
BEng Individual Project Report

Imperial College London

Department of Computing

Quasi-Monte Carlo methods for calculating
derivatives sensitivities on the GPU

Author:
Casey Williams

Supervisor:
Dr. Paul A. Bilokon

Second Marker:
Dr. Maria Grazia Vigliotti

June 20, 2022

Abstract

The calculation of option Greeks is vital for risk management. Traditional pathwise and finite-
difference methods work poorly for higher-order Greeks and options with discontinuous payoff
functions. The Quasi-Monte Carlo-based conditional pathwise method (QMC-CPW) for options
Greeks allows the payoff function of options to be effectively smoothed allowing for increased
efficiency when calculating sensitivities. Also demonstrated in literature is the increased computa-
tional speed gained by applying GPUs to highly parallelisable finance problems such as calculating
Greeks. In this report QMC-CPW is paired with simulation on the GPU using the CUDA plat-
form. We estimate the delta, vega and gamma Greeks of three exotic options: arithmetic Asian,
binary Asian, and lookback. Not only are the benefits of QMC-CPW shown through variance
reduction factors of up to 1.0 ∗ 1018, but the increased computational speed through usage of the
GPU is shown as we achieve speedups over sequential CPU implementations of more than 200x
for our most accurate method.

Acknowledgements

I would like to thank my supervisor Dr. Paul Bilokon for his support throughout this project.

I also wish to extend my thanks to Prof. Mike Giles of the University of Oxford for all of the
help he has very kindly given.

Finally, thank you to the friends I have made over these past few years and to my family, for
all the memories and support.

Contents

1 Introduction 7
1.1 Objectives . 7
1.2 Challenges . 8
1.3 Contributions . 8

2 Preliminaries 9
2.1 Stochastic processes . 9

2.1.1 Brownian motion . 9
2.1.2 Martingales . 10

2.2 Financial preliminaries . 10
2.2.1 Derivatives . 10
2.2.2 Options . 10

2.3 Monte Carlo methods . 11
2.3.1 Principles of Monte Carlo . 11
2.3.2 Pseudorandom number generation . 12

2.4 Quasi-Monte Carlo . 12
2.4.1 Van der Corput sequences . 13
2.4.2 Sobol’ sequences . 13
2.4.3 Scrambled Sobol’ . 15

2.5 Graphics Processing Units and CUDA . 15
2.5.1 CUDA architecture . 15
2.5.2 Practical implementation considerations . 15

3 Background 17
3.1 Calculating Greeks . 17

3.1.1 Finite-difference method . 17
3.1.2 Pathwise method . 17
3.1.3 Likelihood ratio method . 18

3.2 Monte Carlo methods . 19
3.2.1 GPU implementations . 19

3.3 Variance reduction techniques . 19
3.3.1 Antithetic variables . 20
3.3.2 Control variates . 20
3.3.3 Importance sampling . 20

3.4 Quasi-Monte Carlo-based conditional pathwise method 21
3.4.1 Simulating stock price for variable separation 21
3.4.2 Example: Binary Asian delta by QMC-CPW 22

3.5 Related work . 23

4 Implementation 24
4.1 Path simulation . 24
4.2 Products . 26
4.3 Antithetic variables . 26
4.4 Brownian bridge construction . 27
4.5 Greeks calculation . 27

4.5.1 Binary Asian Greeks . 28
4.5.2 Arithmetic Asian Greeks . 28

2

4.5.3 Lookback Greeks . 29
4.6 Likelihood Ratio estimates . 29
4.7 CPU implementation . 30

5 Results 31

6 Evaluation 39
6.1 Performance . 39
6.2 Applicability and design . 39

7 Conclusion 41
7.1 Future work . 41

7.1.1 Improved VRFs . 41
7.1.2 Producing a polished product . 41

8 Ethical Considerations 43

A GPU and CUDA specifications 46

3

List of Figures

2.1 Three paths of a standard Brownian motion over 1 year with 29 equidistant timesteps. 10
2.2 Basic CUDA memory architecture. Inspired by https://cvw.cac.cornell.edu/gpu/memory_-

arch . 16

4.1 Coalesced memory access where a warp of 32 threads loads 128-bytes in a single
transaction. Inspired by: https://cvw.cac.cornell.edu/gpu/coalesced 24

4.2 Transformation of cuRAND Sobol’ numbers from input (top) to output (bottom)
ordering. 25

4.3 Brownian bridge construction after 1, 2, 4 and 8 points have been sampled condi-
tional on the previous values generated. 28

5.1 Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 90,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 34

5.2 Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 100,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 34

5.3 Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 110,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 35

5.4 Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 90,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 35

5.5 Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 100,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 36

5.6 Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 110,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 36

5.7 Errors in Greek estimates of a lookback option with S(0) = 100, K = 90, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 37

5.8 Errors in Greek estimates of a lookback option with S(0) = 100, K = 100, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 37

5.9 Errors in Greek estimates of a lookback option with S(0) = 100, K = 110, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths. 37

4

List of Tables

2.1 Radical inverse function ψb in base 2. 13

5.1 VRFs for arithmetic Asian option on GPU with 215 paths. S(0) = 100, σ = 0.2,
r = 0.1 and T = 1. 32

5.2 VRFs for binary Asian option on GPU with 215 paths. S(0) = 100, σ = 0.2, r = 0.1
and T = 1. 33

5.3 VRFs for lookback option on GPU with 215 paths. S(0) = 100, σ = 0.2, r = 0.1
and T = 1. 33

A.1 Tesla T4 specifications. Memory values are given in bytes. 46

5

List of Algorithms

1 Algorithm to estimate expected present value of payoff 11
2 Transformation of quasi-random variables from N ∗PATHS/d of each dimension to

BLOCK_SIZE of each dimension repeated, where N is the number of timesteps. . 25
3 Per-thread path simulation where N is the number of simulated timesteps with

dt = 1/N . 26
4 Construction of Brownian bridge increments where the number of timesteps is equal

to 2m. idx_zero is passed to each thread as the first index into the global path array. 27

6

Chapter 1

Introduction

Calculating sensitivities (Greeks) of the value of an option to underlying parameters such as volatil-
ity and interest rates, is vital to financial institutions performing risk management and developing
hedging strategies. Their importance becomes more significant when we know that Greeks cannot
be observed in the market directly, thus must be calculated from other data.

Traditional finite-difference (FD) methods for calculating Greeks have easy implementations
and few restrictions on the form of the payoff function, however they require resimulations which
result in estimates with large variances, bias and increased computational effort compared with
other methods.

The pathwise (PW) [1] method does not require resimulation and provides unbiased estimators,
however it relies on the continuity of the payoff function, therefore it is not applicable to options
such as a binary Asian option and cannot be used to calculate most second-order Greeks where we
typically see discontinuity introduced into the function.

The likelihood ratio (LR) method does not require smoothness of the payoff function however it
tends to result in estimates with large variance as it does not use properties of the payoff function.

Introduced by Zhang and Wang, the Quasi-Monte Carlo-based conditional pathwise method
(QMC-CPW) [2] takes a conditional expectation of the payoff function which results in the dis-
continuous integrand being smoothed. They also show that the interchange of expectation and
differentiation is possible, allowing the estimation of Greeks from the now smooth target func-
tion. Through proof of the smoothed payoff being Lipschitz continuous, the PW method is now
applicable to provide unbiased estimators. They also show how many options can have infinitely
differentiable target functions once the conditional expectation is taken, thus the PW method can
be used to calculate second-order Greeks which normally is not possible.

GPUs have been discussed extensively in literature. Particularly their application to finance
problems. The highly parallel nature of Monte Carlo simulation for option Greeks lends itself well
to the architecture of GPUs and the CUDA architecture. In this project we implement Monte
Carlo methods which take advantage of the highly parallel nature of the GPU to gain advantages
in speed and efficiency when calculating Greeks.

First, the preliminaries are discussed and the core mathematics of stochastic processes, financial
products, and random number generation is developed in Chapter 2. Background literature on
topics such as the usage of Monte Carlo and their implementation on GPUs, variance reduction
techniques, and methods for estimating Greeks are discussed in Chapter 3. In Chapter 4 we detail
the implementation of our experiment on both the GPU and CPU, followed by the results in
Chapter 5. We then evaluate the results and conclude in Chapters 6 and 7.

1.1 Objectives

The aim of this work is to apply QMC-CPW to calculate Greeks for options, whilst adapting the
implementation to run efficiently on a GPU.

Increased efficiency is not the only aim, but also the broadening of the set of financial products
(such as those with discontinuous payoff functions) supported by the algorithm will provide further
practical value. As opposed to other solutions developed for the GPU, we will produced unbiased
estimates with low variance applicable to options with discontinuous payoff functions and for
higher-order Greeks.

7

1.2 Challenges
Adapting algorithms to run on the GPU comes with many restrictions when compared to imple-
mentations on the CPU. Memory management and access patterns play a large role in the efficiency
and speed when running kernels, so close attention must be paid during implementation to how
the on-device memory is used.

CUDA poses further limitations upon the general design of the software such as having separate
memory spaces between host and device memory (this has been addressed by unified memory
which has been available since toolkit version 6.0). Problems such as these are standard when
programming with CUDA and require overhead on the developer’s side to ensure code is written
in a safe manner.

1.3 Contributions
The work presented in the report is motivated by the importance of calculating Greeks for many
financial institutions. The need for efficient and accurate methods that can be applied to many
types of financial options presents an opportunity to use recent methods for Greeks estimation in
conjunction with GPUs, and to obtain both an increase in accuracy and speed. The contributions
are as follows:

1. Flexible models of "products" are implemented for the arithmetic Asian, binary Asian and
lookback option types. They have a templated design which allows for minimal reproduction
of simulation kernels.

2. GPU implementation of the Likelihood Ratio method for estimating Greeks which acts as a
baseline to compare variance reduction factors of other methods. All methods estimate the
delta, vega, and gamma Greeks.

3. Implementation of the QMC-CPW method with standard and Quasi Monte Carlo simulation
on both CPU and GPU. CPU implementations are serial and used for comparison of the
speedup obtained by using the GPU.

4. For standard Monte Carlo simulations, antithetic variables are also implemented as a variance
reduction technique.

5. For Quasi-Monte Carlo we perform Brownian bridge construction which produces Brownian
path increments for use in simulation of the behaviour of the underlying asset, which leads
to a variance reduction.

6. We show that the Quasi-Monte Carlo Conditional Pathwise method with Brownian bridge
construction (QMC+BB-CPW) is the superior method in terms of accuracy with variance
reduction factors of up to 1.0∗1018 and with many in the hundreds of thousands and millions.

7. We show that using the GPU leads to a massive speedup over the CPU with even the slowest
methods being more than 200x faster.

8. Finally, it is shown that QMC+BB-CPW implemented on the GPU results in an efficient,
accurate, and fast method for calculating first- and higher-order Greeks of options, and even
those with discontinuous payoff functions. We find Quasi-Monte Carlo takes advantage of
the increased smoothness in the integrand following the conditional expectation from CPW,
and that the Brownian bridge construction results in further variance reduction.

8

Chapter 2

Preliminaries

This chapter details the requisite material for understanding the approach and implementation.
First, an overview of basic financial products and models are presented, as well as some risk

measures. We then detail the concepts behind one of the most popular approaches to computational
finance problems - Monte Carlo methods. Later, common methods for calculating sensitivities of
financial products with respect to input parameters are described. Lastly, we touch on the appli-
cation of GPUs to related problems and outline the CUDA architecture and its toolkit, followed
by a brief review of other literature.

2.1 Stochastic processes

A stochastic process is a collection of random variables indexed by time, or alternatively, a proba-
bility distribution of a space of paths. In the following subsections we describe some specific cases
of stochastic processes.

2.1.1 Brownian motion

A standard Brownian motion over [0, T] is a stochastic process {W (t), 0 ≤ t ≤ T} with the following
properties [3]:

1. W (0) = 0;

2. the mapping t 7→W (t) is, with probability 1, a continuous function on [0, T];

3. the increments {W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tk)−W (tk−1)} are independent for
any k and any 0 ≤ t0 < t1 < · · · < tk ≤ T ;

4. W (t)−W (s) ∼ N(0, t− s) for any 0 ≤ s < t ≤ T .

We can see from properties 1 and 4 that

W (t) ∼ N(0, t), (2.1)

for 0 < t ≤ T .
We may also construct a Brownian motion X(t) with a constant drift µ and diffusion coefficient

σ > 0 as

X(t) = µt+ σW (t),

where the following is a standard Brownian motion:

X(t)− µt
σ

.

In Figure 2.1 three example paths of standard Brownian motion are shown.

9

Figure 2.1: Three paths of a standard Brownian motion over 1 year with 29 equidistant timesteps.

2.1.2 Martingales

A stochastic process Xt is known as a Martingale if

E[Xt|Ft] = Xs, 0 ≤ s < t <∞.

In other words, the conditional value of the next value in the sequence at any time s is equal
to the present value. If we use Martingales to model the price of an underlying asset, it means
that all previous information about the price is available at the present time and we can disregard
the past information. This fact, along with others, makes Martingales extremely useful in finance
applications.

2.2 Financial preliminaries

2.2.1 Derivatives

Financial markets contain a wide range of products which are traded by market participants. One
class of these products are known as derivatives. A derivative is a contract whose value is derived
from an asset, index, interest rate or other entity known as the "underlying". Derivatives are used
for many purposes such as hedging risk or increasing exposure to underlying market changes and
are ubiquitous in financial markets. Derivative contracts typically specify a set of conditions that
define the obligations of the involved parties, important dates (such as expiration) and the notional
value. Common types of derivatives are options, futures and swaps. Derivatives are of particular
focus in computational finance as complex models which require high amounts of computation are
needed to approximate their prices or sensitivities to input parameters.

2.2.2 Options

One of the most popular types of derivative is an option. An option is a contractual agreement
which gives the owner, commonly referred to as the holder, the right, but not the obligation, to buy
or sell the underlying asset at a given price, the strike price K, on or before a specified expiration
date T . A European-style option only allows the holder to exercise the option at expiration time
whereas an American-style option can be exercised at any time before expiration. For vanilla

10

(simple) European-style options, a "call" option is one where the holder has the right to buy the
underlying at expiration and a "put" allows them to sell the underlying at expiration.

According to the Black-Scholes model [4], the evolution of the stock price is described by the
stochastic differential (SDE)

dS(t)

S(t)
= rdt+ σdW (t), (2.2)

with W a standard Brownian motion. The parameters r and σ are the mean rate of return
and volatility of the stock price respectively. S(t) denotes the price of the underlying at time t.
In the case where the mean rate of return is equal to the continuously compound interest rate r
we are implicitly describing the risk-neutral dynamics of the stock price. This idea is discussed
extensively in literature and is core to the "fundamental theorem of asset pricing". The reader is
referred to [5] and Section 1.2.1 of [3] for further explanation.

The solution to the SDE in (2.2) is

S(T) = S(0) exp ([r − 1

2
σ2]T + σW (T)). (2.3)

With S(0) known, and the current price of the stock. If now is time t = 0 and at expiration
time T the price of the underlying S(T) is greater than the strike price K then the holder exercises
the option for a profit of S(T)−K. Conversely, if the terminal price S(T) is less than K then the
option expires worthless. Thus the payoff to the holder at expiration is given as

(S(T)−K)+ = max {0, S(T)−K}. (2.4)

There exist more complex options whose values are path-dependant and others with payoff
functions that are not continuous. These properties pose extra challenges from an implementation
perspective and continue to be a focal point in current literature.

2.3 Monte Carlo methods

2.3.1 Principles of Monte Carlo

Monte Carlo methods, in the simplest form, rely on repeatedly taking random samples from a set
of possible outcomes to determine the fraction of random draws which fall in a given set as an
estimate of the set’s volume in the probability space [3]. As the number of draws increases, the
law of large numbers ensures the estimate converges to the true value and information about the
magnitude of error in the estimate can be obtained through the central limit theorem.

Let us use the example from Section 1.1.2 of [3], suppose we wish to calculate the expected
present value of the payoff of a vanilla European call option on a stock. The payoff for this option
is defined in (2.4). Taking S(t) to be modelled as in (2.2) thus giving the terminal price in (2.3),
we can then draw samples from the distribution of the terminal stock price S(T) to calculate the
expected value of the payoff E[e−rT (S(T) −K)+]. As W (t) is a standard Brownian motion, the
logarithm of the stock price is normally distributed. Thus we only need to draw random samples Zi
from the standard normal distribution to calculate S(T). Pseudocode is given below for estimating
the expected present value of the payoff on the call option:

Algorithm 1 Algorithm to estimate expected present value of payoff
1: for i← 1..n do
2: generate Zi
3: Si(T) = S(0) exp ([r − 1

2σ
2]T + σ

√
TZi)

4: Ci = e−rT (Si(T)−K)+

5: end for
6: Ĉn = (C1 + · · ·+ Cn)/n

This method can be generalised to calculate payoffs for more exotic path-dependent options
and to other problems such as calculating the Greeks of a portfolio of derivatives - see [6] for further
explanation.

11

2.3.2 Pseudorandom number generation

Randomly sampling from probability distributions is the heart of Monte Carlo, so generating
random samples quickly with sufficient "randomness" has been the topic of much research. The
core of generating random samples in Monte Carlo is a pseudorandom number generator (PRNG).
PRNGs are deterministic algorithms that generate sequences of numbers whose properties mimic
that of genuine random sequences. We do not attempt to cover PRNGs extensively; for a more
detailed review of PRNG algorithms and their properties the reader is referred to [7], [8] and
Chapter 2 of [3]. Most PRNGs used for Monte Carlo simulation are based on linear recurrences of
the form

xi = (a1xi−1 + · · ·+ akxi−k) mod m,

where k and m are positive integers with a1 . . . ak in {0, 1, . . . ,m−1} and ak ̸= 0. m is typically
a large prime number and the output is defined as ui = xi/m. The seed of a generator is the initial
set of values xk−1, . . . , x0.

There are several considerations which we take into mind when building PRNGs:

• Good randomness properties. A sequence of genuine random numbers U1, U2, . . . satisfy the
following properties:

1. Each Ui is uniformly distributed between 0 and 1 (this is an arbitrary normalisation,
any other range is acceptable).

2. All Ui are mutually independent.

This is the hardest property to ensure for PRNGs but there has been enough examination
of generators over time and those that are still in use today typically have passed statistical
tests which show little deviation from truly random sequences.

• Large period. The period of a PRNG is the minimum length of the output sequence before
any number is repeated. Generators with large periods are key for use in simulation as we
wish to draw millions of samples and without a sufficiently large period this would not be
possible.

• Speed and efficiency of generation. As we are generating millions of samples during a single
simulation it is necessary for this process to be fast and require little effort computationally.

• Reproducibility. It is important that using the same seed will result in the same output
sequence. This allows us to run simulations multiple times with the same input to verify
results.

2.4 Quasi-Monte Carlo
Whereas Monte Carlo methods use pseudorandom sequences, Quasi-Monte Carlo (QMC) uses low-
discrepancy sequences (LDS). Rather than mimic randomness, LDS attempt to generate numbers
that are evenly distributed. The advantage of using LDS is the rate at which they converge; Monte
Carlo converges with rate O(1/

√
n), where n is the number of paths, while QMC has convergence

rate close to O(1/n).
The reliance on LDS however, leads QMC to have a dependence on the dimension of the

problem and with many financial problems having high dimension due to large numbers of risk
factors, time steps per path and the number of paths simulated, it is not guaranteed that QMC has
greater performance over Monte Carlo. This has been addressed through a number of techniques
such as variance reduction [9], [10] and the concept of effective dimension [11], [12] may explain
the success of QMC even for problems of high dimension.

To highlight the difference between QMC and Monte Carlo, let us consider the problem of
numerical integration over the unit hypercube [0, 1)d. We want to calculate

E[f(U1, . . . , Ud)] =

∫
[0,1)d

f(x)dx, (2.5)

where Ui are uniformly distributed random variables. This integral is approximated by

12

∫
[0,1)d

f(x)dx ≈ 1

n

n∑
i=1

f(xi). (2.6)

To calculate this value using Monte Carlo, we can construct a sequence U1, U2, . . . and form
vectors (U1, . . . , Ud), (Ud+1, . . . , U2d), . . . which represents an i.i.d. sequence of points uniformly
distributed on the unit hypercube. Here, we do not depend on the dimension d to generate the
sequence whereas the construction of points for QMC depends explicitly on the dimension, thus
we cannot generate vectors of d elements repeatedly. Rather we use LDS to choose points that
effectively "fill" the hypercube as uniformly as possible. Common LDS include Sobol’ sequences
[13] and Halton sequences [14].

2.4.1 Van der Corput sequences
To talk in further detail about Sobol’ sequences, we must introduce Van der Corput sequences.
Following [3], this sequence is a specific class of LDS in one dimension and is the core of many
multidimensional constructions.

Every positive integer k has what is known as it’s base-b representation such that

k =

∞∑
j=0

aj(k)b
j , (2.7)

where b ≥ 2 and finitely many of the coefficients aj(k) are not equal to zero and in {0, 1 . . . , b−1}.
The radical inverse function ψb is a mapping of each k to [0, 1) and is given as

ψb(k) =

∞∑
j=0

aj(k)

bj+1
. (2.8)

The Van der Corput sequence in base-b is 0 = ψb(0), ψb(1), ψb(2), . . . and we give the sequence
in base 2 below.

k k Binary ψ2(k) Binary ψ2(k)
0 0 0 0
1 1 0.1 1/2
2 10 0.01 1/4
3 11 0.11 3/4
4 100 0.001 1/8
5 101 0.101 5/8

Table 2.1: Radical inverse function ψb in base 2.

Table 2.1 shows how the sequence fills the unit interval; the kth row shows the first k nonzero
elements of the sequence and each row refines the previous one. The Van der Corput sequence
also fills the points in a maximally balanced way. For example following the final row of Table 2.1
we would fill 1/16, then 9/16, then 5/16 and so on. The values alternate either side of 1/2, then
either side of 1/4 and this continues. An important property to note is that the larger the base b,
the greater the number of points required to reach uniformity.

2.4.2 Sobol’ sequences
First introduced by Sobol’ in 1967 [13], was the construction of a (t, d)-sequence. Sobol’s construc-
tion can be contrasted with other LDS such as Faure’s [15] as Faure’s points are (0, d)-sequences
in a base at least as large as d whereas Sobol’s points are (t, d)-sequences in base 2 for all d, with
values of t that depend on d [3]. This gives Sobol’ points the advantage of a much smaller base but
with slightly less uniformity. The ability to work in base 2 has obvious advantages when applied
to the computational setting with bit-level operations.

The Sobol’ points start from the Van der Corput sequence in base 2 only and the coordinates
of a d-dimensional sequence come from permutations of sections of the Van der Corput sequence.
These permutations result from the product of binary expansions of consecutive integers with a
set of generator matrices, one for each dimension. A generator matrix G has columns of binary

13

expansions of a set direction numbers g1, . . . , gr with elements equal to 0 or 1. The value r
represents the number of terms in the binary expansion of k and can be arbitrarily large. Let
(a0(k), . . . , ar−1(k))

⊤ represent the vector of coefficients of the binary representation of k such
that 

y1(k)
y2(k)

...
yr(k)

 = G


a0(k)
a1(k)

...
ar−1(k)

 mod 2, (2.9)

and y1(k), . . . , yr(k) are the coefficients of the binary expansion of the kth point in the sequence.
This gives the kth point as:

xk =
y1(k)

2
+
y2(k)

4
+ · · ·+ yr(k)

2r
.

The generator matrix G is upper triangular and the special case where it is the identity matrix
results in the Van der Corput sequence in base 2. We can perform (2.9) in a computer implemen-
tation through a bitwise XOR operation, giving us the computer representation of xk as

a0(k)g1 ⊕ a1(k)g2 ⊕ · · · ⊕ ar−1(k)gr,

where ⊕ is the bitwise XOR operator.
The core of the Sobol’ method are the generator matrices G and their direction numbers gj . As

previously mentioned, we require d sets of direction numbers to produce a d-dimensional sequence.
The method begins by selecting a primitive polynomial over binary arithmetic. The polynomial

xq + c1x
q−1 + · · ·+ cq−1x+ 1, (2.10)

has coefficients ci in {0, 1} and satisfies two properties [3]:

• it cannot be factored;

• the smallest power p for which the polynomial divides xp + 1 is p = 2q − 1.

The primitive polynomial in (2.10) defines a recurrence relation

mj = 2c1mj−1 ⊕ 22c2mj−2 ⊕ · · · ⊕ 2q−1cq−1mj−q+1 ⊕ 2qmj−q ⊕mj−q, (2.11)

where the mj are integers. We define the directions numbers as

gj =
mj

2j
.

Of course, to fully define the direction numbers we need initial values for m1, . . . ,mq. It is
enough to set each initialising mj to be an odd integer less than 2j , which ensures that all following
mj as defined by (2.11) also share this property. From this, each gj will be strictly between 0 and
1.

So, to construct a sequence we take the primitive polynomial and use the recurrence relation
(2.11) with some initial mj . We then calculate the corresponding direction numbers gj by dividing
by 2j (or performing a binary shift of the binary point j places to the left). Then with these
direction numbers we construct the generator matrix G. With this generator matrix we take a
vector a(k) of binary coefficients of k and perform the operation in (2.9) to give us the coefficients
of a binary fraction, from which we obtain xk.

There has been much research on choosing initial direction numbers, and also more efficient
construction implementation (namely Gray code construction [16]), which we will not go into
further detail about.

14

2.4.3 Scrambled Sobol’
As we are choosing points deterministically we are unable to measure error through a confidence in-
terval. In sacrificing some of the accuracy obtained through careful selection of points, randomised
QMC points allow us to calculate this error. One method for producing randomised QMC points
is known as scrambling.

Introduced by Owen and further developed in [17], scrambling is a technique that permutes
each digit of a b-ary expansion, where the permutation applied to the jth digit is dependent on
the preceding j − 1 digits. Scrambling can be described by taking each coordinate, partitioning
the unit interval into b subintervals of length 1/b and then randomly permuting those subintervals.
Then, further partition each subinterval into b subintervals of length 1/b2 and permute those, and
so on. At the jth step, we have bj−1 partitions, each of which consist of b intervals, and each is
permuted randomly and independently.

2.5 Graphics Processing Units and CUDA
The Graphics Processing Unit (GPU) has seen widespread adoption in computational finance
due to its highly parallel architecture designed for increased computational throughput. When
NVIDIA released CUDA [18] in 2007 it enabled more "general-purpose" usage of the previously
graphics-focused applications of GPUs.

2.5.1 CUDA architecture
The CUDA architecture allows each and every arithmetic logic unit (ALU) on the chip to be
marshaled by a program [19]. It is implemented by organising the the GPU into a collection of
streaming multiprocessors, which operate following the Single-Instruction-Multiple-Thread (SIMT)
paradigm. Because of the intended usage for general-purpose computation CUDA allows for arbi-
trary read and write access to memory and the software-managed cache known as shared memory.

From a software perspective, the CUDA architecture allows for kernels to be ran in parallel
across a grid. This grid is composed of multiple blocks, each of which contains a collection of
threads which all run the program defined by some launched kernel. Both blocks and grids can
have up to three dimensions each and CUDA provides useful syntax for indexing into them. In
hardware, the threads inside of a block are grouped into sets of 32 threads known as a warp, where
all threads inside the same warp execute the same instruction.

Each thread has its own local memory and registers, and threads in the same block have access
to the on-chip shared memory of that block. This is often how threads within a block communicate
with each other while maintaining high performance. The basic architecture is shown in Figure
2.2.

NVIDIA have also developed a toolkit for CUDA [20] which contains the compiler, highly
parallel implementations of mathematical libraries (such as cuBLAS, cuRAND and cuFFT) and a
host of other useful tools like a debugger and memory checker.

2.5.2 Practical implementation considerations
There are many considerations one must take into account when implementing algorithms on a
GPU. Most notably, the limited size of on-chip caches in comparison to the relatively large size
of global memory. For financial problems with high dimensions (such as Monte Carlo simulations
of many paths or many assets) shared memory will quickly become a limiting factor to the speed
of an implementation. This is because reading from global memory is roughly 100x slower than
loading directly from shared memory. This limitation has been addressed in literature and a few
common design patterns have arisen such as pre-computation of values shared between threads,
merging of kernels to avoid redundant data transfers and using coalesced reads and writes. See
[21] for an example of how problem reformation can lead to large speed ups and see [22] for further
discussion of GPU programming strategies.

15

Device

Kernel

Global Memory

Constant Memory

Block Block

Shared Memory Shared Memory

Reg Reg Reg Reg

Thread Thread Thread Thread

Local
Memory

Local
Memory

Local
Memory

Local
Memory

Figure 2.2: Basic CUDA memory architecture. Inspired by
https://cvw.cac.cornell.edu/gpu/memory_arch

16

Chapter 3

Background

This chapter provides an overview of developments in computational finance and the areas with
which this project focuses on.

3.1 Calculating Greeks

Calculating price sensitivities (Greeks) is arguably more important than prices themselves. This is
due to the use of Greeks for risk management and hedging. The calculation of Greeks requires sig-
nificant computational effort when compared to that of determining derivative prices thus efficient
implementation of algorithms for obtaining sensitivities is key for financial institutions.

3.1.1 Finite-difference method

The simplest method for obtaining sensitivities is based on the finite-difference approach. Within
the Monte Carlo framework this involves running multiple simulations of a pricing routine over a
range of values of input parameters. For example, determining the delta of a call option would
involve running simulations for different values of the underlying price and observing the changes
in the resulting option price. To obtain the derivative of an options price with respect to input
parameter θ we would estimate

∂V (t, θ)

∂θ
≈ V (t, θ + h)− V (t, θ)

h
,

where V (t, θ) is the value of the payoff of the option at time t and some small h ∈ R+ known
as the "bump size".

The finite-difference method is intuitive and easy to implement, however it requires significantly
higher computation time as the number of input parameters grows and suffers from poor bias and
variance properties.

3.1.2 Pathwise method

An alternative to finite-difference is the pathwise method. Developed by Glasserman [1] and
explained further by Broadie and Glasserman [23], the pathwise method has two main benefits:
increased computational speed and unbiased estimates. To explain the pathwise method, let us
consider the calculation of the delta of a vanilla European call option on a stock that satisfies (2.2).
Let Y denote the present value of the payoff

Y = e−rT [S(T)−K]+.

Applying the chain rule we obtain

∂Y

∂S(0)
=

∂Y

∂S(T)

∂S(T)

∂S(0)
. (3.1)

Observe that (2.3) is linear in S(0) and so ∂S(T)/∂S(0) = S(T)/S(0). We have ∂Y/∂S(T) =
e−rT1{S(T) > K}, combining the two gives us the pathwise estimator for the delta

17

∂Y

∂S(0)
= e−rT

S(T)

S(0)
1{S(T) > K}. (3.2)

We can obtain other first-order and higher-order derivatives through similar means. It can
be seen that (3.2) is easily evaluated and has been shown to be an unbiased estimator [23]. The
method can also be applied to path-dependent options and provides a lot of practical value for
options with no closed-form solution (such as Asian options). Further, as many of the factors used
in calculating an options price are present in the pathwise estimators, little effort is required to
add them to an existing pricing implementation.

To provide context of how pathwise is used within Monte Carlo, let us consider calculating the
delta of a derivative security with multiple underlying assets and payoff function f . We model
the evolution of a stock price such that it satisfies a similar SDE to (2.2) but where W is a d-
dimensional Brownian motion, and we are approximating the price using a Euler scheme with
timestep h = T/N , we can write the Euler approximation at time nh as follows:

Ŝ(n+ 1) = Ŝ(n) + a(Ŝ(n))h+ b(Ŝ(n))Z(n+ 1)
√
h, Ŝ(0) = S(0), (3.3)

with a(·) ∈ Rm, b(·) ∈ Rm×d and Z(1), Z(2), . . . are d-dimensional standard normal random
vectors. (3.3) then takes the form

Ŝ(n+ 1) = Fn(Ŝ(n)), (3.4)

with Fn a matrix transformation Rm → Rm. Then we can perform similar operations as in
(3.1), we obtain the pathwise estimate of the delta

m∑
i=1

∂f(Ŝ(N)

∂Ŝi(N)
∆ij(N) (3.5)

with

∆ij(n) =
∂Ŝi(n)

∂Ŝj(0)
, i, j = 1, . . . ,m.

This can be written as a matrix recursion

∆(n+ 1) = G(n)∆(n), ∆(0) = I, (3.6)

where G(n) represents the derivative of the transformation Fn and ∆(n) is the m×m matrix
with entries ∆ij(n).

There are some limitations to the pathwise method, namely the payoff function must be Lip-
schitz continuous but there exist other methods to overcome this problem such as smoothing the
payoff function, using the Likelihood Ratio Method (LRM) (see 3.1.3) or an alternative form of
Monte Carlo simulation such as "Vibrato" Monte Carlo [24].

3.1.3 Likelihood ratio method

Rather than view the final state of a stock price as a random variable, as in (2.3), we can look from
the perspective of a probability distribution [23]. For an option with payoff function Y = f(S(T))
and underlying satisfying (2.2) such that the payoff is expressed as a function of a random vector
X = (X1, . . . , Xd), its value can be written as

V = E[f(Y)] =

∫
f(x)gθ(x)dx, (3.7)

where gθ is probability density function of X. Supposing that the interchange of order between
integration and differentiation holds, we can take the derivative of (3.7) with respect to an input
parameter θ to obtain the likelihood ratio estimator

∂V

∂θ
=

∫
f(x)

g′θ(x)

gθ(x)
gθ(x)dx = E

[
f(X)

g′θ(X)

gθ(X)

]
. (3.8)

18

As probability densities are generally continuous we can apply the LRM to calculate Greeks
for derivatives with discontinuous payoff functions and, as with the pathwise method, it works well
for path-dependent options.

A weakness of LRM lies in its O(h−1) estimator variance where h is the timestep for the path
discretisation in simulation.

3.2 Monte Carlo methods

Monte Carlo simulation is an essential tool in computational finance for calculating prices of deriva-
tives and their sensitivities to input parameters, commonly known as the "Greeks". The application
of Monte Carlo simulation to pricing derivatives was first developed by Boyle in 1977 [25] and has
shown to be an efficient method for high-dimensional problems. The ease of implementation and
intuitiveness behind Monte Carlo have continued to make it a key approach for many problems in
computational finance [3].

Following Boyle’s seminal paper, application of Monte Carlo methods to many problems in
finance and the acceleration of implementations became a focus in literature. For a review of early
Monte Carlo methods and their use for calculating derivatives prices see [26].

Broadie and Glasserman [23] develop two techniques which allow for increased computational
speed over the traditional finite-difference method when calculating derivative sensitivities through
Monte Carlo simulation. The basics of these two methods are detailed in 3.1.2 and 3.1.3. These
"direct methods" not only speed up simulation but provide unbiased estimators for sensitivities,
unlike finite-difference, and work for path-dependant options.

The issue of discontinuous payoff functions has been discussed extensively in literature and still
continues to be a popular topic. Giles presents the "Vibrato" Monte Carlo method [24] which
combines the adjoint pathwise approach for the stochastic path evolution, with the likelihood ratio
method (LRM) for evaluation of the payoff function. He shows that when the payoff function is
discontinuous the resulting estimator has variance O(h−1/2), where h is the timestep for the path
discretisation, and O(1) when the payoff is continuous. The numerical results presented show its
superior efficiency when compared to standard LRM.

3.2.1 GPU implementations

There are several properties of Monte Carlo which make it attractive for an implementation with
high parallelism, thus in recent years much work has been done on using GPUs to accelerate these
simulations.

Dixon et al. [21] show that Monte Carlo is well suited to implementation on a high performance
GPU and discuss methods for accelerating Value-at-Risk estimation through several key implemen-
tation techniques. More recently, the techniques discussed in 3.1.2 paired with Algorithmic Adjoint
Differentiation (AAD) have also seen implementation on the GPU [27] and have shown speed-ups
of over 10 times when compared to traditional finite difference methods on GPUs, and more than
70 times when compared to multi-core CPU implementations.

3.3 Variance reduction techniques

Boyle et al. [26] discuss variance reduction techniques and show that their application reduces the
error in estimates, thus increasing the efficiency of Monte Carlo simulation. In its simplest form,
the argument for variance reduction techniques to increase efficiency. If we have two (unbiased)
Monte Carlo estimates for parameter θ, denoted by {θ̂(1)i , i = 1, 2, . . . } and {θ̂(2)i , i = 1, 2, . . . },
with b(j), j = 1, 2, the computational work required to generate one replication of θ̂(j), then we
would choose estimator 1 over 2 if

σ2
1b1 < σ2

2b2, (3.9)

where σ2
j is the variance of the estimator θ̂(j). We can take the product of variance and

computational work to be a measure of the efficiency, thus use (3.9) as a way to compare multiple
Monte Carlo estimators. We briefly detail some of the common techniques to reduce variance in
the following sections. For further explanation, the reader is referred to [3] and [26].

19

3.3.1 Antithetic variables

The idea behind antithetic variables comes from the fact that if Zi has standard normal distribution,
then −Zi also does. Therefore, if we have generated a sample path from inputs Z1, . . . , Zn we can
generate a second path −Z1, . . . ,−Zn. The variables Zi and −Zi form an antithetic pair such that
a large value in an estimate obtained from Zi will be paired with a small value obtained from −Zi.

As an example, let C denote the value of a vanilla European call option. We have an existing
unbiased estimate Ci generated as in line 4 of Algorithm 1 in 2.3.1. From the idea described above,
we can generate a second unbiased estimate C̃i, from a sample terminal stock price using −Zi.
Therefore, we can take

ĈAV =
1

n

n∑
i=1

Ci + C̃i
2

as an unbiased estimator for the call price. Heuristically, estimates obtained from n antithetic
pairs Zi,−Zi are distributed more regularly than a collection of 2n independent samples, thus may
reduce variance. It can be shown that the requirements to increase efficiency when calculating ĈAV
are easily satisfied for estimators of options that depend monotonically on inputs (e.g. European
and Asian options) [26].

3.3.2 Control variates

Control variates use the idea that exploiting errors in estimates of known quantities, allows you to
evaluate an estimate for an unknown quantity through their difference.

Suppose we have the unbiased estimate X̂ for the unknown expectation X = E[X̂], from a
single simulated path. We can also calculate another output Ŷ where the expectation Y = E[Ŷ]
is known. We can write

X = Y + E[X̂ − Ŷ].

Simply, X can be expressed as the known value Y plus the expected difference. This provides
the unbiased estimator

X̂CV = X̂ + (Y − Ŷ),

where the observed error (Y − Ŷ) is the control in the estimation of X.
It is shown that the estimator X̂CV has smaller variance than the estimator X̂ when the

correlation between X and Y is large [26]. Given that little additional effort is required to calculate
the control variate, the method provides good computational speed up when the previous condition
holds.

3.3.3 Importance sampling

Importance sampling uses the idea that expectations from two probability measures can be ex-
pressed in terms of each other, and by switching measure we can reduce variance. The change
of measure is used to give more weight to "important" results in order to obtain a more efficient
estimator.

Consider the problem of estimating

α = E[f(X)] =

∫
f(x)p(x)dx,

where X ∈ Rd is a random variable with probability density p and f is some function Rd → R.
The Monte Carlo estimate

α̂ =
1

n

n∑
i=1

f(Xi)

with Xi i.i.d random samples from p. Through change of measure we can rewrite our estimate
as

20

α̂q =
1

n

n∑
i=1

f(Xi)
p(Xi)

q(Xi)
,

with q as some other probability density satisfying p(x) > 0⇒ q(x) > 0. The value p(Xi)/q(Xi)
is known as the likelihood ratio and through careful selection of the importance sampling distri-
bution q, we can obtain estimates with lower variance than those from the original probability
measure p.

3.4 Quasi-Monte Carlo-based conditional pathwise method

As an extension to the Pathwise method described in 3.1.2, Zhang and Wang [2] introduce the
Quasi-Monte Carlo-based conditional pathwise method.

Let us denote the discounted payoff of an option g(θ,x) as

g(θ,x) = h(θ,x)1{p(θ,x) > 0}, (3.10)

where h(θ,x) and p(θ,x) are continuous functions of θ and x. The function p(θ,x) is said to
satisfy the variable separation condition if

1{p(θ,x) > 0} = 1{ψd(θ,z) < xj < ψu(θ,z)}, (3.11)

for some variable xj , where ψd(θ,z) and ψu(θ,z) are functions of θ and z where

z = (x1, . . . , xj−1, xj+1, . . . , xd)
⊤.

Then, if p(θ,z) satisfies (3.11), the discounted payoff in (3.10) can be written as

g(θ,x) = h(θ,x)1{ψd(θ,z) < xj < ψu(θ,z)}. (3.12)

Using Fubini’s theorem, the discounted payoff g(θ,x) is first integrated with respect to xj , such
that we can write the price of the option as E[G(θ,z)] where

E[g(θ,x)|z] =
∫ ψu

ψd

h(θ,x)ρj(xj)dxj1{ψd(θ,z) < ψu(θ,z)} = G(θ,z), (3.13)

and we assume can be found analytically. We can then interchange expectation and differenti-
ation (as with the pathwise method) to obtain estimates of Greeks.

Zhang and Wang show that the discounted payoffs of many options under the Black-Scholes
model satisfy the variable separation condition. Following proof that the interchange of expectation
and differentiation is valid, and defining the new target function G(θ, z) as the expectation of the
discounted payoff (3.12) conditioned on z, it is shown that the new estimate for the sensitivity of
the payoff to parameter θ is unbiased even when the original payoff (3.10) is not continuous.

It can be easily shown that G(θ, z) is a continuous function of z (demonstrated by Theorem A.1
in Appendix 1 of [2]). Using the idea of variable separation and taking the conditional expectation,
the new target function is smoother than the original payoff function, therefore benefits from QMC
in practice.

3.4.1 Simulating stock price for variable separation

In order to understand the example in 3.4.2 we must first understand how to simulate the underlying
asset’s price movement such that variable separation is possible. Here we give a brief overview of
the method described in [2], and continuing on from the preliminary information described in the
previous chapter. Following on from (2.2) and (2.3), let

S̃(tj) = S(0) exp (ω(tj − t1) + σ(W (tj)−W (t1)))

= S(0) exp (ω(tj − t1) + σW̃ (tj − t1)),
(3.14)

where W̃ (t) = W (t + t1) −W (t1). It is easy to see that W̃ (t) is also a standard Brownian
motion. From (2.3) and (3.14) we have

21

S(tj) = S̃(tj) exp (ωt1 + σW (t1)). (3.15)

Let W̃ = (W̃ (t2 − t1), . . . , W̃ (td − t1))
⊤ and note that W (t1) and W̃ are independent and

normally distributed so we are able to generate them as follows

W (t1) =
√
t1x1, x1 ∼ N(0, 1), (3.16)

W̃ = Az, z ∼ N(0d−1, Id−1), (3.17)

where z = (x2, . . . , xd)
⊤. 0d−1 is a d − 1 dimensional zero column vector and Id−1 is d − 1

dimensional identity matrix. The (d− 1)× (d− 1) matrix A satisfies AA⊤ = Σ where

Σ =


t2 − t1 t2 − t1 . . . t2 − t1
t2 − t1 t3 − t1 . . . t3 − t1

...
...

. . .
...

t2 − t1 t3 − t1 . . . td − t1


There exists much literature on the choice of the matrix A, and a good path generation method

can reduce the error of the estimates produced.
From (3.14)-(3.17) we obtain

S(tj) = S̃(tj) exp (ωt1 + σ
√
t1x1). (3.18)

It is clear to see that the stock price S(tj) at time tj is a product of the exponential term, and
S̃(tj), which are functions of x1 and z respectively. This fact allows many options to satisfy the
variable separation conditions, thus we are able to take the conditional expectation to find G(θ,z)
and differentiate with respect to the parameter of interest.

3.4.2 Example: Binary Asian delta by QMC-CPW
As an example, let us consider the calculation of the delta of a binary Asian option with discounted
payoff

g(θ,x) = e−rT1{SA > K} (3.19)

where SA is the arithmetic average of the stock price S(tj) and K is the strike. Then from the
definition of S(tj) we obtain

SA = exp (ωt1 + σ
√
t1x1)

1

d

d∑
j=1

S̃(tj) = S̃A exp (ωt1 + σ
√
t1x1), (3.20)

with S̃A as the arithmetic average of S̃(tj) for j = 1, . . . , d. From (3.20) we can see that

{SA > K} = {x1 > ψd},

where

ψd =
lnK − ln S̃A − ωt1

σ
√
t1

and is a function of z only. From this we have achieved the variable separation form listed in
(3.11). We are now able to calculate the analytical solution of G(θ,z):

E[g(θ,x)|z] =
∫ +∞

−∞
e−rT1{SA > K}ϕ(x1)dx1

=

∫ +∞

−∞
e−rT1{x1 > ψd}ϕ(x1)dx1

=

∫ +∞

ψd

e−rTϕ(x1)dx1

= e−rT [1− Φ(ψd)] = G(θ,z).

(3.21)

22

Here ϕ(x) and Φ(x) note the normal density function and the normal cumulative distribution
function respectively. The proof of validity of interchange of expectation and differentiation will
not be shown here and the reader is referred to [2] for further details.

By taking differentiation of (3.21) with respect to the initial stock price S(0) we obtain the
conditional pathwise estimate for the delta:

∂G

∂S(0)
= −e−rTϕ(ψd)

∂ψd
∂S(0)

= e−rTϕ(ψd)
1

σ
√
t1

1

S̃A

S̃A
S(0)

=
e−rT

S(0)σ
√
t1
ϕ(ψd).

3.5 Related work
As previously mentioned, the QMC-CPW method [2] can be viewed as an extension to the PW
method developed by Glasserman [1]. In their paper, Zhang and Wang consider the relationship
of QMC-CPW with current methods other than traditional PW. They show the similarity in the
estimates produced by Lyuu and Teng in their LT method [28] despite approaching the problem
from different perspectives.

The idea of conditional Monte Carlo is not new however, and has been covered widely. Boyle and
Glasserman [26] discuss how the technique exploits the variance reducing property of conditional
expectation such that for two random variables X and Y , V ar[E[X|Y]] ≤ V ar[X], typically with a
strict inequality except in a few trivial cases. The variance reduction is effectively achieved because
we are doing part of the integration analytically by conditioning, leaving a simpler task for Monte
Carlo simulation. Glasserman also discusses taking conditional expectation in order to smooth
the discounted payoff. In section 7.2 of [3] we see the idea of conditional expectation applied to a
digital payoff such that the traditional PW method can be used to obtain and unbiased estimate
for the delta (which is not possible with PW alone).

23

Chapter 4

Implementation

The design considerations and their reflecting implementations are detailed in this chapter.

4.1 Path simulation

To simulate a path following a Brownian motion, as in (2.2) and later in (3.14)-(3.18), we must
generate and consume random normal variables Zi. The main focus of this project is to improve
efficiency and speed when calculating Greeks and so we are not concerned with the performance
when generating random variables. The basics of random number generation are discussed in
sections 2.3.2 through 2.4.3. There exist many libraries for random number generation and we
choose to use cuRAND [29] due to it being part of the CUDA toolkit.

To utilise the highly parallel nature of the GPU, each thread will be responsible for the sim-
ulation of one path. This requires each thread to have access to it’s own distinct set of random
variables and a place to store the results from path simulation. The loading and storing of these
values is of key importance during the simulation. Due to the number of random variables required
we store the arrays in global memory which is a slower, but larger, type of memory available in
the CUDA architecture. The access pattern to global memory can have a huge impact on the
performance of a kernel. Here, we detail the concept of coalesced memory accesses. As discussed
in 2.5.1 threads are are arranged into groups of 32 known as a warp. Accesses to global memory
in CUDA are coalesced such that 32-, 64- and 128-byte accesses are loaded in a single transaction,
shown in Figure 4.1. In our implementation, each block contains 64 threads, so at each timestep
two warps will load their random variables in just two memory transactions.

Thread ID

Address

0 31

0 128

Figure 4.1: Coalesced memory access where a warp of 32 threads loads 128-bytes in a single
transaction. Inspired by: https://cvw.cac.cornell.edu/gpu/coalesced

24

Therefore it is extremely important that we load random variables in a way that minimises
the number of transactions (due to the much slower global memory). If we were to arrange the
accesses such that each thread were to load N contiguous random variables from memory during
path simulation, at each step we would have to sequentially perform a separate memory transaction
for each thread. This can incur costs of a lot more than 10x when compared to coalesced accesses.
As such, we access random variables such that a single transaction satisfies a whole warp.

To perform path generation, we use two types of random number generator from cuRAND:
CURAND_RNG_PSEUDO_DEFAULT and CURAND_RNG_QUASI_SCRAMBLED_SOBOL32. Due to the nature
of low-discrepancy sequences we must specify a dimension for the Sobol’ generator, we use the
number of timesteps in a simulation. We have to pay close attention to the dimensions when
using the random variables from the quasi generator as the simulation of each timestep must be
independent from each other, thus we must use a random variable from a different dimension. By
default, the cuRAND Sobol’ generator will output N/d numbers from dimension 1, followed by
N/d from dimension 2 when generating N variables in d dimensions. The ordering of dimensions is
not well spatially-located so we choose to transform the ordering so that coalesced memory access
with a smaller stride are possible. Algorithm 2 demonstrates this transformation.

Algorithm 2 Transformation of quasi-random variables from N ∗PATHS/d of each dimension to
BLOCK_SIZE of each dimension repeated, where N is the number of timesteps.
1: d_z[PATHS*N] ▷ Output array
2: temp_z[PATHS*N] ▷ Input array of random numbers
3: desired_idx← threadIdx.x + N ∗ blockIdx.x ∗ blockDim.x
4: temp_idx← threadIdx.x + blockIdx.x ∗ blockDim.x
5: for i← 0..N − 1 do
6: d_z[desired_idx]← temp_z[temp_idx]
7: desired_idx← desired_idx + blockDim.x
8: temp_idx← temp_idx + PATHS
9: end for

Shown in in Figure 4.2 is the input and output ordering of random variables. We see that B
variables, where B is BLOCK_DIM, are taken from each dimension and placed next to each other.
This process is repeated such that we have PATHS sets of random numbers from dimension 1 to
d. One set will be used by one block such that the BLOCK_SIZE threads in that block simulate
a single path each (one timestep uses one of the dimensions), with the random variable accesses
being coalesced.

...

...

Dim 1 Dim 2

N/d 2N/d

Dim 1 Dim 2 Dim 3 Dim 1 Dim 2 Dim 3 ...

B 2B 3B dB (d+1)B (d+2)B (d+3)B

Figure 4.2: Transformation of cuRAND Sobol’ numbers from input (top) to output (bottom)
ordering.

In order to reduce the memory footprint and number of accesses, the results of path simulation
are not stored for standard MC and standard QMC and required results are calculated on-the-fly

25

during path simulation. This decision also reinforces the decision to encapsulate simulation inside
of each product - discussed in 4.2. This allows us to store values required for calculation of the
Greeks (such as SA) whilst simulating the path, and use them in the later steps. The basic steps
are outlined in Algorithm 3. The separation of S and S̃ is necessary so that we are able to calculate
the Greeks estimates as per section 3.4. For QMC with Brownian bridge construction (see 4.4 for
futher description) we must store the intermediate Brownian bridge results to consume them for
path generation afterwards.

Algorithm 3 Per-thread path simulation where N is the number of simulated timesteps with
dt = 1/N

1: S ← S0

2: Z ← RandomNormals[ind]
3: W1 ← sqrt(dt) ∗ Z
4: W̃1 ←W1

5: for i← 1..N do
6: ind← ind + blockDim.x ▷ Coalesced reads, when blockDim.x is a multiple of 32
7: Z ← RandomNormals[ind]
8: W̃i ← W̃i + sqrt(dt) ∗ Z
9: S̃ ← S0 ∗ exp (ω ∗ (n− 1) ∗ dt+ σ ∗ (W̃ −W1))

10: S ← S̃ ∗ exp (ω ∗ dt+ σ ∗W1)
11: end for

4.2 Products

It is required to calculate the prices and sensitivities of a variety of options and the functions to
do so typically vary between different option types. However, the overall process is the same for
pricing any derivative, namely: simulate paths of the underlying asset, followed by calculating the
prices and Greeks given the simulated path. These two requirements are that of any option and
as such we combine them into a product. In this paper we focus on three types of exotic option:
arithmetic Asian, binary Asian and lookback. For derivations of the Greek estimates as in 3.4 see
section 4.5. Each of these products implements its own path simulation and Greeks calculation
method.

Inheritance and virtual functions are widely-used in standard C++ and similar programming
languages, however there are many more restrictions with CUDA. Due to having separate address
spaces, copying objects with virtual functions from host memory to device memory can be tricky.
To avoid unnecessary complexity, we avoid the use of inheritance directly in kernels (on device)
and use them only to aid readability and development. To avoid inheritance directly, we make use
of templating in C++. That is, kernels which are used for multiple option types are templated so
that at compile time distinct versions of the kernel are generated for each option. From this we
obtain the same benefits from inheritance such as minimal repetition of code, without having to
copy objects with virtual function tables across address spaces or perform any casts.

Each thread instantiates its own local copy of the product which has member fields for values
such as the underlying’s price at the current timestep, running averages, and index to the current
random variable. The SimulatePath method is called and that thread performs a single simulation
for the product, calculating any intermediate values such as the average underlying price or the
inner sum of the vega estimate. The final call is to the CalculatePayoffs function which calculates
the price of the option and Greeks, then places these values back into the global struct of arrays
of results.

4.3 Antithetic variables

As a variance reduction technique we have used antithetic variables as described in 3.3.1. Using
the already generated random normal variables for the standard MC simulation, we take their
complement and simulate a second path from which another set of estimates are calculated. The
estimates from the standard and antithetic paths can then be combined to produce the variance

26

reduced final estimate. Adding antithetic variables requires minimal storage on device as we only
need to add fields to our products struct that represent the antithetic counterpart to the standard
MC values such as S̃(tj).

4.4 Brownian bridge construction
For QMC, we have implemented Brownian bridge construction as a variance reduction method. As
shown in Algorithm 3 we generate the Brownian motion W̃i from left to right (i.e. from i = 1 . . . , d).
However, we may choose to generate the W̃i in any order as long as we sample from the correct
conditional distribution given the values already generated. Conditioning a Brownian motion on
its endpoints produces a Brownian bridge [3]. The basic idea is that we generate the final value W̃d,
then continue to fill in each intermediate value: W̃d/2, then W̃d/4 and W̃3d/4 etc, until all values
are calculated. For further explanation of how the conditional mean and variance are derived, the
reader is referred to section 3.1 of [3].

Our implementation does not construct the path directly using a Brownian bridge, but rather
uses the bridge to calculate the increments in the path. This allows us to construct W̃ simply by
iterating through the output of the Brownian bridge construction and adding it to the previous
value. Algorithm 4 demonstrates the process of constructing the Brownian bridge increments.

Algorithm 4 Construction of Brownian bridge increments where the number of timesteps is equal
to 2m. idx_zero is passed to each thread as the first index into the global path array.
1: path[idx_zero]← d_z[idx] ▷ Put first random variable (representing terminal value) in path
2: for k ← 1..m do
3: i← 2k − 1
4: for j ← 2k−1 − 1..0 do
5: idx← idx + blockDim.x ▷ Access next random variable
6: z = d_z[idx]
7: a← 0.5 ∗ path[idx_zero + j ∗ blockDim.x]
8: b←

√
1/2k+1

9: path[idx_zero + i ∗ blockDim.x]← a− b ∗ z
10: i← i− 1
11: path[idx_zero + i ∗ blockDim.x]← a+ b ∗ z
12: i← i− 1
13: end for
14: end for

Brownian bridge construction gives finer control over the overall structure of the simulated path
as opposed to the standard recursion technique: we use only one random variable to generate the
terminal value and then continue to add more and more detail to the rest of the path. Furthermore,
when using Sobol’ sequences, the first random variables are particularly well distributed leading to
the terminal values also being well distributed. This is due to the fact that the initial coordinates
of a Sobol’ sequence have superior uniformity to that of higher-indexed coordinates [3]. As the
terminal value is often more important than other values in the path this can lead to less error in
the estimates produced by Brownian bridge construction with Sobol’ sequences. An example of
how the path is generated as more points are sampled can be seen in Figure 4.3.

The main downside with performing Brownian bridge construction rather than the standard
approach is that we need to store the generated path to later consume to simulate the stock price
in the variable separated form as per 3.4.1. This means we not only use more global memory on
device but will also have a slower kernel runtime due to the increase in memory accesses. However,
with this trade-off we expect to achieve a much smaller error in our estimates.

4.5 Greeks calculation
The step of calculating Greeks is actually quite straightforward. Once we have simulated the path
and saved the required values we simply need to evaluate the estimates and store them. Below
we list the derived Greeks that are used to calculate estimates as per [2] following on from the
example in 3.4.2.

27

Figure 4.3: Brownian bridge construction after 1, 2, 4 and 8 points have been sampled conditional
on the previous values generated.

4.5.1 Binary Asian Greeks

As we have already shown the full derivation for the delta, we continue with the estimates for
gamma and vega.

gamma :
∂2G

∂S(0)
2 =

e−rT

S(0)
2
σ
√
t1
ϕ(ψd)

(
ψd
σ
√
t1
− 1

)
.

vega :
∂2G

∂σ
= e−rTϕ(ψd)

 1

dσ
√
t1S̃A

d∑
j=1

S̃(tj)(B̃(tj − t1)− σ(tj − t1)) +
ψd
σ
−
√
t1

 .
Note that the sum inside of the vega calculation is an example of one of the values that is

calculated on-the-fly during the path simulation, allowing us to disregard storing the path for
standard MC and QMC and storing single precision values only.

4.5.2 Arithmetic Asian Greeks

By taking the conditional expectation we obtain the smoothed payoff

G(θ,z) = er(t1−T)S̃A
[
1− Φ(ψd − σ

√
t1
]
− e−rTK [1− Φ(ψd)]

We can now differentiate with respect to our parameters of interest to obtain the following
estimates.

delta :
∂G

∂S(0)
= er(t1−T) S̃A

S(0)

[
1− Φ(ψd − σ

√
t1)

]
.

gamma :
∂2G

∂S(0)
2 =

Ke−rT

S(0)
2
σ
√
t1
ϕ(ψd).

28

vega :
∂G

∂σ
= er(t1−T)

[
1− Φ(ψd − σ

√
t1)

] 1
d

d∑
j=1

S̃(tj)(B̃(tj − t1)− σ(tj − t1)) +Ke−rTϕ(ψd)
√
t1.

4.5.3 Lookback Greeks

Again, we take the conditional expectation to obtain the smoothed payoff

G(θ,z) = er(t1−T)S̃max
[
1− Φ(ψd − σ

√
t1
]
− e−rTK [1− Φ(ψd)] ,

where S̃max is the maximum value of S̃(tj) for j = 1, . . . , d, and ψd = (lnK − ln S̃max −
ωt1)/σ

√
t1. By taking differentiation with respect to our parameters we obtain the estimates

delta :
∂G

∂S(0)
= er(t1−T) S̃max

S(0)

[
1− Φ(ψd − σ

√
t1)

]
.

gamma :
∂2G

∂S(0)
2 =

Ke−rT

S(0)
2
σ
√
t1
ϕ(ψd).

vega :
∂G

∂σ
= er(t1−T)

[
1− Φ(ψd − σ

√
t1)

] 1
d

d∑
j=1

S̃(tj)(B̃(tj − t1)− σ(tj − t1))1{S̃(tj) = S̃max}

+Ke−rTϕ(ψd)
√
t1.

4.6 Likelihood Ratio estimates

As a baseline for the error in the Greek estimates, we implement the LR method through Monte
Carlo simulation. Taking the ideas in 3.1.3 we apply LR to our set of options. The expression
given in (3.8) shows that

f(X)
g′θ(X)

gθ(X)
,

is an unbiased estimator of the derivative of E[Y] with respect to parameter θ. The expression
g′θ(X)/gθ(X) is commonly referred to as the score. Calculating Greeks using LR simplifies to
calculating the product of the discounted payoff and the relevant score for the Greek.

Below are listed the scores for the Greeks of each of the three options we are concerned with.

delta :
Z1

S(0)σ
√
t1
.

gamma :
Z2
1 − 1

S(0)
2
σ2t1

− Z1

S(0)
2
σ
√
t1
.

vega :

d∑
j=1

Z2
j − 1

σ
− Zj

√
t1.

Note that the scores for the three options are equal and the difference between the estimates is
simply the form of the payoff.

29

4.7 CPU implementation
To demonstrate the superior speed when using GPUs we implement a naive, sequential Monte Carlo
simulation with the same form of estimates from the aforementioned sections. The implementation
has the general form shown in Algorithm 1. The random normal variables generated for use in
the GPU simulation are reused by the CPU simulation, in which a single thread performs NPATH
simulations of N timesteps each. After each path simulation the estimates are calculated and
stored in the results struct in the same way that a single GPU thread does.

30

Chapter 5

Results

To demonstrate the effectiveness of the QMC-CPW method from section 3.4 we run many simula-
tions on the GPU and calculate the variance reduction factors (VRFs) for multiple methods. Using
the Likelihood Ratio estimate as the baseline for variance, the VRF for a method is calculated as

σ2
0

σ2
,

where σ2
0 is the variance in the LR estimate for the Greek. For all methods the estimates for

the Greeks are calculated over P number of paths of N timesteps, such that the estimate from a
single path is given as

C(ℓ) = F (θ,zℓ),

where zℓ is a vector of N normal random variables and F (θ, x) is the underlying function we
wish to estimate (e.g. the delta estimate for an arithmetic Asian option). To calculate the error
in the estimate we perform L independent runs of the simulation with P fixed such that the final
estimate is given as

C =
1

L

L∑
ℓ=1

C
(ℓ)
P ,

where C(ℓ)
P is the estimate from the ℓth run over P paths. Finally, the error in the estimate is

calculated as follows:

σ =

√√√√ 1

L

L∑
ℓ=1

(C − C(ℓ)
P)

2
.

For delta, gamma and vega estimation we compare four methods: standard Monte Carlo with
CPW estimates (MC-CPW), Monte Carlo with antithetic variables and CPW estimates (MC+AV-
CPW), Quasi-Monte Carlo with CPW estimates (QMC-CPW), and finally Quasi-Monte Carlo with
Brownian bridge construction and CPW estimates (QMC+BB-CPW). Following a similar style as
in [2] we perform the simulations over a range of strike prices K = 90, 100, 110, and two values for
the number of discrete time steps d = 64, 256. We denote the option as "in the money" at K = 90,
"at the money" at K = 100 and "out the money" at K = 110. The number of paths, initial stock
price, volatility, and risk-free interest rate are all constant and equal for each option type with
P = 215, S(0) = 100, σ = 0.2, and r = 0.1. The expiration date for each option T = 1.0, or one
year. We perform L = 500 independent runs for all methods. The VRFs for arithmetic, binary
and lookback options are presented in tables 5.1-5.3 respectively. Later we discuss the behaviour
of the error in Greek estimates as we increase the number of path simulations per independent
run. Information about the Tesla T4 GPU and the specifications of the CUDA toolkit that was
used to collect the results can be found in Appendix A.

We can make the following observations from the experimental results:

• The QMC+BB-CPW method is the most accurate in almost all cases. This is due to the
combination of the CPW method which smooths the integrand, allowing for QMC method to

31

work more efficiently, and the Brownian bridge construction which further reduces variance
through the methods described in section 4.4.

• For the arithmetic Asian option we see QMC+BB-CPW as the best method in all experi-
ments, with VRFs in the hundreds of thousands, and in many cases more than 10x accurate
in comparison to QMC-CPW and MC+AV-CPW. When looking at the VRFs for gamma es-
timates of the arithmetic Asian option (Table 5.1), MC+AV-CPW outperforms QMC-CPW
and this could be due to MV+AV-CPW effectively simulating twice as many paths (standard
+ antithetic paths) which of course helps to reduce the variance. However, this is not the
case for the delta and vega estimates which is interesting to note.

• Strike price does affect the performance of many experiments, particularly for the delta and
gamma estimates, in which we see an increase in the strike leading to a decrease in VRF.

• We discuss dimensionality later, but it also has an effect on the accuracy and becomes more
apparent for QMC methods.

Greeks K d LR+MC MC-CPW MC+AV-CPW QMC-CPW QMC+BB-CPW
delta 90 64 1 623 3,209 5, 784 154,860

256 1 2,159 9,527 11,976 106,806
100 64 1 106 963 903 52,689

256 1 353 2,702 1,735 34,478
110 64 1 35 172 207 13,226

256 1 103 423 445 7,645

vega 90 64 1 471 1,566 14, 603 442,513
256 1 1,595 5,424 30,894 340,858

100 64 1 294 759 7,770 376,285
256 1 967 2,540 18,162 633,051

110 64 1 113 289 3,195 119,816
256 1 330 917 6,701 294,813

gamma 90 64 1 20,393 49,141 28,067 271,351
256 1 108,667 275,370 134,644 487,940

100 64 1 3,814 9,433 5,427 75,020
256 1 20,967 49,834 21,116 72,558

110 64 1 1,101 2,468 1,477 23,085
256 1 5,977 13,770 6,147 25,695

Table 5.1: VRFs for arithmetic Asian option on GPU with 215 paths. S(0) = 100, σ = 0.2, r = 0.1
and T = 1.

• For delta and vega estimates of the binary Asian option (Table 5.2) we see QMC+BB-CPW
outperforming all other methods and taking advantage of the increased smoothness of the
integrand.

• We see little or no improvement of QMC-CPW over MC-CPW for all estimates of the binary
option which could be an indication of the limitations of QMC in high dimensions.

• We also see this in the gamma estimates for the binary Asian option, where even QMC+BB-
CPW is outperformed by MC+AV-CPW for all of the experiments with 256 timesteps. A
technique to reduce the effective dimension of the problem such as Principle Component
Analysis (PCA) would likely remove these differences and result in a substantial decrease in
error for the QMC methods.

• The binary Asian option results in some of the smallest VRFs for all Greek estimates espe-
cially for the delta and gamma.

• Again, we see the strike price having a large impact on the VRFs. For example the delta
estimate with K = 90 over 256 timesteps in Table 5.2 is 714 and decreases to 150 for K = 110.

32

Greeks K d LR+MC MC-CPW MC+AV-CPW QMC-CPW QMC+BB-CPW
delta 90 64 1 109 247 150 1,447

256 1 159 389 197 714
100 64 1 43 123 58 830

256 1 64 150 64 221
110 64 1 23 69 32 497

256 1 35 89 36 150

vega 90 64 1 326 733 447 4,227
256 1 481 1,168 593 2,114

100 64 1 771 2,078 1,176 12,571
256 1 1,419 3,405 1,502 5,111

110 64 1 839 1,965 1,167 9,232
256 1 1,976 4,617 1,950 7,803

gamma 90 64 1 363 713 376 999
256 1 691 1,446 673 883

100 64 1 136 201 126 784
256 1 201 415 212 392

110 64 1 79 137 67 355
256 1 116 237 117 179

Table 5.2: VRFs for binary Asian option on GPU with 215 paths. S(0) = 100, σ = 0.2, r = 0.1
and T = 1.

Greeks K d LR+MC MC-CPW MC+AV-CPW QMC-CPW QMC+BB-CPW
delta 90 64 1 7,020 58,906 382,145 2,631,721

256 1 26,665 187,898 1,135,848 7,737,083
100 64 1 1,635 12,183 21,857 40,682

256 1 8,323 58,180 79,683 171,880
110 64 1 233 1,899 1,896 13,181

256 1 920 5,594 4,264 23,354

vega 90 64 1 501 2,333 10,667 51,816
256 1 1,855 7,492 33,043 165,179

100 64 1 311 1,420 6,580 35,370
256 1 1,138 4,569 20,418 103,536

110 64 1 178 870 4,601 26,065
256 1 657 2,876 13,739 69,210

gamma 90 64 1 55,102,633 113,383,607 113,193,362 129,220,281
256 1 1.2 ∗ 1017 4.2 ∗ 1017 6.2 ∗ 1016 1.0 ∗ 1018

100 64 1 27,235 72,792 89,333 212,928
256 1 175,073 393,763 434,423 604,285

110 64 1 9,787 24,450 13,755 42,199
256 1 51,687 123,922 60,037 112,398

Table 5.3: VRFs for lookback option on GPU with 215 paths. S(0) = 100, σ = 0.2, r = 0.1 and
T = 1.

• For the lookback option (Table 5.3), we see some of the largest VRFs, particularly those for
the gamma estimates.

• We also see just how great of an effect the strike price has on the lookback option: when
K = 90 and the option is in the money we can see a VRF of 1.0 ∗ 1018, whereas when the
option is at the money and out the money we see estimates in the range of hundreds of
thousands.

• For the delta and vega estimates QMC-CPW outperforms MC+AV-CPW for almost all

33

experiments, except when K = 110 for the delta estimate.

We also present graphs of the error in Greek estimates over a range of paths. The graphs in
Figures 5.1-5.9 are all calculated over L = 500 independent runs with P = 2i paths for i ∈ [12, 19],
with 256 timesteps each. The graphs for paths of 64 timesteps are not included but we see similar
behaviour to the graphs presented, and note that the earlier observations about dimensionality for
the gamma estimates in table 5.2 are maintained. We note the following observations:

• QMC+BB-CPW tends to outperform other methods across all numbers of paths.

• Its advantage in gamma estimates typically appears to be much smaller except that of the
arithmetic Asian option.

• For the delta and gamma estimates in Figure 5.1 we see QMC-CPW having little or no
advantage over MC+AV-CPW.

• Vega estimates are typically the least accurate Greek.

• As the number of paths approaches 219 we begin to see QMC+BB-CPW outperform all other
methods for every Greek estimate.

Figure 5.1: Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 90,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

Figure 5.2: Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 100,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

34

Figure 5.3: Errors in Greek estimates of an arithmetic Asian option with S(0) = 100, K = 110,
σ = 0.2, r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

• For the arithmetic Asian estimates (figures 5.1-5.3), QMC+BB-CPW is the best performing
method across all number of paths and Greeks.

• For gamma estimates in figures 5.1-5.3 the advantage appears to increase as the number of
paths increase.

• QMC-CPW is greatly outperformed by MC+AV-CPW for the arithmetic option’s (figures
5.1-5.3) gamma estimates of the arithmetic option whilst they perform similarly for delta.

• For the first order Greeks (delta and vega in figures 5.1-5.3) QMC+BB-CPW has a large
advantage over the other methods even at a small number of paths. However, for the second
order Greek of gamma it’s error is roughly equal to that of MC+AV-CPW at a small number
of paths and it only gains a noticeable advantage as the number of paths increases.

Figure 5.4: Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 90, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

35

Figure 5.5: Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 100, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

Figure 5.6: Errors in Greek estimates of a binary Asian option with S(0) = 100, K = 110, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

• The errors in the estimates for the binary Asian option (figures 5.4-5.6) are much closer than
that of the arithmetic Asian.

• For delta and vega of the binary option in figures 5.4-5.6, QMC+BB-CPW is the superior
method across all number paths.

• MC+AV-CPW tends to match and often outperform QMC+BB-CPW when the number of
paths is smaller for the binary option (figures 5.4-5.6). In fact, we only see MC+AV-CPW
outperformed for gamma at a very high path number (219).

• For all estimates of the binary option (figures 5.4-5.6) we see almost no improvement with
QMC-CPW over MC-CPW.

36

Figure 5.7: Errors in Greek estimates of a lookback option with S(0) = 100, K = 90, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

Figure 5.8: Errors in Greek estimates of a lookback option with S(0) = 100, K = 100, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

Figure 5.9: Errors in Greek estimates of a lookback option with S(0) = 100, K = 110, σ = 0.2,
r = 0.1, N = 256, and T = 1 over 212 to 219 paths.

• We see the largest variation in performance across the lookback estimates (figures 5.7-5.9).

• For the gamma estimates when K = 90 (in the money, figure 5.7) the errors are extremely
small and don’t follow the same monotonically decreasing trend we see in most other graphs.

• The vega estimates in figures 5.7-5.9 are the most consistent where we see MC-CPW, MC+AV-
CPW, QMC-CPW, QMC+BB-CPW as the order from largest error to smallest for K =

37

90, 100, 110.

• When the option is at the money in figure 5.8, we see the least improvement of QMC+BB-
CPW over QMC-CPW when compared to other options and estimates, where it is outper-
formed at a smaller number of paths and even matched at 217 paths.

The final objective was to achieve a significant speed up over a CPU implementation. For
the three methods where we do not store the path, we see speedups for a single kernel run when
compared to the naive sequential CPU implementation upwards of 500x for those experiments with
64 timesteps per path, and upwards of 900x for those with 256 timesteps.

The overhead of accessing global memory on device becomes apparent when we see the difference
in the speedup between the QMC+BB-CPW experiments and the other methods. Due to having
to store the Brownian bridge path construction and then repeatedly accessing the array in global
memory we see a significant decrease in speedups from the previously mentioned values to around
200x for both 64 and 256 timesteps. It is interesting to note that the lookback option sees the
greatest speed improvement over the CPU.

Although tables 5.1-5.3 show that MC+AV-CPW outperforms QMC+BB-CPW in some in-
stances, from figures 5.1-5.9 we see that as the number of paths increases past 215, which is the
value used for the tables, QMC+BB-CPW tends to become the best performing method.

38

Chapter 6

Evaluation

In this chapter the performance of our implementation is considered, in terms of VRFs and
speedups, when compared with other similar solutions.

6.1 Performance

When compared with the implementation by Zhang and Wang [2] our most accurate method does
not show as large VRFs as theirs. For example, many of their arithmetic Asian delta estimates (ours
are in Table 5.1) are in the hundreds of millions whilst ours are in the hundreds of thousands. The
implementation difference between this project and that in [2] is the variance reduction technique
used with QMC. We use the Brownian bridge path construction whereas Zhang and Wang use
Gradient Principle Component Analysis (GPCA) [30]. Whereas Brownian bridge is most effective
for options whose terminal price is considered the most important value (e.g. European options),
Asian options do not receive as great a variance reduction due to the form of their payoff. GPCA
and PCA has been shown to reduce the effective dimension which makes QMC methods far more
efficient, thus Zhang and Wang’s implementation sees much better VRFs.

We can directly see the improvement of our implementation over that of the traditional pathwise
and likelihood ratio methods simply from Tables 5.1-5.3. Noting the significantly better VRFs of
QMC+BB-CPW in chapter 5, financial institutions would achieve much greater accuracy through
the use of our implementation. Given how important calculating Greeks is for these institutions,
the benefits from using our implementation are far and wide: a more precise understanding of
individual products behaviour to input parameters can allow for a far better understanding of the
overall risk a company has to the market. This allows a company to perhaps take on larger positions
with more confidence in their exposure and give them the ability to better react to market events.
In a more specific situation, having more accurate estimates for Greeks leads to better pricing of
products, which can give a market participant an advantage over competitors.

As noted in chapter 5, as the number of paths increase, the error in the estimates from
QMC+BB-CPW become the smallest of all the methods. We are able to comfortably simulate
219 paths on the Tesla T4 GPU, thus the ever-present trade off between speed and accuracy is
the main consideration when applying the method. At 215 paths (used for tables 5.1-5.3) we see
a single kernel run take around 0.8ms for the Brownian bridge construction method and 0.2ms
for the others. The basic CPU implementation at 215 paths takes 150ms. As we move up to 219

paths, QMC+BB-CPW requires 12-13ms per kernel call and the other methods around 3ms.

6.2 Applicability and design

Although only applied to three types of option, our method can be implemented for many types of
options - both vanilla and exotic. This allows for a single algorithm to be applied to a large set of
the products an institution may work with and reduces the need for many distinct methods that
depend on the option type, whilst also achieving a higher accuracy. For example, estimating the
gamma of many option types is not possible through pathwise alone and so an existing solution
would be to apply the likelihood ratio in conjunction with pathwise. Any variant of QMC-CPW

39

is able to calculate gamma estimates so broadens the range of products that an institution can
handle with much less overhead.

The templated design of the simulation also allows other option types to be added easily, includ-
ing those with multiple underlying assets. A redefinition of the path simulation and payoffs/Greeks
formula for each type is all that is needed.We are also able to pull out Brownian bridge construction
such that products can ingest the increments directly rather than the random normal variables Zi.

One of the current limitations with the design is the lack of dynamic memory allocation, which
would allow us to further encapsulate different product types and have a finer-grained control
over simulation. In Savine’s book [31], a dynamic framework is presented in which options with a
varying numbers of required random normal variables for simulation, can all follow the same path
through the program. The implementation presented in this report has a fixed number of random
numbers to generate at compile time and as such each product is required to take in all of those
variables. This design was noted but the added difficulty of dealing with objects containing virtual
functions in CUDA was seen as too far aside for the main objective of combining the QMC-CPW
method and the parallel performance of the GPU. We recognise that the main objective of this
project was experimental results and although added flexibility and a more polished product would
be nice to have it was not a key element to begin with. We discuss these points later in section
7.1.

40

Chapter 7

Conclusion

In this project we have presented a powerful method for calculating the Greeks of exotic options on
the GPU. The Quasi-Monte Carlo Conditional Pathwise method developed by Zhang and Wang
[2] allows for smoothing of the integrands which Quasi-Monte Carlo methods take advantage of to
efficiently estimate the Greeks.

Our implementation uses the highly parallel nature of GPUs to efficiently implement the Quasi-
Monte Carlo simulation such that our solution is hundreds of times faster than a serial CPU imple-
mentation. As a variance reduction technique, Brownian bridge construction is used in conjunction
with the CPW estimates to further reduce the error in our Greek estimates. We show that our im-
plementation, QMC+BB-CPW, produces estimates with VRFs in the hundreds of thousands and
even up to 1.0 ∗ 1018 when compared to traditional methods such as the Likelihood Ratio method.
When compared to other simulation methods such as MC+AV-CPW, our method outperforms for
almost all Greek estimates of arithmetic Asian, binary Asian and lookback options over a range of
strike prices.

Whilst the results obtained are more than satisfactory, we do not achieve VRFs of the same
magnitude as in [2]. This is likely due to their implementation using Gradient Principle Component
Analysis as a variance reduction technique which reduces the effective dimension, allowing Quasi-
Monte Carlo methods to be even more efficient.

7.1 Future work

There are many possible extensions to the project, from a wide variety of angles. We could
implement QMC-CPW for other volatility models such as the Heston model, however this would
require a substantial amount of work as the form of all estimates would be vastly different to those
presented in this paper.

A second direct change to the code could be using other random number generation methods.
Although we used the built-in cuRAND generators, there is scope to write our own random number
generators that are faster than cuRAND’s and give us more flexibility in the output ordering and
scrambling.

Both of these changes could be enabled easily by interfacing out the random number generation
and volatility models much like our current product implementation.

7.1.1 Improved VRFs

As mentioned earlier, our method does not achieve as large VRFs as we know are possible. To
improve this, we could implement further variance reduction techniques such as (Gradient) Prin-
ciple Component Analysis. Techniques such as this help Quasi-Monte Carlo methods to more
efficiently estimate integrals as they are thought to reduce the effective dimension, which in the
finance setting can be extremely useful due to the high-dimensionaility of many problems.

7.1.2 Producing a polished product

Moving away from improving the current experimental-style of the project, we could work to
build a more polished software solution. This would include some of the previously mentioned

41

improvements such as interfacing out the volatility model and random number generator, but also
adding more option types and other financial products.

Adding more flexibility to the software would also be a key requirement. Spending time re-
searching the best methods for allowing the use dynamic data structures in kernels would be
important. Also, the ability to freely, efficiently, and easily move objects from host to device and
vice-versa would be very useful. We could attempt to do this through unified memory but could
also restrict the software to GPU-only uses whereas we think it is evident that much of the software
would be useful for CPU-only programs as well.

An idea for a specific software product would be wrapping our implementation in some net-
working logic such that it could act as a microservice for calculating Greeks to be used inside of a
larger risk-management system. It would receive parameters such as stock price, implied volatility
and the expiration dates from the input bus, process these values to produce estimates for Greeks
and publish them to other microservices.

42

Chapter 8

Ethical Considerations

This project is largely an experimental demonstration of how a recent method for calculating
Greeks can be efficiently implemented on a GPU. We have not had to consider many ethical issues
during the development of this project.

However, it is worth noting that all estimates produced by the software can be fully explainable
and any errors easily debugged - unlike solutions that come from the neural networks.

Financial exchanges and markets around the world have strict regulations designed to prevent
misconduct by participants. This software is not designed, and is highly unlikely, to give any user
an unfair, or otherwise illegal, advantage over other market participants.

43

Bibliography

[1] Glasserman P, Ho YC. Gradient estimation via perturbation analysis. vol. 116. Springer
Science & Business Media; 1991.

[2] Zhang C, Wang X. Quasi-Monte Carlo-based conditional pathwise method for option
Greeks. Quantitative Finance. 2020;20(1):49-67. Available from: https://doi.org/10.1080/
14697688.2019.1600714.

[3] Glasserman P. Monte Carlo methods in financial engineering. vol. 53. Springer; 2004.

[4] Black F, Scholes M. The Pricing of Options and Corporate Liabilities. Journal of Political
Economy. 1973;81(3):637-54. Available from: http://www.jstor.org/stable/1831029.

[5] Dybvig H, Ross SA. In: The Fundamental Theorems of Asset Pricing. Basel: Birkhäuser
Basel; 2003. p. 191-9. Available from: https://doi.org/10.1007/978-3-0348-8041-1_11.

[6] Giles MB. Monte Carlo evaluation of sensitivities in computational finance; 2007. .

[7] L’ecuyer P. Pseudorandom number generators. Encyclopedia of Quantitative Finance.
2010;10:9780470061602.

[8] Gu T. Statistical properties of pseudorandom sequences. University of Kentucky; 2016.

[9] Allen TT. Variance reduction techniques and quasi-Monte Carlo. In: Introduction to Discrete
Event Simulation and Agent-Based Modeling. Springer; 2011. p. 111-24.

[10] Wang X. Variance reduction techniques and quasi-Monte Carlo methods. Journal of Com-
putational and Applied Mathematics. 2001;132(2):309-18. Available from: https://www.
sciencedirect.com/science/article/pii/S0377042700003319.

[11] Caflisch RE. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica. 1998;7:1–49.

[12] Wang X, Fang KT. The effective dimension and quasi-Monte Carlo integration. Journal of
Complexity. 2003;19(2):101-24. Available from: https://www.sciencedirect.com/science/
article/pii/S0885064X03000037.

[13] Sobol’ IM. On the distribution of points in a cube and the approximate evaluation of integrals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki. 1967;7(4):784-802.

[14] Halton JH. Algorithm 247: Radical-Inverse Quasi-Random Point Sequence. Commun ACM.
1964 dec;7(12):701–702. Available from: https://doi.org/10.1145/355588.365104.

[15] Faure H. Discrépance de suites associées à un système de numération (en dimension s). Acta
Arithmetica. 1982;41(4):337-51. Available from: http://eudml.org/doc/205851.

[16] Antonov IA, Saleev VM. An economic method of computing LPτ -sequences. USSR Compu-
tational Mathematics and Mathematical Physics. 1979;19(1):252-6. Available from: https:
//www.sciencedirect.com/science/article/pii/0041555379900855.

[17] Owen AB. Scrambling Sobol’ and Niederreiter–Xing Points. Journal of Complexity.
1998;14(4):466-89. Available from: https://www.sciencedirect.com/science/article/
pii/S0885064X98904873.

[18] Cuda Zone; 2021. Available from: https://developer.nvidia.com/cuda-zone.

44

https://doi.org/10.1080/14697688.2019.1600714
https://doi.org/10.1080/14697688.2019.1600714
http://www.jstor.org/stable/1831029
https://doi.org/10.1007/978-3-0348-8041-1_11
https://www.sciencedirect.com/science/article/pii/S0377042700003319
https://www.sciencedirect.com/science/article/pii/S0377042700003319
https://www.sciencedirect.com/science/article/pii/S0885064X03000037
https://www.sciencedirect.com/science/article/pii/S0885064X03000037
https://doi.org/10.1145/355588.365104
http://eudml.org/doc/205851
https://www.sciencedirect.com/science/article/pii/0041555379900855
https://www.sciencedirect.com/science/article/pii/0041555379900855
https://www.sciencedirect.com/science/article/pii/S0885064X98904873
https://www.sciencedirect.com/science/article/pii/S0885064X98904873
https://developer.nvidia.com/cuda-zone

[19] Sanders J, Kandrot E. CUDA by example: an introduction to general-purpose GPU program-
ming. Addison-Wesley Professional; 2010.

[20] CUDA toolkit documentation v11.6.0;. Available from: https://docs.nvidia.com/cuda/
index.html.

[21] Dixon MF, Bradley T, Chong J, Keutzer K. Monte carlo–based financial market value-at-risk
estimation on gpus. In: GPU Computing Gems Jade Edition. Elsevier; 2012. p. 337-53.

[22] Brodtkorb AR, Hagen TR, Sætra ML. Graphics processing unit (GPU) programming
strategies and trends in GPU computing. Journal of parallel and distributed computing.
2013;73(1):4-13.

[23] Broadie M, Glasserman P. Estimating security price derivatives using simulation. Management
science. 1996;42(2):269-85.

[24] Giles MB. Vibrato monte carlo sensitivities. In: Monte Carlo and Quasi-Monte Carlo Methods
2008. Springer; 2009. p. 369-82.

[25] Boyle PP. Options: A Monte Carlo approach. Journal of Financial Economics.
1977;4(3):323-38. Available from: https://www.sciencedirect.com/science/article/
pii/0304405X77900058.

[26] Boyle P, Broadie M, Glasserman P. Monte Carlo methods for security pricing. Journal of
economic dynamics and control. 1997;21(8-9):1267-321.

[27] Savickas V, Hari N, Wood T, Kandhai D. Super fast greeks: An application to counterparty
valuation adjustments. Wilmott. 2014;2014(69):76-81.

[28] Lyuu YD, Teng HW. Unbiased and efficient Greeks of financial options. Finance and stochas-
tics. 2010;15(1):141-81.

[29] cuRAND documentation v11.7.0; 2022. Available from: https://docs.nvidia.com/cuda/
curand/index.html.

[30] Xiao Y, Wang X. Enhancing Quasi-Monte Carlo Simulation by Minimizing Effective Dimen-
sion for Derivative Pricing. Computational Economics. 2019;54(1):343-66. Available from:
https://doi.org/10.1007/s10614-017-9732-2.

[31] Savine A. Modern computational finance: AAD and parallel simulations. John Wiley & Sons;
2018.

45

https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://www.sciencedirect.com/science/article/pii/0304405X77900058
https://www.sciencedirect.com/science/article/pii/0304405X77900058
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://doi.org/10.1007/s10614-017-9732-2

Appendix A

GPU and CUDA specifications

CUDA toolkit version 11.2.1 was used for all of the software in this project. The online documen-
tation for this version is available at https://docs.nvidia.com/cuda/archive/11.2.1/.

All simulations were ran on a single Tesla T4 GPU which has the Turing architecture with
compute capability 7.5. The general information for the device is listed below:

General Information
Name Tesla T4

Compute Capability 7.5
Clock Rate (Hz) 1590000

Device Copy Overlap Enabled
Kernel Execution Timeout Disabled

Memory Information
Global Memory 15843721216

Constant Memory 65536
Max Memory Pitch 2147483647
Texture Alignment 512

Multiprocessor Information
Multiprocessor Count 40

Shared Memory per MP 49152
Registers per MP 65536
Threads in Ward 32

Max Threads per Block 1024
Max Thread Dimensions (1024, 1024, 64)
Max Grid Dimensions (2147483647, 65536, 65535)

Table A.1: Tesla T4 specifications. Memory values are given in bytes.

46

https://docs.nvidia.com/cuda/archive/11.2.1/

	Introduction
	Objectives
	Challenges
	Contributions

	Preliminaries
	Stochastic processes
	Brownian motion
	Martingales

	Financial preliminaries
	Derivatives
	Options

	Monte Carlo methods
	Principles of Monte Carlo
	Pseudorandom number generation

	Quasi-Monte Carlo
	Van der Corput sequences
	Sobol' sequences
	Scrambled Sobol'

	Graphics Processing Units and CUDA
	CUDA architecture
	Practical implementation considerations

	Background
	Calculating Greeks
	Finite-difference method
	Pathwise method
	Likelihood ratio method

	Monte Carlo methods
	GPU implementations

	Variance reduction techniques
	Antithetic variables
	Control variates
	Importance sampling

	Quasi-Monte Carlo-based conditional pathwise method
	Simulating stock price for variable separation
	Example: Binary Asian delta by QMC-CPW

	Related work

	Implementation
	Path simulation
	Products
	Antithetic variables
	Brownian bridge construction
	Greeks calculation
	Binary Asian Greeks
	Arithmetic Asian Greeks
	Lookback Greeks

	Likelihood Ratio estimates
	CPU implementation

	Results
	Evaluation
	Performance
	Applicability and design

	Conclusion
	Future work
	Improved VRFs
	Producing a polished product

	Ethical Considerations
	GPU and CUDA specifications

