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Abstract

The importance and implications of using past information to predict the future has shaped
the global society in ways it would be difficult to overestimate. From Aristotle (384-322
BC) in his attempt to predict the weather, forecasting techniques have progressed from folk-
lore and intuition towards methods founded on more rigorous models. Complex algorithms,
requiring specialist training, huge computational resources, and vast quantities of data, dom-
inate the forecasting market. Within this context, an inventor has created a novel Time Series
forecasting algorithm, Alpex, following decades of work, that is characterised by zero con-
figuration, constant space complexity and promises to not only be expeditious in terms of
runtime but is capable of grasping complex classes of chaotic time series rapidly and accu-
rately. Building from a single function console application, this project considers and answers
the questions “How can we make Alpex accessible and deployable?”; and “For which classes
of time series is Alpex most effective?”.

The first question is addressed by developing a robust and useable C++ API to stream data in
and predictions out; we extend this to create Python wrappers, command line programs and
a fully containerised, RESTful, micro-service Spring Boot web application. Providing the de-
ployment infrastructure, results in a Time Series as a Service implementation which is ready
to facilitate any eco-system. In developing a suite of Analysis tools, involving graphing func-
tions and sample experiments, we empower data analysts in their investigation into Alpex.

In answering the second question, we conducted a thorough investigation into two types of
time series: synthetic time series with a known ground truth, and real-world datasets with an
unknown underlying pattern. In addressing the former, we find that on some classes of com-
plex chaotic time series, Alpex is not only considerably faster at picking up on these patterns
but also outperforms ARIMA in terms of accuracy. Investigating domains such as power con-
sumption, renewable energy generation and changing water levels; we find that Alpex can
detect underlying, periodic patterns on some real-world datasets, with accuracies that are
competitive against (S)ARIMA. In terms of scalability, ease of operation and computational
complexity Alpex has a clear and distinct advantage paving the way for further research into
the algorithm.
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Chapter 1

Introduction

A Time Series is a series of data points, ordered by time, with data taken at equal intervals to
shows how values change over a set time period. Time Series are everywhere. Anything that
deals with measurable variation over time can be considered as a Time Series; from tracking
a person’s height over time, to energy consumption over a given period, to stock markets, to
sales... It is hard to think of any industry or aspect of life that does not involve Time Series,
even without realising it.

1.1 Motivation

As Time Series are so prevalent in our lives and in industry, being able to predict the output
of them is one of the key problems facing Computer Scientists and Mathematicians. Time
Series prediction is used everywhere, some examples are as follows:

• It is used to predict the stock market. In 2018, CNN reported[26] that between 50-60%
of daily trades are executed automatically using predictions, which can increase to 90%
on volatile days; and not least to mention algorithm assisted training which makes up
much of the rest.

• It is used in cloud computing to predict workload of servers such that Software as a
Service providers can offer high Quality of Service whilst keeping costs low[50].

• It is used in predicting the Wind Speed and Wind Power Density for wind Turbines, it
is reported that [64] inaccuracies in Wind Power Density forecasts account for about a
10% loss in the total energy generated by wind power.

These are just a few examples of where Time Series forecasting can be used, however their
implications are almost endless; therefore, it is of vital importance that we study them and
try and find new and innovative means of predicting Time Series, so this is what we aim to
study.
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1.2 Problem Description

The aim of this project is to study a new and exciting Time Series Algorithm proposed by
Ben Rogers; this algorithm takes an innovative approach to time series prediction which has
never been seen before, providing itself with some distinct advantages over the competition.

However, like a rough diamond, this algorithm has many exceptional aspects, hidden away
behind potential; it is these qualities that set it apart from the rest, without the right polish
it is all just a concept. Through initial tests and reports, the algorithm shows the potential to
revolutionise the way that we predict Chaotic Time Series. It is our job to refine this gem and
unlock its potential.

Although the detailed implementation of the algorithm cannot be shared as they are pro-
tected under an NDA, we can discuss the properties that make this algorithm unique and the
advantages and limitations these may incur.

It was seen, through limited experiments, that without much training Alpex can make pin-
point accurate predictions for classes of chaotic time series. One of the big problems with
Chaotic Time Series is the quantity of data needed to start making predictions; this algorithm
is able to learn these series with only a handful of data points.

The algorithm is extremely fast, to train and make accurate predictions, on 4000 data points
can take just 528 milliseconds. Typical Artificial Intelligence systems require vast amounts
of computation which takes a substantial amount of time, this algorithm does not have this
problem.

Compared to other training solutions, Alpex has a constant space complexity. This allows
for the algorithm to be scalable and operate without the risk of running out of resources.
However, a limitation here is the fact that the base memory requirement is substantial which
restricts the range of values the algorithm can predict for.

In conjunction with the promises that Alpex shows in terms of predictions and computa-
tional requirements, Alpex has one very distinct advantage over Regression models, such as
ARIMA. Alpex is completely non-configurable, the algorithm just runs; this is vastly different
to complex parametric models like ARIMA. ARIMA requires specialist training and manual
interpretation of datasets, by expensive data analysts, before forecasts can take place. This
ease of operation is a distinct advantage that Alpex has over the competition.

1.3 Current Time Series Prediction Algorithms

As Time Series are such an important research topic with many profitable applications, there
is a lot of literature and strategies on ways to predict them. Some of these methods are out-

2



Chapter 1. Introduction 1.4. AIMS

lined here.

• In smoothing algorithms, a prediction is expressed as a weighted sum of previous
values, there are many different types of smoothing algorithms, such as exponential
smoothing where as values get further away the weights become smaller.

• The most used methods involve averaging the data in some way, the simple implemen-
tation is a Simple Moving Average, where we predict the next value based on the pre-
vious values. Nowadays, we use algorithms such as Autoregressive Integrated Moving
Average (ARIMA) which are effective at predicting one step of a time series.

• Neural Networks are extremely prominent in Time Series predictions; however, these
are extremely computationally heavy, requiring multiple large linear algebra compu-
tations to be completed per prediction. This makes them generally quite slow, and
they require vast amount of training data. Neural Networks come in many different
shapes and sizes, some examples are Elman Neural Networks or Multilayer Perceptron
networks.

1.4 Aims

The aim of this project is to refine this rough diamond by answering two main questions:

1. How can we make Alpex accessible and deployable?: Before the start of this project
Alpex was a procedurally written, C, command line program, that had no arguments
and was not cross platform. The program searched for a file called ‘idata.dat’ and
outputted forecasts to a file ‘odata.dat’. This is not accessible or user friendly, therefore
the first part of the project must create an implementation that is.

2. For which classes of time series is Alpex most effective?: Following on from past
research, at the start of this project we had several Excel spreadsheets that contained
a basic analysis of Alpex’s ability on a subset of Chaotic Time Series. Although these
result were very exciting, we had no tangible analysis and were therefore limited in our
conclusions. We aim to further, and robustly, analyse the ability of Alpex in this setting.
Progressing from an investigation into Synthetic time series we explore the capabilities
of Alpex on real-world datasets, and crucially aim to find a real-world context where
this algorithm could be applicable.

1.5 Contributions

We have set out the aim of this project in the form of two distinct questions which form the
different parts of this project.
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1.5.1 How can we make Alpex accessible and deployable?

The first question forms the Software Engineering side of the project. To make Alpex accessi-
ble we must:

Develop an extensible, well tested, secure and portable, production ready, Object Orientated
implementation of Alpex which supports the streaming of data into and forecasts out of a
C++ API. We then extend this API with Python wrappers, a command line program and ex-
ample implementations.

To supplement the API and address the substantial memory requirements of the algorithm,
we extend this project by implementing a Time Series as a Service web application, forming
the DevOps side of this project. This is done in a RESTful way to sustain scalability where
interesting and novel architectural design elements were needed to maintain key properties
of the algorithm.

Finally to aid our investigation into Alpex we develop a suite of Python tools that include sam-
ple experiments (in the form of Jupyter Notebooks), graphing functions, base line predictors,
metric generators and much more.

1.5.2 For which classes of time series is Alpex most effective?

The later question will be answered in two parts. We will first conduct an analysis into Syn-
thetic chaotic time series with a known chaotic structure. The former part of our investiga-
tion forms a pre-requisite into our investigation into the performance of Alpex on real-world
datasets with an unkown underlying model.

Synthetic Analysis

In this project we continue research into the performance of Alpex in a Mathematical setting.
We knew that Alpex appeared to be fast in terms of runtime and what had observed the
capabilities of the algorithm in rapidly learning classes of chaotic time series. We perform
a comprehensive investigation into these types of series, evaluating how Alpex compares to
Auto Regressive models.

As part of our systematic investigation, we conduct an analysis into the noise tolerance of
Alpex on a number of different time series. We then propose and test different methods for
making predictions on noisy datasets.

During our experimentation we also explore emergent properties of the algorithm, such as
spikes in our predictions.

4



Chapter 1. Introduction 1.5. CONTRIBUTIONS

Real-World Analysis

The final section of this project explores over one hundred real-world time series to deter-
mine a set of properties that these series should, or should not, have for Alpex to be able to
make predictions.

We set out a series of tests and develop a novel metric specifically designed for Alpex, to
determine if we are making proactive or reactive forecasts.

Finally we go through a case study relating to the hourly power load of southern Italy, using
this to explain how and when we could use Alpex.

Evaluation

Our evaluation draws conclusions and direct comparisons between Alpex and a (S)ARIMA
implementation. We find that in some classes of Chaotic Time Series Alpex is able to signifi-
cantly outperform ARIMA, and in others it is able to competitively compete with this method.
When comparing Alpex in real-world settings we see how it is able to detect underlying peri-
odicity and patterns that produce forecasts as accurate as ARIMAs.

Taking into consideration factors such as runtime, memory complexity and the algorithms
non-configurability, we see the clear and distinct advantage Alpex has against ARIMA; hy-
pothesising how Alpex could be used in large scale, high fidelity systems where we are able
to train and forecast on rapidly arriving and changing data.
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Time Series

2.1 What is a Chaotic Time Series?

Chaos in Mathematics is characterised by non-linear dynamical systems typically described by
relatively simple equations, which are deterministic in nature, yet are capable of producing
unpredictable and divergent behaviour [49]. Non-linearity in the context of a feedback pro-
cess results in a system which displays sensitive dependence on initial conditions. This means
that small changes in initial conditions may produce wildly different results. So Chaotic time
series are known to be hard to predict, since what is true for ‘initial conditions’ also applies
at each iteration of the evaluation of a Chaotic system.

Fractal is defined in mathematics by a value or series that is infinitely detailed and self-similar
without ever repeating itself at the same scale. Mathematical chaos exhibits a Fractal nature,
if you were to find the exact value then you can see it will never repeat itself; due to precision
limitations in Computing, Chaos values will appear to repeat themselves.

Attractors are often talked about within Chaos, an Attractor defines where a series settles
towards over time. As well as simple attractors, attractors that oscillate between many values
also exist, this type of attractor is called a limit cycle. In Chaos, a never repeating limit cycle
is observed.

2.2 Time Series Properties

2.2.1 Heteroskedasticity

A time series is said to be heteroskedastic[84] when the variance of values is not constant.
In practice this can be seen as having periods of high volatility and periods of low volatility
randomly distributed across a series. The opposite of heteroskedastic is homoskedastic and
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Figure 2.1: A time series with a non constant variance[24].

it means there is a constant variance throughout the series. Figure 2.1 is an example of a se-
ries with a non standard variance, as you can see the values along the y axis begin to span out.

Detecting Heteroskedasticity

One way to detect this property is the Goldfel-Quandt[58][57] test, which checks for ho-
moskedasticity. In this test we split the dataset into two sections and calculate a regression
for both, and the corresponding Mean Squared Error, then if we take a fraction of these errors
MSEA
MSEB

we can use this to reject a null hypothesis of homoskedasticity.

Removing Heteroskedasticity

There is no way that always works for removing Heteroskedasticity from a time series, like we
could with seasonality, however if we take logs of the time series, then we can often remove
this property.

If we are creating a regression model, we know that the variance of the error term is non-
constant, however if we take our regression:

Yi = β0 + β1 ∗Xi + εi

where the variance of εi is non-constant, and divide it by:

Yi√
Xi

=
β0√
Xi

+
β1 ∗Xi√

Xi

+
εi√
Xi

our new error term εi√
Xi

will have a constant variance, therefore removing Heteroskedasticity
from our regression model. This is known as the Weighted Least Squares[51].
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2.2.2 Auto Correlation Function

The Auto Correlation of a series is the correlation of a signal with a delayed copy of itself
[86]. This Auto Correlation is used to detect periodicity and patterns in noisy data.

The Auto correlation of a continuous time series with a delay of τ is defined as:

Rff (τ) =

∫
f(t+ τ) ¯f(t)

Where ¯f(t) is defined as the complex conjugate of f(t). However for real world time series
we are usually interested in the discrete definition defined as:

Ryy(τ) =
∑

y(t+ τ) ¯y(t)

When we are looking at time series it is often useful to plot a Correlogram about the series
[82]. This is also known as the autocorrelation plot as it is a graph of autocorrelation against
lags for a series.

When we analyse a Correlogram, a value less than a lower threshold implies that there is no
correlation at the specified lag. If we are unable to detect correlation at any lags then we
can say that the data is most likely random. This is often used to determine if a forecasting
algorithm is appropriate and the parameters to use.

ARMA uses this to determine how far the Moving Average should look back, as if there is no
correlation past a lag of τ then there is no point including values greater than that in our
moving average.

2.2.3 Partial Auto Correlation Function

Partial Auto Correlation of a time series [76], zt, is the correlation between itself and a lagged
version of itself, zt+τ , that is not accounted for by the lags between 1 → τ − 1. The PACF is
used to determine the autocorrelation factor in a time series.

2.2.4 Volatility

Standard Deviation

Standard Deviation of a series tells us the spread of numbers within the series around the
mean. This can be important to check in time series as some algorithms perform better when
values are grouped close together where as some are more tolerant to outliers. Furthermore
as the standard deviation is the square root of the variance it can act as a good measure
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for the volatility of a series [58]. The standard deviation of the differences of a dataset can
also be calculated to find out the variance in the change of values. Often a scaled standard
deviation is more useful, this is calculated by dividing the standard deviation by the mean.

2.2.5 Seasonality

Seasonality is a predictable repeating pattern within a set unit of time, this unit of time can
be a month, a week, or more commonly a year. However, seasonality is not usually seen as a
repeating pattern within a quantity of time, for example within two weeks, as these are often
unpredictable, and we call these cycles.

An example of a seasonal trend would be a hotel keeping track of the number of families
within a year, it is likely that every year during school holidays the hotel has a lot more fami-
lies than during term time.

Seasons are everywhere in time series, with different seasons often overlapping, for example,
an ice cream shop may be busier during the summer, but also busier on the weekend. There-
fore, it may be useful to look at different seasons separately and remove them one by one.

Dealing with seasonality often requires a vast amount of data over a long period of time, we
are only able to start dealing with seasons after at least one full season has been observed.
We can reason about the length of a season without seeing concrete trends in the data, for
example an ice cream shop is intuitively going to be busier during the summer and therefore
have a yearly seasonality.

An interesting problem to consider with seasonality is dealing with leap years.

There are several ways of dealing with seasonality,

• One of these methods is to transform the data by the value from the previous period.
For example, we would transform a time series by

zt = xt − xt−365

then we can just perform our predictions on the new time series z then perform a
transformation back into the original space. This is usually the best way to remove
seasonality for data, however it requires intuitive knowledge of the period to define
this.

• Another strategy as outlined in this paper [56]) is to take the logarithm of the dataset
such that the seasonality is now additive and can be predictable. This isn’t as powerful
as taking the difference, however we do not need any past data to implement this.
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Figure 2.2: A graph showing the possible values for the population at each growth rate, assuming
an initial population of 0.5. [49]

2.3 Chaotic Time Series

2.3.1 Logistic Function

The logisitic function, discovered in 1976 also known as the Logistic Map, is one of the most
cited examples of chaos, with applications involving modelling population growth [80] and
germination [77]. The algorithm is defined by:

xt+1 = r ∗ xt ∗ (1− xt) (2.1)

where r is the rate of growth and x is the population. This equation appears very simplistic
therefore we would expect that the behaviour would be such; what we actually observe, for
some values of r greater than 3.57, is Chaos. We see that for these values the series does not
converge, occurring unpredictably to the point that it appears almost random.

Figure 2.2 shows the attractor for different growth rates for the Logistic map, what we see
is that after around 3.57 there is no obvious attractor and that any value between 0 and 1
appears possible.

Figure 2.3 shows another interesting property of the logistic map and chaotic series in gen-
eral, if you zoom into the graph, we observe the same values and the same pattern, this is
because of the Fractal nature of Chaos [59].

Figure 2.4 shows us a snippet of the time series for a growth rate of 3.8 and an initial value
of 0.7, there appears to be no pattern within the data. The graph appears random in nature,
even though we know it is not.
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Figure 2.3: A zoomed in view of the graph in Figure 2.2. [49]

Figure 2.4: A graph of Population against Time for the Logistic map with a growth rate of 3.8 and
initial value of 0.7.

2.3.2 Henon Map

An example of a multi-dimensional Chaotic Time Series is the Henon Map [78]. The Henon
Map is defined as follows:

pn+1 =

{
xn+1 = 1− a ∗ x2n + yn

yn+1 = b ∗ xn
(2.2)

where a and b are constants. The Classical Henon Map is defined with parameters a = 1.4
and b = 0.3.

This function can be composed into one dimension as

xn+1 = 1− a ∗ x2n + b ∗ xn−1. (2.3)

We can see from this that the function being used to construct the series appears fairly simplis-
tic, however when we look at the Bifuriation Diagram, Figure 2.5, we see this demonstrates
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Figure 2.5: A graph showing the possible values the henon map is able to take on [78]

Figure 2.6: A graph showing the first 20 values of the henon map time series with a = 1.4 and b
= 0.3.

chaos. This is also seen in Figure 2.6 where we can see a snippet of the first 20 values.

2.3.3 Mackey-Glass System

The Mackey-Glass System[71] is an example of a differential Time Series that can exhibit
Chaos. The system is defined by the equation:

dx

dt
= β ∗ xτ

1 + xnτ
− γ ∗ x. (2.4)

2.3.4 Lorenz System

Although the Logistic Map is the most cited example of chaos, the Lorenz System is regarded
as being the first example of chaos, having been discovered in 1963[70] as a mathematical
representation of atmospheric convection. The Lorenz System is both a multi-dimensional
and differential Chaotic Time Series. The Lorenz System is defined as:

dx
dt

= σ(y − x)
dy
dt

= x ∗ (−z)− y
dz
dt

= x ∗ y − β ∗ z
(2.5)
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Figure 2.7: A graph showing the daily and monthly sunspots for the last 13 years [14]

2.4 Real-World Time Series

2.4.1 Sun Spot Prediction

We are able to measure the activity of the sun by counting the number of sunspots observed
over a period of time, it is believed that the measure of these sunspots is related to weather
on earth, and it is known that they are relevant in atmospheric density which effects satellite
trajectory. Sunspot numbers appear to follow a cycle and we are therefore able to attempt at
creating models that are able to predict the number of expected sunspots in a given month.
Monthly sunspot data goes back all the way to 1749, therefore we have a vast amount of data
to use. This paper [73] is one of the main papers about how sunspot cycles exhibit chaos and
appear like a chaotic time series.

2.4.2 Open Power System Data

The Open Power System Data[15] project is a free collaborative project between researchers
across Europe that aims to provide datasets regarding electrical systems for researchers to
model. The variety and number of datasets available is astounding, as well as the number of
data points available for these many reaching well over 30,000. Data is available for many
regions and countries across Europe, some of the data available for these regions include:
Offshore Wind power generation, solar power generation, energy consumption and the prices
for these.
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Predicting Time Series

3.1 Time Series Prediction Methods

3.1.1 Naive Forecasting

at = xt−1

3.1.2 Moving Average

Method Description

A Moving Average (MA) of a datapoint, is the average of the last n values in the series, it can
be expressed mathematically as:

at =

∑n
i=0 xt−i
n

(3.1)

Where at is the average at time t, xt is the observed value at time t, and n is the number of
values to include in the moving average.

One type of moving average is a Weighted Moving Average (WMA) where values that are
further away have less of an affect on the overall average:

at =

∑n
i=0 (n− i) ∗ xt−i

n ∗ n+1
2

. (3.2)
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Another type of weighted moving average is an Exponential Moving Average[61] (EMA),
which is very similar to the linear weighted moving average, however instead of a linear
reduction in weight, we see an exponential decrease:

at = (xt − at) ∗ σ + at, where σ =
2

n+ 1
andat−n = xt−n (3.3)

Where σ is a smoothing constant. This is often regarded as Exponential Smoothing.

Comparing the different types of Moving Averages, we can see that the EMA has weights that
fall off much quicker than the simple WMA and the MA therefore it is much more responsive
to changes in the values. However, this means that the averages are very susceptible to noise,
if a noisy or outlier is seen, then it will affect the other values far more, this is what the
smoothing constant aims to fix.

Advantages

An advantage of MA’s is that they implement some sort of smoothing where noise will not
immediately affect the value, therefore one random spike in data may not affect the average
significantly.

Another advantage of MA’s is that they are very fast, at a maximum the forecasting time has
a complexity O(N) where N is the size of the window.

Disadvantages

A disadvantage of all types of MA is the concept of lag, as the average is based on prior data,
it means that significant spikes in data will not necessarily be seen immediately.

Another disadvantage of MA’s is the fact that they can only really be used for very short term
predictions, after a couple of values (depending on the window size) the predictions will
begin to normalise themselves.

3.1.3 Auto Regressive Models

Auto Regressive (AR) models are about predicting future values based on specific previous
values. For example, for a shop, you may predict this month’s demand based on the demands
from previous months. This is different to MA as in MA you look at the average of the last
few months, in this model, you look at the actual value from the last few months:

at = β0 + β1xt−1 + β2xt−2...+ βnxt−n + εt = β0 +
N∑
k=1

βkxt−k + εt (3.4)
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What we see from the above equation is that each past value, relative to the current value,
is given its own weight βk. If we calculate the ACF of a dataset, seen in section2.2.2, then
we can see the correlation of past values on the current value. We use this to determine our
value for n.

Auto Regressive Moving Average Model

The Auto Regressive Moving Average Model (ARMA) model combines the two different tech-
niques of the AR and MA models. The function for ARMA (1, 1) would be:

at = β0 + β1xt−1 + φ1εt−1 + εt (3.5)

Where at is the actual value, this can be calculated if we know the error, where we use the
last values error term to get φ1εt−1 (the MA part) and the actual last value β1x(t− 1) (the AR
part). We do not however know the value of this month’s error, so we take a prediction as

ât = β0 + β1xt−1 + φ1 ∗ εt−1 (3.6)

For the generic case of ARMA (p, d) we have

ât = β0 +

p∑
n=1

βnxt−n +
d∑

n=1

φnεt−n (3.7)

3.1.4 Auto Regressive Integrated Moving Average Model

The Auto Regressive Integrated Moving Average Model(ARIMA) model is similar to the ARMA
model, however before we make a forecast we must first difference the data until it is station-
ary. The integrated variable determines the number of times that the dataset must be diffed
by:

zt = at+1 − at (3.8)

We can then fit our model on the differenced dataset, and return the predictions to the
original domain by integrated our predictions as:

ˆat+1 = ẑt + xt (3.9)

ARIMA is also configured, where ARIMA (p, q, d) has p representing the AR part, d repre-
senting the MA part, and q represents the number of times we transform the graph.
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Figure 3.1: A definition of SARIMA(1, 1, 1)(1, 1, 1)4 [43]

Advantages

Works on timeseries with a nonconstant mean, when it has an obvious linear (m = 1) trend
upwards or downwards.

ARIMA is very good at forecasting t+1 predictions.

Disadvantages

Does not deal with seasonality in datasets.

ARIMA requires complex configuration to define the correct parameters for the optimal
model. The current methodology for automating this configuration is through a naive, slow,
grid search approach, an example of this being used is seen in [74]. Specialist training is
often required for data analysts to make accurate ARIMA models.

3.1.5 Seasonal Auto Regressive Integrated Moving Average Model

The Seasonal ARIMA (SARIMA) model is like the ARIMA model, however we must remove
seasonality from the dataset by subtracting the same value in the dataset from the previous
season. This can be done by

st = at − at−m (3.10)

Where m is the size of the period, for example a week would use m = 7.

Compared to ARIMA, SARIMA is far more complicated when it comes to parameters, we have
SARIMA(p, q, d)(P,Q,D)m where p, q and d mean the same as they did before, and P, Q and
D represent the seasonal variants, m is again the size of the period. SARIMA(1, 1, 1)(1, 1, 1)4
is represented in Figure 3.1. Parameter tuning with SARIMA is like ARIMA where we look at
ACF and PACF to find out what the different variables should be tuned towards.
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Advantages

SARIMA shares all the benefits from the ARIMA model, however it also has the benefit of
dealing with seasonality which almost every real-world time series must deal with.

Disadvantages

Although by looking at ACF and PACF graphs we can make good estimations on the param-
eters that we should tune the algorithm towards, it is hard to find the optimal combination
of these. Often this process of tuning is extremely slow, taking a long time and the optimal
configuration could change over time, even to the point where the configuration no longer
yields helpful results.

Complexity is a barrier to adoption for SARIMA modeling, the equation is hard to understand
and implement.

Another limiting factor with any algorithm that deals with seasonality is the fact that to
remove seasonality, a vast amount of data must be observed. Only after a few periods of the
time are we able to start to detect and account for seasonality, when this period is a year it
means we need years of data before we can start to make predictions. This can be mitigated
by intuitively calculating periodicity, for example we can reason that a hotel planning to
model the number of guests that they will have in a particular week are likely to find a strong
yearly seasonal trend. Although we can intuitively reason about this, computers are not able
to reason in this way, although some work has been done in this field [60] it is not widely
adopted.

3.1.6 Feed-Forward Neural Networks

Method Description

An Artificial Neural Network (ANN) is a series of nodes and weighted connections that allow
for outputs to be generated by a set of input variables. The structure of an ANN attempts to
mimic how a simple neuron passes signals inside the brain.

Each node inside an ANN takes weighted input from all nodes in the previous layer to gener-
ate an output value which is then fed forward to the next layer in the network. This process
starts from the input nodes which take in normalised input values, feeding values forward
until they reach the output layer. This process of feeding values through the layers of a net-
work is where the name Feed-Forward Neural Network comes from. Figure 3.2 shows an
example of an ANN and how weights are connected between different nodes.

Training of an ANN is about finding the right weights for each of the connections between
nodes, such that they yield correct output values. There are a number of techniques used to
train these weights.
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Figure 3.2: A Feed Forward neural network with 2 hidden layers

Mathematical Description

We know that an Artificial Neuron takes in weighted inputs from every node in the previous
layer, this can be represented by multiplying the value from the node and the weight of the
connection between the nodes.

xj =
nodes∑
i=0

Wi,j ∗ xi (3.11)

To try and reduce overfitting, we want to give each node a bias

xj =
nodes∑
i=0

Wi,j ∗ xi + b (3.12)

Values inside a network should also be normalised, if we are summing and multiplying values
then we will lose track of this normalisation, so the last thing we want to do is pass this
output value through an Activation Function. It is important to note, this is often left out of
derivations as it is implied. This leads to a final definition:

xj = σ
( nodes∑

i=0

Wi,j ∗ xi + b
)

(3.13)

An example of this is seen in Figure 3.3 where we have a hidden layer with two nodes, node
1 and node 2, these nodes feed into one output node, node 3. As we can see we have the
output from nodes 1 and 2 as xi and we have values for the weight between the nodes and
the output node as wi,3 which is the weight from node i to node 3. We can then see that node
3 takes the sum of these values plus the biases,
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Figure 3.3: A single Neuron inside an ANN with 2 input nodes and one output node

x3 =
2∑
i=1

Wi,j ∗ xi + b = w1,3 ∗ x1 + w2,3 ∗ x2 + b (3.14)

passing these values through the activation function, denoted by the vertical line.

If we look at another mathematical representation of neural networks we can see that this can
be represented using Linear Algebra, the input nodes can be represented as a vector where
we have

inputLayer =
(
I1, I2, ..., Ii

)
(3.15)

weightsBetweenLayers =

w0,0 · · · w0,j
... . . . ...
wi,0 · · · wi,j

 (3.16)

then if we multiply these together, we get

(
x1, x2, ..., xj

)
=
(
I1, I2, ..., Ii

)
∗

w0,0 · · · w0,j
... . . . ...
wi,0 · · · wi,j

 (3.17)

which is a way of defining a layer in a neural network.

Training Methods

Backpropagation is one of the most utilised methods for training a Regression neural network,
this training algorithm aims to reduce the value of a cost function using gradient descent. For
example, we could have a cost function which works out the difference between the actual
and predicted value

C =

outputs∑
i=0

(actuali − predictedi)2 (3.18)
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The algorithm will then use derivatives to try and reduce this value by changing the weights
of the network [68].

Backpropagation by itself is usually very effective at predicting values with a good amount
of accuracy, however there are many different optimisations (for example changing the cost
function) that can be applied to either make the algorithm more accurate, reduce overfitting,
or decrease training time.

Probabilistic models can also be used for the training of Neural Networks[47], where we
apply a survival of the fittest approach to training a network. This is often not feasible in
practice due to the complexity and memory requirement of maintaining so many networks
needed for strong population diversity.

Hyperparameters

Hyperparameters are, generally, constant values inside a Neural Network used to configure
the network. Examples of these are the structure of the network (number of input nodes,
hidden nodes. . . ), the bias in the network etc. . . These values can have a huge effect on the
success of the Network, therefore optimisation of these parameters is extremely important.
This paper [48], published by MIT, talks about the importance of hyperparameter optimi-
sations in different scenarios and talks about the gradient technique for the optimisation of
these.

This paper [72] takes an interesting look at training a network, it uses backpropagation as
its main training mechanism, however it combines this with a Genetic Algorithm for hyper-
parameter optimisation. The paper was able to conclude that by using a GA instead of just
trial and error it was able to get more accurate predictions.

Advantages

A neural network can map linear or non-linear functions to the input data, without knowing
any prior information about the underlying data. This means that we don’t need to know
what the actual function is that made the data, however we are still able to make a reason-
able estimation to what this could be.

If the network is not overfit, compared to a purely mathematical model, the ANN is better at
tolerating noise in data. Mathematical models are often very rigid in their structure, ANN’s
are generally more flexible with the data they can handle.

Disadvantages

The structure of the network is extremely important, a too complex network and it will train
to the input values, including noise, causing the network to become overfit; however a net-
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work that is not complex enough may fail to fully detect the correlation between the data
and output. Therefore, a lot of configuration is needed to try and find the optimal structure,
as ANN’s are slow to train, this can be time consuming, and can change based on data.

As we know the definition of an ANN through matrices, we can calculate the time complexity
of the network. Matrix multiplication of a 1 ∗ i and a i ∗ j matrix has a complexity of O(i ∗ j)
therefore if we have n layers we have the total complexity as

O
(
i ∗

n∑
i=0

nodes(j)
)
≈ O(i ∗ n ∗ j) (3.19)

which means that the process of forecasting from a neural network can be extremely slow for
large networks, and not scalable.

As well as this, the storage of all of these matrices uses up a lot of memory, practical net-
works have thousands of nodes and a few layers, this creates massive matrices that need to
be stored in memory during calculations. As each node takes in values from all other nodes
in the previous layer, these networks are often difficult to distribute over different computers.

Training methods such as backpropagation are extremely slow and computationally complex,
for large networks training these can take hours and are therefore usually done overnight or
in batches. This can make networks less responsive to changes, for example if something
drastic occurs the network may not be able to respond until the next day.

Case Study

This paper [87] talks about using an Adaptive Neural Network implementation for time series
prediction, comparing this new type of ANN against traditional methods such as AR models
as well as the basic ANN we have discussed. The paper concludes that using this type of ANN
is able to generate more accurate results for real time series than traditional Mathematical
models. The paper also found that the traditional ANN was able to outperform AR models in
most mathematical time series, however this difference was small.

3.1.7 Elman Neural Networks

Method Description

An Elman Neural Network differs from a simple Artificial Neural Network as it maintains
memory inside the network itself. Figure 3.4 shows how a Feed Forward ANN would maintain
memory about the last 3 values it has seen, taking these values as inputs into the network.

Figure 3.5 shows us how an Elman Neural Network, uses weighted context nodes to auto-
matically feed past values into the network, forming a concept of memory[65]. This changes
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Figure 3.4: A Feed Forward Neural Network with 2 hidden layers implementing memory

Figure 3.5: An Elman Neural Network with 2 hidden layers and 2 context nodes being fed in from
the undertake layer, implementing memory

the network such that it takes in just one value, which is the observed value and then returns
one value which is the predicted value. The predicted value is not fed into the network [66].

Mathematical Description

The change in terms of a mathematical definition for an Elman Neural Network compared to
a Feed Forward ANN is in the first hidden layer

xj =

inputs∑
i=0

Wi,j ∗ σ(Ii) + b (3.20)

the first layer changes to use the context nodes as,

xj =

inputs∑
i=0

Wi,j ∗ σ(Ii) +
contextNodes∑

i=0

WinputNodes+i,j ∗ σ(Ci) + b (3.21)
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where Ci is the value of the context node from the last iteration.

When working with small datasets, it is important to consider initial values of the Context
nodes.

Advantages

The ENN has a number of key advantages over other types of ANN’s. ENN’s have the network
deal with the complexity of maintaining a memory of past values. This comes at a cost to
flexibility. This is particularly useful within Time Series prediction algorithms, as we often
want to consider past values.

It has been observed in [81] that as networks train on the context nodes (and other reasons),
we are able to achieve higher accuracy in ENN’s than regular Feed Forward Neural Networks
in many situations.

Disadvantages

ENN’s maintaining their own memory limits clients to sequential predictions, for example we
cannot have multiple power stations trying to predict their own power usage using the same
Network. Even though they may have the same training set, and therefore a similar network,
they will all have different histories, so we would need to copy the network multiple times
for each station.

As we are not passing the real value back into the network as input, we may lose track of
some values and noisy values may be treated in a way that we do not want them to.

Similar to how hyperparameter tuning is important in ANN’s, similarly we see that the learn-
ing rate of ENN’s is even more important and greatly effects the performance of a system.
Most ENN’s use a constant learning rate to train the network, however this causes values to
converge slowly; there are ways to dynamically set the learning rate, as outlined in this paper
[88], however these are complex to implement.

Case Study

This paper [69] utilises Elman Neural Networks for controlling an air conditioning unit. VAV
Air Conditioning units take in the current temperature and use this to change the power of
the unit, however there is a lag between reading the temperature and adjusting the unit,
therefore the paper discusses how an ENN can be used to predict the temperature and use
the predicted value to adjust the unit. The system takes 5 minutes to adjust the temperature,
and is able to read temperature in intervals of 1 minute, therefore the network makes a 5
step prediction. By using this method they were able to improve control stability within the
system.
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3.1.8 Distributed Neural Networks

As seen above, Neural Networks are very large and computationally slow to train and predict
values, this is a limiting factor in the usefulness of ANN’s in certain scenarios. To mitigate
this, Distributed Neural Networks have been proposed. One approach outlined in this paper
[83] uses Distributed Multistructure Neural Networks, where the network is split into smaller
networks and each node in the system is trained on a different unit class. A combiner is then
used to combine the different outputs into one single output. The paper also talks about using
a synergistic multistructure network where within each unit class, we would distribute dif-
ferent networks that use different activation functions to train the data, then combine these;
increasing the accuracy of the output.

This paper [79] discusses the advantages of Distributed Deep Neural Networks in reducing
the memory usage of each layer of the network. The paper applies this in a scenario where
early layers of the network are able to run on end devices, and then later layers run in the
cloud, this has a number of unique advantages; such as an increase in data privacy as the
data has already gone through one network.

3.2 Time Series as a Service

In today’s world of Internet of Things, it seems every industry and every part of Computing
is tending towards a Platform as a Service (PaaS) or Software as a Service (SaaS) infrastruc-
ture, and it appears Time Series prediction is no exception. Amazon and Microsoft offer a
service for this, AWS Forecast and Azures Automated Machine Learning. These are not the
only companies offering forecasting services, companies like IBM [21] offer them, as well as
start ups like Causa Lens [8].

SaaS is the practice of a whole system being hosted on a server, clients interact with this
network to perform operation. All data and the operations themselves are carried out on the
server instead of the clients machine. This paper [52] talks about the rise of SaaS, the growth
this experienced in the 2000’s and how switching to a SaaS architecture affected the indus-
tries that adopted them. This article [18] quotes SaaS as accounting for 24% of enterprise
workloads.

As systems become more and more complex, and more specialised, it became apparent that
separating the data from the processing would have benefits to clients, this is where PaaS
[67] comes in. Like SaaS, all operations happen on the host network, however the data and
the application itself are managed by the client; allowing for users to manage their own data
whilst maintaining the benefits of IOT and SaaS. In this presentation [63], KPMG talk about
how IOT will change within the next 6 years, including how PaaS will rise and become more
prominent as well as the financial importance of PaaS.
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3.2.1 AWS Forecast

Amazon offer a PaaS implementation of time series predictions in the form of their AWS
Forecast, this system boasts “Amazon Forecast provides forecasts that are up to 50% more
accurate by using machine learning” as well as being able to “Reduce forecasting time from
months to hours” [42].

AWS Forecast allows for clients to choose the model to train their predictor on [9], for exam-
ple a client could choose ARIMA, Exponential Smoothing or Amazons DeepAR+[16] algo-
rithm; however each of these algorithms requires the user to manually configure their hyper
parameters.

AWS Forecast allows for a pre-packaged solution to many of the algorithms already discussed.
Allowing anyone to be able to take advantage of modern Time Series methods.

3.2.2 Azure Machine Learning

Microsoft offers a suite of different PaaS tools that can be used to predict values from data, on
top of these they have focused sections of their documentation [4] on how to use these ser-
vices for Time Series predictions. Although the algorithms may be just as effective, Azure uses
general ML tools compared to AWS which has specific Time Series prediction tools. Microsoft
take the approach of using the tools they already have [5] but providing documentation to
make them work in this scenario.

3.2.3 Software as a Service

One advantage the AWS and Microsoft PaaS solutions have, is integration with their respec-
tive cloud platforms. This article [89] talks about the importance of SaaS in Time Series; how
using a time series specific database is able to provide unique opportunities and advantages.
This is quite similar to how AWS works, AWS Timestream [1] is an extremely fast (up to
1000x) way of storing Time Series data; their AWS Forecast library is then able to use this
directly, to be able to forecast much quicker.
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3.3 Metrics for Predicting Time Series

3.3.1 Root Mean Square

Root Mean Square Error (RMSE) in Statistics is a measure of how far away from the actual
value you are. It is the standard deviation of the prediction errors and is defined as:

RMSE =

√√√√ N∑
i=1

(âi − xi)2
N

(3.22)

Where âi is the predicted value and xi is the actual observed value. A low value for RMSE
means that the prediction is good, and the predicted values are not too dissimilar.

One of the problems with RMSE is that it amplifies larger errors, for example we may have
a very good predictor for most points, however one outlier will cause the RMSE to be much
higher. Some systems may be less tolerant to occasional errors, and these should be weighted
higher, in these cases RMSE will be a good indicator.

3.3.2 Mean Absolute Error

Mean Absolute Error (MAE) is the average error expected for each value:

MAE =
N∑
i=1

|âi − xi|
N

(3.23)

This is useful as it tells us the average error in our predictions. This may not always be
optimal as in some scenarios we want to amplifier outliers in the data. The smaller the MAE
value, the better our predictions are.

3.3.3 Mean Absolute Percentage Error

Like the MAE, the Mean Absolute Percentage Error (MAPE) is a measurement of how much
each predicted value is from the original:

MAPE =
100%

N

N∑
i=1

|âi − xi|
xi

(3.24)

MAPE has a number of drawbacks however, one of these being that when the predicted value
is larger than the actual, we are likely to see higher MAPE scored. This can make MAPE
readings unreliable in some scenarios.

A smaller value for MAPE means that our values are closer to the regression line.
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3.3.4 Mean Percentage Error

The Mean Percentage Error (MPE) is different from MAPE in it does not take the absolute
error, this allows us to measure the bias of predictions:

MPE =
100%

N

N∑
i=1

âi − xi
xi

(3.25)

This does not tell you how your algorithm performs overall as the positive and negative
parts may cancel out. The smaller the absolute value, the less bias; a negative value tells us
that predicted values are generally smaller than the actual, whereas a positive value tells us
predictions are generally overestimation’s.[44]

3.3.5 Comparing Algorithms

If we want to compare an algorithm to a baseline, we can calculate the R squared score for
this value:

R2 = 1− MSE(model)

MSE(base)
(3.26)

The result of the R2 can be analysed as follows:

R2


> 0 The model is better than the base
= 0 The model is the same as the base
< 0 The model is worse than the base

(3.27)

This is useful as we can see if our new model adds anything compared to the original model.
A problem with this however is that it does not penalise models that add no value, for this
we can use an Adjusted R2 model as follows:

R̄2 = 1− (1−R2)
[ n− 1

n− (k + 1)

]
. (3.28)

3.3.6 Conclusion

There is no best metric for every situation, it is dependent on the type of data we are predict-
ing. If we care about outliers and reducing these, then RMSE should be used. If we want to
detect bias in our models, MPE should be used. If we do not care about outliers, but we just
want to know how well the algorithm performs in general we would use MAE, or MAPE if we
want to compare this across different datasets.
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Part I

How can we make Alpex accessible and
deployable?
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Chapter 4

Alpex C++ Library

The main purpose of this algorithm is to allow clients to input a sequence of numbers
and to return an accurate prediction based on that sequence.

The original implementation of the algorithm achieves this aim by taking in a file called
‘idata.dat’, where values in a sequence are seperated by a new line. This file is processed and
a new file ‘odata.dat‘ is created which contains the predictions made after each input value.

The main aim for the Software Engineering side of the project was to create an accessible
C++ library from the procedural C code which is: secure, extendable, fast, documented,
well-tested, portable and Object Orientated. The key to success with this library will be fig-
uring out the most simplistic, yet expandable, definition. By creating this API we are making
Alpex accessible for developers.

4.1 Design and Technical Specification

4.1.1 User Journey

A user must be able to predict a value based on a sequence of numbers, this involves the user
being able to train a predictor and then make predictions on that.

As mentioned the success of this library is dependent on creating the most simplistic imple-
mentation, that means the library should be able to be extended to support different types of
predictions (like t+n) without itself having to support it.

4.1.2 Security

The main focus of the security element of this library is to ensure that the Intellectual Prop-
erty, the algorithm, is hidden once the library is created. This means that a client needs to be
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able to access the predictor without being able to find anything out about the implementation
itself.

4.1.3 Testing

The implementation must be well tested such that we can be assured that any changes to the
Algorithm’s code will not negatively impact the performance. Testing must involve checking
the ability of the algorithm to predict different sequences that we know the algorithm can
learn. The implementation must also be tested with extreme and erroneous values.

There are a number of testing frameworks that we can use for C++, each with their own
advantages and disadvantages. One of the most popular libraries is Google Test [22], this
library aims to be a lightweight testing environment which allows for basic testing of C++
programs. Google Test has CMake extensions such that it is cross platform and can be added
to a build pipeline.

An alternative to Google Test is Microsoft’s Unit Testing Framework [27] this is extremely
powerful and comes with Visual Studio installations therefore it is easy to install. The prob-
lem with this library is the fact that it is not portable and does not work on Linux machines
as they cannot install Visual Studio.

Another widely used library is Boost.Test [6] this is a very in depth and useful framework
that includes all of the capabilities you could want from a testing framework. Boost is cross
platform, and it has been around for a long time therefore it is well documented. The problem
with Boost is the amount of backwards compatibility it provides makes it a very heavy library.
As we are aiming to make the library as simple as possible, our test suite should also be fairly
simple, therefore the lightweight implementation of Google Test is the optimal choice over
Boost.

4.1.4 Object Orientated

The client needs to be able to create a predictor, train the predictor and then make predictions
using it. This involves the client being able to store this predictor as an object they can interact
with. Creating the API as an object will be the best way to achieve this, therefore the solution
must use good, and secure, Object Orientation techniques.

4.1.5 Extendable

Following on from the Object Orientation and the Testing section, the algorithm must be
implemented in such a way that it can be expanded upon in the future. This involves extract-
ing the API contract as a common interface with which the Algorithm implements, and then
the current implementation of this being tested. This means that the implementation of the
algorithm itself can be changed without the clients being affected.
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4.1.6 Documentation

The API contract must be well documented such that clients know how to use the Algorithm,
however the documentation needs to be done in such a way that the inner workings of the
algorithm are not revealed.

4.1.7 Speed

One of the advantages of the algorithm is the speed it is able to run. Testing must be in
place to ensure that the runtime of the algorithm is acceptable compared to the original
implementation.

4.1.8 Portability

The original implementation of the Algorithm was done as a Visual Studio Console Applica-
tion, this means that the project was limited to Windows or Visual Studio compatible Operat-
ing Systems. This is not optimal as we want our API to be usable from any device, therefore
one of the requirements of the project is that the library must be portable.

There are not many alternative build systems to Visual Studio. The main alternative, and de-
facto standard for C build systems, is CMake [10]. CMake is fast, portable and very powerful
offering users any functionality they would need from a build system. However CMake can
be very complicated to use, this is mitigated by the wide adoption and therefore vast amounts
of documentation available for the library. For these reasons we will be using CMake as our
build system.

4.2 API Contract

We can see an overview of the Alpex API Contract as a class reference in Appendix A.1. This
documents the Alpex API interface which is how clients will be able to access the library. This
reveals no information about the implementation of the algorithm except for how to interact
with it, therefore this also works as the external documentation requirement of the algorithm.

4.3 Implementation

4.3.1 Version Control

Due to the security aspects of this project, it was decided that keeping the code off platforms
such as github or gitlab would be in our best interests. That being said, it is not sensible to
just have one copy of the code on one device. A number of solutions to this are available,
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one solution would be to periodically back up the code onto an external hard drive. Another
solution is to periodically email an encrypted version to people involved in the project.

I decided to set up a local git server on a separate linux desktop. This involved turning the
desktop into an SSH server, and then into a git server where I could initiate a git repository
for the project. I could then connect to the git repository on my laptop by adding the desktop
as a remote server, this gave me all the command line functionality of git. This technique is
used for other projects within this report.

4.3.2 PIMPL

Pimpl[23][32] which stands for ‘Point to Implementation’ is a C++ abstraction for hiding
the implementation of a class behind a pointer class acting as an interface.

A buffer exists between the implementation of the class (including the private methods and
variables) and the class that is globally available. Separating the public and private methods
like this breaks compile time dependencies, meaning that fewer ‘#include ... ’ are needed in
the project reducing compile time. This also allows for the private code to be changed and
updated without the client code being recompiled. Therefore, fewer compilations are needed
and these compilations are faster.

The memory overhead of pimpl is an extra pointer, which may be a factor if we were con-
structing many small objects, however as we are likely to have 1 predictor, this is trivial.

The performance overhead is an extra pointer indirect per function call, due to the complex-
ity of the algorithm adding this one extra indirect is indistinct.

The construction and destruction overhead is more noticeable, however as we are only likely
to be creating one predictor, which we can reset, this is not a concern.

The closest alternative which achieves the separating of compile time dependencies is to use
an OOP Factory, where users obtain a pointer to a lightweight abstract class with the imple-
mentations in the derived class. The trade offs between the two are negligible, however we
have decided to use pimpl.

The way that our library will implement this idiom is seen in the header file, Listing 4.1, which
shows the exposed class ‘Alpex’ and the source file. The implementation of Alpex is defined in
‘Alpex.cpp’ and not visible from the header file. The ‘Alpex’ object stores a ‘unique ptr (pimpl)’
to the implementation of the algorithm, then in the actual code ‘dummy’ functions are used
that feed the input through the ‘pimpl’ pointer, returning the output.
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Carefully chosen function names, constructor parameters and return variables within a pimpl
idiom is how we have been able to achieve a secure, extendable, Object Orientated and fast
library.

Listing 4.1: Code for the header file Alpex.h implementing the pimpl idiom.

1 // a l p e x . h
2

3 c l a s s Alpex {
4 p u b l i c :
5 vo i d r e s e t ( ) ;
6 i n t p r e d i c t ( i n t v a l u e ) ;
7 . . .
8

9 Alpex ( ) ;
10 Alpex ( i n t i n i t i a l ) ;
11 . . .
12 p r i v a t e :
13 c l a s s A lp ex A lgo r i t hm ;
14 s t d : : un i qu e p t r<Alpex A lgo r i thm> p impl ;
15 }

4.3.3 Doxygen

To create a well documented API which is still extendable, we want a way to automatically
document the API from our code. We can achieve this by using the Doxygen documentation
tool[12]. We are able to use this documentation to generate the API Contract, however as
this is a contract any changes must only be an extension to the document that was originally
generated.

Doxygen searches through a given directory, in our case the ‘includes’ directory, and checks
code for comments formatted in the Doxygen style to create pdf, latex and html documenta-
tion. This documentation can then be included into the project or shared publicly. If we only
document the ‘includes’ directory then the documentation will not impact the security of the
algorithm.

The full documentation of Alpex in this style is available in Appendix A.1.

4.3.4 Google Test

We are using Google Test to manage our test environment. Google test works by creating
a test executable that we can use to run tests on our library. Inside our test source file, we
define Google Tests in the format,
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TEST(test case, test name) {...test code...} .

Due to the deterministic nature of the algorithm there are a number of tests we have been
able to implement:

• The simplest test case checks that the algorithm is able to learn a simple sequence [1,
2, 3], as well as the emergent property that the algorithm repeats itself for new values.

• The next tests check for incorrect input data and ensure that the library throws correct
errors for these.

• Another type of test that we perform calculates metrics for predictions we generated
with the original executable, and compares these predictions against our own ensuring
our predictions are just as good if not better.

• We then have checks that can fail, these checks take sample input and output data from
the original executable and compares the values like for like. The values should always
be the same, however with the metrics check we allow this to fail to allow for future
improvements.

• Finally we have tests to ensure that the algorithm is still fast, these can also fail as
some machines may not have enough memory to be quick, the algorithm calculates the
run-time on some sequences and checks that these are acceptable.

The tests allow us to ensure that the algorithm is still accurate in it’s implementation as well
as fast enough to make it compelling.

4.3.5 CMake

To ensure that the algorithm is portable we decided to use CMake as our build system.

Our CMakeLists.txt file defines how our library will be built. We can use the add library()

function from CMake to create our alpex library. CMake takes in configuration files which
we use to inform users of the library which version they are currently using. This file also
includes a description of the library as well as the requirements for it, which are none.

To build the project with CMake, all a user needs to create a build folder, call cmake on the
project and then call cmake build. The commands are as follows:

mkdir build

cd build

cmake ..

cmake --build .

This will build the library inside a bin folder, users can then use this library using the Doxy-
gen Documentation as a reference. Instructions on how to install the library are inside a
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ReadME.md file.

On some windows machines using a Visual Studio compiler, the executable location can be
bin/{Debug/Release}.

C-Test

CTest[13] is a feature of CMake which allows for us to combine a test environment inside our
current build pipeline. We are able to add our Google Test executable to the build pipeline.
As well as this we are able to copy over our test files from the test directory into the same
directory as our test executable. We can then run our test executable to ensure our library
passes our test cases.

I have also added support for the project to be built without testing, to do this the cmake
command,

cmake .. -Denable test:BOOL=false,

should be used. This will often fix bugs with the google test library not being downloaded
correctly.

4.4 Library Extensions

4.4.1 Supporting t+n Predictions

When the library was created great care was made to ensure the endpoints would support
different prediction methods without actually implementing the methods themselves. This is
seen with t+n predictions where we are able to write Pseudocode in the language of the API
Contract to show how this can be achieved. Algorithm 1 shows the Pseudocode for making
t+n predictions with the algorithm.
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input : An instance of Alpex, alpex
input : A Value to predict from, value
input : The number of predictions to make, n, where n > 0
output: A list of predictions from T+1 to T+n

begin
hst← alpex.train(value) ;
arr ← List() ;
while n > 0 do

p← alpex.predict without training(arr, hst);
hst← alpex.add value to history(hst, p);
arr.append(p);
n← n− 1;

end
return arr;

end
Algorithm 1: Pseudocode for t+n predictions

4.4.2 Supporting Test Train Split Datasets

Often when evaluating a dataset we may want to seperate testing and training of the algo-
rithm such that we do not train on the test set, this is not really how the algorithm is intended
to work however it is another example of the expandable nature of the algorithm. Algorithm
2 shows the Pseudocode for how this could be implemented using the library.

input : An instance of Alpex, alpex
input : Dataset to train on, dataset train
input : Dataset to test against, dataset test
output: A list of predictions for the test dataset

begin
for v ∈ dataset train :

hst← alpex.train(v) ;
arr ← List() ;
for v ∈ dataset test :

p← alpex.predict without training(arr, hst);
hst← alpex.add value to history(hst, v);
arr.append(p);

return arr;
end

Algorithm 2: Pseudocode for a train test prediction split
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4.4.3 Command Line Executable

As well as the library supporting its own simplistic User Journey, it is also important that
the library also satisfies the original User Journey, this is what our Command Line Program
‘alpex executable’ aims to achieve.

Design

To ensure backwards compatibility, with the original user journey, running the code without
any parameters should make predictions on a file ‘idata.dat’, and output predictions to a file
‘odata.dat’.

The user should be able to specify a specific file they want to predict for as well as the path
of the output file.

Data should be available to be streamed into the program using standard input/output, this
should support: entering all the data at the start, inputting the data one by one, and inputting
the data after each forecast.

Implementation

In C++ there are not many easy to use paramatisation libraries, therefore for simple param-
eters, it is easier to implement an argument parser ourselves.

The first argument we are going to use is the ‘–file’, or ‘-f’, argument which allows for users
to specify the file that they want to predict from. This is accompanied by the ‘–to’, or ‘-t’,
argument which writes the outputs to a specified path. These values are both defaulted to
‘idata.dat’ and ‘odata.dat’ respectively.

Instead of inputting data from a file, users should be able to input data directly from the
command line. The ‘–values’, or ‘-v’, flag provides support for this. When the flag is followed
by a list of values the algorithm will train on that list and return a prediction from the values.

If no values are provided then the program will listen for values from standard input. The
algorithm will keep listening until ‘-1’ is inputted and then return the forecast. If the ‘–
individual’, or ‘-i’, flag follows the ‘–values’ flag then the program will predict values as they
are entered.

Figure 4.1 shows how to view the command line arguments by calling the help function on
the executable.
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Figure 4.1: An example of running the help command on the Alpex Runnable executable.

4.4.4 Python Wrapper

Python is one of the most widely used languages for time series forecasting, this is partly due
to the extensive suite of tools available. This makes Python a good choice for analysing the
algorithm.

One way we could use Python with this algorithm would be to implement the algorithm in
Python, which could be possible, however the algorithm takes advantage of C++ memory
handling in its implementation which would need to be rethought, if we were writing it in
Python. The solution to this is to create Python wrappers for the code which allow for us to
directly call the C++ code from inside Python.

Design

There are two main ways that Python wrappers are made in C++ today [46], these are man-
ually writing them or using a library to automatically generate them.

We are able to manually write Python compatible code inside C++, this involves writing
Python callable functions that take in and return Python compatible data types. This has
the advantage of being the easiest to setup, there is no external software needed to do this,
however the trade-off is the complexity of the code needed.

One of the most popular libraries for automatically generating Python wrappers is Boost[7].
Boost is an extremely powerful tool that allows for C++ code to be called from Python and
vice versa. It can generate wrappers for large C++ projects however it is extremely complex
to download and implement.

Another library that we are able to use is pybind11 [35]. This library boasts itself as having
similar capabilities and goals to Boost however being more simplistic and easier to use. The
library does this by removing a lot of the tools and libraries that Boost depends on which are
not needed in most situations or are only there to support legacy version. Boost has been
around for a long time, therefore it does not take advantage of some newer C++ features
that this software does.
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For our project, the fact we are working with objects for our API means that manually creating
the Python wrappers may be fairly difficult and will limit the expandability and maintainabil-
ity of the code. However as we are only exposing one class in the API, Boost is probably
‘overkill’ for our requirements. Pybind11 strikes a nice balance and is therefore the library
we will use for generating our Python wrapper.

Implementation

pybind11 works by users writing ‘PYBIND11 MODULES’ which act as a common interface for
the C++ code. Due to our pimpl implementation, we are able to make a ‘PYBIND11 MODULE’
to mimic our ‘Alpex.h’ file. Appendix A.2 shows what our ‘PYBIND11 MODULE’ looks like.
Inside our module we define our Alpex class, then our initialisers and finally the different
functions available to interact with the object.

Another advantage of the pybind11 module is the cmake support available. Pybind11 has
cmake extensions allowing us to add the wrapper to our cmake project, see Appendix A.3.

Python uses pip for its package manager, the cmake script is directly used by pip meaning
that to install the Alpex Python library all we need to do is run ‘pip install .’ inside the project.

An example of using the Python library is seen in Listing 4.2.

Listing 4.2: Example Python code using the algorithm.

1 impor t a l p e x p y
2

3 a l p e x = a l p e x p y . Alpex (1 )
4

5 a l p e x . t r a i n (1 )
6 a l p e x . t r a i n (2 )
7 a l p e x . t r a i n (3 )
8

9 a s s e r t a l p e x . p r e d i c t (1 ) == 2
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4.4.5 Project Architecture

./

alpex ..........................................................Alpex Library Code
include

alpex.h

src

...

alpex.pc.in

CMakeLists.txt

ReadMe.md

alpex runnable..............................Alpex Command Line Executable Code
alpex.cpp

CMakeLists.txt

bin...................................................Code Generated from CMake
test files

...

Alpex Runnable.exe

Alpex Test.exe

bindings

pybind11......................................................PyBind11 Library
Alpex.cpp

CMakeLists.txt

setup.py

test alpex.............................................Google Tests for the Library
test files

...

...

CMakeLists.txt

CMakeLists.txt

ReadMe.Md

The complete architecture shows an overview of how the Alpex library project, including
extensions, is structured. We can see that each extension has its own CMake file, this means
that the different sub-projects can be ran independently of each other. We can also see that
there is an overarching CMake file for the whole project, this combines all the different sub-
projects such that you can work on the project as if it was all together. This removes the need
to install the library or worry about dependencies.
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Time Series as a Service

Whilst conducting experiments into the noise tolerance of the algorithm, I was repeatedly
running tests on large datasets and having to store the results of these predictions. Due
to the memory requirements of the algorithm, offloading the processing to a server would
have significant advantages, allowing future applications of the algorithm. This is one of the
reasons for implementing Alpex as a Time Series as a Service. The TSaaS implementation
aims to make Alpex deployable.

5.1 Technical Specification

This server needs to have all the functionality of the algorithm such that clients should not
be aware they are using a server as opposed to the library directly. The main functionality we
need to include is being able to create an instance of the algorithm that we can train on, and
then make predictions with.

The server is aimed to relieve system resources on a clients machine therefore some perfor-
mance overhead is deemed to be acceptable, however this must be carefully managed such
that the algorithm is still fast enough to be useful.

The server must be scalable and follow modern Platform as a Service architecture patterns
such as being RESTful and using micro-services.

The server should provide some of the higher level functionality of the algorithm, such as
‘t+n’ predictions.

As well as being aimed as an aid to programmers, the server must also be usable on its own.
Clients should be able to integrate the server and predictions into their own eco-systems,
therefore it must be well-documented, secure, portable and expandable.
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Figure 5.1: An example of how Model-View-Controller architecture works.

5.2 Design

5.2.1 RESTful Architecture

One of the requirements of modern day Platform as a Service implementations is that they
need to be RESTful, this states that a web server:

1. Uses explicit HTTP methods

2. Is stateless

3. Exposes directory-like structure, URIs

4. Transfers only XML or JSON, common data structures

These are properties that our server must be required to maintain.

5.2.2 Model View Controller

Model View Controllers (MVC) is a design architecture for building micro-service systems
that separates the view from the data. This is seen in Figure 5.1.

• The model manages the application data, logic and the rules of an application, this is
known as business logic.

• The view is the presentation of the model, also known as UI Logic.

• The controller takes in the input and passes it to the model, carrying out validation and
manipulation of the input, also known as input logic.

MVC separates the logic whilst maintaining loose coupling between them. Allowing for us to
create self contained systems that can be “plugged into” any eco-system. For this reason we
choose to use MVC within our project.

Modern implementations combine many different MVC architectures together into one. This
is seen where the backend server acts as it’s own MVC having what is known as a ‘thin client’.
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This has the advantage that all processing happens on the Server so that the user can access
the data straight away. We decided to implement this functionality of the server acting as a
thin client.

5.3 System Architecture

One of the key properties of the library that we must maintain is allowing users to instantiate
an object, train using that object, and then make predictions. The problem with this is that
the algorithm must maintain state to allow for clients to maintain this model. This directly
contradicts our RESTful nature requirement.

There are a couple of solutions for this. One solution would be to send users the state of the
algorithm and have them send it back every time they want to make a prediction. Consider-
ing the state is over 1.2GB, this is not feasible as well as not being secure.

Another solution is to have the state on the server backed up periodically meaning that al-
though the server maintained state whilst it was operational, if it went down it could just
restore it’s state. This is not true statelessness and is not an ideal solution, the state is so
large we cannot back it up that often without a significant performance overhead, therefore
we are likely to lose data.

The solution that we came up with was to separate the server and the algorithm, such that
the server maintained it’s stateless property whilst the state of the algorithm was still main-
tained. This is done by creating a fully self contained web server for the algorithm that our
main server would interact with. This means that if our main server were to go down then
we could just boot up another one without their being any issue, however, if our Algorithm
server were to go down then we would lose everything. This is a best fit solution as there is
no real way for us to make it truly stateless, however in this way we are able to contain and
manage our risk.

Figure 8.1 shows our system architecture with the separate C++ implementation and the
main client facing server. From this diagram we can clearly see the MVC implementation,
the client facing server acts as the controller, the model is the state machines and the view is
returned to the user.
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Figure 5.2: Alpex Time Series as a Service System Architecture.

5.4 C++ Sockets

As stated above, whilst trying to design a stateless Server, it became apparent that it would
not be possible to run the algorithm on the server itself as we would want the algorithm
to maintain state. Therefore we decided to implement a separate C++ Web Server that
would listen for data from a socket and return predictions. This follows the micro-services
architecture that is seen everywhere in modern computing, and is the motivation behind this
section.

5.4.1 Technical Specification

The C++ Web Server needs to listen for input from a process and return a value to that
process. As well as this it should maintain all the functionality that a client has by using the
library directly. Like the C Library, this socket implementation should be as basic as possible,
it should not include data validity or other higher level prediction methods; these should be
handled by the client. The C++ Web Server should be seen as a way to interact with Alpex,
and not a complete client facing server. This server must also be scalable and robust. With
this being said, the C++ server implementation does need to be RESTful.

The server should be seen as a step toward distributing the algorithm therefore it must be
cross platform and self-contained. The server should be easy to start up on different servers
such that multiple instances can be maintained.
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Finally although this implementation of the server will not handle data validity or security
concerns, the server code should be secure enough to protect the Intellectual Property of the
algorithm.

5.4.2 Design

Web Server Communication

As our Algorithm server is not aimed to be a Client facing server, we are able to look at some
different methods for how the client facing server will interact with our C++ server.

The optimal method for large scale distributed projects, of this type, would be to implement
Kafka event queues [2]. We would have a Kafka events queue separate from the servers
where clients can post and listen to messages. We would have an implementation where our
client facing server would post a value to predict for, our C++ server would listen for that
value. Once the C++ server received the value, they would make a forecast and post that
value to the events queue. The client facing server would then be listening for a response,
once they have received the forecast they would return it to the user. This is very secure,
expandable and would be the optimal way for a large scale project. In our situation we are
likely to only have one server communicating with one predictor at any one time therefore
this implementation is slightly overkill.

An alternative and the standard for local inter process communication is to use sockets. Sock-
ets allow for processes to transfer data between them across ports, these can be open to a
network as well as local to a machine. This is a slightly more simple approach however it has
all the functionality that we need for our use case.

Socket Type

There are two main ways to send data through sockets in a network, these are either a
connection orientated approach, or a connection-less approach. Each method has its own
advantages and disadvantages in our scenario.

Connection orientated approaches involve clients setting up a connection with a server, send-
ing data back and forth between the server and client until the client closes the connection.
This is very useful when we have a client and server constantly communicating with each
other, or when large amounts of data need to be sent. The disadvantage with this method
is the overhead needed in setting up and closing a connection, which is not worthwhile for
small connections. Furthermore if the connection were to be broken then problems can occur,
for this reason we do not want to keep connections open indefinitely.

Connection-less approaches however involve a client sending a packet to a server which con-
tains all the connection information needed for the communication as well as the data. The
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advantage of this method is that no handshaking is needed between the client and server this
means that for small packages the overhead is much smaller. As the package is self contained,
if data gets lost the package can just be resent instead of all the data needing to be resent;
the individual speed of packages on a network is also generally faster. The disadvantage with
this is that the overhead on each package sent is much greater as lots of added information
needs to be sent per package. If users need to just send a few smallish packages at any one
time then Connection-less is probably optimal.

For our scenario we are likely to send one value at a time from a client to a server. The fact it is
likely to be the same client and server communicating is a plus for the connection orientated
approach. As we are only going to be sending one package at a time at potentially long
intervals means that we would likely have to set up handshakes fairly often. Furthermore the
connections will be potentially open indefinitely which is not likely to be possible. For these
reasons we have decided to go for a Connection-less implementation using Datagrams.

Transport Layer Protocol

There are a number of different protocols that we could use for a connection-less imple-
mentation. The most popular ones at the moment are User Datagram Protocol (UDP) and
Datagram Congestion Control Protocol (DCCP). UDP however is the most common, well doc-
umented and robust method available. There are also implementations of UDP sockets in
most common languages, C++ and JVM included.

Containerisation

Containerisation[11] is about packaging software and its dependencies such that it can be
ran on any platform or technology. When a programmer builds software on a container they
can be confident that the container will be able to run on any machine or on the cloud free
of issues. Containerisation stems from Virtualisation which is similar however it uses virtual
machines rather than containers, Containerisation offers many more advantages and is a re-
flection of progress away from Virtualisation.

Containers are lightweight, secure, portable, scalable and often contain a host of management
tools. The most common technology for Containerisation is Docker [17]. Docker provides all
the functionality to use containers, the containers are an abstraction at an application level
and can be isolated from other processes. Docker is by far the industry standard for Con-
tainerisation and there are not many good alternatives to compete with it, we will therefore
use Docker to containerise our web server.
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5.4.3 Implementation

Command Line Arguments

The C++ Socket is a CMake command line program that takes in an optional port for the
server to listen on, this port is defaulted to 27015. The program then starts an infinite loop
that listens for data on that port until the server is killed.

API Contract

Although the C++ predictor server is not meant to be client facing we will still need a way
for our main server to communicate with it. For that reason we have a small and simplistic
implementation of an API contract.

Simply the way the server works is that a client sends a datagram containing the string rep-
resentation of an integer, this compensates for the fact that different languages represent
integers differently. Once the server receives the datagram, it makes a prediction on that
integer, whilst training on it, and returns the string representation of the prediction inside a
datagram back to the client.

As well as making basic predictions, the client is able to reset the algorithm and make pre-
dictions without training. To reset the algorithm, the client sends a datagram with the string
"r <initial value>". This resets the algorithm with the initial value (defaulted to 0) and
sends the client a datagram with a confirmation. To perform predictions without training,
the client should send the string "n <value>".

Finally the server allows users to ping it to check they are able to communicate, sending the
string "p" to the server will cause the server to send a confirmation back to the user. This is a
very basic contract and should only be used in conjunction with a server, and not as a client
facing API.

Docker

Our C++ Socket implementation uses Docker to containerise the Web API. This containeri-
sation involves building a Docker image and then deploying that image.

Each Docker container in a network is given a unique IP Address to communicate with it.

Our Docker build script loads in just the Alpex library and the Socket API into the Docker
container. The container installs a valid C++ compiler, building the ‘SocketAPI’ executable.
Port 8080 of the Docker container is exposed to UDP clients and connected to port 80 inside
the Docker container. Finally the command for initialising the server is set, where we pass in
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port 80 for the API to listen on. The container is built using the command:

docker build --pull --rm -f "Dockerfile" -t socketapi:latest ".".

Once the container is built a user needs to deploy and run the container using the command:

docker run --rm -d socketapi:latest.

With a deployed container we can obtain the IP address by first getting the container name
using docker ps, and then running the command:

docker inspect -f ‘range .NetworkSettings.Networks.IPAddressend’ container name.

To communicate with the server and make predictions we must send UDP Datagrams to the
containers IP Address on port 8080.

5.5 Client Facing Web Application

5.5.1 Language

There are a number of languages that we could use for our Client Facing Web App, each with
their own advantages and disadvantages.

C#

C# is one of the most common languages used for Web Apps, as a result web application
tools are extensively well documented and highly respected. This would have been a good
choice of language to use, however it is becoming less popular than more modern methods
and the tools and methodologies are becoming more outdated.

Python

Python is a very flexible language, there is not much you can’t do with python, therefore it
is entirely possible to host python web servers. Python would have been a good choice for
our server as we are using python for our analysis of the algorithm, which is going to be our
servers main client. This is not necessarily a good thing however as if we know our client is
going to be in Python then we may program specifically for that which will make the API less
usable in the future. Furthermore, although there are tools available for this, they are not as
well respected as ones for more standard languages.
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JVM - Kotlin

Java Virtual Machine based languages are becoming increasingly more popular, as a result
there is lots of new tools being created and used for the JVM. One of these tools is Spring
Boot which handles most of the functionality we need from a Web Server whilst being easy to
use and exceptionally well documented due to the wide industry adoption. Kotlin is a natural
progression away from Java and is quickly overtaking Java as the main JVM language. Due
to the functionality of Spring we shall use Kotlin for our Web API.

5.5.2 C++ Server Communication

The JVM has tools built in for Socket communication therefore we are using those to send and
receive UDP Datagrams from the C++ Server. Our implementation of the algorithm has one
main server that it sends data to and from. If the client does not specify information about
the server then messages will be sent to and from the same, default, C++ Server. Clients
therefore have the opportunity to specify their own IP addresses for Docker containers they
want to communicate with.

5.5.3 Spring Boot

Spring Boot [39] is a large suite of tools designed for creating and managing Web Applications
in JVM. Spring Boot contains it’s own thin client Model View Controller implementation
which handles most of the RESTful properties for us as well as Dependency Injection for Unit
Testing and component swaps.

Dependency Injection

One of the key requirements of the server is that it is well tested and secure. We want a way
to unit test sending messages through the socket to the C++ server without actually requir-
ing a connection. The way we can do this is through the Dependency Injection architecture
which is implemented by Spring Boot.

Dependency Injection means that objects define their dependencies only through constructor
arguments. This means that we can pass in different implementations of the object at run-
time. This allows for us to use mock versions of these dependencies during testing and mock
responses. This allows us to create dummy responses for our socket so we can test that the
server is robust without having to actually communicate with the C++ Socket.

One of the ways we have used DI in our program is to create an interface which looks the
same as the API contract for the library. We then have an implementation of this interface
which handles the socket communication. If in the future we wanted to use a different
implementation instead of sockets, for example Kafka Event Queues, then all we need to do
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is create a new implementation of our predictor interface and change which implementation
of the predictor we inject into our other classes. As we are using this common interface the
client will not notice any change.

Spring Web MVC

The Spring Web MVC handles most of the RESTful properties of the server. The MVC provides
an easy way to implement functions as HTTP methods. The MVC then exposes these methods
inside a URI structure. Data that is passed into and returned from these functions is then
converted to/from XML and JSON for the client.

Spring Security

The Spring MVC has a library for implementing a secure network connection which allows
us to authenticate users of the server, making sure that all communication is secure.

5.5.4 Swagger

Swagger is a framework that provides a suite of tools for building, designing, documenting
and consuming Web API’s. Swagger has support for Spring Boot and provides features that
we will take great advantage of for this project.

Swagger UI

The Swagger UI is a Spring Boot add on which creates a webpage and user interface for mak-
ing API calls directly to our server. The library allows us to document our functions associated
with our HTTP requests from inside our Kotlin code. This documentation is then read by the
Swagger UI which displays it with our HTTP method calls.

The UI has two key advantages. The first is that it allows us to see exactly how to make API
calls, it allows us to test the API with sample data so we can see how the server reacts to
different inputs as well as the format of our output. This is extremely useful from a clients
point of view as they are able to test their interactions with the server, it is also useful for
programmers as it allows us to quickly test our application. The second advantage of the UI is
that it allows us to export the view as our API Contract/Documentation, as the UI contains all
the information about our endpoints (which we documented in our code) it acts as a perfect
contract to give to clients.

Swagger Clients

Swagger Codegen is a piece of software that generates code for both clients and servers based
on API contracts. The client code we generate allows us to call functions which abstract all
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of the HTTP request for the endpoint into native looking functions. An example of how we
can use our Python client to interact with our server is seen in Appendix A.5.

5.5.5 Maven

There are two main build systems that are used with the JVM, these are Maven and Gradle.
There is not much difference between the two, Gradle is the newer build system and is a
natural progression away from Maven, however Maven has more backwards compatibility
and a larger array of supported software. For this reason we have decided to use Maven as
the build system for our project.

5.5.6 Docker

In the C++ section we saw the importance of Containerisation and how we can use Docker
to implement this. The arguments we previously used for Docker apply just as much on the
client facing server, therefore we also package this server inside a Docker container.
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Analysis Toolkit

One of the main focuses of this project is to analyse the forecasting capabilities of the algo-
rithm, therefore it is important that we create a suite of tools to facilitate this; allowing Alpex
to be accessible for, and empower, data analysts.

6.1 Technical Specification

There are a number of requirements that a tool suite will need for this project to be a success.

Each experiment will roughly follow a similar User Journey, this will consist of a number of
key steps that are outlined by Figure 6.1.

From the diagram we see that most experiments will contain a way of generating a dataset,
a way of predicting on that dataset, and then a way to analyse the predictions. This is what
the tools must facilitate.

Figure 6.1: The User Journey for a typical experiment.
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6.2 Design

6.2.1 Language Choice

The main choices when looking at data science analysis are Python, R and MatLab, each of
these languages have their own advantages and disadvantages that could have made them a
good fit for this project.

Generally when talking about time series, if we are looking at regression models (such as
ARIMA) R is the preferred language, however when it comes to machine learning based
methods Python is much more widely utilised.

R

The main advantage of R over Python is the focus on statistical and data analysis tools avail-
able natively in the language. R is designed for data analysis where as Python supports it
through libraries, this is both a positive and negative. This means that we are able to fit
our analysis tools into systems that are already using Python rather than having to keep the
analysis tools separate.

Python

Python is an extremely flexible tool for data analysis due to the expansive suite of tools and
libraries readily available. We will go into more detail about the tools we use for Python and
the advantage each one brings later.

Python is very high level and generally human readable, this means that even non-programmers
or programmers who have not used Python are able to understand the code. Compared to R
and Matlab which are lower level, this means that the tools will be more usable.

In terms of performance, with the extremely widely used and well regarded numpy library,
Python data analysis performance is comparable to R’s.

For these reasons we have decided to use Python for the Analysis Toolkit.

6.2.2 Tools

Jupyter

Jupyter [34] is a web application which allows for users to create and share documents that
contain a mix of markdown text and code. This allows for users to create shareable reports
directly from their code instead of having to do this separately, drastically speeding up report
writing time.
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Matplotlib

Matplotlib [62] is one of the most well respected suite of graphing tools, allowing for practi-
cally any types of charts to be made; as the analysis will require a huge amount of graphs to
be made, this can be extremely useful.

scikit-learn

scikit-learn[38] is a collection of statistics tools mimicking the functionality that comes na-
tively to R. Sklearn combined with numpy allows for us to convert Python to a data analysis
language. Some of the Sklearn features that we shall be using are:

• ARIMA and SARIMA models

• Seasonal and Trend Decomposition

• Time Series Statistics

• Plotting ACF and PACF graphs

• Splitting data between testing and training

• Metric Calculations

• Linear and Polynomial Regression Models

• And many more...

Numpy

Numpy [29] is a Python library written in C that aims to provide mathematical tools in
Python with C level speed. This means that maths in Python is not restricted by the Python
interpreter but instead can take advantage of the speed of compiled code. Numpy provides
tools for array manipulation, mathematical functions (sin, cos, integration, exponentials...)
and many more.

Pandas

Pandas [31] provides tools that are needed for data analysis in Python. This involves tools for
reading and writing from in memory data to csv or other formats. DataFrames are indexed
data structures that represent tables in an optimised way, time series optimised DataFrames
exist. Tools for manipulating time series such as range generation, moving window statistics,
data shifting, lagging, differencing and many more... Critical code is written in C to maintain
speed.
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Swagger Clients

As mentioned in the Time Series as a Service section, we can create Swagger Clients for
different languages to allow for http requests to be wrapped in function calls. Swagger has
support for Python, where we can automatically generate Python libraries from Swagger
enabled servers (like our server). The generated repository includes extensive, automatically
generated, documentation about how to interact with the library.

pmdarima

pmdarima [33] is an analysis toolkit that provides functions for ARIMA analysis. The main
aim of this library is to simulate the ‘arima.auto arima’ that R offers. This library performs a
hyper-parameter optimisation script to try and estimate a best fit parameter set for ARIMA,
effectively this is a non-parametric implementation of ARIMA.

Other Minor Tools

As well as these key tools that are listed above, there are lots of minor tools that we have
used during the development of the project. These include

1. PyPDF2 [36] is able to perfrom PDF manipulation tools on different PDF’s from inside
Python, the main functions we shall be taking advantage is the ability to merge different
pdf’s together.

2. argparse [3] handles paramatisation of command line arguments for Python scripts, this
allows us to easily pass arguments as well as generate documentation for command line
programs using the ‘–help’ command.

3. quandl [20] is a huge collection of financial datasets and time series, quandl has Python
bindings that make collecting and manipulating these datasets extremely easy.

4. Pythons OS [30] library provides operating system independent functionality such as
calling command line functions or moving and deleting files.

6.3 Implementation

6.3.1 Project Architecture

Figure 6.2 gives an overview of the project architecture for the Analysis Toolkit.
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Figure 6.2: The project architecture for the Analysis Toolkit.

6.3.2 Metrics

The ‘metrics.py’ file contains a ‘Metrics’ class which is used to generate a large amount of
different metrics comparing a list of predictions and the original dataset. The metrics object
takes in a list of predictions and a list of original values as constructors. The class offers print
functions to display the metrics as well as functions for displaying a list of metrics as a table,
exporting a list of metrics to latex and plotting a list of metrics. Some of the metrics provided
by the class are as follows:

• Mean Squared Error (MSE)

• Mean Absolute Error (MAE)

• Mean Absolute Percentage Error (MAPE)

• Median Absolute Percentage Error (Median APE)

• R2 against mean (R2)

• Explained Variance

• Max Error

• and more...
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6.3.3 Generating Synthetic Time Series

There are a number of mathematical time series that we are likely to want to implement. For
some of these standard series I have created generators that take in parameters and return
the series. A list of the different series that are available is:

• Sawtooth

• Sine Curve

• Logistic Map

• Lorenz System

• Henon Map

• Mackey Glass

• Random Series

Each file/generator has the same function structure,

def generate data set({String → Any}) → PandaSeries,

meaning that all a user needs to do is import the correct function for the generator they want.
An example of a generator is seen for the Henon Map in Appendix A.4.

6.3.4 API Implementations

At the moment we have two ways to make predictions, these involve using the Time Series as
a Service or using the Python Wrappers that we created for the library. These API’s are used
to communicate with these two methods.

C++ API

The ‘cpp api.py’ file is fairly simple, it provides constructors for the Alpex C++ Object. Once
the functions are called to generate the object users can then interact directly with the object,
therefore other functions are not needed.

Time Series as a Service

The ‘network api.py’ file provides functions for communicating with an Alpex server. As dis-
cussed in a previous section, we are able to create a Python Swagger client for the server.
This client wraps the complexity of http requests into native Python functions such that
clients would not necessarily know that they were making server requests. This API file is
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an extension of this that includes error handling and simplifies usage by not requiring the
user to make API instances. An example of one of these functions has been previously seen
in Appendix A.5.

6.3.5 Predictor Code

The predictor code interacts with the different API’s available to make different types of
predictions. The library code is designed to be as basic but as expandable as possible, with
this in mind, things like T+N predictions are not natively supported. This file implements
different prediction methods as well as different normalisation strategies. A list of some of
the different types of functionality this file provides is as follows:

• Predicting from a list

• Predicting individual values

• Splitting a dataset into train and test, and returning test predictions

• Predicting for a list of datasets with and without resetting the algorithm between

• Performing basic normalisation

• Performing tanh and sigmoid normalisation

• Performing all prediction methods with or without normalisation

• Performing t+n predictions

• Making predictions without training the algorithm

• Conducting these predictions on the normalised and different types of datasets.

• Removing trend from a time series by removing the rolling mean

• Removing trend from a time series by plotting a Linear or Polynomial Regression model

• And even more functionality...

The predictor has a flag in the file called predictor which a user can set to either ‘LOCAL’
or ‘SERVER’ which corresponds to making the predictions using the C++ API or using the
server.

6.3.6 Graphing Code

As time series are represented as graphs, it is useful for us to have different ways of graphing
them. The ‘graphing.py’ file acts as a wrapper to the many different matplotlib graphing tools
available simplifying the parameters for our use case. There are two different types of tools
available, these are for displaying the time series or for plotting metrics.

The different tools available for displaying the time series involve:
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• Plotting the Predictions against the Time Series

• Plotting the Predictions against the Time Series and different baseline predictions

• Plotting a grid of predictions against Time Series

• Plotting Metrics over factors (for example sample size)

• Plotting Metrics in a grid

• Plotting Predictions against Actual and zooming into sections

6.3.7 Generating Reports

Our experiments are centered around creating Jupyter Notebooks that will form the report.
One of the key advantages of using Jupyter notebooks is that we can mix code and markdown
such that the whole report can be written in the notebook. Once we have this report we need
a way to export the notebook into a more readable file type, usually a pdf. Jupyter makes
this easy to do for one notebook as we are able to export notebooks to pdfs directly from the
web app. However we often want to combine many different notebooks into one, and if we
have to go into the web app for every notebook it can turn into an extremely long process.
This is the problem the ‘generate report.py’ function aims to solve.

The ‘generate report.py’ file is a command line program that converts Jupyter Notebooks into
pdf’s or tex files. The program can take in individual, or a list of, notebooks and convert them
into the desired file type outputting them inside the reports folder.

As well as supporting list of files being inputted directly, which can make for very long scripts,
users can update the Python file to add a predefined list of notebooks that form an exper-
iment. Users can then type in the experiment name as a command line argument and the
program will generate the respective report. An example of how to add a list of files for an
experiment is shown in Appendix A.6 as well as the command for generating the experiment.

The process of converting Jupyter notebooks into other data types uses the ‘jupyter nbconvert
...’ function. This function takes a notebook as input, converts it to the correct type and then
outputs it in the same directory. The problem with this is that it is slow to run, and for large
experiments this script can take a long time.

Due to this, our command line program runs the conversion script inside a multi-threading
environment. We spin up a process for each file in an experiment and then, once all of the
pdfs (or other types) have been made, we run a script which combines the respective files.
We are utilising a map-reduce architecture [54].

The reduction function is different for various file types. For merging pdfs we use the pypdf2
function to combine all the different files, we then use Pythons OS module to delete the files.
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Figure 6.3: An example of using the help function on the Python report generator.

An example of the commands available can be seen in Figure 6.3. We use the argparse li-
brary to generate the output to the help function as well as handling argument parsing for
our program. An example usage of the generator is seen in Listing 6.1.

Listing 6.1: An example of generating the sample experiment.pdf inside the reports folder with
experiments sample and sample 2.

1 python .\ g e n e r a t e r e p o r t . py
2 −− f i l e s .\ t i m e s e r i e s \ sample \ sample .\ t i m e s e r i e s \ sample 2 \ sample
3 −−to s amp l e expe r imen t
4 −−as pdf

6.3.8 ARIMA Baseline Predictions

For our project we are assessing how well the algorithm is able to forecast, however it is not
possible to say how well we can predict unless we have a baseline to compare it against. We
are already using the mean as a benchmark with our R2 metric, however we also want to
compare this with more complex methods.

The two forecasting methods we could use to benchmark against would either be ARIMA or
a Neural Network implementation, for our project we are going to be focusing on an ARIMA
baseline.

One of the key advantages that Alpex has over ARIMA is that it is non-parametric, this means
that no specialist training is needed, furthermore for ARIMA models parameter tuning is a
long and arduous process that doesn’t add much benefit to the project as a whole. For this
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reason we are going to be using an automated ARIMA model, pmdarima, which automatically
performs a hyper-parameter search to determine our parameters and then perform predic-
tions.

The ‘arima’ folder inside the project provides all the necessary code to be able to build an
ARIMA model and then fit it to our dataset such that we can compare our models against the
ARIMA models. The ARIMA model library inside scikit does however have many limitations,
for example we cannot diff a dataset more than twice, we cannot have an AR parameter of
more than 3 and increasing the MA parameter drastically increases the memory requirement.
For these reasons we are comparing the algorithm against a simple, non-parametric, version
of ARIMA and not ARIMA in its entirety. The library also supports SARIMA for seasonal
models.

6.3.9 Sample Experiments

The goal of the sample experiment is to allow for non-programmers or people unfamiliar with
Python to be able to conduct experiments in the way outlined in the user journey, see 6.1. As
well as allowing anyone to be able to make predictions the sample experiment allows for us
to quickly analyse if a dataset is predictable. We offer a number of sample experiments, most
notably a very simple implementation and a complete implementation.

All of the sample experiments follow a similar structure. This structure involves a notebook
and an accompanying Python file. The accompanying Python file always includes a function
for generating the dataset,

def generate data set({String → Any}) → PandaSeries.

The accompanying notebook imports this function, and then performs prediction operations
on this. The file structure of our experiments is as follows:

./sample

data

data.csv

out

alpex.obj

arima.obj

sample.ipynb

sample.py

Simple Implementation

The simple implementation is about allowing users to make predictions in the easiest and
quickest way.
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The simple implementation involves the ‘generate data set()’ function reading a csv file lo-
cated inside the data folder, obtaining values for a specified column and returning them as
a Pandas Series. The column name is defaulted to ‘values’ and the file name is defaulted to
‘data.csv’. The user should either edit these values accordingly, in the Python file, or edit the
file name and column name for their data.

The simple implementation also has functions ‘generate arima()’ and ‘generate algorithm()’.
The ‘generate arima()’ function uses our ARIMA library to try and automatically generate
predictions from the dataset. The ‘generate algorithm()’ function performs a basic de-trend
of the dataset it then passes the data through a basic scaled normalisation method, making
the predictions on that dataset and then un-normalising the data.

When the client imports the Python file, both the generation functions are called and the
outputs are written to pickle files ‘alpex.obj’ and ‘arima.obj’ inside the ‘out’ folder. The script
then imports these pickle files, plots the dataset and predictions, for the baseline (ARIMA)
and the algorithm. Metrics are then calculated for the respective predictions and displayed
in a table.

The only process a user needs to do is copy their data into a file ‘data/data.csv’ and rename
the column they want to predict for ‘values’, then run the notebook. No programming is
required in this method.

Normal Implementation

The normal implementation is similar to the simple method, however it allows for the user
to configure their predictions in different ways.

Like the simple prediction, the accompanying Python file contains ‘generate data set()’ and
‘generate arima()’ functions. These operate in the same way, however the ‘generate data set()’
function takes in ‘filename’ and ‘column’ parameters.

The notebook then differs as the user imports the ‘generate data set(filename, column)’ func-
tion from the Python file and calls it with their respective values. From here, the notebook
performs the de-trend. The notebook then makes the prediction on the dataset and does the
same analysis on the predictions.

The difference with this method is the fact that the code involving alpex occurs inside the
notebook instead of the Python file. The process is still accessible to non-programmers, how-
ever the user can perform their own data pre-processing on the dataset before making pre-
dictions.

An example of how a normal experiment looks is seen in Appendix E.1.
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Visualisation

The visualisation of the algorithm aims to make Alpex accessible to researchers looking to
learn more about how Alpex makes predictions. Although there is not much we are able to
discuss about our Visual representation of the algorithm we are able to go through our design
decisions and show some examples.

The idea for visualising the algorithm came after a discussion between Ben and myself during
one of our weekly meetings, where Ben had shown a naive tree representation of the algo-
rithm that he had once created. This representation lacked scalability therefore, as the trees
were exceedingly large, conclusions were not able to be drawn. This conversation however
got us very excited about some different ways to represent the algorithm. Great curiosity
about such a visualisation led me to wonder what could be done in this direction - therefore
the extension was built just as much from a genuine excitement as well as weighing up the
benefits that could be gained from analysing the representation.

7.1 Design

7.1.1 Motivation

Before this project we had next to no understanding of the structure of the algorithm and
how this influenced predictions. We knew the algorithm had a constant memory complexity.
In an attempt to gain an understanding of how memory was being used we decided that, as
an extension, we should generate a way for us to visualise the algorithm.

We know that the algorithm involves large trees therefore we want a scalable way to display
large and complex trees.
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Figure 7.1: An example of a H-Fractal tree with a depth of 10 [53].

7.1.2 Displaying Trees

Following on from our initial meeting discussing a visual representation, we had a further
meeting where we looked at some of the different possible ways of displaying large trees.

H-Fractal Trees

Fractal trees are a robust way for generating large trees. This method of generating trees has
been around for a long time and is definitely a compelling candidate. Figure 7.1 shows an
example of a H-Fractal tree. The concern with these types of trees is that although they are
good for large trees they probably won’t scale to the size that we require.

Circular Phylogenetic Trees

Phylogenetic trees have been used in biology to represent how species have evolved for a
long period of time. These evolutionary paths are often very large and therefore these trees
support the depth that we require for our trees. Figure 7.2 shows an example of a Phyloge-
netic tree being used in Biology. As this type of tree both looks very interesting and supports
a large enough scale we decided to use this for our visualisation.
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Figure 7.2: An example of a Circular Phylogentic Tree of Life [75].

Other Representations

There are lots of different ways that we could represent these large trees, if you are interested
in looking at different methods then this paper [55] offers some really novel and interesting
ideas.

7.2 Circular Phylogenetic Trees

7.2.1 C++ Library

Our current implementation of the C++ library would not, and should not, allow us to dis-
play a visualisation of the algorithm. Supporting this feature within our library would be a
breach of security and as this is not a necessary feature that we need to support, it will not
be added to the original C++ API.

Instead of adding the required code to support the visual representation we decided to fork
the library and create a less secure version with an extra API call that would allow us to
export the representation. This version of the library should not be distributed and should be
used for experimental purposes only.

7.2.2 Tree Generation

There are a number of libraries available that we can use to generate these types of trees.
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ete Toolkit

The ete toolkit[19] is a suite of phylogenomic tools for visualising trees in a biological setting.
The library also has a python wrapper which is useful as it means that we are limiting the
number of languages our tools are in. The library also contains all of the functionality that
we need to represent the algorithm. The library also allows us to customise everything about
the trees this will allow us to ‘colour’ the trees.

Phytools

Phytools is another tool that we could use for developing our trees. Compared to ete the
documentation of Phytools is lacking, and the wrappers are written in R therefore when we
have a tool like ete that works, I feel that Phytools is not the right approach.

7.2.3 Graph Colouring

Part of the way the algorithm learns is through graph colouring, the ete toolkit allows for us
to create custom rules for generating the tree such that we can display this tree colouring.

As we are building very large trees, the colour scheme that we choose is extremly important.
Ben and I iterated on this and eventually concluded that using the colours red(255, 28, 28)
and blue(15, 15, 165) was the most effective.

7.2.4 Implementation

The implementation of the visualisation consists of a number of command line python pro-
grams that can be used to generate different types of trees. Scripts were also made to com-
bine different images of trees together and, as the generation of these trees can take between
10-30 minutes, batch scripts were made to automate this process.

7.3 Alpex Visualisation

We show just three examples of the many trees generated for different mathematical series
and this has allowed us to draw some interesting conclusions.

Figure 7.4 shows the Phylogenetic trees generated for the sawtooth example at different
depths. We can see some beautiful patterns generated by the algorithm. We can conclude on
this dataset that the trees actually have quite a lot of redundancy.

Figure 7.3 shows what a tree looks like for a chaotic time series, the logistic map. The in-
teresting conclusion that can be made from this is how detailed the tree is. The fact the tree
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Figure 7.3: An example of a tree for the Logistic Map dataset trained on 410 values with a
max-depth of 100.

is so detailed actually tells us that the algorithm needs the complete tree to be able to make
good predictions and therefore there may not be much redundancy.

Another interesting note relates to the file size of the images, the sawtooth image with a 100
depth is 766KB where as the logistic map is 2.26MB and we were unable to even calculate
it for a random series, at this depth, as the image would just be too big. The images were
done at such a resolution that, on the original versions, we are able to fully zoom into the
tree without any loss of accuracy.

68



Chapter 7. Visualisation 7.3. ALPEX VISUALISATION

Figure 7.4: An example of a tree for the Sawtooth dataset trained on 4096 values with a max-
depth of 10 (Top) and trained on 410 values with a max-depth of 100 (Bottom).
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Evaluation

The aim of the first part of the project was to answer the question “How can we make Alpex
accessible and deployable?”. We have achieved this by: creating a C++ library with an ob-
ject based API to make the algorithm accessible for developers, deploying a Time Series as
a Service implementation to provide forecasts for clients, developing an Analysis Toolkit to
empower data analysts and visualising the algorithm to allow researchers to study it’s prop-
erties. We can see how these components interconnect in our complete system architecture,
Figure 8.1.

Figure 8.1: Complete Architecture for the project.
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8.1 Alpex C++ Library

The success of this library revolved around creating the most simplistic implementation of
the algorithm which was: secure, extendable, fast, documented, well-tested and Object Ori-
entated. Through our library we have been able to achieve this.

The library is Object Orientated and the object is well-tested, documented and extendable as
well as being usable and secure. The object was also designed in such a way that there is a
minimal amount of endpoints whilst still being fully usable, in the simple use case as well as
providing different types of predictions such as T+N. Using C-Test we are able to ensure this
object is well tested.

As opposed to the original implementation of the project, the C++ API takes advantage of
CMake to make it cross-platform. This means that the library can be ran and built on any
machine with an appropriate C compiler, and not just using Visual Studio. CMake also offers
possibilities for the library to be used inside build pipelines and the unit tests present, ensure
the library still works.

The library itself was developed in two vertical slices, one limiting factor of this was that the
first slice contained a memory leak. As I had not ran performance checks on the original
implementation at this point it was not until near the end of the project that I found this leak,
once fixed, runtimes went from minutes to seconds on very large datasets. If I had discovered
this at the end of the first vertical slice, then some computation time could have been saved.

As well as the base requirement of the API, the API was extended for Python allowing for it
to be used within data analysis tools. The Python API is extremely easy to both set up and
use.

8.2 Time Series as a Service

In this section we have outlined the need for and the implementation of Alpex as a Time Se-
ries as a Service. This implementation was largely successful in its goal of offloading system
resources from my laptop such that I was still able to use it whilst experiments were being
completed. We were also able to deploy an implementation of how the Algorithm could fit
into an ecosystem as a micro-service. This is likely how we would implement the algorithm
into a real world scenario, therefore a useful contribution to the project.

The containerised nature of both servers allows for our implementation to be scalable, portable
and secure. The fact a client is able to select the instance of the Docker container they want
to predict for allows for our Client facing server to support multiple clients. As the Client
facing server is stateless, if we run out of resources due to supporting too many clients, we
are able to spin up more machines or increase the capacity of our current machine to scale
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our server with demand. One of the key properties of the algorithm is the constant space
complexity. This means that the C++ Socket containers, are inherently scalable.

Although great care was taken to contain the risk of the system, by separating out the C++
Socket, if we wanted to actually implement this in a real world situation we would need
to mitigate these risks by having backup solutions for the algorithms state. It would be an
interesting balancing act to see how this could be implemented whilst still maintaining the
security of the algorithm.

Docker has a JVM wrapper which allows for us to call Docker functions from inside Java code.
A limiting factor of this web server is the requirements for users to spin up the predictors sep-
arately. A useful extension to this Web Server would be to allow for this to be done using the
client facing web app using the Docker wrappers, potentially setting up a new predictor for
each new client.

Furthermore if we were implementing this as a system where predictions would automatically
cause an action to occur, we would want to implement checks on the server to ensure that
our predictions are sensible, and calculate error metrics or probabilistic models.

8.3 Accuracy Analysis

Our test cases allowed for us to check the accuracy of our predictions against the original
implementation.

Although we already had test cases to do this, to be absolutely sure that values were identical
a two factor authentication process was created between Ben and I to ensure there was no
difference. Ben sent multiple excel spreadsheets to me which contained the input and output
of the algorithm for multiple different series. I was then able to take the input from each
spreadsheet, generate the corresponding output and run his output and my output through a
diffing tool to ensure they were identical. Once this had been completed I created an identi-
cal excel spreadsheet with my input and my output which I was able to send back to Ben and
he could verify with his implementation.

The manual two factor authentication method as well as the test cases meant that we could
be certain that the accuracy of the library was consistent.

8.4 Complexity Analysis

One of the success criteria of this library was that it was just as fast as the original implemen-
tation, therefore any change in computation speed or complexity needs to be explainable.
Figure 8.2 shows the change in speed between the original implementation and the library
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Figure 8.2: Graphs of Computation Time (ms) against sample size for multiple datasets using the
different implementations.

implementation.

To ensure consistency between the tests, start and end time flags were placed before reading
the first value from a file and after the last prediction was made. A quick modification to the
original code allowed for it to be ran on a Ubuntu machine therefore all tests were completed
on the same computer. The specification of this machine is: i5-9600K x86 64 CPU @ 3.70GHz
with 16GB 3000MHz DDR4 memory running Ubuntu Elementary OS. The computation times
are for a Linear Series, a Chaotic Series, a Real world time series and a random series at the
same data size intervals (100, 500, 2000, 4000, 10000, 50000).

8.4.1 C++ Library

From these diagrams we can see that the difference in computation time between the original
implementation, the new executable and Python wrappers are negligible. In terms of CPU
usage, it was impossible to tell without causing major overhead for the smaller samples,
however on the large datasets 100% of one core was being used as well as 1.23GB of RAM.

8.4.2 Time Series as a Service

What we saw from our experiments is that the performance overhead of the server is signif-
icant. To better understand how this would affect forecasts, I conducted an investigation to
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Figure 8.3: A table analysing performance overhead of our Time Series as a Service implementa-
tion.

find out where the bottleneck of the system was. To do this I calculated the average compu-
tation time for each part of the forecasting pipeline, see Figure 8.3.

What we can see from this table is that the computation time on the client facing server is
spent sending a value and receiving a response from the predictor. We can see that most of
the predictors time is spent forecasting and that this it is extremely quick. If we take the total
time the client facing server has to wait and subtract that by the time it takes for the predictor
to make a forecast we can estimate the performance overhead, this estimate comes to about
9.955 milliseconds.

Although there is a substantial amount of overhead per value for the TSaaS implementation
compared to a locally ran version of the algorithm 9.955 ms compared to 0.423ms, if we
compare this to other forecasting methods it is much quicker. See Section 11.2.4.

In terms of CPU usage, the Docker Container is using 100% of one of the cores, for large
datasets, as well as 1.23GB of memory. One of the interesting things we are seeing is that
the server is using up 100% of it’s bandwidth, therefore it would appear that the network
speed could be the bottleneck. The system resources being used by our client PC to make
predictions is negligible, this is a huge improvement over the other implementation.

From our experiments we calculated the upper runtime limit as being 14ms, if we assume
that in some situations the runtime may go above this and set it as 20ms, this means that we
are able to predict and train on values arriving at 20ms intervals, from any device!

Due to the runtime overhead of the Server, the TSaaS implementation is more applicable in
situations where we have constantly arriving data; whereas in contexts where we already
have all of the data and want to make a forecast on that, directly using the C++ library
would be the optimal strategy (resources allowing).

8.5 Valgrind and Memory Checks

As we are working with C we must ensure that the code is leak free and that all values
in memory are eventually freed. Figure 8.4 shows the output from running the memory
checking tool Valgrind, where we are able to see that the algorithm is leak free.
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Figure 8.4: Output for running Valgrind on the alpex runnable executable.

8.6 Analysis Toolkit

In this section we have outlined the Analysis Toolkit that we will be using to conduct our
experiments on the Alpex Algorithm. This toolkit offers:

• A suite of tools for making different types of time series forecasts, such as T+N or
predicting without training. This suite supports local implementations of the algorithm
as well as communicating with a Swagger Enabled Server.

• Tools for graphing datasets and forecasts such that we can visually compare and analyse
our model.

• An object for generating a variety of metrics for our model such that we can mathemat-
ically analyse our predictions.

• An array of sample experiments that allow for non-programmers to conduct experi-
ments using our toolkit as well as users being able to conduct experiments quickly.

• A command line program for combining many different experiments, or just one, into
reports in the form of pdf or latex that can be shared.

• An implementation of a non-parametric ARIMA model that users can use to benchmark
their experiments against.

All of these tools allow any user to be able to complete our User Journey for an experiment,
whether that is using a sample experiment or by using the tools that we have provided. Ther-
fore I believe that the toolkit was successful in providing the tools needed to complete this
project. This toolkit has been extremely successful in quickly analysing a wide variety of
datasets to effectively analyse the limitations and properties of the Alpex library.

Throughout the project we held weekly meetings where we would go through the interesting
experiments that I had conducted during the week, in the format of the reports generated by
this toolkit. The quality and expansiveness of the reports are one of the key success factors
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for this project as we were able to analyse and discuss these reports quickly. Furthermore all
of the graphs seen in the analysis sections were directly lifted from these reports or generated
using the toolkit. Due to this I believe the toolkit was a success for the Algorithm and the
project.

If we were to expand the tool kit, we would want to add more benchmarks. Currently we
only look at an ARIMA implementation to benchmark the algorithm, however it would be
useful to explore other methods, such as Amazons Time series as a Service, or machine learn-
ing models. As the project was mainly focused on properties of this algorithm and not other
algorithms this was not a top priority of the project.

One limiting factor of the client focused agile approach taken for the development of the
toolkit is that there is not much consistency in the experiments throughout the project. This
means that some of our earlier experiments are of a fairly significantly lower quality.

One of the limitations of the report generation script is that the title of the report is the name
of the notebook and I was unable to find a way to change this. Our sample experiments will
often keep the name ‘normal’ or ‘simple’ for their notebooks, that means that a lot of the
Experiment titles are ‘normal’ or ‘simple’.
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Part II

For which classes of time series is Alpex
most effective?
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Chapter 9

Synthetic Analysis

In our Analaysis Toolkit section we outlined some of the different mathematical functions
that we created generators for. These datasets are a mix of simple mathematical functions,
such as sawtooth or sine curves, and complex chaotic series, such as the Henon-Map and
Lorenz System. We shall therefore be looking at classes of time series with a known ground
truth to assess Alpex’s effectiveness in this context.

These mathematical series will form the basis of our synthetic investigation. Figure 9.1 shows
the different series that we shall be analysing. To replicate these experiments the following
base parameters are listed:

1. Sawtooth

2. Cos

3. Logistic Map with r = 3.8 and an initial value of 0.5

4. Mackey-Glass

5. Lorenz System with ρ = 28.0, σ = 10.0, β = 3
8

and an initial value of [2.0, 5.0, 20.0].

6. Henon Map with α = 1.4, β = 0.3 and an initial value of [0.2, 0.2].
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Figure 9.1: Examples of the datasets used for our Synthetic Investigation.

9.1 Chaotic Time Series Analysis

As previously mentioned, chaotic time series are characterised by non-linear dynamical sys-
tems typically described by relatively simple equations, which are deterministic in nature, yet
are capable of producing unpredictable and divergent behaviour. Non-linearity in the context
of a feedback process results in a system which displays sensitive dependence on initial con-
ditions implying that small changes in any value may produce wildly different results. This
makes Chaotic time series incredible difficult to predict.

From our original excel spreadsheets, we are able to see how the algorithm seems to learn
these chaotic time series at an unprecedented speed. The excel spreadsheets only allow us
to hypothesise about this therefore we need to conduct a more thorough investigation into
these different time series, comparing them to baseline methods. From this we will be able
to confirm, or deny, the ability of this Algorithm in learning Chaotic Time Series.

Although we perform an analysis into all of our mathematical datasets, we are going to focus
on the Henon Map and Mackey-Glass series in this section as they are fairly different in terms
of their structure and are good examples of how the algorithm deals with chaos.
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Figure 9.2: Graph comparing Alpex’s predictions and ARIMA’s model against the original dataset
for the Henon Map.

9.1.1 Henon Map

The Henon Map is an example of a multi-dimensional Chaotic Time Series. The Henon Map
is defined as:

pn+1 =

{
xn+1 = 1− a ∗ x2n + yn

yn+1 = b ∗ xn
(9.1)

This means that we can plot either the X axis or the Y axis against time (n). Both of these axis
exhibit chaos however we shall conduct our investigation into the X axis with initial parame-
ters: α = 1.4, β = 0.3 and [x0, y0] = [0.2, 0.2]. The sample size of our dataset is 4096 values.
We can see an example of the Henon Map in Figure 9.1.

As per our sample experiments listed in our analysis toolkit, we will be comparing the algo-
rithms performance against an automated ARIMA model.

Graphical Differences

As per our experiment, we will be looking at how the algorithm performs against our baseline
ARIMA model. Looking at Figure 9.2, we can see how good Alpex really is at learning the
henon map. We see that for the last 100 values the predictions perfectly predict the Henon
Map. This is backed up by the residuals graph, see Figure 9.3, which shows that after a few
100 values the predictions are near perfect, and for the last 3000 values the difference is near
to 0. This is in stark contrast to ARIMA which we can see from the Residuals really struggles
to make good predictions for the Henon Map.
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Figure 9.3: Graph showing the residuals as a percentage of the values, taken as an average with
100 windows for the Henon Map.

Metrics

As well as being able to see on the graphs that Alpex is able to outperform our baseline met-
ric, this is also reflected in our metrics. The following table shows how the metrics support
our argument and we can see that Alpex can near perfectly learn the Series.

Model Mean APE R2 Median APE R2
lag

Alpex 2.364417% 0.999821 0.910843% 0.999936
Auto ARIMA 121.506048% 0.094828 83.366962% 0.677289

The R2
lag metric is a metric that was added in later. The metric is outlined in Section 10.1.2

and tells us if our predictions are being proactive. This is not really an issue in this sec-
tion as for mathematical series we can judge that ourselves. Mean/Median APE stand for
Mean/Median Absolute Percentage Error.

9.1.2 Mackey-Glass

Another chaotic time series that we shall be investigating is the Mackey-Glass system. This
system involves a complex differential equation which is shown by:

dx

dt
= β ∗ xτ

1 + xnτ
− γ ∗ x (9.2)

We are able to estimate this with the following equation:

xi+1 = A∗xi+B ∗ (
xi−n

1 + xγi−n
+

xi−n+1

1 + xγi−n+1

)where, A =
2 ∗ n− β ∗ τ
2 ∗ n+ β ∗ τ

, B =
α ∗ τ

2 ∗ n+ β ∗ τ
(9.3)

Using this equation we are able to generate the Mackey-Glass dataset seen in Figure 9.1.
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Graphical Difference

As with the Henon Map, we are able to display our predictions and the baseline predictions
for the Mackey-Glass system. This can be seen in Appendix B.1, which shows how both Alpex
and ARIMA seem near perfect in predicting the Mackey-Glass series. Looking at the residuals
it actually appears that ARIMA outperforms Alpex, although there is not much in it when we
look at the scale on the y axis. I believe the reason that Alpex performs worse in this situation
is to do with Integer rounding, if we normalise the dataset in the same way, we see that the
Alpex forecasts are in deed pinpoint accurate.

Metrics

When using our metrics suite to plot a table of metrics, see the below table, we can see how
our metrics support our conclusions.

Model Mean APE R2 Median APE R2
lag

Alpex 0.465524 0.999562 0.353670 0.878088
Auto ARIMA 0.021018 0.999999 0.016771 0.999791

9.2 Spikes

Whilst conducting experiments into the Lorenz System we noticed that we were getting spikes
in our results, see Figure 9.4. Consulting with the author of the algorithm on this, he ex-
plained that he had seen a similar problem in the past and that this was due to the algorithm
not being initialised correctly. However after ensuring that the history was correct and that
his implementation was getting the same spikes, we decided to conduct an investigation into
the cause of the spikes.

9.2.1 Lorenz System

As a cross between both the Mackey-Glass and the Henon Map, the Lorenz System is both
a multi-dimensional and differential chaotic time series. Our initial investigation into the
Lorenz System used the parameters, ρ = 28, σ = 10, β = 8

3
and an initial state of [1, 1, 1].

Whilst looking at the Z axis of this series we saw the afformentioned spikes and hypothesised
that this was due to a property of the time series.

In our representation of the Lorenz System, Figure 9.4, we see that the dataset starts from
a small value, it then rises to a peak and then has a shallow fall before starting the initial
sequence.
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Figure 9.4: Graph showing spikes in the prediction of the Lorenz System.

Figure 9.5: Graph showing spikes in the prediction of a flipped Lorenz System Z Axis series.

History Initialisation

One hypothesis into this behaviour was related to the issue of the history not being initiated
correctly. If initialising the history with a value of 0, as opposed to the correct value, had
caused these spikes previously then the fact we are starting off with values close to 0 could
be causing these spikes.

To test this hypothesis we tried flipping the graph in the y axis such that instead of starting
with a low value we instead started with a high value. Figure 9.5 shows the results of this
where we can clearly see that not only do we still see the spikes but also that the spikes
themselves are flipped. This is also confirmed by the Sawtooth example where, even though
we start off with a value of 0, we do not see spikes.

Time Series Property

Another explanation for the spikes was to do with the initial rise and then the shallow dip.
What we are seeing here is an example of Heteroscedasticity, which we explore in section
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Figure 9.6: Graph showing spikes in the prediction of a Cos series combined with a normal
distribution.

10.2.2. At the start we go to the extremes of the dataset, by starting off at a minimum peak
rising to a maximum peak then having a shallow fall before starting the pattern. From the
algorithms point of view, once it has gone through these initial peaks it will expect to see those
same peaks again. This means that when we are getting a spike it is because the algorithm
thinks that it is going back up to the extreme when in fact it does not. If that were the case
then we would be able to implement a Basic Representation of a series that experiences
spikes.

9.2.2 Basic Representation

As hypothesised, if the cause of the spikes was due to the peaks in the dataset and the
algorithm thinking it was going back to a peak then we could replicate this by adding in
peaks to a simple sequence. By combining a Normal Distribution with a Cos curve we were
able to confirm this. Figure 9.6 shows how combining a normal distribution with a Cos curve
causes spikes to be observed after the initial peak. To combine a normal distribution to our
Cos curve we modify our function as:

y = cos(x) ∗ (1 +
a

σ ∗
√

2 ∗ π
∗ e−

1
2
∗(x−µ

σ
)2)

Our example uses a mean µ = 0, a scaler a = 60 and a σ = 0.6. We know that as x increases
our normal distribution will tend to 0, therefore by incrementing the normal distribution by
1 our function will tend towards the cos curve as x increases.

With both our cos example and the Lorenz System example, we can see that removing the
initial peak and trough cause the spikes to disappear. Interestingly, both the peak and trough
need to be removed for the spikes to completely disappear. This can be seen in Figure 9.7
where we have systematically removed the trough and then the peak for the Lorenz System
dataset and seen that the spikes disappear.
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Figure 9.7: Graph showing how removing the initial peak and trough causes the spikes to disap-
pear from the predictions.

The fact we are still able to see spikes in the most basic example, and that removing these
extreme values removes the spikes, means that our hypothesis that a dataset starting with
initial peaks and troughs is what causes the spikes to be observed.

Location of Peaks

Although we have shown that starting with these extreme values causes spikes, we need to
investigate whether or not the spikes only appear with initial extreme values. Luckily our
new implementation of the cos curve allows us to change the mean of our distribution such
that we can move the extreme values. We can hypothesise that if the peaks are later in the
dataset then the algorithm will have already had a chance to learn the pattern such that it
should be less effected by the peaks however I believe we are still likely to see spikes.

Figure 9.8 shows a variety of different configurations of our normal distribution patterns and
the predictions the algorithm is able to make for each. We can clearly see that when the
peaks and troughs happen later on the algorithm is much less affected than if they happened
at the start. For example, in the last example, we see that after the peaks the predicted values
fluctuate between a small range causing smaller, mini spikes.

Our investigation into how the location of the peaks and troughs effect the spikes conclude
that any extreme change in variance can cause spikes to be observed however if the algorithm
has already learnt the pattern then these spikes are less pronounced and the algorithm can
quickly switch back to the original pattern.
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Figure 9.8: Graphs showing how the location of peaks effects spikes in the predictions.

9.2.3 Mitigating Spikes

We have seen through this investigation why and when spikes can occur in our predictions,
however we have not discussed methods for mitigating these.

One method that can be used is seen in, Figure 9.7, where we saw that removing the peaks
and troughs from the dataset removes the spikes. This is a solution however we may want to
be able to predict future peaks and troughs and this removes the algorithms ability to do that.

Before we are able to predict values, due to the nature of the algorithm, we first need to
normalise our data. This is usually done using a basic normalisation technique defined by:

x =
x−min(X)

max(X)−min(X)
∗ predictable range

Wheremin(X) andmax(X) represent the range of values in the dataset and predictable range
is equivalent to the max value variable used to initialise the algorithm, this is defaulted to
254.

One proposed solution is to normalise our dataset using an activation function, such as sig-
moid or tanh. These methods cause outliers to be less pronounced, therefore we can still
keep the peaks and troughs inside the dataset without spikes being present.

9.2.4 Ignoring Spikes

Sometimes we may not actually care if we have spikes in our dataset. If we do have spikes
in the data it can throw the Mean Absolute Percentage Error completely off, therefore if we
want to ignore the spikes we should calculate the Median Absolute Percentage Error.
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9.3 Noise

In the real world, time series are not going to follow exact mathematical formulas. We are
likely to get anomalies in the data due to: observation errors, physical anomalies, or the
nature of the series itself. Therefore, a time series prediction algorithm needs to be tolerant
to non-exact, or noisy datasets.

Types of Noise

Most signals measured by a scientist or an engineer are polluted by noise such that,

Observation = Signal +Noise

Noise is naturally occurring in real world datasets, however when modelling noise we need a
way to mathematically generate this. This is often done by applying filters to a ‘clean’ dataset,
using random numbers.

Gaussian Noise A Gaussian Filter uses a normal distribution to apply noise to a clean
dataset. This is done by creating a random vector sampled from a normal distribution with a
given, variance and mean.

g ∼ {N (µ, σ2) }.

This is what creates the noise, which we can sum with the signal to simulate an observation.

We know from a normal distribution, that the higher the variance, the flatter the curve. This
translates to values in our random vector being further away from zero, and therefore in-
creases the amount of noise we are simulating.

An example of this can be seen in Figure 9.9 where we have a straight line at y = 1 and a ran-
dom vector sampled from a normal distribution, these are then summed together to obtain a
noisy dataset. As we can see, by increasing the value of sigma (the variance) we get a flatter
curve that the random vector is sampled from, and therefore more noise in the ‘observation’
dataset.

We can see how this translates to a more complex equation by applying noise to a cos curve,
this is seen in Figure 9.10.

87



9.3. NOISE Chapter 9. Synthetic Analysis

Figure 9.9: An example of how we can use Gaussian Distribution to apply noise to a straight line.

9.3.1 Problems with Noise

For any forecasting algorithm, we must look at the past to predict the future. We can reason
that if we know exactly what the past is then we can accurately predict the future, this is
the property we have been able to show the algorithm is extremely effective at. However,
when we throw noise into the data, the past we are looking at and learning from is itself
not correct, therefore we are not just learning on incorrect data, but we are trying to predict
incorrect data.

We can reason from this that the problem of a perfect forecasting algorithm is itself in-
tractable, therefore the best fit algorithm needs to strike a balance between over-fitting and
under-fitting. We can use artificial noise to asses how the algorithm performs with this.

9.3.2 Baseline Metrics

Before we start any experiment, we need to set a baseline for the metrics, this can be done by
running the algorithm with a sigma of 0, which is the same as applying no noise. This will act
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Figure 9.10: An example of how increasing the variance effects the amount of noise on a Cos
curve.

Dataset MAE MAPE Change of Direction Error (CODE) r2

Random 85.6704 262.9275% 49.9389 -1.0

Table 9.1: Metric scores for predicting a random dataset.

as an upper bound to the performance of the algorithm, as we do not expect the algorithm to
perform better on noisy data, in comparison to clean data.

As well as setting an upper bound, we must also set a lower bound for the performance, this
can be achieved by predicting values for a random dataset and generating metrics for this.
Random number generators in computers, are only ever psuedo-random [85] and we know
that the generator used for python [37] is too, it is even advised that this generator is not
secure enough for cryptography. As of this nature, there is a possibility that the algorithm
could learn the generator itself, however this is unlikely. Furthermore as the same generator
is used for applying the noise, this will serve as a sufficient lower bound. We can see the
resulting metric values in Table 9.1.

With this in mind, we will be able to measure the success of the algorithm in a number of
ways. We will be able to see the point at which data becomes too noisy to predict, and then
compare this against the original dataset at different scales. We can also use this to find the
point where the algorithm starts to lose accuracy. These can be measured by looking at the
metrics in relation to the bounds.

Our investigation into noise is about finding out how well the algorithm is able to deal with
noise and not how this compares to other algorithms, therefore for this section we will not
be comparing the algorithm against other forecasting methods such as ARIMA.
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Figure 9.11: The effect of the testing sigma values on a straight line.

9.3.3 Experimental Datasets and Parameters

We will use the same scale of sigma values (variance) for each experiment, these are:

sigmas = [0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 4.0, 7.0]

We can see the effect these sigma values have on a straight line in Figure 9.11. As we can see
from this, 0.75 is about where the line starts to break down, with anything above 1.0 being
where a straight line is indistinguishable.

9.3.4 Noise Experiments

Sawtooth

The Sawtooth series is a very simplistic time series, which makes it a perfect starting point.
Figure B.6 shows a microscopic view of the last 30 values of the sawtooth time-series.

We can see how the predicted values compare with the actual values in Figure 9.12. From a
visual inspection of these graphs we can see that anything after a sigma of 1.0 the algorithm
begins to struggle, however even at 0.75 the algorithm is good at making predictions.

This visual inspection is backed up by the metrics, in Table 9.2 and in Figure 9.12(right),
where it is able to accurately predict with some noise up until 0.75, when the Mean Absolute
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Figure 9.12: A zoomed in view of the last 30 values of the predicted (orange) vs actual (blue)
sawtooth dataset at different sigma values(left). A plot of metric scores against Sigma for the
Sawtooth dataset(right).

Percentage Error goes above 15%. We also take a look at how the metrics compare with the
amount of noise, the orange line in Figure 9.12(right) shows the difference between the noisy
set and the clean set. We can then look at the green line, which is the difference between the
prediction scores and the differences scores, this can give us a scaled idea of the performance.
From this we can see that when scaled, we get very good accuracy up until a sigma value of
1.0, and relatively good predictions up until 2.0.

Sigmas MAE MAPE (%) Change of Direction Error (CODE) r2

0.00 0.008573 5.212907 69.084249 0.996014
0.10 0.016788 5.898174 70.134310 0.931077
0.25 0.028553 7.515865 67.716728 0.878641
0.50 0.043855 10.458887 61.855922 0.878902
0.75 0.059587 13.393406 63.028083 0.842262
1.00 0.076076 16.640696 62.002442 0.798805
2.00 0.137081 30.348109 60.146520 0.557737
4.00 0.260531 161.506849 56.532357 -0.028621
7.00 0.425786 673.442345 54.139194 -0.450938

Table 9.2: Metric scores for predicting the Sawtooth Dataset.
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Logistic Map

Increasing the complexity of the dataset, we can look at how the algorithm performs on a
Logistic Map, seen in Figure B.8. The results for this experiment are found in Appendix B.2

From the visual inspection of the differences, we can see very similar results to both the
sawtooth and the cos curve, where up until a sigma value of 2.0 we are able to make good
predictions.

The metrics somewhat support this. The interesting insight from this dataset compared to
the previous, is that up until a sigma value of 0.75, the algorithm has a low Mean Absolute
Percentage Error, however above 0.75 that begins to rapidly increase, faster than the other
two. Another interesting observation is that the r2 falls very quickly for the Logistic Map, with
it having a value of 0.78 at a sigma value of 0.75 as opposed to the 0.84 and 0.98 seen by the
sawtooth and cos curves respectively. Finally, it is interesting that the Change of Direction
Error for this dataset, is fairly low, only going above 10% after a sigma value of 1.0.

9.3.5 Predicting with Noise

Noisy dataset’s are difficult for this new algorithm to predict due to the deterministic nature
of the algortihm. Noise in the training set will propagate through to the predictions, and
as the noise is random and different every time, this makes the predictions less accurate.
The aim of this experiment is to look at different prediction methods that could be used to
mitigate this.

Different Ways to Predict with Noise

Typically we would use this algorithm to train and predict at the same time, such that when
we receive a value, we train on that and then predict another. Figure 9.13 (left) shows how
this is normally done.

In some real world situations we are able to say that a time series is similar to a mathematical
time series that we know. If we know what the signal should be, and the observation, then
we can try training the algorithm on the signal and then carry out the predictions on the
observation like normal. Figure 9.13 (right) shows this.

As we are using the noisy dataset to predict in the normal way, in the last method, then we
are still training on noisy data, therefore another method would be to train on the clean data,
then just predict (without training) on the noisy set. Figure 9.14(left) shows this.

The last two methods focused on mitigating the problem of noise in the training set, however
another method we could consider would be to gradually build noise into the training set. In
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Figure 9.13: A graph showing how normal prediction works(left) and training on a clean dataset,
then predicting in the normal way(right) with the algorithm on a noisy Cos curve with a sigma
value of 0.5.

Figure 9.14: A graph showing how we can train on a clean dataset, then predict without train-
ing(left) and how we can predict on gradually noisier datasets(right), then predict on a noisy Cos
curve with a sigma value of 0.5.

practice this could reduce over fitting as the algorithm will have been made gradually more
tolerant to noise. Figure 9.14(right) shows this.

Experiments to Determine the Feasibility of Different Prediction Methods with Noise

We are able to replicate the tests setup in the previous section, see 9.3.2, and the some of the
datasets that were used, see 9.3.3, to evaluate the success of this method.

We have produced metrics for the Sawtooth, Cos (Appendix B.3) and the Logisitic Map (Fig-
ure 9.15) to determine if any of these methods produce better predictions on noisy data.

Evaluating the Feasibility of Different Prediction Methods with Noise

From the metrics we produced of the Sawtooth, Cos and Logisitc Map we are able to see very
similar results.
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Figure 9.15: Metrics for the Logistic Map using different prediction methods,
where:
A = Normally trained predictions B = Trained on clean data first
C = Trained on progressively noisy data D = Trained only on clean data

We can see that using the method of training on only clean data (the red lines) consistently
outperformed the other methods on extremely noisy time series. Previously, after a sigma of
2.0 the algorithm would always break down on noisy datasets, with whatever metric we are
looking at getting exponentially worse. Due to the fact that the algorithm is not being trained
on the noisy set at all, we do not see this exponential explosion.

Between the other methods, there is no significant increase of accuracy over the initial
method of training and predicting. It seems as though training the algorithm on progres-
sively noisy datasets will increase the accuracy, however this is not conclusive as in some
experiments and metrics this is observed but in others it is not.

The significant increase in accuracy brought by training on only clean data has an
implication for real world time series, where techniques to smooth or remove outliers

during training may provide compelling improvements.
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Real World Analysis

We have conducted experiments to assess the capabilities of Alpex on Synthetic datasets
with a known ground truth. This section focuses on exploring real world datasets with an
unknown, underlying, structure to determine if Alpex is effective in this context. This inves-
tigation will involve experiments into real-world time series properties to determine which
classes of real-world datasets Alpex can proactively forecast for.

10.1 Lagged Predictions

One of the emergent properties of the algorithm is that when it has not seen a value before
it will predict the previous value it has seen. This can be seen in the simple example of the
algorithm learning the sequence [1, 2, 3]:

Input 1 2 3 1 2
Prediction 1 2 3 2 3

This can also be seen for the Sawtooth series, where on the first upwards slope the predictions
lag behind the dataset. Figure 10.1 clearly shows how on the first slope the algorithm predicts
the previous value, we call this a Reactive prediction. The graph then shows how once the
algorithm has seen all of the values in the sequence it is able to accurately predict the next
value rather than predicting the past value, we call this a Proactive prediction.

10.1.1 Problems with Lag

One of the difficulties with lag is how hard it can be to detect and measure. With the Sawtooth
example we were able to obviously see the predictions lagging behind the series, however for
very complex series this is not always possible. Aside from a visual inspection, the metrics we
have already defined do not help us:

Series MAPE R2

Reactive Sawtooth 3.89% 0.9409
Proactive Sawtooth 2.497% 0.9704
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Figure 10.1: A Graph showing the reactive prediction of the Sawtooth series and then the proac-
tive prediction.

If we were to just look at the metrics, we see that the Reactive Sawtooth actually seems
extremely good, however we know from a visual inspection that all it is doing is predicting
the last value.

10.1.2 Detecting Lag

Visual Inspection

As seen with the Sawtooth example, in some cases a visual inspection of the predictions
against the actual values is enough to detect lag in the predictions. For more complex cases
this isn’t always so clear and it can be clearer to have the predictions leading the data. In
this way if the predictions and the series overlap then we know that we are making reactive
predictions.

Metric Inspection

The Sawtooth example showed us that a reactive predictor was still able to get very good R2

and MAPE scores, that means that these metrics alone would not be enough to determine if
a forecast is Proactive or Reactive.

If we revist our definition of the coefficient of determination, R2, as:
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R2 = 1− MSE(Model)

MSE(Base)
= 1−

∑
(ŷ − y)2∑
(y − ȳ)2

The model we have been using for MSE(Base) is the mean. If we were to replace the base
model to be the previous value (a naive forecast), then we would be comparing whether the
algorithm is more proactive than reactive. A positive value, close to 1, means the algorithm
is proactive. We can define this metric as:

R2
lag = 1−

∑
t(ŷt − yt)2∑
t(yt − yt−1)2

If we revisit our Sawtooth example with this metric, we get:

Series MAPE R2 R2
lag

Reactive Sawtooth 3.89% 0.9409 -0.00489
Proactive Sawtooth 2.497% 0.9704 0.9990

Another method we can use for detecting lag is to plot how the MAPE and R2 change over
time, if we then calculate these metrics, assuming we are lagging behind such that R2 would
be defined as:

R2
prev = 1−

∑
t(ŷt − yt−1)2∑
t(yt − ȳ)2

if we are being proactive, there will be a point where the initially calculated metrics outper-
form the lagged metrics.

10.1.3 Examples of Lag

In the Sawtooth example it is very obvious to see that the algorithm is reactive for a stage,
and then proactive, however this is not always so clear. In this section we are going to look
at a couple of examples where it is not obvious and we are going to apply the tests that we
previously laid out to determine if our predictions are proactive or reactive.

Venice Hourly Water Level

The Venice Hourly Water Level [45] dataset is a large stationary real world dataset making it
perfect for analysing the Algorithm. We can see the Venice water supply dataset in Appendix
C.1.1.

We have calculated the MAPE and R2 for the last 1000 predictions as:
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Series MAPE R2

Venice 26.168% 0.981

On the surface this looks very good, however we do not know if the algorithm is being proac-
tive or reactive, therefore we need to conduct our lag tests.

We can first perform a visual test on the predictions, this can be seen in Figure 10.2(left).
From these graphs we can see that the predictions lead the actual data, therefore we can
hypothesise that the algorithm is proactive. However this is only a snapshot of the data
therefore a deeper analysis into the whole dataset is needed.

We can then fall back to our metrics, the first thing we shall look at is our R2
lag metric:

Series MAPE R2 R2
lag

Venice 26.168% 0.981 0.889

The fact the R2
lag is close to 1 tells us that our predictions are better than just predicting the

last value, this is a good indicator that our algorithm is being proactive.

To be 100% sure, we shall look at how the metrics change over time. Figure 10.2(right)
shows that after just a few values, the normal prediction metrics become better than the ones
for the lagged prediction. The fact the normal predictions are always better than the lagged
predictions after this point tells us that the algorithm is now proactive.
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Figure 10.2: Visual inspection of lag(left) and Metrics plotted against time(right) for the Venice
Hourly Water Level Dataset.

Belgium Offshore Power Generation

Similar to the Venice dataset, the Belgium Offshore Power Generation Dataset [15], seen
in Appendix C.1.2, is large and stationary however it is less clear if our predictions for this
dataset are lagged therefore we must conduct our experiments.

Performing a visual analysis, Figure 10.3(left) appears to show that the algorithm is just
making reactive predictions and not actually able to make accurate forecasts. This is seen by
the graph with predictions leading the dataset where the plots closely overlap. The metrics
also support this:

Series MAPE R2 R2
lag

Belgium 18.604% 0.864 -0.408

We see that the R2
lag metric is negative meaning that our forecasts are worse than if we just

predicted the last value.

Our final check is to plot the metrics against time. Figure 10.3(right) shows that the lagged
predictions perform consistently better than the actual predictions and that this doesn’t
change over time. Our predictions therefore consistently fail all of our checks therefore we
can conclude that the algorithm is being reactive and not proactive on this dataset.
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Figure 10.3: Visual inspection of lag(left) and Metrics plotted against time(right) for the Hourly
Belgium Offshore Power Generation Dataset.

10.1.4 Conclusions

Throughout this section we have set out the tests that we can perform on a prediction to
ensure that it is proactive and not reactive. The tests that need to be passed are:

1. The prediction must pass a visual inspection by plotting the prediction as leading the
dataset and ensuring the prediction and actual data do not overlap.

2. The prediction must get a positive number near to one for the R2
lag metric that we set

out.

3. When metrics are plotted against time for the lagged prediction method and the regular
prediction, we must see a point where the lagged predictions become worse and stay
worse.

If a prediction is able to satisfy these tests then we can be confident that it is forecasting into
the future and not repeating the last value it has seen.

TheR2
lag metric has also been added to the Metrics object such that this metric is automatically

calculated and our sample experiments include the graphical tests for lag.

100



Chapter 10. Real World Analysis 10.2. EXPLORING TIME SERIES

10.2 Exploring Time Series

In this section we are going to be conducting a systematic investigation into time series prop-
erties exhibited by real world datasets. In analysing these properties we have conducted
many different experiments however we are going to focus on only a few examples of the
results of these experiments rather than showing them all.

During our analysis of mathematical series we actually encountered a lot of these properties
without explicitly stating them. For example the Spikes section, see section 9.2, looks at
Heteroskedasticity in datasets. Our Sawtooth analysis shows trend on the first upwards slope,
and cos curves experience seasonality. We will therefore be able to hypothesise about the
different time series properties and then perform investigations to prove or disprove these.

10.2.1 Trend

Trend is generally thought of as being a change in mean over time, for example if we are
looking at stock prices a generally increasing price means we have a positive trend. Trend
can be: linear, exponential or logarithmic(damped). Trend generally comes in two forms, an
additive model for linear trends

observation = signal + trend+ noise

and a multiplicative model for non linear trends

observation = signal ∗ trend ∗ noise

Most forecasting algorithms are not able to deal with trend in datasets and therefore trend is
often removed. There are two main ways to remove trend, these are differencing and plotting
a function to estimate the trend.

Alpex

Before we test how the algorithm performs when trend is present, we can hypothesise that
the algorithm will struggle. The reason for this refers to our Lagged Predictions section where
we saw that for new values the algorithm will just predict the last value it has seen. If there
is a trend in the dataset then we are constantly going to see new values and therefore the
algorithm will resort to performing a lagged prediction.

Figure 10.4 shows how the NASDAQ highest daily price over time [25], we can see that
there is a clear trend in the dataset and we can see that the algorithm is not able to make
predictions for that. This is backed up by other experiments and we can therefore conclude
that trend must be removed from a dataset before predictions are made.
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Figure 10.4: The daily highest price of NASDAQ showing trend.

Differencing

Differencing with the Alpex seems to not improve the accuracy, unlike ARIMA where we
want to difference the algorithm to remove trend and seasonality, often differencing will also
remove periodic trends which the algorithm needs to be able to predict for.

Trend Estimation

Trend estimation is the preferred way to remove trend for Alpex, there are two ways to do
this. We can either take a rolling moving average of the series and subtract that, or we
can plot a function to estimate the trend. When making t+1 predictions, the rolling mean
method is often preferred. however with anything further we would want to use a functional
plot. When using the rolling mean methodology it is important we do not lose any of our
seasonality, therefore the window size should be equal to the seasonal size.

10.2.2 Heteroskedasticity

Heteroskedasticity is observed when a series variance is a factor of time, this means that the
variance changes throughout the series. There are two types of Heteroskedasticity that we
are going to look at, these are pure Heteroskedasticity and a varied Heteroskedasticity, see
Figure 10.5. In section 9.2 we explored spikes in our predictions of the Lorenz System, the
reason for this was that we had a changing variance, Heteroskedasticity. We can therefore
base our hypotheses on the results that we found on the mathematical series.
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Figure 10.5: An example of Pure (left) and Varied (right) Heteroskedasticity.

Detecting Heteroskedasticity

To detect Heteroskedasticity, as seen in Figure 10.7, we want to plot a rolling standard devi-
ation such that we can see how the variation changes over time.

Pure Heteroskedasticity

Pure Heteroskedasticity is very similar to trend as we are constantly seeing new values as
the variance increases. We can therefore hypothesise that a constantly increasing variance
means we are seeing new values, the algorithm will just make reactive predictions. We can
also hypothesise that a constantly decreasing trend will cause spikes in the predictions.

If we look at the Actual wind generation in Denmark 1 (bidding zone) in MW from [15],
seen in Figure 10.6, we can see how the variance constantly increases and the algorithm is
not able to make proactive predictions and instead just lags behind the dataset.

We can conclude that pure Heteroskedasticity is something that the algorithm is not able to
forecast for. One way that a user may want to mitigate this is by taking a log of the dataset.

Pure Heteroskedasticity is very similar to, and in many situations is the same as, a multiplica-
tive trend.

Varied Heteroskedasticity

Our varied Heteroskedasticity however fits the nature of the algorithm quite nicely. When we
switch between different time series the algorithm is able to quickly pick up on the pattern
after switching. This is replicated with the varied Heteroskedasticity as the algorithm is able
to pick up on the different sections of variance.
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Figure 10.6: An example of a dataset we can not predict for as it exhibits pure Heteroskedasticity.

This is shown in Figure 10.7 which shows the real world Germany Hourly Solar Panel Gener-
ation Dataset [15]. We can see that the rolling standard deviation at the bottom of the graph
changes over time, however what we see is that this change appears to follow a pattern. It
is similar to switching series, with the different variance levels being different series. This is
exciting as algorithms like ARIMA will use methods to try and remove this before predicting,
Alpex however is able to make predictions straight away.

10.2.3 Seasonality

Seasonality is a rigid periodic trend which occurs in set time intervals, for example, if a ho-
tel is looking at number of bookings for a year, they may find they have more bookings in
summer months as opposed to winter, we can say the dataset has yearly seasonality. We can
expand our defintion of observation, for an additive model, to include this such that:

observation = signal + trend+ seasonality + noise

What we saw from the mathematical analysis is that Alpex is extremely good at picking up on
patterns in a dataset. Moving this into the real world, we can hypothesise that a dataset will
need to have some periodic pattern or periodic trend, one type of periodic trend is Seasonality.

One way to detect Seasonality is to plot the Auto-Correlation Function against lags for a
dataset. What this tells us is how previous values in the dataset influence the current value.
If seasonality is present then we can see distinct patterns in the ACF, however if there is no
seasonality then we cannot. The correlation between predictability and seasonality is distinct
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Figure 10.7: An example of a dataset we can predict for as it exhibits varied Heteroskedasticity.

Figure 10.8: The autocorrelation function of: the Belgium hourly solar power generation with
strong seasonality (left) and the Swiss hourly wind power generation that is stationary (right).

from our experiments. Every single dataset that we were able to predict experienced some
sort of periodic trend.

Figure 10.8 shows the ACF for the Belgium Hourly Solar Power generation dataset, that we
have observed to be predictable, and the Swiss Hourly Wind Power generation dataset which
is not predictable, both datasets are from the same project [15]. We can see that on the Swiss
dataset there is no clear pattern, but on the Belgium ACF we have a clear seasonal pattern.
If we were looking at this ACF from an ARIMA point of view we would hypothesise that the
second dataset is better for us to predict from. ARIMA by itself cannot deal with seasonality
and needs to removed by using a Seasonal ARIMA (SARIMA) model. This is a key and dis-
tinctive advantage this algorithm has over ARIMA.

As well as being able to deal with one period of seasonality, Alpex is also able to make
predictions when we have overlapping seasons. This is seen in the ACF of the Venice Hourly
Water Level dataset, which we have previously seen, see Figure 10.9.
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Figure 10.9: The Auto Correlation Function of the Venice Hourly Water Level dataset showing
overlapping seasonality.

10.2.4 Cyclical Trend

A Periodic or Cyclical Trend is very similar to Seasonality and is often mistaken for it [41].
Seasonality is a very formal and rigid concept it says that every set period of time this period
will occur, for example: every week on a Friday the bar will be busiest. A Cyclic trend is much
more loosely defined, it does not say when these periods occur it just says that we have times
in the series when they are followed. The stock market is said to often have a periodic trend
where we have times of high and low prices that can follow similar patterns.

We know that the algorithm is able to swap between two different series and quickly pick up
the pattern. This same situation occurs with a periodic trend. The algorithm has no knowl-
edge of the current time, it just predicts values based on their current context, this means
that it is able to pick up on these periods quickly even if they are not in set time intervals.

This is a really important distinction between our algorithm and SARIMA. SARIMA requires
us to have strict periodicity (seasonality) where we know how long each season will last for,
for this reason SARIMA will not work on datasets when the periodicity is loosely defined.

10.2.5 Coefficient of Variation

The coefficient of variation is a scaled version of the standard deviation. It is defined as being

Cv =
σ

µ

and shows the variation of a population in respect to the mean of the data. During our exper-
iments we found that datasets with a very large or very low Coefficient of Variation we were
unable to proactively predict for. The range of values that we were able to predict for were
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Figure 10.10: An example of a dataset with a small sample size but many periods that we are
able to forecast for.

in the range of 0.1 < Cv < 500.

This is not a definitive fact, that we can only predict for datasets in this range, however what
it does tell us is that we are unable to predict very volatile datasets.

The table of results can be seen in Appendix C.3.

10.2.6 Sample Size

One problem this algorithm has when looking at real world datasets is the number of samples
that are needed before predictions can be made. ARIMA is able to start making forecasts, al-
beit not necessarily good ones, with a small amount of samples. Due to the algorithm needing
to have previously seen the pattern, to make good predictions we often need several periods
before we can make forecasts. Required sample size for this dataset should not be about the
number of data points but the number of seasons we observe.

An example of this is in the temperature around Aomori city dataset [28], see Figure 10.10.
Here we can see that we only have 1500 data points to predict for, which is not that much,
however we have got lots of cycles. Therefore we are able to make proactive forecasts. When
analysing the change in metrics over time we can see that we are confidently making proac-
tive forecasts after only 800 time steps.
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10.3 Table of Properties

Figure 10.11: A table of properties that Time Series should or should not exhibit for them to be
predictable.
Green means the property should or can be seen.
Yellow means it is a property that you need to be wary of.
Red means the property should be removed.

10.4 Case Study A: Southern Italy Power Load

One of the datasets we are going to study is the Total load in IT-Centre-South (bidding zone)
in MW as published on ENTSO-E Transparency Platform from the Open Power System Data
collection [15]. This experiment is going to follow the ‘normal’ sample experiment format,
see Section 6.3.9. For the full experiment report, see Appendix E.1.

The first step in our experiment is to gather the data that we will be forecasting from. This is
done by calling the ‘generate data set()’ function from inside our ‘normal.py’ file. We input
the location of the dataset and the column name to this function. We then plot a section of
this graph, see Figure 10.12.

Once we have the data generated we need to perform our pre-processing. To do this we call
our ‘test stationarity()’ function from our ‘predictor.py’ file. This function plots a graph of the
whole dataset with a rolling mean and rolling standard deviation overlaying it, see Figure
10.13. From this diagram we can see that both trend and Heteroskedasticity are present
therefore we set our ‘remove trend’ and ‘log’ flags to True.

With the data pre-processed we want to check for periodicity to see if the algorithm can pre-
dict from the dataset. To do this we call our ‘plot acf ()’ function from our graphing tools. We
can see from our ACF that there does appear to be periodicity inside the dataset, see Figure
10.14.
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Figure 10.12: Case Study A: Visualisation of the Southern Italy Power Load dataset.

Once we have completed pre-processing we need to generate and import our baseline met-
rics. To do this we call our ‘generate arima()’ function with our normalised dataset. This
function finds the best (S)ARIMA model for the dataset and outputs the forecasts to a pickled
file ‘out/arima.obj’. The optimal configuration was found to be SARIMA(3, 0, 2).

Once the data is fully pre-processed we can perform our Alpex predictions using the ‘make predictions with normalisation()’
function from our predictor tools. This normalises the dataset to the range [0,max value),
resets the algorithms state and performs predictions.

With the predictor work complete we first want to perform a visual inspection to test our
forecasting accuracy. To do this we plot the ARIMA model, the Alpex forecasts and the origi-
nal dataset overlapping, See Figure 10.15. As well as this we plot the residuals of the models.
From this we can see that the algorithm seems to be making proactive forecasts.

To complement our visual representation we also calculate metrics using our Metrics object.
Table 11.4, shows the results of this where we can see that Alpex is able to make very good
predictions and appears to be doing this proactively with the R2

lag metric being high.

Model Mean APE R2 Median APE R2
lag

Alpex 0.5944% 0.9545 0.4228% 0.6242
Auto ARIMA 0.6936% 0.9494 0.6032% 0.5820

The last part of our experiment is to ensure that the algorithm is being proactive by plotting
the change in metrics over time against the lagged prediction. Figure 10.16 shows the result
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Figure 10.13: Case Study A: Stationarity tests for Southern Italy Power Load dataset.

Figure 10.14: Case Study A: ACF plot for Southern Italy Power Load dataset.

of this where we can clearly see that our predictions are proactive.

Once our experiment is complete we need to draw conclusions and evaluate the results. What
we have seen from this experiment is that the algorithm is not just able to compete with the
ARIMA implementation, but it is actually slightly better for this dataset. Considering the
numerous advantages Alpex has over ARIMA, this is very promising. One explanation for
this could be to do with the periodicity of the dataset. The ACF and zoomed in view of the
dataset show a very clear seasonality, however when looking at the dataset as a whole there
also seems to be periodicity every 10,000 values. This could be a factor into why Alpex is
able to outperform ARIMA in this situation.
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Figure 10.15: Case Study A: Graph of predictions for Alpex and ARIMA overlapping dataset
values (left), graph of residuals (right).

Figure 10.16: Case Study A: Graph of predictions leading the dataset (Top) and the plot of change
of metrics over time (Bottom) to form a part of our lagged tests.
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Evaluation

The aim of the later part of this project was to answer the question “For which classes of
time series is Alpex most effective?”. We achieved this in two parts; by first studying how
Alpex forecasts on Synthetic Time series that we had produced, comparing our predictions
against a ground truth, and secondly, by investigating the different Time Series properties
of real-world datasets where the underlying structure is hidden. This evaluation aims to
compare how Alpexs’ predictions, in both contexts, compare against an automatic (S)ARIMA
implementation.

11.1 Synthetic Analysis

11.1.1 Chaotic Time Series

Table 11.1, shows the results of our experiments into the complete range of Mathematical se-
ries. From our results, compared to the Auto Regressive model, we can see why the algorithm
is so exciting. In many of the series Alpex outperforms against one of the best forecasting
methods available today whilst maintaining properties such as computational complexity,
processing speed and ease of use. We can see from our study into the Henon Map that as
well as being more accurate than ARIMA, the algorithm grasps the chaotic series much faster
than the Auto Regressive model. The Mackey-Glass system appears to disprove this, however
we can see that Alpex does still perform extremely well.

The results we have seen here could provide valuable insights into the nature of chaotic time
series. There is something fundamental about the way this algorithm works that makes it so
well suited for Chaotic series, a whole project could be spent analysing what this is.
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Series Model Mean APE R2 Median APE R2
lag

Mackey Glass
Alpex 0.465524% 0.999562 0.353670% 0.878088

Auto ARIMA 0.021018% 0.999999 0.016771% 0.999791

Henon Map
Alpex 2.364417% 0.999821 0.910843% 0.999936

Auto ARIMA 121.506048% 0.094828 83.366962% 0.677289

Logistic Map
Alpex 0.37532665% 0.999917 0.2659329% 0.999974

Auto ARIMA 34.699896% 0.442250 25.20355615% 0.827470

Cos
Alpex 31.6197468% 0.999467 0.59813% 0.787909

Auto ARIMA 0.46794592% 1.000000 0.0177237% 0.999987

Sawtooth
Alpex 1.102% 0.999940 0.389% 0.998993

Auto ARIMA 3.66897% 0.940523 1.7321% 0.003753

Lorenz System
Alpex 10.0671% 0.999633 1.68723% 0.606641

Auto ARIMA 0.16988% 1.000000 0.051280% 0.999835

Table 11.1: Results of an investigation into Mathematical Time Series.

11.1.2 Noise Experiments

The general trend that we saw was that after a sigma value of about 0.75, the algorithm
would struggle to perform accurate predictions, and by about 1.0 or 2.0 it would completely
break down. This has been recorded in Table 11.2, where it is important to note that the orig-
inal MAPE and R2 have been taken into consideration when deciding the breakdown points.

Some of the time series would break down because of the R2 value becoming too low, and
some would break down because of the Mean Absolute Percentage Error being too high.

This allows us to categorise the series’ into two groups, see Figure 11.1. We can see that the
smoother graphs were more likely to break down due to the MAPE being too high, however
the ‘bouncy’ graphs were more likely to break down due to the R2 value. If we are looking
at real world data, we can gauge an idea of which metric it is likely to fail on due to the
property of the series.

We are able to plot these metrics together and see how they compare, see Figures 11.2 and
11.3. Here we can see the groups based on their breakdown point, we can also group the
data as follows: Henon Map and Sawtooth, Cos and Lorenz System, Logistic Map and Mackey
Glass; based on their metric scores. This is interesting, going back to Figure 11.1, in that there
are distinct similarities between the series in each group.
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Figure 11.1: Time Series Graphs grouped by the breakdown cause, the left hand side being for
R2 and the right hand side being MAPE.

Figure 11.2: The graph of R2 against Sigma for all of the time series.

Figure 11.3: The graph of Mean Absolute Percentage Error against Sigma for all of the time series.
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11.2 Real World Analysis

11.2.1 Forecasting Accuracy

What we saw from our experiments is that the algorithms performance on datasets that we
had been able to proactively forecast, had performance that was similar to SARIMA. We also
saw that there were some datasets that SARIMA was able to make forecasts for and Alpex
could not, this was usually due to periodicity. Table 11.4 analyses how Alpex’s forecasts com-
pare with (S)ARIMA’s for a number of different datasets, these include predictable datasets
as well as non-predictable.

11.2.2 Runtime

In terms of runtime the algorithm has two areas that it might be able to outperform SARIMA.
These are configuration time and model fit time.

One of the key features of Alpex is the fact it has no parameters and is therefore non-
configurable, it just works. This is very different to SARIMA where specialist training is
required to be able to fit an SARIMA model by hand. For this project we mitigated this train-
ing by using an Automatic SARIMA model fitter however this only produced best fit models,
and not necessarily optimal ones. Furthermore this algorithm performs a slow grid search,
with some runtimes being between 20 and 30 minutes.

In terms of the model fit time, SARIMA is thought of as having a linear runtime complexity
[40], this is the same as Alpex as there is a constant complexity for each prediction, therefore
the complexity for a series of length n is O(n).

Table 11.3, gives an idea of the configuration time for the Auto-Arima implementation, this is
a configuration time that we do not have for Alpex. The model fit time is negligible therefore
it is not recorded here:

Series Sample Size Configuration Time (s)
Hourly Total Load in Hungary 38161 161.784
Hourly Total Load in Denmark 81756 497.199
Hourly Total Load in England 31471 186.957

Pump Time Series Data 7344 53.057
Venice Hourly Water Level 37000 168.416

Table 11.3: Table showing configuration time, including model fit time, for Automatic ARIMA
implementation.
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Figure 11.4: An example of what could be a Train Prediction cycle for ARIMA (left) and Alpex
(right), this is likely on a large dataset.

11.2.3 Space Complexity

In terms of space complexity, the ARIMA implementation I was using has at least an expo-
nential complexity O(n2).

This is shown when I was trying to fit an ARIMA model for the Hourly Total Load in Denmark
dataset. Trying to call the function ‘fit arima()’ with this dataset resulted in the error message:

MemoryError: Unable to allocate 38.3 GiB for an array with shape (71694, 71694)

and data type float64

If we are using an array of size n ∗ n then we know our complexity must be at least O(n2).

This is a huge advantage that Alpex has over this ARIMA implementation. Alpex operates
at a constant space complexity O(1.2GB) and will not exceed this no matter the size of the
dataset that we are forecasting.

11.2.4 Train and Predict Architecture

ARIMA’s forecasting speeds have been seen to be comparable to Alpex’s, however the model
fit time for ARIMA is substantial. With ARIMA, when we get new data we may find that our
model is no longer valid and we need to refit it. We have seen that refitting the algorithm
takes a substantial amount of time. Alpex trains whilst it predicts new values, this means
there is no extra fitting time needed and allows for the algorithm to be extremely adaptable
to new information. Figure 11.4 shows the differences in Architecture between the two algo-
rithms.

This limitation of ARIMA limits the agility of models in the face of new data as the implemen-
tation might not have enough time to train before new data arrives. Alpex opens up a new
level of granularity where we can train on series that generate data at much smaller time
intervals. An example of where this could be used is in tick data for stock markets where
data arrives too fast for us to be able to make accurate forecasts.
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Chapter 12

Conclusion

In this section we are going to review the contributions that I have made to the Alpex algo-
rithm - these include direct code contributions, conclusions made about the properties of the
Algorithm as well as informal discussions that allowed for us to gain a deeper understanding
of Alpex.

12.1 Project Contributions

12.1.1 Project Outline

At the beginning of the project, Alpex was a new and exciting rough diamond. We knew that
the algorithm was extremely fast in terms of runtime as well as being able to quickly learn
chaotic mathematical series. Before the project the algorithm was a collection of procedural
C code inside one file. We did not know to what extent the algorithm could learn these
chaotic series; how this compared to other methods and how this could be applied to real
world series. Therefore the initial specification of the project was to:

• Create a C++ API to handle streaming of data that was robust, extensible and object
orientated; making Alpex accessible.

• To conduct an investigation into the algorithm to determine which classes of time series
it is most effective at forecasting.

As well as the original specification of the project we also achieved multiple extensions. Some
of these were to meet problems that appeared in the project, some were a result of analysing
experiments and then others were due to my own curiosity. Each extension added a new and
unique contribution to the project.
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12.1.2 Software Engineering Element

The contributions that were made on the software engineering side were:

• A C++ API was created that allowed for the streaming of data in and out with the use
of Objects. This was completed with speed, extend-ability, security and accessibility in
mind. I also extended upon the API for:

– A Python wrapper such that the algorithm could be used from a data analytical
environment.

– A command line executable where users could input files or stream data using
standard input or standard output.

– Example pseudocode for extending the functionality of the algorithm without chang-
ing the API.

• A Time Series as a Service Web Application consisting of:

– A Containerised implementation of the API in C++ that used sockets to allow
clients to make API requests and maintained state independently.

– A Kotlin based Spring Boot RESTful Web App. Due to the RESTful nature and con-
tainerisation this is scalable, and can handle simultaneous users communicating
with different algorithm state machines.

– A Swagger generated Python library that allowed for communicating with the Web
API using functions wrapping the algorithms complexity.

• A suite of tools for analysing Time Series in Python:

– A Metrics object for calculating a large array of metrics that a user may want
to calculate, as well as tools for graphing these, displaying them in a table and
exporting to LaTeX.

– Graphing tools aimed at Time Series experiments.

– Interchangeable implementations of the API in a local mode where the user makes
the predictions and server mode where the user communicates with our server.

– An array of example experiments that non programmers could use to make fore-
casts using the algorithm.

• I created a suite of Python command line programs for generating Phylogenetic repre-
sentations of the algorithm. This allowed for us to draw conclusions about the redun-
dancy of the algorithm. The graphs also look amazing and are an exciting contribution
to the project.
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12.1.3 Analysis Side

As well as my extensive contribution to the Software Engineering side of the Algorithm, I also
made contributions both in terms of the required analysis as well as separate experiments that
I developed whilst completing the project.

• Experiments into Chaotic Time Series and comparing these to ARIMA models.

• An extension experiment into an emergent property of the algorithm that caused spikes
to appear in the predictions.

• Whilst coming up with solutions for the spikes in the predictions we explored different
ways that data can be pre-processed and normalised such that the algorithm is able to
make predictions, this includes using tanh and sigmoid activation functions.

• An investigation into the noise tolerance of the algorithm as well as exploring different
ways the algorithm could forecast in the presence of noise.

• I developed a new series of tests, including a new metric, that we could use to ensure
that the algorithm was making proactive forecasts.

• An analysis into different time series properties that a real world time series might
exhibit for it to be predictable by Alpex. This includes periodicity and compares this to
ARIMA models, drawing conclusions between the two. This allowed us to create a table
of properties that should be referred to before making predictions.

• As well as all the formal contributions, many experiments were conducted into different
time series and although many of these did not make it into the final report they did
form discussions that have helped Ben, Will and I to understand the algorithm in novel
ways.

12.2 Challenges

This project presented itself with a unique challenge in terms of time and resource manage-
ment. As the project had no clear finish line it was impossible to judge if, at any point, I was
on track. Coupled with this the many different directions the project went, and could have
gone, were endless and made me want to explore each one of these further. Furthermore
during the analysis stage we could have gone into near endless detail on each section, it was
therefore crucial that we found a point that balanced: moving towards the final goal, allow-
ing for the exploration of tangents and ensuring that each section was explored in enough
detail. I dealt with this unique challenge by making sure that I set out clear goals for what I
aimed to achieve in a week, and ensuring that both project Supervisors approved these and
could therefore hold me accountable in the next meeting.

With the analysis of the project being so open ended, we had to make a lot of different de-
cisions about what directions the project should go in and what would be worth exploring.

121



12.2. CHALLENGES Chapter 12. Conclusion

Some of these decisions did not bear fruit and were abandoned after some time. Therefore
an important challenge I had to overcome was deciding when to stop chasing a lead and
concentrate on a different experiment.

Due to the security of the project every attempt was made to ensure the algorithm was not
compromised. This meant that files had to be encrypted; the language carefully chosen and
that the code did not appear online. This meant that I needed to implement my own infras-
tructure in my own local network. Implementing custom Git Servers, running the Web APP
components on another device in the same network and ensuring that all of this worked be-
tween a windows laptop and a Linux PC. These infrastructure challenges were a great learn-
ing experience and posed unique challenges that I did not necessarily expect when starting
this project.

As well as all of the regular challenges that I needed to overcome, there was also the very
unique challenge imposed by 2020. The project was almost entirely completed during lock
down inside a pandemic. This meant that physical resources were unavailable, meetings
could not take place face to face and the general mental pressure caused by the situation was
unprecedented. Unique solutions had to be sought for completion during this special time.

The Web Server had a very interesting architectural challenge of trying to create a stateless
server that was able to maintain state. The solution to this, which was discussed, was about
isolating the risk of a stateful server by separating the stateful components and placing them
inside their own Web API. This balancing act between usability and scalability presented it-
self in an interesting scenario and allowed me to gain insights into the drawbacks of RESTful
servers as well as the benefits of a micro-service architecture in dealing with this.

Before this project I had worked as an intern in Data Development for a Financial Tech com-
pany. During this internship I gained an understanding of how the data was gathered for time
series and how it could be manipulated at scale. This project therefore allowed me to apply
this knowledge and gave me great insight into what happens to the data further down the
chain. This posed a challenge as I had to apply some of my knowledge on how this is done at
a huge scale but adapt it to an isolated situation, I also had to deal with biases I had towards
the analysis of financial series and ensure this did not affect a well balanced experiment.

Finally this project required a deep understanding of how ARIMA works and the different
ways it can be applied. This also included the pre-processing and data analysis that is re-
quired. Leaning about Auto Regression and the role that auto correlation plays in the nature
of series and the fact that we can measure, using the Auto Correlation Function, how values
are influenced by previous values in a series is particular interesting. Expanding this to see
how we can detect periods in the ACF of a series and how this leads to seasonality and Auto
Regression models.
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12.3 Future Work

12.3.1 How can we make Alpex accessible and deployable?

Although my contribution to this element was more than the initial specification dictated,
there is still a lot of work that could be done. While creating the API’s and different tools this
future work was considered, therefore the path to some of it has already been laid.

• The implementation of the original algorithm had the memory and the process com-
pletely intertwined. Moving towards an Object Orientated approach I began to unravel
this until we could create the Object based API. I began looking into completely separat-
ing the memory into its own object, beginning to change the code and creating a ‘bare
bones’ pseudocode representation of the algorithm, however this was not a priority of
the project so it was never finished. This would be a nice extension to the project as it
would allow for users to innovate on the memory and the algorithm separately.

• One of the reasons I began separating the memory manipulation from the process was to
pave the way for a multi-threaded implementation of the algorithm. This is something
I would like to have done and I hypothesised the ways we could have done this.

• Once the algorithm was multi-threaded, the containerised C++ sockets would had
paved the way for us to easily convert the algorithm into a distributed implementation
where we could split the memory requirements over multiple servers.

• Although we created the Web API and a client library for the Time Series as a Service
web app, an extension for this would have been to create a complete GUI for this such
that clients could easily input data into the server and make predictions. This could be
done in a way that is similar to how Causal Lens [8] offers up methods for time series
forecasting.

• As well as creating a complete Web app that has a GUI clients can interact with, an ex-
tension to the project would be a way to automatically pre-process data and make pre-
dictions based on that. More research would need to be done in terms of pre-processing
methods for this to be useful.

• An exciting extension to this project would have been to actually implement the algo-
rithm into some sort of prediction feedback loop. For example one type of time series
we look at is temperature, if we can accurately forecast temperature changes then we
can be proactive with our heating solutions and be more energy efficient, it would be
interesting to implement the algorithm in one of these systems and measure how much
energy is saved. Following on from this another interesting application would be if we
found a stock series the algorithm could predict for, we could implement the algorithm
inside an automated trading simulator and see if the algorithm would be able to earn
money.

• If we were to separate the memory from the procedure then a study could be conducted
into different memory optimisations to try and make the algorithm overfit less. For
example we could look at different pruning methods.
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• One of the possibilities of this project would be to implement a Random Forest. This
could allow us to reduce overfitting for the algorithm.

• Although we created a few Python programs that allowed for us to create Phylogenetic
trees of the algorithms state, an exciting extension would be to try to find a way to have
these trees automatically generate whilst the algorithm is running.

• As mentioned in the design of the C++ sockets, we decided to use sockets for our
implementation as opposed to Kafka event queues as they were outside the scope of the
project. One extension would be to implement our C++ predictors in this way.

12.3.2 For which classes of time series is Alpex most effective?

The analysis side of the project really just touched the surface in terms of what the algorithm
can do. We managed to prove that there is a place where Alpex could be used in the real
world, however there is still lots of work that can be done into studying this algorithm and
I believe one of the key takeaways of this project is the fact we have been able to highlight
some of the areas where future work could be most beneficial.

• We know that the algorithm operates under a constant space complexity and we know
that in terms of runtime the algorithm is extremely fast, however we do not know how
fast this is compared to other algorithms. An experiment that could be performed is to
formally compare the computational requirements of Alpex compared to other metrics.

• Following on from the point about computational complexity, I began analysing the
runtime of the algorithm and conducted some experiments into how this changes com-
pared to sample size, see Appendix D.1. I noticed that for some of the real time series
that we could not forecast for, there was a point where the runtime rapidly increased. A
future experiment could explore why this happens and if this relates to any of our time
series properties.

• When comparing the algorithm against a benchmark we focused on an ARIMA imple-
mentation, for a more thorough analysis of the algorithms performance against others
we would want to compare the algorithm against other techniques. These would in-
clude machine learning techniques or packaged solutions such as Amazons Forecasting
service.

• For some datasets we can gather lots of similar series, for example in the power gen-
eration sets we studied we have data available for lots of different Countries. As the
algorithm learns from seeing past patterns it would be interesting to study how the
performance of the algorithm could be improved by first training it on similar series.

• When studying different ways to predict in the presence of noise, we discovered that by
first training the algorithm on clean data and then noisy data we were able to see a con-
sistent increase in prediction accuracy. We hypothesised that using this we could apply
a smoothing technique to data before making predictions, this may increase accuracy
of datasets.
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• We noticed that the algorithm performs well when there is an underlying pattern to the
dataset. An investigation could be completed to try and categorise and analyse these
patterns, we could answer the question, “are there patterns that the algorithm performs
better or worse for?”.

• Although we looked at well over 50 datasets to generate our time series properties,
there are always more datasets that could be predicted for. An example of a dataset I
would have liked to analyse is the possibility of the algorithm to predict intraday stock
prices. Intraday prices are said to experience periodicity therefore the algorithm may
be able to predict well in this setting.

• We looked at some different normalisation techniques to map an infinite range of values
into a predictable range, a useful extension would be to properly study these techniques
and analyse how the performance of the algorithm changes with these.

• Although we briefly analysed the tree visualisations and we drew some conclusions
from these about the redundancy of the algorithm, it may be useful to conduct a full
investigation into these to try and learn how and why they work.

• One avenue we began to explore with Alpex was t+n predictions. All of the experi-
ments that we conducted concerned themselves with t+1 predictions. It would be an
interesting investigation to analyse how the algorithm performs in this scenario. Our
Analysis Toolkit supports this.
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Alpex Class Reference

A time series forecaster using the Alpex Algorithm. More...

#include <alpex.h>

Public Member Functions
void reset (int initial)

 Resets the state of the predictor. More...
 

int predict (int value)
 Trains the algorithm on the inputted value, then predicts the next value. More...

 
bool * train (int value, bool *hst)

 Trains the algorithm on the inputted value. More...
 

int predict_without_training (int value, bool *hst)
 Performs a T+1 prediction from the history array, using the current state of the algorithm. More...

 
bool * add_value_to_history (int value, bool *hst)

 Adds a value to the history array. More...
 

 Alpex ()
 Creates a Predictor with default parameters. More...

 
 Alpex (int initial)

 Creates a Predictor with an initial value and default parameters. More...
 

 Alpex (int initial, int max_value, int pool_scaler)
 Creates a Predictor with an initial value. More...

 
 Alpex (const Alpex &other)

 
Alpex & operator= (Alpex rhs)

 

Detailed Description

A time series forecaster using the Alpex Algorithm.

Forecasts time series based on an inputed sequence using the novel Alpex time series prediction algorithnm.
This class is the predictor used for forecasting using this method. The MAX_VALUE is set by the constructor,
this value is defaulted to 255 and is exclusive.

Example:

Alpex alpex = Alpex(1);
alpex.train(1); alpex.train(2); alpex.train(3);
assert(2, alpex.predict(1));

Author
Sam Brotherton
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◆ Alpex() [1/3]

◆ Alpex() [2/3]

◆ Alpex() [3/3]

Constructor & Destructor Documentation

Alpex::AlpexAlpex::Alpex (( ))

Creates a Predictor with default parameters.

Warning
If this is used you should call reset with an initial value before use.

The default parameters are:

initial = 0
max_value = 255
pool_scaler = 8000000

Alpex::AlpexAlpex::Alpex (( int int initialinitial ))

Creates a Predictor with an initial value and default parameters.

Precondition
The initial value is in the range [0, 255).

The default parameters are:

max_value = 255
pool_scaler = 8000000

Warning
Throws OutOfRange Exception if initial is in the incorrect range.
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◆ add_value_to_history()

Alpex::AlpexAlpex::Alpex (( int int initialinitial,,

int int max_valuemax_value,,

int int pool_scalerpool_scaler  

))

Creates a Predictor with an initial value.

Warning
max_value is exclusive (the range is [0, max_value)).

Precondition
The initial value is in the range [0, max_value).

The pool_scaler is a large positive integer (the default is 8000000).

Warning
Throws OutOfRange Exception if initial is in the incorrect range.

Member Function Documentation

bool* Alpex::add_value_to_historybool* Alpex::add_value_to_history (( int int valuevalue,,

bool * bool * hsthst  

))

Adds a value to the history array.

Precondition
The value must be in the range [0, MAX_VALUE).

The history must be of the correct length or a nullptr.

Parameters
value The previous value in the sequence.

history The binary representation of the history of values, nullptr can be used to use the predictors
history.

Returns
The history array with the added value.

Warning
Throws OutOfRange Exception if value is in the incorrect range.
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◆ predict()

◆ predict_without_training()

int Alpex::predictint Alpex::predict (( int int valuevalue ))

Trains the algorithm on the inputted value, then predicts the next value.

Precondition
The value must be in the range [0, MAX_VALUE).

Parameters
value The previous value in the sequence.

Returns
The T+1 prediction for the new value.

The predictor first trains on the inputted value, it then performs a T+1 prediction on the value. The predictor
trains from it's current state.

Warning
Throws OutOfRange Exception if value is in the incorrect range.

int Alpex::predict_without_trainingint Alpex::predict_without_training (( int int valuevalue,,

bool * bool * hsthst  

))

Performs a T+1 prediction from the history array, using the current state of the algorithm.

Precondition
The value must be in the range [0, MAX_VALUE).

The history must be of the correct length.

Parameters
value The previous value in the sequence.

history The binary representation of the history of values.

Returns
The T+1 prediction for the new value.

To ensure the history is of correct length, it should be obtained from a train call, and only added to with a
add_value_to_history call.

Warning
Throws OutOfRange Exception if value is in the incorrect range.
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◆ reset()

◆ train()

void Alpex::resetvoid Alpex::reset (( int int initialinitial ))

Resets the state of the predictor.

Precondition
The initial value must be in the range [0, MAX_VALUE).

Parameters
initial The initial value to set the history to.

Warning
Throws OutOfRange Exception if initial is in the incorrect range.

bool* Alpex::trainbool* Alpex::train (( int int valuevalue,,

bool * bool * hsthst  

))

Trains the algorithm on the inputted value.

Precondition
The value must be in the range [0, MAX_VALUE).

Parameters
value The previous value in the sequence.

Returns
The binary representation of the history of the algorithm.

The predictor trains on the inputted value. The algorithm returns the current state of the history with the
added value. This can be used as a parameter for predict_without_training().

Warning
Throws OutOfRange Exception if value is in the incorrect range.

The documentation for this class was generated from the following file:

include/alpex.h

Generated by    1.8.18
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A.2 Doxygen Documented Header File

Due to the fact the library code cannot be included in the final repository, I have included the
header file to show how PIMPL and Doxygen commenting works in the Appendix.
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Listing A.1: Code for the Doxygen documented source file Alpex.h implementing the pimpl idiom.

1 #i f n d e f ALPEX ALGORITHM H
2 #de f i n e ALPEX ALGORITHM H
3 /∗∗
4 ∗ @ f i l e a l p e x . h
5 ∗ @b r i e f Alpex A lgo r i thm API
6 ∗ @author Ben Rogers and Sam Bro the r ton
7 ∗ @date 2020−05−16
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
9

10

11 #pragma once
12 #i n c l u d e <random>
13 #i n c l u d e <memory>
14

15 /∗∗
16 ∗ @b r i e f A t ime s e r i e s f o r e c a s t e r u s i n g the Alpex A lgo r i thm .
17 ∗ @d e t a i l s
18 ∗ Fo r e c a s t s t ime s e r i e s based on an i npu t ed sequence u s i n g the nov e l
19 ∗ Alpex t ime s e r i e s p r e d i c t i o n a l go r i t hnm . This c l a s s i s the p r e d i c t o r used
20 ∗ f o r f o r e c a s t i n g u s i n g t h i s method .
21 ∗ The MAX VALUE i s s e t by the c on s t r u c t o r , t h i s v a l u e i s d e f a u l t e d to 255 and
22 ∗ i s e x c l u s i v e .
23 ∗
24 ∗ Example :
25 ∗ @code
26 ∗ Alpex a l p e x = Alpex ( 1 ) ;
27 ∗ a l p e x . t r a i n ( 1 ) ; a l p e x . t r a i n ( 2 ) ; a l p e x . t r a i n ( 3 ) ;
28 ∗ a s s e r t (2 , a l p e x . p r e d i c t ( 1 ) ) ;
29 ∗ @endcode
30 ∗ @author Sam Bro the r ton
31 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
32 c l a s s Alpex {
33 p u b l i c :
34 // −−−−−−−−−−−−−−−−−Core F u n c t i o n a l i t y−−−−−−−−−−−−−−−−−
35 /∗∗
36 ∗ @b r i e f Re s e t s the s t a t e o f the p r e d i c t o r .
37 ∗
38 ∗ @pre The i n i t i a l v a l u e must be i n the range [ 0 , MAX VALUE) .
39 ∗
40 ∗ @param i n i t i a l The i n i t i a l v a l u e to s e t the h i s t o r y to .
41 ∗ @warning Throws OutOfRange Excep t i on i f i n i t i a l i s
42 ∗ i n the i n c o r r e c t range .
43 ∗/
44 vo i d r e s e t ( i n t i n i t i a l ) ;
45

46 /∗∗
47 ∗ @b r i e f T r a i n s the a l g o r i t hm on the i n pu t t e d va lue ,
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48 ∗ then p r e d i c t s the next v a l u e .
49 ∗
50 ∗ @pre The va l u e must be i n the range [ 0 , MAX VALUE) .
51 ∗
52 ∗ @param va l u e The p r e v i o u s v a l u e i n the sequence .
53 ∗ @re tu rn The T+1 p r e d i c t i o n f o r the new va l u e .
54 ∗
55 ∗ @d e t a i l s
56 ∗ The p r e d i c t o r f i r s t t r a i n s on the i n pu t t e d va lue , i t then
57 ∗ pe r f o rms a T+1 p r e d i c t i o n on the v a l u e . The p r e d i c t o r t r a i n s
58 ∗ from i t ’ s c u r r e n t s t a t e .
59 ∗ @warning Throws OutOfRange Excep t i on i f v a l u e
60 ∗ i s i n the i n c o r r e c t range .
61 ∗/
62 i n t p r e d i c t ( i n t v a l u e ) ;
63

64 /∗∗
65 ∗ @b r i e f T r a i n s the a l g o r i t hm on the i n pu t t e d v a l u e .
66 ∗
67 ∗ @pre The va l u e must be i n the range [ 0 , MAX VALUE) .
68 ∗
69 ∗ @param va l u e The p r e v i o u s v a l u e i n the sequence .
70 ∗ @re tu rn The b i n a r y r e p r e s e n t a t i o n o f the h i s t o r y o f
71 ∗ the a l g o r i t hm .
72 ∗
73 ∗ @d e t a i l s
74 ∗ The p r e d i c t o r t r a i n s on the i n pu t t e d v a l u e . The a l g o r i t hm
75 ∗ r e t u r n s the c u r r e n t s t a t e o f the h i s t o r y w i th the added
76 ∗ v a l u e . Th i s can be used as a paramete r f o r
77 ∗ p r e d i c t w i t h o u t t r a i n i n g ( ) .
78 ∗ @warning Throws OutOfRange Excep t i on i f v a l u e i s i n
79 ∗ the i n c o r r e c t range .
80 ∗/
81 boo l ∗ t r a i n ( i n t va lue , boo l ∗ hs t ) ;
82

83 // −−−−−−−−−−−−−−−−−Opt i ona l F u n c t i o n a l i t y−−−−−−−−−−−−−−−−−
84

85 /∗∗
86 ∗ @b r i e f Per fo rms a T+1 p r e d i c t i o n from the h i s t o r y a r r ay ,
87 ∗ u s i n g the c u r r e n t s t a t e o f the a l g o r i t hm .
88 ∗
89 ∗ @pre The va l u e must be i n the range [ 0 , MAX VALUE) .
90 ∗ @pre The h i s t o r y must be o f the c o r r e c t l e n g t h .
91 ∗
92 ∗ @param va l u e The p r e v i o u s v a l u e i n the sequence .
93 ∗ @param h i s t o r y The b i n a r y r e p r e s e n t a t i o n o f the h i s t o r y o f v a l u e s .
94 ∗ @re tu rn The T+1 p r e d i c t i o n f o r the new va l u e .
95 ∗
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96 ∗ @d e t a i l s
97 ∗ To en su r e the h i s t o r y i s o f c o r r e c t l eng th , i t s hou ld be
98 ∗ ob ta i n ed from a t r a i n c a l l , and on l y added to wi th a
99 ∗ a d d v a l u e t o h i s t o r y c a l l .

100 ∗ @warning Throws OutOfRange Excep t i on i f v a l u e i s i n
101 ∗ the i n c o r r e c t range .
102 ∗/
103 i n t p r e d i c t w i t h o u t t r a i n i n g ( i n t va lue , boo l ∗ hs t ) ;
104

105 /∗∗
106 ∗ @b r i e f Adds a v a l u e to the h i s t o r y a r r a y .
107 ∗
108 ∗ @pre The va l u e must be i n the range [ 0 , MAX VALUE) .
109 ∗ @pre The h i s t o r y must be o f the c o r r e c t l e n g t h or a n u l l p t r .
110 ∗
111 ∗ @param va l u e The p r e v i o u s v a l u e i n the sequence .
112 ∗ @param h i s t o r y The b i n a r y r e p r e s e n t a t i o n o f the h i s t o r y
113 ∗ o f va l u e s , n u l l p t r can be used to use the p r e d i c t o r s h i s t o r y .
114 ∗ @re tu rn The h i s t o r y a r r a y wi th the added va l u e .
115 ∗
116 ∗ @warning Throws OutOfRange Excep t i on i f v a l u e i s
117 ∗ i n the i n c o r r e c t range .
118 ∗/
119 boo l ∗ a d d v a l u e t o h i s t o r y ( i n t va lue , boo l ∗ hs t ) ;
120

121 // −−−−−−−−−−−−−−−−−Cons t r u c t o r s−−−−−−−−−−−−−−−−−
122 /∗∗
123 ∗ @b r i e f C r e a t e s a P r e d i c t o r w i th d e f a u l t pa ramete r s .
124 ∗
125 ∗ @warning I f t h i s i s used you shou ld c a l l r e s e t w i th
126 ∗ an i n i t i a l v a l u e b e f o r e use .
127 ∗ @d e t a i l s
128 ∗ The d e f a u l t pa ramete r s a r e :
129 ∗ − i n i t i a l = 0
130 ∗ − max va lue = 255
131 ∗ − p o o l s c a l e r = 8000000
132 ∗/
133 Alpex ( ) ;
134

135 /∗∗
136 ∗ @b r i e f C r e a t e s a P r e d i c t o r w i th an i n i t i a l v a l u e
137 ∗ and d e f a u l t pa ramete r s .
138 ∗
139 ∗ @pre The i n i t i a l v a l u e i s i n the range [ 0 , 255 ) .
140 ∗ @d e t a i l s
141 ∗ The d e f a u l t pa ramete r s a r e :
142 ∗ − max va lue = 255
143 ∗ − p o o l s c a l e r = 8000000
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144 ∗ @warning Throws OutOfRange Excep t i on i f i n i t i a l
145 ∗ i s i n the i n c o r r e c t range .
146 ∗/
147 Alpex ( i n t i n i t i a l ) ;
148

149 /∗∗
150 ∗ @b r i e f C r e a t e s a P r e d i c t o r w i th an i n i t i a l v a l u e .
151 ∗ @warning max va lue i s e x c l u s i v e ( the range i s [ 0 , max va lue ) ) .
152 ∗ @pre The i n i t i a l v a l u e i s i n the range [ 0 , max va lue ) .
153 ∗ @pre The p o o l s c a l e r i s a l a r g e p o s i t i v e i n t e g e r ( the d e f a u l t i s 8000000) .
154 ∗ @warning Throws OutOfRange Excep t i on i f i n i t i a l i s i n the i n c o r r e c t range .
155 ∗/
156 Alpex ( i n t i n i t i a l , i n t max value , i n t p o o l s c a l e r ) ;
157 // C l a s s d e s t r u c t o r
158 ˜Alpex ( ) ;
159

160 // Copy c o n s t r u c t o r
161 Alpex ( con s t Alpex& o the r ) ;
162 // Copy−as s i gnment op e r a t o r
163 Alpex& ope r a t o r=(Alpex r h s ) ;
164 p r i v a t e :
165 c l a s s A lp ex A lgo r i t hm ;
166 s t d : : un i qu e p t r<Alpex A lgo r i thm> p impl ;
167 } ;
168

169 #end i f
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A.3 Python Wrapper Examples

Listing A.2: pybind11 python wrapper code for our Alpex predictor class.

1 #i n c l u d e <pyb ind11 / pyb ind11 . h>
2 #i n c l u d e ” a l p e x . h”
3

4 namespace py = pyb ind11 ;
5

6 PYBIND11 MODULE( a lpex py , m) {
7 py : : c l a s s <Alpex>(m, ”Alpex ” )
8 . d e f ( py : : i n i t ( ) )
9 . d e f ( py : : i n i t <i n t >())

10 . d e f ( py : : i n i t <i n t , i n t , i n t >())
11 . d e f ( ” r e s e t ” , &Alpex : : r e s e t )
12 . d e f ( ” t r a i n ” , &Alpex : : t r a i n )
13 . d e f ( ” p r e d i c t ” , &Alpex : : p r e d i c t )
14 . d e f ( ” p r e d i c t w i t h o u t t r a i n i n g ” , &Alpex : : p r e d i c t w i t h o u t t r a i n i n g )
15 . d e f ( ” a d d v a l u e t o h i s t o r y ” , &Alpex : : a d d v a l u e t o h i s t o r y ) ;
16 }

Listing A.3: pybind11 cmake build code for alpex python wrapper.

1 cmake min imum requ i red (VERSION 3 . 15 )
2

3 p r o j e c t ( a l p e x p y VERSION 1 . 0 . 1 DESCRIPTION ”Alpex Python C l i e n t ” LANGUAGES CXX)
4

5 s e t (CMAKE CXX STANDARD 14)
6 SET(GCC COVERAGE LINK FLAGS ”−fPIC ” )
7 a d d s u b d i r e c t o r y ( pyb ind11 )
8 pyb ind11 add modu le ( a l p e x p y
9 Alpex . cpp

10 )
11

12 s e t t a r g e t p r o p e r t i e s ( a l p e x PROPERTIES POSITION INDEPENDENT CODE TRUE)
13 t a r g e t l i n k l i b r a r i e s ( a l p e x p y PUBLIC a l p e x )

A.4 Example Generator

Listing A.4: An example generator for the Henon Map.

1 de f g e n e r a t e d a t a s e t ( pa ramete r s ) :
2 d a t a s e t x = l i s t ( )
3 d a t a s e t y = l i s t ( )
4

5 d a t a s e t x . append ( pa ramete r s [ ” i n i t i a l x ” ] )
6 d a t a s e t y . append ( pa ramete r s [ ” i n i t i a l y ” ] )
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THE SERVER

7

8 f o r i i n range (1 , l e n ( pa ramete r s [ ” t ” ] ) ) :
9 x = 1 − pa ramete r s [ ”a” ] ∗ d a t a s e t x [ i − 1 ] ∗∗ 2 + da t a s e t y [ i − 1 ]

10 y = paramete r s [ ”b” ] ∗ d a t a s e t x [ i − 1 ]
11 d a t a s e t x . append ( x )
12 d a t a s e t y . append ( y )
13

14 r e t u r n da t a s e t x , d a t a s e t y

A.5 Example Instance of Using the Swagger Client to Com-
municate with the Server

Listing A.5: An example usage of the Swagger Client.

1 from f u t u r e impor t p r i n t f u n c t i o n
2 impor t s w a g g e r c l i e n t
3 from sw a g g e r c l i e n t . r e s t impor t Ap iExcep t i on
4

5 a p i i n s t a n c e = sw a g g e r c l i e n t . B a s eCon t r o l l e rAp i ( )
6

7 de f p r e d i c t ( va lue , maximum=254):
8 t r y :
9 r e t u r n a p i i n s t a n c e

10 . p r e d i c t o n e b o u nd e d u s i n g g e t ( v a l u e=va lue , max=maximum)
11 excep t Ap iExcep t i on as e :
12 p r i n t ( ” Excep t i on when c a l l i n g ” +
13 ” Ba s eCon t r o l l e rAp i−>p r e d i c t o n e b o u nd e d u s i n g g e t : %s \n” % e )

A.6 Example of Adding an Experiment to the report gener-
ator

Listing A.6: An example of how to add an experiment to generate report.py.

1 expe r iment = [
2 ” . / t i m e s e r i e s / . . p a t h t o e x p e r i m e n t f i l e 1 . . ” ,
3 ” . / t i m e s e r i e s / . . p a t h t o e x p e r i m e n t f i l e 2 . . ” ,
4 ” . / t i m e s e r i e s / . . p a t h t o e x p e r i m e n t f i l e 3 . . ” ,
5 . . .
6 ]
7

8 . . .
9

10 arguments = {
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11 . . . ,
12 ” exper iment name ” : expe r imen t
13 }

Calling the function,

python ./generate report.py experiment name

will create a pdf ‘./reports/experiment name.pdf’ in the format “experiment 1, experiment 2,
experiment 3, ...”
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Datasets for Experiments

B.1 Mackey-Glass Experiment Results
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Figure B.1: Graph comparing Alpex’s predictions and ARIMA’s model against the original dataset
for the Mackey Glass System.

Figure B.2: Graph showing the residuals as a percentage of the values, taken as an average with
100 windows for the Mackey Glass System.
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B.2 Logistic Map Experiment Results

Sigmas MAE MAPE (%) CODE r2

0.00 0.011001 2.227099 2.271062 0.992374
0.10 0.017103 3.329940 2.515263 0.988114
0.25 0.032979 6.351746 3.663004 0.963898
0.50 0.060108 11.493736 4.371184 0.893001
0.75 0.089300 17.105186 7.521368 0.782894
1.00 0.117613 22.225216 10.134310 0.631381
2.00 0.222222 44.652586 24.102564 -0.051092
4.00 0.382510 181.212732 39.511600 -0.755665
7.00 0.592416 886.128677 47.594628 -0.955527

Table B.1: Metric scores for predicting the Logistic Map Dataset.
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Figure B.3: A zoomed in view of the last 30 values of the predicted (orange) vs actual (blue)
Logistic Map dataset at different sigma values.
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Figure B.4: Graphs comparing metric values against sigma for the Logistic Map Dataset as well
as the metric values comparing the noisy dataset with the actual dataset.
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B.3 Metrics for other Prediction Methods
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Figure B.5: Metrics for the Sawtooth(top) and cos(bottom) curve using different prediction meth-
ods,
where:
A = Normally trained predictions B = Trained on clean data first
C = Trained on progressively noisy data D = Trained only on clean data
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B.4 Noise Experiments
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Figure B.6: A zoomed in view of the last 30 values of the sawtooth dataset at different sigma
values.
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Figure B.7: A zoomed in view of the last 30 values of the cos dataset at different sigma values.
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Figure B.8: A zoomed in view of the last 30 values of the Logistic Map dataset at different sigma
values.
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Figure B.9: A zoomed in view of the last 30 values of the Henon Map dataset at different sigma
values.
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Figure B.10: A zoomed in view of the last 30 values of the Mackey Glass dataset at different
sigma values.
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Figure B.11: A zoomed in view of the last 30 values of the Lorenz System dataset at different
sigma values.
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Appendix C

Real World Analysis

C.1 Lagged Predictions

C.1.1 Venice Hourly Water Level

C.1.2 Belgium Offshore Generation
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C.1. LAGGED PREDICTIONS Chapter C. Real World Analysis

Figure C.1: Graphs showing Hourly Water Levels in Venice.
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Figure C.2: Graphs showing Hourly Belgium Offshore Power Generation.
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C.2 Table of Time Series Properties
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Figure C.3: A table of different time series properties with the corresponding metrics.

165



Appendix D

Future Work
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Chapter D. Future Work

Figure D.1: A graph showing runtime against sample size for a number of experiments.
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Appendix E

Case Study Experiments

E.1 Case Study A: Southern Italy Power Load

168



normal

June 8, 2020

1 Experiments into Power Load in Southern Italy

[13]: import pickle
from metrics.metrics import Metrics, print_table
from time_series.graphing import plot_dataset, plot_comparative_datasets,␣
↪→plot_acf_

from time_series.lag.lag import plot_change_in_metrics_as_grid,␣
↪→plot_predictions_as_grid

import pandas as pd
from time_series.predictions import test_stationarity, de_trend_with_baseline,␣
↪→log_dataset, \

make_predictions_with_normalisation
from time_series.real_world_datasets.power_series.normal.normal import␣
↪→generate_data_set, generate_arima

Load Datasets and Baseline Predictions

[14]: dataset = generate_data_set("IT_CSUD_load_actual_entsoe_transparency")

look_back = 1000

Plot the dataset

[15]: plot_dataset(dataset[-look_back:], "Graph of Actual Power Load in Southern␣
↪→Italy for the last " + str(look_back) + " values", y_axis_name="Total Power␣
↪→(MW)")

1



Check for constant Mean and Heteroscedasticity

[16]: test_stationarity(pd.Series(dataset), window=100)

Set out if we want to remove trend (non constant mean), or log data (non constant variance).

2



[17]: remove_trend = True
log = True

Remove Trend through linear Regression

[18]: if remove_trend:
dataset, _ = de_trend_with_baseline(dataset, [])

if log:
dataset = log_dataset(dataset)

generate_arima(dataset)
with open("out/arima.obj", "rb") as f:

_, auto_arima = pickle.load(f)

Plot the Auto Correlation Function for the dataset

[19]: plot_acf_(dataset)

Make Predictions with algorithm

[20]: predictions = make_predictions_with_normalisation(dataset)

Plot the predictions against the dataset

[21]: auto_arima = auto_arima.fittedvalues
plot_comparative_datasets(dataset[-look_back:],

[
("auto ARIMA", auto_arima[-look_back:]),
("Algorithm predictions", predictions[-(look_back+1):

↪→])
],
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"Graph of predicted against actual data and baseline␣
↪→arima, for the last " + str(look_back) + " values")

Plot the residual of the predictions against the dataset

[22]: plot_comparative_datasets([],
[

("Auto ARIMA", [100.0 * (abs(a - b)/a) for a, b␣
↪→in zip(auto_arima[-look_back:], dataset[-look_back:])]),

("Algorithm Predictions", [100.0 * (abs(a - b)/a)␣
↪→for a, b in zip(predictions[-(look_back + 1):], dataset[-look_back:])])

],
"Graph of Residuals for the algorithm against the␣

↪→original dataset",
y_axis_name="Mean Absolute Percentage Error (%)")
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Calculate metrics for the last n values.

[23]: metrics_new_algorithm = Metrics(dataset[-look_back:], predictions[-(look_back +␣
↪→1):-1])

metrics_auto_arima = Metrics(dataset[-look_back:], auto_arima[-look_back:])
print_table([metrics_auto_arima, metrics_new_algorithm], "Algorithm", ["AA",␣
↪→"Alpex"], ["mape", "mae", "r2", "r2_lag", "med_ape"])

Algorithm mae mape r2 r2_lag med_ape
0 AA 0.056215 0.693589 0.949401 0.581955 0.603234
1 Alpex 0.048007 0.594459 0.954511 0.624179 0.422753

Test for lag

[24]: plot_predictions_as_grid(dataset, predictions, name='Power Load in Southern␣
↪→Italy')

plot_change_in_metrics_as_grid(dataset, predictions)
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