argument may instead have an entry of the form event(ate_2, eat, null, null,
unused, unused). However in practice, we �nd that such information is neither useful nor
easy to determine accurately.
A nice property of our simple lexicon is that it is very straightforward to generate new entries:
minimally, just a POS tag and lemma is required. This enables us to handle unseen vocabulary
without too much di�culty.

Grammar Rules In our approach, grammar rules encode both syntactic and semantic com-
position.

Example 5.5. (Grammar rule) The nsubj (nominal subject) dependency between the event
“yelled” and the nominal “Jim” in the sentence “Jim yelled at Kevin because he was so upset
.” produces the grammar rule

s -> np vp {
event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, Lemma , null , Arg1 , Arg2 , ArgCtl)@2,
nominal_unused(Arg0 , _)@1.

nominal(ID, Lemma)
:- nominal_unused(ID, Lemma)@1.

...
}

Here, the �rst rule sets the previously unassigned subject of the verb phrase to be the nominal
produced by the noun phrase, while the second rule “uses up” the nominal argument. We mark
literals unused until they are either used up as an argument or they reach the root node (which
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may happen if the text is ungrammatical). This design enforces a second constraint imposed
by the theta criterion (Barany, 2017): namely that each argument is assigned to one and only
one thematic role.
The two ASP rules shown here are followed by rules to pass up any events, modi�ers and
nominals which have already been �nalised at nodes lower in the parse tree. This ensures
that the atoms which hold at the root node together form a conjunction that fully expresses
the semantics of the whole text.

Lexicalised Grammar Rules

Example 5.6. (Lexicalised grammar rule) An alternative formulation for the grammar rule
presented in Example 5.5, with a close resemblance to a rule of a lexicalised CFG, is

s -> np vp {
event(ID , yell , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, yell , null , Arg1 , Arg2 , ArgCtl)@2,
nominal_unused(Arg0 , person)@1.

nominal(ID, Lemma)
:- nominal_unused(ID , Lemma)@1.

...
}

where, in the �rst rule, we replace the variable Lemma with the constant yell and the anony-
mous variable with the constant person. The advantage of such an approach is that the
grammar is less likely to accept ungrammatical sentences or produce several incorrect parse
trees2. The second property is particularly useful since learning tasks are made considerably
simpler by having only a single parse tree, as each parse tree corresponds to a di�erent possi-
ble answer set in the learning task’s meta-representation. Clearly, the main drawback of this
lexicalised version is that the produced rule is a lot less general and so the produced ASG is
a lot less likely to be able to parse unseen texts. In particular, adding entries to the lexicon
would no longer be su�cient to handle unseen vocabulary: the grammar rules would also
need to be updated to encode which event-argument pairs are valid.

Automatic Generation of Grammar Rules The rules shown above are generated auto-
matically from the text’s dependency structure. This is done in three stages: for each con-
stituent we �rstly identify the dependencies which are present, then translate each of these
dependencies into a logical intermediate representation, and �nally combine the dependencies
to form the correct grammar rule.
At each constituent, we identify the head daughter and each dependent. The translation then
depends on the type of the head daughter, the type of the dependent node, and the dependency
label. The types of the head and dependent are checked against the label: for example, an

2In particular, note how lexicalised grammar rules automatically capture selectional restrictions — semantic
constraints on arguments that account for the implausibility of sentences such as “colourless green ideas sleep
furiously”.
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Dependent

Nominal
(NN, NNS, NNP, ...)

Event
(VBD, VBZ, JJ, ...)

Modi�er
(RB, IN, ...)

Ignored
(DT, TO, ...)

H
ea

d

Core
Event

nsubj (arg0)
nsubjpass
(arg1/arg2)
dobj (arg1)
iobj (arg2)

xcomp (argctl)
ccomp (argctl)
acomp (argctl)

Non-core
Event

pobj (prep)
tmod

pcomp (prep)
advcl (mark)

parataxis (next)
conj (cc/and)

neg
prep
mark
advmod

aux
cop

Nominal

pobj (prep)
poss (poss)

conj (cc/and)
nn

pcomp (prep)
amod (arg-of )
rcmod (arg-of )
infmod (arg-of )
partmod (arg-of )

neg
prep
num

det
predet

Table 5.1: The dependencies currently supported by our approach, grouped by the expected
types of their arguments, and their respective translations. arg0/1/2/ctl translations assign
values to the head’s respective core argument. arg-of translations are similar, however the
dependency direction is reversed. Other dependencies create modi�ers. Where a value is
given in brackets, that denotes the value of the modi�er node which connects the head to the
dependent. For dependencies without bracketed values, the value of the dependent itself is
the value of the modi�er.

nsubj (nominal subject) dependency expects that its head should always be an event and its
dependent should always be a nominal. This type check helps us to identify and resolve many
POS-tagging and parser errors.
Many dependencies such as nsubj are simple cases in which the knowledge graph exactly
mirrors the dependency structure, just with a di�erent label. However this is not always
the case: the direction of edges may need to be reversed (e.g. for an rcmod (relative clause)
dependency), additional nodes and/or edges not present in the dependency structure may
need to be added (e.g for a conj (conjunction) dependency), or the head node may need to
be switched in order to satisfy type constraints, which corresponds to shifting the position
of a node in the graph structure (e.g. for a mark (marker) dependency). Table 5.1 classi�es
each supported dependency according to the expected types of its head and dependent, and
the translation which is applied. We provide further details of the translations for some of the
more complex cases in Section 5.3.1.
One important feature of our approach is that we do not binarise our grammar like most sim-
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ilar approaches3. One result of this is that it is possible for one constituent to have multiple
dependencies. The �nal step therefore involves combining all dependencies of a constituent.
The most important thing to note is that the head daughter is responsible for the semantics of
the constituent, so the head daughter’s literal is always passed up directly. Then, we consider
all of the modi�cations that need to be made to the head, according to the identi�ed transla-
tions. How to combine the translation depends on whether they make changes to the same
literal, or di�erent ones, as demonstrated by the following examples.

Example 5.7. (Combining dependencies: non-core arguments) Consider the verb phrase con-
struction in the sentence “Jim (VP (VBD[head] yelled) (PP[prep] at Kevin) (SBAR[advcl] be-
cause he was so upset))”. Here both of the dependents are modi�ers, so each creates its own
rule as they do not need to change the head (the yell event).

vp -> vbd pp sbar {
modifier(ID , Lemma , Arg0 , Arg1)

:- modifier(ID, Lemma , Arg0 , null)@2 ,
event(Arg1 , _, _, _, _, _)@1.

modifier(ID , Lemma , Arg0 , Arg1)
:- modifier(ID, Lemma , Arg0 , null)@3 ,

event(Arg1 , _, _, _, _, _)@1.
...

}

Example 5.8. (Combining dependencies: core arguments) Consider the verb phrase construc-
tion in the sentence “Jane (VP (VBD[head] gave) (NP[iobj] Joan) (NP[dobj] candy))”. Here each
of the noun phrases sets one of the give event’s core arguments. Therefore the dependencies
must be combined to form a single rule.

vp -> vbd np np {
event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- modifier(ID, Lemma , Arg0 , null , null , ArgCtl)@1 ,
nominal_unused(Arg1 , _)@3,
nominal_unused(Arg2 , _)@2.

...
}

Composition Once the lexicon and grammar rules have been produced, a sentence’s knowl-
edge graph structure can be extracted simply by parsing the sentence and checking the atoms
which hold at the root. Figure 5.2 shows how the grammar rules compose the semantics for
our running example, “Jim yelled at Kevin because he was so upset.” Note how the root node
produces the correct predicate structure, matching what we described in Example 5.1 and thus
corresponding to the knowledge graph in Example 5.2.

3There are two reasons why such a step is not necessary in our approach. Firstly, although a dependency
structure alone imposes no ordering on dependencies such as nsubj and dobj, we use a constituency grammar
as our ASG’s base, which encodes exactly such an ordering. Secondly, even when the constituency grammar
does not specify the ordering (for example, in the case of dobj and iobj dependencies), annotated atoms in
an ASG can specify their child’s index, which gives us the �exibility to handle di�erent possible orderings of
constituents, unlike an approach which uses lambda calculus.
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Figure 5.2: A graphical representation of the parse tree generated for the sentence “Jim yelled at Kevin because he was so upset.” All the
atoms which hold at each node are shown. The italicised predicate at each node corresponds to the “head concept” and gives the node’s
type. Changes between a literal in a node and its child are shown in bold. Placeholder arguments are omitted for brevity.
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5.3.1 Analysis of Some Linguistic Constructions

As we have seen, in many cases, dependencies can be translated to our semantic representa-
tion without too much di�culty: core arguments for events are handled by direct assignment,
and non-core arguments are handled by setting arguments of modi�ers. We now discuss some
linguistic constructions which require more complex approaches.

Prepositional Phrases andAdverbial Clauses Adverbial clauses and prepositional phrases,
which may modify events or nominals with another event or nominal, are both handled in a
similar way. Let’s again consider the simple prepositional phrase modi�er “(VP (VBD yelled)
(PP[prep] (IN at) (NP[pobj] (NNP Kevin))))”. We note that the PP is correctly assigned the
modi�er type, since its head has the IN (preposition) tag, which generates a modi�er. The
pobj dependency therefore just needs to set the modi�er’s object:

pp -> in np {
modifier(ID , Lemma , Arg0 , Arg1)

:- modifier(ID, Lemma , Arg0 , null)@1 ,
nominal(Arg1 , _)@2.

...
}

A pcomp dependency, in which the preposition’s object is an event, is handled in the same
way. When we reach the verb phrase we then set the modi�er’s subject to be the yell event
(see the �rst rule of Example 5.7).
The di�culty with adverbial clauses is that the dependent type is usually an event, rather than
the modi�er we want. That is because, as shown in Figure 5.3, the dependency structure is
quite di�erent from our proposed structure. For example, in the phrase “(SBAR (IN because)
(S he was so upset))”, the upset event is considered the head, but our representation calls
for subordinate clauses such as this one to be represented by a modi�er. This di�erence in
structure is resolved simply by treating mark dependents as heads in order to satisfy the type
requirements.

Negation Negation is handled in a similar way to any other simple modi�er. Negation will
produce a neg dependency between the negating word and the event, nominal or modi�er
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being negated, which we translate directly into our own semantic representation. Let us con-
sider as an example the sentence

The trophy does not �t.

Our translation approach gives a logical representation of the form

nominal(n1, trophy) ∧ event(e1, fit, n1) ∧modifier(m1, neg, e1)

There is one clear issue with this representation, which is that it entails

nominal(n1, trophy) ∧ event(e1, fit, n1)

As such, we make one change compared to standard modi�ers, unique to negation, which
is that we have a post-processing step in order to change the predicate name for negated
literals. This ensures that the representation for, say, negated events and non-negated events
is di�erent. The step is implemented by the ASG’s start rule and takes the form:

start -> s {
neg_event(ID, Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)@1,
modifier(_, neg , ID)@1.

event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)
:- event(ID, Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)@1,

not neg_event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl ).
...

}

Coordination Coordination is a tricky construction to handle, as it e�ectively results in
several head literals. Let us consider, for example, the following case of NP-conjunction

Sam and Amy are passionately in love.

We aim to generate a logical form with distributive reading, i.e. we wish for this sentence to
be interpreted as Sam is passionately in love and Amy is passionately in love. This requires
that the noun phrase Sam and Amy be treated as having two head literals: nominal(sam,
person) and nominal(amy, person).
Many approaches which rely on lambda calculus for composing semantics require post-processing
to �x the semantics of sentences with coordination due to the di�culty of supporting mul-
tiple heads in this way. Our approach, on the other hand, handles such constructions quite
naturally:

np -> nnp cc nnp {
nominal_unused(ID , Lemma) :- nominal_unused(ID, Lemma)@1.
nominal_unused(ID , Lemma) :- nominal_unused(ID, Lemma)@3.
modifer(ID, Lemma , Arg0 , Arg1)

:- modifier(ID, Lemma , null , null)@2 ,
nominal(Arg0 , _)@1 ,
nominal(Arg1 , _)@3.

...
}
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Figure 5.4: A produced knowledge graph demonstrating the handling of coordination.

Since the head of a constituent is determined simply by a body atom specifying a literal of
a certain type at a certain child (which has not yet been �nalised), we can simply produce
two such literals, and any ASP rules in production rules applied further up the parse tree
automatically will automatically apply to both of them, producing the distributive reading we
desire. In the production rule shown, the �rst two ASP rules implement this idea. We note that
approach has the bene�t of requiring no further modi�cation to our ASG whatsoever, only
to the intermediate representation we use to generate ASG rules (which did not originally
support multiple heads).
Let us also consider the third ASP rule in the production rule shown previously. We chose
to add a modi�er that links the two conjuncts by their coordinating conjunction. This is
because coordinating conjunctions may in themselves hold important semantic information:
for example so might be used to provide motivation, or but to highlight contrast. The �nal
produced representation is shown in Figure 5.4.
Although we have just considered the case of NP-conjunction here, other kinds of coordina-
tion are handled in exactly the same way.

Passives Consider the passive construction:

The drain is clogged with hair.

Examples such as this one require special handling since the nominal which takes the place as
the syntactic subject of the is clogged construction is really its semantic object of the clogged
event, not its semantic subject.
In order to be able to di�erentiate between the two possible cases (whether subject depen-
dency really acts as a subject, or rather as an object), we need to change the representation
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of the clogged event. This is done by changing the predicate name when a passive construc-
tion is identi�ed, from event to event_passive. These passive forms can be identi�ed by
an auxpass dependency; in our example it’s between clogged and is, and it would generate a
production rule of the form:

vp -> vbz vp {
event_passive(ID, Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)@2,
event(_, be, _, _, _, _)@1.

...
}

In a nominal subject rule, such as the one shown in Example 5.5, we then simply add a di�erent
rule for event_passive predicates, which sets the object argument instead of the subject
argument. At the root node, a �nal rule converts passive events back into standard events in
order to maintain the usual predicate structure.

Relative Clauses Relative clauses such as “which ran up the tree” in the sentence

The dog chased the cat, which ran up the tree.

are the �rst of a tricky set of constructions involving non-local dependencies which we will
consider. The di�culty arises since the semantic subject of the running event here is the
cat, which never appears as a syntactic argument of ran. In CCG-based approaches, these
cases often require special handling in the form of co-indexed categories: the lexical entry for
which would be responsible for linking the object of chased to the subject of ran. Meanwhile,
dependency-based approaches must augment the dependency structure in order to add an
additional dependency, which adds an equality constraint between the two nominals.
Our approach is di�erent in that we do not treat these as two separate nominals which are
forced to become equal, but instead leave the subject of ran unspeci�ed until we have its real
value. As such, the lexical entry for the wh-pronoun which is marked as un�nalised, allowing
it to be replaced when a nominal with a rcmod (relative-clause) dependent is reached. The
production rule which handles the rcmod dependency would thus take the form:

np -> np "," sbar {
nominal_unused(ID , Lemma)@1 :- nominal_unused(ID , Lemma)@1.
event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, Lemma , unfinalised , Arg1 , Arg2 , ArgCtl)@3 ,
nominal_unused(Arg0 , _)@1.

...
}

Note how this reverses the dependency structure: while the rcmod dependency points from
the nominal to the event, we mark the nominal as an argument of the event. Our produced
representation is shown in Figure 5.5.
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The dog chased the cat , which ran up the tree .
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Figure 5.5: A produced knowledge graph demonstrating the handling of relative clauses.

It is important to note that relative pronouns can take the place of an object or a subject in
the relative clause. These cases are handled automatically since the un�nalised argument’s
position is decided by an nsubj or dobj dependency within the relative clause. Furthermore,
relative pronouns can be omitted, but only when they are objects of the clause. This case is
handled by replacing the object when we �nd an rcmod dependency without any un�nalised
arguments.

Control andRaising The constructions of control and raising occur frequently in the WSC:
there are 95 instances of these constructions among its 273 problems.
Control is a construction in which the semantic subject of a predicate is determined by some
expression in context (Bhatt, 2006). For example, consider the sentence:

Johni promised Bill [PROi to leave] . (5.1)

Here John is the agent of both promised and leave, event though he is the syntactic subject for
only promised. This is called subject control.

John ordered Billi [PROi to leave] .

Here Bill is the patient of ordered and the agent of leave, even though he is the syntactic object
for only ordered. This is called object control.
Raising, on the other hand, is a construction in which an argument which belongs semantically
to a subordinate clause is a syntactic argument of the main clause, i.e. instead of sharing an
argument, the argument moves (Bhatt, 2006). Let us consider an example:

Rebeccai seems [ti to suspect something] . (5.2)

Here, seems is a raising-to-subject verb. We note that Rebecca is the agent of suspect and not
seems, even though she is the syntactic subject of seems and not suspect. A second type of
raising verb is a raising-to-object verb such as believed:

Carol believes Rebeccai [ti to suspect something] .
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Figure 5.6: A produced knowledge graph demonstrating the handling of control.

Here we note that Rebecca is the agent of suspect and not the patient of believes, although she
is the syntactic object of believes and not the syntactic subject of believes.
We choose to treat both constructs identically. An example of their desired representation is
shown in Figure 5.6. Firstly, both cases use the “control argument” to link the control/raising
verb to the in�nitival. In both cases, we also attempt to determine the subject of the in�ni-
tival, instead of leaving it unspeci�ed, as it can be done with a high level of accuracy and
signi�cantly improves the quality of the semantic representation. One thing to note is that
this means that our approach would, for example, leave Rebecca as the subject of seems (in
addition to making her the subject of suspect) for (5.2). Although this treatment is technically
incorrect, it is widely-used in semantic parsers (Reddy, 2017) and signi�cantly simpli�es our
approach. In practice, raising occurs much less frequently than control, and we are yet to �nd
any example where the additional argument leads to issues in learning.
However, these constructs still pose a signi�cant challenge for our approach due to the mis-
alignment between syntactical and semantic arguments, and also a lack of type information
to determine between the subject and object cases. One method for handling these cases is to
rely on the lexicon, in the same way that a CCG-based approach would. It is widely accepted
that whether a control construction is an instance of subject or object control depends solely
on the control verb (Bhatt, 2006), so the only necessary addition is that the lexical entry for the
control verb must specify whether it is controlled by a subject or an object. The unassigned
subject of the in�nitival can then be assigned at the same time as the speci�ed argument of
the control verb.
However, we were unable to �nd an existing resource that o�ers a complete classi�cation of
control verbs into subject and object control verbs, and found machine learning techniques
based on semantic role labelling to be unreliable. We therefore use an approximation based
on the minimal distance principle (MDP) (Bhatt, 2006). Since there are many object control
predicates but few subject control predicates, and even fewer subject control predicates which
also select an object (like promised does in (5.1)), the approach of simply selecting the closest
noun to in�nitival (the object of the control verb if there is one, otherwise the subject) to be
the in�nitival’s subject works surprisingly well. Indeed, of the 95 instances of control and
raising in the WSC, there is just one that violates the MDP, which is the example shown in
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(5.1).
The MDP can also be implemented very elegantly by our ASG. When we see an xcomp depen-
dency (a clausal complement without a subject), we simply mark the subject as un�nalised.
nsubj, dobj and iobj (nominal subject/object) dependencies are then made to always replace
an un�nalised subject, so that the subject is always assigned to be the closest argument above
it in the parse tree. For example, the nominal subject construction from Example 5.5 would
be updated with the additional rule:

s -> np vp {
event(ID , Lemma , Arg0 , Arg1 , Arg2 , ArgCtl)

:- event(ID, Lemma , unfinalised , Arg1 , Arg2 , ArgCtl)@2 ,
nominal_unused(Arg0 , _)@1.

...
}

Ignored Constructions We currently ignore the tense of events and quanti�cation of nom-
inals, although tense could be handled with a simple extension to our representation and
lexicon, and quanti�cation could be handled by adding modi�ers for determiners and a post-
processing step to introduce universal quanti�cation where necessary. However, there are no
examples where quanti�cation is relevant in the WSC, and only a single schema-pair which
is a�ected by the omission of tense information:

Fred is the only man still alive who remembers my great-grandfather.
He [is/was] a remarkable man. Who [is/was] a remarkable man?

Answer 0: Tom
Answer 1: Ray

Since we cannot di�erentiate between verbs in di�erent tenses, our representation of both
schemas is identical; thus unfortunately we are forced to answer one of these schemas incor-
rectly if the other is answered correctly (assuming the same examples are chosen).

5.3.2 Background Knowledge Generation

Once we have generated an ASG that can act as a domain speci�c semantic parser, we then
search for relevant background knowledge and augment the ASG in order to be able to cap-
ture synonymy, entailment, and similarity of phrases which might have originally produced
di�erent representations. Although we want to augment the ASG with as much semantic
information as possible, it’s vital that the annotations are accurate. Otherwise, there is a
chance that background knowledge may spuriously make irrelevant examples relevant, and
thus make a learning task signi�cantly more di�cult, or even unsatis�able. In other words,
we have a slight preference for precision over recall.
We considered a number of lexical and commonsense knowledge bases, including Word-
Net, VerbNet, FrameNet, PropBank, ConceptNet, WebChild and ATOMIC. In this project, we
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choose to focus on WordNet. Its focus on lexical semantics makes it highly structured, and
it has been produced by hand by lexicographers, making it signi�cantly more accurate when
compared to knowledge bases that are built through crowd-sourcing or automated knowledge
extraction methods.

WordNet The background knowledge generation process is applied per token. Let us con-
sider an example.

Bob paid for Charlie’s college education. He was grateful. (5.3)

The token paid has the lemma pay and a verb POS tag. Looking this up in WordNet, we �nd
that there are 11 possible senses for the verb pay. Generating background knowledge for all
of these entries is likely to result in a huge volume of mostly irrelevant knowledge, so we �rst
use a word sense disambiguation model to select a single sense. In this case, paid is assigned
the most common sense, pay.v.01 (“give money, usually in exchange for goods or services”).
The �rst rule produced is thus

event(paid_1, pay_v_01, Arg)← event(paid_1, pay, Arg).

which links the lemma pay to its sense. This automatically captures some synonymy, as other
lemmas may be assigned to the same sense and thus produce matching event literals. The
next step is to add knowledge from hypernymy and entailment. For example, pay is marked
as a hyponym of the sense give.v.03, so we additionally produce the rule

event(ID, give_v_03, Arg)← event(ID, pay_v_01, Arg).

To more concretely demonstrate the utility of this background knowledge, let us consider
another example:

Katrina bought some catnip for Maria’s brand new kitten,
which made Maria feel very grateful. (5.4)

Here bought is assigned the sense buy.v.01, which in WordNet, is marked to entail both
choose.v.01 and pay.v.01. Note how the addition of background knowledge therefore
results in the literal event(pay_1, pay_v_01, bob_0) holding for (5.3) and event(bought_1,
pay_v_01, katrina_0) holding for (5.4), thus allowing a single rule with a body atom

event(PayEvent, pay_v_01, Payer)

to cover both examples.

ConceptNet We also add a small amount of background knowledge from ConceptNet. Con-
ceptNet de�nes some 40 kinds of relations between words and phrases. Currently we use just
one: the HasProperty relationship. The reasoning behind this choice is that most other rela-
tions are (a) de�ned by WordNet (e.g. IsA, PartOf ) or (b) express the commonsense concepts
that we are intending to learn (e.g CapableOf, UsedFor).
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ConceptNet is more challenging to work with than WordNet, since it does not include word
senses and thus often returns spurious results. For example, the word ball has the properties
round and spherical, but also formal. Furthermore, we �nd that ConceptNet can often return
results that are never useful — for example, steel has the property strong_and_hard, yet no
other word in ConceptNet shares this property.
To provide an example of where how we use ConceptNet’s HasProperty relation, let us con-
sider the schema:

The large ball crashed right through the table because it was made of steel.

In this schema, the nominal steel is associated with the property hard, so the following rule is
generated:

modifier(conceptnet1, hard, ID)← nominal(ID, steel).

Now consider an example of the form:

A stout tree trunk made of stones and cement
— has fallen and crashed through the tomb’s surface.

Here the word stones is also assigned the property hard, producing the rule:

modifier(conceptnet2, hard, ID)← nominal(ID, stones).

thus allowing us to specify that thing which is made of a hard material is the thing crashes
through another object.
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Chapter 6

Learning Commonsense Knowledge

In this chapter, we discuss our approach to learning commonsense knowledge on top of our
automatically-generated base ASGs. There are two key stages to our approach: the �rst is a
knowledge hunting stage in which we seek to �nd and comprehend examples which are related
to the problem being solved; and the second is a learning stage in which we seek to form a
hypothesis that explains our understanding of those examples. We can then take this learned
hypothesis and apply it to the problem at hand.
This approach is motivated, in part, by how people are thought to learn commonsense knowl-
edge. A key part of human learning is learning by language (Levesque, 2017). For example,
Levesque (2017) notes that our understanding that bears hibernate likely comes from read-
ing and not direct experience. Our knowledge hunting stage emulates recalling knowledge
that one might have heard or read before. In some cases, we might simply learn concepts
by direct instruction: that is, we might read directly that bears hibernate. In our approach,
such cases would be imitated by the presence of existing background knowledge. However,
in many other cases, we have never encountered the knowledge directly, but we are able to
make analogies to things that we do know about: this is what our learning stage attempts to
do. For example, while we may never have been told directly that something that is hibernating
is asleep, we may have learned to associate the two concepts by encountering examples where
a hibernating animal sleeps, while we know that animals do not always sleep in general.

6.1 Knowledge Hunting

Firstly, we discuss our approach to knowledge hunting. The broad goal of this stage is to �nd
texts that express some commonsense knowledge, in an unambiguous way, that is relevant to
the problem at hand. To motivate the process, let us consider again the Winograd schema:

Jim yelled at Kevin because he was so upset. Who was so upset?
Answer 0: Jim
Answer 1: Kevin

The kind of text that we might hope to �nd for this schema is:
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Example 6.1. An ex yelled at me because she got upset at how
much we disagreed on how I should handle a hypothetical situation.

We note that in this case, the pronoun she is unambiguous. There are two candidate referents,
an ex or me, but an ex is the only valid referent since she is a third person pronoun. This text
is useful because it is an example that demonstrates that the person who yells is the person who
is upset, which is the correct hypothesis to be made in this case.

Knowledge Hunting as a Ranking Problem In the existing literature, knowledge hunt-
ing is treated as a problem of information retrieval. As we discuss in Section 3.2, the goal of
these approaches, given a coreferencing problem, is to generate a query (usually taking the
form of a regular expression) that �nds texts expressing knowledge that is relevant for solv-
ing that problem. We slightly reframe this view, splitting our approach into two stages, and
treating knowledge hunting mainly as a ranking problem. The �rst stage sources a (possibly
very large) set of relevant texts (the information retrieval part), while the second determines
which of those texts are most relevant (the ranking part). Separating the retrieval of possi-
bly relevant texts from the process to determine their relevance allows us to both retrieve
more texts for consideration (hopefully improving recall) and rely on far more sophisticated
methods for determining relevance than just simple regular expressions (hopefully improv-
ing precision). In this section, we assume a set of candidate texts exists and discuss only our
approach for determining relevance. We consider the sourcing of the candidate texts to be an
implementation detail, and discuss it in Section 7.2.2.

Goals of Knowledge Hunting In previous approaches to knowledge hunting the goal is
purely to �nd examples that help you to determine the correct answer, like Example 6.1. This
means you would want to rule out an example of the form:

Example 6.2. Anyway the mum went mad at my son and shouted
at him. He was upset - he is only 5 - and he ran upstairs.

In this example, the pronoun he is again unambiguous, this time because of its gender, but this
text, unlike Example 6.1, seems to suggest that the person who is shouted at is the person who is
upset. Clearly this is not what we want to learn in order to solve the original problem, but we
argue that the example is still relevant. In Example 6.1, the connective because signi�es that
there is some causality — speci�cally, somebody being upset causes them to yell. Meanwhile
Example 6.2 has no such construction — here, the fact that the son being upset follows the
son being shouted at in the text instead signi�es causality in the other direction, speci�cally
somebody being shouted at is followed by them becoming upset. Example 6.2 is still relevant
because it tells us that the hypothesis that the person who yells is always the person who is upset
is not a good hypothesis (it is too general), and forces us to take into account the causality
expressed in Example 6.1. This motivates the �rst goal of our knowledge hunting approach:
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1. Any text that is able to relate either of the candidate referents with the pronoun should
be determined to be relevant.

However, our learning approach does not scale well with many examples (especially when
those examples are complex and feature many di�erent linguistic constructions), necessitating
a limit on the number of examples selected for consideration by the learner. If we have to
choose between Examples 6.1 and 6.2, clearly we would prefer Example 6.1, since that is the
text which gives us the correct answer. To demonstrate more clearly that our �rst goal is not
su�cient on its own, let us consider a slightly more complex Winograd schema:

Tom gave Ralph a lift to school so he wouldn’t have to drive alone.
Answer 0: Tom
Answer 1: Ralph

and the example:

Example 6.3. I gave Juli my keys so she could drive.

This example satis�es our �rst goal, since we could relate the person who drives to the person
who is given something. There are many similar, short and simple examples that will only
serve to teach the learner nonsense. But the example

Example 6.4. The couple �rst met in 1977, when Ralph — driving
the same Beaumont — gave Cheryl a lift to Canada celebrations at
Wascana Centre.

is clearly a lot more relevant, because it talks about giving somebody a lift. This demonstrates
two things. Firstly, simple features such as length or syntactic similarity are not, on their own,
a good indicator of whether the knowledge text is relevant1. Secondly, matching as much as
possible of the context from the original problem is vital, in order to provide the learner an
opportunity to work out which context is important. Thus the second goal of our knowledge
hunting approach is that:

2. The text which shares more important context with the problem should be preferred.
1This example additionally provides motivation as to why using existing machine learning approaches for

semantic textual similarity may not be the ideal approach. The �rst example is syntactically similar to the prob-
lem, and the main concept of the sentence is giving (the keys to Juli) — the same as in the problem. Meanwhile,
the second sentence is syntactically quite di�erent and the main concept is (the couple) meeting. There is also a
lot of irrelevant context in the second example which might lead to a semantic textual similarity model assigning
it very low similarity score. Indeed, when representing the sentences with Google’s Universal Sentence Encoder
(Cer et al., 2018), and comparing them with the schema’s representation, we found that the cosine distance for
Example 6.4 was greater than for Example 6.3 (i.e. Example 6.3 was determined to be more similar). Meanwhile,
a more specialised approach can focus in on the nominals “matching” the candidates and the pronoun from the
problem and ignore the rest of the sentence entirely.
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Figure 6.1: An overview of our approach for constructing a query for initial �ltering from a
Winograd schema’s knowledge graph. Dotted boxes in green show the nodes used to generate
queries for the target referent, red for the other candidate and blue for the pronoun. The
queries are simpli�ed here for brevity.

6.1.1 Initial Filtering

Our knowledge hunting process is computationally expensive as it is based on semantics and
thus requires a full semantic parse of every example to be considered. Therefore, we �rst have
a stage to retrieve all possibly relevant examples, and discard the majority of texts, which are
completely unrelated. The main aim here is to achieve perfect recall: we should not discard
any texts that could be relevant.

Preprocessing To allow ourselves to easily capture di�erent forms of the same word (e.g.
di�erent conjugations of a verb), synonymy and certain grammatical structures without build-
ing complex queries, all examples are �rst preprocessed. Speci�cally, we tokenise each exam-
ple and determine the part-of-speech tag, lemma and WordNet sense for each token. This step
is performed just once, and the results over the entire set of examples are saved for all future
queries to use.

Query Generation The �ltering is then performed by executing a query over the pre-
processed examples. To demonstrate how the query is constructed, let us consider an ex-
ample. The knowledge graph for “the trophy didn’t �t in the suitcase because it was too
large” is shown in Figure 6.1. This query is constructed by considering the knowledge graph
as follows:

1. We �rstly identify the two candidate referents and the pronoun. Our approach to this
is rather rudimentary and is described in Subsection 7.2.1. In Figure 6.1, we show the
two candidates in red and green and the pronoun in blue.
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2. We then consider each of these nominals in turn, generating a set of queries which
describe minimally the context of that nominal.

(a) If the candidate is not a proper noun, then a query is generated based on the can-
didate itself. E.g. for “suitcase” a query is generated which will match either the
lemma, (suitcase) or its sense (bag.n.06) in the preprocessed text.

(b) For each node in the semantic graph of which the nominal is an argument, an
additional query is generated. E.g. for “suitcase” a query is generated to match the
lemma or sense of the word brown.
There are two special cases here. Firstly, if the nominal is the object of a modi�er,
then the query is based on both the modi�er and the entity being modi�ed (to avoid
spurious matches on prepositions alone). For our suitcase example, this means
generating a query matching any word with the lemma or sense of �t followed by
any word with the lemma or sense of in. Secondly, if the modi�er is a possession
modi�er, then the query is instead based on the word’s part-of-speech: speci�cally,
we are looking for a PRP$ (possessive pronoun: my, your, his, her etc.) or a POS
(possessive ending: ’s) tag.

Note how, motivated by our goal to achieve good recall, we do not explore deep into the
knowledge graph, considering only the nodes that are directly connected to the nominal
being considered.

3. For each nominal, a single query is constructed by allowing any of the individual queries
from the previous step to match. For our suitcase example, we therefore would build a
query of the form

(lemma = suitcase|sense = bag.n.06)

or (lemma = brown|sense = brown.a.00)

or ((lemma = fit|sense = fit.v.02) followed by (lemma = in|sense = in))

The reason to allow any of these queries to be matched is that any of them could be
the relevant part — for example, in this schema it is clearly the event �t that is most
important, but in the schema

Frank felt vindicated when his longtime rival Bill revealed that
he was the winner of the competition.

clearly the modi�er rival is important, while in a schema like
Sam tried to paint a picture of shepherds with sheep, but

they ended up looking more like golfers.

clearly the identity of the nominals shepherds and sheep themselves are important.

4. Finally a query is generated to match any sentence which has some matching context
for the pronoun and some matching context for either of the candidates. I.e. the query
takes the form (pronoun.*(cand1|cand2))|((cand1|cand2).*pronoun). This is
motivated by our goal to consider any relevant text — there is still something to be
learned from a text which accepts or excludes just one of the candidates.

This �nal query is then compiled and checked against every example.
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(large, arg0)

((too, arg0), (large, arg0))
((not fit, because), (large, arg0))

it

Figure 6.2: An overview of how we de�ne the context function for a node. We preprocess
the graph to “collapse” modi�ers and then �nd all paths to the node by following the edges
backwards.

6.1.2 Relevance Scoring

Our chosen learning algorithm is limited in the number of examples it may take. Therefore,
after reducing the set of candidate knowledge texts to the ones which could be relevant, we
then attempt to determine which ones are actually the most relevant.

Fitness Function To determine which examples are most relevant, we propose a �tness
function that is motivated by previous work on relevance theory in knowledge graphs (Schüller,
2014). Schüller (2014) �nds that the single most helpful heuristic is to do with how many nodes
from the background knowledge are “combined” with nodes from the Winograd schema. We
come to a similar conclusion, although our method for calculating a value for such a heuristic
is quite di�erent to his proposal.
To determine how much context is shared, we �rst de�ne a function, context, to return a set
of paths de�ning, as fully as possible, the context of a nominal candidate. Figure 6.2 shows
an example of how this is done. Firstly, we collapse modi�ers in the original knowledge
graph. Speci�cally, modi�ers which link two concepts are collapsed into a single edge from the
modi�ed entity to the entity that modi�es it. This gives us a rough argument structure view
of the text. We then start from each nominal node and follow the incoming edges recursively,
building up a list of paths to each nominal. As shown in Figure 6.2, for our ongoing example,
this gives us the following sets of paths2:

2For brevity, we ignore senses here and look only at lemmas. In reality, as was the case for initial �ltering,
these paths need to encode both the lemma and the sense of each node to allow matching of synonyms and
entailed concepts.
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context(trophy) = {(trophy, arg0), (not fit, arg0)}
context(suitcase) = {(suitcase, arg0), (brown, arg0), (not fit, in)}

context(it) = {(large0, arg0), ((too, arg0), (large, arg0)), ((not fit, because), (large, arg0))}

Given an example with a labelled coreference, such as the sentence shown in the left-hand-side
of Figure 6.2, we perform the same process on the example and calculate an intersection-over-
union score. For the example in Figure 6.2, this would be

IOU(knowledge, schema) =
|context(sofa1) ∩ context(trophy)|
|context(sofa1) ∪ context(trophy)|

+
|context(house) ∩ context(suitcase)|
|context(house) ∪ context(suitcase)|

+
|context(sofa2) ∩ context(it)|
|context(sofa2) ∪ context(it)|

=
1

4
+

1

4
+

3

4
= 1.25

The motivation behind this formulation is simply that we want to encourage shared context
between the candidates in the schema and its matched nodes in the knowledge text, and
discourage missing context from either side (which could easily result in the answer being
swapped). Using an intersection-over-union score has the additional bene�t of normalising
the scores between a value of 0 and 3, since each Winograd schema has one pronoun and two
candidates.
Schüller (2014) also proposes several other heuristics, such as adding costs for unmatched
background nodes, the radius of graphs and others. We choose not to investigate these heuris-
tics as they have already been shown to be much less useful. We investigated weighting based
on path length (to give greater emphasis to “long chains” of matched nodes) but found it had
no impact on results.
However, there are several other heuristics that we found to be useful, albeit much less so than
our context-based IOU score. Theses include the source of the knowledge (e.g. an example
which has been labelled by hand is preferable to an example which was labelled automati-
cally), as well as whether the knowledge texts involves just one of, or both of the candidates
(knowledge texts which form matches to both candidates are preferred), and the depth of the
parse tree (shorter, less complex texts are far faster to parse and so favouring these examples
speeds up the learning considerably). Our �nal �tness function for a knowledge text k with
respect to a schema s is de�ned as follows:

fitness(k, s) = (IOU(k, s),−parse tree depth(k))

We prefer whichever knowledge text achieves the highest score: i.e. we �rst choose the knowl-
edge which is determined to be the most contextually relevant, and if two trees have the same
IOU score, we then choose the one with the smallest parse tree depth.

Example Selection Examples are then selected simply by choosing the top N knowledge
texts according to the �tness function.
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6.2 Learning Task Generation

We now discuss, given a Winograd schema, a set of relevant knowledge texts (found as de-
scribed in Section 6.1), and a base ASG capable of representing the schema and texts (gener-
ated as described in Section 5.3), how to generate a learning task whose goal is to learn the
commonsense concepts encoded in the knowledge texts.

The Role of Learning in our Approach It is important to note that our approach is not
a simple case of taking an existing reasoning approach (e.g. (Sharma, 2019)) and attempting
to learn a program to encode that reasoning process, in that we do not attempt to learn a
generalised program for how to extract commonsense knowledge. Such an approach would
�rstly require us to have training examples labelled with the relevant commonsense knowl-
edge or at least their answers (a privilege which the WSC does not a�ord us), would secondly
constitute an extremely complex task that would need to be able to deal with hundreds of
domain-general examples and generate an excessively large hypothesis, and would thirdly
provide no real tangible bene�t compared to just using the original reasoning approach.
Instead, we propose an approach for generating learning tasks to learn individual snippets of
commonsense knowledge. This, in many ways, re�ects existing reasoning-based approaches
(Emami et al., 2018; Sharma, 2019), modifying just a small component of these approaches to
allow us to learn a generalised rule encoding the snippet of commonsense knowledge (which
also functions as an explanation), instead of just answering the question directly.
Since each question in the WSC requires its own unique snippet of commonsense knowledge,
we generate a separate learning task per schema. Although in many cases it would be prefer-
able to treat the schemas in pairs (the knowledge encoded in the second schema is usually at
least somewhat similar to the �rst), we choose not to do so. As noted by Levesque et al. (2012),
this would be a “cheap trick” and would lead us to overestimate our ability to work out the
necessary commonsense knowledge for a single schema.
As we will see, the decision to learn individual snippets of commonsense knowledge consid-
erably decreases the challenge for the learner, and in fact our learning tasks are remarkably
simple, often amounting to just concept learning. A lot of the heavy lifting is done in pre-
vious steps: the ASG handles most of the challenge of natural language understanding, and
the knowledge hunting is responsible for performing quite a bit of reasoning. The latter is
necessary simply because the WSC is di�cult: it is a domain-general task, and if the learner
had to deal with irrelevant examples, it would need to explain an excessive number of ex-
amples before �nally learning a suitable hypothesis, and furthermore would need to explore
an excessively large hypothesis space. Another pre-processing task we take on to aid the
learner is the labelling of examples, which we discuss in the next section. Clearly some form
of labelling examples is necessary as the learner needs something to learn from. But the dif-
�culty of sourcing training examples and, in particular, negative examples, necessitates that
our labelling approach does a fair amount more work for the learner, as we will see.
Having done all of this pre-processing, a very simple reasoning process to match the can-
didates in the knowledge texts to the ones in the schema, followed by a simple statistical
approach (Emami et al., 2018) or �nal reasoning step (given a manually selected example)
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(Sharma, 2019) could be used to determine the answer straight away. But in our approach,
the learner has a simple but critical task: it must learn how to explain the labelled knowledge
texts. We therefore never provide the learner with any information about how candidates
in the knowledge texts can be matched to the ones in the schema — but instead rely on the
learner to learn an explanation that we hope will carry over to the schema.

6.2.1 Example Translation

The �rst step in generating our learning tasks is to translate the knowledge texts into positive
and negative examples for learning. There are three observations which motivate our process
for constructing examples:

1. Necessity of negative examples. Firstly, let us note the need for negative examples,
in some form. Excluding all answer sets with certain qualities is what forces the learner
to make its hypothesis more speci�c. Otherwise, the learner would always predict the
shortest, most general hypothesis resulting in a satis�able program that covers all the
positive examples. Such a hypothesis is likely to be too general to distinguish between
the two candidates without a very carefully-structured hypothesis space, and even more
likely to correspond to a nonsensical explanation.

2. Di�culty of sourcing negative examples. In the context of the Winograd schema
challenge, negative examples would need to take the form of syntactically correct En-
glish sentences that are semantically invalid, because they contradict some common-
sense knowledge that a human reader might have. This represents a signi�cant chal-
lenge as it is not clear how one might source such sentences. As we will see, even
sentences which are semantically valid and encode relevant commonsense knowledge
can be di�cult to �nd. Furthermore, language is complex and it is not usually the case
that you can take a semantically valid sentence and manipulate it in a mechanical way
to make it semantically invalid. This motivates an approach where negative examples
are constructed from positive examples, but annotated with context describing some
interpretation that we know to be incorrect.

3. Performance implications of negative examples. Finally, although we have been
discussing “negative examples” so far, it is important to note that we can force the
learner to specify its hypothesis without negative examples in the traditional sense.
Speci�cally, if an ASG is strati�ed, then a parse tree produces a unique answer set,
and the semantics of a negative example (that no answer set may extend the example)
can be expressed simply by an exclusion inside a positive example (to ensure that the
single answer set does not extend the example) (Law et al., 2019). This is bene�cial,
since as noted by Law et al. (2019), “ILASP tasks with no negative examples tend to run
faster than equivalent tasks with negative examples, so when it is possible to modify the
representation to eliminate negative examples it is often advantageous to do so.” This
motivates an approach in which the ASG is strati�ed, thus ruling out constructions of
the form

is_same_as(pronoun, cand1)← not is_same_as(pronoun, cand2).
is_same_as(pronoun, cand2)← not is_same_as(pronoun, cand1).
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which would produce one answer set with is_same_as(pronoun, cand1) and another
with is_same_as(pronoun, cand2).

Labelling Examples To demonstrate how we label examples, let us again consider the
knowledge text from Figure 6.2, “the sofa1 that I bought wouldn’t �t in the house, because the
sofa2 was too large for it,” with respect to the Winograd schema “the trophy doesn’t �t in the
suitcase because it’s too large.” For this example we would aim to generate some context of
the form:

valid← is_same_as(sofa2, sofa1), not is_same_as(sofa2, house).
← not valid.

(6.1)

which serves to rule out any answer set in which either the two sofas have not been matched
to the same entity, or in which the second sofa entity (corresponding to the pronoun in the
Winograd schema) has been matched to the house.
We note that this is equivalent to a formulation in which {is_same_as(sofa2, sofa1)} and
{is_same_as(sofa2, house)} are the inclusions and exclusions of the example respectively
(i.e. the constraint in (6.1) is satis�ed if and only if there is an answer setAwith {is_same_as
(sofa2, sofa1)} ⊆ A andA∩{is_same_as(sofa2, house)} = ∅). We express this using con-
text as the learning from ASGs formalism does not currently support examples with speci�c
inclusions or exclusions. Furthermore, since our generated ASG is guaranteed to be strati�ed,
a parse tree has a unique answer set before the constraint in (6.1) is applied. Thus a single
positive example with context in (6.1) is equivalent to a positive example with the context
{is_same_as(sofa2, sofa1)} and a negative example with the context {is_same_as(sofa2,
house)}.

Automated Labelling of Examples In order to automate the generation of the kind of
rules in (6.1), we can simply reuse the work done in Subsection 6.1.2 for knowledge hunting.
Speci�cally, let us consider again the context function, which is de�ned as shown in Figure
6.2. Any nominal in the knowledge text which shares context with the schema’s pronoun
or one of its candidate referents is considered for labelling. We consider each match for the
pronoun alongside each match for one of the candidates. Whether the label assigned is a
positive one (i.e. an inclusion) or a negative one (an exclusion) depends on whether the two
nominals have been marked as coreferents according to a deterministic process, which we
describe in Section 7.2.1. We note that if one of the nominals is a pronoun and we are not sure
of its referent, then that nominal will not be used to generate any context.
Figure 6.3 illustrates some examples of this process. In particular, we note that if there is no
match for a candidate not linked to the pronoun (i.e. we are not able to extract a “negative
example” from the knowledge text), then an exclusion is generated by choosing any other
entity from the knowledge text (see Figure 6.3c). This is done in an attempt to avoid generating
a learning task with no exclusions, which would result in a hypothesis that is too general. On
the other hand, in the case where there is no match for a candidate linked to the pronoun (no
“positive example”, see Figure 6.3d), then we do not generate an inclusion. Adding an inclusion
based on a nominal that does not share any context with a candidate from the schema makes
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valid :- is_same_as(sofa2, sofa1), not is_same_as(sofa2, house).

(a) Simple case based on our original example from Figure 6.2. The green and red/blue boxes show entities that
have been matched to the candidates and pronoun respectively, based on shared context. The �lled/dashed black
lines are used to mark entities in the knowledge text which are known to be the same/di�erent respectively.
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valid :- is_same_as(table, table),
not is_same_as(table, sculpture).

(b) An example where one entity in the knowledge text is matched to both the pronoun and one of the candidates
in the schema. This case can be handled in the same way as the simple case.

Frank	felt	vindicated	when	his	longtime	rival	Bill
revealed	that	he	was	the	winner	of	the	competition.
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Raveena	Tandon.
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(c) An example where there is no nominal in the knowledge text which is matched to a candidate and is not
matched to the pronoun. An exclusion is generated from some other nominal in the knowledge text to help rule
out excessively general explanations.
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valid :- not is_same_as(she, we), not is_same_as(she, he).

(d) An example where there is no nominal in the knowledge text which is matched to both a candidate and a
pronoun. No inclusion is generated, since it would require the learner to explain an additional concept, making
the learning task signi�cantly more challenging.

Figure 6.3: An overview of how we generate examples from knowledge texts (right), relative
to Winograd schemas (left).



the learning task much more challenging but is never useful, as it only serves to force the
learner to learn an additional concept that cannot be applied back to the schema. However,
as we have mentioned, examples without any inclusions can still be useful as they force the
learner to make its hypothesis more speci�c.

6.2.2 Hypothesis Space Generation

Given a set of examples with context describing valid/invalid interpretations, and a base ASG
able to parse them, we now �nally discuss how to automatically generate a hypothesis space
for the learner to search through in order to �nd an explanation. In constructing a hypothesis
space, there are four qualities of the �nal learning task that we must consider:

1. Satis�ability. The hypothesis space must be large enough to include rules capable of
explaining the examples.

2. Computational feasibility. The hypothesis space must be small enough as to be gen-
erated and searched e�ciently.

3. Ability to handle noise. Since we do not currently use weighted examples in our ap-
proach, optimising the size of the generated hypothesis space is key to ensuring that
our approach handles noise well. Restricting the hypothesis space to a small number
of simple explanations, in addition to making many tasks unsatis�able, restricts the ap-
proach to shallow explanations. Meanwhile, increasing the hypothesis space not only
signi�cantly increases the computational cost of learning, but also allows us to “over�t”
to the examples. A large hypothesis space allows us to propose very complex hypothe-
ses which “encode the noise of our examples” by including highly speci�c conditions to
handle these noisy cases.

4. Quality of learned rules. Di�erent hypothesis spaces may result in rules being learned
which result in the same �nal answer to a Winograd schema, but read very di�erently.
For example, let us consider the schema “the �sh ate the worm, it was tasty.” Depending
on the way in which the hypothesis space is constructed, examples of the form “I ate
the tasty burger” might produce a rule of the form

modifier(learned_mod, tasty,X)← event(_, eat, _, X).

which reads as “if something is eaten, then it is tasty”. At �rst, this may seem like an
acceptable rule, but clearly it is not the case that everything that is eaten is tasty. Fur-
thermore, let us note that the directionality of the implication in this case is arti�cial. As
long as the examples talk about eating and something being tasty (which they are likely
to do, given our knowledge hunting approach), we could have equivalently learned that
“if something is tasty, then it is eaten”. This is arguably a better rule in this case, but it
is still technically incorrect. An alternative approach might be to produce constraints
such as:

← event(_, eat, _, X), not modifier(_, tasty,X).

expressing “something is not eaten unless it is known to be tasty”. But such a hypothesis
clearly su�ers from the exact same limitations. Overall, this kind of straight-forward
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entailment does not occur in WSC problems. The rules learned rely on the context of
the sentence. In it’s most precise form, the knowledge needed to solve this schema is
that “something that is eaten may be described as tasty, but something that eats may
not”, or more formally:

∀XY Z. [eats(X, Y ) ∧ tasty(Z) ∧ (X = Z ∨ Y = Z)→ X = Z]

You might attempt to approximate these semantics with an ASP rule of the form:

is_same_as(X,Z)← event(_, eat,X, Y ),modifier(_, tasty, Z),
candidate(X,Z), candidate(Y, Z).

(6.2)

where the predicate candidate(X,Z) is de�ned appropriately, i.e. to meanX may equal
Z . However, it is important to note that this formulation also su�ers from several limi-
tations — most notably, it results in longer rules with more variables (and so requires a
larger hypothesis space).

Head Mode Declarations With the above considerations in mind, our hypothesis space
aims to generate rules with may_refer_to(P,C) at the head. The goal is to approximate the
semantics of (6.2) by learning a rule of the form

may_refer_to(P,C)← event(_, eat, _, C),modifier(_, tasty, P ).

which would then be combined with some background knowledge of the form:

is_same_as(P,C)← may_refer_to(P,C), pron(P ), cand(C).

This formulation has the bene�t both of generating more relevant explanations (which do not
read with an arti�cial implication), and also of simplifying the construction of the hypothesis
space, since only one kind of head needs to be generated.

Automatic Generation of Body Mode Declarations In order to signi�cantly constrain
the hypothesis space while allowing for complex explanations, we generate mode body dec-
larations based on the Winograd schema’s knowledge graph. Speci�cally, hypotheses should
be able to match on any subgraph of the schema’s knowledge graph. Such an approach has
the additional bene�t that we can ensure that anything learned will be relevant — the learned
rules will be applicable back to the schema itself.
The process is very straight-forward, combining a breadth-�rst-search with a simple transla-
tion. To demonstrate how it works, let us consider an example. We will once again consider
the schema “the trophy doesn’t �t in the brown suitcase because it’s too large.” For reference,
the knowledge graph for this schema is shown again in Figure 6.4. Firstly, let us note that the
single head mode declaration uses the variables pron and cand; speci�cally, it takes the form:

modeh(may_refer_to(var(pron), var(cand)))

We now traverse the knowledge graph from the pronoun and each of the candidates. We start
at a depth of 0, adding just body declarations describing the initial nodes themselves, thus
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The trophy doesn't fit	in	the	brown	suitcase because	it's	too	large.

trophy
cand
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cand

not fit
fit_4

in
in_5

because
because_9

it
pron

too
too_12

large
large_13

brown
brown_7

depth = 0

depth = 1

depth = 2

Figure 6.4: An overview of how we generate a hypothesis space from a knowledge graph. The
process involves a breadth-�rst search from the candidate and pronoun nodes. Each node is
translated into a body mode declaration. The variable type of each node is shown here in
italics.

allowing the learner, for example, to specify that the candidate must be a trophy or must be a
suitcase. Let Mb(d) and vars(d) denote the body mode declarations produced and variables
seen at depth d, respectively. Then we have:

Mb(0) =

{
modeb(nominal(var(cand), const(trophy)))
modeb(nominal(var(cand), const(suitcase)))

}
vars(0) = {pron, cand}

The possible values for a constant type are generated based on its lemma and its sense, as well
as any senses which it entails due to background knowledge. This may generate a very large
number of possible values. For example, suitcase generates the following possibilities:

constant(suitcase) = {suitcase, bag_n_06, baggage_n_01, case_n_05, container_n_01}

The process continues by following any edges from the variable seen so far, and adding these
edges to the hypothesis space. At a depth of 1 we have:

Mb(1) = Mb(0) ∪


modeb(event(var(large_13), const(large), var(pron)))
modeb(neg_event(var(fit_4), const(fit), var(cand)))

modeb(modifier(var(into_5), const(into), var(fit_4), var(cand)))
modeb(event(var(brown_7), const(brown), var(cand)))


vars(1) = vars(0) ∪ {fit_4, into_5, brown_7, large_13}

along with de�nitions for each of the constants, and at a depth of 2 we get:

Mb(2) = Mb(1) ∪


modeb(modifier(var(because_9), const(because),

var(fit_4), var(large_13)))
modeb(event(var(too_12), const(too), var(large_13)))


vars(2) = vars(1) ∪ {because_9, too_12}

at which point we have translated the entire graph, so we stop. Note that the variable types
are based on IDs, to avoid any duplication — we want to constrain the hypothesis space as
much as possible so that it can be generated and searched e�ciently.
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Learning Exceptions The main issue with our approach to generating mode declarations
is that the learner does not have a lot of �exibility to explain edge cases. For example, consider
again the schema “the trophy doesn’t �t in the brown suitcase because it’s too large.” Now
suppose we are provided with the example “my bills won’t �t in my wallet because it’s too
small” (our knowledge hunting approach would never select such an example in practice, but
we use it for demonstration, as its format is similar to some of the “tricky” examples that
might be selected). This example would be labelled in such a way that the learner must make
is_same_as(it, wallet) true (since the wallet is the only singular noun in the sentence). The
problem is that the learner does not have any way to make a hypothesis about something
being too small, as the hypothesis space is generated from the schema alone, which only
references the pronoun being too large.
One way to handle this case might be to also consider the examples when generating the
hypothesis space. This would involve extending our approach above to consider all input
knowledge graphs and merge variable types across the graphs where possible, and is an idea
which has been explored in some depth by previous work (Lewis and Steedman, 2013; Cha-
bierski et al., 2017), albeit in a slightly di�erent context. However, the potential challenges
of implementing such an approach are fourfold: �rstly, it would signi�cantly increase the
size of the hypothesis space, especially as the number of examples are increased; secondly, it
would allow the learner to easily encode the “noise” of noisy examples, rather than learning
a more general rule which works most of the time; thirdly, it would mean the learner could
now propose rules which may not be applicable back to the Winograd schema; and �nally,
it makes the learning task potentially quite challenging: instead of just having to learn the
single concept relevant to the Winograd schema, the learner may now have to learn a variety
of di�erent concepts in order to fully explain the examples (e.g. the thing that is too large
doesn’t �t and the thing that is too small is not �t into). An alternative approach might be
to allow negation as failure for body atoms, but this approach su�ers from many of the same
limitations.
Our approach instead allows many of these examples to be explained simply by means of
learning strong exceptions3. This is done by adding the following head mode declaration:

modeh(cannot_refer_to(var(pron), var(cand)))

This allows the conclusion that some P may refer to some C to be refuted. Since ILASP does
not support strong negation, these semantics are achieved simply by extending the back-
ground knowledge:

is_same_as(P,C)← may_refer_to(P,C), not cannot_refer_to(P,C), pron(P ), cand(C).

In particular, we note how our tricky example can now explained by learning:
may_refer_to(P,C)← pron(P ), neg_event(F, fit, _),modifier(_, into, F, C).

cannot_refer_to(P,C)← modifier(_, large, P ), neg_event(F, fit, _),modifier(_, into, F, C).

3One other avenue which might be worth exploring in future work is the use of weighted examples, which
might be able to handle these exceptional cases as, in our experience, they are relatively rare. The weights
could also encode our con�dence of the relevance of di�erent examples, allowing the least relevant examples
to be mislabelled at a smaller cost than the most relevant ones. However, compared to weighted examples,
allowing the learning of exceptions provides the additional bene�t that it is sometimes actually desirable to
explain a concept in terms of an exception, as it may produce a simpler hypothesis than some direct but complex
argument.
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I.e. we have learned an exception, that the thing that is large does not refer to the thing which
is not �t into.

Optimising the Size of the Hypothesis Space The approach we have discussed thus far
generates hypothesis spaces which are far too large to search, or indeed even generate. The
most signi�cant issue arises from the use of constants which can take many values. Each set
of constants C causes the hypothesis space to increase in size by roughly |C| times, which is
a clear issue for our approach given the number of constants we generate. We propose four
extensions to our approach to ensure that the hypothesis space does not grow too large:

1. Pruning based on examples. The �rst and most signi�cant extension is that we re-
duce the search space by removing any atoms which do not occur in any of the exam-
ples. Most notably, a potential value for a constant is discarded if it never appears in
any of the examples. If the set of values for a constant becomes empty, then any body
mode declaration using that constant may also be discarded. Additionally, if there is
some overlap in the set of senses produced by a word in the schema and a word in the
example, then we can retain only their lowest common ancestor. Say, for example, that
the only word from an example which generates a sense in constant(suitcase) is the
word briefcase. Then all of the values for the suitcase constant, except for case_n_05
which is the lowest ancestor of the two words, could be discarded.

2. Limited search depth. The reason for our breadth-�rst-search approach is that it
allows us to easily restrict the search to a given depth in order to keep the size of the
hypothesis space manageable. This is particularly useful in longer Winograd schemas,
which can produce very large and deep knowledge graphs. In particular, we currently
limit the depth of the search to 3, as we �nd that explanations rarely require context
that is more than three nodes away from the pronoun or candidates. Even if they do, the
necessary explanation is usually then too complex for us to generate in an acceptable
amount of time.

3. No negation as failure. We currently enforce that all atoms in learned rules are pos-
itive. Although negation as failure does allow us to correctly answer a small number
of schemas that cannot be answered without it, we �nd that explanations which use
negation as failure are usually very di�cult to interpret (e.g. the person who speaks is
the person who breaks their something that isn’t concentration). Furthermore, excluding
negation as failure from the hypothesis space signi�cantly reduces the time to generate
the search space.

4. Mode bias constraints. Finally, we de�ne a set of generic constraints over the hy-
pothesis space to rule out a signi�cant number of hypotheses that we can determine,
from their structure alone, to be unsuitable. In total there are eighteen such rules and
constraints, taking three forms.
Firstly, we use the constraint

← body(holds_at_node(nominal(anon(_), _), _)).

88



to prevent any hypothesis which includes a nominal without linking that nominal to
some event or modi�er. A rule which breaks this constraint would imply that the mere
presence of some nominal is enough to in�uence the result, which we deem to be ex-
tremely unlikely.
The second and third set of rules are used to similarly exclude modi�ers and events
which are not linked in any way to the argument structure. For example, consider the
rules:

has_context(X)← body(holds_at_node(modifier(_, _, X, _), _)).
has_context(X)← body(holds_at_node(modifier(_, _, _, X), _)).

. . .

← body(holds_at_node(event(X, _, anon(_), anon(_)), _)), not has_context(X).

. . .

The �rst two rule express that an event has context if there is a body atom that mod-
i�es it; the constraint then asserts that an event must either specify at least one of its
arguments, or be described by some context.

Other Constraints Some �nal constraints on our hypothesis space, which ILASP requires
us to set, are chosen as follows:

• Maximum rule length and maximum number of literals. The number of body
literals permitted per rule is capped at 5 and the rule length at 6 (increased from their
defaults of 3 and 5 respectively). This allows the pronoun and candidate to simultane-
ously be speci�ed by two or three atoms each, thus fairly complex rules can be learned.
There are a small number of examples that may be explained by allowing longer rules,
however we determined the performance cost of increasing the limit to be too great4.

• Maximumnumber of variables. Initially, an upper bound on the number of variables
was established based on the number of variable types in the mode declarations. The
number of variables was later capped at 12 in order to improve performance, as we
never observed more than 12 variables being used (although there is one schema which
uses exactly 12 variables).

• Recall. For body atoms, the recall is always set to 1, as our hypothesis space is struc-
tured in such a way that one body mode declaration should not need to be used multiple
times. We do not limit the recall for head mode declarations, i.e. multiple rules may be
learned.

• Constraints and choice rules. We do not allow constraints or choice rules to be
learned.

4Increasing the maximum rule length to 7 increases the average size of the hypothesis space by over 100
times — to approximately 40 000 rules.
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6.3 Applying Learned Knowledge to Winograd Schemas

Each learning task generated by the method we have described in Section 6.2 produces as a
result, either an ASG extended with commonsense rules that explain the provided examples,
or an assertion that the learning task is unsatis�able (i.e. there is no hypothesis in our hy-
pothesis space capable of explaining the examples). The process for applying the learnings
back to the original schema is then an extremely straight-forward process.
In particular, let us consider again our running example of “the trophy doesn’t �t in the brown
suitcase because it’s too large.” Given suitably selected examples, the returned ASG will in-
clude the learned rule:

start -> s {
may_refer_to(P, C) :- event(_, large , P), neg_event(_, fit , C).
...

}

Hence if the semantic parse of a sentence introduces an object which is large and another
object which doesn’t �t at the root node, we determine that the thing that is large may refer
to the thing that doesn’t �t. This rule is combined with background knowledge in a similar
way as in the learning tasks themselves:

#background {
is_same_as(P, C) :- pron(P), cand(C), may_refer_to(P, C),

not cannot_refer_to(P, C).
...

}

The Winograd schemas are passed to the ASG with context to specify their pronoun p (pron(p))
and two candidates c1 and c2 (cand(c1) and cand(c2)). Then the candidate c1 will be returned
as the answer if is_same_as(p, c1) holds at the start node and is_same_as(p, c2) does not5.
This can be checked by ensuring that when the former literal is provided as context, the gener-
ated program is satis�able, and when the latter is provided, it becomes unsatis�able. Checking
whether c2 is the answer is handled in the same way.

GeneratingNatural Language Explanations To generate natural language explanations,
we extract the learned rules from the returned ASG, and translate those rules automatically
into English by means of a set of simple templates. Di�erent templates exist for di�erent ways
in which the two concepts are connected in the hypothesis. For example if the candidate is
connected to the pronoun in the hypothesis by means of a modi�er with the lemma because,

5Note that if the examples selected provide support for each candidate and do not rule out either of them,
then it’s perfectly acceptable for the hypothesis to make both of these literals hold, in which case no result should
be returned.
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then a template of the form “... causes ...” would be matched. As a concrete example, let us
consider the rule:

may_refer_to(P,C)← event(_, large, P ), neg_event(_, fit, C).

This simple form of rule, in which the pronoun and candidate are not connected, matches the
pattern:

The {variable} {wh-word} {event1} {be} the {variable} {wh-word} {event2}.

The word for the variable is selected from person, people, thing or things based on the number
and animacy of the candidates in the schema. In this case, the trophy and the suitcase are
both singular and inanimate, so the word thing would be chosen. The wh-word is selected
similarly from who and which, and the verb to-be is conjugated appropriately.
The strings for events are generated based on (a) which argument the variable is placed in,
(b) whether the event corresponds an adjectival or verbal lemma, (c) whether the verb is
negated or not, (d) any other arguments which have been speci�ed and (e) any prepositions
or adverbial modi�ers to the event. We use existing tools to conjugate the verb accordingly.
In this case event1 would generate the string “doesn’t �t” and event2 would generate the string
“is large”, giving the �nal explanation:

The thing which doesn’t �t is the thing which is large.
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Chapter 7

Implementation

7.1 Base ASG Generation

The main implementation challenge in this project is in developing a system capable of au-
tomatically generating base ASGs. Our system depends on several large machine learning
models and libraries, and requires a signi�cant amount of logic to process and combine the
results from these resources into a meaningful form, from which a base ASG can be generated.

7.1.1 Design

Figure 7.1 shows an overview of the internal design of our system. To improve code organi-
sation, our implementation is divided into three packages. The �rst parses an input text, the
second annotates a parse tree with semantic information which is used during ASG genera-
tion, and the third generates and prints the base ASG itself from a set of given parse trees. We
will now brie�y describe each of the main components.

Parsing The parsing package (shown in red in Figure 7.1) combines the results from several
machine learning models into a HPSGTree structure. Each non-leaf node in the tree stores its
constituent type, dependency label, children, and the index of its head node. Leaf nodes ad-
ditionally store a pointer to their respective HPSGToken. The token structure stores the token
ID, original value, part-of-speech, lemma, NER class, WordNet sense, and possible referents.
The tokeniser acts mainly as an adaptor to the preprocessing library, allowing it easily to be
swapped out for any other library capable of providing the same functionality, such as spaCy,
NLTK or Stanza. It also makes a call to a separate WSD model, which has its own lightweight
adaptor. The parser similarly acts mainly as an adaptor for constituency and dependency
parsers.
The �nal module of the parser �nds and replaces certain patterns in the tree. These are spar-
ingly used �xes for known parser bugs. For example, the model we use for dependency parsing
appears to be unfamiliar with so as a coordinating conjunction and consistently leaves such
coordination unlabelled. We therefore have rules to �nd such unlabelled dependencies and
make a best-e�ort guess about what the label ought to be.
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Figure 7.1: Pipeline for generating base answer set grammars.

Semantics The semantics package (shown in blue in Figure 7.1) is where the bulk of pro-
cessing is done. Each module here is an annotator, implemented using a visitor pattern, which
simply takes a HPSGTree, adds some additional information, and returns the updated tree.
These annotators are then chained together.
The semantics annotator is responsible for determining the head and dependents at each node,
checking their types, and noting the relevant transformation. The predicate annotator then
takes these annotations and works out the exact logical forms at each node, and how the anno-
tations should be combined (see Subsection 5.3). Finally, the background annotator determines
entailed senses from WordNet and properties from ConceptNet (see Subsection 5.3.2).

ASG Generation The ASG package (shown in green in Figure 7.1) takes a set of input
trees, and produces an ASG to encode their syntactic and semantic composition. The ASG
representation is a map from production rules to sets of ASP rules, each of which is represented
by its own structured AspRule datatype. This allows for rules to be easily modi�ed, combined
and extended. Producing the base ASG involves a �nal walk over each parse tree, to generate
the actual ASP rules (now mostly a straight-forward process) and save them according to their
production rules. It also involves generating a rule for the start node. Our implementation
supports two kinds of ASGs: grounded (which use the “lexicalised” grammar rules discussed
in Subsection 5.3) and ungrounded (“non-lexicalised”).
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7.1.2 NLP Dependencies

We now brie�y discuss and motivate our choice of the libraries and models which our ap-
proach depends on.

Preprocessing We use CoreNLP (Manning et al., 2014) for sentence splitting, tokenisation,
lemmatisation, part-of-speech tagging and named entity recognition. We brie�y discuss the
relevance of these tasks and how they are implemented in Subsection 4.1.1. The motivation
for using CoreNLP is that it allows us to run a single server in the background which is able
to do the vast majority of preprocessing tasks that we require. Furthermore, many of the
models achieve near state-of-the-art performance, which is important since incorrect POS
tags severely handicap the parser, and correct lemmatisation and NER is vital for being able
to match entities of the same type.
We also use CoreNLP for deterministic coreference resolution. In this project, we are only ever
interested in annotating references between entities that we can be sure are the same — it is
our job to resolve the ambiguous cases! State-of-the-art approaches to coreference resolution
use neural models that are rarely con�dent in their predictions. As such, we instead rely on
a much more traditional sieve-based approach. In this approach, a list of possible referents is
generated, and passed through several “sieves”, each of which discards impossible referents,
for example, based on gender, number and animacy. In a traditional setting, the remaining ref-
erents would then be ranked based on linguistic features and the top result selected, however
we instead select a referent only if there is just one to choose from out of the �nal sieve.

Word Sense Disambiguation WSD is a particularly challenging problem, and it is only
recently that models have begun to achieve accuracies which signi�cantly improve on just
choosing the most common sense. Our main method of handling this di�culty is to rely very
little on WSD: it is used solely for generating background knowledge and so when it goes
wrong it’s unlikely to have a signi�cant impact on downstream learning tasks. However,
it is of course helpful to determine senses accurately to improve the quality of background
knowledge. As such, we use the open-source disambiguate model (Vial et al., 2019), based on
RoBERTa, which uses sense vocabulary compression in order to achieve near state-of-the-art
performance.

Parsing For constituency and dependency parsing, we use the HPSG neural parsing ap-
proach developed by Zhou and Zhao (2019). It uses an encoder-decoder architecture to predict
such a joint span structure from a tokenized sentence. In particular, each token’s representa-
tion consists of character, word and part-of-speech embeddings. The parsing model is inspired
by (Kitaev and Klein, 2018): the encoder consists of twelve self-attention layers, and summa-
rizes an input sentence into a set of vectors; meanwhile the decoder is trained to assign scores
to each possible parse tree, based on these vector summaries. At test time, the parse tree with
the highest score is selected.
Our motivation for using this approach is twofold. Firstly, the model is trained with a joint
training goal of predicting both constituent and dependency structures, and thus generally
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produces realistic structures where the two align, making our task of generating an ASG
from the structure far simpler. Secondly, it’s a modern approach, based on XLNet embeddings,
which achieves near state-of-the-art performance.

7.2 Learning

7.2.1 Design

Figure 7.2 shows an overview of the internal design of our system for learning commonsense
knowledge for the WSC using answer set grammars. The components are organised into three
packages: one to convert examples from di�erent datasets into a consistent form, a second to
handle the knowledge hunting process and a �nal one to handle the generation and solving
of learning tasks. We will now brie�y discuss some of the implementation choices for each of
these packages.

Datasets We have an internal Schema type which is used for all Winograd schemas and
examples, and encodes the source of those examples, the pre-processed text, whether the
example has its coreference labelled, and if so, what the pronoun and candidates are. The
dataset package (shown in yellow in Figure 7.2) consists of several simple components to
translate examples from di�erent sources into this standardised format.

Knowledge Hunting The knowledge hunting package (shown in orange in Figure 7.2) is
the largest and most complex of the three packages.
The two labellers are responsible for converting Schemas into a much more useful format. The
Example datatype contains the ASG generated from the sentence, which is generated using
the system described in Section 7.1. It also contains an internal representation of the text’s
knowledge graph. The labellers are also responsible for marking the pronoun and candidates
in the knowledge graph and generating the set of patterns that correspond to the context
function described in Subsection 6.1.2. Most of the code is shared between the two labellers,
the only di�erence being how the pronoun and candidates are identi�ed:

• In the case of Winograd schemas, we currently use a very crude approach which at-
tempts to match the exact text for the candidates against a nominal in the knowledge
graph. This actually turns out to be a signi�cant limitation of our system: for example,
the Winograd schema “Joe has sold his house and bought a new one a few miles away; he
will be moving out of it on Thursday” describes its two candidates as “the old house” and
“the new house”, which do not match any nominals in the semantic graph and hence
this schema is left unlabelled and unattempted. In most cases, this problem does not
look particularly di�cult to solve: even a straight-forward approach of comparing the
word-embeddings of each of the candidates with each of the nominals in the seman-
tic graph and choosing the assignment which maximises the sum of their similarities
would likely be su�cient.
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• In the case of examples, the labelling is done by matching context with the schema.
It is important to note that this is done even for examples from sources with existing
labels. For example, consider the example “back when I was obese, I ate too many
snacks and ate too few vegetables but my weight reacted best when the vegetables were
tasty,” which comes from the WinoGrande dataset. The existing labels are not ideal
for learning knowledge for the schema “the �sh ate the worm; it was tasty”, since the
negative label, snacks, is used to express a very di�erent concept to the one we want to
learn (namely, that somebody loses weight best when healthy food is tasty). However,
our context-based labelling approach �nds that the knowledge we want to learn (the
thing that is eaten is tasty, not the thing that eats) is also expressed unambiguously in
this example, and thus chooses the much more useful negative label, I.

The query generator component takes a schema and generates a query to run over the full set
of examples, based on the approach described in Subsection 6.1.1, while the hunter actually
compiles and runs the query. Examples are labelled only after the initial query as the labelling
process is computationally expensive. The following and �nal component of the knowledge
hunter is the relevance �lter, which ranks each example with respect to the schema, according
to the metric proposed in Subsection 6.1.2, and returns the top-N examples.

Learning Finally, the learning package (shown in purple in Figure 7.2) implements the ap-
proach described in Section 6.2. In particular, the learning task generator combines the ASG
rules for the schema and all of the examples, the mode declarations produced from the schema,
the example de�nitions produced from the knowledge texts, and a �xed background knowl-
edge into a complete learning task. This learning task is then passed to the solver, which acts
mostly as an adaptor to an existing library for learning and solving ASGs.

7.2.2 Knowledge Sources

We provide a brief overview of the knowledge sources considered for our knowledge hunting
process, and their qualities, in Table 7.1. The desirable properties of a knowledge source are
that it should contain a large number of examples, including many examples from similar
domains as to the WSC, and that those examples should have unambiguous (preferably hand-
labelled) coreferences. Additionally, we strongly prefer sources that allow us to both pre-
process these examples and automate our search process over them.
Previous approaches to knowledge hunting rely on web search queries (Sharma et al., 2015;
Emami et al., 2018; Prakash et al., 2019; Sharma, 2019), which has the bene�t that it allows a
huge amount of text to be searched e�ciently with relatively little work by the implementer.
However, automating web searches introduces legal issues as it technically breaks the terms-
of-service of almost all major search providers, and furthermore, the search operators o�ered
by these providers are rather limited — there is no way, for example to search for speci�c
lemmas, senses or parts of speech, and so searching for similar sentences while allowing
di�erent person, number, tense etc. is a di�cult problem that requires an excessive number
of individual search terms.
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Knowledge
Source

Size Similar
domain

Labelled
references

Search can be
automated

Can preprocess
before search

Web Search Engine Huge 7 7 7 7

Web Corpus (e.g.
CommonCrawl)

Large 7 7 3 3

Related Corpus (e.g.
STORIES)

Medium • 7 3 3

WinoGrande/DPR Small • 3 3 3

Previous Knowledge
Hunting Results

Tiny 3 7 3 3

Handwritten Tiny 3 3or 7 3 3

Table 7.1: Qualities of knowledge sources considered.

Our approach relies on three sources of knowledge. The �rst is WinoGrande, which provides
some 40 000 labelled WSC-like examples. We �nd it to be particularly useful as there is a fair
amount of overlap between the commonsense knowledge required to answer WinoGrande
and that required to answer WSC. Furthermore, the size of the WinoGrande means that it is
possible to pre-process the entire dataset in a number of hours, and search it in an number of
milliseconds on consumer hardware. The second source is made up from the results of previ-
ous knowledge hunting approaches to the WSC, which are sourced from web search queries.
These include several hundred sentences which are highly similar to Winograd schemas, but
they are not labelled and are not guaranteed to have unambiguous coreferences or express the
correct knowledge required to solve the schemas (and of course there is no guarantee that our
own knowledge hunting approach will select them as examples). Finally, we allow for a small
number of handwritten examples to be included. It is important to note that, unlike some
other approaches (Sharma, 2019), we do not use handwritten or hand-selected examples when
evaluating the accuracy of our approach, but we do use them to demonstrate the capability of
our approach to generate high-quality explanations based on the examples which have been
observed.

7.2.3 Dependencies

The learning process has only three signi�cant dependencies.

CoreNLP The learner of course relies heavily on our base ASG generator. In particular, the
results of pre-processing using CoreNLP are used in several places. The deterministic (sieve-
based) coreference resolver is used to ensure we only label nominals whose identity we are
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sure of. Furthermore, the number and animacy of candidates is used to generate natural
language explanations as described Section 6.3.

ASG Solver (and ILASP and clingo) The learner relies heavily on an existing program for
learning and solving ASGs (Law et al., 2019). This program takes a learning task and returns
whether the task is satis�able, and the optimal hypothesis if it is. We make only very minor
changes to its source code, such as adding an option to print the ASP meta-representation (so
that it can be passed to an ASP solver such as clingo, allowing a full knowledge graph to
be extracted), disabling some features which we do not use in order to improve performance
(e.g. the ability to learn annotated atoms), and adding some checkpoints in order to identify
performance issues.

Pattern We use the web-mining library, pattern (Smedt and Daelemans, 2012), to conju-
gate verbs when generating natural language explanations, as described in Section 6.3.
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Chapter 8

Evaluation

8.1 Knowledge Graphs and Base ASG Generation

In this section, we will evaluate both the quality of our knowledge graph representation and
our automated approach for generating these structures using answer set grammars. We will
�rst evaluate the claim that our generated ASGs can act as semantic parsers, by exploring
their ability to produce accurate meaning representations for Winograd schemas. We will
then critically analyse the quality of our semantic parses, by comparing the semantic richness
of our representation against the representations used by several freely-available and widely-
used broad-coverage semantic parsers.

8.1.1 Performance on WSC

In our �rst experiment, we generate a base ASG for each Winograd schema. We then parse
each schema with its respective ASG, and extract the knowledge graph structure produced at
the root node. This produces a set of atoms of the form:

event(yelled, yell, jim)

∧event(upset, upset, he)
∧nominal(jim, person)
∧nominal(kevin, person)
∧nominal(he, he)

∧modifier(at, at, yelled, kevin)
∧modifier(because, because, yelled, upset)

∧modifier(so, so, upset)

We choose to focus our evaluation on the ability of the procedure to extract the (core and
non-core) argument structure of the text. Therefore, we then apply a post-processing step to
separate out each argument, creating a (source, label, argument) triple, similar to in a neo-
Davidsonian representation. The core arguments of events are assigned the labels agent, pa-
tient, recipient and controls respectively. Non-core arguments (modi�ers) use their own value
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as their label. For example, the events and modi�ers in the conjunction above generate the
triples:

(yelled, agent, jim)

(upset, agent, he)

(yelled, at, kevin)

(yelled, because, upset)

(_, so, upset)

Note how we do not evaluate the lemmas/NER categories assigned to each node in the knowl-
edge graph, instead using the token values directly. Evaluating these “node labels” would not
be worthwhile since CoreNLP’s lemmatisation and basic 3-class NER classi�er almost never
produce errors. We also choose not to evaluate senses assigned to each token during the back-
ground knowledge generation process: while this process commonly produces errors, these
errors can be nuanced and di�cult to spot. They also do not a�ect our base representation
and are rarely harmful in practice, since we can rely solely on lemmas if required.
We next de�ned gold representations for each of the 273 Winograd schemas, by manually
identifying the core and non-core arguments in each text and labelling them according to the
format described above. We then measure labelled accuracy; that is we consider each triple
as a whole: a predicted edge is only counted as a true positive if the exact edge is present in
the gold representation. Using this de�nition, we �nd 76 false positives (generated edges not
present in the gold representation) and 88 false negatives (gold edges not generated), giving
the approach an overall precision of 0.972 and a recall of 0.968. The recall is slightly worse
than the precision as there are a couple of cases where missing dependencies cause us to lose
an entire sub-phrase in our generated representation.
We note that the precision and recall of our approach is in the region of what is achieved by
a dependency parse alone. This substantiates our hypothesis that our approach does not in-
troduce many more inaccuracies beyond those which arise from the machine learning models
used for pre-processing and parsing. This is largely a result of a key design choice of our
approach, which is that we would only use semantic information which we could determine
accurately. In particular, we only have four kinds of core argument, which can largely be de-
termined from the dependency structure, and non-core arguments use lemmas directly from
the text. This is in contrast to, say, FrameNet style argument structure which has �ve kinds of
core argument and nineteen distinct classes of adjunctive arguments: classifying arguments
in such a structure is clearly much more di�cult and will produce many more errors.
Investigating more deeply, we �nd that almost all of the errors in our generated representa-
tions result from inaccurate dependency parses. The only exceptions are one case in which
the minimal distance policy fails and a handful of examples of raising (see Subsection 5.3.1),
as well as few cases where a passive construction has no auxiliary verb, and as such we fail
to detect that the verb is passive. There are even some cases where the POS-tagging or de-
pendency structure is incorrect, however we are still able to generate the correct semantic
representation since we detect heads/dependents of the incorrect type and correct them au-
tomatically.
In Table 8.1, we brie�y compare our approach with several other openly available semantic
parsers based on a variety of di�erent formalisms. Unfortunately, directly comparing the ac-
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curacy of broad-coverage semantic parsers is a di�cult task due to the variety of di�erent
semantic representations. Regardless, Table 8.1 makes very clear the trade-o� between accu-
racy and semantic richness. For example, AMR relies on PropBank framesets and signi�cantly
abstracts away from syntactic features. This means that it is able to unify structures that our
approach cannot. However, it also makes the semantic parsing task signi�cantly more di�-
cult, as demonstrated by the fact that in more than two-thirds of cases, the AMREager parser
fails to extract even the general argument structure of the schema. We will investigate the
properties shown in this table and the overall quality of our semantic representation more
thoroughly in the next section.

8.1.2 Quality of Knowledge Graphs

We will now look in more detail at some of the strengths and limitations of the knowledge
graph structures we generate and our method for generating them.

8.1.2.1 Strengths

Accuracy The graphs generated by our approach are generally highly accurate: they are
based on constituency and dependency structures which can often be determined accurately,
and as demonstrated in the previous subsection, we use a translation approach which is typed
and linguistically-motivated, and as such very rarely introduces additional errors. Indeed,
we even occasionally �x existing parsing errors. Figure 8.1 shows an example, where the
determiner has incorrectly been marked as the head of a noun phrase. We are able to resolve
this and choose the noun since we have a type constraint stating that the direct object of an
event must be a nominal.
Overall, we parse 219 (80%) of schemas perfectly and generate the correct general argument
structure for 267 (98%) schemas. More ambitious approaches, such as those which produce
AMR, can fail on even very simple sentences, as shown in Figure 8.2.
Evaluating the accuracy of semantic parsers on the WSC is time consuming, so we only in-
clude the results of our own approach and AMREager in Table 8.1. However, Sharma (2019)
notes that “40 [WSC] problems [could] not [be] answered because of syntactic dependency
parsing errors and part-of-speech errors while generating the representations”, suggesting
that at most 233 problems are parsed correctly by their approach, and we also found that at
least 90 clearly incorrect parses were generated by OpenCCG.

Robustness The approach to generating graphs is robust, and supports both complex lin-
guistic structures, as well as ungrammatical texts. Table 8.2 lists the set of linguistic con-
structions which we can parse without failure, while Figure 8.3 demonstrates our ability to
generate a knowledge graph for the ungrammatical text “PSU too large, doesn’t �t”. As noted
by Reddy (2017), this is a key advantage of dependency-based approaches to semantic parses
compared to CCG parsers, which generally must satisfy the constraint that the text is eventu-
ally assigned a sentence tag. This makes our approach suitable for parsing text sourced from
the web, where ungrammatical sentences occur frequently, for example in news article titles
or forum posts.
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(a) Section of the parse tree demonstrat-
ing incorrect dependency structure.

The city councilmen refused the demonstrators a permit because they feared violence .
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(b) Generated knowledge graph.

Figure 8.1: Demonstration of robustness to parsing errors.

(a) AMREager representation.
The fish ate the worm , it was hungry .
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(b) Our representation.

Figure 8.2: Semantic Representations for the simple sentence “The �sh ate the worm, it was
hungry.”

PSU too large , does n't fit
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Figure 8.3: Demonstration of robustness to ungrammatical texts.
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Property
Dependencies

(Zhou and
Zhao, 2019)

DepLambda
(Reddy, 2017)

OpenCCG
(White, 2016)

Chabierski
(Chabierski
et al., 2017)

Wino-
Grammar

(Ours)

TRIPS
(Allen and
Teng, 2017)

KParser
(Sharma,

2019)

AMREager
(Damonte

et al., 2017)

Base formalism Dependencies Dependencies CCG CCG
ASG

(Simpli�ed
HPSG)

Construction
Grammar

Dependencies

None
(Predicts

directly from
tokens)

Accuracy (WSC273
schemas parsed

perfectly)
221 (81.0%) - - - 219 (80.1%) - - 43 (15.8%)

Accuracy (WSC273
schemas parsed with
correct arg structure)

- - - - 267 (97.8%) - - 89 (32.6%)

Semantic richness Poor Mediocre Good Good Good Very Good Very Good Excellent

Domain general
approach?

Yes Yes Yes Yes Yes Yes Yes Yes

Optimised
representation for
inductive learning?

No No No Yes Yes No No No

Table 8.1: A comparison of semantic parsers based on their suitability for inductive learning approaches on the WSC. It is important to
note that the accuracy results here are not directly comparable since each parser in this table uses a di�erent semantic representation.
However, we note that richer semantic representations are more di�cult to generate and thus usually correspond with lower accuracy.
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Property Dependencies DepLambda OpenCCG Chabierski WinoGrammar TRIPS KParser AMREager

Key 
representation 
features

Semantic roles No Yes Yes Yes Yes Yes Yes Yes

Preposition senses No No No No Limited Yes Yes Yes

Discourse relations No No No No Limited Yes Yes No

Cross-POS relations No No No No No No No Yes

Lexical 
properties

Semantic mapping to 
WordNet (or similar) No No Yes No Yes Yes Yes Yes

Entailment No No No No Yes No Yes *** No

Named entities No No Yes Yes Yes No Yes Yes

Compound nouns Yes Yes Yes No Yes Yes Yes Yes

Tense No No Yes No No Yes Yes No

Supported 
linguistic 
structures

Entity attributes 
(including copular form) No Yes Yes Yes Yes No Yes Yes

Possession Yes Yes Yes No Yes Yes Yes Yes

Passives No No No Yes Yes No Yes Yes

Relative Clauses No Yes ** Yes Yes Yes Yes No Yes

Control and raising No Yes Yes Yes Yes Yes No Yes

Coreferencing No No No Yes Yes * No Yes Yes

Supported 
logical 
structures

Negation Yes Yes Yes Yes Yes Yes Yes Yes

Conjunction No Yes ** Yes Yes Yes Yes Yes Yes

Quantification No No No Yes No Yes No No

*Unambiguous coreferences only.    **Requires post-processing steps.    ***Hypernymy only.

Table 8.2: Overview of the properties represented by our knowledge graphs and constructions supported by our automated approach,
compared to previous work on broad-coverage semantic parsing.



Canonical Representations Our approach signi�cantly improves upon dependency pars-
ing alone, by assigning many structures with di�erent dependency structures the same knowl-
edge graph. In particular, as shown in Table 8.2, we handle copular form, passives and relative
clauses without the need for specialised predicates, in addition to sharing arguments in con-
structions such as control, raising and coordination. Some examples of di�erent constructions
receiving the same representation are shown in Figure 8.4, and further examples are given in
Subsection 5.3.1. As shown in Table 8.2, the only other representations we looked at which
treat all of these constructions in a uniform way are the representation used by Chabierski
et al. (2017) and AMR.

Consistency One bene�t of the use of answer set grammars results is that knowledge
graphs are generated in a systematic way, that is easy to follow and verify. Another result of
this is that the same linguistic structures consistently generate the same patterns in knowledge
graphs. Meanwhile, machine-learning based approaches which predict semantic structure di-
rectly from a sequence of tokens, may generate entirely di�erent structures for sentences
which are identical, save a single noun for example.

Suitability for ILP As discussed in Section 5.1, we deliberately choose to implement a
classical Davidsonian semantics instead of a more popular neo-Davidosnian semantics. The
reasoning for this is that, despite increasing the complexity of generating representations, it
leads to shorter representations that can be described with fewer variables, which is a useful
quality for reducing the size of the hypothesis space for ILP techniques. Additionally, and for
the same reason, we use a very small number of �xed predicates (just three), in contrast to
most other approaches which have a di�erent predicate for every di�erent concept. As pointed
out in Table 8.1, the only other approach we have found which makes these considerations is
the one proposed by Chabierski et al. (2017).

Modularity As noted in Section 7.1, we have dependencies on a preprocessor (tokeniser,
lemmatiser and basic NER classi�er), a constituency parser and a dependency parser. Each of
these components just needs to implement a simple interface, allowing us to easily swap out
one model for another. Thus we can improve the performance of our system at very little cost
as the state-of-the-art models for these tasks continue to improve.

Automation and Domain-Generality Our approach is fully automated and although the
generated ASGs can usually only handle a speci�c set of constructions, our process for gen-
erating the ASGs is domain general.

8.1.2.2 Limitations

Preposition Senses and Discourse Relations One of the most signi�cant limitations of
our approach is that we do not attempt to disambiguate between di�erent senses of prepo-
sitions and discourse connectives. As shown in Table 8.1, this kind of disambiguation is at-
tempted in relatively few existing schemes, however we note that it is vital for good semantic
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The young girl is singing .

singing

girl

Subj

young

Subj

(a) Knowledge graph gener-
ated for copular form.

The singing girl is young .

young

girl

Subj

singing

Subj

(b) Knowledge graph gener-
ated for copular form.

Pixar claimed the prize won for Frozen .

claim
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Subj
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Obj
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Obj

for

Mod

frozen
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(c) Knowledge graph generated for a passive
construction.

Pixar claimed the prize , which they won for Frozen .
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Obj
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for
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frozen

Obj

(d) Knowledge graph generated for a non-passive con-
struction.

Anne understood to ask for help immediately .

understand

person

Subj ask

Ctrl

Subj

for

Mod

help
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immediately

Mod

(e) Knowledge graph generated for control.

Anne understood and immediately asked for help .

understand

person

Subj

and

Mod

ask

Obj

Subj

immediately

Mod

for

Mod

help

Obj

(f) Knowledge graph generated for coordination.

Figure 8.4: Demonstration of canonical forms. These examples show how we handle struc-
tures such as copular form, passives, relative clauses, control and coordination, generating
the same structures in our knowledge graphs, even though the dependency structures may
di�er signi�cantly.



understanding. For example, we would not be able to match the causal sense of since in I
haven’t left the house since it’s dangerous outside matches with because in I haven’t left the
house because it’s dangerous outside, or the temporal sense of since in I haven’t left the house
since a week ago with for in I haven’t left the house for a week, although we can handle
some basic cases (e.g. in, into and inside) through synonymy which is encoded in background
knowledge. We chose to use lemmas directly instead of preposition senses as we found that
incorrectly assigned prepositions would make learning tasks unsatis�able, unless we were
able to �nd another example that had been assigned an incorrect preposition in a similar way,
and because lemmas in similar context often have the same sense anyway.

Cross-POS Representations Another signi�cant limitation of our representation, but one
which is shared by all of the representations considered in Table 8.1 save AMR, is its inability to
match the same concept when it is expressed using di�erent derivational forms with di�erent
parts of speech. For example, consider the three sentences:

She fears heights.
She has a fear of heights.
She is fearful of heights.

Clearly all of these sentences have the same meaning and should have one canonical form,
but our semantic parsing method is so closely tied to syntax that we do not pickup their
similarity. Indeed, even the individual words (the verb fears, noun fear, and adjective fearful)
get assigned completely di�erent representations, as can be seen in Figure 8.5. Solving this
issue in particular is tricky for our approach, given that we must closely couple semantic
composition to syntactic composition, and that to our knowledge, there is not an existing
knowledge base which links such derivational forms in a meaningful way.

Performance and Domain-Speci�city Finally, although the process for generating ASGs
is domain speci�c, the generated ASGs themselves can only parse constructions which have
been seen during their generation. This makes them suitable and reusable in some cases where
texts are expected to take similar forms (such as in many domain-speci�c semantic parsing
problems, and in the bAbI tasks dataset, for example), or suitable for one-o� use when con-
structed based on the texts they are intended to parse. However, generating domain-general
ASGs for English language would be an incredibly di�cult task due to the sheer number of
constructions it would need to support and the size of the vocabulary. Indeed, even ASGs
which capture a relatively small number of sentence forms can perform very poorly, as cur-
rently the implementation we use for solving ASGs relies on a greedy approach for parsing
which does not scale well when there are many possible production rules to choose from.

8.2 Learning

In this section, we assess the capability of ASG induction to learn useful commonsense rules
that extend our base ASGs, and allow us to solve coreferencing problems. We investigate our
performance on bAbI tasks 11 and 13, as well as on the Winograd schema challenge.
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She fears heights .

fear

she

Subj

height

Obj

(a) Our representation of
the verbal form.

She has a fear of heights .

have

she

Subj

fear

Obj

of

Mod

height

Obj

(b) Our representation of the nominal
form.

She is fearful of heights .

fearful

she

Subj

of

Mod

height

Obj

(c) Our representation of the adjec-
tival form.

(d) AMR representa-
tion of the verbal form.

(e) AMR representation
of the nominal form.

(f) AMR representation
of the adjectival form.

Figure 8.5: WinoGrammar and AMR representations for phrases using di�erent forms related
to the word “fear.” Note how our approach assigns di�erent representations to each form (even
for the individual words: the verb fears, noun fear, and adjective fearful), while AMREager
produces a canonical form for all three examples.



1 Sandra went back to the bathroom.
2 Afterwards she travelled to the o�ce.
3 Where is Sandra? o�ce
4 John went to the garden.
5 Following that he went to the bedroom.
6 Where is John? bedroom
7 Mary went to the o�ce.
8 Then she journeyed to the garden.
9 Where is Mary? garden
10 John journeyed to the kitchen.
11 Following that he travelled to the bedroom.
12 Where is Mary? garden
13 Mary went to the kitchen.
14 Then she went to the bedroom.
15 Where is Mary? bedroom

Table 8.3: An example from bAbI task 11.

8.2.1 Performance on bAbI Tasks

Motivation In our �rst experiment, we attempt to learn the knowledge required for the
coreferencing tasks (tasks 11 and 13) from the bAbI dataset. The bAbI tasks are very well-
suited to inductive learning approaches due to their �xed vocabulary, lack of noise and gen-
erally straight-forward sentence structure. Furthermore, inductive logic programming has
already been applied to many of the bAbI tasks (Chabierski et al., 2017), including tasks 11
and 13 (Mitra and Baral, 2016).

Methodology Let us now explain how we setup our learning tasks for the bAbI conferenc-
ing tasks. First, recall the example format for bAbI tasks 11 and 13. Each example consists of
10 sentences and 5 questions. An example is shown Table 8.3.
Our learning tasks are generated as follows:

1. Generate base ASG. Firstly, we generate a ASG based on a set of training examples
from bAbI task 11. Speci�cally, for each example, the ten sentences are joined together
as a single text and passed to our ASG generation pipeline, while the questions are
ignored entirely. All sentences from each example are passed in at once, so that our ASG
will encode that each sentence follows from the previous (by means of a next_event
modi�er), and can capture which events happen at which time-steps (by means of a
happens predicate). We make only a single change to our ASG generation pipeline,
which is that proper names are assigned their values directly as their identi�ers, so
that we can capture that, for example, Mary always refers to the same entity. For the
example in Table 8.3, sentences 1 and 2 would generate a representation including the
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literals:

event(e1, go, sandra) ∧ nominal(sandra, person) ∧modifer(e1, to, bathroom)

∧event(e2, travel, she)∧nominal(n1, she)∧pronoun(n1)∧modifier(e2, to, office)
∧modifier(m1, next_event, e1, e2) ∧ happens(e1, 1) ∧ happens(e2, 2)

2. Translate examples. Each training example is translated into a logical form. It is
important to note that we do not parse the question itself — we instead transform each
question into two binary choices. For example, question 3 in Table 8.3 would, in e�ect,
require the learner to come the conclusion at_location(sandra, office, 2) and reject
the conclusion at_location(sandra, bathroom, 2). As such, each individual example is
very long and has �ve inclusions and �ve exclusions which must be explained by the
learner.

3. Add background knowledge. We add hand-written background knowledge. This
consists of the facts time(0..10). and the single rule which encodes the successor rela-
tion:

inc(T, T + 1)← time(T ), time(T + 1).

4. Add mode declarations and bias constraints. We add a set of hand-written mode
declarations. The mode declarations allow the learner to learn rules with at_location(
Person, Location, T ime) or coref (Pronoun, Person) at their head. They allow body
literals to specify events and modi�ers, as well as use the inc predicate from the back-
ground knowledge, or to use the learned at_location and coref predicates.
We also add a set of hand-written bias constraints to reduce the size of the hypothesis
space. In total there are nine of them. These are simply used to restrict some combina-
tions of head and body literals. For example, we do not allow the at_location or coref
predicates to be used in the body of a rule which has a coref predicate as its head.

5. Train. The base ASG, examples, background knowledge, mode declarations and bias
constraints are combined into a single learning task and the task is processed using the
existing ASG solver binary. A maximum of 5 body literals and 6 variables were allowed
per learned rule.

6. Test. To test our process, we generate a set of new examples, from bAbI’s test data, in
the same way as our training examples are generated. We then check that the hypothesis
generated by the training examples generates the correct inclusions and exclusions for
the test examples. We tested on 100 examples for each task. To allow us to reuse the
same example generation procedure, each example was considered answered correctly
only if all �ve of its questions were correctly answered.

Since our goal is to test the limits of learning on top of ASGs for natural language, our ap-
proach di�ers signi�cantly to previous approaches. Most notably, previous approaches (Mitra
and Baral, 2016; Chabierski et al., 2017) tend to provide some event calculus axioms in their
background knowledge, taking the form:

holdsAt(F, T + 1)← initiatedAt(F, T ).

holdsAt(F, T + 1)← holdsAt(F, T ), not terminatedAt(F, T ).

111



No. of examples Training time (s) Accuracy, task 11 Accuracy, task 13

1 24 32% 87%
2 168 100% 100%
5 690 100% 100%

Table 8.4: Summary of results for the bAbI tasks dataset.

The �rst rule states that a �uent holds after it is initiated, while the second states that a �uent
continues to hold until it is terminated. These help the learner by handling the recursion
needed to express the fact that a �uent will continue to hold. In order to increase the di�culty
of our learning task, we do not include such rules.

Results The results of our experiment are summarised in Table 8.4. The main di�culty for
our approach is �nding a question that forces the learner to learn that somebody stays in the
same place unless they move. In Table 8.3, this would be a question like question 12. When
running our experiment, the �rst example did not have any such questions, and so the learner
was able to satisfy the training example with a hypothesis which was insu�cient for most
testing examples.
After a small number of examples (less than 2 on average), our approach settles on the hy-
pothesis:

coref(P,C)←pronoun(P ),modifier(_, next_event, E1, E2),
event(E1, travel_v_02, C), event(E2, travel_v_02, P ).

at_location(P,L, T )←event(E, travel_v_02, C),modifier(_, to, E, L), happens(E, T ).
at_location(P,L, T ′)←at_location(P,L, T ), inc(T, T ′),

not event(E, travel_v_02, P ), happens(E, T ).
at_location(P ′, L, T )←at_location(P,L, T ), coref(P, P ′).

The �rst rule asserts that a pronoun (speci�cally, a pronoun which is moving) refers to the
person who acted (speci�cally, the person who moved) in the previous event. In the context
of the bAbI coreferencing tasks, this is the correct rule to be learned, and in previous symbolic
approaches to the task, this was the full extent of what was learned (Mitra and Baral, 2016).
We additionally learn three rules which specify a person’s location:

1. If somebody moves to a location, then they are at that location.

2. If somebody is at a location, and they are not known to move, at some time-step, then
they are still at that location at the next time-step.

3. If a pronoun is marked as at a location, then the person corresponding to that pronoun’s
referent is at the location.

This hypothesis correctly answers not only bAbI task 11, but also task 13, compound coref-
erence, since our base ASGs automatically capture coordination, producing events for both
nominals.
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Discussion It is important to note that the motivation of this work is to produce a proof-of-
concept for learning complex rules from natural language examples using ASGs, and as such
we have manually de�ned some parts of the learning task, as discussed in our methodology.
Our work is therefore not directly comparable, even to existing symbolic approaches. How-
ever we note that both neural approaches and the previous symbolic approach to bAbI tasks
11 and 13 (Mitra and Baral, 2016) also achieve 100% accuracy, although they do not state how
many of the 200 example texts they use. Additionally, we note that all of the main limitations
of our approach are ones which we share with the existing symbolic approach (Mitra and
Baral, 2016): �rstly, both approaches specify their hypothesis spaces manually; secondly, we
both develop models for individual bAbI tasks, and not a single model capable of handling the
full set of 20 tasks; and �nally, the learned rules are event dependent.
Importantly, evaluating our performance on bAbI tasks 11 and 13 led us to the following
observations, which motivated our approach to the WSC dataset:

1. It is possible to learn complex hypotheses on top of our generated ASGs for
natural language. The hypothesis learned for the bAbI coreferencing task is relatively
complex, learning multiple rules, some of which have recursive de�nitions (at_location),
and demonstrates non-observational predicate learning through its de�nition of coref.
Furthermore, the accuracy of the approach demonstrates that our ASG can parse ex-
amples from bAbI tasks 11 and 13 perfectly, and our ability to answer both tasks 11
and 13 by training only on task 11 demonstrates the capability of our semantic parses
to recognise similar structures. Overall, this con�rms our ability to learn (complex)
commonsense rules from natural language examples using our ASGs, and so helps to
validate our hypothesis that ASG induction might be useful for the WSC.

2. Optimising the size of the hypothesis space is important. The most signi�cant
challenge of bAbI tasks 11 and 13 for our approach, was that requiring the learner to
explain a person’s location in addition to resolving the coreference resulted in a very
large hypothesis space that would take hours to search. The main learning was there-
fore the necessity of choosing variable and constant types to minimise the number of
possible combinations, combined with the use of e�ective bias constraints. In particular,
the use of bias constraints in this task led to a reduction in the size of the search space
from some 13 982 rules down to 1063.

8.2.2 Performance on the Winograd Schema Challenge

In this subsection, we evaluate the performance of our approach on the WSC273 task. We
�rstly discuss the accuracy our approach achieves, before investigating more thoroughly how
the selection of examples and our hypothesis space in�uences performance. We then evaluate
the quality of our explanations, and �nally outline the main strengths and weaknesses of our
approach.

8.2.2.1 Accuracy

We ran all 273 Winograd schemas through our system. In total, 91 schemas (33%) were an-
swered correctly and 5 schemas (2%) were answered incorrectly, while 177 schemas (65%)
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Schema (273) Parsed (259)
Labelled (237)

Generated Learning Task (112)
True Positive (91)

False Negative (5)
Inconsistent Learning Task (12)

Predicts Both Answers (4)

No Relevant Knowledge Texts Found (125)

Failed to Extract Candidates (22)

Failed to Parse (14)

Figure 8.6: Full classi�cation of Winograd schemas according to their result, or the reason
why they were left unanswered.

were left unanswered. This gives our approach a precision of 0.95 and a recall of 0.33.
It is important to note that we will not make a prediction if (i) we cannot �nd any relevant
knowledge, (ii) we �nd contradictory examples that cannot be explained by a hypothesis in
our hypothesis space, or (iii) we �nd evidence to support both candidates and no evidence
to reject either of them. This explains how we are able to achieve such high precision —
any example which manages to overcome all of these hurdles will very likely be answered
correctly.
While our accuracy is 33.3% — i.e. less than chance for a binary decision problem, it is impor-
tant to note that this result cannot be compared fairly against existing machine learning-based
approaches which attempt the full dataset. Indeed, just by making a random guess for the 177
unanswered schemas, we should expect on average to get a further 88.5 schemas correct. As
such, this extended approach could be expected to achieve 65.8% accuracy on the full WSC,
and would therefore be roughly comparable in accuracy to many recent language-model based
approaches such as an ensemble of 14 pre-trained LMs trained by Trinh and Le (2018) (63.7%),
or OpenAI’s GPT2 (Radford et al., 2019) (70.7%).

Sources of Errors Because of the amount and complexity of pre-processing required in
order to generate a learning task for a Winograd schema, and the noisy nature of examples
which are sourced from the internet, there are many reasons why a schema might be left
unanswered, or answered incorrectly. Figure 8.6 provides an overview of how common each
of these reasons are. Let us now investigate more closely the main sources of errors:

1. Parsing failure. Approximately 5% of schemas do not generate a base ASG. This is
because we currently have no translation for certain dependencies, and fall back to a
default translation. Since this default translation is often incorrect, any schema con-
taining an unsupported dependency is currently ignored. The most signi�cant issue
is that we currently do not translate the expl (expletive) dependency, which occurs in
fourteen schemas, including, for example:

There is a gap in the wall. You can see the garden through it.
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De�ning the correct translation is usually a straightforward process, and it would likely
not be too di�cult to resolve this issue in future work.

2. Labelling failure. For approximately 8% of schemas, we fail to determine the nominals
in the schema’s knowledge graph which correspond to the candidates. As we note in
Subsection 7.2.1, this is because our labelling approach for Winograd schemas is cur-
rently very primitive. For example, we do not match the candidates old house and new
house to his house and a new one respectively for the schema:

Joe has sold his house and bought a new one a few miles away.
He will be moving out of it on Thursday.

since the text does not match. Again, solving this problem is largely an issue of engi-
neering work.

3. Knowledge hunting failure. The most signi�cant bottleneck to our performance is
lack of knowledge texts — almost half of all schemas (46%) fail at the knowledge hunting
stage. However, we note that previous knowledge hunting approaches report similar re-
sults — for example, Sharma (2019) �nds knowledge for exactly 50% of the 240 problems
attempted. An example of a schema that fails to match any knowledge text is:

Fred is the only man alive who still remembersmy father as an infant.
When Fred �rst saw my father, he was twelve years old.

The knowledge required to handle this example (that twelve years old is too old to be
an infant) is both highly speci�c and not knowledge that we can expect to be written
down anywhere. In order to be able to solve schemas like this one, we would need to
be able to retrieve and make use of signi�cantly more general and variable texts than
we do currently, which is not a straight-forward task.

4. No hypothesis. Of schemas which successfully generate a learning task, 11% are not
solved because there is no hypothesis in the search space capable of explaining the
examples, making this the most common cause of failed learning tasks. As an example,
let us consider the schema:

Joe paid the detective after he received the �nal report on the case.

The knowledge texts which are selected for this schema include:

At dinner Felicia decided to pay for Elena’s meal
because Felecia had received a large bonus today.

and

At dinner Felicia decided to pay for Elena’s meal
because Elena had received a large bill today.

Since the hypothesis space has no way to distinguish between the bonus and the bill,
it is not able to explain the fact that the person who pays is the person who receives in
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the �rst example, but not the second. We believe that these cases could often be solved
by weighting examples. In this particular example, there are a total of �ve examples
found by the knowledge hunter — four of which are explained the hypothesis that the
person who pays is the person who receives. Furthermore, the example that generates
the inconsistency is determined to be the least relevant of the �ve examples, so if the
weighting were based on relevance, there would not be a signi�cant cost applied for its
mislabelling.

5. Unusable hypothesis. There are four learning tasks (4%) which generate a hypothesis
that cannot be used, as it predicts both answers. Consider, for example the schema:

Jane knocked on the door, and Susan answered it. She invited her to come out. (8.1)

The knowledge hunter �nds the text:

Jeremiah knocked on the door and invited them to come out for a picnic. (8.2)

and:

When I knocked,Mrs. M answered the door and invited me in. (8.3)

These two examples can be explained by the hypothesis:

may_refer_to(P,C)←event(_, invite, P, _, _), event(_, answer, C, _).
may_refer_to(P,C)←event(_, invite, P, _, E),modifier(_, out, E),

event(_, knock, C, _).

Let us note how the �rst rule states that the person who answers is the person who invites,
which correctly answers (8.3) and does not apply to (8.2), and returns the (incorrect)
answer of Susan when applied to (8.1). Meanwhile the second rule states that the person
who knocks is the person who invites somebody to _ out, which answers (8.2) correctly
and does not apply to (8.3), but instead returns the (correct) answer Jane when applied
to (8.1). There is little we can do to solve these cases except attempt to source more
knowledge in the hope of learning something which excludes one of the answers.

6. Incorrect hypothesis. A �nal 4% of learning tasks fall into the worst error case — by
predicting the wrong answer. This generally happens when the learner has not seen any
example with enough overlapping context with the schema. An example of a schema
which is answered incorrectly is:

The lawyer asked the witness a question , but he was reluctant to repeat it .

This schema cannot be answered correctly as we �nd no example where the question-
asker is reluctant to repeat themselves. For example, the most relevant text found by
our knowledge hunter is:

Someone once askedme a strange question . But I am reluctant to repeat it.

which leads us to the incorrect hypothesis that the person who is asked is the person who
is reluctant. In this case, the learner perhaps needs an example with the precise context
of a lawyer being reluctant to repeat themselves in order to better specify its hypothesis.
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Consistency In order to evaluate the consistency of an approach to the WSC, Trichelair
et al. (2019) propose testing against a “switched” version of the dataset, in which, where pos-
sible, the positions of the two candidates in the schema are swapped. The idea is that, for
example, when the schema Jim yelled at Kevin because he was so upset is changed to Kevin
yelled at Jim because he was so upset, we should check whether our answer switches as ex-
pected. The proportion of predictions that change is called the consistency score.
131 of Winograd schemas can be treated in this way, of which we answer 54. For these 54
schemas, our answer always switches. This is because we learn the exact same set of rules for
the switched dataset, and there is currently no schema for which we learn a rule which spec-
i�es the candidate itself. This gives our approach a consistency score of 100%. In fact, even if
we were to make a random choice on the remaining 77 schemas that were not answered, we
would still expect to get a consistency score of 71% on average.
Consistency is a property which we share with existing knowledge hunting and reasoning
approaches (Emami et al., 2018; Sharma, 2019), which also score 100% on this metric. On the
other hand, machine learning based approaches are notoriously inconsistent when answering
the WSC, and often swap their answers even when the candidates correspond to proper nouns.
For example, the best performing model reported in (Kocijan et al., 2019b), which is based on
�ne-tuning BERT, achieves a consistency score of just 55%, while BERT without �ne-tuning
achieves 44%.

Performance on Problem Classes Given that our approach answers only one third of
Winograd schemas, a key question is whether we are simply answering the easiest third of the
dataset — perhaps it is the case that the best we could possibly expect to do on the remaining
two thirds of the dataset is barely better than chance — or whether we are actually answer-
ing schemas that other approaches �nd di�cult — in which case ensembling our approaches
may actually yield signi�cantly improved performance. In order to answer this question, we
investigate our performance on schemas which are (a) ambiguous, i.e. schemas which even
humans have di�culty answering, (b) associative, i.e. schemas with strong statistical hints,
and (c) answered by current state-of-the art approaches.

• Ambiguous schemas. The average human performance on the questions which we
answer correctly is 95%, while the average human performance on the questions we
answer incorrectly is just 84%, compared to a dataset-wide average of 92% (Bender,
2015). This seems to suggest that our approach mimics human performance to some
extent — our approach struggles on the problems on which humans struggle. However
it is important to bear in mind that the number of examples, in particular false negatives,
is very small, and so this result should be taken with a grain of salt.

• Associative schemas. The WSC contains 37 associative schemas. These schemas are
much easier for language models than non-associative schemas: e.g. �ne-tuned BERT
achieves 81% accuracy on the associative set of schemas, compared to 70% on the re-
mainder (Kocijan et al., 2019b). Our approach, on the other hand, actually does partic-
ularly poorly on associative schemas — we answer only 7 of them, of which we get 6
right and 1 wrong, therefore achieving a precision of 0.86 and a recall of 0.16, both of
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Knowledge Sources Precision Recall

WinoGrande (Sakaguchi et al., 2020) only 0.89 0.11
Web Search Examples (Sharma, 2019) only 0.88 0.22

Both sources 0.95 0.33

Table 8.5: A comparison of how our approach performs when restricted to a speci�c knowl-
edge source.

which are signi�cantly lower than our dataset-wide results. This is because associa-
tive schemas rely on knowledge of the identity of the candidates: for example, in the
schema I’m sure my map will show this building, it is very famous, we need a knowledge
text to express that buildings can be famous (while maps cannot). However in practice
we rarely �nd knowledge texts with similar candidates, making such problems very
di�cult.

• Schemas answered correctly byWinoGrande. The current state-of-the-art approach,
which �ne-tunes RoBERTa using the WinoGrande dataset (Sakaguchi et al., 2020), an-
swers 245 schemas correctly (90%), and 28 incorrectly. Of the 28 schemas which are
answered incorrectly by WinoGrande, we answer 7 correctly, and of the 5 schemas we
answer incorrectly, WinoGrande gets only 2 correct. This helps to rea�rm our hypoth-
esis that we do not just answer the easiest third of schemas, and that our approach
in fact is good at answering a di�erent set of schemas than language model-based ap-
proaches. A secondary result of this �nding is that, by using our approach for an initial
classi�cation, and using the WinoGrande model only if our approach does not provide
an answer, 5 additional schemas would be answered correctly, corresponding to an 18%
reduction in error compared to WinoGrande alone.

8.2.2.2 E�ects of Example Selection and Hypothesis Space Structure

In this project, there are two fundamental processes which a�ect how our learning process
performs: the selection of examples and the generation of the hypothesis space. We now ask
how signi�cant each of these processes are are, both in terms of the accuracy we are able
to achieve and the computational cost of the learning tasks. In particular, we are interested
in how important each of our knowledge sources are, as well as how many examples are
necessary to learn commonsense concepts. We also look to investigate whether the ability to
learn exceptions is helpful, and whether our optimisations to restrict the hypothesis space are
necessary and e�ective.

Knowledge Sources We discuss our choice of knowledge sources in Subsection 7.2.2. In
order to investigate the importance of each of these sources, and the availability of knowledge
in general, we reran our experiments after removing all examples from each of them. Our
results are shown in Table 8.5. Our two main �ndings are as follows:

• There are actually only a very small number of schemas (13 in total) which use knowl-
edge from both sources. In particular, note how the recall of our approach using both
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Max.
Examples

Avg.
Parsing
Time (s)

Avg.
Learning
Time (s)

True
Positives

False
Negatives Precision Recall

1 5.0 49.4 92 12 0.885 0.337
2 95.8 55.0 91 5 0.948 0.333
3 168.8 56.1 88 3 0.967 0.322

Table 8.6: A comparison of how our approach performs according to the limit on the number
of examples.

sources is almost the sum of the recall of our approach using each of the two knowledge
sources. This demonstrates the importance of having a large number of examples from
a variety of sources. Some “toy” concepts, such as that small things might not �t appear
regularly in the WinoGrande dataset, while other concepts, such as that the thing/person
that less popular cedes to the thing/person that is more popular are quite speci�c and are
more likely to be found in, say, news articles by means of a web search.

• When knowledge exists from both sources, we are signi�cantly more likely to either
answer the example correctly, or produce an inconsistent learning task. This explains
why the precision of the approach improves when both knowledge sources are used.
This mostly demonstrates the need for multiple examples per schema in order to force
the learner to develop a precise hypothesis that takes into account the full context of
the example.

Number of Examples Used We note in Subsection 6.1.2, that after scoring the relevance
of each knowledge, we choose the top-N knowledge texts as examples for the learning task.
By default, we have let N = 2 up until this point. We now investigate the e�ect of changing
the limit on the number of examples. Table 8.6 shows the results of this experiment. We point
out the following observations in particular:

• As you would expect, increasing the number of examples leads to a decrease in recall.
This is because additional examples might create contradictions that cause a learning
task to become unsatis�able. On the other hand, adding extra examples often requires
the learner to make its hypothesis more speci�c, and take additional context into ac-
count. These more speci�c hypotheses are more likely to answer a schema correctly,
and so the precision increases. This e�ect is most notable when increasing from 1 exam-
ple to 2, since a single example cannot, on its own, force the learner to take any context
into account.

• Overall, the e�ects of adding additional examples are not very signi�cant in terms of
accuracy. We suggest that this is because each single example is annotated with quite
a lot of semantic information, and so often might be su�cient on its own to learn the
correct general concept. This property closely mirrors a property of human learning
by language, as noted by Levesque (2017), in that “the data might need to be seen or
heard just once to do its job.” On the other hand, we note that anecdotally, the quality
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of learned rules tends to increase as more examples are added, since the learner is forced
to take into account additional context.

• Finally, let us note the performance implications of additional examples. In practice, it
is not possible to process the full WSC dataset with 5 or more examples, since the ASG
learning tasks quickly become computationally infeasible. But upon deeper investiga-
tion, we believe this is largely due to the ine�cient greedy parsing method which is
used by the ASG solver binary we depend upon. Parsing additional examples, which
may take very di�erent syntactic forms, requires a much larger and more complex gram-
mar which causes the parser to explore a huge search space. Meanwhile, we note that
the learning time does not increase signi�cantly. This demonstrates that our e�orts to
reduce the size of the hypothesis space are working, and that we could likely handle
many more examples if the parsing was optimised.

Learning of Exceptions In Subsection 6.2.2, we motivated our approach to learning ex-
ceptions by sketching an example of a learning task that could only be explained by allowing
exceptions. To investigate how common such scenarios are, and by extension, the utility of
learning exceptions, we ran an experiment in which learning of exceptions was not allowed.
We found that the number of true positives fell by 16, to 75 schemas, while the number of
false negatives remained the same. This result con�rms our hypothesis that the learning of
exceptions is necessary for good performance: in our approach, it increases the proportion of
learning tasks which are satis�able by over 14%.

Hypothesis SpaceOptimisations In Subsection 6.2.2, we describe four optimisations which
we make in order to reduce the size of the search space. In order to evaluate their e�ectiveness,
we ran the learning pipeline with each of them disabled, and measured the size of the hypoth-
esis space produced for each learning task. Figure 8.7 shows the results of this experiment.
Our �ndings are as follows:

• We �nd that by far the most signi�cant optimisation is the pruning of the search space
based on the examples. Without this optimisation, we were not able to get the learning
tasks to run.

• Imposing a depth limit on the hypothesis space a�ects only a small number of problems
with particularly large hypothesis spaces, but where there is an e�ect, it is signi�cant.
In particular, four schemas which initially produced hypothesis spaces too large to gen-
erate became feasible after applying a depth limit of 3.

• Removing rules with negation as failure has a small impact on the size of hypothesis
space, reducing the number of rules on average by 16% from 702 to 591. It also made one
additional task feasible. We found that, presumably due to our ability to learn excep-
tions using the cannot_refer_to predicate, no previously-solvable schema was made
unsolvable by this optimisation.
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Figure 8.7: The e�ect of our optimisations on reducing the size of the hypothesis space. We
note that, when using only the pruning optimisation, four tasks generated such large hypoth-
esis spaces that the process generating the search space was killed. This plot uses results only
from the tasks which generated hypothesis spaces under all settings.

• Finally, our use of bias constraints has a signi�cant impact, reducing the size of the
hypothesis space almost 4-fold from 590 rules to 148 on average. The use of bias con-
straints ruled out four previous hypotheses that led to correct predictions and three that
led to incorrect predictions.

In addition to their e�ect of reducing the hypothesis space and making our learning tasks
feasible to solve in a reasonable amount of time, we note that removing negation as failure
and adding bias constraints to remove unlinked arguments also resulted in higher quality
explanations that are easier to understand.

8.2.2.3 Quality of Learned Rules

The most signi�cant di�erence between our approach and previous approaches is our ability
to generate an explanation, based on the hypothesis that is learned. Since, as far as we are
aware, there is no published existing work on generating explanations for Winograd schemas,
and very little work even on determining what the valid explanations are, we investigate
the quality of our explanations individually by hand. For each schema, we generate a table
containing the premise, question, our answer and automatically generated explanation, and
classify the explanation into one of three categories: ideal, acceptable, or incorrect, in addition
to adding a short comment on the classi�cation. We provide an example in Table 8.7.1

The example in Table 8.7 has been marked as acceptable. This classi�cation is for explanations
which make sense overall, but may be missing some context which is relevant to the answer.
For this example, an ideal explanation might be “something may not �t because it is large”

1The full set of answers, explanations and comments has been made available online at https://www.doc.
ic.ac.uk/~js4416/winograd.html.
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Premise The trophy doesn’t �t into the brown suitcase because it is
too large.

Question What is too large?
Answer Trophy (Correct)
Explanation The thing which doesn’t �t is the thing which is large.
Comments Acceptable. This hypothesis could be improved by taking

into account causality.

Table 8.7: An example of an explained answer to a Winograd schema, and its classi�cation
and comment.

— i.e. it should take into account the causality of the concept. Meanwhile, an explanation is
classi�ed as incorrect if it does not make sense — it may be missing context that is essential, or
uses context that isn’t relevant. An example of an incorrect explanation might be “the thing
which is large is not the thing which is brown.” While this explanation would give the correct
answer for this schema, it is clearly not a valid explanation.
Using these criteria, we �nd that 27 schemas produce ideal explanations, 55 schemas produce
acceptable explanations, and the remaining 14 schemas produce incorrect explanations. This
means that for 86% of schemas which we answer correctly, the explanation is acceptable or
better. The main observation made during the evaluation of explanations is that our learner
often produces quite general explanations — it misses small pieces of context that are relevant,
like in the example in Table 8.7. We believe that the solution to this problem involves �nding
more examples, in particular with more variability, which will force the learner to hone in on
more speci�c explanations.

8.2.2.4 Comparison with Previous Work

Let us now compare our work with existing approaches to the Winograd Schema Challenge.
We provide a brief overview of how our approach compares to both previous symbolic and
neural approaches in Table 8.8. In particular, we note how our accuracy is roughly comparable
to existing approaches, with the exception of RoBERTa �ne-tuned on WinoGrande (Sakaguchi
et al., 2020), but we are the �rst approach to generate explanations. In this subsection, we
will look at some of the technical di�erences between our approach and existing knowledge
hunting-based approaches.

Knowledge Hunting With regards to the knowledge hunting method itself, both Sharma
et al. (2015) and Emami et al. (2018) use syntax-based approaches, generating queries which
are used to �lter out irrelevant texts.
The approach proposed by Sharma et al. (2015) builds queries simply by swapping out nomi-
nals in the texts with wildcards. For example, the text “the trophy would not �t into the brown
suitcase because it was too large” would generate the query “.* would not �t into .* because .*
was too large”. While this approach is very straight-forward to implement and results in very
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Approach Work Coverage
True

Positives
(Precision)

Training
Examples

Automated?
Able to use
background
knowledge?

Produces
Explanation?

Logical
Reasoning

Schüller (2014) 8 (3%) 8 (100%) 0 No Yes No*

Sharma (2019) 200 (73%) 200 (100%) 0 Yes Yes No*

Knowledge
Hunting

Sharma et al. (2015) 52 (19%) 49 (94%) Up to 1 per
schema

Yes No No

Emami et al. (2018) 189 (69%) 106 (56%) Many per
schema Yes No No

Language
Models

Trinh and Le (2018) 273 (100%) 147 (54%) ~ 100 000 Yes No No

Kocijan et al. (2019b) 273 (100%) 198 (73%) ~ 2.4 million Yes No No

Sakaguchi et al. (2020) 273 (100%) 245 (90%) ~ 41 000 Yes No No

Inductive
Learning

Ours 96 (35%) 91 (95%) Up to 3 per
schema

Yes Yes Yes

Table 8.8: A comparison of our approach against existing symbolic (reasoning/knowledge hunting) approaches and the state-of-the-art
(language model-based) approaches. Note that the reasoning-based approaches (starred) take the required explanation as an input.



precise matches, it doesn’t work so well for long sentences with a lot of context, and often
results in few or no results, when there are relevant results available.

The approach proposed by Emami et al. (2018) splits up schemas based on part-of-speech
tags. It �rst tries to �nd the candidates and pronoun, and then splits the schema into a context
part (containing the two candidates) and a query part (containing the pronoun). Verbs and
adjectives within these parts of the schema are then used to generate queries. For example
“the trophy would not �t into the brown suitcase because it was too large” would be split into
the context “the trophy would not �t into the brown suitcase” and the query “it was too large”.
It then generates a set of context queries such as “would not �t”, “�t”, and “brown”, and a set of
query queries such as “was too large” and “large”. This approach is much more complex, and
requires schemas to take an exact format, but produces more �exible queries that are more
likely to �nd useful knowledge texts.
Our approach is instead based on semantics, our queries are generated using a schema’s
knowledge graph. Unlike the approach proposed by Sharma et al. (2015), this allows us to
match on texts which may have a completely di�erent structure than the schema, such as,
for example, “The �rst pick she selected was too large and wouldn’t �t in the small keyhole,”
which their approach would never consider. We also use lemmas and WordNet senses to
generate our queries, which allows matching on di�erent conjugations of verbs for example,
unlike either of the previous approaches. Furthermore, unlike Emami et al. (2018), since we
work from our knowledge graph instead of attempting to split up the text directly, we do not
prescribe an exact format on the schema.
The second signi�cant di�erence in our approach is our ranking of candidates. Sharma et al.
(2015) select their (single) �nal example manually. Meanwhile, Emami et al. (2018) do not
prescribe a limit on the number of examples they use, but they do weight their examples
based on the length of the query used to match them, and whether or not the context match
and the query match occur in the correct order. On the other hand, our ranking approach is
automated and is used to select a limited number of examples, based on the amount of shared
context.

Learning The process of labelling our schemas with a correct and incorrect interpretation
is similar to what has been done in previous approaches. Where our approach di�ers most
signi�cantly from previous knowledge hunting approach is what we do with our labelled
examples.
The approach proposed by Emami et al. (2018) matches the labelled candidates back to the
schema, and then �nds for each example which candidate from the original schema it supports.
They then choose the candidate whose supporting examples’ weights sum to the greater value.
The approach proposed by Sharma et al. (2015); Sharma (2019) requires an example text which
is fully relevant. They have a reasoning process which �nds a graph-subgraph isomorphism
between the example and the schema which must fully cover the example. Once this has
been done, they can choose an answer since the correct candidate in the example should be
assigned to a candidate in the schema’s knowledge graph.
Our approach replaces this step with inductive learning, in which the learner forms a hypoth-
esis, essentially by specifying which parts of the schema’s knowledge graph are relevant to
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resolving the coreferencing ambiguity. Importantly, note how, unlike in the approach pro-
posed by Emami et al. (2018), it is possible for us to choose some candidate A over another
candidate B, even if there is only one example which supports choosing A and many which
support choosing B — i.e. if the example supporting A can be distinguished by some context
that is present in the schema and not in any of the examples supporting B, then this will be
taken into account by our learner’s hypothesis. Furthermore, unlike in the approach proposed
by Sharma et al. (2015), we do not require the schema to completely cover the example, but
instead apply only very limited constraints on our choice of examples. This allows us to �nd
varied examples forcing us to specify exactly how di�erent subgraphs in the schema’s knowl-
edge graph a�ect the resolution of the pronoun. We note how it is this process which, unlike
any previous knowledge hunting approach, allows us to, in the end, return an explanation
with our answer.

Producing Explanations Finally, let us brie�y discuss related work on the problem of �nd-
ing explanations for Winograd schemas. To our knowledge, there is only one piece of work
which investigates explanations for the WSC (Zhang et al., 2020). Their approach crowd-
sources explanations to the WSC and they produce a dataset, WinoWhy, which “requires
models to distinguish plausible reasons from very similar but wrong reasons for WSC ques-
tions.” They note that WinoWhy is a “challenging task”, and that their best supervised model,
which they train by �ne-tuning BERT, achieves just 77.8% accuracy on a two-class classi�ca-
tion task. Our approach di�ers signi�cantly from theirs in that we generate an explanation
from a Winograd schema alone, rather than taking an existing explanation and a Winograd
schema, and determining if that explanation is valid.

8.2.2.5 Strengths

Finally, let us summarise the strengths and limitations of our learning approach to the WSC,
and also point out some of the remaining open questions.

Precision Our approach very rarely produces false negatives. Our precision of 0.95 exceeds
that of any previous approach except for reasoning approaches which provide the required
explanation as an input.

Explainability Our approach provides explanations for all of its answers, unlike any pre-
vious approach. These explanations can be expressed in natural language, and are valid in
85% of cases.

Consistency Our approach answers questions consistently. When the positions of candi-
dates in a schema are swapped, our approach always swaps its answer, thus achieving a con-
sistency score of 100%. In other words, unlike for machine learning approaches, our answer
is not a�ected by people’s names or irrelevant properties of objects.
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Generality Our approach is not limited to a speci�c set of schemas, unlike, for example,
the approach outlined by Sharma et al. (2015), which only handles two speci�c forms of ex-
ample — which they call event-event causality and casual attributive examples. We are able
to produce both very simple hypotheses connecting two events, as well as more complex
hypotheses which can express causality, contrast, and ordering of events, by referring to a
relevant modi�er. For example, the knowledge that being large may cause something to not
�t can be roughly expressed by learning the rule:

may_refer_to(P,C)←modifier(L, large, P ),modifier(_, because, F, L),
neg_event(F, fit, C).

Number and Quality of Examples Our approach can learn the correct commonsense
knowledge from very few examples. In fact, for most schemas for which we �nd knowl-
edge, only a single example is necessary to learn a hypothesis which gets the correct answer.
Furthermore, unlike Sharma (2019), we do not manually �lter examples, and we can handle
examples from a diverse range of sources, including from existing datasets (with labels) or
from the web (without labels).

Ability to Incorporate Background Knowledge Unlike machine learning approaches,
our approach can easily incorporate prior knowledge by, simply by extending the background
knowledge. We demonstrate this by automatically enhancing our background knowledge
with properties from ConceptNet, as described in Subsection 5.3.2, however this could also
be done manually. This allows us to e�ectively give the learner hints in a way that is not
possible for traditional machine learning approaches. For example, we might tell it that a
butter�y wing is fragile:

modifier(bk, fragile,W )← nominal(W,wing),modifier(_, butterfly,W ).

in order to help answer the schema I put the butter�y wing on the table and it broke.

8.2.2.6 Limitations

Recall Clearly the most signi�cant limitation of our approach is its poor recall, since we
leave two thirds of schemas unanswered, although our recall may be arti�cially increased
from 0.33 to 0.66 by making a random choice for unanswered schemas. Alternatively, since
we have shown that the schemas handled by our approach are complementary to the schemas
handled well by traditional machine learning approaches, our approach may be ensembled
with a traditional approach to achieve a recall that is superior to either method alone.

Knowledge Hunting The most signi�cant di�culty for our approach is the process of
knowledge hunting. Not only does it limit our recall, since for 46% of schemas, we �nd no
examples, but it also limits the quality of our explanations since we often �nd only a small
number of examples, which can be explained by a very general hypothesis.
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Performance In order to be able to parse examples with very di�erent linguistic construc-
tions, we require large and complex grammars. Currently our approach appears to be limited
by the performance of the ASG parser for large grammars, which restricts us to a very small
number of examples and makes it di�cult to generate explanations that make use of a lot of
context.

8.2.2.7 Open Questions

Transferability to Other Tasks Our approach should be able to solve any Winograd-like
coreference resolution problem, but this is clearly quite a niche use-case. We have also demon-
strated the utility of ASG induction in a question-answering setting with our work on bAbI
tasks 11 and 13, although those experiments did not use knowledge hunting or our automated
approach for generating hypothesis spaces.
However, we have not explored in depth whether our ability to learn commonsense for the
WSC is transferable to other commonsense reasoning tasks. This leads to two main ques-
tions: �rstly, does our evaluation on the WSC give a realistic estimate of our ability to learn
commonsense, and secondly, is our approach applicable other tasks?
With regards to the �rst question, it has frequently been noted that there are many threats
to the validity of experiments based on the WSC. As noted by Trichelair et al. (2019) (and
others), “the main drawback of the Winograd Schema Challenge is its limited size and the
absence of training and validation sets for hyperparameter tuning. As a result, achieving
above random accuracy on the WSC does not necessarily correspond to capturing common
sense; it could be the result of a lucky draw.” However, the bene�t of our approach is that
we can tell immediately whether we have captured commonsense, not by our accuracy, but
by the hypotheses which we produce. Furthermore, our approach has very few parameters
compared to machine learning approaches, and we have taken particular care to avoid tuning
their values according to performance on the test set.
As to whether we could answer questions from other tasks, it is quite likely that at least
some of the work we have done is transferable, as direct knowledge hunting approaches have
proven useful in developing approaches to a variety commonsense reasoning datasets (Emami
et al., 2018). However, we note that, at the very least, it would be necessary to modify our
labelling procedure for examples, in order to be able to cope with other forms of questions.
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Chapter 9

Conclusions

In this project, we have investigated the applicability of answer set grammars for natural
language understanding, and the applicability of inductive learning (based on those ASGs)
for learning commonsense knowledge. Our �ndings can be summarised as follows:

1. Answer set grammars are capable of capturing syntactic and semantic patterns
in natural language. Through the ability to parse WSC schemas and examples sourced
from the internet, we demonstrate that it is possible for ASGs to be used for simultane-
ous syntactic and semantic parsing of natural language texts, when these texts are lim-
ited to a small enough domain. We �nd that annotated atoms often allow much more el-
egant expression of semantic composition when compared to lambda calculus, allowing
us to handle constructs such as coordination and passives without any post-processing.
When evaluating our approach on semantic parsing for the WSC, we demonstrate that
our implementation achieves an accuracy that is comparable with a dependency parse
alone but is far more semantically rich. We determine that the most signi�cant chal-
lenge for ASG-based approaches for natural language understanding is the di�culty of
handling derivationally-related word forms in a consistent manner, however we note
that this is a challenge for most grammar-based approaches.

2. Answer set grammars can encode, and can beused to learn, commonsense knowl-
edge. In particular, in our bAbI examples, we demonstrate how (a) we can learn complex
hypotheses to explain semantics of natural language examples, and (b) an ASG can en-
code these solutions entirely, without the need for any additional models, acting as both
a semantic parser and applying the leaned knowledge at once.

3. A semantics-based approach to knowledge hunting allows for a diverse set of
relevant knowledge texts to be retrieved. We demonstrate that our approach to
knowledge hunting, which generates queries from knowledge graphs, and can match
on lemmas, WordNet sense and part-of-speech tags, is able to return texts that shallow
syntax-based approaches would never consider. We also demonstrate how the approach
can be extended to automatically determine the most relevant texts, in contrast to pre-
vious approaches where this was an additional manual step.
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4. Knowledge hunting can be combined with inductive logic programming to ex-
tract commonsense rules. Unlike any previously published approach (knowledge
hunting-based or otherwise), this allows us to support our answers to the WSC with
precise explanations. We also show how the approach is able to answer schemas that
state-of-the-art neural approaches cannot. Our work con�rms the conclusions of pre-
vious approaches: namely, that knowledge hunting is a di�cult task and is the most
signi�cant obstacle to good performance — leading to many schemas being left unan-
swered and others with explanations that are too general due to too few examples.

9.1 Future Work

We �nally discuss some of the most interesting and pressing areas for future work. For our
work on semantic parsing using ASGs, we propose some simple extensions which would allow
us to attempt question answering tasks, and thus quantitatively evaluate our approach against
existing broad-coverage semantic parsers, as well as a more signi�cant extension to handle
derivationally-related word forms. Meanwhile, for our learning approach for the WSC, we
suggest modi�cations that could be made to the knowledge hunting process to achieve the
goal of generating better explanations, rather than just correct answers.

Extending the Lexicon There are several paths for improving the quality of our base ASGs.
In particular, we note several de�ciencies of our approach in Subsection 5.3.1, which are in
relation to the handling of raising, control, tense and quanti�cation. There are also a handful
of rarely used dependencies which we do not currently provide a translation for, but could
with a small amount of engineering work.
A more involved extension might look at extending the lexicon with additional features such
as person, number, tense, mood and aspect for verbs and person, number, gender, case and
animacy for nouns. This would allow us to implement constraints to enforce linguistic phe-
nomena such as agreement, and also allow for learning hypotheses which might rely on these
features.
With more time, it would also be useful to work on question translation. This is mostly already
supported, and just requires one �nal step to identify the question word. This would allow
us to evaluate our implementation against a question-answering dataset such as FreebaseQA,
and compare our work quantitatively against other approaches to broad-coverage semantic
parsing, outside of the domain of WSC problems.

GeneratingCanonical Forms forDerivationally-RelatedWord Forms We found knowl-
edge hunting to be the major bottleneck in this approach: it is very di�cult to �nd knowledge
texts that are semantically close enough to the problem in order to allow applicable rules to
be learned. Thus a clear direction for future work on this project would to be to expand the
possible knowledge sources in order to pick up more examples in the hope that we might, as
a result, �nd more relevant knowledge. However, a more interesting path might be to make
better use of the knowledge that we already have. This involves extending the semantic parsing
capabilities of our ASGs to produce canonical forms in more cases.
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Let us again consider the three sentences

She fears heights.
She has a fear of heights.
She is fearful of heights.

which epitomise one of the most signi�cant limitations of our approach, since they all gen-
erate di�erent representations and therefore cannot be used e�ectively as knowledge for one
another. We have identi�ed three possible approaches to solve this kind of issue and allow
our system to “capture” more knowledge:

1. Greater use of lexical knowledge. Using cross-POS lexical knowledge would allow
us to handle these cases, however to our knowledge there is currently no source which
both provides detailed enough relations with to determine how the di�erent words are
related.

2. Use of commonsense knowledge bases. Many previous approaches have made au-
tomated use of commonsense knowledge bases such as ConceptNet, WebChild and
ATOMIC, which may be used to generate background knowledge that can match sen-
tences of the form above. However they can contain spurious knowledge and are un-
likely to help with highly speci�c examples.

3. Use of paraphrasing/textual entailment models. A �nal approach might involve
using a textual entailment model to see if one construction entails the other. For exam-
ple, a RoBERTa-based textual entailment model trained on SNLI and MNLI (Liu et al.,
2019) is over 99% con�dent that each of the sentences above entails each of the others.
With this information, you could attempt to generate relevant background knowledge
or to modify the original examples to get a closer syntactic match. It’s not clear, how-
ever, how you might detect candidates for such a process in the �rst place, and it may
be tricky to determine what would make a good con�dence threshold.

While we have seen that our ASG-based formalism is consistent, robust and accurate, this ex-
ample clearly demonstrates arguably its most signi�cant disadvantage: it’s heavily restricted
by the fact that semantics must correspond so closely with syntax. Machine learning ap-
proaches can ignore such constraints entirely, often treating semantic parsing simply as a
sequence-to-sequence prediction task, and using semantically-rich embeddings from pre-trained
language models as input features. As the accuracy of these neural semantic parsers continues
to improve (Zhang et al., 2019), it may be worth considering modifying our learning approach
to make use of a state-of-the-art AMR parser. The problem and examples would �rst be pro-
cessed by the AMR parser, and then the AMRs would need to be translated into a suitable
logical form for ILASP (which is not necessarily a straightforward task). However, the most
signi�cant challenge of such an approach would probably be to develop a neural parser that
is both accurate and consistent enough that similar examples are always assigned similar rep-
resentations. As we have seen, this property is essential for learning, but is considerably less
likely to hold for complex texts when there is no requirement for the parser to observe syn-
tactic structure. In particular, current state-of-the-art AMR parsers have particularly poor
performance for semantic role labelling (Zhang et al., 2019), which is an issue as our learning
approach relies heavily on the consistency of argument structure across similar examples.
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Counterexample Guided Knowledge Hunting One current limitation of our knowledge
hunting approach is that it draws inspiration from previous work (Sharma et al., 2015; Emami
et al., 2018), whose goal was only to select the correct answer. The goal of our approach
is not just to select the correct answer, but also to generate a good explanation. This puts
the goal of our knowledge hunting approach at odds with the goals of previous knowledge
hunting approaches: in particular, we want to �nd diverse knowledge texts, which force us to
contextualise our explanation.
To demonstrate this, let’s consider an example.

Susan knows all about Ann’s personal problems because she is
indiscreet.

Answer 0: Susan
Answer 1: Ann

The kind of knowledge text a knowledge hunter might �nd would be:

A lot of young conservative men knew about Goodman’s
proclivities — he was rather indiscreet.

This example alone teaches the learner that “the person who possesses something is the per-
son who is indiscreet”. This hypothesis is clearly insu�cient. To improve the explanation, we
need an example of the form:

We knew she would tell us all about his personal life because
she was so indiscreet.

(1)

This example contradicts our existing hypothesis and thus forces us to take into account the
context that “the person whose possession is known about is the person who is indiscreet”.
This observation happens to be particularly relevant to our approach, as due to scalability
issues, we can use only a small number of examples (say, N ). Our current approach chooses
the top-N most relevant examples, which often returns the correct answer but can result in
learning rules that are too general. This is because for some problems there may be many ex-
amples which are all nearly identical to the schema, and thus the knowledge hunter, favouring
the most relevant examples, never selects any contradictory examples like (1).
In order to solve this problem, we propose taking inspiration from counterexample guided
inductive synthesis (Solar-Lezama et al., 2006) and developing a counterexample guided pro-
cess for knowledge hunting. In this formulation, the knowledge hunter and the learner are
much more closely coupled. The knowledge hunter starts by providing the learner with the
single, most relevant example, and the learner generates a hypothesis. This hypothesis is
then returned to the knowledge hunter, which applies the hypothesis to all of its candidate
examples and discards any examples which are correctly answered. From the remaining can-
didates, if any, the knowledge hunter selects the most relevant example and the learner is
then required to come up with a hypothesis that additionally explains the new example. This
process continues until a termination condition is reached. This could be because, say, (a) the
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Learner Knowledge Hunter
(Oracle)

Counterexample/
Termination Condition

Hypothesis

Figure 9.1: A counterexample-guided approach to knowledge hunting. The knowledge hunter
would provide examples one-at-a-time to the learner and would ensure that each example is
not covered by the existing hypothesis.

knowledge hunter has exhausted its set of examples, (b) the relevance of all of the remaining
examples is below a given threshold, (c) the number of examples exceeds a certain threshold
(or equivalently the learner times out), or (d) the learner cannot explain the set of examples.
Such an approach would make the most of the limited number of examples we may use —
every example would force the learner to make its hypothesis more speci�c, thus generating
explanations which are more likely correctly incorporate all of the relevant context.
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