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Abstract

We introduce a novel Neural Argumentative Learning (NAL) pipeline which inte-
grates Assumption-Based Argumentation (ABA) with deep learning methods to learn
from image data. The NAL pipeline’s ability to derive comprehensible rules from im-
ages facilitates transparency and interpretability, addressing the challenges inherent
in the black-box nature of deep learning models. This implementation is inspired by
the strategies proposed in previous NeuroSymbolic Al research.

The NAL pipeline comprises a neuro-module, which segments and encodes im-
ages into facts using object-centric learning, and a symbolic module that applies ABA
learning to learn new ABA frameworks with additional rules. These ABA frameworks
can be mapped onto logic programs with negation as failure, enabling logical rea-
soning about image content. The main advantage of the NAL pipeline is its capacity
to not only give insights into image classification tasks but also learn underlying
rules with minimal examples.

Our experimental results, evaluated on synthetic datasets, demonstrate that the
NAL pipeline is competitive with state-of-the-art alternatives in terms of accuracy
and explainability. Overall, this work contributes to the advancement of NeuroSym-
bolic Al by providing a novel combination of neural and symbolic processes, show-
casing the potential of neural symbolic learners in real-world applications.
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Chapter 1

Introduction

1.1 Motivations

Over the last decade, Artificial intelligence (AI), namely deep learning, has become
more prevalent in our everyday lives. They are widely used in a range of fields in-
cluding healthcare [1, 2] and finance [3, 4]. However, as we rely more on these
technologies to make critical decisions, concerns regarding their safety, reliability
and explainability naturally emerge. Deep learning models are considered black
boxes as their internal systems are not easily interpretable by domain experts, re-
sulting in a lack of trust in their predictions by users. This has prompted the need
for explainable AI (XAI).

One proposal for achieving XAl is through Neuro-Symbolic AI [5] which attempts
to combine the powerful generalisation and pattern-recognition capabilities of deep
learning models such as Neural Networks with the interpretability of symbols present
in Symbolic Al. There are two main approaches to achieving this integration: ex-
tending neural networks with logical aspects or extending logical frameworks with
neural constructs [6]. The former approach uses methods such as using logic as
regularizers to ensure neural network predictions adhere to logic rules and/or en-
coding logical constructs into the network through differential operations. The latter
approach, however, aims to create an interface between the neural network and log-
ical framework to allow both systems to be optimised together. The various ways
of implementing Neuro-Symbolic Al have led to the common question: What is the
best way of representing Neuro-Symbolic AI? [5]

Computational argumentation (CA) has emerged in XAI as a powerful tool for rea-
soning and knowledge representation [7]. In argumentation theory, arguments are
logical statements which can be attacked by rebuttals and undercutting. Most of the
recent work in CA has been in argumentation frameworks which are structured ways
of representing arguments. A popular argumentation framework is Assumption-
Based Argumentation (ABA) [8] where arguments are deductions from inference
rules containing assumptions which can be attacked by their contraries. ABA frame-
work can be mapped into logic programs with negation as failure which has allowed
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1.2. OBJECTIVES Chapter 1. Introduction

them to be leveraged in logic-based learning settings [9]. Through this method,
ABA frameworks can be extended with learned rules based on positive and negative
examples.

1.2 Objectives

Despite numerous works employing computational argumentation in Neuro-Symbolic
Al, none has utilised assumption-based argumentation as the symbolic reasoner in
their systems. This project aims to explore the unification of ABA and neural net-
works to be able to create a novel architecture in the Neuro-Symbolic space as envi-
sioned in [10]. The specific goals of this project are:

* To investigate the use of logic programs in image classification. This involves
finding methods to discretise image data into suitable predicates for the logic-
based algorithm to learn from.

* To explore the use of computational argumentation, particularly ABA, within a
logic-based learning setting to extract rules from images.

* To evaluate the output program from the pipeline, assessing their accuracy in
image classification and their explainability.

1.3 Contribution

To accomplish the objectives of this project, we propose a neural argumentative
learning pipeline (Figure 5.1) that combines the perceptual abilities of neural net-
works through slot attention with a novel logic-based learning algorithm in ABA
learning. This pipeline can be applied to image classification tasks by reasoning
about images through their constituent objects in an argumentative manner.

We investigate the effectiveness of the pipeline methodology through synthetic datasets
including our own SHAPES dataset, which uses ASP rules to generate images that
conform to the specifications of these rules.

Finally, we evaluate the pipeline by comparing it with neural and neural-symbolic ar-
chitectures. Additionally, we leverage gradient visualisation techniques to generate
explanations, enabling a more detailed comparison of explainability with the output
programs of our pipeline.

1.4 Report Structure

In Chapter 2, we discuss some of the ethical considerations of machine learning and
explainable Al
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In Chapter 3, we introduce the theoretical concepts essential for the project. This
includes object-centric learning via slot attention and clustering using K-means. We
also delve into the syntax and semantics of assumption-based argumentation, ex-
ploring methods for learning such frameworks and interpreting logic programs. Fi-
nally, we discuss standard evaluation metrics and related architectures in the Neuro-
Symbolic field.

In Chapter 4 we present the datasets used to investigate the pipeline, detailing the
rules that govern the images within each dataset.

In Chapter 5 we outline the neural argumentative learning pipeline. We examine
the inputs, the neural and symbolic sections, their interactions, and the format in
which the model produces its outputs.

In Chapter 6 we introduce the experiments we conducted on the neural argumenta-
tive pipeline outlining the training process used, the tasks defined on each dataset
and the methodology of evaluation.

In Chapter 7 we analyse the results of the classification tasks defined on each dataset,
comparing the pipeline’s performance with other neural and neuro-symbolic archi-
tectures.

In Chapter 8 we proposed some possible avenues of future research in the space
of neural argumentative learning addressing the improvement of each section of the
pipeline.




Chapter 2

Ethic Discussion

Ethics has been a significant topic in Artificial Intelligence and this project also has
tried to keep these in mind. The neuro-argumentative architecture aims to make
Al more explainable however, adding additional transparencies could lead to more
points of misuse for Al In this chapter, we discussed some ethical matters neuro-
argumentative learning introduces.

Model Usage

The NAL architecture developed in this project processes images. Due to this, its ap-
plication can be used in a wide range of scenarios including medical diagnosis, and
vision systems such as self-driving cars and classifiers. Many reports show that hu-
mans are more likely to trust computers than other humans (including themselves)
and hence shouldn’t take predicted results from the model as the undisputed truth
(especially for critical system decisions e.g. medical diagnosis). Due to the added
explainability, users can view the reasons for an explanation and use their judgment
to verify correctness.

Security of XAI

Al systems being unexplainable adds an extra layer of security to the system as a
person cannot maliciously engineer the internal model for misuse. The transparency
created by neuro-argumentative architectures’ symbolic modules removes these lay-
ers as rules could be injected into the background knowledge which could lead to
engineered prediction by the model. When training and using the model, the user
must make sure to keep their system secure so such an event won’t occur.

Data Usage & Data Protection

The data used in this project were publically available under the Creative Commons
(CC) License which allows users to copy, redistribute, remix, transform and build
upon the datasets as long as we give appropriate credit. When training the model,
we should use an unbiased set of training data to prevent bias in the knowledge base
and also ensure that any predefined rules don’t introduce bias. The data must also

4



Chapter 2. Ethic Discussion

be obtained by a trusted source (with permission if necessary). Additionally, some
data are categorised as personal or sensitive which means that data protection laws
must be adhered to. Keeping this consideration in mind while working with models
is critical to reducing the risk of biased models.

Overall, these ethical considerations are crucial to making sure that innovative so-
lutions to problems don’t cause unintentional harm to society. XAl including neuro-
argumentative learners aims to help make Al more trustworthy and improve our
relationship with the technology which is shaping our world today.




Chapter 3

Background

The integration of symbolic reasoning and deep learning models requires the incor-
poration of two distinct modules. Within this chapter, we discuss the background
knowledge of the methodologies employed in this paper to implement each module.
Specifically

* We overview the goal of object-centric learning for detecting objects in an un-
supervised setting

* We introduce K-means clustering: An unsupervised learning algorithm used for
grouping data points

* We discuss attention, its variants and introduce the slot attention architecture
used to perform object-centric learning.

* We introduce the topic of Logic Programming and Computational Argumen-
tation including our choice of argumentation framework: Assumption-Based
Argumentation

* We discuss how ABA frameworks can be learned using logic-based learning
approaches.

* We overview some evaluation metrics used in the space of machine learning

* We provide a literature review of some of the work done in the neuro-symbolic
space

3.1 Object-Centric Learning

Object-centric learning is a method used to extract symbolic elements from images.
It is a learning paradigm which learns meaningful features from images by spitting
them into composite images. More formally, given an input image, it assumes that
we can split it into K images where each image contains one object present in the
input including the background (Figure 3.1). Object-centric learners are trained un-
supervised and optimised using the reconstruction loss: The mean distance between

6



Chapter 3. Background 3.2. K-MEANS CLUSTERING
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Figure 3.1: Object-Centric Learning Pipeline

the original image and the reconstructed image from the K object images.

The output of such models includes the reconstructed objects, a mask denoting
which object a pixel belongs to and a latent representation of the object which can
be used for downstream tasks (e.g. classification). Many model architectures exist to
perform object-centric learning. MONet uses the UNet model to segment the image
into objects and a variational autoencoder to produce latent representations of each
of them while Slot Attention uses an attention mechanism with a recurrent process
to estimate the latent space for each attended object. Despite the difference archi-
tectures present, most architectures perform well in object-centric learning tasks.

3.2 K-Means Clustering

K-means clustering is an unsupervised learning algorithm used to group instances
within a feature space into distinct clusters. The algorithm consists of one main
hyperparameter, K, which specifies the number of clusters. K-means begins by ran-
domly selecting K points as initial centroids. Each data point is then assigned to
the nearest centroid, forming K clusters. Subsequently, the centroids are updated by
computing the mean position of all points in each cluster. Data points are then reas-
signed to the nearest updated centroid, and this process repeats until the centroids
no longer change significantly between iterations. The goal of k-means clustering
is to minimize within-cluster variance, which is achieved by reducing the sum of
squared distances between each point and its assigned centroid (Equation 3.1). The
algorithm terminates when centroid updates are minimal, indicating that the clus-
ters are well-formed.

N
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_ E (ORI
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3.3. ATTENTION MECHANISMS Chapter 3. Background

3.3 Attention Mechanisms

Attention mechanisms have been widely used in machine learning to enhance the
performance of models in both computer vision and natural language processing.
They work by allowing models to focus on specific parts of the input data which
are relevant to the current execution step. This allows them to better capture long-
term dependencies and contextual information within the data. There are several
variants of attention mechanisms including dot product attention, self-attention and
cross-attention which we discuss more in this section.

3.3.1 Dot-Product Attention

Dot-product attention is a specific type of attention mechanism commonly employed
in transformer-based architectures. In dot-product attention, the input embeddings
are associated with three vectors: Query, Key, and Value which are learnt during
training.

: QK"
Attention(Q@, K, V) = softmax ( i ) V (3.2)

k
The attention scores are computed by taking the dot product between a query vector
and the set of key vectors. This calculation denotes the similarity between the query
and key vectors, indicating how much attention each input element should receive.
These scores are then normalised to produce the final attention weights. The weights
are then applied to the value vectors producing scalars that represent the weighted
combination of the corresponding value vectors. These weighted values represent
the attended information, highlighting the most relevant features or elements from

the input sequence.

Equation 3.2 shows scaled dot product attention which divides the dot product result
with the square root of the vector dimension. This is done to provide stability during
training by reducing the chances of encountering the vanishing gradients problem.

3.3.2 Self and Cross Attention

Self-attention and Cross-attention are both mechanisms which use the same proce-
dure as dot-product attention to compute attention scores. However, the difference
between these two mechanisms is where they derive their query, key and value vec-
tors from and what they attend to:

Self-attention attends to different positions within the same input sequence. Each
element in the sequence is associated with query, key, and value vectors. The at-
tention scores are computed based on the similarity between the query vector for a
given position and the key vectors for all positions in the sequence. This allows the
model to weigh the importance of each element in the sequence relative to others,
enabling it to capture dependencies and relationships within the sequence.
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Cross-attention attends to information from a source sequence while processing a
target sequence. The query vectors are derived from the target sequence, while the
key and value vectors are derived from the source sequence. The attention scores are
computed based on the similarity between the query vectors in the target sequence
and the key vectors in the source sequence. This allows the model to focus on rele-
vant information from the source sequence while processing the target sequence

3.4 Slot Attention Models

Slot Attention is a set-based attention model designed for image-processing tasks.
Introduced in [11], Slot Attention integrates an attention mechanism to capture the
structural representations of an image. It is an architecture which is used in object-
centric learners to create an interface between perceptual representation (images)
and structured representations (symbols).

3.4.1 Perceptual Backbone

Obtaining object-centric representation from unstructured data, such as images re-
quires the use of a perceptual backbone to extract the relevant information for poten-
tial objects. This is done via a Convolutional Neural Network (CNN) which extracts
lower-level features through a series of convolutional layers and pooling layers. The
Convolutional layers apply filters (also known as kernels) that convolve over the im-
age, creating feature maps to capture patterns across various regions. The pooling
layer reduces the feature map’s spatial dimensions, which helps lower the computa-
tional complexity for subsequent steps in the architecture.

The perceptual backbone is also augmented with a positional embedding since Slot
Attention is invariant to position. The input image is converted to a grid-like rep-
resentation where each point on the grid is associated with a 4-dimensional feature
vector that encodes its distance (normalized to [0, 1]) to the borders of the fea-
ture map along each of the four cardinal directions. This extra information is used
to capture the spatial positions, improving Slot Attention’s ability to recognise and
segment objects.

3.4.2 Slot Attention Module

The Slot Attention module aims to map a set of N input feature vectors to K output
vectors referred to as slots. These slots are latent representations of the different
objects in the image. Algorithm 1 describes how the modules work in pseudo-code.
The initial inputs to the Slot Attention modules are the feature maps augmented with
their positional embedding and slots which have dimensions R%*Pses, The slots are
randomly initialised by taking IID samples from a Gaussian distribution.
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Algorithm 1: Slot Attention Module [11]
Input : inputs € RY*Pimwus slots ~ N (p, diag(o)) € RE*Pstoss
Layer params: k, ¢, v: linear projections for attention; GRU; MLP;
LayerNorm (x3)
inputs = LayerNorm (inputs)
fort=0...7do
slots_prev = slots
slots = LayerNorm(slots)
attn = Softmax(%ﬁk(inputs) - q(slots)”, axis = "slots’)
updates = WeightedMean(weights = attn + ¢, values = v(inputs))
slots = GRU(state = slots_prev, inputs = updates)
| slots += MLP(LayerNorm(slots))
return slots

An iterative attention mechanism is used to map from its inputs to the slots. For each
iteration, an attention score is calculated via cross-attention 3.3. The query vectors
are associated with the slots while the key vectors are associated with the inputs.
The attention weights are then derived by applying a temperature softmax (dividing
the attention score by the size of the dimensions). The softmax is normalised over
the slot which induces competition between slots, resulting in each feature being as-
signed to a slot. Finally, the weights and slots are updated. A weighted mean is used
to update the attention weights due to the normalisation over the slots rather than
the inputs. A GRU is used to update the slots which learns how to update the slot
representation after each iteration. Common practices such are using LayerNorms
are also used to help stabilise training and allow for faster convergence.

At each iteration, the Slot Attention mechanism assigns more features to slots which
have been previously assigned similar features. This process can be thought of as
a meta-clustering algorithm of latent features. The slots return will be associated
with features which correspond to the objects present in the input data. These latent
features can then be used for downstream tasks such as object discovery and set
prediction.

3.5 Logic Programming

3.5.1 Answer Set Programming

Answer Set Programming (ASP) is a form of declarative programming oriented to-
wards combinatorial problems (e.g. search)[12]. It is rooted in the area of Knowl-
edge Representation and Reasoning (including non-monotonic reasoning). ASP is
based on stable model semantics which deals with computing stable models (or an-
swer sets) from logic programs with negation as failure.

10



Chapter 3. Background 3.5. LOGIC PROGRAMMING

Definition 1 (ASP Syntax) ASP programs consist of rules which are written in the
form

p T q17"'7qk7 n0t qk+1,,not qn
or
T qq,---,Qq, DOt qk+1w..,not 4

where p,q;,...9,,4;,--.9,, are atoms, k > 0,n > 0,m > 1 and not denotes negation
as failure. p is referred to as the head of a rule and q;, not q,,,,...,not q, as the
body. rules without a head are known as constraints and rules with an empty body
are referred to as fact.

3.5.2 Answer Sets

Answer sets semantics aims to determine the meaning of an answer set program.
Given a set of rules and facts, An interpretation is a function that specifies the mean-
ing of each symbol in the domain. The answer set of a program is a consistent and
minimal interpretation of the program rules. It represents a set of facts (or atoms)
that satisfy all the rules without leading to any contradictions.

Example 1 Below is a simple ASP program P:
road(london, bath). road(london, oxford). road(oxford, manchester).
road(manchester, London). accident(london, oxford).

route(X,Y) :- road(X,Y), not accident(X,Y).
route(X,Y) :- route(Y,X).

The answer set of ASP program P denoted as ans(P) is calculated by firstly ground-
ing the program ground(P) using substitution to produce P’ which contains no vari-
ables and only includes constants available from the domain

Example 2 ASP program ground(P) = P’
road(london, bath). road(london, oxford). road(oxford, manchester).
road (manchester, London). accident(london, oxford).

route(london, bath) :- road(london, bath), not accident(london, bath).
route(london, bath) :- route(bath, london).
route(bath, london) :- route(london, bath).

The answer set is then computed by iteratively including the facts that appear in P
and facts that can be deduced through these facts and the grounded rules.

11



3.5. LOGIC PROGRAMMING Chapter 3. Background

ans(p) =

{

road(london, bath),road(london, oxford),

road (oxford, manchester),road(manchester, london),
accident(london, oxford),route(london, bath),

route (oxford, manchester),route(manchester, london),
route(london, manchester),route(manchester, oxford),
route(bath, london)

}

Notice how the fact route(london,oxford) doesn’t appear in ans(P). This is due to
the fact that we can prove accident (london,oxford) using the facts from the pro-
gram. Hence having route(london,oxford) in our answer set contradicts the rule
route(london,oxoford) :- road(london,oxford), not accident(london,oxford)

3.5.3 Reasoning over Answer Sets

Example 1 falls into the class of stratified programs which have the property that
one can find an ordering for the evaluation of the rules in the program, such that the
value of negative literals can be predetermined [13]. For example, when evaluating
the negative literal not accident(X,Y) we firstly check if accident (X,Y) is true.
If so then the negative literal is false and the rule is not applied rule. If it is false
then the rule is applied. This forms a chain of evaluation which is used to find the
answer sets of a program with negation as failure.

When a program chain of execution contains a cycle i.e. there are rules which de-
pend on each other, it results in the program being unstratified. One case of this is
when two or more predicates are mutually defined over "not”. This is seen in the
following example:

Example 3 Unstratified ASP Program ()

man (john) .
working(X) :- man(X), not relaxing(X).
relaxing(X) :- man(X), not working(X).

Example 3 has two answer sets which denote the different possibilities which are
consistent with the information presented in program Q:

ansi(Q) = {man(john),working(john) }
anss(@Q) = {man(john), relaxing(john) }

To reason over the truth of an atom ¢ in programs which emit more than one an-
swer set, one can choose to reason bravely or cautiously. Brave Reasoning would
conclude that ¢ is true in an ASP program if it appears in some answer set. However
Cautious Reasoning would conclude that ¢ is true in an ASP program if it appears

12



Chapter 3. Background 3.6. COMPUTATIONAL ARGUMENTATION

in all answer sets.

Cautious reasoning can be seen as trying to find one explanation for the scenario
described in the program. This is represented by the intersection of all answer sets.
This reasoning can sometimes be too strong leading to no explanation for an atom
that only appears in some of the solutions set. Brave reasoning is represented by
the union of all answer sets. It contains all the possible solution sets that the pro-
gram encodes. This is a weaker constraint and allows atoms working(john and
relaxing(john) in example 3 to be considered true. Choosing the best way to rea-
son is dependent on the problem as each reasoning method has drawbacks in the
consequences they can derive.

3.6 Computational Argumentation

Argumentation is a powerful reasoning method that many of us use in everyday
conversations to support or attack an idea/theory given by another person(s). An
argument can be seen as a set of logical statements whereby each statement’s valid-
ity can be determined by whether or not it can 'defend’ itself against other arguments
which attack it (Dung 1995 [14]). Through this definition, arguments are modelled
as directed graphs where the nodes are the logical statements and the edges show
the direction of attack between two nodes.

AF allow us to investigate different arguments regardless of the intricate properties
of the arguments themselves. Because arguments naturally follow a non-monotonic
logical framework, we can use argumentation frameworks to perform non-monotonic
reasoning (Figure 3.2). The abstract natures of these steps have allowed different
formalisms to be built upon argumentation to perform non-monotonic entailment
including ASPIC+[15] and Assumption-Based Argumentation (ABA) [8] which we
will discuss more in the next section.

Knowledge Base | Argumentation o Arugment Based N Conclusmn_Based
Framework Extension Extension
Construction of Identifying acceptance status of Identifying acceptance
arguments and attacks arguments by applying sematics status of conclusion

Figure 3.2: Argumentation for inference [16]

3.6.1 Assumption-Based Argumentation

Assumption-based argumentation (ABA) is a popular framework used for reasoning
argumentative in non-monotonic settings. It is an instance of Abstract Argumenta-
tion whereby instead of arguments and attacks between arguments being abstract

13



3.6. COMPUTATIONAL ARGUMENTATION Chapter 3. Background

and primitive, they are deductions (using inference rules in an underlying logic)
supported by assumptions. An attack by one argument against another is achieved
when a deduction of the contrary of an assumption supporting the argument can be
made.

Defined by [8], an ABA framework is a tuple (£, R, .A,” ) where:

* (£,R) is a deductive system where L is the language and R is the set of (in-
ference) rules.

* A C L is the set of assumptions
*  isatotal mapping from A to £ where a is referred to a contrary of a (a € A)

Rules R are assumed to have the form p : h < by,..., b, (m >0,b; € Lfor 0 <i <
m). h is referred to as the head, by, ..., b,, as the body of the rule h < by, ..., b, and
p as the identifier of the rule. A rule p with an empty body is referred to as a fact
and we also assume £ to be finite.

Example 4 An ABA framework (£, R,.A,” ) may consist of:
L= {p(X),q(X),r(X),s(X),t(X) | X € {a,b}}

R ={p1: p(X) « q(X),
P2+ q(X) < r(X),
3 8(X) < p(X), t(X),
pa:r(a) <, ps:p(b) <}
A= {t(X)}
HX) =r(X)

The rules here are written in schematic i.e. ¢(X). X is considered a variable which
can be instantiated across the language {a, b} hence ¢(X) is shorthand for {¢(a),¢(b)}
To reason in this argumentation framework we need to construct arguments given a
knowledge base. In ABA arguments are deductions of claims using the rules in the
deductive system (£, R). More formally:

Definition 2 (Argument): An argument for the claim ¢ € £ supported by A C A
and R C R (denoted as A -y c¢) is a finite tree with nodes labelled by sentences in
L or by 7 denoting true (Figure 3.3), the roots labelled by c, the leaves either true or
assumptions in A, and non-leaves ¢’ with, as children, the elements of the body of
some rule in R with the head .

Example 5 Derived Deductions from the ABA Framework in Example 4:

{} Fioonay a(a) {} Fiosy 0(0) {t(a)} g t(a)
{t(@)} Fionpmspny s(a)
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s(b) s(a) p(b)
/ N\ / A\ |
p(b)  t(b) pla)  t(a) T
| |
u q(a)
|
r(a)
|

Figure 3.3: Arguments {¢(b)} = pspay 5(0), {t(a)} Fp1.p2.ps.pa) s(a) and {} = {ps) p(b)
represented as trees

An interesting case is arguments of the form {a} -z / where o, € A . This in-
tuitively means that an assumption has validated another assumption in the frame-
work. To allow ABA frameworks to be mapped to logic programs we keep an as-
sumption acceptance independent from other assumptions in .A. This restriction is
referred to Flat ABA framework:

Definition 3 (Flat ABA Framework): An ABA framework (£, R, A, ) is flat if and
only if for every A C A, A is closed.

Note that if an assumption is not the head of a rule (a conclusion) then we guarantee
the ABA framework to be flat. In the rest of this report, we only deal with Flat ABA
frameworks.

Attacks in ABA Frameworks can also be formalised using the deductions which de-
scribe an argument. These arguments can only be directed at assumptions which are
the implicit beliefs or premises that are taken for granted and often unstated in an
argument.

Definition 4 (Attack): An Argument A g, c¢; attacks argument A, Fg, ¢y if and
only if s; = @ for some a € A,

Example 6 Attacks on some arguments derived from Example 5

{} l_{P4} T(“) attacks {t(a)} l_{p1,p2,p3,p4} S(CL) because t(a) = T(a>

{} Fpou r(a) attacks {t(a)} g t(a), again because t(a) = r(a)

3.6.2 ABA Semantics

We use argumentation semantics to find sets of arguments which can be accepted
given the relationships described in the argumentation frameworks.
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it(a); F t(a) it(b)} + t(b)
{1 Fp(b) U} Fr(a) {t(b)} Fs(b)

{t(a)} F s(a) 1} Fq(a)
Figure 3.4: Attacks as directed graph

Definition 5 (Abstract Argumentation): Given an ABA framework let Args be the
set of arguments and Att = {(«a, ) € Args x Args|a attacks g} then (Args, Att) is
an Abstract Argumentation [14].

Definition 6 (Stable Semantics): S C Args is a stable extension iff
(i) Pa, 3 € S such that (o, B) € Att (i.e S is conflict-free)

(ii) VB € Args\S,3Ja € S such that (a, §) € Att (i.e S attacks all it doesn’t contain)

From Example 4 we can deduce the set of arguments (we omit the set of rules which
builds the argument)

Args = {{} Fr(a), {} Fp), {} Fala), {t(a)} Fta),
{t(a)} Fs(a), {t(0)} Fi(b), {t(b)} F s(b)}

By definition 6 we find that this framework has only one stable extension A =
{p(b),r(a),q(a),s(b),t(b)}. Note how s(a) and #(a) is not included as the argument
can be attack by r(a) as depicted in the directed graph shown in figure 3.4

Definition 7 (Type of Stable Extension): Sometimes we can have frameworks that
emit multiple stable extensions. ABA frameworks can be reasoned using different
semantics which allow us to decide whether a sentence is accepted. These include:

(i) Sceptical (Cautious) Semantics: An ABA framework (£, R, A, ) is said to
cautiously cover a sentence ¢ € £ under stable semantics if for every stable
extension S of (£, R, A, ), cis the clam of an argument « € S

(ii) Credulous (brave) Semantics: An ABA framework (£,R, A, ) is said to
bravely cover a sentence ¢ € L under stable semantics if there exists a sta-
ble S of (L, R, A, ), cis the clam of an argument « € §

3.7 Learning ABA Frameworks

ABA frameworks produce a structured knowledge representation that can be used
to reason argumentatively. They are also an instance of logic programs whereby the
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assumptions are negation as failure literals (not p)and the contrary of this being p
[9]. These properties allow us to learn the structure of an argument through logic-
based learning approaches [17, 18]. The learnt framework represents explainable
concepts through argumentation. This process is known as ABA Learning.

ABA Learning takes elements from inductive learning programs to learn concepts.
It is driven via training data which is a non-empty set of positive labels and a (possi-
bly empty) set of negative examples. With the help of background knowledge (which
itself is an ABA framework), the learner aims to introduce concepts to cover all the
positive examples and none of the negative.

3.7.1 ABA Learning Task

Definition 8 (Coverage): Given an ABA framework (£, R, A, ), an example e is
covered by (L, R, A, ) = eiff (L,R, A, ) = e and is not covered by
(LLRA Y Eeiff (L,R,A)Fe

Definition 9 (Background Knowledge): A background is defined as a ABA Frame-
work (R, A, ) . (We omit the £ for defining ABA frameworks thus forth as this can
be reconstructed by the other components of the framework.)

Example 7 Background Knowlege (R, A, )
R ={p1:s1(a) <, pa:s1(b) <, ps: s2(b) <}

Positive Examples: £t = { ¢;(a) }
Negative Examples: £~ = { ¢;(b) }

We can ascribe concrete readings to the abstract predicates in the background knowl-
edge from example 7 inspired by the type of tasks performed in later sections. s;(X)
represents the slot (properties) active in image X € {a,b} and ¢; represents the
concept we are trying to extract from the set of images.

Example 8 Learnt ABA framework (R’, A, )

R:{pl: ( )<_’
p2:31()<_7
p3 1 So(b) <,
pa (X)) = 51(X), (X)),
ps e X) = s2(X)}

A ={a(X)}

a(X) = c.a(X)

Example 8 Illustrates the final ABA Framework learnt when completing the ABA goal
successfully learning the concept ¢;. This goal is defined formally by [9]:
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Definition 10 (ABA Learning Goal): Given a background knowledge (R, A, ),
positive examples £t and negative examples £, with £t N £~ = (), the goal of
ABA learning is to construct (R', A’; ') suchthat R C R', A C A’ and forall a € A,
@' = @ such that

(i) (Existence): (R', A’, ') admits at least one extension under the chosen ABA
semantics

(ii) (Completeness): foralle € £7, (R', A", ) e

(iii) (Consistency): foralle e £-, (R', A', ") Fe

From definition 10, we see that the ABA framework (R’, A’,” ') in example 8 admits
one stable extension which covers all the positive examples and none of the negative
examples for both semantics. To achieve the goal, we make use of transformation
rules to algorithmically augment the framework.

3.7.2 Transformation Rules

Notation: Similarly to [9] we assume that all rules are normalised meaning they are
written in the form:

P PU(XO) —eq, .- >GQk7p1(X1)7 . -Pn(Xn)

where p;(X;) for 0 > i > n is an atom are in £ and egq; for 0 > ¢ > k is an equality
between variables in Xj,..., X; e.g. X;1 =a

Transformation rules allow us to construct new ABA frameworks for ABA learning.
These are:

* Rote Learning: Introduces an argument from a ground atom p(t¢) by adding
p:p(X) <« X =ttoR Hence, R' = RU{p}
In ABA learning setting, rote learning is usually applied to positive examples
Example: Considering the example from 7 we apply rote learning on the pos-
itive example ¢ (a) to obtain R’ = RU {ps : c1(X) + X = a}

* Equality Removal: Generalises a rule by removing an equality from its body.
More formally we replace a rule p1 H < eqy, Eqs, B in R with ps : H + Eqs, B
obtaining R = (R\{C1}) U{Cs}

Here eql is an equality, E¢s is a (possibly empty) set of equalities and B is a
(possibly empty) of atoms

* Folding Generalises a rule by replacing some atoms in its bodies with their
consequences using a rule in R. l.e. Given Rule p; : H + Eqs1, By, By and
po : K < Eqsi, Eqse, By replace p; by p3 : H < FEqss, K, By. Thus R’ =
(R\{p1}) U{ps}

Example: We can apply folding to ps : ¢;(X) < X = a to p; to obtain p; :
c1(X) « X =a,s1(a).
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* Subsumption Allows the removal of rules which are §—subsumed by rules in
the background knowledge [19]. For example if R contains rules p; : H «
Eqs,, By and py : H < FEqss, By
Example: A rule flies(X) < X = b would be subsumed by flies(X) «+
bird(X') [9] if the only instances of b is within the rule bird(b)

* Assumption Introduction Introduces exceptions to rules by replacing p; : H «
Eqs,B by ps : H < Egqsi,By,a(X) where X is a tuple of variables taken
from vars(H) Uwvars(B) and «(X) is a assumption with contrary x(X) Hence

e 2 AN
R = (R\{p}) U{p}, A" = AU{a(X)}, a(X) = x(X) and § = 3 for all
B € A (I.e the remaining contraries are unmodified)

In summary, Assumption Introduction and Rote Learning allow us to expand or
constrain the space of possible framework so we cover positive examples and no
negative example Equaity Removal, Folding and Subsumption generalises rules to
cover more of the search space.
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3.7.3 ABA Learning Algorithm

To allow ABA frameworks to be learnt, the rules in section 3.7.2 have to be per-
formed in a certain order to ensure that the search space is adequately searched.
Proposed in [9] a general strategy for learning ABA framework is illustrated in Fig-
ure 3.5.

Input: Background Knowledge: ABA Framework (R, A, )
Training Data: £+ and £~ with £TN £~ =10

Algorithm:
Step 1 [Target Selection]: Select a predicate p such that Ip(c) € £F
Step 2 [Rule Introduction]: For each positive example p(c) in £* add the rule
p(X) <~ X = cto R via Rote Learning
Step 3 [Rule Generation]: For each rule in R, perform one of the following
transformation:
1. Subsumption - To possibly remove the rule from R

2. Folding and Equality Removal Repeatedly - Until all constants are removed
Step 4 [Exception Learning]: Repeat until for all p(d) € £~, (R, A, ) ¥ p(d)
1. Select p(d) € £~

2. Select from R a rule p : p(X) < FEqgs, B such that we can construct an argu-
ment for p(d) with p as a top rule

3. Construct a set A = {a;(Y1),...,ar(Yx)} C B that can generate two ground
instances A* and A~ such that

(a) For every example p(e) € £ we can build an argument for p(e) with p as
the top rule and the ground atoms in A* are children of p(e)

(b) For every example p(e) € £~ we can build an argument for p(e) with p as
the top rule and the ground atoms in A~ are children of p(e)

(c) Appy Assumption Introduction by adding the new assumption
a(Y7),. .., (Yy) with contrary c_«(Y}),. .., (Yx) to the body of the rule p

4. Add c_a(consts(A")) to £~ and add Add c_a(consts(A™)) to EF
Step 5 [Example Removals]: Remove examples from predicate p form the training
data
Step 6 [Termination Check]: If (R, A, ) is complete and consistent then terminate.
Otherwise GOTO Step 1

Figure 3.5: ABA Learning Algorithm [18]

Example 9 We demonstrate how the ABA learning algorithm can generate the learnt
ABA framework (example 8) from example 7

(ITERATION 1) Input:
R={pi:s1(a) -, pa:si(a) <, p3:s2(b) <, }

& ={al} & ={a®)}
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Algorithm:
Step 1 [Target Selection]: Select predicate: c;
Step 2 [Rule Introduction]:
Apply Rote Learning to obtain R; = R U {p,s : c1(X) + X = a}
Step 3 [Rule Generation]:
Apply Folding using p; and Equality Removal to generalise rule p,
Folding: p5 : c1(X) + X = a, 51(X)
Equality Removal: pg : ¢1(X) < s1(X)
Hence we obtain Ry = (R1\{ps}) U {ps}
Step 4 [Exception Learning]: Repeat until for all p(d) € £~, (R, A, ) ¥ p(d)
1. We firstly select ¢;(b) € £~

2. We select pg : ¢1(X) < s1(X) as the rule to construct the argument for
3. We Construct a set A = {¢1(Y)} with AT € {{c1(a)}} and A~ € {{c1(b)}}
4

. Apply Assumption Introduction replacing ps : ¢1(X) < s1(X) with p7 : ¢;(X) <+
51 (X), Oé(X) I
Obtain R3 = (R2\{ps}) U {pr} and a(X) = c.a(X)

5. Add contraries to training examples
ET ={ci1(a),c.a(b)} and £~ = {c1(b), c.afa)}
Since none of the negative examples are covered we can move to the next step
Step 5 [Example Removals]: Remove examples from predicate p from the training
data
ET ={ca)}and & = {cala)}
Step 6 [Termination Check]: Since (R3,.A’,” ') not complete and consistent we
return to Step 1

(ITERATION 2) Input:
R ={p1:s1(a) <, p2:si(a) <, ps:s2(b) <, pr:ci(X)  s1(X),a(X) }
£r={cal®)} & = {cala)}

Algorithm:
Step 1 [Target Selection]: Select predicate: c_a(b)
Step 2 [Rule Introduction]:
Apply Rote Learning to obtain Ry = R3 U {ps : c.a(X) - X = b}
Step 3 [Rule Generation]:
Apply Folding using p;3 and Equality Removal to generalise rule pg
Folding: pg : c_a(X) <= X = b, 55(X)
Equality Removal: pig : c.a(X) < s2(X)
Hence we obtain R; = (R4\{ps}) U {pio}
Step 4 [Exception Learning]: Since none of the negative examples are covered we
can move to the next step
Step 5 [Example Removals]: Remove examples from predicate p from training data
Et=0and &~ =10
Step 6 [Termination Check]: (R5, A’, ') is complete and consistent so we terminate

The final ABA Framework is (R5, A, ') which corresponds to example 8
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3.8 ABA and Logic Programming

ABA frameworks can be converted into logic programs by mapping the contraries as
negation as failure. For all contraries a(X) = p(X) we replace «(X) with not p(X),
in the set of rules R and remove it from the language £. The resulting frameworks
can then be written in logic programming languages such as Prolog and Answer Set
Programming (ASP) to automatically compute stable extensions. This transforma-
tion allows us to leverage logic-based approaches to learning ABA frameworks and
has led to the following tools being developed:

3.8.1 ABALearn

ABAlearn [18] is an Automated Logic-Based Learning System for learning ABA Frame-
works. It takes an ABA Framework written as a Prolog program, positive and nega-
tive examples and runs the algorithm defined in Figure 3.5 producing a new program
with the learnt rules. The program can then be executed with new facts to be able
to test for satisfiability

3.8.2 ASP-ABAlLearn

ASP-ABALearn [17] is a tool which leverages ASP to learn new ABA frameworks.
To achieve this, it first encodes a framework to an ASP program by converting rules
to ASP syntax (Example 10). The learning goal is then encoded by writing positive
examples as : - not e and negative examples as : - e. This states that any solution
learnt must cover all positive examples and none of the negative examples.

Example 10 ASP Encoding of Example 7

slot 1(A) :- A= img 1.
slot_1(A) :- A= img 2.
slot_ 2(A) :- A= img 2.

ET ={class_1(img_1)} &~ ={class_1(img.2)}

A new framework is learnt using the ASP-ABALearn strategy, which employs two
procedures: Rote and Gen, as depicted in Figure 3.6. These procedures utilise a sub-
set of transformation rules to learn new rules. The Rote procedure aims to add facts
to the background knowledge of the input framework so that the new framework is
a (non-intensional) solution. A non-intensional solution is one that contains facts.
The Gen procedure then transforms this non-intensional solution into an intensional
solution. The ASP-ABAlLearn strategy alternates between these two procedures until
a intensional solution is produced which satisfies the ABA Learning goal.

Example 11 We demonstrate how the ABA-ASP learning strategy can generate the
learnt ABA framework (Example 8) from Example 10
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Input: ABA Learning Problem ((R, A, ), (ET ))
RoLe((R, A, ), <5+75’>) GEN((R, A, ), (£7,€7)).

Procedure RoLe((R, A, ), (ET,E7)):
P:=ASP*((R, A, ), (ET,E7),A);
if P is unsatisfiable
then fail; L
for all c_a(t) € C(P) \ C(ASP((R, A, ) ),where c_a(t) = a(t) for
some «(t) € A do
apply Rote Learning and get R := R U {c.a(X) + X =t};
for all p(u) € £ such that p(u) ¢ C(ASP((R, A, ")) do
apply Rote Learning and get R := R U {p(X) + X = u};
if (R, A, ) does not entail (£7,£7)
then fail;

Procedure GEN((R, A, ), (E1,E7)):
while there exists a non-intensional rule p; € Rjeqpn: dO
// Folding:
pr = fold-all(pr); R := (R\{p})U{pa};
// Assumption Introduction:
if (R, A, ) does not entail (£7,£7) then
apply Assumption Introduction and get p3: H < B, «(X) where « is
a new predicate symbol and X = vars(H «+ B);
R=(R\{p2}) U{ps}s
A= AU {a(X)}, with: a(X) = c.a(X);
// Rote Learning:
for all c.a(t) € C(ASPT((R, A, ), (ET,E7),{a(X)})) do
apply Rote Learning and get R := R U {c.a(X) < X =t};
if (R, A, ) does not entail (£7,£7) then fail;
// Subsumption:
for all p: p(X) + X =t € Riearne do
if p(t) € C(ASP((R\ {p}, A, 7)) then
apply Subsumption and delete p: R := R\ {p}.

Figure 3.6: ABA-ASP Algorithm [17]
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Input:

R ={p1:slot_1(A) :- A= img 1, po:slot_1(A) :- A= img 2.,
: p3 :slot 2(A) :- A= img 2.}

ET ={class_1(img_1)} &~ ={class_1(img 2)}

Algorithm:
RoLE: Select predicate class_1 from £*:
obtain R = R U {ps : class_1(X) :- X = img 1} by rote learning
Since (R, A, ) does not entail (€7, £~) Execute GEN
GEN: Since there exists a non-intensional rule p,
obtain R = (RU {ps : class_1(X) :- slot_1(X)})\{ps} by folding
Since (R, A, ) does not entail (£7,£7)
Assumption Introduction
Obtain pg : class_1(X) :- slot_1(X), alpha(X).
Replace Rule R = (R\{p4}) U {ps}
Add assumption A = A U {alpha(X) } with contrary c_alpha(X)
Rote Learning
Obtain R = R U {p7 : c_.alpha(X) :- X=img 2.}
(R, A, ) does entail (£1,£7)
No Subsumption
GEN: Since there exists a non-intensional rule p;
obtain R = (R U {ps : c_alpha(X) :- slot_2(X)})\{p:} by folding
(R, A, ) does entail (£1,&7)
GEN: No non-intenstional Rule END

Hence the final program we obtain after converting to ASP :

slot 1(A) :- A= img 1.

slot_1(A) :- A= img 2.

slot 2(A) :- A= img 2.

class_1(X) :- slot_1(X), alpha(X).
c_alpha(X) :- not alpha(X), slot_2(X).

The ASP-ABALearn exhibits non-determinism in folding non-intentional rules. For
instance, when folding X:-img 2, the algorithm faces a choice between slot_1 and
slot_2. The strategy uses Clingo to initially verify if folding would yield a program
which is not unsatisfiable. If the program is satisfiable, the algorithm proceeds with
that fold; however, it remains uncertain whether this represents the optimal fold at
that stage. Consequently, this approach results in the generation of multiple possible
rules for the same input, with some processes experiencing increased termination
times due to extensive backtracking.
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3.9 Evaluation

3.9.1 Evaluating Object Centric Learners

Evaluating object-centric learners can be relatively hard compared to other models
due to the fact that object-centric learners produce permutationally invariant results.
For this reason, we need evaluation metrics which can assess the quality of the object
recognised without depending on the order of the output. Some metrics we will use
include:

Adjusted Rand Index

Adjusted Rand Index (ARI) is a metric which measures the similarity between two
clusters. It is a correction of the Rand Index (RI) which is a basic measure of sim-
ilarities. RI assesses clustering similarity by comparing pairs of data points in both
algorithm-generated clusters and the ground truth. It measures the proportion of
these pairs that are correctly clustered producing a score between 0 and 1 where 1 is
a perfect match. A disadvantage of RI is that it doesn’t account for chance i.e. some
agreement between two clusterings can occur by chance. ARI take this into account
and is calculated by Equation 3.3.

RI — Expected RI
ARI = 3.3
max_RI — Expected RI (3.3)

ARI can be applied to evaluating object-centric learners by considering each pixel in
an image as a data point and an object as a cluster. Each pixel is thus assigned to an
object by considering the attention mask of each object with the highest value. This
metric hence gives us a good indication of how well the object-centric learner can
segment the image into objects.’

Average Precision

Average Precision (AP) metric used for evaluating models in the fields of object de-
tection and segmentation. AP measures the ability of a model to correctly identify
and localize objects within images by evaluating the trade-off between precision and
recall. Precision is defined as the ratio of true positive detections to the total number
of detections made by the model, while recall is the ratio of true positive detections
to the total number of actual objects present in the ground truth.

True Positives
Precision = — — 3.4
True Positives + False Positives 34

True Positives
Recall = — ; 3.5
cea True Positives + False Negatives (3-5)

To calculate AP, the precision and recall values are first computed at various thresh-
old levels of the detection confidence score. These values are used to plot a precision-
recall curve, where precision is plotted on the y-axis and recall on the x-axis. The AP
is then determined by calculating the area under this precision-recall curve (AUC).
Higher AP values indicate better performance, as they reflect a higher proportion of
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correct detections across all levels of recall. This metric provides a comprehensive
assessment of a model’s detection capabilities, balancing the need for both accurate
localisation and correct classification of objects.

3.9.2 Evaluating Logic-Based Learners

Evaluating a logic-based learning system requires assessing its performance in rule
generation and the correctness of the rule produced to classify concepts as positive
and negative. A metric we can use to evaluate correctness is the F1 score (3.6)
which is defined as the harmonic mean between the precision and recall. F1 pro-
vides a more reliable measure of performance compared to accuracy which can be
susceptible to data imbalances.

Fi—2 Precision x Recall (3.6)

" Precision + Recall

Additionally, assessing the system’s efficiency in terms of computational resources,
such as time and memory usage, is important for practical applications as well as
scalability: how well the learner performs as the size and complexity of the input
data increase. These can all be measured by running different experiments altering
the number of examples used in ABA learning and increasing the object domain.
Finally, we can evaluate the quality of rules which computational argumentation
through human feedback to verify how explainable and interpretable the rules are.

3.10 Related Work

The field of explainable Al is very diverse which has resulted in many systems which
aim to make the results of models more interpretable. Most of these systems inte-
grate a type of symbolic reasoner into traditional neural networks. These symbolic
algorithms allow users to be able to follow how a system reaches its prediction.
Other systems however add tools to aid users in understanding the key features
which result in a prediction.

3.10.1 GradCAM

Gradient-weighted Class Activation Mapping (Grad-CAM) [20] is a visualization
technique that enhances the interpretability of CNNs. It does this by identifying
which regions of an input image are most influential in the network’s decision-
making process. Grad-CAM computes the gradients of the target class score con-
cerning the feature maps of a specific convolutional layer and then applies global
average pooling to obtain importance weights for each feature map. These weighted
feature maps are combined and passed through a Rel.U activation to highlight the
positive contributions, followed by upsampling to the original image size. The re-
sulting heatmap allows for a clear visualization of the areas that the model considers
critical for its predictions. Grad-CAM not only aids in understanding and debugging
model behaviour but also enhances trust in the model by revealing its focus areas,
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making it particularly valuable in fields like medical imaging and autonomous driv-
ing.

3.10.2 NeSyFold

NeSyFOLD [21] is a neuro-symbolic learner used for image classification tasks. It
aims to learn global features using a CNN however, it replaces the final layer with
a binarisation of the CNN kernels and extracts an ASP program from this. This has
resulted in a novel approach in the neuro-symbolic space allowing for the classifica-
tion task to be fully interpretable via ASP.

NeSyFOLD uses a rule-based machine learning algorithm called FOLD-SE-M to de-
rive the ASP program from the CNN. This algorithm learns a rule set from data as a
default theory (a non-monotonic logic for commonsense reasoning). To classify the
image, the framework uses quantisation to binarise the output kernel of the trained
CNN. It then applies the FOLD-SE-M algorithm to generate an ASP program from
the binarised kernel however these rules are all abstract. The NeSyFOLD framework
then uses semantic labelling to assign meaningful words to the abstract rules (see
paper for the algorithm). The output is an ASP program with human-like concepts
whereby when run, will return us the stable model corresponding to the final classi-
fication.

3.10.3 Neuro-Symbolic Concept Learner

The Neuro-Symbolic Concept Learner [22] is an advanced neuro-symbolic learn-
ing system that employs explanatory interactive learning (XIL) to derive meaningful
concepts from images. It uses slot attention as a feature extractor to identify objects
within images, while its reasoning modules incorporate set transformers to extract
and generate explanations for each object’s concepts. These explanations are pre-
sented as grid-like representations, enabling users to understand the concepts ap-
plied in decision-making and derive additional rules.

One challenge the Neuro-Symbolic Concept Learner faced was its tendency to focus
on incorrect reasons. To address this, the paper proposed using XIL, which leverages
human feedback to guide the model towards the correct concepts. This interven-
tion allows the Concept Learner to adjust its internal representations, resulting in
improved outcomes.
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Chapter 4

Datasets

In this chapter, we analyse some of the datasets that were used to train the Neuro-
Argumentative Learning pipeline.

4.1 Requirements

To evaluate how well neuro-argumentative learning can learn rules on images, we
required datasets which have labelled segmentation maps of the objects in an image.
This allows us to verify that the object-centric learner can identify and localise ob-
jects in an image. We also require logical rules/constraints to which objects or sets
of images adhere to. These rules can be compared with outputted rules where we
can assess the readability and correctness of the logic-based learner.

4.2 SHAPES

SHAPES [23] is a synthetic dataset for understanding spatial and logical relation-
ships among multiple objects. It comprises of 300x300 pixel images which contain
objects organised in a grid-like fashion occupying nine set regions. Objects can be
one of three shapes (square, circle, triangle) each of which can be of three
colours (red, green, blue) and two absolute sizes (small, large). This amounts
to a maximum of 72 attributes per image. Each image is labelled with the object oc-
cupying each region and its attributes.

Label

(e, Square, Red, Large)

(1 {2} ({22 ff),)

(2, Circle, Red, Small)

(3, Triangle, Blue, Small)
(4, Circle, Green, Large)
(5, Square, Red, Small)

(6, Triangle, Green, Large)
(7, Square, Blue, Small)

(8 cca cca rr::)
> 2 2

Figure 4.1: Image from SHAPES dataset
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Chapter 4. Datasets 4.2. SHAPES

4.2.1 Generating SHAPES

The SHAPES dataset originally associated questions relating to the spatial and logi-
cal relationship of the shapes in the images. Each image is assigned a yes or no label
depending on the objects meeting the rules of the question. The task for this dataset
is the opposite: given positive and negative examples of a rule, can we recover the
rule? To allow the dataset to suit our needs better, we implemented a generator to
produce SHAPES-like images based on input rules and used this to generate a new
SHAPES dataset.

The SHAPES generator takes input in ASP syntax, consisting of rules that specify
conditions objects in the image must meet. These rules fall into three categories: Ba-
sic Rules, which condition on the presence of objects in the image; Positional Rules,
which condition on the arrangement of objects; and Exception Rules, which specify
conditions where the negation must be satisfied. To implement this, we randomly
generated images and developed functions to assess whether each image conformed
to the specified rule. The generator also allows for blank sections in the images to
increase the variability of images. Figure 4.2 displays images generated under the
rule: class1(A) :- image(A), in(A,B), square(A), blue(A). which translates
to "An image is an instance of class 1 if it includes a blue square”.

To produce our new SHAPES dataset, we generated 3K images for 6 rules leading to
a dataset of 18K images. Within the 3K images for each rule, half of which was the
negative instance of the rule resulting in a 1.5k split for positive and negative exam-
ples. We then took 500 of each split as testing data. In total, we had 12K images for
training and 6K for testing. Table 4.1 outlines the 6 rules classes we used to generate
the dataset

We also conducted a brief analysis of the images generated for the shape dataset
to ensure each attribute was adequately represented. Table ?? indicates that squares
and blue shapes are slightly underrepresented, while triangles and green shapes
are slightly over-represented. Despite these minor disparities, no attributes were
severely underrepresented or over-represented. Therefore, the generator produced
a balanced dataset in terms of the shape attributes.

Figure 4.2: SHAPES Generated Images from Class 1
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4.3. CLEVR-HANS Chapter 4. Datasets

SHAPES Dataset ASP Rules

class1(A) :- image(A), in(A,B), square(B), blue(B).

class2(A) :- image(A), in(A,B), triangle(B), small(B), green(B)

class3(A) :- image(A), in(A,B), in(A,C), triangle(B), blue(B),
circle(C), red(C), large(C).

class4(A) :- image(A), in(A,B), in(A,C), circle(B), red(B),
square(C), blue(C), above(B,C).

class5(A) :- image(A), in(A,B), in(A,C), triangle(B), red(B),
circle(C), green(C), left(B,C).

class6(A) :- not exception(A), image(A).
exception(A) :- image(A), in(A,B), circle(B), blue(B)

SHAPES Datasets Rules Interpretation

class1(A): - Class 1 images must contain a blue square

class2(A) :- Class 2 images must contain a small green triangle

class3(A) :- Class 3 images must contain both a blue triangle and a large red circle
class4(A) :- Class 4 images must contain a blue square above a green triangle
class5(A) :- Class 5 images must contain a red triangle left of a small green circle
class6(A) :- Class 6 images are without blue circles

Table 4.1: ASP rules used to generate the 6 classes for the SHAPES dataset

4.3 CLEVR-Hans

The CLEVR dataset is a diagnostic dataset designed to evaluate and analyze the
reasoning capabilities of machine learning models, specifically focusing on visual
question-answering (VQA) systems. The images in the CLEVR dataset are synthetic
and computer-generated, featuring simple 3D geometric shapes: spheres, cubes, and
cylinders. These shapes vary in colour, size, and material. An image may contain
a maximum of 10 objects leading to a total of 150 attributes. Objects are arranged
in various spatial configurations within plain backgrounds. With these elements,
CLEVR creates a complex visual scene that challenges models to demonstrate gen-
uine understanding and reasoning, free from natural image biases.

Figure 4.3: Example Images from CLEVR Dataset

CLEVR-Hans [24] adapts the dataset by assigning CLEVR images to non-overlapping
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CLEVR-Hans 3 Rules

class 1: Large (Gray) Cube and Large Cylinder
class 2: Small metal Cube and Small (metal) Sphere
class 3: Large blue Sphere and Small yellow Sphere

Table 4.2: Class rules for CLEVR-Hans

classes. The membership of a class is based on combinations of objects’ attributes
and relations (Table 4.2). Each class is represented by 3000 training images, 750
validation images, and 750 test images. The training, validation, and test set splits
contain 9000, 2250, and 2250 samples. The class distribution is balanced for all
data splits. CLEVR-Hans allows us to stretch both parts of the neural-argumentative
architecture while simultaneously testing the system on non-binary classification.

The CLEVR-Hans dataset enhances the difficulty of learning tasks by including spe-
cific instances of class objects in the training set and generalising them in the test
dataset. For instance, in the training set, all instances of large cubes in class 1 im-
ages are grey, but in the test set, they could appear in any colour. This allows us to
test the robustness of the rules learned from the training data understanding if they
overfit to the examples provided or produce generalised rules.
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Chapter 5

Neural Argumentative Learning

This chapter presents the Neuro-Argumentative Learning (NAL) pipeline (Figure
5.1) used to learn argumentation frameworks from images.

The NAL pipeline is split into two sections, the neuro-module and the symbolic mod-
ule. The neuro-modules goal is to convert the images into symbols and feed this
information to the symbolic modules which apply ABA learning to learn new con-
cepts. These concepts can be leveraged for downstream tasks such as classification
and common-sense reasoning.

Background
Enowledge

Slot Attention . ‘ ‘ +
et .
ANRN [
CNN 11 . Framework
NS, .

SOLVED
ABA
Framework

postive (img) «——

Figure 5.1: Neural Argumentative Learning Pipeline
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5.1 Inputs

The NAL pipeline accepts a dataset X of images z; € X whereby X := [zq,...,zx].
Images in the dataset can be divided into a subset of N, classes {X,..., Xx.}. The
NAL pipeline also takes in an object dictionary 5.2 which contains all the attributes
the model needs to identify in the images. A special entry in the dictionary object
details the type of objects the attribute refers to. This dictionary is also used to
label the predicate in the symbolic module. Without it, the architecture will define
abstract properties to extract from each object.

object_info = {

"object" : ["Triangle", "Circle", "Square"],
"colour" : ["Red", "Green", "Blue"],
"size:" : ["Large", "Small"]

Figure 5.2: Object dictionary for SHAPES dataset

Other input configurations include the number of slots for the slot attention unit
(which is set to the length of the object list plus one for the background) and the
size of the input image for the neuro-module. The symbolic module also takes a
list of tuples [(£7,£7)...] where each tuples contains the classes which are to be
considered positive and negative examples. We also input the number of examples
which the ABA Learning algorithm should use. Before training and inference, the
images are automatically preprocessed consisting of normalisation to the range of
[-1, 1] and resizing the image to the desired scale.

5.2 Neuro-Module

The neuro-module consists of a slot attention autoencoder and a set of multi-layer
perceptrons (MLP) to convert the images into predicates. The slot attention autoen-
coder is trained using the process described in section 3.4.2 segmenting the image
into K slots. Each of these slots are latent representations of objects containing in-
formation on their attributes.

These attributes are then extracted via the MLP. The architecture has two types:
A classification MLP which uses a softmax activation in the final layer to predict the
most likely attribute for a given feature. The second type is a regression MLP head
which is used to predict the location of objects and determine whether the slot has
attended to a real object or not.

The results of these predictions are then concatenated to form our final perception
of the input image. We also append the confidence of each prediction due to the
sensitivity of the symbolic module. Finally, we output the mask of each slot which
can be used to add positional background knowledge in the ABA framework
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% Image Facts

in(A,B) :- A=img 1, B=object_1.
circle(A) :- A=object 1.
blue(A) :- A=object_1.

in(A,B) :- A=img 1, B=object_2.
circle(A) :- A=object 2.
blue(A) :- A=object_2.

image(A) :- A=img 1.

in(A,B) :- A=img 20, B=object_68.
triangle(A) :- A=object_68.
blue(A) :- A=object_68.

in(A,B) :- A=img 20, B=object_69.
triangle(A) :- A=object_69.
red(A) :- A=object_69.

in(A,B) :- A=img 20, B=object_70.
triangle(A) :- A=object_70.
blue(A) :- A=object_70.

image(A) :- A=img 20.

% Command to run ABA ASP
aba_asp(’shapes_bk.aba’, [c(img_-1)], [c(img_-20)]) .

Figure 5.3: Example of ABA Learning input file

5.3 Symbolic-Module

The symbolic module receives the output predictions of the neuro-module and pro-
cesses them to an ABA Framework (Figure 5.3) for the ABA Learning algorithm.

The module’s initial task involves selecting appropriate positive and negative exam-
ples from the sets Xy, listed in (€7,£7). This is accomplished by aggregating the
slots and performing clustering. The number of clusters corresponds to the desired
number of examples, and an image is chosen from each cluster. We also check the
confidence of each prediction and prune off any image below a certain threshold.

The predictions are then passed to concept embedding functions which use the ob-
ject dictionary to convert the raw predictions to predicate. This is achieved using
the ABA Framework class which which allows users to add background knowledge,
run the ABA-ASP algorithm and extract learnt rules for inference. For each image
and object, an identifier is given in the form of the predicate image (img i), and the
constant object_i respectively. Then for each prediction, we take the argmax to
identify the properties in the object dictionary which are attributed to the object. We
encode this as a predicate in the framework e.g. blue(object_i). This is done for
all objects and images.
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Once all images and objects are encoded into the ABA Framework, we generate the
ABA-ASP command aba asp(’filename.aba’, [e pos], [e negl). The command spec-
ifies which images are positive and negative using (£7,£7). The ABA-ASP learning
strategy is then run to produce a new ABA Framework which includes the learnt
rule. The ABA Framework class extracts these learnt rules into a . SOLVED. aba file.

5.4 Inference

At inference time, we run a slightly different pipeline to obtain final results. For a
new image we wish to see if it’s a positive instance of the concept, we passed the
image through the neuro-module slot attention unit and MLP heads. This produces
predictions of the objects and their attributes which are converted into predicates.
From this, we create an ASP program which contains these predicates, the learnt
rules from training and any extra background knowledge. This file is then solved
using an ASP solver (e.g. Clingo) to compute the stable models that the program
emits. Depending on the ABA semantics, the program may emit more than one sta-
ble model.

For classification tasks, these stable models are analysed to see the presence of the
concept predicate. If so the model predicts positive and negative if absent. For other
downstream tasks, the analysis of the model may vary hence one can define the
conditions needed for a positive instance.

postive (ing)

Figure 5.4: NAL Inference Pipeline
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Chapter 6

Experiment Setup

In this chapter, we describe the training settings used to prepare the NAL architec-
ture for our experiments. Additionally, we outline the various tasks used in these
experiments and detail the baseline models used for comparison against our archi-
tecture.

6.1 Models and Training

6.1.1 Training Neural Modules

Training the neural modules involved setting up a training pipeline which combined
the goals of the slot attention unit and the MLP head. Images were paired with one-
hot encoded label y; € [0,1]%*P*! where P = " A; and A, represents the length
of the list corresponding to the i-th key in the object dictionary (5.2). These labels
represent all the objects in an image and their corresponding attributes. The slot
attention then produce slots Z; € R%*ds_ Each slot is then passed through MLP
heads to produce a prediction y; € [0, 1]5*F+1,

The loss function to train this model was a combination of reconstruction loss (for
slot attention) and Binary Cross Entropy (BCE). However, one problem we ran into
was the positional invariance property of the slot attention output. This meant that
our label order didn’t match the output order from the slot attention model. To re-
solve this, we used Hungarian matching: an optimisation technique which aims to
find the optimal way to match elements of two distinct sets. To apply this, we created
a cost matrix which stored the BCE of all combinations of labels and predictions. We
then run the algorithm to find matches which result in the minimum cost. With this,
we define equation 6.1 as the loss function which the model tries to minimise.

N
Loss = MSE(z;, z;) + « mkign BCE(ys, Uo(i)) (6.1
oESN
=1
where Sy is the set of all possible permutations of true labels and predicted
probabilities
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For our experiments, we trained each model for 1500 epochs on all the images in the
dataset and set alpha in equation 6.1 to 0.7 to balance the reconstruction loss and
the Hungarian loss. For every 4 epochs, we evaluated the validation set and used
the model which performed best on the validation set as our final model.

6.1.2 Training Symbolic Module

The symbolic section of the architecture used ABA-ASP to learn a new ABA frame-
work. In our experiments, the algorithm was a black box hence, we couldn’t tailor
the learning strategy for image data tasks. To address this limitation, we focused
on optimising the learning process via the inputs and the setting that ABA-ASP pro-
vided.

ABA-ASP Examples

The nature of the ABA-ASP learning strategy means that we cannot provide the
entire dataset as input. Instead, we provide a small subset of positive and nega-
tive examples. These examples define the search space that the learning strategy
uses to generate rules. Therefore, the input examples must be representative, non-
redundant, and contrastive to enable the algorithm to identify rules that distinguish
between the classes.

To achieve this, we performed K-Means clustering on the aggregated slot repre-
sentations of all images in each class. We experimented with various aggregation
methods, such as averaging and concatenation. The number of centroids was set to
match the number of examples needed for input. After fitting the model, we selected
the slots closest to the centroids, based on Euclidean distance, as the examples.

ABA-ASP Leaning Settings

ABA-ASP offered numerous settings that allowed us to adjust the learning strategy
for rule generation despite the core algorithm staying the same. We experimented
with various configurations to identify the optimal combination that facilitated ef-
ficient rule learning and produced high-quality rules. Two of the most impactful
settings were the learning mode and the folding mode. The learning mode deter-
mined whether the ABA semantics were brave or cautious, while the folding mode
defined whether the algorithm conducted a top-down or bottom-up search.

Our experiments showed that using brave semantics led to faster termination. How-
ever, this learning mode produced multiple stable model outputs, which were dif-
ficult to interpret for our downstream tasks. Additionally, we found the bottom-up
search strategy infeasible for learning rules due to the number of predicates each ex-
ample had. Consequently, we opted for cautious learning and a top-down search. Al-
though this approach was more challenging and resulted in longer execution times,
the ABA-ASP tool was still able to produce adequate rules to meet the learning goals.

37



6.2. NAL EXPERIMENTS Chapter 6. Experiment Setup

ABA-ASP Folding Order

Despite optimising the search strategy, ABA-ASP occasionally took much longer to
generate rules. This delay was caused by the algorithm folding on auxiliary predi-
cates first, leading it to search redundant sections of the search space. To address
this, we defined a folding order for the algorithm, prioritising domain-specific pred-
icates. Additionally, we ordered the predicates by their arity, enabling the algorithm
to construct rules using simpler predicates before progressing to more complex ones.
These changes significantly improved the termination speeds of ABA-ASP in our ex-
periments.

6.1.3 Baseline Models

In the field of neuro-symbolic learning, few systems have successfully integrated
neural networks and symbolic learning as we have in the NAL pipeline. One notable
exception is NeSyFold, which employs a different neural network system and sym-
bolic reasoner to learn rules from images. Unfortunately, the code for NeSyFold was
unavailable, preventing us from using it as a baseline model. As a result, we opted
to compare our NAL architecture with sub-symbolic learners and other tools which
helped to make deep learning models more explainable.

Baseline 1: ResNet-34 with GradCAM

Our first baseline purpose is to compare how well our neuro-symbolic model com-
pares to fully neural models. We use a Resent-34 model which extends CNNs with
residual connections to prevent vanishing gradients. We trained the model for 100
epochs as it converged faster than our slot attention model and passed the final layer
through a GradCAM function to visualise the regions leading to a classification.

Baseline 2: Neuro-Symbolic Concept Leaner

Our second baseline uses the Neuro-Symbolic Concept Learner (NS-CL) as a sub-
symbolic system for comparison. Similarly to our architecture, NS-CL uses slot at-
tention to extract objects and their attributes. However, instead of pure symbolic
reasoning, it employs a set transformer to obtain a final classification. NS-CL also
outputs visual explanations, highlighting the concepts utilised in the classification
process.

6.2 NAL Experiments

6.2.1 Investigating NAL with SHAPES

The SHAPES dataset was considered our baseline dataset for testing if argumenta-
tion was a viable strategy for learning rules on image data. To conduct this exper-
iment using the SHAPES dataset, we defined six binary classification tasks for the
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neural argumentative architecture. The goal of each was to learn rules which could
segment the positive and negative examples of each class (4.1). After training the
neuro module on the dataset, we train the symbolic module for each of the classifi-
cation tasks varying the number of examples and ordering of predicate. Our ResNet
baseline model with GradCAM achieved perfect classification scores on all tasks, sug-
gesting that these tasks are well-suited for evaluating the viability of our proposed
architecture.

6.2.2 CLEVR-HANS

Once establishing an understanding of the capabilities of the neuro-argumentative
architecture, we defined a multi-class classification task on the CLEVR dataset.

Similarly to the SHAPES dataset, we trained the neuro-module using all the training
images. One challenge we encountered when training the symbolic module was the
binary inputs (positive and negative examples) it needed to learn. For the CLEVR-
HAN dataset, which contained 3 classes, we addressed this by training the symbolic
modules twice. Initially, we trained with one class as positive and the rest as nega-
tive. Then, we repeated the process with the remaining class as positive and the rest
as negative. Consequently, during inference, we executed the first ABA program. If
the classification was negative, we proceeded with the second program to obtain a
final classification for the remaining two classes.

To evaluate this method we used the ResNet model with GradCAM and the Neuro-
Symbolic Concept learner to compare the performance of the multi-class classifica-
tion and the expalinton produced by each model.

39



Chapter 7

Experimental Results

In this chapter, we evaluate how well the NAL pipeline performs against each dataset
providing qualitative and quantitative analysis on both sections of the pipeline

7.1 Neural Module Evaluation

The perceptual ability of the neuro module was an important task for the architecture
to ensure that the facts written to the symbolic module were accurate. To evaluate
the performance of this task we analysed how well the model segmented objects
within images and the identification of attributes from each segmented object. We
make use of the evaluation metric discussed in section 3.9

7.1.1 Image Segmentation

The slot attention unit performed well in segmenting the image into its constitute
objects. From Figure 7.1 each slot correctly attends to a specific object, resulting
in a nearly identical reconstruction. To further evaluate performance, we used the
Adjusted Rand Index (ARI) metric to assess the unit’s ability to localize and segment
images. The model achieved high ARI scores, with 0.8 for SHAPES and 0.91 for
CLEVR, demonstrating consistent performance regardless of the number of objects,
positions, or sizes.

input __ Reconstruction  Slot 1 Siot 2 Slot 3 Slot 4 Slot 5 Slot6 siot 7 Slot 8 Siot9 Siot 10 Adjusted Rand Index (ARI)

Input  Recanstruction  Slot 1 Slot 2 Siot 3 Siot 4 slat 5 Slot 6 Siot 7 Slot 8 Siot 9 Siot10  Siet11

Mean AR

Input  Recanstruction  Slot 1 Slot 2 slat 3 slot 4 slat Slot & Slot 7 slot & Slot 9 slot10  slat1l

Figure 7.1: (LEFT) Example images segmented into slots; (RIGHT) ARI Plot for each
dataset
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7.1.2 Object Classification

Given the latent representation from the slot attention unit, the MLP heads per-
formed well in extracting the attributes of each object. The chart in Figure 7.2 shows
that for both CLEVR and SHAPES images, the model could extract attributes with an
accuracy greater than 80%. The F1 score for both is above 70% suggesting that the
model can minimise false positives and false negatives. This is a good indication that
the symbolic module can reason accurately about the images. However, the results
from the CLEVR dataset were slightly worse than the SHAPES. This could be due to
the number of attributes being larger in CLEVR than in SHAPES suggesting that the
attribute size can affect prediction performance.
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Figure 7.2: Standard evaluation metrics of predicate classification on the SHAPES and
CLEVR dataset

We also calculated the average precision (AP) of the neuro-modules for both datasets.
At infinite range, the CLEVR dataset scored 0.88 while SHAPES scored 0.91. These
high AP values indicate that the modules can effectively classify and localise objects.
This reinforces the idea that the predicates used for the symbolic modules accurately
represent the images.

7.2 Symbolic Module Evaluation

The symbolic section of the pipeline used the ASP-ABALearn learning strategy to pro-
duce programs for the final classification task. To evaluate this section, we looked at
the common pitfalls in logic-based learning algorithms e.g. scalability and quality of
results.
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Figure 7.3: Box plots of training time of ASP-ABALearn

Our experiments revealed that the non-determinism of ABA-ASP folding led to vari-
ability in both the quality of results and the system’s running time. This variability
was exacerbated by the complexity of the task, such as increasing the number of
facts through background rules or tasks with large object domains. As illustrated
in the box plot in Figure 7.3, simpler tasks like SHAPES-T1 exhibited low variance,
whereas more complex tasks like SHAPES-T5 and CLEVR-P1 showed high variance
in running time. Furthermore, we found that with longer running times, the quality
of the results decreased due to heavily nested rules. Because of this, we chose to
evaluate the best program outputted by ASP-ABALearn.

The ASP-ABALearn tool also faced scalability issues, which limited the number of ex-
amples we could use. As we increased the number of examples, training times grew
significantly, with some runs having to be manually terminated after several days.
This could be due to the tool having a larger example set to process, which increases
the likelihood of exploring irrelevant sections of the search space. Additionally, the
higher risk of incorrect predicates produced by the neuro-modules could lead to ex-
amples no longer representing the positive class. If this occurs, the learning strategy
needed to search the entire space before realising the problem is unsolvable. With
these findings, we used between 10-20 examples to keep the search space feasible.

7.3 NAL with SHAPES

The SHAPES Dataset’s primary purpose was to evaluate the viability of using argu-
mentation to reason about objects in images. From Table 7.4, we see that the NAL
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7.3. NAL WITH SHAPES

Accuracy  Precision Recall F1-Score
Task 1 99.0+ 0.0 100.0£0.0 97.5£0.0 99.0+£0.2
Task 2 96.0+0.0 99.0£0.0 93500 96.0£0.2
Task 3 98.0+£ 0.0 100.0£0.0 97.5£0.2 98.0£0.0
Task 4 7H.0£3.0 61.0x£52 98504 75.0+£0.2
Task 5 86.0£4.1 77.0£3.8 96.5+02 84.040.2
Task 6 99.0+£0.0 98.0+£0.0 100.0£0.0 99.0=£0.0

Figure 7.4: Standard evaluation metrics denoting how well NAL can distinguish be-
tween positive and negative instances of rules present in SHAPES images

pipeline performed well in generating rules which could differentiate the positive
and negative examples. For most rules, the recall was the lowest of the standard ml
metric meaning that positive examples were classified as negative. This could be a
result of the NAL architecture producing rules that don’t fully capture the ground
truth rule.

Two results which are of interest in the result class 4 and class 5 rules which pro-
duced a lower F1 score due to the lack of precision. These class rules described
more complex relationships between objects. A low precision suggests that the NAL
architecture learnt rules which were too general resulting in many negative exam-
ples being classified as positive. This is further evident by the high recall as a result
of fewer false negatives.

7.3.1 Rule Analysis

From table 7.4, we found that the pipeline performed well on classifying images
conditioned on the presence of an object/attribute. These types of rules were rep-
resented by tasks 1 to 3. Figure 7.5 shows the learned ABA program which ABA
Learning produced from task 1. The program can be interpreted as an image be-
longing to the positive set if the image contains a square except if the square is red
or green. This interpretation has the same meaning as the rule used to generate the
image albeit expressed in a convoluted way. This could be a result of the argumenta-
tive nature of the learning process which learns by finding exceptions to the original
rule devised.

% Background Knowledge

% Learnt Rules

class_1(A) :- alpha 2(B,A), square(B), in(A,B).
c_alpha 2(A,B) :- image(B), red(A).

c_alpha 2(A,B) :- image(B), green(A).

alpha 2(A,B) :- not c_alpha 2(A,B), square(A), in(B,A).

Figure 7.5: NAL output for SHAPES images generated by rule 1
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A limitation of the rule generated by NAL for these tasks was its inability to capture
all elements of a rule in conjunction. Highlighted by the rule learnt for task 3, the
resulting program focuses solely on the second object in the conjunct rather than
both objects. This led to some misclassification when only one of the two objects
appeared in the image. A solution to force ABA-ASP to focus on both conjuncts
would be to include more of these cases as negative examples.

% Background Knowledge

% Learnt Rules

class_ 3(A) :- alpha 2(B,A), circle(B), in(A,B).

c_alpha 2(A,B) :- image(B), green(A).

c_alpha 2(A,B) :- image(B), blue(A).

c_alpha 2(A,B) :- image(B), small(A).

alpha 2(A,B) :- not c_alpha 2(A,B), circle(A), in(B,A).

Figure 7.6: NAL output for SHAPES images in Task 3

We also saw some performance issues with the NAL pipeline on Task 4 and Task 5.
For these tasks, the positive set consisted of images with objects in certain config-
urations. For these rules, we injected background knowledge which defined what
it meant to be above and left and grounded the program to produce a program of
grounded facts for ABA-ASP. Looking at the output of Task 5 (Figure 7.7), we find
that the program captures some elements of the rule used to generate the images:
e.g. the circle being green and that a triangle not being to the right of the circle.
However, the program doesn’t cover all the exceptions leading to it being too gen-
eral. This could be a result of the increased search space as a consequence of the
grounding with the background knowledge.

% Background Knowledge

above(S1, S2, I) :- position(I, S1, X1, Y1), position(I, S2, X2, Y2),
Y1 - Y2 < 0.

left(S1, S2, I) :- position(I, S1, X1, Y1), position(I, S2, X2, Y2),
X2 - X1 > 0.

% Learnt Rules

class 5(A) :- alpha 2(B, A), small(B), circle(B), in(A, B).

c_alpha 2(A, B) :- image(B), blue(A).

c_alpha 2(A, B) :- image(B), red(A).

c_alpha 2(A, B) :- green(C), triangle(A), left(A, C, B).

alpha 2(A, B) :- not c_alpha 2(A, B), small(A), circle(d), in(B, A).

Figure 7.7: NAL output for SHAPES images generated by rule 5

Task 6 featured images which were classified as positive via the absence of an objec-
t/attribute. From the previous results, we found that the pipeline generated rules by
conditioning on objects found in the positive set and then finding counterexamples.
However, since the rule was a counter-example itself, the pipeline couldn’t use this
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method and hence failed to learn a rule for this task. This case led to the realisation
that the pipeline also needs to reason about the image as a whole first before look-
ing at the object contained in the image. To allow for this we introduced ordering
predicate by arity so the algorithm would search for rules conditioned on the image
before objects. This improvement led to the pipeline being able to learn a program
which accurately reasons on exception rules.

% Background Knowledge

% Learnt Rules

class_ 6(A) :- alpha 2(A), image(A).

c_alpha 2(A) :- alpha_3(B,A), circle(B), in(A,B).
c_alpha 3(A,B) :- image(B), red(A).

c_alpha_3(A,B) :- image(B), green(A).

alpha 2(A) :- not c_alpha 2(A), image(A).

alpha 3(A,B) :- not c_alpha 3(A,B), circle(A), in(B,A).

Figure 7.8: NAL output for SHAPES images in Task 6

7.4 NAL with CLEVR-Hans

The CLEVR-hans task was defined as a multiclass classification task where each class
corresponded to a type of object being present (4.2). Looking at some standard
evaluation metrics in Figure 7.9 we see that the NAL architecture had some success
in uncovering rules to distinguish the classes. It achieved a score of around 70%
in each category performing better than the ResNet baseline by 10%. However, it
performed slightly worse than the NeuroSymbolic Concept Learner which achieved
scores in the 80% region. This could be because the NS-CL uses a set transformer to
classify the images rather than pure symbolic reasoning.

Accuracy Precision Recall F1-Score

NAL 69.1+03 70.0x£01 69.1+£0.2 68.0=£0.2
ResNet with GradCAM 652+ 0.3 66.2+04 652+0.2 61.0+0.2
Neuro-Symbolic CL 84.7+0.1 86.1+02 84.7+£0.2 84.0+£0.2

Figure 7.9: Standard evaluation metrics denoting how well NAL can distinguish be-
tween positive and negative instances of rules present in SHAPES images

The confusion matrices in Figure 7.13 reveal that the NAL architecture struggled the
most with distinguishing between Class 1 and Class 2. This difficulty likely arose
because the classification required the presence of two objects with different shapes.
In such cases, the ABA learning algorithm tends to be lazy, conditioning on only one
object, since both conjuncts must be true for the conjunction to be valid.

Despite this, the NAL architecture outperformed the baseline. The training sets for
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Class 1 and Class 2 included only a single type of colour/material, whereas the test
set featured a variety of these attributes. Consequently, the baseline model and the

concept learner may have bound to incorrect concepts, leading to reduced accuracy
in the test set.

Confusion Matrix Confusion Matrix

Class 1 4 600 Class 1

Class 2 4 Class 2 227 185

True label
True label

300 I 300

Class 3 4 Class 3 39 a2

100

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Predicted label Predicted label

Figure 7.10: ResNet with GradCAM Figure 7.11: NAL Architecture

Confusion matrix, without normalization

700

600

500

400

True label

r 300

200

r 100

Predicted label

Figure 7.12: NS-CL

Figure 7.13: Confusion matrices of the different models for the test set of CLEVR-Hans3.

7.4.1 Rule Analysis

As described above we trained the symbolic-modules twice producing two frame-
works. The first framework (shown in Figure 7.14) suggests that class 3 images are
images which contain a sphere except if they possess any of the attributes listed.
Analysing this further the exceptions indicate that the sphere can only be small and
yellow (and any material). This only captures half of the rule neglecting that large
blue spheres are also classified as class 3. Furthermore, the exception lists large and
blue spheres as arguments against class 3 images. Despite half the rule missing, the
framework was able to distinguish class 3 objects as in most cases either both types
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of spheres appear or none. However many misclassifications happened due to the
rule being too general.

% Background Knowledge

% Learnt Rules

class 3(A) :- alpha 2(B,A), sphere(B), in(A,B).
c_alpha 2(A,B) :- image(B), brown(A).

c_alpha 2(A,B) :- image(B), green(A).

c_alpha 2(A,B) :- image(B), cyan(A).

c_alpha 2(A,B) :- image(B), red(A).

c_alpha 2(A,B) :- image(B), large(A).

c_alpha 2(A,B) :- image(B), blue(A).

c_alpha 2(A,B) :- image(B), gray(A).

alpha 2(A,B) :- not c_alpha 2(A,B), sphere(A), in(B,A).

Figure 7.14: NAL output for classifying CLEVR images as class 3

The next framework is shown in Figure 7.15 is then used to classify the remaining
images as class 1 and class 2. The framework suggests that cubes that are not small
are class 1 images. This rule was devised as class 1 images comprised of larger cubes
while class 2 small cubes. The ABA learning found that this was the differentiating
factor. Despite it’s many more images were classified as class 1 when they were
supposed to be class 2. This could be as the rule is too general and a class 1 image
may contain a small cube as well leading to a wrong classification.

% Background Knowledge

% Learnt Rules

class_1(A) :- alpha 2(B,A), cube(B), in(A,B).

c_alpha 2(A,B) :- image(B), small(A).

alpha 2(A,B) :- not c_alpha 2(A,B), cube(A), in(B,A).

Figure 7.15: NAL output for classifying CLEVR images as class 1

7.5 Explainablity and Interpretablity

One of the main reasons for developing a NAL pipeline is its enhanced explainability
and interpretability. The programs generated by NAL are easily interpretable by hu-
mans because the rules are written in natural English. Users can follow the model’s
reasoning by constructing an argumentation of the predicates and ensuring that no
parts of the reasoning tree are attacked. Additionally, users can inject their own rules
to address cases the outputted program missed or to serve as regularisers, prevent-
ing the rules from being triggered in unwanted situations.
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To evaluate these properties we conducted user studies asking 5 end users to in-
terpret and explain the output of each model. All users had some knowledge of
machine learning while a subset had previous experience in logic programming.

7.5.1 NAL Explanations

The explanation provided by the NAL pipeline was easy to interpret by the end users.
Given the output programs from SHAPES and CLEVR learning tasks, all users could
construct detailed reasoning as to why an image would be classified. However, for
more complex programs, users could only understand what the program stated but
struggled to articulate the program’s meaning in natural English. The complexity
was related to the nesting of negation. The more levels of negations which were
present the more difficult the program was to reason about. This suggested that
the NAL programs lack some interpretability. Another issue highlighted was the
error posed by the neuro section of the pipeline. In some cases, the prediction was
contrary to what the users believed due to some perceptual errors. Despite not only
being able to fix these errors, users could pinpoint the incorrect fact demonstrating
the tranparacy of the output.

7.5.2 GradCAM Explanations

An alternative explanation we provided for users was GradCAM images. These high-
lighted the regions of the images which contributed to the final classification (Figure
7.16). All users could formulate reasons as to why the reference images by stating
the objects presented in the highlighted region. This provided them with some reas-
surance that the model had picked up on the right attribute. However, these regions
didn’t capture the deeper meaning of a classification e.g. the relation of a shape with
another or the material of a shape. Because of this, users needed many images to
recover this information.

Figure 7.16: Classification Heatmaps produced by ResNet-GradCAM model on SHAPES
Images. (Left) Class 4 classification (Right) Class 6 classification
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7.5.3 NS-CL Explanations

The explanations provided by NS-CL featured a visual grid that encompassed all the
concepts involved in the final classification. This added information allowed users
to deliver more detailed explanations compared to GradCAM images. The grid’s
high interpretability also facilitated the integration of Explainable Interactive Learn-
ing (XIL). XIL enables users to interactively guide the model by indicating which
concepts to focus on or ignore, thereby enhancing model transparency. However, a
limitation of this approach is that the grid does not encode more complex informa-
tion, such as positional data. Consequently, users needed multiple images to retrieve
this information, similar to GradCAM images.

True Class: 1; Pred Class: 1
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Figure 7.17: NC-CL Visual Explanation
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Chapter 8

Future Work

The outcomes of the neuro-argumentative pipeline demonstrate the promise of inte-
grating slot attention for object-centric learning with computational argumentation
for reasoning. Nevertheless, the experiments have identified intriguing avenues for
future research.

8.1 Quantifying Uncertainties

In the current implementation of our neuro-argumentative pipeline, the outputs neu-
ral section are treated as perfect facts which don’t take into account the inherent
uncertainties in their predictions. A line of research could focus on incorporating
epistemic uncertainty within the slot attention to better capture and quantify the
confidence in the extracted facts. This enhancement could then be incorporated
into the ABA Learning algorithm to reason more effectively by considering the relia-
bility of the information, leading to more robust rule-learning and decision-making
processes. Techniques such as probabilistic object-centric learning [25] and integrat-
ing probabilities with logical facts like that of DeepProbLog [26] could be explored
to quantify and integrate this uncertainty within the neuro-argumentative pipeline
thereby improving the overall performance and accuracy of the system.

8.2 Computation Argumentation

Another avenue for future work involves addressing the limitations of using a pure
assumption-based argumentation learning algorithm in our pipeline for image clas-
sification. ABA Learning primarily focuses on finding exceptions to differentiate be-
tween positive and negative examples, which has proven to be less effective for rule
learning in this context. To enhance the system’s ability to learn robust classification
rules, a tailored learning framework that initially identifies the most general rules
and subsequently refines them through exception learning could be developed. By
prioritising the discovery of broad, generalisable rules before honing in on specific
exceptions, this refined approach could yield more accurate and comprehensive clas-
sification programs, ultimately improving the overall performance of the pipeline.
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8.3 Interpretabilty of Results

A final avenue for future work involves improving the interpretability of the clas-
sification programs learned by the neuro-argumentative pipeline. Currently, using
brave semantics results in the production of multiple stable models at inference,
making it challenging to interpret a final classification and/or understand the reason-
ing of classification from convoluted and nested rules. To address this, we propose
adopting the concept of visual debates [27]. This approach involves creating visual
representations of the argumentative process, allowing users to see and understand
how different arguments and counterarguments lead to specific classifications. By
leveraging visual debates, we can provide more intuitive and transparent explana-
tions for the classification decisions made by the pipeline, ultimately improving user
trust.
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Chapter 9

Conclusion

Revisiting the objectives in the first section, the primary goal of the project was to
explore neural argumentative machine learning within the context of images. To
achieve this, we proposed a novel neural argumentative learning pipeline capable of
learning ABA frameworks to classify images. The pipeline comprised two sections:
the first utilised slot attention for object-centric learning, and the second used ASP-
ABALearn to reason about the objects in the image.

Additionally, we aimed to evaluate the viability of computational argumentation as
a method for reasoning about images. By using synthetic datasets such as CLEVR
and our generated SHAPES, we assessed the extent to which neural argumentation
learning could recover the logical rules underlying the images.

9.1 Contributions and Challenges

9.1.1 Neural Argumentative Learning Pipleine

In Chapter 4 we introduced the neural argumentative learning pipeline which com-
bines the perceptual capabilities of neural networks with the explainability of a sym-
bolic reasoner. The pipeline uses slot attention to extract objects from the image and
their attributes. It then converts this to predicates using an object dictionary and
runs the ABA-ASP learning strategy to learn new rules. The pipeline can then be
run in inference mode to reason on new images using these rules. The pipeline can
be seen as the main contribution of this project as it is a novel combination in the
neuro-symbolic space.

Challeges

A key challenge during the pipeline’s development was using logic-based learning
(via ASP-ABALearn) to learn rules about the predicates identified by the neural sec-
tion. Non-representative examples and incorrect perception of facts from these ex-
amples by the neural section could distort the learning problem, leading to pro-
longed execution times. In section 6.1.2 we discuss some measures to mitigate these
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issues through clustering and thresholding. Although these approaches led to some
improvements, they also increased the processing time between the neural and sym-
bolic sections.

Another challenge was applying the slot attention model to real-world images. The
model struggled to perceive objects accurately due to the requirement for linearly
separable inputs and the presence of noise. Additionally, defining an object dictio-
nary to describe the potentially infinite features and objects in the real world was
infeasible. To address this, we briefly explored using the DINOSAUR architecture
[28] to enhance object perception and generated abstract facts from the latent rep-
resentation.

9.1.2 Exploring CA for Images

Another contribution of this project was the investigation of computational argumen-
tation (CA) within the context of images. We introduced our own SHAPES dataset
generation in Chapter 3 which creates SHAPES-like images which conform to the
rules inputted in ASP. This allowed us to perform an in-depth analysis of the type of
rules ASP-ABALearn could recover.

As discussed in Chapter 7, we found that the ABA Learning strategy could uncover
most types of rules, but it tended to reproduce them in a more convoluted manner
as nested exceptions. These nested exceptions made it challenging for users to inter-
pret the results. However, with tools to simplify and visualise the reasoning, these
explanations could be made more interpretable.

9.2 Concluding Remarks

Overall, this project has provided significant insights into the potential of compu-
tation argumentation in the space of image classification. The development of the
Neural Argumentative Learning (NAL) pipeline demonstrates that an object-centric
approach combined with computational argumentation such as ABA, is a viable neu-
ral symbolic approach for enhancing the transparency and explainability of Al sys-
tems.
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