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Abstract

We investigate various soft attention architectures to extract plausible token-level
rationale from long document Transformers, such as Longformer. We find that
a direct application of Weighted Soft Attention, a method used to extract ratio-
nale from sentence classifiers, does not select meaningful rationale from long text
classifiers. We suspect it is due to the insufficient token-level supervision signal.
We propose Mean Soft Attention and Top-k Rest-0 Soft Attention as modifications
to the original system that significantly improve the quality of the extracted ra-
tionale.

We report slow runtimes of the soft attention architectures for long documents.
We propose a novel Compositional Soft Attention system that uses a soft atten-
tion layer to compose contextual token embeddings obtained for individual sen-
tences. When combined with RoBERTa, we find the Compositional system to
be 30 − 65% faster than long document Transformers. We learn that the Com-
positional Soft Attention ranks individual tokens substantially better than other
soft attention systems, but note that it underperforms on the task of sequence
labelling and document classification.
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Chapter 1

Introduction

Since the introduction of the Transformer architecture [1], the research in Nat-
ural Language Processing (NLP) has focussed on adapting large pretrained lan-
guage models to perform well on downstream tasks. The variations of the orig-
inal Transformer model, such as BERT [2] or RoBERTa [3], have been shown to
achieve state-of-the-art performance on tasks such as sentence classification [4],
question answering [3] or sequence labelling [5].

The multihead self-attention layers present in Transformers have been shown to
attend to various linguistic properties, such as syntax and coreference [6], con-
tributing to the Transformers success [7]. However, due to the quadratic growth
of the attention with the sequence length, it has also been one of its main limita-
tions. In order to decrease the computational complexity, sequences larger than
512 tokens are usually truncated [2]. This approach works well for a single sen-
tence, or a concatenation of such, but does not represent larger documents well
[8, 9]. That is in contrast with Recurrent Neural Networks (RNNs) [10], which
could be applied to sequences of arbitrary length [11], although suffering from
vanishing gradients.

In order to improve the long document representation, sequential and hierarchi-
cal Transformers-based approaches have been proposed [12, 13]. However, those
methods have been outperformed by sparse attention approaches, such as Big
Bird [8] and Longformer [9]. These architectures attempt to reduce the computa-
tion required by implementing sparse attention functions that combine local and
global information. However, they are signficantly slower than standard Trans-
formers.

While the explainability of short-text Transformers is a well-explored topic in
the literature [14, 15], it is not the case for long document models. Shi et al. [16]
and Feucht et al. [17] have both investigated explanations of Longformer, but
have only provided a qualitative evaluation. Meister et al. [18] have shown that
sparsity of attention does not lead to improved explainability, but have only in-
vestigated it in the context of the vanilla BERT model. To the best of our knowl-
edge, there is no work that quantitavely investigates explainability of long text
Transformers.
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1.1 Objectives

In this project, we investigate the representation and explainability of long doc-
ument classification. In particular, we focus on designing rationale extractors [19]
for long text Transformers that can be evaluated against token-level human anno-
tations by measuring plausability (agreeability to human annotators; [20]). The
rationales are extracted from token-level scores assigned by the system as part of
the zero-shot sequence labelling task.

We first adapt the soft attention architecture proposed by Rei and Søgaard [21]
and modified for Transformers by Bujel et al. [15] to work well for long doc-
ument classification. We show that a direct application of the Weighted Soft
Attention architecture does not perform well. We propose non-trivial modifica-
tions, namely Mean Soft Attention and Top-k Rest-0 Soft Attention, to allow the
supervision signal to reach more tokens. The modifications lead to significant
improvement of the token-level classification performance, with 1.99% − 9.42%
absolute F1 improvement for Mean Soft Attention.

We further propose Compositional Soft Attention, a novel architecture that ob-
tains contextual token embeddings from a standard Transformer applied sentence-
wise. These token representations are then composed across sentences to obtain
a document-level representation. We show that this approach is 30%−65% faster
than a standard application of soft attention with long text Transformers. We
find the system to determine the correct ranking of tokens, but learn a subop-
timal distribution of token scores, as indicated by the substantial improvement
in the token-level MAP , but lower F1 score. We propose modifications to the
loss function to alleviate this issue in future work. We also note the significantly
lower document-level performance of the model, which we suspect is due to a
poorly defined early stopping criterion.

We publicly release our code and all experiments configuration files1.

1.2 Contributions

We believe the following are the unique contributions of this project:

• We quantitatively evaluate zero-shot rationale extractors for long text Transformer-
based classifiers. To the best of our knowledge, this is the first time these
systems are evaluated in such a setting.

• We modify the Weighted Soft Attention to work well for long text classifica-
tion and introduce Mean and Top-k Rest-0 Soft Attention architectures that
perform significantly better on the token-level rationale extraction.

• We propose novel Compositional Soft Attention architecture that composes
contextual token embeddings obtained sentence-wise to build document rep-
resentation and provide token-level rationale. We find the system to be
30− 65% faster than Longformer-based soft attention systems.

• We adapt existing Grammatical Error Detection datasets to binary document
classification and token-level rationale plausibility extraction.

1https://github.com/bujol12/document-classification-transformers
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1.3 Challenges

This project involved diverse experimentation to arrive at the final architectures
and results. Additionally, we faced the following challenges with regards to the
chosen goals:

• Limited number of suitable datasets: Despite a large number of publicly
available datasets for document classification, there is a shortage of doc-
ument classification datasets that contain token-level human annotations.
That is due to the prohibitive costs of such labelling process. Therefore, we
were forced to work with datasets that did not contain enough samples or
not enough long documents. We also had to split some of the datasets into
our own binary classes. We designed preprocessing scripts to convert them
into a common format, as each dataset followed a different convention for
representing the token-level annotations.

• Limited GPU access to large GPUs: While we benefited from a largely
undisturbed access to GPUs with memory ranging from 10GB to 16GB, we
could not gain access to a larger family of GPUs. This had an impact on the
training times of the long document models, which had to be be optimised
with a batch size of 1. Further, we did not manage to test BigBird as we did
not manage to fit it onto any GPU available to us.

• Batching for Compositional Soft Attention: In order to improve the com-
putational efficiency of the Compositional Soft Attention model, we had to
perform a 2-level batching. This included batching documents together as
input for the soft attention component, while also batching individual sen-
tences as input to obtain contextual token embeddings. This approach pre-
sented numerous challenges with masking and padding, which we had to
resolve.

1.4 Potential Publication

We intend to submit the presented work to the BlackboxNLP 2022 workshop co-
located with The 2022 Conference on Empirical Methods in Natural Language
Processing (EMNLP 2022), with the focus on Compositional Soft Attention ar-
chitecture.

This will be done following further research on the proposed architecture. We
would like to refine the system to learn better distributions of token scores. We
hope this will improve the token-level F1 performance and allow the model to
set new state-of-the-art across all datasets. Currently, the model learns correct
rankings of tokens, but fails to optimise some of the token scores to be below the
classification threshold, leading to substantial improvement on the token-level
MAP scores, but lower token-level F1 metric.
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Chapter 2

Background

In this chapter, we overview the research in Natural Language Processing. We
start by introducing Recurrent Neural Networks (RNNs) and the attention archi-
tectures that were first proposed for RNNs. In particular, we explore the soft
attention architectures proposed by Rei and Søgaard [21] for zero-shot sequence
labelling.

We overview Transformers - a family of state-of-the-art models that are widely
used in Natural Language Processing and form the backbone of most systems.
Specifically, we delve into the efforts in designing efficient long text Transform-
ers, which we use throughout the project. Additionally, we introduce the soft
attention architecture that was adapted for Transformers by Bujel et al. [15].

Lastly, we review the recent efforts in explainability of NLP models. We define
the key explainability concepts such as plausibility and faithfulness. We then re-
view recent work in extracting plausible rationale and how zero-shot sequence
labellers can be used to extract these rationales.
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Figure 2.1: The representation of a Recurrent Neural Network cell h in its folded state on the left-
hand side and the unfolded state on the right-hand side. U and V on the diagram are equivalent
to Wh and Uh in Eq. 2.1 respectively. W and ot represent an output layer obtained from the hid-
den output vector ht . Diagram borrowed from (https://en.wikipedia.org/wiki/Recurrent_
neural_network)

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were first introduced by Rumelhart et al.
[10] in the context of learning internal representations and error propagation.
Unlike feedforward networks [22], they included recurrent connections between
neurons, permitting them to model temporal and sequential features.

Assuming input matrix X =
(
x0 x1 ... xn

)T
∈Rn×m consists of n input row vec-

tors xi , a Recurrent Neural Network cell for input row vector xt ∈Rm was defined
as:

ht = φh(Whxt +Uhht−1 + bh) (2.1)

where φh is the activation function, Wh ∈Rh×m and Uh ∈Rh×h are weight matrices,
bh ∈ R

h is the vector of biases and ht ∈ R
h is the (hidden) output vector, with

h0 = 0. h is the size of the recurrent layer. Figure 2.1 presents the folded and
unfolded RNN hidden cell ht.

2.1.1 Long-Short Term Networks

The work on RNNs led to the design of Long-Short Term Networks (LSTMs) [24],
a variation of RNNs aiming to solve the issues with vanishing gradients in the
previous architectures [25] by introducing Constant Error Carousel units. This
was followed by Gers et al. [26] suggestion of an extra component of LSTMs - a
forget gate. These modifications have been widely attributed to the LSTMs suc-
cess [23].

For the previously defined input matrix x, we use the no-peephole LSTM defi-
nition by Greff et al. [23]:

it = σ (Wixt +Uiht−1 + bi) (2.2)
ft = σ (Wf xt +Uf ht−1 + bf ) (2.3)

ot = σ (Woxt +Uoht−1 + bo) (2.4)
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Figure 2.2: A modern day LSTM cell, consisting of the input, output and forget gates, as well as
the peephole connections. As presented by Greff et al. [23]. y on the diagram represents ht in Eq.
2.7.

where it ∈ Rh is the input gate, ft ∈ Rh is the forget gate and ot ∈ Rh is the output
gate. Wi , Wf , Wo ∈Rh×m and Wi , Wf , Wo ∈Rh×h are weight matrices, bi ,bf ,bo ∈Rh

are bias vectors and σ is the sigmoid activation function.

Additionally, we define the cell input block zt ∈Rh:

zt = tanh(Wzxt +Uzht−1 + bz) (2.5)

with Wz,Uz,bz defined similar as above.

These gates and cell input blocks are then combined to obtain the hidden (out-
put) state ht ∈Rh and the memory cell ct ∈Rh:

ct = ft ◦ ct−1 + it ◦ zt (2.6)
ht = ot ◦ tanh(ct) (2.7)

The hidden states ht can then be used for further inference on each of the input
vectors. Figure 2.2 represents a modern day LSTM cell, with additional peephole
connections, pictured by Greff et al. [23].

In NLP, LSTMs have seen success for various tasks, such as language modelling
[27], machine translation [28], sequence tagging [29] or reading comprehension
[30]. Usually a bidirectional LSTM (biLSTM) model [31] is used to allow the
architecture to represent both forward and backward dependencies. Hermann
et al. [30] also showed that LSTMs are effective at modelling long documents,
with their dataset including sequences of up to 2000 tokens of news articles.

2.1.2 Attention

Following the adaptation of RNNs for various NLP tasks, Bahdanau et al. [32]
proposed the use of dynamic attention over words to construct sentence repre-
sentations as context vectors r ∈Rh:
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r =
n∑
i=1

αihi (2.8)

where hi ∈Rh is the hidden state of a biLSTM and αi ∈R is an attention value:

αi =
exp(ei)∑n
j=1 exp(ej)

ej = φ(Wehj + be) (2.9)

where We ∈ R1×h and be ∈ R are trainable parameters, φ is an activation function
and ej ∈R.

The addition of an attention component allowed the network to learn which
words to focus on more in order to obtain better sentence representations. While
the original application was machine translation, similar architectures have been
successful for sentence summarisation [33], error correction [34] and sequence
labeling [35].

2.1.3 Zero-Shot Sequence Labelling

Rei and Søgaard [21] proposed a soft attention architecture based on Bahdanau
et al. [32] to perform the task of zero-shot sequence labelling. They supervised
a system with sentence-level annotations, but measured the performance on the
token-level. The system intended the token-level predictions to serve as rationale
of the sentence-level predictions.

The architecture consisted of a biLSTM component that operated on word em-

beddings [36], with bidirectional hidden states concatenated to form h̃i = [
−→
hi ,
←−
hi ].

This was then passed through a feed-forward layer to obtain the representation
hi of a particular word wi :

hi = tanh(Whh̃i + bh) (2.10)

On top of these word representations, an attention layer is fitted in order to obtain
attention values ei :

Figure 2.3: Soft Attention biLSTM architecture, as presented by Rei and Søgaard [21]. wi rep-
resent input word embeddings, hi the word representations, while ei and ai show the attention
values and weights respectively. d is the overall sentence representation, while y is the predicted
sentence label.
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ei = tanh(Wehi + be) (2.11)

In order to enable binary classification of tokens, a soft attention score ãi was
introduced to ensure that more than one token can have attention score ãi >= 0.50
to provide a natural classification threshold. These soft attention scores ãi are
obtained using:

ãi = σ (ẽi) ẽi = Wẽei + bẽ (2.12)

where ẽi is a single scalar value.

To build the sentence representation c, the soft attention scores ãi need to be
normalised to obtain soft attention weights ai . We then combine those weights
with word representations hi :

ai =
ãi∑N
j=1 ãj

c =
N∑
i=1

aihi (2.13)

Finally, the sentence-level classification is performed:

d = tanh(Wdc+ bd) y = σ (Wyd + by) (2.14)

where 0 ≤ y ≤ 1 is a single value, with y > 0.50 representing positive class. Figure
2.3 represents this soft attention architecture, as presented by Rei and Søgaard
[21].

The model was supervised with annotations on the sentence-level, with addi-
tional loss functions used to encourage the model to learn attention scores for
tokens:

L1 =
∑
j

(y(j) − ỹ(j))2 (2.15)

L2 =
∑
j

(min(ãi)− 0)2 (2.16)

L3 =
∑
j

(max(ãi)− ỹ(j))2 (2.17)

L = L1 +γ(L2 +L3) (2.18)

Eq. 2.15 indicates the sentence-level loss. Eq. 2.16 represents the property that
only some, but not all tokens can have a positive label, while Eq. 2.17 uses the
fact that for a sentence with a positive label, there needs to be at least one token
with a positive label. Eq. 2.18 is the overall loss used for backpropagation.

The obtained attention scores can be used to infer token-level labels and be eval-
uated based on the token-level annotations. By design, the attention scores also
provide a mechanism for interpreting the model and quantitatively evaluating
the explanations using the token-level annotations.

This sentence-level method forms the basis of our proposed approach for long-
document classification. We propose a soft attention architecture that utilises
token-level representations to obtain document-level predictions.

11



Figure 2.4: The Transformers encoder, as presented by Vaswani et al. [1]. It contains the Input
Encoding component (Input Embedding & Positional Encoding) that generates the initial em-
beddings, followed by N the Transformer layers, each consisting of Multi-head Attention and a
Feed-Forward layer, combined with Addition and Normalisation layers.

2.2 Transformers

Vaswani et al. [1] introduced Transformers, an architecture with a novel self-
attention mechanism. The system does not include the recurrence relationship
inherent to Recurrent Neural Networks. The initial experiments showed this new
architecture to significantly outperform previous approaches on tasks of machine
translation and constituency parsing. Following this work, Transformer-based
models such as BERT [2] and RoBERTa [3] were introduced and shown to gen-
eralise well on numerous tasks and outperform previous encoder-decoder ap-
proaches in the GLUE behnchmark [37]. This section first describes a general
Transformer encoder architecture, as proposed by Vaswani et al. [1], followed by
the exploration of vast applications of Transformer-based models in modern NLP.

2.2.1 Architecture

The initial Transformer model consists of 6 identical layers, with each layer con-
sisting of 2 sublayers - a multi-head attention and a fully connected feed-forward
networks. Normalised residual connections [38, 39] are also present for each sub-
layer. The dimensions of each layer are d.

The initial input tokens are embedded into vectors of dimensions d, which are
then summed with positional embeddings. The general overview of the architec-
ture and a single layer is presented in Figure 2.4.

2.2.2 Multi-Head Attention

The key feature of the Transformer architecture is the multi-head self-attention
mechanism, which permits each layer to learn to represent certain linguistic
properties and model long-term forward and backward dependencies [6].

The self-attention layer can be described as acting on 3 different types of inputs:
Queries (Q), Keys (K) and Values (V):
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A(Q,K,V ) = σ (
QKT√
dk

)V (2.19)

where dk is the dimension of the matrix K . In the encoder Transformer architec-
ture, Q = K = V , with the values being the output of the previous layer.

These self-attention layers are stacked together and passed through a feed-forward
layer to obtain multi-head self-attention:

MHA(Q,K,V ) = [A(Q1,K1,V1), ...,A(Qh,Kh,Vh)]WO (2.20)

where Qi = QWQ
i , Ki = KW K

i , Vi = VW V
i , WO ∈ Rhdk×d and h is the number of

heads per layer.

2.2.3 Feed-Forward Network

The feed-forward network consists of 2 layers, with all transformations applied
position-wise to input matrix X and a ReLU [40] activation in between:

N (x) = max(0,xW1 + b1)W2 + b2 (2.21)

where W1 ∈ Rd×df f , W2 ∈ Rdf f ×d . df f = 1024 in the intial Transformer architec-
ture.

2.2.4 Positional Encodings

In order to facilitate the ordering of the sequence of words without the recurrence
relationship, posititional encoding was proposed, which is added to the initial
token embeddings. For a token in position pos, the vector p ∈ Rd of positional
encodings can be expressed as:

p2i(pos) = sin(pos/100002i/d) (2.22)

p2i+1(pos) = cos(pos/100002i/d) (2.23)

The reason for the function having such a format was because for any fixed offset
k, p(pos + k) is a linear function of p(pos), therefore making it easier for the self-
attention mechanism to attend to relative positions.

We note that modern Transformers such as BERT models use positional encod-
ings pi that are learnt during the pre-training process.

2.2.5 Pre-trained Language Models

The Transfomer architecture proposed by Vaswani et al. [1] led to a series of
systems being released that had substantially improved on the original Trans-
former and applied it to a wider variety of tasks. Radford et al. [41] demon-
strated how unsupervised generative pre-training of language models followed
by fine-tuning on downstream tasks can lead to state-of-the-art performance on
a 9 out of 12 NLP tasks explored. The proposed model, GPT, was optimised dur-
ing the pre-training phase on the language modelling likelihood objective, where
u1,u2, ... is a sequence of tokens:

13



Figure 2.5: Representation of BERT tokenisation process, as presented by Devlin et al. [2]. At
the top, the "input" row contains the original tokens, with special classification [CLS] and the
separator [SEP ] tokens added. These input tokens are converted to token embeddings Etok , which
are then summed with segment embeddings EsegId representing the segment the token belongs
to and the positional embeddings Ei representing the position of the token in the sequence.

L1 =
∑
i

logP (ui |ui−k , ...,ui−1|Θ) (2.24)

where Θ is a Transformer model and k is the context window size.

The GPT model permitted pre-training based on the next token only. In order
to exploit both forward and backward relationships between tokens during pre-
training, Devlin et al. [2] proposed Bidirectional Encoder Representations from
Transformers (BERT). This was achieved by introducing a novel Masked Lan-
guage Modelling objective (MLM), where some of the input tokens are masked
at random, with the model objective to predict those masked tokens. The pre-
trained BERT model could then be extended with a single extra layer and sub-
sequently fine-tuned for the downstream task to achieve state-of-the-art perfor-
mance on 11 different NLP tasks.

Given the computational cost of pre-training BERT, the pre-trained version was
released online and led to BERT being widely used to obtain contextual word em-
beddings of tokens for a variety of tasks and architectures [42].

Further improvements to Transfomers have been proposed. Liu et al. [3] found
BERT to be severely undertrained and released Robustly Optimised BERT Pre-
training Approach (RoBERTa) that achieved state-of-the-results. Yang et al. [43]
found that the BERT masking procedure ignores dependencies between masked
positions and proposed an autoregressive pre-training procedure (XLNet) to over-
come it.

2.2.6 Tokenisation & Input/Output Representation

For BERT, WordPiece embeddings [44] with 30,000 vocabulary are used to to-
kenise the input words to token embeddings Etok. The tokenisation is prepended
with a special classification token [CLS] used for inferring text-level representa-
tion. These embeddings are summed with additional segment embeddings EsegId ,
to indicate which sentence the token belongs to, and standard Transformers po-
sitional embeddings Ei = pi (§2.2.4). The full input embeddings representation
is presented in Figure 2.5.
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Figure 2.6: The BERT architecture for sentence classification, as presented by Devlin et al. [2]. The
bottom input tokens T ok represent the input sentence tokenised by the BERT’s tokeniser, as well
as the special purpose classification token [CLS]. These are then converted to token embeddings
E = [ECLS ,E1, ...,EN ] and fed into the Transformers part of BERT. T = [T1, ...,TN ] represents the
contextual embeddings of input tokens, with C representing the contextual embedding of the
[CLS] token. C is then used to predict the text class label.

As output, BERT returns the final representation of the [CLS] token, C ∈ Rd and
token contextual embeddings T = [T1, ...,TN ]T ∈RN×d . These outputs can be used
for predictions on the text or token level.

2.2.7 Text Classification

In particular, we are interested in fine-tuning the pre-trained language models
for the task of text classification. Sentence classification is one of the downstream
tasks explored by Devlin et al. [2] when evaluating BERT. To obtain a sentence
representation for predictions, they utilise the special [CLS] token and its corre-
sponding output C ∈ Rd that is fed into a separate classification layer to obtain
the sentence logits:

y = φ(WcC + bc) (2.25)

where Wc ∈ Rc×d and bc are parameters, φ is the activation function, c ∈N is the
number of classes and y ∈ Rc are the output logits. The architecture is presented
in Figure 2.6.

Sun et al. [4] showed that a similar approach based on the [CLS] token prediction
works well for texts consisting of multiple sentences.

2.2.8 Zero-Shot Sequence Labelling on Transformers

Bujel et al. [15] explored how Transformers sentence classifiers can be used as
zero-shot sequence labellers. They replaced the biLSTM token representations hi
(Eq. 2.11, 2.13) with contextual token embeddings Ti obtained from RoBERTa as
input to the soft attention layer:

ei = tanh(WeTi + be) c =
N∑
i=1

aiTi (2.26)
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Figure 2.7: Weighted Soft Attention architecture for Transformers, as presented by Bujel et al.
[15]. ti represents the input tokens, Ti the contextual token embeddings, with ei and ai being the
attention values and attention weights respectively. d is the sentence-level representation, with y
being the predicted sentence label.

The full architecture is presented in Figure 2.7.

They found that the standard soft attention approach presented by Rei and Sø-
gaard [21] for LSTMs needed adaptation of the soft attention function to work
well for Transformers. The investigation showed that it was likely because the
top layers of Transformers already learn well to attend to individual tokens, de-
spite lack of supervision. Additionally, contextual embeddings for neighbouring
tokens were found to be of high similarity, which made the original soft atten-
tion function unable to differentiate between tokens. Therefore, a Weighted Soft
Attention function was proposed:

ai =
ãi

β∑N
j=1 ãj

β
(2.27)

where β is a hyperparameter, with values β > 1 allowing for a sharper distribu-
tion of attention scores ãi . The authors report β = 2 to work best.

Following the application of Weighted Soft Attention mechanism on top of Trans-
former contextual embeddings, the architecture was found to achieve new state-
of-the-art performance on zero-shot sequence labelling.

We note that the Weighted Soft Attention architecture has not been evaluated
on documents or in combination with long text Transformers (§2.2.9). One of
the aims of this work is to measure the document-level performance of Weighted
Soft Attention in combination with both standard (e.g. RoBERTa) and long text
Transformers.

2.2.9 Long Text Transformers

All of the initial Transformer-based models conventionally supported sequences
up to 512 tokens, due to memory limitations on modern GPUs. The limiting fac-
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Figure 2.8: HIBERT architecture, as presented by Zhang et al. [13]. Sent Encoder Transformer
represents a standard token-level Transformer. Its sentence representation from the EOS token
is then used as input to a sentence-level Transformer that produces document representation
(Doc Encoder Transformer). masked sent3 is an example of a masked sentence in the Doc Encoder
Transformer.

tor was the self-attention layer, which had quadratic computational complexity to
the sequence length. Sequences longer than the maximum size were simply trun-
cated [2], which led to long documents not being represented well [8, 9]. This
problem of computational inefficiency and lack of scalability of standard Trans-
formers was tackled by the long text Transformers, which we overview below.

Hierarchical BERT
Pappagari et al. [12] proposed a hierarchical approach, where BERT is applied
to individual sentences, with the sentence-level representation being combined
into a document-level representation with an extra 2-layer Transformer that takes
sentence representations as input. This was found to outperform the approach
where a biLSTM layer was used to combine representations of each sentence.

Zhang et al. [13] extended this approach to propose Hierarchical BERT (HIB-
ERT) that additionally included Document Masking, a pre-training method that
masks out some input sentences of a sentence-level Transformer, which are then
predicted by the sentence-level Transformer. Figure 2.8 pictures the architecture
proposed by Zhang et al. [13].

Transformer-XL
Dai et al. [45] introduced Transformer-XL, which added a recurrence relationship
into the Transformer and proposed relative positional encodings. The architec-
ture introduced fixed attention context windows was designed to be applied to
segments of text and was shown to be able to model the long-term dependencies
of up to 900 tokens.

Sparse Transformer
These hierarchical and fixed-context approaches were then outperformed by the
attempts to make the self-attention component of Transformers sparse. Child
et al. [46] introduced Sparse Transformer, that reduces the attention operation to
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O(n
√
n) by introducing factorised self-attention that ensures that each input token

is connected to every output token with a maximum of p = 2 attention steps. In
particular, a fixed factorised self-attention is found to do well for NLP tasks. It uses
a 2-head attention pattern, where the first one (A(1)) attends to all tokens within
the same stride of size l = 128 and the second attention head (A(2)) attends to all
previous strides. Formally, for a token in position i:

A
(1)
i = {j :

⌊
j/l

⌋
= ⌊i/l⌋} (2.28)

A
(2)
i = {j : j mod l ∈ {t, t + 1, ..., l}} (2.29)

where t = l−c, and c = 8. The model was trained with a maximum context length
of 12,288 tokens, the largest approach at a time for Transformers. It also outper-
formed a similarly sized Transformer-XL.

Longformer
Beltagy et al. [9] introduced a Longformer architecture that contains an attention
layer that scales linearly with the input size. It consists of a sliding window at-
tention mechanism that attends to 1

2w tokens either side of the given token, with
w being the window size, a hyperparameter. This approach gets extended to the
dilated sliding window, which includes gaps of size d in between tokens being at-
tended to, in order to increase the scope of attention. For an attention head h and
token i, this can be expressed as:

Ah,i = {j : |i − j | mod (dh + 1) == 0} (2.30)

Each attention head is configured to have a different dilation dh. The Longformer
dilated attention pattern is presented in Figure 2.9. Additionally, all tokens at-
tend to the global BERT tokens, such as [CLS] or [SEP]. We note that the dilated
attention requires a memory and compute efficient custom CUDA kernel and at
the time of writing is not available in the HuggingFace library [47].

This combination of dilated sliding window and global attention led to Long-
former outperforming previous models, as it was able to extract both short and
long distance relationships, as well as build global representations using the
global tokens. Maximum sequence length used was 32,256.

Figure 2.9: Dilated Attention Pattern used by Longformer, as presented by Beltagy et al. [9]. The
main diagonal represents each token attending to itself, while the off-diagonal coloured elements
represent other non-zero values. In this case, dilution dh = 1.
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Big Bird
Zaheer et al. [8] introduced Big Bird, another model that relies on the attention
that uses a (non-dilated) sliding window approach and attendance to global to-
kens. Additionally, Big Bird attention also attends to r random tokens. The at-
tention pattern is presented in Figure 2.10. In the experiments by Zaheer et al.
[8], Big Bird outperformed Longformer architecture, however, we note that it has
been evaluated on a much lower maximum sequence length of 4096.

Figure 2.10: Attention patterns of Big Bird. Sliding Window Attention (blue), Global Attention
(green) and random attention (yellow). As presented by Zaheer et al. [8].

Other novel architectures
We also note the ongoing effort in developing novel long document Transformers
architectures. Reformer [48] and Linformer [49] propose improvements to the
self-attention mechanism that decrease its computational complexity from O(n2)
to O(nlogn) and O(n) respectively. Zhu et al. [50] propose Long-Short Trans-
former that includes short-term attention coupled with dynamic projection to
long-range attention that models long-term dependencies. Scaling Transfomers
[51] levarage sparsity to improve the speed of long text Transformers, while Hour-
glass [52] propose a hierarchy of differently-sized Transformer layers to model
long documents.

We choose to focus on Big Bird and Longformer due to their widespread use and
availability in the HuggingFace library [47].

2.3 Explainability

Explainability techniques can be broadly divided into two groups: white-box and
black-box approaches [53]. The former involves modification to the model archi-
tecture in order for it to provide explanations of the decisions [21, 54, 55]. The
latter operate on already trained models and attempt to learn the decision bound-
ary or explore internals of the model [56, 57, 58].

Since the release of the first attention models [32], attention was explored as
a potential method to understand and explain which parts of input the model
focuses on [21, 53]. In particular, Thorne et al. [53] found that black-box ap-
proaches, such as LIME [56], perform better than white-box approaches, but also
bring a 1000× increase in computation for biLSTMs evaluated on the task of Nat-
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Figure 2.11: The 3 independent stages of the FRESH architecture: (1) the support model (supp),
(2) the rationale extractor (ext), (3) the classifier/predictor (pred). We can observe how in (1) a
model is used to classify a text, obtain importance scores and discretise them. (2) then selects a
snippet containing only a subset of tokens, which become faithful explanation for the prediction
in (3). As presented by Jain et al. [19].

ural Language Inference.

2.3.1 Attention (not) as Explanation

With the release of Transformers, there have been efforts to understand if the
multi-head self-attention layers already provide satisfactory explanations. Clark
et al. [6] qualitatively evaluated the attention heads and found them to learn how
to attend to certain linguistic features. Bujel et al. [15] showed that some of the
top self-attention layers learn to attend to correct tokens, but also that the adapta-
tion of a soft attention layer proposed by Rei and Søgaard [21] still outperforms
the self-attention layers on the task of zero-shot sequence labelling. Atanasova
et al. [14] explored various black-box explainability techniques and found that a
gradient-based approach InputXGradient [59] usually performs best.

Rudin [60] made an argument against black-box explainability approaches in
favour of designing interpretable models. They introduced the key concept of
faithfulness, a property of explanations that indicates they are true to the system’s
computation. DeYoung et al. [20] defined plausible explanations as explanations
agreeable to human annotators and argued that an explainable system should
provide faithful and plausible explanations. Following the work, there have been
a number of efforts to obtain both faithful and plausible explanations of Trans-
formers using attention [61, 62].

The notion that attention is indeed an explanation was challenged by Jain and
Wallace [63], who showed only weak correlation between attention weights and
the gradient-based explanations or model outputs. In response, Wiegreffe and
Pinter [64] showed that some models may have non-unique explanations and
that attention can serve as explanation as long as it is plausible.

2.3.2 Faithful Rationale Extraction & Plausibility (FRESH)

Jain et al. [19] proposed FRESH (Faithful Rationale Extraction from Saliency
tHresholding) model that provides faithful rationale ’by construction’, while also
allowing for the evaluation of plausibility against human annotators.
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This is achieved by having 3 independent components: the support model, the
rationale extractor and the classifier. The support model (e.g. BERT+LIME) is
trained to predict the target classification label from the whole input text and
provide token-level importance scores that are then discretised. The rationale
extractor is a model trained to extract a subset of tokens as rationale, based on
the discrete importance scores. The classifier (e.g. another BERT) is trained only
on the tokens provided by the rationale extractor. These 3 stages are illustrated
in Figure 2.11. In our work, we focus on the support model and the rationale
extractor components.

FRESH architecture uses BERT as the support model. Averaged self-attention
scores from the [CLS] token to other tokens in the penultimate layer are used as
token importance scores. In order to discretise the rationales, a Top-k heuristic
is used, which selects k% of tokens with the highest scores, where k is set the
percentage of annotations in the development dataset.

It is important to note that the extracted rationales are not necessarily faithful
to the predictions of the support model, but they are faithful to predictions made
by the classifier, as these are the only tokens the model sees. This setup allows
for the quantitative evaluation of plausability of rationales against human anno-
tators, similar to the work of Fomicheva et al. [65] in evaluating the plausibility
of extracted rationale from Translation Error Prediction models.

Jain et al. [19] define the obtained rationales as explainability and we follow their
definition of faithful and plausible rationales being equivalent to explainability.
In particular, this work focuses on designing support models and rationale ex-
tractors for long documents that provide plausible rationales that could then be
quantitatively evaluated against human annotations.

2.3.3 Sequence labellers as rationale extractors

We highlight that Rei and Søgaard [21] evaluated soft attention models in the
context of zero-shot sequence labelling, without investigating the architecture as
a rationale extractor. However, we note that Pruthi et al. [66] treats the problem
of plausible rationale extraction for sentiment analysis as a sequence labelling
task that is evaluated using the human annotations on the token-level. Similarly,
Aly et al. [67] approached the problem of extracting rationale from fact verifica-
tion systems as a sequence labelling task. We therefore assume that the 2 tasks
of sequence labelling and rationale extraction are equivalent. That indicates that
measuring the plausibility of the extracted rationale is synonymous to evaluating
the sequence labelling performance against the human annotations.

2.4 Ethical Discussion

In our experiments, we use large pre-trained Transformers language models.
It has been shown that training one of those models can emit approximately
626,000lbs of carbon dioxide, nearly 5× as much as an average American car dur-
ing its lifetime [68]. However, we note that we do not perform any pre-training
ourselves and use a downloadable pre-trained version of those models that is

21



shared by the whole NLP community. The fine-tuning of these pre-trained mod-
els does not require anywhere near as much energy. By exploring how to effec-
tively use already existing standard-size Transformers, we also aim to find an
architecture that does not require custom pre-training in order to be applied to
long documents, thus aiming to reduce carbon emissions from pre-training the
long document Transformers.

We acknowledge the debate about potential misuse of large language models that
ensued following the publication of GPT-2. These models have been shown to
have capacity to generate biased and abusive texts, therefore only a simplified
version of them was released [69]. As the models that our research is based on
are already available online via the HuggingFace library [47] and we focus on
document classification rather than generation, we do not foresee any additional
risks in using those or extending them to large documents.

Lastly, we note that the explanations our models provide are not unique or nec-
essarily faithful to the model’s actual behaviour. This might cause legal disputes
following the ’Right To Explanation’ clause included in General Data Protection
Regulation (GDPR) [70]. We note the work of Wachter et al. [71], where they
claim that GDPR only mandates the right to a meaningful information about the
logic involved and the significance in the automated decision making. They ar-
gue that the clause is equivalent to providing a general system description (e.g.
a Transformer document classifier), rather than providing specific explanation
to the individual decision that was made. Given this reasoning, we believe that
our system is not at risk of legal challenges related to the GDPR, as it does not
provide an ’explanation’ in the context of the said regulation.
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Chapter 3

Soft Attention Architectures

In this chapter, we aim to adapt the Weighted Soft Attention architecture pro-
posed by Bujel et al. [15] to long text binary classifiers. We propose a family of
soft attention architectures that are supervised on the document level and pro-
vide zero-shot token-level scores ãi without any token-level annotations. These
token scores could then serve as rationale for the task of document classification.
To the best of our knowledge, this is a first attempt to evaluate soft attention
architectures in combination with long text Transfomers at the document-level.
We also propose a novel Compositional Soft Attention system that sequentially
applies a standard Transformer to individual sentences to obtain token-level con-
textual embeddings which are then composed by a soft attention layer to build
document-level representation.

The main contributions in this chapter are as follows:

• We adapt the Weighted Soft Attention from token-level rationale extraction
for sentence classifiers to long text classification.

• We introduce a novel Compositional Soft Attention system that composes
token-level representations of isolated sentences to build document repre-
sentations.

• We evaluate the soft attention architectures in combination with long text
Transformers on both the document and token-level.

• We propose several modifications to the Weighted Soft Attention model to
allow for more supervision signal on the token-level and improve the quality
of the extracted rationale.
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Figure 3.1: Weighted Soft Attention architecture for long text classification. ti and Ti indicate
flattened input tokens and token contextual embeddings respectively. All other variables are as
described in Section 3.1. [CLS] and [EOS] token outputs are ignored.

3.1 Weighted Soft Attention

Rei and Søgaard [21] introduced a soft attention architecture for biLSTM sen-
tence classifiers, which Bujel et al. [15] adapted to Transformers by introducing
Weighted Soft Attention (§2.2.8). To the best of our knowledge, this system had
not been evaluated before on the document-level. We therefore decided to imple-
ment it as our baseline.

We follow the work of Bujel et al. [15]. In order to adapt this sentence classifier
to perform document classification, the input document is flattened to a single
sequence of tokens. We use the Transformer output tokens Ti as input for the soft
attention layer:

ei = tanh(WeTi + be) (3.1)
ãi = σ (ẽi) ẽi = Wẽei + bẽ (3.2)

where ei is a vector, ẽi is a single scalar value and ãi is the token attention score.
We can convert these scores to normalised attention weights ai and in combina-
tion with token contextual embeddings build a document representation c that is
used to predict a document-level label y:

ai =
ãi

β∑N
j=1 ãj

β
c =

N∑
i=1

aiTi (3.3)
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d = tanh(Wdc+ bd) y = σ (Wyd + by) (3.4)

For each document j, we obtain document-level predictions y(j) ∈ [0,1] and the
token-level scores 0 ≤ ãi ≤ 1. These token-level scores can be converted to pre-
dictions using a natural threshold of 0.50. The token-level predictions can be
interepreted as token-level rationale (§2.3.3). We evaluate the plausability of the
extracted rationale the against the human annotations. Figure 3.1 represents the
architecture.

We recall that the soft attention architecture, uses the following loss functions:

L1 =
∑
j

(y(j) − ỹ(j))2 (3.5)

L2 =
∑
j

(min(ãi)− 0)2 (3.6)

L3 =
∑
j

(max(ãi)− ỹ(j))2 (3.7)

L = L1 +γ(L2 +L3) (3.8)

where L1 optimises the document-level performance, L2 ensures the minimum
attention score is close to 0 and L3 optimises the maximum attention score to be
close to the document label ỹ(j). γ is a hyperparameter that sets the importance
of the token-level objectives.

3.2 Regularised Soft Attention

In our initial experiments, we found that the Weighted Soft Attention architec-
ture does not work well for long documents (Figure 6.1). Additionally, we dis-
covered that most token scores stay close to 1, even for negative documents. We
suspect that using a loss function that only selects token scores with the max-
imum or minimum values causes the tokens to not receive enough supervision
signal, as only 2 tokens are optimised in each step. This was not an issue for sen-
tence classifiers due to the smaller number of tokens in each sample.

In order to increase the supervision signal, we propose a Regularised Soft At-
tention architecture that modifies the loss function L (Eq. 3.8) to include a new
term Lreg that acts as an L2 regularisation method [72] on the token scores:

Lreg =
∑
j

∑
i

ãi
2 (3.9)

L = L1 +γ(L2 +L3) +γregLreg (3.10)

where j is a document index, i is the index of a token in the j-th document, γreg
is a hyperparameter to control the weight of the regularisation signal. L1, L2, L3
are defined as before in Eq. 3.5-3.7.
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We hope that this method encourages most tokens to stay close to 0 instead of
1 and provides an additional supervision signal to all tokens, instead of optimis-
ing the maximum and minimum values. We acknowledge that Lreg essentially
optimises all values to be 0, but we hope that by finding a balance between γ
and γreg weights, the system learns to extract correct tokens, while keeping most
token scores close to 0.

3.3 Mean Soft Attention

We recognise that the main limitation of the Regularised Soft Attention is the
assumption that most tokens should be close to 0. The regularisation method al-
lows for one token per optimisation step to be optimised towards the same label
as the document, while most will get supervised towards 0. This means that there
might still be little signal for all of the positive tokens to be be optimised towards
1 in positive documents.

As an alternative, we propose Mean Soft Attention, which replaces the regu-
larisation loss Lreg with a mean loss Lmean that optimises the mean of the token
scores to be close to the document label:

Lmean =
∑
j

( 1
|ã|

∑
i

ãi
)
− ỹ(j) (3.11)

L = L1 +γ(L2 +L3) +γmeanLmean (3.12)

where γmean is a hyperparameter.

We note that this approach is equivalent to supervising each token individually
towards the document label. While not ideal, this is preferable to the Regularised
Soft Attention, which imposes an arbitrary condition that most tokens need to be
close to 0. Unlike Weighted Soft Attention, the Mean Soft Attention also allows
for all tokens to receive some supervision signal in each optimisation step. We
hope this encourages various token scores, as opposed to the case of Weighted
Soft Attention where all scores are close to 1.

3.4 Top-k Soft Attention

Regularised Soft Attention and Mean Soft Attention attempt to increase the su-
pervision signal available to individual token scores. These architectures propose
supervision of all token scores with the same value, which might encourage ho-
mogeneity across the token scores. The human annotations on the other hand are
binary, with more negative than positive tokens (Table 4.2). Therefore, we sug-
gest that a loss function encouraging a distribution of a portion of token scores
towards the document label would perform better.

We propose Top-k Bottom-k Soft Attention, an approach where only k% of to-
kens with the highest scores are optimised to the document label, while the low-
est k% tokens are supervised with a 0, as pictured in Figure 3.2(a). This is essen-
tially an extended version of the original Weighted Soft Attention that allows for
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(a) Top-k Bottom-k method. φbottom contains bottom k% of tokens, while φtop contains top k% of tokens. All of the not selected
tokens do not receive any supervision.

(b) Top-k Rest-0 method. φtop contains top k% of tokens, while φrest contains the remaining 100 − k% of tokens. All tokens
receive supervision.

Figure 3.2: Comparison of Top-k Bottom-k and Top-k Rest-k Soft Attention methods. Assuming
ã is sorted in increasing order. Assuming kval = ⌊k%×n⌋.

an increased supervision signal instead of supervising the minimum and maxi-
mum token scores only.

We define two subsets φtop and φbottom, which contain the top k% and bottom
k% of token attention scores ãi respectively. We then define the loss function
Ltop/bottom with respect to those subsets:

Ltop/bottom =
∑
j

1
|φtop|

∑
atop∈φtop

(atop)− ỹ(j) +
1

|φbottom|

∑
abottom∈φbottom

abottom (3.13)

L = L1 +γ(L2 +L3) +γtop/bottomLtop/bottom (3.14)

where γtop/bottom is a hyperparameter and k is a hyperparameter that needs to be
tuned, or can be inferred based on the percentage of annotations in the dataset
[19].

We note that the Top-k Bottom-k Soft Attention architecture is still prone to little
supervision signal being available to most tokens in documents where the pro-
portion of positive tokens is low. Therefore, we introduce a variation of Top-k
Soft Attention that instead supervises top k% of tokens to be the same as the
document label, while supervising the remaining 100% − k% token scores to be
0. We call this variant Top-k Rest-0, with φtop and φrest which contain the top
k% and the remaining 1 − k% of token attention scores ãi respectively, so that
ã = φtop +φrest. We define its loss function Ltop/rest as follows:

Ltop/rest =
∑
j

1
|φtop|

∑
atop∈φtop

(atop)− ỹ(j) +
1
|φrest |

∑
arest∈φrest

arest (3.15)

L = L1 +γ(L2 +L3) +γtop/restLtop/rest (3.16)

27



where γtop/rest is a hyperparameter.

We believe this setup ensures that all of the tokens receive some supervision sig-
nal, while still ensuring heterogeneity of the token scores. The differences and
similarities in both Top-k approaches are shown in Figure 3.2. In our experi-
ments, we use Top-k Rest-0 Soft Attention architecture, as we found that for each
dataset ≈10% of all tokens are marked as evidence, which would leave to 80% of
tokens not receiving supervision signal in the Top-k Bottom-k system.

3.5 Compositional Soft Attention

3.5.1 Motivation

In order for the soft attention architectures to support long texts, we had to adapt
them to encourage the propagation of the token-level supervision signal to more
tokens. Methods known to perform well for Transformer sentence classifiers did
not work well for document classifiers based on long text Transformers.

These long text models additionally require large GPUs in order to be pre-trained,
with the original Longformer using 48GB Nvidia RTX8000 GPUs [9], which can
be prohibitively expensive for many research groups1. In our experiments, we
encountered issues with fine-tuning the Longformer model on the 11GB Nvidia
RTX2080Ti and had to use to a 16GB Nvidia Tesla T4, on which we only man-
aged to fine-tune with a batch size of 1. Additionally, the HuggingFace library
does not currently contain the dilated attention version of the Longformer due to
the requirements for a custom CUDA kernel. For BigBird, we did not manage to
fit the model and data on the 16GB Tesla T4.

The long text Transformers also require more time to be trained and fine-tuned,
with the Longformer taking up to 1 day, compared with BERT taking at most
a couple of hours [2]. It has been reported that training standard Transformers
is not sustainable, given that it emits approximately 626,000lbs of carbon diox-
ide2 [68]. The longer training times and larger memory requirements of long text
Transformers suggest a substantial increase in emissions of the training process
for those models.

Therefore, it would be preferable to re-use the already pre-trained standard Trans-
formers (e.g. BERT). As our core motivation, we would like to find an architecture
that can utilise the already widely-used standard Transformers and exploit their
sentence-level performance to represent long documents.

Zhang et al. [13] introduced HIBERT (§2.2.9), one of the first successful ap-
proaches to use BERT to build representations of documents beyond BERT’s stan-
dard maximum sequence length. The core of the proposed architecture was the
composition sentence representations obtained from the output [EOS] tokens of
BERT. While this approach performed worse than Longformer, it required less
GPU memory and outperformed BERT. In order to combine the sentence repre-
sentations, HIBERT used a custom Transformer layer that did not allow to obtain

1USD10,000 per GPU at the time of their release
2Nearly 5× as much as an average American car during its lifetime
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Figure 3.3: Compositional Soft Attention architecture. A Transformer is sequentially applied to
each sentence individually to obtain the contextual token embeddings. Then, a soft attention
layer is used to compose the token representations across the sentences to build document repre-
sentation.

any token-level representations other than the self-attention weights.

We believe that the complexity and scale of standard Transformers such as BERT
or RoBERTa is sufficient to represent long documents beyond Transformers’ stan-
dard maximum sequence length. We further claim that in order to represent long
documents, it should not be required to attend to individual tokens across the
whole documents using multiple layers and heads of attention. We hope to find a
system that is able to efficiently compose these individual token representations
with a single soft attention layer.

In this chapter, we propose a Compositional Soft Attention architecture, which
allows for the composition of token contextual embeddings obtained from a Trans-
former model applied to each sentence in the document individually to produce
a document-level representation.

We hope that this novel architecture can reduce the computational resource con-
sumption of long text classification models, while also maintaining similar per-
formance. We further aim to show that in some scenarios, models based on
standard Transformers can perform as well as larger and slower long document
Transformers.

3.5.2 Architecture

We introduce Compositional Soft Attention architecture that applies a soft at-
tention layer to compose contextual token embeddings of each sentence to build
a document-level representation.
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We assume a document docj that consists of a sequence of m sentences docj ,
where each sentence sj,i is a sequence of tokens ti,k:

docj = [sj,1, ..., sj,i , ..., sj,m] (3.17)

sj,i = [ti,1, ..., ti,k , ..., ti,n] (3.18)

We first use a standard length Transformer to build token contextual embed-
dings Tj,i separately for each sentence.. These token embeddings are packed to
create a token-level document representation Tj = [Tj,1,1, ...,Tj,m,n], with outputs
for special tokens [CLS] and [EOS] omitted. We then provide this document rep-
resentation Tj as input to a soft attention layer, which composes tokens across
sentences to obtain a document-level representation and the prediction y(j). We
additionally obtain token-level attention scores ãi , which we use to extract ratio-
nale for the document classification task. The algorithm is visualised in Figure
3.3 and its pseudocode is in Algorithm 1.

Algorithm 1 Compositional Soft Attention

for sentence sj,i in document docj do
Tj,i ← Transformer(sj,i)

end for
Tj ← [Tj,1, ...,Tj,n]
ỹ(j), ã = SoftAttention(Tj )

We note that the proposed Compositional Soft Attention architecture can sup-
port any variant of the soft attention presented in Chapter 3. Any Transformer
can be used to obtain the contextual embeddings. This architecture can be di-
rectly fine-tuned on the task of document classification without the need for any
pre-training. We emphasise that during training, both the soft attention and the
Transformer components are optimised, similar to previous soft attention archi-
tectures.

We hope that using the sentence-level Transformer permits the exploitation of
intra-sentence dependencies, while the soft attention layer models and composes
the inter-sentence relationships in order to build a document representation. We
suspect this approach will exhibit lower runtimes than long text Transformers
that contain multiple layers of self-attention over the whole document.

3.5.3 Batching

As part of the Compositional Soft Attention model, there are 2 distinct types of
batching we can perform:

1. Sentence-level batching: It is possible and preferable to batch multiple sen-
tences together as input to the standard Transformer. That permits us to
benefit from the efficiency of GPUs and reduce the runtime by avoiding the
application of Transformer sequentially to individual sentences. We call the
size of this batch Compositional Sentence Batch Size.

2. Document-level batching: We can additionally batch multiple documents to-
gether. In this case, we collect the contextual token embeddings obtained
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from Transformer for multiple documents. Once all of the contextual em-
beddings are collected, we apply the soft attention layer to all documents at
once, calculate the loss and propagate it backwards. We call this Composi-
tional Document Batch Size.

For sentence-level batching, we pad the input tokens to the size of the longest
sentence in the batch. For document-level batching, we pad contextual embed-
dings with vectors of zero to the length of the document with most tokens, before
providing as input to the soft attention layer. This padding has no impact on the
soft attention model, as it uses a masking method where attention scores ãi are
non-zero only for non-padded positions present in the original input.

During our initial experiments, we found that this batching system improved
the runtimes of the Compositional Soft Attention by aproximately 10%.
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Chapter 4

Datasets

In this chapter, we introduce the requirements posed for the datasets to be used
for long document classification and rationale extraction. We overview the par-
ticular tasks we decided to focus on, together with the suitable datasets. We fur-
ther provide details of the necessary preprocessing steps taken in order to bring
all datasets to a common format.

4.1 Requirements

4.1.1 Document Classification & Rationale Extraction

The proposed architectures (§3) are designed as binary document classifiers that
provide token-level scores that can be interpreted as model rationales. In order to
quantitatively evaluate the performance on both the token and document- level,
we require document classification datasets that contain long documents of text
with binary token-level annotations that are human rationales for the document
label.

Following the report by Byrd and Lipton [73] on slower convergence of BERT
training for imbalanced datasets, we prefer datasets with balanced document la-
bel classes. In order to capture the performance difference between standard
and long text Transformers, we also need some proportion of the documents to
be longer than 512 tokens, the standard Transformer maximum token length.
Datasets satisfying those conditions are scarce, due to the costs of obtaining hu-
man annotations for long documents.

4.2 Tasks

4.2.1 Grammatical Error Detection

We evaluate our architectures on 2 distinct Grammatical Error Detection (GED)
datasets, which identify tokens that are grammatically incorrect, while also con-
taining a document-level label indicating the level of language proficiency of the
learner.

Write & Improve [74] dataset was released as part of the BEA 20191 shared
task [75]. It contains English essays written by learners in response to various
prompts. It was manually annotated on the token-level with grammatical errors

1https://www.cl.cam.ac.uk/research/nl/bea2019st/
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(a) An example of a BEA 2019 sentence from an essay with proficiency level A (beginner). Numerous grammatical
errors highlighted.

(b) An example of a BEA 2019 sentence from an essay with a proficiency level C (advanced).
Contains one small grammatical error of a missing the "my" pronoun.

Figure 4.1: Example sentences from the BEA 2019 dataset. The first row contains the individual
words. The second row shows the human annotations, with 1 representing a grammatical error
and 0 representing no error. We additionally highlight the words with grammatical errors.

and contains a document-level label to indicate the CEFR proficiency score of
the author: A (beginner), B (intermediate), C (advanced). As the publicly avail-
able dataset does not contain a test split, we use the development dataset as test
and use 10% of the training data for development. In order to perform binary
document classification, we select documents with the A proficiency score as the
positive class and with the proficiency score C as the negative class. Example
excerpts from positive and negative documents are presented in Figure 4.1.

The First Certificate in English dataset2 (FCE) [76] contains essays written by
non-native English learners. Each student wrote 2 essays in response to 2 differ-
ent prompts and was allocated an overall mark by the examiners. We concatenate
the 2 essays into a single data point in order to increase the average sequence
length. We convert the data into a balanced binary classification dataset with the
essays of lowest and highest marks grouped in separate classes. This is done by
thresholding on learner scores si , with 0 ≤ si ≤ 26 for the positive (beginner) class
and 30 ≤ si ≤ 40 for the negative (advanced) class. We decided to omit the essays
with scores 27 ≤ si ≤ 29 to mimic the omission of the proficiency level B (inter-
mediate) for the BEA 2019 dataset. We use the train/dev/test splits released by
Rei and Yannakoudakis [77].

We suspect that for both BEA 2019 and FCE, the proportion of grammatical er-
rors in human annotations for the beginner learners is higher than for the ad-
vanced ones. We verify the assumption in Table 4.1, where we find it to be the
case. This allows us to assume that we should encourage the models to attend to
more tokens for documents with positive (beginner) label.

FCE BEA 2019
Negative Class (Advanced) 9% 5%
Positive Class (Beginner) 17% 20%

Table 4.1: Proportion of evidence tokens for the development datasets of BEA 2019 and FCE,
reported separately for the negative and positive document labels.
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(a) An excerpt from a positive review, with the positive tokens highlighted.

(b) An excerpt from a negative review, without any negative tokens annotated, because we want to avoid
the model to learn to find negative evidence when classifying positive movie reviews.

Figure 4.2: Example excerpts from the IMDB-Pos dataset that contains evidence for all positive
reviews, but no evidence for negative reviews. The first row in each subfigure represents the
review sentence, with the second row representing annotations, where 1 determines the evidence
words. The evidence words are also highlighted .

4.2.2 Sentiment Analysis

We also evaluate the systems on the Sentiment Analysis IMDB3 dataset, which
contains IMDB movie reviews collected by Zaidan et al. [78]. The reviews are
labelled as positive and negative and were manually annotated on the token-
level with rationale for the document-level label. We further split the dataset
into IMDB-Pos and IMDB-Neg, respectively containing token-level annotations
for the positive and negative reviews only. This is to allow the model to learn
to attend to either positive or negative tokens separately. Example excerpts of a
positive and negative movie reviews from IMDB-Pos are presented in Figure 4.2.
We use the dev/train/test splits published by Pruthi et al. [66].

4.3 Statistics

We present detailed statistics for all 4 datasets in Table 4.2. We note the low pro-
portion of texts over 512 words for FCE and BEA 2019, which indicates standard
Transformers would also perform well for those datasets. We recognise that the
word count is not necessarily equal to the post-tokenisation token count, but de-
cide that reporting word count is sufficient to illustrate general dataset trends.
While we acknowledge that there is little benefit to using long text transformers
for the GED datasets, we decide to treat them as benchmarks that highlight the
performance differences between standard and long text Transformers. We were
not able to obtain any better suited datasets.

FCE BEA 2019 IMDB-Pos IMDB-Neg
Number of train samples 722 1120 1200 1200
Number of dev samples 51 280 299 299
Number of test samples 66 200 300 300
Average text length (words) 441 213 686 686
Maximum text length (words) 725 655 1935 1935
% of texts > 512 words 16% 2% 73% 73%
% positive samples 49% 46% 50% 50%
% negative samples 51% 54% 50% 50%
% evidence 13% 9% 8% 8%

Table 4.2: Statistics for the datasets used. All measured on the development datasets.

2https://ilexir.co.uk/datasets/index.html
3https://github.com/danishpruthi/evidence-extraction/tree/main/datasets
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4.4 Preprocessing

Each dataset is available in a different data format, with FCE and BEA 2019 using
JavaScript Object Notation (JSON) [79] and IMDB using plaintext TXT files. We
therefore decided to introduce our custom schema and convert all of the datasets
to it. The schema is based on the JSON file format, where all documents are
stored in an array as Document JSON objects (Listing 4.1).

Parts of the data processing code are based on the preprocessing performed by
Rei and Yannakoudakis [77] for FCE & BEA 2019 and by Pruthi et al. [66] for
IMDB.

Listing 4.1: The schema to represent Document objects in JSON. It is used to store individual
input text. "id" represents the original dataset document id, while "document_label" indicates the
document class. Tokens are represented as "tokens", a nested list of strings, where each list of
strings is a sentence. "token_labels" similarly contains a numerical label for each token.

1 {

2 "id": String,

3 "document_label": Integer,

4 "tokens": [[String]],

5 "token_labels": [[Integer]]

6 }
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Chapter 5

Experimental Setup

In this chapter, we introduce our experimental setup, together with the baselines
we use to compare the performance of the architectures introduced.

5.1 Baselines

We use RoBERTa-base [3] and Longformer-base [9] as document classification
baselines. For RoBERTa, we use the default 512 maximum sequence length, while
for Longformer we set 4096 tokens as the maximum length. Each batch is padded
with [PAD] tokens to the length of the longest document in the batch. A text clas-
sification setup for Transformers is described in §2.2.7.

Longformer architecture does not include the dilated self-attention, as it is cur-
rently not supported by HuggingFace and requires a custom CUDA kernel1. We
note that the performance differences between the dilated and non-dilated self-
attention methods for the original Longformer were minimal [9] and do not ex-
pect the omission to have large impact on the final results. We use the local
self-attention with the default window size of 512 and also define a global self-
attention to the [CLS] token, as that token is used for the document label predic-
tion. We attempted to use BigBird [8], but did not manage to fit it on the 16GB
Nvidia Tesla T4.

On the token-level, we use the FRESH Top-k support model [19] (§2.3.2) as our
baseline for rationale extraction, with Longformer as the support model. This ar-
chitecture was previously evaluated on the larger version of the IMDB dataset by
Pruthi et al. [66], but it is the first time it is evaluated on the FCE and BEA2019
datasets. We follow the previous work and set k% to be equal to the average per-
centage of evidence in the dataset, rounded to the nearest 10%. The percentage
of evidence in the datasets was reported in Table 4.2 and values of k are pre-
sented in Table 5.1. We extract the top k% of token scores as rationale, with the
rest set to 0, where token scores are the mean attention values from each token
to the [CLS] token in the last self-attention layer, averaged across different self-
attention heads.

We additionally implement a token-level random baseline, where token-level
scores are sampled from a standard uniform distribution and tokens with scores

1https://huggingface.co/docs/transformers/model_doc/longformer#transformers.LongformerModel
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FCE BEA 2019 IMDB-Pos IMDB-Neg
k% 10% 10% 10% 10%

Table 5.1: Percentage of all tokens in the datasets that are marked as evidence. Value of k is
chosen by rounding to the nearest 10%. We observe that for all datasets k = 10%, which shows
that the percentage of tokens is similar across all datasets.

≥ 1− k% are selected as positive. It provides us with means of comparison of the
quality of the token-level predictions to a random lower bound.

5.2 Implementation

We implement all architectures in Python 3.9 [80], pyTorch 1.11 [81]. We use the
pre-trained versions of RoBERTa-base and Longformer-base available in Hug-
gingFace 4.18 [47]. Some parts of our soft attention implementation are based on
the work of Rei and Søgaard [21] and Bujel et al. [15], while the data collation
process follows the HuggingFace token classification guide2.

All models are evaluated on the 11GB Nvidia RTX2080Ti and 16GB Nvidia Tesla
T4. All runtimes are measured on the Nvidia Tesla T4.

5.3 Evaluation Metrics

We evaluate the document classification performance using Accuracy (Doc Acc)
and the F-measure (Doc F1). On the token-level rationale extraction task, we
report Accuracy (T ok Acc), Precision (T ok P ), Recall (T ok R) and the F-measure
(T ok F1), evaluated against the human annotations. We use the following defini-
tions of the metrics:

Acc =
1
n

∑
j

I(y(j) = ỹ(j)) (5.1)

P =

∑
j I(y(j) = ỹ(j) ∧ y(j) = 1)∑

j I(ỹ(j) = 1)
R =

∑
j I(y(j) = ỹ(j) ∧ y(j) = 1)∑

j I(y(j) = 1)
(5.2)

F1 = 2
P ×R
P +R

(5.3)

where I is the indicator function, n is the number of samples, y(j) are the gold
labels and ỹ(j) are the predicted labels.

For the soft attention architecture, we use a natural classification boundary of
0.50 on the token attention scores ãi . For the FRESH Top-k Approach, we simply
select the k% of tokens with highest scores as positive.

We perform significance testing using a two-tailed paired t-test and a = 0.05. This
allows us to assess the statistical significance of the difference in performance.

2https://github.com/huggingface/transformers/blob/main/examples/pytorch/token-classification/run_
ner.py
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5.3.1 Mean Average Precision

We also evaluate the extracted rationale using the Mean Average Precision (MAP ).
MAP is the mean of Average Precision (AP ) achieved for each document, where
AP is equivalent to the area under the precision-recall curve:

APj =
nj∑
i

(Ri −Ri−1)Pi (5.4)

MAP =
1
n

∑
j

APj (5.5)

where APj , nj is the average precision and the number of tokens for document j
respectively. Pi and Ri are the precision and recall calculated when token i is se-
lected as the threshold. Average Precision is equivalent to a mean precision value
weighted by the increase in recall at each step.

This metric allows us to assess the quality of the token scores irrespective of the
chosen threshold or value of k. MAP treats the rationale extraction task as a
ranking problem and measures whether the higher scores correspond to positive
gold labels rather than the negative ones. For that reason, we evaluate using the
pre-thresholding token scores ãi that allow us to investigate how well the model
learns the ranking of tokens. A high MAP score but low F1 metric might indicate
issues with the chosen classification threshold.

5.4 Training Procedure

Following Mosbach et al. [82], we train all models for 20 epochs, with checkpoint-
ing after each epoch. We perform early stopping after the loss function has not
improved on the development dataset for 5 epochs and a minimum of 10 epochs
elapsed, with the best performing checkpoint selected. This setup allows us to
ensure that we select the best performing models that did not overfit.

We use the standard Transformers finetuning learning rate lr = 1e − 5, with a 6%
linear warmup and a AdamW optimiser [83]. We use an effective batch size of 32,
with gradient accumulation and real batch size of 1 for Longformer and Compo-
sitional Soft Attention (document-level batch size) and 8 for RoBERTa. We find
optimal values of k for Top-k Soft Attention and of γ for all soft attention mod-
els with a hyperparameter search (§6.1). For soft attention architectures, we use
β = 2. All other hyperparameters are reported in Appendix A.
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Chapter 6

Evaluation & Discussion

6.1 Development Experiments

In this section, we describe the hyperparameter tuning and other experiments we
have performed to initially assess each architecture. Unlike for the final evalu-
ation, we ran the experiments for a single random seed. All of the experiments
were performed on the development dataset only.

We also did not perform hyperparameter search on the Longformer-based sys-
tems due to the extensive runtimes of more than 5 hours and limited compu-
tational resources. We therefore use the same hyperparamaters across both the
RoBERTa and Longformer based models and leave further hyperparameter tun-
ing to the follow-up work.

We use these development dataset experiments as an opportunity to validate
some of our predictions with relation to the performance of various soft atten-
tion architectures. That allowed us to find the best performing ones early on and
reduce the number of architectures in the final evaluation and analysis.

6.1.1 Soft Attention

Weighted Soft Attention
We first perform the hyperparameter tuning for the parameter γ in the standard
soft attention loss function L (Eq. 2.18). This parameter γ represents the impor-
tance given to the token-level objectives of optimising the minimum token scores
ãi to 0 and the maximum token scores ãi towards the document label. We note
that in the previous work for sentence classifiers, Rei and Søgaard [21] found
γ = 0.1 to work best for biLSTMs and Bujel et al. [15] found γ = 1.0 to be per-
forming best for Transformers. We suspect that the value might be different for
document classifiers due to the increased length of the input sequences. We ex-
plore the behaviour of the model for γ ∈ [0.1,1.0,10,100].

The results are presented in Table 6.1. We note that the results are stable for var-
ious values of γ , with the no substantial differences on the token-level. On the
document-level, the performance varies, which we suspect is because the model
chooses to first optimise the token-level performance and is unable to improve
the document-level predictions further. We choose γ = 10 as the optimal value
mainly due to the stable document and token performance across all datasets.
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FCE BEA 2019 IMDB-Pos IMDB-Neg
γ Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
0.1 87.50 22.00 95.45 17.47 92.76 6.43 90.66 7.07
1.0 80.95 22.10 94.59 17.26 92.36 6.42 90.91 7.07
10 86.36 22.07 96.62 17.27 91.56 6.43 91.03 7.09
100 86.36 22.01 91.91 17.20 93.25 6.44 88.97 7.06

Table 6.1: Hyperparameter tuning of the token-level loss importance γ for Weighted Soft Atten-
tion with RoBERTa. All results are for the development datasets. We find no clear best performing
value and choose γ = 10.

Regularised Soft Attention
We also explored different values of the weight γreg of Lreg (Eq. 3.9) for the Reg-
ularised Soft Attention Architecture. The aim of the added regularisation was to
increase the supervision signal available to each token, while also encouraging a
small number of tokens to be close to the document label. For that reason, we
explored small values γreg ∈ [0.1,1.0] for γ = 10, following the experiments for
the Weighted Soft Attention.

FCE BEA 2019 IMDB-Pos IMDB-Neg
γreg Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
0.0 86.36 22.07 96.62 17.27 91.56 6.43 91.03 7.09
0.1 77.27 21.79 95.00 13.21 90.45 10.40 89.35 15.43
1.0 80.95 7.79 94.43 13.05 90.10 7.85 90.68 12.16

Table 6.2: Hyperparameter tuning of the regularisation token-level loss importance γreg for Reg-
ularised Soft Attention with RoBERTa. All results are for the development datasets. We find that
regularisation does not improve the results substantially and decided to pick γreg = 0.0 (no regu-
larisation). All experiments are for γ = 10.

Figure 6.1: Token scores for a sentence in the FCE dataset for a beginner learner. W-SA represents
Weighted Soft Attention, R-SA (0.1) and R-SA (1.0) represent Regularised Soft Attention with
γreg = 0.1 and γreg = 1.0 respectively. orange represents human annotations, red represents
false positive token-level predictions and green represents true positives. All models made the
correct prediction that this learner is a beginner.
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We present the results in Table 6.2. We find that γreg = 0.1 performs substan-
tially better on the token-level than γreg , which we suspect is because the latter
provides too much signal that encourages most tokens to be close to 0, causing
a reduction in recall. This can be observed in Figure 6.1, where we compare
the outputs of the Weighted and Regularised Soft Attention models for the same
excerpt. We note that while the Regularised Soft Attention decreases the false
positives, it also reduces the number of true positives. We note that the overall
performance of Regularised Soft Attention is worse than Weighted Soft Attention
(γreg = 0.0) for FCE and BEA 2019. Therefore, we decide to omit this architecture
in the final evaluation.

Mean Soft Attention
We also evaluate the Mean Soft Attention architecture and try to find optimal
values of γ and γmean (Eq. 3.12). As before, γ represents the importance given
to the L2 (minimum token score) and L3 (maximum token score) loss objectives
and γmean is the importance given to the mean objective, where the mean of token
scores is optimised towards the document label.

We run a grid search hyperparameter search for γ ∈ [0.1,1.0,10,100] and γmean ∈
[0.1,1.0,10]. Similarly to the Regularised Soft Attention, we hope that the ad-
ditional mean loss objective and the resulting increased token-level signal will
lead to better results than the Weighted Soft Attention on the token-level, while
maintaining similar document-level performance.

FCE BEA 2019 IMDB-Pos IMDB-Neg
γmean γ Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
0.1 0.1 81.63 21.98 96.62 24.20 90.16 8.16 92.57 8.92

1.0 78.05 21.95 96.47 24.50 90.79 7.98 90.97 9.04
10 78.05 22.20 95.71 27.97 91.64 7.96 90.78 8.02
100 83.72 22.02 82.62 13.38 92.65 6.82 92.73 8.33

1.0 0.1 86.96 21.96 97.23 27.35 91.72 10.36 93.02 12.71
1.0 91.30 22.00 93.08 30.96 89.73 11.96 92.98 12.52
10 76.60 21.18 92.31 32.18 92.26 12.27 91.86 14.18
100 83.72 25.11 80.37 27.03 90.79 13.22 90.60 16.32

10 0.1 80.95 28.17 97.07 30.75 91.69 10.55 92.26 12.81
1.0 86.96 25.79 96.68 30.72 89.42 11.48 90.78 13.49
10 81.82 26.26 89.12 30.00 88.15 10.71 90.78 14.63
100 80.00 22.94 87.46 31.84 89.52 12.53 88.81 15.41

Table 6.3: Hyperparameter tuning of the token-level loss importance for the mean loss (γmean) and
the min-max loss (γ) for Mean Soft Attention with RoBERTa. All results are for the development
datasets. We report large variance of results based on the chosen hyperparameter values, noting
that γ = 1.0 tends to perform best. We select γ = 1.0 and γreg = 100.

The results are presented in Table 6.3. We note the variance in results, both on
the token-level and the document-level. There is no clear best performing setup,
although it seems that γmean = 1.0 usually leads to the best results. We choose
γmean = 1.0 together with γ = 100.

6.1.2 Top-k Soft Attention

Top-k Rest-0 Soft Attention
We experiment with different values of the hyperparameter k% that determines
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the percentage of tokens optimised towards the document label. We focus on the
Top-k Rest-0 method, where the remaining 1 − k% of tokens are all optimised
towards 0, maximising the supervision signal available to the tokens. All of the
experiments are for γtop/rest = 10 (Eq. 3.16), following the findings of optimal γ
values for Weighted and Mean Soft Attention architectures.

FCE BEA 2019 IMDB-Pos IMDB-Neg
k Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
10% 68.42 10.38 92.82 15.14 89.54 11.00 90.97 11.78
20% 79.07 16.34 94.32 22.86 90.45 10.71 89.63 12.82
30% 83.72 19.16 94.07 19.66 88.44 11.09 88.52 13.20
40% 93.62 24.67 94.00 27.79 89.17 11.61 89.19 14.48
50% 83.72 21.44 95.04 25.54 90.00 11.50 91.03 15.02
60% 88.89 23.54 96.83 26.53 90.10 11.45 90.55 14.63

Table 6.4: k% tuning for the Top-k Rest-0 Soft Attention, where k% is the percentage of tokens
supervised towards the document label. We find that the optimal value varies and pick k =
50% due to its stable performance and intuition - supervising half of the tokens towards 0 and
the other half towards the document label. All experiments are for γtop/rest = 10.0 and include
RoBERTa as a Transformer.

The results are presented in Table 6.4. We note that there is no clear best per-
forming value of k, but that we obtain good results for most values of k >= 20%.
We decided to choose k = 50% as the optimal value, as it delivers good results and
also has an intuitive justification of optimising the top half of tokens towards the
value of the document label, while the bottom half is optimised towards 0.

For the value k = 50%, we now perform an extra step of finding the optimal
hyperparameter γtop/rest, which is the importance of the Top-k Rest-0 objective in
the loss function. We explore γtop/rest ∈ [0.1,1.0,10,100].

FCE BEA 2019 IMDB-Pos IMDB-Neg
γtop/rest Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
0.1 87.50 21.13 94.21 17.10 90.73 8.23 91.47 10.28
1.0 83.72 21.44 95.04 25.54 90.00 11.50 91.03 15.02
10 86.96 23.73 93.64 30.35 90.43 10.44 91.03 13.55
100 82.61 23.63 94.46 28.87 91.61 10.64 92.11 13.12

Table 6.5: Hyperparameter tuning for the token-level loss objective weight γtop/rest of the Top-k
Rest-0 Soft Attention. We use k = 50%, RoBERTa as a base Transformer and report results on the
development dataset. We pick γtop/rest = 10.0.

The results can be found in Table 6.5. We observe that results do not yield a
clearly best performing value of γtop/rest and decide to pick γtop/rest = 10 as the
hyperparameter value we use, in line with values of γ for other soft attention
architectures.

6.1.3 RoBERTa vs Longformer

In the final evaluation, we use Longformer for all soft attention architectures.
In this section, we compare the performance of Longformer and RoBERTa on all
datasets to explore how much benefit does using a model supporting longer texts
brings. We use the hyperparameters we found in the previous sections for both
RoBERTa and Longformer based models. The results are presented in Table 6.6.
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FCE BEA 2019 IMDB-Pos IMDB-Neg
Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1

Weighted Soft Attention RoBERTa 86.72 25.18 94.34 16.85 86.54 5.39 86.76 7.31
Weighted Soft Attention Longformer 88.96 25.66 95.66 16.30 94.89 6.35 93.67 7.73
Mean Soft Attention RoBERTa 90.09 27.02 86.29 24.86 87.86 10.91 90.74 15.13
Mean Soft Attention Longformer 87.86 27.65 93.91 22.64 91.58 15.77 91.80 16.70
Top-k Rest-0 Soft Attention RoBERTa 88.86 25.90 94.85 29.85 89.10 9.13 87.31 13.37
Top-k Rest-0 Soft Attention Longformer 88.33 27.79 95.13 27.32 94.21 11.82 93.91 13.80

Table 6.6: Comparison of performance of RoBERTa and Longformer based soft attention archi-
tectures on the development datasets. We find that apart from BEA 2019, which contains sub-
stantially shorter documents, Longformer-based models perform better on the token-level and
often on the document-level. We use optimal hyperparameters for all architectures.

We note that on the token-level F1, Longformer-based models perform better
than RoBERTa-based ones. This is with the exception of BEA 2019, where RoBERTa-
based models perform better on the token-level. We suspect it is likely due to the
low percentage of long texts in this dataset. We also note substantial performance
improvement on the document-level classification for Longformer-based systems
on the IMDB datasets, which are the longest.

6.1.4 Compositional Soft Attention

Given the development dataset results presented above, we decided to assess the
Compositional Soft Attention architecture in combination with the Top-k Rest-0
Soft Attention, with γtop/rest = 10 and k = 50%, following the previous experi-
ments on RoBERTa.

FCE BEA 2019 IMDB-Pos IMDB-Neg
Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1 Doc F1 Tok F1
68.18% 27.72% 90.33% 25.86% 82.89% 14.86% 87.16% 16.39%

Table 6.7: Development dataset performance of the Compositional Soft Attention system in com-
bination with Top-k Rest-0 Soft Attention. We use γtop/rest = 10.0 and k = 50%, following the
results for standard Top-k Rest-0 Soft Attention.

Table 6.7 contains the development dataset results of the Compositional Soft At-
tention that allowed us to verify that the system performs well. We find the
performance on the document level to be substantially worse than other non-
compositional soft attention architectures, but also notice the high token-level
performance, making this method a good candidate for a rationale extractor. We
suspect the performance of this model could benefit individual hyperparameter
tuning, but leave this work to the follow-up research.

6.2 Final Experiments

For our final experiments, we report the average results for 3 different random
seed values. We also report standard deviation for the document-level and token-
level F-measure and the token-level MAP to quantify the variance. All the re-
ported results are for the test dataset. For all soft attention models, we use Long-
former as the base Transformer. Compositional Soft Attention uses a RoBERTa
model.
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Doc F1 Tok F1 Tok P Tok R Tok MAP

Random Baseline - 11.96± 0.28 14.67 10.10 15.86± 0.31
Document-level RoBERTa 90.13± 1.55 - - - -
Document-level Longformer 88.85± 1.69 - - - -
FRESH Top-k (support model) 88.85± 1.69 7.28± 0.35 13.39 5.01 14.67± 0.02

Weighted Soft Attention 88.96± 0.68 25.66± 0.11 15.07 88.63 16.86± 0.30
Mean Soft Attention 87.86± 1.52 27.65± 2.26 17.82 61.72 18.98± 1.81
Top-k Rest-0 Soft Attention 88.33± 3.35 27.79± 0.56 20.81 42.30 18.25± 0.13

Compositional Soft Attention 88.04± 2.29 31.07± 0.76 24.82 41.62 21.93± 0.14

Table 6.8: Final results on the FCE dataset for the test split. Reported value is an average over 3
different random seeds, with standard deviation reported for key metrics. We find the Compo-
sitional Soft Attention to perform best on the token-level rationale extraction, while a RoBERTa
document classifier performs best on the document-level. We suspect the good RoBERTa perfor-
mance is caused by the dataset not containing enough long documents.

Grammatical Error Detection
We report the results on the Grammatical Error Detection datasets in Tables 6.8
and 6.9 for FCE and BEA 2019 respectively. On the document-level, we find both
RoBERTa and Longformer to display similar performance. We suspect it is due
to the lower proportion of long texts in these datasets, which allows standard
Transformers to build robust document-level representations.

We find that the direct application of Weighted Soft Attention does not perform
well for long documents on the token-level. We explore individual predicted
token scores in Figure 6.2 and find that a majority of the token scores are high
and close to 1, irrespective of the document-level prediction. We suspect that is
likely due to the token-level loss function only optimising minimum and maxi-
mum values, preventing most tokens in the document from having their values
optimised after the initialisation.

We note that Mean Soft Attention improves the token-level predictions signifi-
cantly over the Weighted Soft Attention, with token-level F1 absolute improve-
ment of 1.99% on FCE and 6.34% on BEA 2019. We suspect that the mean loss

Doc F1 Tok F1 Tok P Tok R Tok MAP

Random Baseline - 11.07± 0.47 12.07 10.23 16.32± 0.42
Document-level RoBERTa 95.25± 1.12 - - - -
Document-level Longformer 95.45± 0.48 - - - -
FRESH Top-k (support model) 95.45± 0.48 13.85± 1.90 17.22 11.59 18.76± 0.27

Weighted Soft Attention 95.66± 1.18 16.30± 0.85 9.05 82.34 22.88± 0.63
Mean Soft Attention 93.91± 3.59 22.64± 4.97 15.78 61.28 24.90± 0.33
Top-k Rest-0 Soft Attention 95.13± 1.47 27.32± 1.15 19.04 48.46 22.45± 0.76

Compositional Soft Attention 88.06± 1.71 26.86± 1.39 17.75 55.62 25.41± 1.19

Table 6.9: Final results on the BEA 2019 dataset for the test split. Reported value is an average
over 3 different random seeds, with standard deviation reported for key metrics. We find the
Top-k Rest-0 Soft Attention to perform best at the token-level classification, while Compositional
Soft Attention is better at retrieving the ranks of tokens, as evidenced by the higher token-level
MAP.
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(a) FCE negative document (advanced learner), sen-
tence with errors. Weighted Soft Attention assigns
high token scores to most tokens despite supervision
of the minimum and maximum towards 0 for neg-
ative documents. Mean Soft Attention reduces the
number of tokens with high scores, but still assigns
many high token scores despite the supervision to 0
for negative documents. Top-k Rest-0 Soft Attention
correctly learns to assign scores of 0 to all tokens.
Compositional Soft Attention learns to pick up in-
correct tokens in the sentence, despite the document
label being negative.

(b) FCE positive document (beginner learner), sentence with er-
rors. Weighted Soft Attention assigns token scores close to 1 for
most tokens. Mean Soft Attention gives high scores to less to-
kens than Weighted Soft Attention. Top-k Rest-0 correctly finds
all incorrect tokens, while also giving high scores to the least
number of tokens. For this sentence, Compositional Soft Atten-
tion does not find any incorrect tokens.

(c) FCE positive document (beginner learner), sentence
with errors. Weighted Soft Attention assigns high token
scores to most tokens, but fails to attend to ",". Mean Soft
Attention similarly attends to most tokens, but detects
",". Top-k Rest-0 approach fails to detect any incorrect to-
kens. Compositional Soft Attention correctly detects one
incorrect token, but does not attend to its neighbours.

(d) FCE positive document (beginner learner), sentence
without errors. Weighted Soft Attention and Mean Soft
Attention both incorrectly assign high scores to most to-
kens in the sentence. Top-k Rest-0 similarly assign high
scores to some tokens, despite the sentence containing no
errors. Compositional Soft Attention does not assign high
scores to any token but 1. Upon further inspection, it ap-
pears that the token selected by the Compositional Soft
Attention was mislabeled as correct when it is in fact in-
correct.

Figure 6.2: Example token-level predictions on the development dataset for Grammatical Error
Prediction using the FCE dataset. W-SA represents Weighted Soft Attention Longformer, while
M-SA indicates Mean Soft Attention Longformer. Top-k Rest-0 Longformer and Compositional
Soft Attention are denoted TOP-SA and C-SA respectively. orange represents human annota-

tions, red represents false positive token-level prediction and green represents a true positive
one.
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function increased the supervision signal available to tokens, leading to a better
distribution of token scores. We notice that the system learnt to attend to less to-
kens and focus on the more important ones, as indicated by the decrease in recall
and increase in precision. This is especially observed in the example presented in
Figure 6.2(a), where Mean Soft Attention visibly attends to less tokens. However,
we point out that Mean Soft Attention suffers from a high standard deviation on
the token-level, which we believe is due to the extensive hyperparameter tuning
required for this method to perform well.

We find the Top-k Rest-0 Soft Attention to perform similarly to the Mean Soft
Attention, but also exhibit lower standard deviation on the token-level F1, indi-
cating that the method is more stable. As seen in Figure 6.2, while it misses out on
some incorrect tokens, it is overall more precise and avoids attending to as many
tokens as Weighted Soft Attention and Mean Soft Attention. This behaviour is
also confirmed by the lower recall and higher precision on the token-level.

On the token-level, the Compositional Soft Attention architecture performs sig-
nificantly better than other methods on the FCE dataset (3.28% absolute improve-
ment). On the BEA 2019 dataset, the Compositional Soft Attention achieves sub-
stantially better results on the token-level MAP , but does not perform as well on
the token-level F1 score. This indicates that the model correctly learns the rank-
ing of tokens, but struggles to correctly scale the token scores.

Upon the inspection of example token-level predictions in Figure 6.2, we note
that while the Compositional Soft Attention learns to recognise some positive to-
kens, it doesn’t correctly attend to neighbouring incorrect tokens (Figures 6.2(a),
6.2(c)). We point out that Compositional Soft Attention token scores of true posi-
tives seem lower than for other architectures. This further confirms our suspicion
that the model fails to learn a correct distribution of the token scores, but suc-
cessfully learns how to rank tokens well. As a way to mitigate it, we suggest a
more appropriate choice of a loss function for the future research.

We note the significantly worse performance of the Compositional model on the
task of document-level classification. We suspect this is due to the suboptimal
hyperparameter choice, with too much weight assigned to the token-level loss
objectives. In order to alleviate the issue in future research, we also suggest early
stopping based on the document-level performance rather than the overall loss
value.

Sentiment Analysis
We present the results for the Sentiment Analysis datasets IMDB-Pos and IMDB-
Neg in Tables 6.10 and 6.11 respectively. We note that, unlike for Grammati-
cal Error Detection, the Longformer model performs significantly better on the
document-level than RoBERTa, with an absolute F1 improvement of 5.52% and
6.46% on IMDB-Pos and IMDB-Neg respectively. We suspect it is due to the fact
that IMDB datasets are longer in size and hence standard size Transformers do
not have enough capacity to infer correct document labels based on only a part
of the document.
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Doc F1 Tok F1 Tok P Tok R Tok MAP

Random Baseline - 5.20± 0.09 3.54 9.80 8.44± 0.07
Document-level RoBERTa 88.62± 1.28 - - - -
Document-level Longformer 94.14± 1.39 - - - -
FRESH Top-k (support model) 94.14± 1.39 8.69± 3.62 6.70 12.38 7.83± 0.62

Weighted Soft Attention 94.89± 0.31 6.35± 0.24 3.30 84.36 7.72± 0.29
Mean Soft Attention 91.58± 3.78 15.77± 1.10 9.15 59.13 11.60± 1.36
Top-k Rest-0 Soft Attention 94.21± 1.68 11.82± 1.25 6.63 54.47 8.66± 0.72

Compositional Soft Attention 83.31± 1.96 12.73± 0.40 7.05 65.87 14.81± 0.54

Table 6.10: Final results on the IMDB-Pos dataset for the test split. Reported value is an average
over 3 different random seeds, with standard deviation reported for key metrics. We find that the
Mean Soft Attention performs significantly better than Compositional Soft Attention on the token
classification, despite Compositional Soft Attention ranking the tokens better. Compositional
Soft Attention performs poorly on the document-level.

Similarly to the task of Grammatical Error Detection, a direct application of
Weighted Soft Attention does not perform well. As seen in Figure 6.3, the Weighted
Soft Attention models assign high scores to all tokens, irrespective of the pre-
dicted document label. This indicates yet again that there is not enough supervi-
sion signal available to tokens that would encourage a better scoring and ranking.

Mean Soft Attention achieves significantly better performance on the token-level
F1 score, with 9.42% and 8.97% absolute improvement for IMDB-Pos and IMDB-
Neg respectively. We note that it also displays high standard deviation, indicating
that the hyperparameters found might be overfit to a particular random seed.

We find the the Top-k Rest-0 Soft Attention performs significantly better on the
token-level than the Weighted Soft Attention, but still substantially worse than
the Mean Soft Attention architecture. We observe (Figure 6.3) that Top-k Rest-0
consistently predicts more false positives than the Mean Soft Attention method,
indicating that the selected value of k% might be suboptimal.

We note that the Compositional Soft Attention performs significantly better than
all architectures on the token-level MAP , with an absolute improvement of 3.21%

Doc F1 Tok F1 Tok P Tok R Tok MAP

Random Baseline - 5.89± 0.34 4.13 10.27 9.81± 0.06
Document-level RoBERTa 87.66± 0.87 - - - -
Document-level Longformer 94.12± 0.88 - - - -
FRESH Top-k (support model) 94.12± 0.88 8.73± 3.02 7.08 11.41 9.14± 0.46

Weighted Soft Attention 93.67± 0.55 7.73± 0.37 4.04 90.41 9.83± 0.91
Mean Soft Attention 91.80± 2.39 16.70± 1.78 10.56 40.07 11.45± 0.73
Top-k Rest-0 Soft Attention 93.91± 1.64 13.80± 1.10 7.93 53.39 10.55± 0.78

Compositional Soft Attention 88.07± 2.22 16.30± 0.09 9.42 60.73 16.29± 0.44

Table 6.11: Final results on the IMDB-Neg dataset for the test split. Reported value is an average
over 3 different random seeds, with standard deviation reported for key metrics. We find that
the Mean Soft Attention performs substantially better than Compositional Soft Attention on the
token-level. Compositional Soft Attention performs poorly on the document-level.
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(a) An excerpt from a positive movie
review in the IMDB-Pos dataset. We
note that Weighted Soft Attention at-
tends to most tokens, while Mean Soft
Attention detects no positive sentiment
evidence in this sentence. Top-k Rest-
0 correctly identifies the evidence span.
Compositional Soft Attention also cor-
rectly detects the evidence, but also in-
correctly predicts most other tokens as
evidence. Upon further inspection, we
note that Compositional Soft Attention
assigns higher scores to true positives
than false positives, showing that the
model learns to correctly rank tokens,
but fails to scale the token scores. All
models predicted this sentence as posi-
tive.

(b) An excerpt from a negative moview review
in the IMDB-Pos dataset. As this is a nega-
tive review in a positive reviews dataset, no ev-
idence is marked. Despite that, Weighted Soft
Attention still assigns high scores to all tokens.
All other methods correctly assign scores close
to 0 for all tokens, not making a single false
positive prediction.

(c) An excerpt from a positive movie review in the
IMDB-Pos dataset with the whole sentence annotated as
evidence. We notice that the Weighted Soft Attention at-
tends to all tokens, unlike Mean Soft Attention or Top-k
Rest-0 Soft Attention that only select a subset of tokens.
We note that for this sentence Compositional Soft Atten-
tion assigned equally high weights to most tokens, indi-
cating that it learnt that all tokens should have a high
rank. All models predicted this sentence as positive.

(d) An excerpt from a positive movie review in the
IMDB-Pos dataset with no evidence. We note that
Weighted Soft Attention incorrectly attends to all
tokens. Mean Soft Attention and Top-k Rest-0 Soft
Attention reduce the false positive rate of Weighted
Soft Attention, with Mean Soft Attention attending
to less tokens. Compositional Soft Attention cor-
rectly assigns low scores to all tokens. All models
predicted this sentence as positive.

Figure 6.3: Example token-level predictions on the IMDB-Pos development dataset for Sentiment
Analysis. W-SA represents Weighted Soft Attention Longformer, while M-SA indicates Mean Soft
Attention Longformer. Top-k Rest-0 Longformer and Compositional Soft Attention are denoted
TOP-SA and C-SA respectively. orange represents human annotations, red represents false
positive token-level prediction and green represents a true positive one.
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for IMDB-Pos and 4.84% for IMDB-Neg. It indicates that the model learns how
to rank tokens better than other systems. However, the Compositional approach
underperforms on the token-level F1, suggesting that the model does not learn
to scale the token scores. This can be observed in Figure 6.3(a), where we notice
that the Compositional Soft Attention assigns higher scores to true positives than
false positives. Yet, the false positives still have scores greater than the classifica-
tion threshold of 0.50, leading to them being misclassified as positive. We found
a similar issue with the token scores distribution for the Grammatical Error De-
tection datasets. We follow the previous suggestion for future work to include
an additional loss function that distributes lower ranking tokens towards 0 and
higher ranking ones towards the document label.

We report that the Compositional Soft Attention performs significantly worse
on the document classification than Longformer-based systems. Upon the explo-
ration of training logs, we found that is likely due to our early stopping crite-
rion which considers the overall trend of the loss function. We experiment with
document-level F1 as the stopping criterion and found it to alleviate the issue.
We did not have enough time to perform full experiments to report the results
here.

6.3 Computational Efficiency

We report the average training time per epoch of each system in Table 6.12. The
results reported are an average of 3 runs on the 16GB Nvidia Tesla T4. As ex-
pected, the RoBERTa-based systems take the least amount of time to complete a
full epoch, with Longformer-based systems being 3− 4× slower.

We emphasise the significantly better performance of our Compositional Soft
Attention models over the Longformer-based ones. On the FCE dataset, Com-
positional Soft Attention is approximately 40% faster, while being 65% faster for
BEA 2019 and 30% for both IMDB-Pos and IMDB-Neg datasets. This represents
a substantial improvement.

FCE BEA 2019 IMDB-Pos IMDB-Neg

Document-level RoBERTa 99 158 172 171
Document-level Longformer 250 459 673 674
Top-k 264 488 701 701

Weighted Soft Attention 252 465 677 679
Mean Soft Attention 256 479 680 682
Top-k Rest-0 Soft Attention 258 482 685 682

Compositional Soft Attention 154 167 504 505

Table 6.12: Average time per epoch of each model during training on the full training dataset.
The reported time is in seconds. All of the models were trained on the same 16GB Nvidia Tesla
T4. We find that the Compositional Soft Attention is significantly faster than Longformer-based
Soft Attention models.
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Chapter 7

Conclusion

In this project, we have explored various architectures for long document binary
classification and token-level rationale extraction using long document Trans-
formers. We focused on the tasks of Grammatical Error Detection and Sentiment
Analysis, while evaluating the plausibility of the extracted rationale against the
token-level human annotations. To the best of our knowledge, this is the first
work that quantitatively evaluates the token-level rationale extraction for long
document Transformers.

We showed that a direct adaptation of Weighted Soft Attention, used before for
Transformer-based zero-shot sequence labelling for sentence classifiers, does not
perform well. We explored sample predictions of the model and found most
token scores to be close to 1, regardless of the predicted document label. We sus-
pect it is due to not enough supervision signal reaching individual tokens.

We proposed Mean Soft Attention, a modification of Weighted Soft Attention
that optimises the mean token score towards the document-label. We found this
architecture to significantly improve the token-level F1 score compared to the
Weighted Soft Attention, with 1.99% − 9.42% absolute improvement. Upon in-
vestigation, we noticed that the increased token-level supervision signal helped
to avoid token scores obtaining similar scores irrespective of the document la-
bel. We noted the this method required extensive hyperparameter tuning and
displays large standard deviation in the results.

We further introduced a Top-k Rest-0 Soft Attention architecture that supervises
top k% of tokens towards the document label, with the rest of tokens supervised
to 0. We report this approach to perform substantially better than Mean Soft
Attention on the Grammatical Error Detection, while performing worse on the
Sentiment Detection.

Finally, we proposed a novel Compositional Soft Attention architecture that does
not require a long document Transformer to represent long texts. It uses a stan-
dard Transformer to compute token contextual embeddings of tokens in individ-
ual sentences, which are then composed into a document-level representation by
a soft attention layer. We find the Compositional approach to be be 30% − 65%
faster than Longformer-based models. We report substantially better results on
the token-level MAP score (0.51% − 4.84% absolute) over Mean Soft Attention,
indicating this model better learns how to best rank the individual tokens in the
text. We find the token-level F1 to be worse than for Mean Soft Attention. We
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note that while the model correctly recovers ranking of tokens, it fails to opti-
mise some of the token scores to be below the classification threshold, leading
to numerous false positives. We also report that the Compositional Soft Atten-
tion performs significantly worse on the document-level classification, which we
suspect is due to suboptimal hyperparameters and an inefficient early stopping
criterion.

7.1 Future Work

We note that this project is not fully completed yet. We intend to further investi-
gate the poor performance of the Compositional Soft Attention on the document-
level in order to find a solution that performs similarly to the long document
Transformers. We also intend to explore a ranked loss function that would en-
courage high ranking tokens to be assigned substantially higher scores than lower
ranking tokens. We hope this leads to improvement on the token-level F1 score
and allows the Compositional Soft Attention to become new state-of-the-art ra-
tionale extractor for long texts.

We intend to further evaluate the Compositional Soft Attention in combination
with the full FRESH framework, evaluating how the extracted token-level ra-
tionales can act as faithful explanations to a document-classification model and
improve the document-level performance.

We hope for this work to inform further research of explainable long document
Transformers that provide plausible and faithful rationale.
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Appendix A

Hyperparameters

Model Hyperparameter Value
Shared

soft_attention_dropout 0.10
soft_attention_evidence_size 100
soft_attention_hidden_size 300
optimiser adamW
lr 1e − 5
opt_eps 1e − 7
warmup_ratio 0.06
dropout 0.10
initializer_name normal

RoBERTa
train_batch_size 8
eval_batch_size 16
gradient_accumulation_steps 4

Longformer
train_batch_size 1
eval_batch_size 1
gradient_accumulation_steps 32
Compositional Soft Attention
compositional_document_batch_size 1
gradient_accumulation_steps 32
compositional_sentence_batch_size 8

Table A.1: Hyperparameters used during training.
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