
MEng Individual Project

Imperial College London

Department of Computing

LexEval:
A Scalable LLM Evaluation Framework

Author:
Siddhant Singh

Supervisor:
Prof. Abbas Edalat

Second Marker:
Dr. Chiraag Lala

Advisor:
Ruoyu Hu

July 2, 2024

Abstract

As Large Language Models (LLMs) become more powerful and their parameter counts increase, it
is crucial for them to exhibit consistent recall capabilities for terms that appear less frequently in
their pre-training data. The importance of accurate responses is paramount especially when LLMs
are being used in production workflows for business critical decision making in industries like sup-
ply chain, medicine and business. Retrieval-Augmented Generation (RAG) is a powerful method
that combines non-parametric knowledge with the parametric knowledge of language models. This
project investigates the robustness of LLMs in handling long-tail entity question answering (QA).

Initially, our project aimed to address SQuAD2.0[1], but we transitioned to using POPQA,
which better suited our goals. We examined prompt perturbations from both paraphrasing and
lexical perspectives, incorporating these variations within a tree structure to systematically analyse
their effects. This comprehensive approach allowed us to delve deeper into the RAG pipeline and
evaluate it with greater granularity.

LexEval provides a straightforward framework for selecting LLMs tailored to users’ specific
needs, allowing them to optimise prompts for accuracy, token lengths, and cost-effectiveness. This
framework empowers users to make informed decisions, enhancing the efficiency and effectiveness
of their workflows. With LexEval, we have created a scalable evaluation framework adaptable to
the continuous advancements in language models. It enables users to fine-tune their evaluation
paradigms, focusing on lexical or paraphrasing perturbations as required. Our extensive testing
of 7 LLMs includes comprehensive performance documentation, detailed RAG pipeline failure
analysis, and qualitative response assessments. LexEval has proven its robustness with larger
models by increasing task difficulty using long-tail entities, making it a valuable tool for evaluating
and improving the performance of current and future language models.

Acknowledgements

I would like to thank Ruoyu (Roy) and Prof. Edalat for their dedicated support during this en-
deavour, encouraging and advising me at every step of the project.

Thank you to my friends and family.

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Contributions . 8
1.3 Report Outline . 9

2 Background 10
2.1 Deep Learning . 10

2.1.0.1 Neuron . 10
2.1.0.2 Feedforward Networks or Multi-Layer Perceptrons 10
2.1.0.3 Training . 10

2.1.1 Recurrent Neural Networks . 11
2.1.1.1 Generating Probability Distribution using RNNs 12

2.1.2 Long Short-Term Memory (LSTM) . 12
2.1.2.1 LSTM Architecture . 13

2.1.3 Transformers . 14
2.1.3.1 Attention . 14
2.1.3.2 Encoder . 14
2.1.3.3 Benefits of Self Attention . 15
2.1.3.4 Decoder . 15

2.2 Pre-Trained Large Language Models (LLMs) . 16
2.2.1 Bidirectional Encoder Representations Transformers (BERT) 16

2.2.1.1 Training Data . 16
2.2.1.2 Masked Language Model . 16
2.2.1.3 Next Sentence Prediction . 16
2.2.1.4 BERT Architecture . 16
2.2.1.5 Architecture Comparison . 17

2.2.2 Generative Pre-Trained Transformer (GPT) Series 17
2.2.2.1 Architecture and Evolution . 17

2.3 Models as APIs . 19
2.3.1 OpenAI . 19
2.3.2 Together AI . 19

2.4 Prompting and Testing . 19
2.4.1 Prompting in LLMs . 20

2.4.1.1 Chain-of-Thought (CoT) . 20
2.4.1.2 Tree-of-Thought . 20

2.4.2 Prompt Perturbation . 20
2.4.2.1 Traditional NLP Perturbation Techniques 21
2.4.2.2 butter_fingers [29] . 21
2.4.2.3 shuffle_words [30] . 21
2.4.2.4 random_upper_transformation [31] 22
2.4.2.5 visual_attack [32] . 22
2.4.2.6 BERT-Based Paraphrasing Perturbation Function 22

2.4.3 Datasets . 22
2.4.3.1 SQuAD2.0[1] . 22
2.4.3.2 PopQA[34] . 23

2.5 Retrieval Augmented Generation . 23
2.5.1 Retriever . 24

2

2.5.1.1 Vector-Based Retriever . 24
2.5.1.2 Keyword-Based Retriever (BM25) [36] 25

2.5.2 Named-Entity Recognition . 25
2.6 Existing Benchmarks . 25

2.6.1 Massive Multitask Language Understanding (MMLU) 26
2.6.2 General Language Understanding Evaluation (GLUE) [41] 26
2.6.3 AlpacaEval 2.0 [46] . 27

3 Related Work 28
3.1 Tree-based LLM Evaluation Frameworks . 28

3.1.1 TreeEval [47] . 28
3.1.2 BEAST [48] . 28

3.2 Perturbation-based LLM Robustness Testing . 29
3.2.1 SPUQ [49] . 29
3.2.2 FastAttacker [33] . 29

4 Methodologies 31
4.1 Initial Implementation . 31

4.1.1 Tree Creation (for SQuAD2.0) . 32
4.1.1.1 Subset of Dataset . 34
4.1.1.2 Tree Invariant Design . 34
4.1.1.3 Creating Paraphrased Children . 35
4.1.1.4 Creating Lexical Children . 35

4.1.2 LexEval Metric Function . 37
4.1.3 Problems with Initial Approach . 37

4.1.3.1 Tree Creation Time and Cost . 37
4.1.3.2 Initial LexEval Results . 38
4.1.3.3 Prompt Diversity in Tree . 38
4.1.3.4 Problems with Combining Thresholding with LexEval Metric Func-

tion . 39
4.2 Adapting to POPQA . 40

4.2.1 POPQA Subset . 40
4.2.2 Code Changes . 40

4.2.2.1 Tree Architecture and make_tree 40
4.2.2.2 Thresholding and Invariant . 41
4.2.2.3 LexEval Metric Function . 41
4.2.2.4 Prompting Function . 42

4.2.3 RAG Setup . 43
4.2.4 Wikipedia API Setup (knowledge-base) . 43
4.2.5 Named Entity Recognition . 43

4.2.5.1 Traditional NER vs LLM NER . 43
4.2.5.2 NER in LexEval RAG pipeline . 44
4.2.5.3 Problem with Adaptive Retrieval 44

4.2.6 Retrievers . 44
4.2.7 Generator . 45
4.2.8 Amending make_tree . 45
4.2.9 Adapting LexEval Eval Function for RAG 46

4.2.9.1 Adding F1-Score . 46
4.2.9.2 Adding BLEU and ROUGE . 46

4.2.10 Batching Calls in the Evaluation Function 46

5 Results and Findings 49
5.1 Tree Variations . 49

5.1.1 Tree Complexity . 49
5.1.1.1 Qualitative Analysis . 50

5.1.2 Prompt Diversity . 51
5.1.2.1 Qualitative Analysis . 52

5.1.3 Cost Effectiveness . 52
5.1.3.1 Creation . 53

3

5.1.3.2 Evaluation . 53
5.2 RAG Evaluations . 54

5.2.1 RAG Retriever Evaluation . 55
5.2.2 RAG Generator Evaluation . 56
5.2.3 Discussion on the quality of responses . 57
5.2.4 Weakest Link in RAG Pipeline . 58

5.2.4.1 Example from <3,3,2> . 58

6 Conclusions and Future Work 59
6.0.1 Future Work . 59

A 65
A.1 Retriever Implementations . 65

A.1.1 BM25 Implementation . 65
A.1.2 Contriever Implementation . 65
A.1.3 ADA2 Implementation . 66

4

List of Figures

2.1 A simple neuron . 10
2.2 Simple Neural Network . 11
2.3 A loss landscape (VGG-56)[3] . 11
2.4 Simple versus Deep Learning Neural Network. [4] 12
2.5 Diagram displaying RNN architecture and how it can be unrolled. [5] 12
2.6 The sigmoid and tanh activation functions visualised. These figures were plotted

using the Matplotlib library. [7] . 13
2.7 LSTM Architecture. [8] . 14
2.8 Encoder-Decoder Transformer Architecture. [10] 14
2.9 ((left) The Scaled Dot-Product Attention. (right) Stacked Multi-Head Attention

used in "Attention is All You Need". [9] . 15
2.10 BERTBASE and BERTLARGE architectures. [13] . 16
2.11 (left) GPT-1 transformer architecture. (right) Transformations for fine-tuning on

input tasks. All tokens were pre-processed followed by a linear and a softmax layer.
[16] . 18

2.12 (a,b,c,d) Chain of Thought Prompting, (d) Tree of Thought Prompting. [26] . . . 21
2.13 An example taken from the paper displaying the different levels of perturbations [32] 22
2.14 Figure from [34], Performance of GPT models from the POPQA classified by "Re-

lation". 23
2.15 RAG workflow diagram from the initial RAG paper from Lewis et al. [35] 24
2.16 MMLU Leaderboard as of May 29, 2024 [40] . 26
2.17 Figure from [46], AlpacaEval leaderboard compared with AlpacaEval2.0 (length-

controlled) . 27

3.1 Figure taken from the paper outlining the TreeEval framework [47] 28
3.2 Figure taken from the paper outlining the BEAST framework [48] 29

4.1 Diagram of the initial implementation. 32
4.2 Tree diagrams for two different tree configurations, nodes in black are the root

prompt nodes, nodes in yellow are ParaphrasedNode objects representing para-
phrased perturbation nodes and nodes in blue are LexicalNode objects representing
lexical perturbation nodes. 34

4.3 An example of threshold boundaries (hyperparameters) for a tree with depth=3 . . 34
4.4 Initial perturbation prompt . 35
4.5 A path from the LexEval tree for SQuAD2.0 (row id: 572b5334111d821400f38e64) 35
4.6 Comparison of Paraphrased and lexical Perturbations. 36
4.7 Levenshtein Distance Over Iterations for Different Perturbation Probabilities com-

pared with cosine distance over iterations . 36
4.8 A lexical path from the LexEval tree for SQuAD2.0 (row id: 572b5334111d821400f38e64).

Note: the perturbation probability, p=0.1. 39
4.9 Diagram of the new implementation. 40
4.10 Tree diagrams for two different tree configurations with the new tree architecture,

nodes in black are the root prompt nodes, nodes in yellow are ParaphrasedNode ob-
jects representing paraphrased perturbation nodes and nodes in blue are LexicalNode
objects representing lexical perturbation nodes. Please refer to Figure 4.2 for the
old tree architectures. 41

4.11 New perturbation prompt . 42
4.12 The NER prompt used for the experiments. 44

5

4.13 The NER prompt used for LexEval RAG, 1-shot prompting was used to guide the
LLM to produce the right answer. 1-shot prompting proved to solve the NER tasks
better than 0-shot.[62] . 44

4.14 Prompt used for generators in the RAG pipeline 45
4.15 An example of queuing when using batch size of 3 and the <3,3,2> tree. 46

5.1 Average accuracy of nodes across levels in the POPQA LexEval Tree bank. 50
5.2 Average cosine similarity score to the root node (original prompt) on a per-node ba-

sis. Note: This is for the <3,3,2> Tree bank. This network only shows paraphrasing
perturbed nodes. 51

5.3 Average Levenshtein Distance to the root node (original prompt) on a per-node
basis. Note: This is for the <3,3,2> Tree bank. This network only shows values for
lexically perturbed nodes. 52

5.4 A path from the LexEval tree for SQuAD2.0 (LexEval id: 1904656) 52
5.5 Lexically perturbed prompts from the LexEval tree for SQuAD2.0 (LexEval id:

1904656) shown in order of their existence in the tree. 52
5.6 Average accuracy and F1-scores for the LexEval POPQA <2,2,2> Tree Bank clas-

sified by retriever types. 55
5.7 Average accuracy and F1-scores for the LexEval POPQA <3,3,2> Tree Bank classi-

fied by retriever types. Note: gpt-4o-2024-05-13 and Mistral-7B-Instruct-v0.2
have been omitted due to their high cost. 55

5.8 Average accuracy of nodes across levels in the POPQA LexEval Tree bank. 56
5.9 Average accuracy and F1-scores for the LexEval POPQA <2,2,2> Tree Bank clas-

sified by LLMs. 57
5.10 Average accuracy and F1-scores for the LexEval POPQA <3,3,2> Tree Bank clas-

sified by LLMs. Note: gpt-4o-2024-05-13 and Mistral-7B-Instruct-v0.2 have
been omitted due to their high cost. 57

5.11 Box plots for BLEU, ROUGE-1 and ROUGE-L Scores for the <2,2,2> trees for
gpt-3.5-turbo-0125. 57

5.12 Box plots for BLEU, ROUGE-1 and ROUGE-L Scores for the <3,3,2> trees for
gpt-3.5-turbo-0125. 58

6

List of Tables

2.1 Complexity comparisons between Self-Attention and RNN layers. 15
2.2 Architecture Comparison between BERTBASE and BERTLARGE 17
2.3 LLM as an API Costs (as of June 7 2024) . 20
2.4 butter_fingers Transformation Example . 21
2.5 shuffle_words Transformation Example . 21
2.6 random_upper_transformation Example . 22

4.1 Number of nodes with different LexEval configurations 33
4.2 Similarity Score Thresholds Viability . 35
4.3 The effect of different probabilities when applying butter_fingers 36
4.4 Tree creation metrics for LexEval trees with configurations <x,y,z> where x is

depth, y is num_paraphrased and z is num_lexical. Note: These experiments
were run using gpt-3.5-turbo-0125 for 50 randomly sampled rows from SQuAD2.0. 38

4.5 Results for 2 different tree configs using 3 LLMs as evaluators. Note: this was run
on a 50 row subset of SQuAD2.0. 38

4.6 A subset of similar prompts taken from LexEval tree for row id: 57267ed25951b619008f74a9.
This was taken from a tree of configuration <3,3,2> created with gpt-3.5-turbo-0125. 39

4.7 The new implementation showing a drastic drop in the number of nodes from Table
4.1. 41

4.8 NER experiments run on the 200 row subset of POPQA. The POPQA dataset
contains a column for the gold standard of entities in the questions. These were
cross-examined with the output of the NER technique using Python’s __contains__
method. All the NER data is stored within the Tree class, thus NER experiments
were easy to examine and run. 43

4.9 As of June 10 2024, The rate limits for the two API services used are presented here.
The rate limit definitions for OpenAI[68] are: RPM (Requests Per Minute), RPD
(Requests Per Day) and TPM (Tokens Per Minute). The rate limit definitions for
Together AI[69] are: QPS(Queries Per Second). 47

4.10 Batch size metrics comparison with different models and tree complexities. The
experiment was conducted with a 10 row subset of POPQA to optimise for time and
cost. The reason for failures were detected if the experiment failed for any of the 10
trees, the reason was detected using the response from the API. Note: gpt-4-0613,
Mistral-7B-Instruct-v0.2 and gpt-4-turbo-2024-04-09 were not evaluated for
<3,3,2> since they were too slow and costly. 48

5.1 Key LexEval metrics for different tree configurations. The format for configuration
is <x,y,z> where x is depth, y is num_paraphrased and z is num_lexical. Note:
These experiments were run using gpt-3.5-turbo-0125 for 200 randomly sampled
rows from POPQA. 53

5.2 Extrapolated metrics for running LexEval on the entire POPQA dataset. This would
be a 1-time cost. 53

5.3 Key LexEval evaluations metrics for two different tree configurations. The format
for configuration is <x,y,z> where x is depth, y is num_paraphrased and z is
num_lexical. 54

5.4 The causes of failures at each stage of the RAG pipeline. Each cell shows the number
of times the RAG pipeline failed at that particular stage. Note: Mistral-7B-Instruct
has been omitted from <3,3,2> due to cost and time constraints. 58

7

Chapter 1

Introduction

1.1 Motivation
In 2023, the advent of ChatGPT and agent-based workflows heightened the demand for comprehen-
sive evaluation and relative comparisons in the field. During my industrial placement, a substantial
portion of my time was dedicated to the development of the artificial intelligence platform. This
innovative platform harnessed the capabilities of GPT-4, allowing customers to construct their own
LLM-backed workflows.

Robustness testing emerged as a crucial facet in the industry, particularly in nascent fields
where developers might prioritise product building and delivery over meticulous testing. The
maturation of this space accentuates the significance of making judicious decisions when selecting
models tailored to specific use cases.

Given the widespread use of textual prompts, establishing standardised prompting language and
systematically testing optimal phrasing on a large scale becomes imperative for users. Presently,
there is a noticeable absence of a testing framework of such magnitude, highlighting this project’s
importance.

As the landscape evolves, the recognition of the critical role robustness testing plays in refining
language models and workflows becomes increasingly apparent. This project not only addresses the
current need for standardised prompts but also lays the groundwork for a comprehensive evaluation
framework essential for the continued advancement of LLMs in intricate workflows.

1.2 Contributions
The main objective was to provide a simple framework for selecting LLMs that caters to the indi-
vidual needs of users. This framework enables users to explore prompts, optimising for accuracy,
token lengths, and cost-effectiveness. Users can confidently navigate the landscape of LLMs, mak-
ing well-informed decisions that match their particular use cases. In the end, this enhances the
efficiency and effectiveness of their workflows.

With LexEval, we have developed a scalable evaluation framework adaptable to the continu-
ous advancements in language models. This framework enables users to fine-tune their evaluation
paradigms, offering the flexibility to focus more on lexical or paraphrasing perturbations as needed.

Our extensive testing involved 7 LLMs, and we have documented their performance comprehen-
sively. This includes a detailed analysis of any failures within the RAG pipelines and a qualitative
assessment of the responses generated by these models.

LexEval has demonstrated its robustness with larger models by effectively increasing task dif-
ficulty through the inclusion of long-tail entities. This adaptability and thorough evaluation capa-
bility make LexEval a valuable tool for assessing and improving the performance of contemporary
and future language models.

8

1.3 Report Outline
We begin the report by exploring the relevant topics required to understand language models and
their evaluations (Chapter 2 and 3). We then discuss the initial implementation of LexEval with
SQuAD2.0 (Section 4.1), quickly followed by the latest implementation of LexEval (4.2). In the
evaluation (5), we showcase the metrics and results gained from experiments with LexEval tested
across 7 different LLMs. Finally, we summarise our findings in Chapter 6.

9

Chapter 2

Background

2.1 Deep Learning
Deep learning signifies a transformative change in artificial intelligence, leveraging the intricate
structure of neural networks to learn and discern intricate patterns from data. At the heart of
deep learning lies the essential foundation — the neuron.

2.1.0.1 Neuron

A neuron is the basic computational unit of a neural network, emulating the functioning of a
biological neuron. Mathematically, a neuron processes input signals, applies weights, adds a bias
term, and activates through an activation function. The output of a neuron is calculated as follows:

Output = f(Bias +
n∑
i=1

Inputi × Weighti) (2.1)

This formula encapsulates the neuron’s ability to transform input information into meaning-
ful output, modulated by weights and biases. Various activation functions (f) such as sigmoid
(σ(x) = 1

1+e−x), tanh (tanh(x)), and ReLU (max(0, x)), introduce non-linearities to the neuron’s
computation.

Figure 2.1: A simple neuron

2.1.0.2 Feedforward Networks or Multi-Layer Perceptrons

Feedforward networks are the backbone of DL. These networks consist of an input layer, hidden
layers, and an output layer. Inference flows unidirectionally from the input layer and hidden layers
to the output layer. The architecture enables the network to learn hierarchical representations of
data.

2.1.0.3 Training

Having established the basics of neurons and feedforward networks, the next crucial aspect is
understanding how these models are trained. Model training involves optimising the weights and

10

biases of the neural network to optimise its loss function. The training process aims to minimise
the difference (also referred to as error) between the model’s predicted values and target values in
a dataset.

Optimisation Objective: The primary objective during training is to define a suitable loss
function that quantifies the difference between the predicted and actual values. A useful loss func-
tion for regression tasks is Mean Squared Error (MSE) and Cross-Entropy Loss for classification
tasks.

The overarching goal is to find the optimal set of weights and biases that minimises this loss
function, effectively making the model’s predictions as accurate as possible.

Backpropagation algorithm: The backpropagation algorithm is the cornerstone of training
deep neural networks. It involves two main steps: forward pass and backward pass. [2]

1. Forward pass: Input data passed through the network generating an output. Loss is
calculated using the predictions and the truth values.

2. Backward pass: Propagates the loss back through the network, gradients of the loss land-
scape with respect to the model weights and biases are computed. The weights and biases are
appropriately adjusted in the other direction of the gradient to minimise loss. The parameter
update formulae are given as follows, note that α is the rate of learning:

W ∗ =W − α
δL

δW
(2.2)

b∗ = b− α
δL

δb
(2.3)

Figure 2.2: Simple Neural Network Figure 2.3: A loss landscape (VGG-56)[3]

Optimisation Algorithms: To efficiently navigate the vast parameter space, optimisation
algorithms like Gradient Descent (or Stochastic Gradient Descent) are used. These algorithms it-
eratively update model parameters, moving them towards the optimal values that minimise the loss.

Epochs and Batches: Training occurs over multiple iterations called epochs. In each epoch,
the entire dataset is processed through the network. To enhance efficiency and mitigate memory
constraints, datasets are often divided into batches.

2.1.1 Recurrent Neural Networks
RNN is a class of neural networks equipped with a dynamic architecture, incorporating recurrent
connections (synonymous to feedback loops). These connections enable RNNs to maintain an
internal state or memory, allowing them to retain information from previous time steps. The
mathematical representation of an RNN’s hidden state (ht) at time t is defined as follow:

ht = f(Whhht−1 +Whxxt) (2.4)

Whh and Whx represent the weights for the recurrent and input connection and f is the activation
function.

11

Figure 2.4: Simple versus Deep Learning Neural Network. [4]

Figure 2.5: Diagram displaying RNN architecture and how it can be unrolled. [5]

Sequential data, prevalent in NLP, demands models capable of capturing temporal dependen-
cies. RNNs perform well in this domain by processing sequences element by element while consid-
ering context from previous steps. The recurrent connections play a key role in modeling temporal
dependencies, which are essential for grasping the nuanced structure of sequential information.

In NLP, language follows a sequence, where the meanings of words frequently depend on con-
text. Mikolov et. al illustrated the use of RNNs in language modeling, highlighting their efficacy
in capturing detailed language patterns [6]. Broadly speaking, we can attribute a conditional prob-
ability to each potential next word in a sentence, resulting in a probability distribution across the
entire dictionary. Combining these conditional probabilities yields:

P (w1:n) =

n∏
i=1

P (wi|w<1) (2.5)

2.1.1.1 Generating Probability Distribution using RNNs

Assume we have an input sequence T = [t1; ...; tt; ...; tN] where T is the corpus of text and tn are
word embeddings as 1-hot vector of size |V |×1. Suppose the output is a vector, y, which represents
the probability distribution over the dictionary. After each step (loop iteration), the model uses
the dictionary (embedding matrix E) to retrieve the embedding for the word at that step. The
model then combines the output of the previous step with the embedding to generate a new layer.
The last layer will then be passed into a softmax function to generate a probability distribution
over the dictionary. Thus, the probability that a word i is the next word in the sequence is given
by yt[i], from equation 2.5, this can be written as:

P (wt+1 = i|w1, ..., wn) = yt[i] (2.6)

Similarly, the probability of an entire sequence to appear next is given by:

P (w1:n) =

n∏
i=1

P (wi|w1:i−1) =

n∏
i=1

yi[wi] (2.7)

2.1.2 Long Short-Term Memory (LSTM)
Conventional RNNs encounter difficulties in learning and retaining information across lengthy
sequences, a limitation commonly referred to as the vanishing gradient problem. This challenge
emerges during the backpropagation of errors, where gradients diminish exponentially as they prop-
agate backward through time. As a result, the network struggles to adequately update weights for

12

distant connections.

Vanishing Gradient Problem: A consequence of the chain rule in calculus during the gra-
dient descent optimisation process. As gradients are multiplied across time steps during back-
propagation, they can approach zero, causing weight updates to become negligible. In the context
of traditional RNNs, this phenomenon severely limits the network’s capacity to learn from and
remember information in distant past time steps.

Figure 2.6: The sigmoid and tanh activation functions visualised. These figures were plotted using
the Matplotlib library. [7]

2.1.2.1 LSTM Architecture

Understanding activation functions is crucial to build intuition towards the LSTM architecture.
As Fig 2.6 shows:

Sigmoid: σ : R → [0, 1] : z 7→ 1

1 + e−z
(2.8)

Tanh: tanh : R → [−1, 1] (2.9)

After seeing the activation functions, we can start assembling the LSTM. Referring to diagram
2.7, the Ct cell represents the "Memory Cell" which is the long term memory of the LSTM. The
"Memory Cell" is a combination of two different calculations, first we calculate the new long-term
memory given the previous short-term memory, ht−1 and the input, xt. Then, the sum is passed
to the sigmoid function, σ(ht−1 + xt), this is commonly referred to as the forget gate since if the
inner sum is sufficiently negative, the output of the sigmoid will tend to zero, intuitively it controls
how much of the previous memory is discarded. We then multiply the output with the previous
long-term memory Ct−1. The next calculation of the new long-term memory involves calculating
the "Candidate Cell State", tanh(ht−1 + xt) (what short-term memory to store) and multiply-
ing it by the "Input Gate", σ(ht−1 + xt) (how much of the short-term memory to store). Then
we add this product to the product of the previous long-term memory and the "Forget Gate",
Ct = Ct−1 × σ(ht−1 + xt) + tanh(ht−1 + xt)× σ(ht−1 + xt)

Moving towards the new short-term memory, we use the current "Input Gate" and multiply it
by the tanh of the new Ct. Thus, ht = σ(ht−1 + xt)× tanh(Ct).

Through this intricate gating mechanism, LSTMs can selectively update their memory cell
state, allowing them to retain relevant information over extended time periods and effectively
tackle the vanishing gradient problem. This capability makes LSTMs indispensable in tasks where
understanding and retaining long-term contexts are critical. The LSTM’s internal architecture
positions it as a cornerstone for handling sequential data with nuanced dependencies, contributing
significantly to the advancement of deep learning in diverse applications. On the contrary, LSTMs
have the same limitations as RNNs, the probability of keeping the context of a word from a
word that is positionally very distant decreases exponentially. Thus, for longer context windows,
LSTMs have the tendency to forget context. Also, it is hard to parallelise the sequential process
of processing a series of data (tokens in a sentence).

13

Figure 2.7: LSTM Architecture. [8]

2.1.3 Transformers
2.1.3.1 Attention

The Transformer architecture, Vaswani et al. in "Attention Is All You Need" [9], revolutionised the
field of natural language processing and beyond. Unlike traditional sequence-to-sequence models
relying on recurrent or convolutional layers, Transformers use self-attention blocks that allow them
to understand links between token in a sequence.

Figure 2.8: Encoder-Decoder Transformer Architecture. [10]

2.1.3.2 Encoder

An important part of the Transformer architecture is the encoder. It is responsible for translating
the input sequence into a format which the model can comprehend. it outputs an "embedding"
which is a representation of the input, the embedding is passed into a decoder to generate an
output sequence.

The encoder consists of multiple layers. Each layer has a self-attention block and a feed-forward
neural network. The self-attention block assigns weights to the importance of each corresponding
input sequence section (using a dot product) as shown in Fig 2.9 (right). This is referred to as
Multi-Head Attention in "Attention Is All You Need" where they use 6 layers.[9]

14

The "Attention is All You Need" paper uses a special attention function, the scaled dot-product
attention. The inputs of the attention function are Q (query), K (keys) and V (values). The
dimension of Q and K is dk and V is dv. The dot-product attention is used since it is faster and
more space efficient [9]. The dot product is divided by

√
dk since it was found that as dk increased,

the dot product tended to infinity and pushed softmax values into gradients closer to 0.

softmax : σ : RK 7→ (0, 1)K : σ(z)i =
ezi∑K
j=1 e

zj
, for i = 1, ...,K and z = (z1, ..., zk) ∈ RK (2.10)

Attention(Q, K, V) = softmax(
Q ·KT

√
dk

)V (2.11)

MultiHead(Q, K, V) = Concat(head1, ...,headh)WO (2.12)

where headi = Attention(QWQ
i , KWK

i , VWV
i)

Each layer in the encoder contains a feed-forward neural network which consists of two linear
transformations with a ReLu activation in between. As per the paper,

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.13)

Figure 2.9: ((left) The Scaled Dot-Product Attention. (right) Stacked Multi-Head Attention used
in "Attention is All You Need". [9]

You may notice that encoder still does not have any positional information about the words in a
sentence. The paper uses sine and cosine functions with different frequencies, where the dimension
of the encoding matches a sinusoid.

2.1.3.3 Benefits of Self Attention

The self-attention layer allows connecting each position in constant time meaning they are faster
than RNNs (which are in linear time). The self-attention architecture also yields a more "inter-
pretable" model since we can analyse the distributions from different heads. This is part of a table
from the paper that compares some architectures we have seen before [9]:

Layer Type Complexity per Layer Sequential Operations
Self-Attention O(n2 · d) O(1)

RNN O(n · d2) O(n)

Table 2.1: Complexity comparisons between Self-Attention and RNN layers.

2.1.3.4 Decoder

The decoder architecture is similar to the encoder whereby it uses the output of the encoder
and adds another multi-head self-attention layer which then adds the output embeddings using a
"residual" connection. In the decoder block, the self-attention layer is modified such that positions
don’t attend to subsequent positions and embeddings are offset by one position which allows
predictions at position i only being dependent on outputs at position < i.

15

2.2 Pre-Trained Large Language Models (LLMs)
Language model training involves exposing models to vast amounts of text data, allowing them to
learn intricate patterns and relationships within language. The training process includes adjusting
model parameters to minimise the discrepancy between predicted and actual language patterns.

Pre-trained LLMs are trained on large datasets, typically encompassing diverse sources like
books, articles, and websites. This diverse training corpus ensures models grasp a broad under-
standing of language nuances. The types of data incorporated into pre-training contribute to the
models’ versatility, enabling them to perform well in NLP tasks.

2.2.1 Bidirectional Encoder Representations Transformers (BERT)
2.2.1.1 Training Data

BERT is trained on a dataset with 3.3 Billion words mainly coming from Wikipedia (2.5B words)
and BookCorpus (0.8B).[11] This allows BERT to understand both the English language and
information already on the internet simultaneously. The training phase of BERT was long but fast
due to the Transformer architecture discussed before. It was trained using TPu (Tensor Processing
Units) which is Google’s special ML training circuit. Using 64 TPUs, it took Google AI Language
4 days to train BERT. There are other variants of BERT, especially smaller and more lightweight
editions like DistilBERT which is 60% faster and 95% as accurate as BERT.[12]

2.2.1.2 Masked Language Model

The BERT paper [11] proposed a unique way of bidirectional learning using "masking". Intuitively,
it masks a word in the sentence and uses the rest of the words (both sides in the sentence) in the
sentence to predict that word. For example, consider the sentence:

I am going to the water fountain to fill my [masked] bottle.

It would be wise to guess that [masked] is water due to the context given before (water fountain
and fill) and after the masked word (bottle) and previous knowledge that one normally fills one’s
water bottle at the water fountain. In BERT, randomly chosen words (15% of the tokenised
words) are masked.

2.2.1.3 Next Sentence Prediction

BERT uses a binarised prediction task to understand context between sentences. During training
for sentence S1, when choosing the next sentence S2, it is only 50% of the times that S2 is the
correct sentence. This has shown an accuracy improvement.

2.2.1.4 BERT Architecture

Here we notice that BERT’s architecture looks akin to the encoder block of the Transfer architecture
described above.

Figure 2.10: BERTBASE and BERTLARGE architectures. [13]

16

2.2.1.5 Architecture Comparison

The architectures in Fig 2.10 compare as follows [14]:

Model Parameters (in Millions) Transformer Layers Training Time (in days)
BERTBASE 110 12 4

BERTLARGE 340 24 4

Table 2.2: Architecture Comparison between BERTBASE and BERTLARGE

According to HuggingFace, when BERT first came out it achieved stellar performance on 11
NLP tasks. Interestingly, it was also the first to outperform humans. In 2018, it topped the
SQuADv1.1 & v2.0 benchmark. [15]

2.2.2 Generative Pre-Trained Transformer (GPT) Series
The Generative Pre-trained Transformer (GPT) series, developed by OpenAI, represents a family
of influential large language models known for their generative capabilities and contextual under-
standing of language. These models share a common architecture based on the Transformer model,
emphasising a pre-training strategy where models learn to predict the next token given a context.

2.2.2.1 Architecture and Evolution

GPT-1 [16]
Up to this point, NLP models focused on supervised learning for specific tasks like sentiment classi-
fication, facing challenges of scarce annotated data and limited generalisation beyond their trained
tasks. The GPT1 paper introduces a novel approach: training a generative language model on unla-
beled data and subsequently fine-tuning it with task-specific examples for downstream applications
such as classification, sentiment analysis, and textual entailment.[16] By leveraging unsupervised
learning initially and tailoring the model later, this methodology addresses the limitations of con-
ventional supervised models, offering a more flexible and data-efficient solution for diverse NLP
tasks.

The interesting concept used in this paper was "semi-supervised learning" which is composed
by 3 different techniques:

• Unsupervised Learning: The common modelling objective was used, T is the set of un-
supervised tokens (ti−k, ..., ti−1 and k is the context window and θ is the NN parameters
trained using Stochastic Gradient Descent:

LU (T) =
∑
i

logP (ti|ti−k, ..., ti−1; θ) (2.14)

• Supervised Fine Tuning: Focused on maximising the probability of predicting the label
y given tokens x1, ...xn, C is the set of labelled training examples:

LS(C) =
∑
x,y

logP (y|x1, ..., xn) (2.15)

• The OpenAI team then combined the supervised and unsupervised training objectives to
create a new objective with the weight given to LU being λ which was set to 0.5:

LC(C) = LS(C) + λLU (C) (2.16)

• Input Transformations: To preserve the model architecture with minimal adjustments
during fine-tuning, the input sequences for specific downstream tasks underwent a transfor-
mation into ordered sequences. This process involved adding start and end tokens to the
input sequences. Additionally, a delimiter token was introduced between different segments
of the example, enabling the input to be presented as an ordered sequence. For tasks such
as question answering, multiple sequences were used. [17]

17

Figure 2.11: (left) GPT-1 transformer architecture. (right) Transformations for fine-tuning on
input tasks. All tokens were pre-processed followed by a linear and a softmax layer. [16]

This model showed that decent zero-shot performance could be achieved using language models
(in tasks like question answering and sentiment analysis).

GPT-2 [18]
The advancements in the GPT-2 model primarily revolved around utilising a larger dataset and
augmenting the model with more parameters to enhance its language modeling capabilities. The
paper delves into key concepts, with a focus on NLP, particularly addressing task conditioning and
zero-shot learning.

Task conditioning is introduced as a crucial concept in the context of training language mod-
els. It involves modifying the learning objective to P (output|input, task), allowing the model
to produce different outputs for the same input across various tasks. For language models, task
conditioning is implemented by giving examples or instructions to perform a specific task.

Zero-shot learning and zero-shot task transfer represent notable capabilities of GPT-2. Zero-
shot learning involves the model understanding a task based on given instructions without any
provided examples. GPT-2 achieves zero-shot task transfer by formatting the input to prompt the
model to comprehend the task nature and generate appropriate responses.

GPT-3 [19]
OpenAI’s GPT-3, designed to create powerful language models requiring minimal fine-tuning,
boasts an unprecedented 175 billion parameters, surpassing both Microsoft’s Turing NLG and
GPT-2 by 10 and 100 times, respectively. Leveraging its extensive dataset and immense capacity,
GPT-3 excels in zero-shot and few-shot, demonstrating capabilities like producing human-like arti-
cles and performing tasks it was not explicitly trained on, such as generating code and summarising
numbers.

Key concepts explored in the GPT-3 paper include in-context learning, where the model lever-
ages pattern recognition skills developed during language model training for zero-shot task transfer.
The paper also discusses few-shot, one-shot, and zero-shot settings.

GPT-3 was trained on a diverse dataset combining five corpora, including Common Crawl,
WebText2, Books1, Books2, and Wikipedia. Notable differences from GPT-2 include an increased
layer count, larger word embeddings, and an expanded context window size.

Performance evaluations revealed GPT-3’s superiority in language modeling datasets in zero
or few-shot settings, along with impressive performance in NLP tasks like question answering and
translation. However, limitations were identified, such as occasional loss of coherence in long sen-
tences and challenges in tasks like natural language inference. The generic language modeling
objective was highlighted as a limitation, and suggestions for improvement included augmenting
learning objectives and incorporating reinforcement learning.

18

Additional limitations encompassed complex and costly inferencing, reduced interpretability,
and uncertainties around the factors influencing GPT-3’s few-shot learning behavior. The paper
emphasised the risk of misuse, urging careful monitoring due to potential biases and ethical con-
cerns in the generated text.

GPT-4 [20]
As of January 2024, the most recent release from OpenAI represents the culmination of the three
preceding generations. GPT-4’s parameter size grew massively, totaling around 100 trillion as
opposed to GPT-3’s 175 million parameters, this recent model introduces a new dimension – vision.
Importantly, the model is capable of making inferences using both visual and textual prompts.

2.3 Models as APIs
Language models are inference models equipped with pre-trained weights. Accessing and running
inference with these models can be done in two primary ways: locally or via an API.

Local inference involves downloading the model weights and performing inference on local hard-
ware, preferably using GPUs. This approach demands significant storage capacity for large models
and robust GPUs to ensure fast inference.

Alternatively, using models as an API involves making API calls to run inference on the
provider’s servers, receiving the results over a secure connection. In this model, users only in-
cur costs for inference and network usage, making it a more accessible method for leveraging large
language models (LLMs).

2.3.1 OpenAI
As of June 2024, OpenAI offers 3 models as an API:

• GPT-4o: Fastest model available. Takes image and text as inputs and outputs text. Input
costs $5 per million tokens and output costs $15 per million tokens.

• GPT-4 Turbo: Older version of the GPT-4 family. Also takes text and image inputs. Output
and input tokens are more expensive than GPT-4o costing $10 per million tokens for input
and $30 per million tokens for output.

• GPT-3.5 Turbo: Fastest and most robust model for simple tasks. Cheaper than the GPT-
4 models costing costing $0.5 per million tokens for input and $1.5 per million tokens for
output.

OpenAI also has a embedding models that can be used in the retriever phase of RAG. It currently
offers 3 models whereby the user sends text and receives an embedding (a vector of a pre-determined
size).

2.3.2 Together AI
Together AI provides access to various open-source models through an API, known for its rapid
inference capabilities. This service has been utilised in this project due to its ability to offer a
wider range of models, enhancing the scope and flexibility of the work. The models used and their
metrics are given by Table 2.3.

2.4 Prompting and Testing
In the context of LLMs, prompting refers to supplying specific input or queries to provoke desired
model outputs. It entails crafting inquiries to direct the model’s output or generate information.
Effective prompting is essential for obtaining accurate and pertinent results from LLMs, ensuring
their applicability in various scenarios.

19

Model Name Company/ Lab Input/ Output $ per 1M tokens
Mistral (7B) Instruct v0.2[21] Mistral Both 0.2
Mistral (7B) Instruct v0.3[21] 0.2

Meta Llama 3 70 B Chat[22] Meta Both 0.9
Meta Llama 3 8B HF[22] 0.2

Gemma Instruct (2B)[23] Google Both 0.1
Gemma Instruct (7B)[23] 0.2

GPT-3.5 Turbo[19] OpenAI Input 0.5
Output 1.5

GPT-4[20] OpenAI Input 30.0
Output 60.0

GPT-4 Turbo[20] OpenAI Input 10.0
Outuput 30.0

GPT-4o[24] OpenAI Input 5.0
Output 15.0

Table 2.3: LLM as an API Costs (as of June 7 2024)

Testing plays a crucial role in evaluating the performance, robustness, and dependability of
LLMs. It aids in uncovering potential biases, limitations, and areas that require enhancement.
Rigorous testing guarantees that models provide trustworthy information, particularly in critical
applications such as common NLP tasks and understanding. The evaluation of LLMs contributes
to refining their capabilities, building user confidence, and advancing the broader field of AI.

2.4.1 Prompting in LLMs
2.4.1.1 Chain-of-Thought (CoT)

CoT prompting is a tactical approach that empowers LLMs to address intricate problems by
navigating through a sequence of steps prior to presenting a final answer. This technique improves
the model’s reasoning capability by directing it to handle multi-step problems using a series of
logical steps that reflect a coherent thought process, similar to the way humans approach such
challenges. Specifically beneficial for tasks involving logical thinking and intricate reasoning, such
as arithmetic, CoT prompts empower LLMs to navigate through challenges. Initially designed as
a few-shot prompting technique, each CoT prompt comprised a handful of Q&A examples. [25],
eliminating the need for users to create numerous specific CoT Q&A examples.

2.4.1.2 Tree-of-Thought

As language models increasingly find application in diverse problem-solving scenarios, their limita-
tions become evident, particularly in tasks demanding strategy and/or where initial decisions carry
significant weight. In response to these challenges, Yao et. al propose a framework for inference
called the "Tree of Thoughts" (ToT) [26] (diagram 2.12 from the paper). ToT allows models to ex-
plore "thoughts," as intermediary steps in problem-solving. It empowers language models to make
decisions by evaluating multiple reasoning paths, assessing choices, and determining subsequent ac-
tions. Moreover, it encourages forward-thinking and backtracking, enabling global decision-making
when needed. Notably, in Game of 24, where GPT-4 with chain-of-thought prompting achieved a
mere 4% success rate, the approach achieved an impressive 74% success rate. [26]

2.4.2 Prompt Perturbation
This technique introduces subtle changes to the meaning of texts while preserving their lexical
structure. This technique, commonly used in natural language processing, enhances model robust-
ness and generalisation. By introducing variations in word choices or sentence structure, models
are forced to focus on the underlying semantics, leading to improved performance. [27, 28]

20

Figure 2.12: (a,b,c,d) Chain of Thought Prompting, (d) Tree of Thought Prompting. [26]

2.4.2.1 Traditional NLP Perturbation Techniques

NLP text perturbation refers to the deliberate modification of natural language text at either
the letter or word level to enhance or evaluate the robustness and generalisation capabilities of
NLP models. When considering perturbations at the letter level, it involves modifying individual
characters to introduce noise or mimic variations in spelling. Perturbations at the word level
involve actions such as replacing, deleting, or adding words, serving as a means to evaluate a
model’s sensitivity to semantic changes. This methodology is pivotal in training models capable
of handling linguistic nuances and unforeseen inputs. Through exposing models to perturbed text,
we strive to LLMs’ adaptability and performance across a broad spectrum of real-world scenarios.

2.4.2.2 butter_fingers [29]

Randomly selected letters are substituted with neighboring keyboard positions, creating transfor-
mations that closely resemble the source sentences. As a result, the generated transformations
exhibit a high degree of similarity to the original sentences.

Text
Original The quick brown fox jumps over the lazy dog

Perturbed The quiock brown foxc jumps over the lazyu dogg

Table 2.4: butter_fingers Transformation Example

2.4.2.3 shuffle_words [30]

Shuffled words perturbation is a technique within NLP that involves shuffling the order of words
in a sentence. This intentional reordering introduces variations in the lexical structure, challenging
LLMs to keep understanding despite altered word sequences. The primary objective is to assess
the robustness of these models, ensuring effective performance in scenarios where word order may
vary. Shuffled words perturbation serves as a valuable tool in training models to understand and
process language nuances.

Text
Original The quick brown fox jumps over the lazy dog

Perturbed Lazy dog the quick brown fox jumps over the

Table 2.5: shuffle_words Transformation Example

21

2.4.2.4 random_upper_transformation [31]

Random upper transformation is a perturbation in NLP which introduces unpredictability by
randomly capitalising letters within a sentence. This method aims to enhance model robustness,
evaluating how well models cope with variations in (upper or lower) casing while maintaining
semantic understanding. By injecting this controlled noise, the technique measures the sensitivity
of LLMs.

Text
Original The quick brown fox jumps over the lazy dog

Perturbed The quick broWn fox JumPs oVer tHe lazY doG

Table 2.6: random_upper_transformation Example

2.4.2.5 visual_attack [32]

Eger et al. presented a visual perturbation tool named VIPER, which accepts two parameters: a
probability p and an embedding space denoted as CES, resulting in VIPER(p, CES). The tool
works within three primary embedding spaces:

• Image-based Character Embedding Space (ICES): Utilising a 24x24 image representation
with each row having a size of 255, this space generates an embedding vector of size 576.

• Description-based Character Embedding Space (DCES): Employing Unicode 11.0.0 final
names list, DCES selects nearest neighbors based on letter descriptions.

• Easy Character Embedding Space (ECES): A straightforward visual character perturbation
method where each character is paired with a nearest neighbor containing a diacritic either
above or below the character.

Figure 2.13: An example taken from the paper displaying the different levels of perturbations [32]

2.4.2.6 BERT-Based Paraphrasing Perturbation Function

FastAttacker is a framework that generates paraphrased adversarial text to test the robustness of
NLP models. The perturbation function, fb, utilises the contextual semantic space to navigate
the challenges posed by polysemy, particularly in non-contextual embedding spaces like GLoVE
or Word2Vec. FastAttacker ensures the preservation of contextualisation both semantically and
syntactically during data processing.[33] Moreover, fb offers flexibility by accommodating any
language model for part-of-speech (PoS) checking, provided that pre-trained BERT models are
available for the respective language. This approach not only enhances contextual understanding
but also simplifies POS verification across diverse linguistic models.

2.4.3 Datasets
2.4.3.1 SQuAD2.0[1]

Answering questions represents a formidable challenge in NLP, where machines aim to comprehend
text passages and provide accurate responses. The Stanford NLP group introduced the Stanford
Question Answering Dataset (SQuAD) to gauge the efficacy of various approaches in this domain.

22

SQuAD consists of 100,000 questions and corresponding contexts derived from Wikipedia articles.
The answers can be directly extracted from the context span. Pre-trained contextualised embed-
ding (PCE) methods like ELMo and BERT are extensively applied in question answering, with
modified BERT models achieving state-of-the-art results on SQuAD2.0.

Paragraph: "Bethencourt took the title of King of the Canary Islands, as vassal to
Henry III of Castile. In 1418, Jean’s nephew Maciot de Bethencourt sold the rights to
the islands to Enrique Pérez de Guzmán, 2nd Count de Niebla."
Question: "Who bought the rights?"
Ground Truth Answer: Enrique Pérez de Guzmán
Plausible Prediction: Pérez

2.4.3.2 PopQA[34]

Long-tail entities: Entities that less commonly references in a knowledge base. In the context
of POPQA, these refer to the least popular pages in Wikipedia.

LLMs face challenges with tasks that require extensive world knowledge. Allen et al. investigate
the strengths and limitations of LLMs in memorising factual knowledge through knowledge prob-
ing experiments on two open-domain, entity-centric question-answering (QA) datasets: POPQA,
a new dataset containing 14,000 questions about long-tail entities, and EntityQuestions, a well-
established open-domain QA dataset. The findings of the paper reveal that LLMs struggle with
less popular factual knowledge, and retrieval augmentation significantly enhances performance in
these instances. In contrast, scaling primarily enhances the memorisation of popular knowledge
and does not substantially improve the recall of long-tail factual knowledge. As will be mentioned
in Section 2.6, POPQA makes for a useful dataset as it challenges the model’s ability to recall low-
frequency terms from their pre-training data, this mitigates the problem of benchmarks plateauing
and converging towards a perfect score.

Example from the POPQA dataset:

Question: What is Kathy Saltzman’s occupation?
Possible Answers: ["politician", "political leader", "political figure", "polit.", "pol"]
Subject Popularity: 127 (Subject: Kathy Saltzman)

Figure 2.14: Figure from [34], Performance of GPT models from the POPQA classified by "Rela-
tion".

2.5 Retrieval Augmented Generation
LLMs can store factual knowledge within their parameters (parametric knowledge) and achieve
SOTA performance when fine-tuned for downstream NLP tasks. They still face limitations in re-

23

calling this information. Consequently, their performance on knowledge-intensive tasks falls short
compared to task-specific architectures. Additionally, challenges remain in providing reasoning for
their decisions and updating their world knowledge. Pre-trained models with an access mechanism
to explicit non-parametric memory have primarily been explored in the context of downstream
tasks.

Lewis et al. investigate a general-purpose fine-tuning approach for retrieval-augmented genera-
tion (RAG) models, which integrate pre-trained parametric memory with non-parametric memory
for language generation [35]. They introduce RAG models where the parametric memory is a
pre-trained LLM, and the non-parametric memory is a dense vector index of Wikipedia, accessed
via a retriever (mentioned in the next sub-sections).

In the paper, the models are evaluated across a variety of knowledge-intensive NLP tasks,
achieving SOTA results on 3 open-domain question-answering (QA) tasks. These RAG models
outperform previous seq2seq knowledge retrieval tasks. In the context of language generation
tasks, they found that RAG models produce more factual language compared to SOTA.

Figure 2.15: RAG workflow diagram from the initial RAG paper from Lewis et al. [35]

2.5.1 Retriever
Retrievers serve as fundamental components within the architecture of numerous search engines.
They play pivotal roles within RAG pipelines, document retrieval pipelines, and extractive ques-
tion answering pipelines. When presented with a query, the retriever scans through the documents
stored in the Document Store, evaluates each document’s relevance to the query by assigning a
score, and presents the top-ranking candidates. Subsequently, the selected documents are for-
warded to the subsequent component in the pipeline or provided as responses to the query.

It is noteworthy, however, that a significant portion of retrievers, particularly those employing
dense embedding techniques, employ approximate methods rather than directly comparing each
document with the query. These approaches yield comparable results to exhaustive comparisons
while exhibiting enhanced performance.

2.5.1.1 Vector-Based Retriever

Vector-based Retrievers utilise vector representations, or embeddings, to capture the semantic
meaning of words. These retrievers require an embedder to convert both documents and queries
into vectors. These are some common similarity functions:

• Euclidean Distance

d(p, q) =

√√√√ n∑
i=1

(qi − pi)2 (2.17)

• Cosine Similarity

d(A,B) =
A · B

∥A∥∥B∥
(2.18)

24

2.5.1.2 Keyword-Based Retriever (BM25) [36]

BM25 is a bag-of-words (BoW) retrieval function designed to rank documents based on the pres-
ence of query terms, irrespective of their positions within the document.

In the context of information retrieval, Okapi BM25 (where BM stands for "best matching")
is a prominent ranking function utilised by search engines to assess the relevance of documents to
specific search queries.

The score is defined as follows:

BM25(D, Q) =
n∑
i=1

IDF(qi)
f(qi, D · (k1 + 1))

f(qi, D) + k1 · (1− b+ b · |D|
avgdl)

(2.19)

where

• Q is the query containing keywords q1, ..., qn

• D is the document

• f(qi, D) is the # of times qi appears in document D

• |D| is the length of the document

• avgdl is the average document length in the document store.

• IDF is defined as the Inverse Document Frequency:

IDF(qi) = ln(
N − n(qi) + 0.5

n(qi) + 0.5
+ 1) (2.20)

2.5.2 Named-Entity Recognition
Named entity recognition (NER) is a technique employed to identify and extract entities from
a given sentence. For implementing various natural language processing (NLP) tasks, including
NER, the spaCy library [37] is a widely utilised tool. For example:

NER(Who was Steve Jobs?) = Steve Jobs
NER(Where is the nearest gas station?) = gas station
NER(Where is Guadalajara?) = Guadalajara

2.6 Existing Benchmarks
Large companies are adopting LLMs like GPT-4 [20], Claude 3[38], and Gemini Ultra[23] to power
their ’next-generation’ applications. They are non-deterministic which complicates the evaluation
of their performance. LLM benchmarks offer a standardised framework to compare the capabilities
of LLMs across core NLP tasks. Understanding these benchmarks and their criteria for assessing
skills such as question answering, logical reasoning, and code generation is essential for making
informed decisions when selecting and deploying LLMs.

LLM benchmarks operate on a straightforward principle:

1. Assign a task to the model.

2. Evaluate its performance.

3. Measure the results.

A significant pitfall of latest benchmarks is the lack of scalability. Questions like What happens
when these benchmarks are deprecated? and Do I have to augment a benchmark to adapt to newer
models? are common when talking about benchmarks. The lack of benchmark scalability and
comparability is a highly discussed issue in LLM evaluation forums.

These are common prompting practices:

25

• 0-shot: The model receives the task without prior examples or hints, showcasing its raw
ability to understand and adapt to new situations.

• Few-shot: The model is given a few examples of how to complete the task before tackling
similar ones, revealing its ability to learn from a small amount of data.

• Fine-tuned: The model is specifically trained on data related to the benchmark task to
maximise its proficiency in that particular domain, demonstrating its optimal performance
if the fine-tuning is effective.

2.6.1 Massive Multitask Language Understanding (MMLU)
The MMLU benchmark is an evaluation tool designed to measure a LLM’s multitask accuracy in
zero-shot and few-shot settings. It serves as a standardised method to assess performance across
a variety of tasks ranging from simple mathematics to complex legal reasoning. [39]

It encompasses a vast set of tests aimed at evaluating the reasoning and problem-solving capa-
bilities of LLMs. It includes 57 tasks covering topics such as elementary mathematics, US history,
computer science, and law. The benchmark requires models to exhibit a broad knowledge base
and adept problem-solving skills. A significant advantage of MMLU is that it is efficient and ex-
plainable. A downside of the benchmark is that some tasks are ill-formed due to human errors
(incorrect or missing context, ambiguous answer set, mismatched answers and prompt sensitivity).

The popularity of benchmarks significantly influences their usage and perception within the
research community. Among these, the MMLU benchmark stands out as the most widely utilised
for evaluating LLMs. Its prominence is reflected in the frequent citations found in the technical
reports of foundational models.

Figure 2.16: MMLU Leaderboard as of May 29, 2024 [40]

Note: As time progresses, models are increasingly becoming better since there is an approximate
positive correlation between model release date and average MMLU Score (%). The larger models
are converging towards 100% and in the near future, MMLU will have to be adapted to account
for improved models.

2.6.2 General Language Understanding Evaluation (GLUE) [41]
To maximise the utility of natural language understanding (NLU), it is essential for models to
process language in a manner that is more than a single task, genre, or dataset. The GLUE bench-
mark is a comprehensive test suite designed to assess model performance across a wide array of
existing NLU tasks. GLUE incorporates tasks with limited training data to promote models that
exhibit general linguistic knowledge transfer across different tasks. Additionally, GLUE includes a
diagnostic test suite for detailed analysis of model performance. It also uses transfer and represen-
tation learning techniques which shows that multi-task training on all tasks yields superior results
compared to training separate models for each task. However, the low absolute performance of

26

the best model (from the paper) highlights the necessity for advancements in general NLU systems.

In the paper, they outline 3 evaluation tasks: Single-sentence tasks, similarity and paraphrase
tasks and inference tasks. All of these tasks involve established NLP benchmarks like CoLA[42],
SST-2[43] and MNLI[44].

In recent times, due to the rate of development for LLMs, SuperGLUE [45] was developed to
make the benchmark harder and give a more comparable score for larger models.

2.6.3 AlpacaEval 2.0 [46]
AlpacaEval is an automated evaluation metric based on large language models (LLMs). It utilises
805 instructions, selected to represent typical user interactions. For each instruction, responses are
generated by both a baseline model (currently GPT-4 turbo) and the evaluated model. A LLM
(GPT-4 turbo) evaluator then conducts a comparative analysis of the responses and provides the
probability of favoring the evaluated model. The win rate, defined as the expected probability
of the auto-evaluator preferring the evaluated model’s response across the 805 instructions, is the
performance metric for the evaluated chatbot.

AlpacaEval was designed to mitigate certain biases, such as the order of model presentation,
by randomising the sequence in which responses are shown. However, other factors like response
length and style were not controlled, as these were found to influence human evaluators simi-
larly in the analysed data. When AlpacaEval was later used as a leaderboard metric, it became
evident that AI systems could exploit these uncontrolled biases more effectively than humans could.

AlpacaEval possesses interpretable properties. The win rate values range between 0% and
100%, and the metric exhibits symmetry with respect to baseline swaps (i.e., AlpacaEval(b, m) =
100% - AlpacaEval(m, b)). Moreover, comparing a model to itself yields a win rate of 50% (i.e.,
AlpacaEval(b, b) = 50%).

The regression model from the paper:

qθ,ϕ,ψ(y = m|zm, zb, x) = logistic(ϕm − ϕb + ψm,b · tanh(
len(zm)− len(zb)

std(len(zm)− len(zb))
) + (ψm − ψb)γx)

(2.21)

Figure 2.17: Figure from [46], AlpacaEval leaderboard compared with AlpacaEval2.0 (length-
controlled)

27

Chapter 3

Related Work

With the advancement of robustness testing in LLMs, there is a growing prevalence of tree-based
evaluation frameworks. This trend reflects a broader evolution in the field. LexEval, combining
a tree-based appraoch and perturbation, represents a promising avenue in the quest for compre-
hensive evaluation methodologies. By leveraging both established and innovative perturbation
practices within a hierarchical tree framework, LexEval offers a unique approach to assessing LLM
performance.

3.1 Tree-based LLM Evaluation Frameworks

3.1.1 TreeEval [47]
Note: this paper was published on arXiv on the 20th of February, 2024.

In the paper’s evaluation methodology, each session begins by selecting a pair of LLMs for
assessment. The evaluation process is as follows:

1. An examiner initiates by defining a topic and formulating questions within that topic.

2. These questions are then presented to the selected pair of LLMs to generate responses.

3. A judge subsequently compares the responses and determines the superior model for each
question.

4. Depending on the outcome and degree of disparity in responses, the evaluation controller
decides whether to delve deeper into the current question or conclude the search.

Throughout the evaluation, the controller maintains diversity and reliability in question gen-
eration, ensuring a comprehensive assessment. The traversal of nodes within the tree structure
calculates an aggregation of scores to yield an overarching evaluation result.

Figure 3.1: Figure taken from the paper outlining the TreeEval framework [47]

3.1.2 BEAST [48]
Note: this paper was published on arXiv on the 23rd of February, 2024.

28

This study introduces a novel approach termed Beam Search-based Adversarial Attack (BEAST)
for LLMs. BEAST is designed to operate within a GPU minute, providing a swift and accessible
means of adversarial manipulation. Notably, their method employs interpretable hyperparameters
that allow for flexible adjustment between attack speed, prompt readability, and success rate. They
showcased the versatility and efficacy of BEAST across diverse applications, including jailbreaking,
hallucinatory responses, and membership inference attacks.

They used perplexity as their adversarial objective function:

L(x) = exp(−1

d

d∑
i=1

log p(ti|x · t<i)) (3.1)

Figure 3.2: Figure taken from the paper outlining the BEAST framework [48]

3.2 Perturbation-based LLM Robustness Testing

3.2.1 SPUQ [49]
Note: this paper was published on arXiv on the 4th of March, 2024.

In their methodology, they perturb prompts through temperature perturbation. Firstly, a con-
sistent deviation from the base temperature T0 is applied uniformly across all inputs. Alternatively,
random temperature sampling is used to determine each yi. Regardless of the method employed,
their primary objective remains consistent: to introduce perturbations while preserving the fun-
damental meaning of the prompt.

The 3 strategies used as per the paper [49]:

1. Paraphrasing: Paraphrased inputs xi = paraphraser(x0) using gpt-35-turbo-v0301.

2. Dummy Tokens: Random tokens d are selected and minimally alter the original prompt’s
meaning by being prepended or appended to x0. This means: xi = x0 + di or xi = di + x0.

3. System Prompts: Perturbations are introduced not only to the user prompt but also
to the system prompts. By replacing the original system message with randomly selected
alternatives from a previously defined system prompts, variations were introduced.

3.2.2 FastAttacker [33]
FastAttacker is an efficient and effective method for generating natural adversarial text by con-
structing various semantic perturbation functions.

It optimises perturbations within general semantic spaces, such as typo space and contextu-
alised semantic space. Consequently, the generated adversarial texts remain semantically close to

29

the original inputs, ensuring that the core meaning is preserved despite the perturbations.

For semantic perturbations, the embedding-level perturbation determined by the function fe
restricts the search space for embedding perturbations. They initialise CANDIDATES using the
N closest synonyms, determined by their cosine similarity in context. Additionally, words are
manually tagged with their semantic relations, ensuring that synonyms retrieved from the synonym
set maintain the original words’ semantic meaning. This approach guarantees that the adversarial
examples generated are both semantically coherent and contextually appropriate.

30

Chapter 4

Methodologies

All experiments were run locally on a MacBook Pro with 2.6 GHz 6-Core Intel Core i7 and 16 GB
2400 MHz DDR4.

Notation for tree configuration: <x,y,z> where x is depth, y is num_paraphrased and z is
num_lexical.

Building on the existing research in the field of LLM robustness testing as mentioned in chapter
2 and 3, this chapter outlines our methodological framework. Given the established significance of
trees in Computer Science, we have chosen to adopt this framework for LexEval. The tree struc-
ture provides a robust and flexible foundation that is well-suited to our objectives. We detail the
primary approach we employed, as well as the iterative processes that were undertaken to refine
our methodology to its final form.

This chapter starts with a detailed presentation of the initial version of LexEval for SQuAD
2.0 (in section 4.1). We outline the metric function and the foundational LexEval tree (in sub
section 4.1.2), while also addressing the specific challenges encountered with SQuAD2.0. Fur-
thermore, we explore the POPQA dataset (in section 4.2), detailing our implementation of the
Retrieval-Augmented Generation (RAG) system and the subsequent modifications made to the
tree structure to accommodate this new dataset (from sub sections 4.2.3 to 4.2.9).

A crucial aspect of our project was the integration of Named Entity Recognition (NER), which
enabled us to more precisely identify weaknesses within the RAG pipeline. This chapter further
examines the implementation challenges we faced and the optimisations undertaken to improve
run-time efficiency.

Given the shift to a different dataset, it was necessary to revise the metric function to bet-
ter align with the new requirements. We also discuss the implications of altering the complexity
of the tree structure and how these changes impact the evaluation of large language models (LLMs).

Through these discussions, we provide a comprehensive overview of the methodological advance-
ments and iterations that shaped our final approach, emphasising both the technical adjustments
and the theoretical considerations that guided our process.

4.1 Initial Implementation
This section will outline the implementation of the initial version of LexEval. Figure 4.1 outlines
the flow of operations in the initial implementation of LexEval. Note: this is just an outline of the
workflow and it will be discussed in greater detail in this section.

31

Figure 4.1: Diagram of the initial implementation.

4.1.1 Tree Creation (for SQuAD2.0)
This section details the tree structure employed in our methodology, which is defined by three
adjustable parameters: the root prompt, an LLM adapter and a lexical perturber.

For example, in code the tree can be instantiated as:

llm_adapter = LLMAdapter() # This can be swapped out for your own adapter
lexical_perturbor = LexicalPerturber() # Applies lexical perturbations
tree = Tree(

'What is the capital of France?',
llm_adapter,
lexical_perturbor

)

• root_prompt: This serves as the foundational element from which the tree is constructed,
setting the context and direction for subsequent nodes.

• adapter: A versatile wrapper, facilitating the integration of any LLM within the tree frame-
work, thereby ensuring compatibility and functionality across different models.

• perturber: Used to apply traditional natural language processing (NLP) techniques, intro-
ducing variations and perturbations that are critical for robustness testing and evaluation.

The tree can be then triggered to build the tree nodes as such:

tree.make_tree(
depth=3,
num_paraphrased=3,
num_lexical=2
)

• depth: This dictates the number of levels within the tree, with a greater depth resulting in
an increased number of nodes. Note: the depth parameter doesn’t include the 0th level, ie:
if depth=2, then there will be 3 levels including the root node.

• num_paraphrased: This parameter specifies the number of paraphrased children generated
from each parent node. These paraphrased children represent variations that capture different
aspects of meaning, enhancing the tree’s ability to evaluate perturbation robustness.

• num_lexical: This determines the number of lexical children produced from each parent
node. These children introduce lexical variations, utilising traditional natural language pro-
cessing techniques to assess the model’s performance under diverse syntactic structures.

The number of nodes can be calculated as such:

b = bpar + blex (4.1)

We can formulate (the extra −1 is to account for the original_prompt)

Total number of paraphrased perturbed prompts = bdpar − 1 (4.2)

32

and,
Total number of lexical perturbed prompts = bdlex − 1 (4.3)

Combining Equation 4.2 and 4.3 along with the normal branching factor equation, we get the total
number of perturbed prompts as

Total number of perturbed prompts =
d−1∑
i=0

(blex + bpar)
i (4.4)

Thus, some of the tree configurations that we experimented with had these total perturbed
nodes:

depth num_paraphrased num_lexical Total Perturbed Prompts
2 2 2 21
2 2 3 31
2 3 3 43
3 2 2 85
3 2 3 156
3 3 3 259

Table 4.1: Number of nodes with different LexEval configurations

Note: As shown by the table 4.1, the increase of the tree’s complexity corresponds with a
significant explosion of nodes, this will be discussed further in section 4.2.

The psuedocode for the make_tree function is given as follows (note: for simplicity, the invariant
checks and concurrency features are not shows in the psuedocode). The invariant checks will be
mentioned in a later section (4.1.1.2).

Algorithm 1 Make Tree
Require: depth, num_paraphrased, num_lexical
1: Initialise tree with root node
2: Initialise queue with root node
3: current_level = 1
4: while queue is not empty do
5: current_node = dequeue(queue)
6: for each node in node_count do
7: for each of num_paraphrased paraphrasing perturbations do
8: 1. Create paraphrased child node
9: 2. Check invariant against parent and root nodes

10: if New node does not pass invariant check then
11: Repeat steps 1 and 2
12: end if
13: 3. Add paraphrased child to tree and add node to queue
14: end for
15: for each of num_lexical lexical perturbations do
16: 1. Create lexical child node
17: 2. Check invariant against parent and root nodes
18: if New node does not pass invariant check then
19: Repeat steps 1 and 2
20: end if
21: 3. Add lexical child to tree and add node to queue
22: end for
23: end for
24: end while
25: return Tree

33

(a) <2,2,1>

(b) <3,3,2>

Figure 4.2: Tree diagrams for two different tree configurations, nodes in black are the root prompt
nodes, nodes in yellow are ParaphrasedNode objects representing paraphrased perturbation nodes
and nodes in blue are LexicalNode objects representing lexical perturbation nodes.

4.1.1.1 Subset of Dataset

In this project, the SQuAD2.0 dataset is accessed via the Hugging Face API[50], specifically us-
ing the ‘rajpurkar/squad_v2’ model [51]. This API provides a convenient way to retrieve the
SQuAD dataset. Then, we created a subset of SQuAD2.0 using the sample (with a seed of 42)
function from the pandas library [52].

The contents that are required to run the make_tree function is in the questions column and
in the text field in the answers column.

4.1.1.2 Tree Invariant Design

The tree structure employed in this study adheres to critical invariants when incorporating new
nodes. The primary invariant involves a cascading thresholding system. Each paraphrasing node’s
prompt is embedded using text-embedding-ada-002[53], after which a cosine similarity measure-
ment function calculates the distance between the parent node and the current node. This process
ensures that the newly added nodes maintain a degree of semantic relevance while introducing
meaningful variation. Thus, intuitively, prompts get more dissimilar as you go deeper in the tree.
This is an important observation since it dictates the evaluation function’s design to assess an
LLMs ability to answer questions from the SQuAD2.0 dataset.

1.0 0.97 0.94 0.91

0 1 2 3

Cosine Similarity Score

Level

Figure 4.3: An example of threshold boundaries (hyperparameters) for a tree with depth=3

Another invariant states that newly generated prompts must be unique within the tree. This
is achieved through a containment check, where the new prompt is compared against the list of
existing nodes in the tree to ensure no duplicates are present. By enforcing these invariants, the
tree structure maintains both the integrity and diversity of the prompts.

Table 4.2 presented above illustrates a challenge LLMs: their capacity to paraphrase, coupled

34

Thresholds Pass/ Fail # of Retries
1.000 | 0.995 | 0.900 Pass 2.0
1.000 | 0.960 | 0.930 Pass 3.5

1.000 | 0.970 | 0.940 | 0.910 Fail 5.0

Table 4.2: Similarity Score Thresholds Viability

with the embedding model, poses considerable difficulty in generating prompts with lower simi-
larity scores. Qualitative analysis of the prompts generated revealed a recurring observation: in
deeper trees, the invariant check frequently failed to meet the criteria, resulting in the process
maxing out at five retries. While the generated prompts showed sufficient variation, they often did
not sufficiently diverge from the original to warrant a lower similarity score.

Consequently, as the experiments progressed, there was a trend toward tightening the threshold
boundaries closer to 1.0 to accommodate the observed constraints. However, this adjustment was
suboptimal, as it resulted in a diminishing distinction between leaf and root nodes.

4.1.1.3 Creating Paraphrased Children

To generate the paraphrased nodes, we used an LLM to produce the necessary perturbations.
This approach was selected due to its simplicity and feasibility within the given timeframe. The
perturbation method uses the gpt-3.5-turbo model. The choice of this model was based on its
demonstrated efficacy in accurately and effectively perturbing the prompts.

As per Deng et al., using LLMs to rephrase questions is an effective method for perturbing the
questions within the dataset. This approach generates varied and nuanced rephrasings, thereby
introducing semantic diversity without compromising the original intent of the questions. By
systematically rephrasing questions, we can create a more robust dataset that better evaluates the
resilience of the models we are comparing. [54]

Initial Perturbation Prompt

System:
Generate a variation of the following user prompt by perturbing its semantics while preserv-
ing its core intent. Return just the string of the perturbed prompt.
User:
For example: Due to its filled d-shell, what is a common trait of the compounds of zinc?

Figure 4.4: Initial perturbation prompt

Because zinc has a filled d-shell, its compounds are usually what?

Due to its filled d-shell, what is a common trait of the compounds of zinc?

What is a distinguishing feature of zinc compounds because of their filled d-orbitals?

What sets zinc compounds apart due to their completely filled d-orbitals?

Figure 4.5: A path from the LexEval tree for SQuAD2.0 (row id: 572b5334111d821400f38e64)

4.1.1.4 Creating Lexical Children

For lexical perturbations, we developed three distinct types of modifications. butter_fingers
which is adapted from Alex Yorke’s implementation [55], it introduces perturbations based on a
specified probability, simulating common typographical errors. The second type, "shuffle words,"

35

randomly reorders the words within a sentence, thereby testing the model’s ability to handle
variations in word arrangement without altering the overall meaning. The third type, "random
upper transformation," involves randomly converting characters to uppercase, which assesses the
model’s robustness to changes in letter casing.

Probability Sentence
0.00 The quick brown fox jumps over the lazy dog.
0.05 Thr quick brown fox mumps over the lazy dog.
0.10 Thr quick brown fox mumps over fhe lazy dog.
0.20 The quuck nrosn flx jumps ocer tte iasy d0g.
0.30 The qhifk nrosh rox jujps over thw ;azy d9h.

Table 4.3: The effect of different probabilities when applying butter_fingers

(a) Cosine Distance Over Iterations following the
invariant.

(b) Levenshtein Distance Over Iterations for Differ-
ent Perturbation Probabilities.

Figure 4.6: Comparison of Paraphrased and lexical Perturbations.

As observed in Table 4.3, a butter_fingers perturbation probability exceeding 0.1 significantly
distorts the prompt, rendering it unrecognisable. This level of distortion is detrimental to the
experiments, as it compromises the integrity and is not an accurate representation of a human
typo. Therefore, butter_fingers was set at 0.1.

Figure 4.7: Levenshtein Distance Over Iterations for Different Perturbation Probabilities compared
with cosine distance over iterations

36

As indicated by Figure 4.7, Cosine Distance from root and Levenshtein Distance from Root
are heavily negatively correlated, ρ = −0.86. The perturbations introduced in both the para-
phrased and lexical nodes adhere closely to the invariants established earlier in the methodology
(in 4.1.1.2). This adherence shows the consistency and reliability of the perturbation process, en-
suring that the generated perturbations align with the specified criteria in the tree creation process.

Additionally, a maximum depth constraint was imposed on the make_tree function. Given the
resource-intensive nature of extending the tree beyond a certain depth, it was deemed impractical
to exceed a depth of 3. Beyond this threshold, the performance and costs of tree creation would
have been significantly increased. Thus, this maximum depth constraint was essential to maintain
the balance between computational feasibility and cost optimisation within the framework (this
can be scaled up with sufficient resources).

4.1.2 LexEval Metric Function
The initial LexEval metric function evaluated the performance of paraphrased and lexical children
nodes by considering two main criteria. For paraphrased children, it assessed both the distance
to the root node and the accuracy of the node’s answer to the question. For lexical children, it
solely evaluated whether the nodes answered the questions correctly. This approach produced a
comprehensive single value that encapsulated the model’s ability to accurately respond to questions
that had been perturbed from the original prompt.

Algorithm 2 Initial LexEval Metric Function
Require: tree_root
1: Initialise queue with tree_root
2: Initialise score and count with 0
3: while queue is not empty do
4: Pop from queue
5: if Child’s answer matches expected answer then
6: Increment count by 1
7: if Child is paraphrased then
8: Add the child’s cosine distance to the score.
9: else

10: Add 1 to the score.
11: end if
12: else
13: Do nothing
14: end if
15: Add current node’s children to queue
16: end while
17: Divide score by count
18: return Score

4.1.3 Problems with Initial Approach
4.1.3.1 Tree Creation Time and Cost

Table 4.4 illustrates the time and cost metrics associated with the make_tree function. The data
indicates that the creation of LexEval trees incurs significant time and financial costs, rendering
it impractical as a benchmark standard. Specifically, the average creation time and cost for trees
with configurations <2,1,1> and <2,3,2> demonstrate that both metrics scale unfavorably with
increasing tree complexity.

For instance, the average creation time increased from 101.23 seconds for the 289.48 seconds
for the more complex one. Similarly, the total cost increased from $0.4 to $2.03, highlighting the
exponential growth in resource requirements. These observations suggested that the initial imple-
mentation of LexEval was not feasible for extensive benchmarking purposes due to the prohibitive

37

costs and extended time commitments involved. The scaling issue underscored the necessity for
optimising the make_tree function to improve its efficiency and cost-effectiveness before it could
be considered a viable benchmarking tool in large-scale evaluations.

Metrics <2,2,1> <3,3,2>
Average creation time (seconds) 101.23 289.48

Average creation cost (US cents ¢) 0.0081 0.0406
Average input tokens (toks) 1897.50 4554.33
Average output tokens (toks) 2384.33 6484.00
Total creation time (minutes) 84.36 157.90

Total creation cost (US $) 0.4038 2.0303

Table 4.4: Tree creation metrics for LexEval trees with configurations <x,y,z> where x is
depth, y is num_paraphrased and z is num_lexical. Note: These experiments were run us-
ing gpt-3.5-turbo-0125 for 50 randomly sampled rows from SQuAD2.0.

4.1.3.2 Initial LexEval Results

Table 4.5 presents the results from the initial LexEval experiments, highlighting the performance
of various LLMs across different tree configurations. The data shows that as the models improve
in terms of parameters, their LexEval scores increase significantly. This can be attributed to
LLM scaling laws which dictate that as the number of parameters increase in a model, the more
parametric knowledge they contain and the better they can perform on tasks like Question and
Answering[56]. This is a significant shortcoming of the current implementation which has motivated
to move towards POPQA as a score close to 1.0 already indicates future models wouldn’t be
thoroughly tested prompting a move towards a harder problem set (discussed further in Section
4.2).

Tree Config Metric gpt-3.5-turbo-0125 gpt-4-0613 llama-2-7b-chat-hf
<2,2,1> LexEval Score 0.88 0.92 0.81

Tree Accuracy 0.75 0.79 0.73
Paraphrased Accuracy 0.87 0.88 0.81

Lexical Accuracy 0.83 0.88 0.79
<3,3,2> LexEval Score 0.83 0.86 0.77

Tree Accuracy 0.69 0.75 0.63
Paraphrased Accuracy 0.93 0.95 0.88

Lexical Accuracy 0.50 0.58 0.43

Table 4.5: Results for 2 different tree configs using 3 LLMs as evaluators. Note: this was run on a
50 row subset of SQuAD2.0.

A detailed qualitative analysis of the paraphrased nodes accuracy revealed that more complex
trees tended to have lower paraphrased accuracy in deeper nodes. It became apparent that the
lower paraphrased accuracy is largely influenced by the children of lexical nodes. This indicates
that the models struggled to comprehend user prompts in perturbed contexts, often returning
messages that suggested there was an issue understanding the user prompt.

Additionally, lexical accuracy is significantly impacted by the increased complexity of the tree.
In the <3,3,2> configuration, the prompts at the leaf nodes are nearly illegible to the human
eye (as highlighted by Figure 4.8), further complicating the task for the language models. This
degradation in performance at deeper levels undermined the purpose and intended benefits of
employing more complex tree structures in LexEval.

These findings suggested that while LexEval’s tree-based framework has potential, the inital
approach to handling lexical perturbations in more complex trees required reconsideration.

4.1.3.3 Prompt Diversity in Tree

Another challenge encountered in the initial implementation of the make_tree function was the
lack of prompt diversity. The prompts generated often failed to be sufficiently distinct, resulting in

38

Because zinc has a filled d-shell, its compounds are usually what?

Befause zinc has a fi,led d-shelk, its compounds a5e uzually what?

Betause zinc has a f8,led d-shelk, its compounds a5e uzudlly what?

Behause zinc has a f8„ed d-shelk, its compounds a5e uzuxlly what?

Figure 4.8: A lexical path from the LexEval tree for SQuAD2.0 (row id:
572b5334111d821400f38e64). Note: the perturbation probability, p=0.1.

frequent failure to meet the defined invariants without exhausting the maximum number of retries.
Once the 5 retries were exhausted, the model’s final response was used, leading to the inclusion of
numerous similar prompts within the tree at various levels and branches. This issue significantly
compromised the efficacy of the LexEval evaluation function, as it hindered an accurate assessment
of the model’s ability to generate responses from a diverse set of questions. Consequently, the lack
of prompt diversity reduced the robustness of the evaluation process, limiting the effectiveness
of LexEval in measuring the model’s performance across a broad spectrum of query variations.
Addressing this issue was critical for enhancing the reliability and comprehensiveness of the LexEval
framework in future iterations.

The prompts in table 4.6 are as follows, this table highlights the lack of diversity in the tree
created:

1. What is the top priority of the federal trunk road programme 2015?

2. What was the primary objective of the 2015 national highway initiative?

3. What was the main focus of the federal highway initiative in 2015?

4. What was the main goal of the national highway initiative in 2015?

Prompt Level Similarity Score (to root)
(1) 1 (root) 1.0000
(2) 2 0.9896
(3) 2 0.9835
(4) 3 0.9790

Table 4.6: A subset of similar prompts taken from LexEval tree for row id:
57267ed25951b619008f74a9. This was taken from a tree of configuration <3,3,2> created with
gpt-3.5-turbo-0125.

4.1.3.4 Problems with Combining Thresholding with LexEval Metric Function

The thresholds used as the upper and lower bounds for node addition were determined through
trial and error based on preliminary experiments. Incorporating these thresholds into the final
evaluation metric was found to be inappropriate, as they were tailored to a specific subset of initial
experiments and may not generalise across different datasets or models. Additionally, relying on a
single score to evaluate the model’s performance was misleading. It failed to capture the nuanced
aspects of robustness that the LexEval framework aimed to assess. A singular score couldn’t
adequately reflect the model’s ability to handle diverse and perturbed prompts, which is a crucial
component of robustness evaluation. Therefore, it was essential to consider multiple metrics that
collectively provide a comprehensive view of the model’s performance, ensuring that both accuracy
and robustness are adequately evaluated.

39

4.2 Adapting to POPQA

4.2.1 POPQA Subset
To address the time and cost constraints associated with generating LexEval trees for the entire
POPQA dataset, which contains 14,267 rows, we selected a manageable 200-row subset. The
POPQA dataset includes a class column named prop (as mentioned in 2.4.3.2), which facilitated the
selection process. Using the stratified sampling feature of sklearn’s train_test_split function
[57], we ensured that our subset maintained the same class distribution as the full dataset. This
stratified approach is crucial for obtaining an accurate representation of POPQA, allowing us
to generate data that reliably indicates how LexEval will perform across the entire dataset. By
maintaining the proportional representation of classes, we enhance the validity and reliability of
our experimental findings and ensure that our evaluations and conclusions regarding LexEval’s
performance are robust and generalisable.

4.2.2 Code Changes

Figure 4.9: Diagram of the new implementation.

4.2.2.1 Tree Architecture and make_tree

As demonstrated in Table 4.1, the rapid increase in the number of nodes within the tree significantly
hindered the feasibility of running tests due to both time and cost constraints. This issue was
further exacerbated by malformed prompts (mentioned in Section 4.1.3.2) resulting from repeated
lexical perturbations, necessitating a substantial revision of the tree structure. Consequently,
the revised tree structure was designed such that only paraphrased nodes generate child nodes,
while lexical nodes terminate at each level, producing no children. This modification effectively
reduced the total number of nodes within the tree, thereby alleviating both time and cost concerns.
Moreover, this structural adjustment also improved the overall correctness of the tree, ensuring
more reliable and efficient evaluations. Thus, the new make_tree algorithm became:

Algorithm 3 Make Tree V2.0
Require: depth, num_paraphrased, num_lexical
1: Initialise tree with root node
2: for each level from 1 to depth do
3: for each node in current level do
4: for each of num_paraphrased perturbations do
5: 1. Create paraphrased child node
6: 2. Check invariant against parent and root nodes
7: if New node does not pass invariant check then
8: Repeat steps 1 and 2
9: end if

10: 3. Add paraphrased child to tree
11: end for
12: end for
13: end for
14: return Tree

Table 4.7 shows the change in the number of nodes in the tree compared to the initial imple-
mentation.

40

(a) <2,2,1>

(b) <3,3,2>

Figure 4.10: Tree diagrams for two different tree configurations with the new tree architecture,
nodes in black are the root prompt nodes, nodes in yellow are ParaphrasedNode objects repre-
senting paraphrased perturbation nodes and nodes in blue are LexicalNode objects representing
lexical perturbation nodes. Please refer to Figure 4.2 for the old tree architectures.

depth num_paraphrased num_lexical Old # of Nodes New # of Nodes
2 2 2 21 13
2 2 3 31 16
2 3 3 43 25
3 2 2 85 29
3 2 3 156 36
3 3 3 259 79

Table 4.7: The new implementation showing a drastic drop in the number of nodes from Table 4.1.

4.2.2.2 Thresholding and Invariant

The threshold windowing technique employed in the initial experiments posed significant chal-
lenges, as previously discussed. To address this, a fundamental change was implemented in the
utilisation of thresholds within LexEval. Rather than incorporating thresholds directly into the
evaluation function, they were used solely to validate that the new prompt being added had a
lower similarity score to its parent compared to the root, and that it was sufficiently different from
its parent. This approach ensured that the similarity scores of nodes decreased progressively with
depth, without reaching the maximum retry limit. Additionally, the thresholds were treated as hy-
perparameters that could be tuned alongside the maximum number of retries. This adjustment not
only maintained the integrity of the tree structure but also enhanced the robustness and flexibility
of the LexEval framework. The hyperparameters of upper_thresh=0.96 and lower_thresh=0.8
were chosen after extensive testing to achieve sufficiently different prompts at each level. The
number of retries was set at 5 to reduce the cost of tree creation.

4.2.2.3 LexEval Metric Function

Following the modifications to the tree structure and the invariants, it became evident that the
metric function also needed revision. The initial "one metric fits all" approach was replaced with a
suite of more nuanced metrics. These included traditional NLP metrics such as accuracy, precision,
recall, F1-score, BLEU, ROUGE-1 and ROUGE-L (using the rouge_scorer library[58]). This
change facilitated a more detailed and fine-grained analysis of the results, which will be discussed
in the subsequent section. Decoupling the thresholding from the evaluation function was crucial to
enable individual and independent analysis of each aspect, thereby enhancing the robustness and

41

Algorithm 4 Similarity Score Check
Require: similarity_score, upper_bound, lower_bound, parent_similarity_score,

root_similarity_score
1: if lower_bound <= similarity_score <= upper_bound then
2: if root_similarity_score < parent_similarity_score then
3: Passes invariant check
4: break
5: else
6: Retry with new node
7: end if
8: else
9: Retry with new node

10: end if

clarity of the evaluation process.

Precision =
True Positives

True Positives + False Positives
(4.5)

Recall =
True Positives

True Positives + False Negatives
(4.6)

F1 Score = 2 · Precision · Recall
Precision + Recall

(4.7)

Brevity Penalty =

{
1 if c > r

e1−
r
c if c ≤ r

(4.8)

BLEU = Brevity Penalty · exp(
N∑
n=1

wn log pn) (4.9)

4.2.2.4 Prompting Function

The initial prompting function generated only one perturbed prompt at a time (shown by Figure
4.11), resulting in limited prompt diversity. To address this issue, we implemented an approach
that requested all paraphrased children prompts of a node together. Specifically, the new pertur-
bation prompt asked for num_paraphrased responses.

New Perturbation Prompt

Note: num_paraphrased and user_prompt are passed in to the prompting function.
System:
Generate variations of the following user prompt by perturbing its semantics while preserving
its core intent. Aim to create the most diverse question set. Respond with num_paraphrased
perturbation(s) in the json format as follows: {perturbations: [‘’]}
User:
For example: Due to its filled d-shell, what is a common trait of the compounds of zinc?

Figure 4.11: New perturbation prompt

Each of these responses was then evaluated against the invariants to ensure their suitability for
inclusion in the tree. If a prompt failed to meet the invariants, an auxiliary prompting function
was invoked to retry only for those specific prompts that did not pass.

This revised approach offered several benefits. By making a single request per node for para-
phrased children instead of multiple individual requests (and asking for a structured output), the
latency caused by API wait times was significantly reduced. Additionally, since the prompt ex-
plicitly requested a diverse set of answers, the number of invariant misses was considerably lower,

42

leading to a reduction in the number of retries needed. This enhanced efficiency and improved the
overall robustness of the tree generation process. An in-depth commentary on the time taken for
tree creation and prompt diversity will be discussed in Chapter 5.

4.2.3 RAG Setup

4.2.4 Wikipedia API Setup (knowledge-base)
For the RAG pipeline in this project, Wikipedia was utilised as the knowledge base. This choice
was driven by the fact that Wikipedia was employed in the main POPQA[34], as well as the ad-
vantage of the Wikipedia API being open source and free of cost. [59]

Within the pipeline, a search query was sent to the API, and the search() function [60] was
used to retrieve the top 5 pages related to the search term from Wikipedia. Subsequently, the
page() function [60] was called for each of these top pages. The content, title, summary, and URL
of each page were then extracted and stored in a dictionary in Python.

{
"title": search_result,
"content": page.content,
"summary": page.summary,
"url": page.url,

}

4.2.5 Named Entity Recognition
4.2.5.1 Traditional NER vs LLM NER

To identify the most effective NER technique for our pipeline, we conducted experiments with
various NER methods. We evaluated two primary approaches: SpaCy [37], using three different
models, and four distinct LLMs. This comparative analysis aimed to find the optimal NER tech-
nique that would provide the most accurate and reliable entity recognition for our RAG pipeline.

Technique Model Accuracy (%)
NER en_core_web_sm 82.5

en_core_web_lg 85.5
en_core_web_trf 88.0

LLMs gpt-3.5-turbo 95.5
gpt-4-turbo 96.5

Llama-2-7b-chat 94.0
Mistral-7B-Instruct-v0.2 92.5

Table 4.8: NER experiments run on the 200 row subset of POPQA. The POPQA dataset contains
a column for the gold standard of entities in the questions. These were cross-examined with the
output of the NER technique using Python’s __contains__ method. All the NER data is stored
within the Tree class, thus NER experiments were easy to examine and run.

Table 4.8 illustrates the performance of various NER techniques on a 200-row subset of the
POPQA dataset. Traditional NER techniques, such as those implemented in SpaCy, exhibited
a higher rate of misses when applied to the POPQA subset. This limitation is likely due to the
nature of SpaCy’s NER models, which rely on word embeddings, "Bloom embeddings," and CNNs
with residual connections. Consequently, when the NER model encounters an unfamiliar entity or
a complex dependency, it struggles to recognise the entity accurately.[61]

NER Prompt

System:
You are a helpful assistant who is responsible for solving Named Entity Recognition. You
will be given a sentence and you must return the entity from that sentence.
User:

43

For example: Due to its filled d-shell, what is a common trait of the compounds of zinc?

Figure 4.12: The NER prompt used for the experiments.

In contrast, LLMs demonstrated superior performance in NER tasks. This advantage can
be attributed to their extensive parametric knowledge, which allows them to better understand
relationships between entities and the surrounding tokens. For LexEval, GPT-3.5 Turbo was
selected for NER tasks as it provides an optimal balance between cost, speed, and accuracy.

4.2.5.2 NER in LexEval RAG pipeline

In the RAG pipeline, gpt-3.5-turbo was used for NER to identify entities to be searched on
Wikipedia. The entities recognised by gpt-3.5-turbo are used in downstream process, where
they are passed to a function that queries the Wikipedia API. This integration ensures that the
most relevant and accurate entities are retrieved and used in the subsequent stages of the pipeline.
By leveraging gpt-3.5-turbo’s robust NER capabilities, the RAG pipeline can efficiently and
accurately identify pertinent entities, enhancing the overall performance of the information retrieval
process.

NER Prompt

System:
You are a helpful assistant whose job it is to extract entities from the given string. Do not
attempt to answer the question, your job is just to perform named entity recognition. As a
point of reference, these are (proper) nouns in the string. For example: Who released the
song "Smells Like Teen Spirit"? should return Smells Like Teen Spirit
User:
For example: Due to its filled d-shell, what is a common trait of the compounds of zinc?

Figure 4.13: The NER prompt used for LexEval RAG, 1-shot prompting was used to guide the
LLM to produce the right answer. 1-shot prompting proved to solve the NER tasks better than
0-shot.[62]

4.2.5.3 Problem with Adaptive Retrieval

According to Mallen et al., adaptive retrieval is defined as using retrieval only when necessary,
based on a popularity threshold. This necessity is determined using a development set from the
primary POPQA dataset, which helps to decide when the system should employ adaptive retrieval.
Their findings indicate that as the scale of the language model increases, the threshold for adaptive
retrieval decreases. Consequently, adaptive retrieval significantly enhances the accuracy of models
in answering long-tail questions.

However, there are notable issues with this approach. Firstly, the method for determining the
threshold is not well-defined, as it appears to be tailored specifically to the current version of
the POPQA dataset. There is no clear strategy for managing scenarios where language models
become so advanced that the adaptive retrieval threshold becomes negligible. Additionally, these
thresholds are fine-tuned to the Wikipedia data, which limits the generalisability of the framework.
Given LexEval’s goal of being adaptable to any dataset or use case, we opted to apply retrieval
to all queries rather than selectively. This decision ensures consistency and broad applicability,
addressing the limitations of the initial threshold-based approach.

4.2.6 Retrievers
The RAG pipeline employed three distinct retrievers for comparison: one term-based (BM25)
and two vector-based (Ada2 and Contriever). The BM25 retriever was implemented from the
Langchain’s retrievers module [63]. For the Ada2 retriever, embeddings were generated using Ope-
nAI’s text-embedding-ada-002 model[53] and stored in the Tree class. Contriever embeddings

44

were generated using the AutoModel class[64] from the transformers library[65], specifically us-
ing the pre-trained model facebook/contriever[66], with the embeddings also stored in the Tree.

An LLM was used for NER to identify search terms for querying the Wikipedia API (as men-
tioned in the previous section 4.2.5.2). Once the search terms were identified, the wikipedia API
retrieved similar pages , which were stored in a list of dictionaries wiki_data (as mentioned in
section 4.2.4). This wiki_data was then stored in the Tree class, and all retrievers were called
to generate their respective document sets. For BM25, the fromdocuments() function created
the document set [67]. For contriever, a retriever was initialised using a tokeniser with padding
and truncation, followed by mean pooling. For Ada2, the create_embeddings function generated
1536-dimension embeddings for each page, which were then stored as the document set.

During retrieval, the prompt was generated using the LLM’s NER output. For BM25, the
invoke() function used the prompt to return documents from the document set. For Ada2 and
Contriever, the prompt was embedded using their respective embedding functions, and cosine
similarity was used to find the closest match between the prompt embedding and the document
embeddings. The top k documents were then retrieved, with k set to 3 to minimise the downstream
prompt size (this is a tuneable hyperparameter but through our investigations we found a larger k
would explode the prompt token size used in the generator contributing to potential hallucination
problems and increased cost and a smaller k may not provide enough information to the generator).

The code snippets for the retriever implementations are given in the appendix (A.1).

4.2.7 Generator
In the RAG pipeline, generators play a crucial role in summarising and identifying relevant parts
of the retrieved data to effectively answer the main question. In LexEval, generators are designed
as modular components, allowing them to be swapped out with different models to evaluate their
capability in answering questions. They are responsible for distilling the right parts of the context
to provide a sufficient and accurate answer.

For the LexEval framework, the titles and extracts retrieved are sent to the LLM to derive
answers and pinpoint the correct pieces of information. This process ensures that the information
provided is both relevant and accurate. The flexibility of switching out generators also allows for
comprehensive testing and evaluation of various models, ensuring that the most effective model is
employed for the task at hand.

Generator Prompt

Note: titles and extracts are passed in to the prompting function.
System:
You are a helpful and honest assistant. Your answers should not include any harmful,
unethical, racist, sexist, toxic, dangerous, or illegal content. You have retrieved the following
extracts from the Wikipedia page titles: extracts. You are expected to give truthful and
concise answers based on the previous extracts. If it doesn’t include relevant information
for the request just say so and don’t make up false information.
User:
For example: Due to its filled d-shell, what is a common trait of the compounds of zinc?

Figure 4.14: Prompt used for generators in the RAG pipeline

4.2.8 Amending make_tree

The make_tree function required slight modifications to integrate the RAG features of LexEval.
To facilitate the experimentation process, all relevant data is stored within the tree itself. This
includes document stores, embeddings, and retriever objects. While this approach increases the
amount of space occupied by the tree, it streamlines the workflow by centralising all necessary
information.

45

To save evaluation time, retrieval functions were executed during the tree construction phase.
This approach was adopted to allow for real-time analysis of which specific components of the
RAG pipeline were responsible for any failures. By embedding these processes within the tree, we
can efficiently diagnose and address issues within the pipeline, ensuring a more robust and efficient
evaluation framework.

4.2.9 Adapting LexEval Eval Function for RAG
4.2.9.1 Adding F1-Score

Previously, the evaluation function utilised a single score to assess performance. To enhance
the robustness of the evaluation, we expanded this approach by incorporating additional metrics.
Specifically, accuracy, precision, recall, and F1 scores were added to provide a more comprehensive
analysis of model performance. These metrics were then systematically stored within the Tree
objet, under the metrics attribute, facilitating detailed examination and comparison. This ap-
proach ensures a nuanced understanding of the model’s capabilities and shortcomings, enabling
more targeted improvements and fine-tuning.

4.2.9.2 Adding BLEU and ROUGE

To extend the evaluation capabilities, each answer generated by the tree was also stored within the
Tree object itself. This enabled the calculation of additional metrics, such as BLEU, ROUGE-1
and ROUGE-L scores. Storing the answers directly in the Tree object allowed for a more thorough
and fine-grained analysis of the model’s output quality. These metrics provided insights into the
paraphrased and lexical accuracy of the responses, further enriching the evaluation framework and
ensuring a comprehensive assessment of the model’s performance.

4.2.10 Batching Calls in the Evaluation Function
In the initial implementation, the evaluation function were executed on a node-by-node basis. For
more complex trees, this approach significantly increased the evaluation time due to delays in
waiting for API responses. As a result, the process became a substantial bottleneck during large-
scale testing, especially as the project progressed. To address this issue, the evaluation loop was
redesigned. In the updated version, nodes are added to an execution queue, batch queue , rather
than being processed individually. Within this queue, the top n nodes are selected as a batch and
processed concurrently by separate threads. The batch size is a tuneable hyperparameter that can
be adjusted based on the constraints of the API service being used (For this project, our setup was
the base OpenAI Tier 1 subscription and the base Together API subscription, the rate limits are
given in Table 4.9). Experiments were conducted to determine the optimal batch size under the
given restrictions, as outlined in the table below. This redesign aimed to enhance efficiency and
reduce evaluation times, facilitating more effective large-scale testing of the framework.

Figure 4.15: An example of queuing when using batch size of 3 and the <3,3,2> tree.

As indicated in Table 4.10, a batch size of 3 (as shown in Figure 4.15) was selected as it provided
an optimal balance between efficiency and adhering to rate limits. This batching approach signifi-
cantly improved the evaluation process, resulting in substantial time savings. The implementation
of batching enabled us to conduct more experiments within the allotted timeframe, enhancing the
overall effectiveness and productivity of the project. The ability to process multiple nodes con-
currently allowed for a more streamlined and efficient evaluation loop, ultimately contributing to
more robust and comprehensive testing of the framework.

46

API Service Model Limit Name Limit Value

OpenAI (Tier 1)

gpt-3.5-turbo
RPM 3500
RPD 10,000
TPM 60,000

gpt-4-0613
RPM 500
RPD 10,000
TPM 10,000

gpt-4-turbo-2024-04-09
RPM 500
RPD -
TPM 30,000

gpt-4o-2024-05-13
RPM 500
RPD -
TPM 30,000

Together AI All models QPS 10

Table 4.9: As of June 10 2024, The rate limits for the two API services used are presented here.
The rate limit definitions for OpenAI[68] are: RPM (Requests Per Minute), RPD (Requests
Per Day) and TPM (Tokens Per Minute). The rate limit definitions for Together AI[69] are:
QPS(Queries Per Second).

47

Model Tree config Batch size Eval Time (s) Reason for Failure

gpt-3.5-turbo

2,2,2 0 97 -
2,2,2 1 89 -
2,2,2 2 84 -
2,2,2 3 74 -
2,2,2 4 65 -
2,2,2 5 Fail RPM
3,3,2 0 212 -
3,3,2 1 191 -
3,3,2 2 140 -
3,3,2 3 93 -
3,3,2 4 Fail RPM
3,3,2 5 Fail RPM

gpt-4-0613

2,2,2 0 132 -
2,2,2 1 120 -
2,2,2 2 103 -
2,2,2 3 97 -
2,2,2 4 Fail TPM
2,2,2 5 Fail TPM

gpt-4-turbo-2024-04-09

2,2,2 0 124 -
2,2,2 1 112 -
2,2,2 2 100 -
2,2,2 3 92 -
2,2,2 4 Fail RPM
2,2,2 5 Fail RPM

Mistral-7B-Instruct-v0.2

2,2,2 0 52 -
2,2,2 1 43 -
2,2,2 2 33 -
2,2,2 3 20 -
2,2,2 4 16 -
2,2,2 5 Fail QPS

Llama-2-7b-chat

2,2,2 0 57 -
2,2,2 1 43 -
2,2,2 2 31 -
2,2,2 3 27 -
2,2,2 4 Fail QPS
2,2,2 5 Fail QPS
3,3,2 0 127 -
3,3,2 1 95 -
3,3,2 2 85 -
3,3,2 3 69 -
3,3,2 4 Fail QPS
3,3,2 5 Fail QPS

Table 4.10: Batch size metrics comparison with different models and tree complexities. The
experiment was conducted with a 10 row subset of POPQA to optimise for time and cost. The
reason for failures were detected if the experiment failed for any of the 10 trees, the reason was
detected using the response from the API. Note: gpt-4-0613, Mistral-7B-Instruct-v0.2 and
gpt-4-turbo-2024-04-09 were not evaluated for <3,3,2> since they were too slow and costly.

48

Chapter 5

Results and Findings

This section presents the results and findings from the experiments conducted for LexEval. We
begin with a discussion on the metrics calculated during the tree creation process (in Section 5.1).
Following this, we discuss the results of the evaluation function, detailing the results obtained from
running the evaluation function on the 200-row subset (in Section 5.2). Finally, we conclude with
an analysis of the optimal combinations of retrievers, generators, and tree configurations identified
through our experiments. This comprehensive examination provides insights into the effectiveness
of various components and configurations within the LexEval framework, contributing to a better
understanding of its performance and potential areas for improvement.

5.1 Tree Variations
This section discusses the results obtained from the tree creation process, which is crucial for as-
sessing the viability of implementing the tree in production workflows. The results highlight the
successes achieved in enhancing prompt diversity within the tree. This improvement is significant
as it directly impacts the robustness and adaptability of the model in handling increasingly im-
proving LLMs.

Furthermore, the section provides a detailed analysis of the cost, time, and space metrics
associated with creating the trees. Understanding these factors is essential for evaluating the
efficiency and practicality of the tree creation process. The analysis covers both the aggregate and
average metrics, offering a comprehensive view of the resource consumption involved.

5.1.1 Tree Complexity
To illustrate the effectiveness of our approach, we calculated the average accuracy of nodes across
each level of the tree. Figure 5.1 reveals that nodes situated deeper within the tree exhibit lower
accuracy. This finding suggests that as models become more sophisticated, we can construct deeper
trees to evaluate them more thoroughly. Consequently, LexEval is well-equipped to adapt to scal-
ing laws and the continuous advancements in LLMs.

The experimental results underscore the importance of selecting an optimal batch size to bal-
ance between computational efficiency and adherence to rate limits. Although a batch size of 3 was
adequate for our purposes, future experiments with higher tier limits may benefit from increasing
the batch size to reduce overall computation time.

Moreover, the ability of LexEval to maintain robustness despite the complexities introduced by
deeper nodes signifies its potential as a scalable evaluation framework. As LLMs evolve and im-
prove, the capability to extend tree depth allows for more rigorous testing and validation, ensuring
that LexEval remains a valuable tool for the assessment of advanced models. The adaptability
of LexEval to both current and future model complexities confirms its utility in diverse experi-
mental settings, providing a robust methodology for evaluating the performance of increasingly
sophisticated language models.

49

Figure 5.1: Average accuracy of nodes across levels in the POPQA LexEval Tree bank.

Note: Experiments for Figure 5.1 were run on the <3,3,2> Tree bank since that is the deepest
version of LexEval trees that have been evaluated, this choice was made since the average accuracy
between the <2,2,2 and <3,3,2> trees will not differ much in levels 0, 1, and 2.

5.1.1.1 Qualitative Analysis

Note: This example is taken from the LexEval Tree id: 28772 from the POPQA subset.

Root node prompt:
Who was the composer of Drink The Water? - Correct Answer
Leaf node prompt from <2,2,2>:
Can you disclose the name of the artist who created Drink the Water? - Correct Answer
Leaf node prompt from <3,3,2>:
Could you reveal the identity of the artist responsible for the creation of Drink the Wa-
ter? - Incorrect Answer

The root prompt is well-constructed, with a clear entity and relationship. In the shallower tree,
the prompt remains straightforward, and the LLM successfully answers it with the aid of RAG.
However, in the deeper tree, the generator fails to identify the correct response from the context
provided by the RAG system when offered the top three matches. Unfortunately, among these
matches, information about a 1994 Woody Allen TV show called Don’t Drink The Water confuses
the generator, resulting in an incorrect answer.

Note: This example is taken from the LexEval Tree id: 304828 from the POPQA subset.

Root node prompt:
Who was the screenwriter for Diane? - Incorrect Answer
Level 1 prompt from <3,3,2>:
Which individual was responsible for writing the script for Diane? - Correct Answer
Level 2 prompt from <3,3,2>:
Who is the person behind the script of Diane? - Incorrect Answer
Level 3 prompt from <3,3,2>:
Who is the creative force behind Diane’s script? - Incorrect Answer

The prompt at level 0 was incorrectly answered due to the short context and confusion between
Diane Keaton and Diane Lockhart by the API’s search() function. At level 1, the prompt was
answered correctly as the Wikipedia page for Diane was included in the closest matches, and addi-
tional context, such as ‘responsible for writing the script ’ assisted the LLM in providing the correct
answer. However, prompts at levels 2 and 3 also suffered from retriever failures, as the retrievers

50

identified Diane Keaton as the closest match.

Note: This example is taken from the LexEval Tree id: 977847 from the POPQA subset.

Root node prompt:
Who was the director of Get Hard? - Correct Answer
Level 1 lexically perturbed prompt from <3,3,2>:
Who was rhd director 9f Get Hard? - Correct Answer
Level 2 lexically perturbed prompt from <3,3,2>:
What is the name of the individual who directed hte movie Get Ha5d? - Incorrect An-
swer
Level 3 lexically perturbed prompt from <3,3,2>:
Fan you tell me the name of the director of Get Jard? - Incorrect Answer

This example demonstrates the sensitivity of the RAG pipeline to lexical perturbations of
the subject entity. At level 0, the prompt is answered correctly through RAG, as the closest
matches included the correct page, and the LLM identified the right answer. At level 1, although
the words defining the dependency relationship are slightly malformed, the generator can still
decipher the correct meaning and respond accurately. However, at levels 2 and 3, the subject
entity becomes malformed, leading to the failure of the RAG pipeline, which misidentifies the
closest pages (retrieved pages: Folk Songs (Berio), Nepalese Cuisine and Hard Rock Bet 200).

5.1.2 Prompt Diversity
As previously noted in Section 4.1.3.3, prompt diversity was a significant challenge in the tree
structure with the original invariant design. The redesigned invariant has successfully addressed
this issue by offering a much more diverse set of prompts while maintaining an efficient balance
with the time required to create the tree. This enhancement is crucial for improving the overall
utility and robustness of the model.

A diverse set of prompts, especially those that become increasingly dissimilar as the tree levels
deepen, introduces certain beneficial side effects. One of the primary advantages is that it allows
for more comprehensive testing and evaluation of the model’s performance across various prompt
perturbations. This variability helps in identifying potential weaknesses or biases in the model,
ensuring that it can handle a broader range of inputs effectively.

Moreover, the diverse prompt sets provide users with the flexibility to choose prompts that
best suit their specific needs. Users can select the prompt that they believe asks the question most
clearly or one that utilises the fewest tokens, thereby optimising both clarity and efficiency.

Figure 5.2: Average cosine similarity score to the root node (original prompt) on a per-node basis.
Note: This is for the <3,3,2> Tree bank. This network only shows paraphrasing perturbed nodes.

51

Figure 5.3: Average Levenshtein Distance to the root node (original prompt) on a per-node basis.
Note: This is for the <3,3,2> Tree bank. This network only shows values for lexically perturbed
nodes.

What is the capital of Plesetsky District?

Can you name the main city in Plesetsky District?

What is the primary city located in Plesetsky District?

Which major city is situated within Plesetsky District?

Figure 5.4: A path from the LexEval tree for SQuAD2.0 (LexEval id: 1904656)

5.1.2.1 Qualitative Analysis

Figure 5.4 shows an example of a path in a LexEval tree, this example displays the effects of
repeated perturbations of the root prompt. We can witness the change in the orderings of the
relationships of the question to the main entity along with a direct instruction to the LLM in the
node at level 1. Fortunately, the LLM managed to answer all questions correctly with the aid of
RAG (retrieved page was the Plesetsky District from Wikipedia).

What is the capital of Plesetsky District? - Correct

What us the capital of Plesstsky District? - Incorrect

Which city serves as the admonistrqtive center of Plesetsky Distrjct? - Correct

What 8s fhe main administra5ive huv of Plesetsky Doshrict? - Incorrect

Figure 5.5: Lexically perturbed prompts from the LexEval tree for SQuAD2.0 (LexEval id:
1904656) shown in order of their existence in the tree.

Figure 5.5 highlights the important of well-formed entities since there have been numerous
times when malformed entities have caused a failure in the RAG pipeline. This tells us that the
retrievers are fairly sensitive to search terms and can be percieved as a major point of failure in
the pipeline.

5.1.3 Cost Effectiveness
As demonstrated in Table 5.1, the average cost of creating the LexEval trees increases with the
addition of more nodes. This is directly attributable to the increased computational requirements
associated with more complex tree structures. For this experiment, a batch size of 3 was used.

52

While a larger batch size could potentially enhance efficiency, we were constrained by tier limits
that necessitated careful batching to avoid rate limit errors. Consequently, the total duration of
the experiments posed a significant challenge during the experimentation phase, as the sequential
execution of experiments was time-consuming.

<2,1,1> <2,2,1> <2,2,2> <3,1,1> <3,2,1> <3,3,2>
Avg. Creation Time (s) 68.9s 72.4s 75.3s 90.3s 157.5s 290.4s
Total Creation Time 3h50m 4h2m 4h11m 5h3m 8h45m 16h8m

Average Storage 224KB 234KB 263KB 403KB 764KB 1.1MB
Total Storage 44.8MB 48.6MB 52.6MB 80.6MB 152.8MB 220MB

Avg. Creation Cost ($) 0.0009 0.0012 0.0014 0.0023 0.0044 0.0050
Total Creation Cost ($) 0.1821 0.2403 0.2853 0.4614 0.8834 1.0020

Table 5.1: Key LexEval metrics for different tree configurations. The format for configuration is
<x,y,z> where x is depth, y is num_paraphrased and z is num_lexical. Note: These experiments
were run using gpt-3.5-turbo-0125 for 200 randomly sampled rows from POPQA.

5.1.3.1 Creation

Table 5.1 indicates that the space required for more complex trees increases due to the addition of
more nodes. At each node, the storage is primarily dominated by the embeddings, which include
both the embeddings for the prompt and the document store for each RAG technique. However,
despite this increase in complexity, the storage requirements remain relatively minimal, with the
most complex tree (<3,3,2>) occupying only 1.1MB of space.

Additionally, the average cost of tree creation rises with the increasing number of nodes due to
more API requests. This is a direct consequence of the expanded tree structure, which demands
more computational resources and interactions with external APIs.

Running LexEval on the 200-row subset of the dataset provides valuable insights into the total
time, space, and cost required to apply the methodology to the entire dataset. By extrapolating
from the subset data, we can approximate the resources needed for the full dataset, allowing for
better planning and resource allocation (shown in Table 5.2).

<2,1,1> <2,2,1> <2,2,2> <3,1,1> <3,2,1> <3,3,2>
Total Creation Time 272h56m 286h46m 298h16m 357h42m 623h53m 1150h18m
Total Storage (GB) 3.19 3.34 3.75 5.75 10.89 15.69

Total Creation Cost ($) 12.83 17.11 19.96 32.80 62.74 71.30

Table 5.2: Extrapolated metrics for running LexEval on the entire POPQA dataset. This would
be a 1-time cost.

Overall, these findings highlight the scalability of LexEval, demonstrating that even with in-
creased complexity, the storage requirements remain manageable. The cost implications, while
increasing with complexity, provide a clear understanding of the resources needed for compre-
hensive evaluations. This analysis underscores the importance of balancing tree complexity with
resource constraints to achieve efficient and effective evaluations across the entire dataset.

5.1.3.2 Evaluation

Table 5.3 demonstrates that increasing the complexity of the tree results in a corresponding increase
in the average time required to evaluate the tree. Among the models evaluated, gpt-3.5-turbo-0125
was the least expensive, while gpt-4-turbo-2024-04-09 was the most costly. This discrepancy is
primarily due to OpenAI’s asymmetric pricing model, where input tokens are cheaper than output
tokens, leading to higher costs associated with generating output (as shown by Table 2.3).

53

In terms of evaluation speed, gpt-3.5-turbo-0125 emerged as the fastest model, closely fol-
lowed by gemma-2b-it. It is important to note that models from Together AI, such as gemma-2b-it,
can be stored locally, significantly enhancing inference speed through local computation. Con-
versely, the slowest model was Mistral-7B-Instruct-v0.2, with a total evaluation time approach-
ing 8 hours.

While there is potential for further optimisation of the evaluation framework, most improve-
ments would necessitate either subscribing to a higher rate limit or storing models locally to
reduce dependence on external API calls. Due to cost and time constraints, gpt-4o-2024-05-13
and gpt-4-0613 were not evaluated for the <3,3,2> tree configuration, as they were deemed too
expensive and slow for the scope of this project.

Model Name Metric <2,2,2> <3,3,2>

gpt-3.5-turbo-0125

Avg. Time (s) 19.07 36.04
Total Time 1h5m 2h01m

Avg. Cost ($) 0.0008 0.0041
Total Cost ($) 0.1528 0.8199

gpt-4-turbo-2024-04-09

Avg. Time (s) 53.11 92.11
Total Time 2h57m 5h07m

Avg. Cost ($) 0.0099 0.0409
Total Cost ($) 1.9954 8.1820

Llama-2-7b-chat

Avg. Time (s) 68.01 121.00
Total Time 3h47m 6h44m

Avg. Cost ($) 0.0008 0.0219
Total Cost ($) 0.1653 4.3799

Mistral-7B-Instruct-v0.2

Avg. Time (s) 53.47 -
Total Time 2h58m -

Avg. Cost ($) 0.0018 -
Total Cost ($) 0.3505 -

gpt-4o-2024-05-13

Avg. Time (s) 61.15 -
Total Time 3h23m -

Avg. Cost ($) 0.0194 -
Total Cost ($) 3.8875 -

gemma-2b-it

Avg. Time (s) 21.98 49.01
Total Time 1h13m 2h43m

Avg. Cost ($) 0.0001 0.0018
Total Cost ($) 0.0025 0.3566

gemma-7b-it

Avg. Time (s) 70.11 114.53
Total Time 3h53m 6h22m

Avg. Cost ($) 0.0005 0.0238
Total Cost ($) 0.1087 4.7641

Table 5.3: Key LexEval evaluations metrics for two different tree configurations. The format for
configuration is <x,y,z> where x is depth, y is num_paraphrased and z is num_lexical.

5.2 RAG Evaluations
This section evaluates the RAG pipeline from start to finish, focusing on both its successes and
limitations. We discuss the performance of various retrievers within the RAG pipeline, highlighting
their strengths and weaknesses. This analysis will provide insights into which retrievers are most
effective for different types of queries and scenarios.

Additionally, we will examine the role of generators in the pipeline, assessing their impact on
the quality and accuracy of the final answers. The effectiveness of generators is crucial, as they
are responsible for synthesising and summarising information to produce coherent and relevant

54

responses. By evaluating the generators’ performance, we can better understand their contribution
to the overall success of the RAG pipeline and identify areas for further improvement.

5.2.1 RAG Retriever Evaluation
Figure 5.6 illustrates the average accuracy and F1 scores for 7 LLMs grouped by their respective
retrievers. The results indicate that using no RAG yields decent but inconsistent outcomes. When
employing BM25 RAG, the results are consistently lower compared to any other retriever type.

Contriever’s performance is comparable to that of ADA2, albeit slightly lower. This disparity
can be attributed to the differences in their embedding spaces. ADA2 benefits from a larger embed-
ding space due to the higher dimensionality of its vectors (n = 1536). This greater dimensionality
allows for more precise cosine similarity scores, which, in turn, facilitates more accurate retrievals.
In contrast, Contriever operates with a smaller vector space (n = 768), resulting in somewhat less
accurate retrievals.

Despite this, Contriever still outperforms BM25 because BM25 is a term-based retriever. Term-
based retrievers, like BM25, struggle with variations in word order or syntax, making them highly
susceptible to failures when perturbations occur. In essence, the robustness of ADA2’s larger vector
space provides a significant advantage in maintaining accuracy and consistency in retrieval tasks,
outperforming both Contriever and BM25.

(a) Average accuracy for 7 LLMs across retriever
types.

(b) Average F1-scores for 7 LLMs across re-
triever types.

Figure 5.6: Average accuracy and F1-scores for the LexEval POPQA <2,2,2> Tree Bank classified
by retriever types.

(a) Average accuracy for 7 LLMs across retriever
types.

(b) Average F1-scores for 7 LLMs across re-
triever types.

Figure 5.7: Average accuracy and F1-scores for the LexEval POPQA <3,3,2> Tree Bank classified
by retriever types. Note: gpt-4o-2024-05-13 and Mistral-7B-Instruct-v0.2 have been omitted
due to their high cost.

When examining the results for <3,3,2> (Figure 5.7a), the results become more inconsis-
tent without RAG. gpt-4-turbo-2024-04-09 exhibits outstanding performance with ADA2 RAG,
whereas the other retriever types follow similar trends observed with the metrics for the smaller tree.

55

In evaluating the performance characteristics of various models, it is essential that a good model
demonstrates high accuracy across all POPQA popularity ranges. Our analysis (shown in Figure
5.8) revealed that the ADA2 RAG model consistently exhibits higher baseline accuracy compared
to other retriever methods across all popularity ranges. This suggests that ADA2 RAG maintains
a robust performance irrespective of the popularity of the data.

Furthermore, our observations indicate that the Contriever RAG method displays a higher rate
of improvement, as shown by its slightly steeper accuracy curve. This steeper gradient implies that
Contriever RAG is capable of better adapting and improving as the data’s popularity increases.
Despite this, ADA2 RAG remains the superior choice due to its consistently higher baseline per-
formance.

In contrast, the BM25 RAG model, while demonstrating a similar gradient to ADA2 RAG,
generally achieves lower accuracy. This indicates that while BM25 RAG can improve in a manner
comparable to ADA2 RAG, it does not reach the same level of performance across the popularity
spectrum.

Figure 5.8: Average accuracy of nodes across levels in the POPQA LexEval Tree bank.

5.2.2 RAG Generator Evaluation
From Figure 5.10, we observe the average performance of various LLMs. For the simpler <2,2,2>
tree configuration, gpt-4-turbo-2024-04-09 demonstrates the highest performance without RAG.
However, when the tree complexity increases to <3,3,2> (shown in Figure 5.10), the performance
without RAG significantly dips, whereas the performance with ADA2 RAG improves substantially.
This indicates that gpt-4-turbo-2024-04-09 is more prone to errors with long-tail entities when
questions are perturbed, but RAG aids in retrieving the correct information, allowing GPT-4 Turbo
to effectively summarise and select the relevant information from the RAG context.

Additionally, the gemma models show significantly lower performance compared to other models.
This may be attributed to the exclusion of long-tail entities in their pre-training data. Even with
RAG, Gemma models struggled to retrieve the correct information from the given contexts.

Furthermore, among the 7B parameter models, Mistral-7B-Instruct-v0.2 exhibits the best
performance without RAG. When combined with ADA2 RAG, it achieves one of the highest
accuracies. This is promising because Mistral-7B-Instruct-v0.2, being a smaller model, can
be run locally and more quickly. When paired with ADA2 RAG, its performance rivals that of
much larger models like gpt-3.5-turbo-0125. This demonstrates the potential of smaller, locally
executable models to perform efficiently when supplemented with robust retrieval mechanisms like
ADA2 RAG.

56

(a) Average accuracy for retriever types across
7 LLMs.

(b) Average F1-scores for retriever types across
7 LLMs.

Figure 5.9: Average accuracy and F1-scores for the LexEval POPQA <2,2,2> Tree Bank classified
by LLMs.

(a) Average accuracy for retriever types across
7 LLMs.

(b) Average F1-scores for retriever types across
7 LLMs.

Figure 5.10: Average accuracy and F1-scores for the LexEval POPQA <3,3,2> Tree Bank classified
by LLMs. Note: gpt-4o-2024-05-13 and Mistral-7B-Instruct-v0.2 have been omitted due to
their high cost.

5.2.3 Discussion on the quality of responses
LexEval also provides metrics assessing the quality of model-generated responses. BLEU scores,
traditionally used in machine translation, are applied here to evaluate the precision of generated
answers compared to reference answers. This metric is particularly useful when the user specifies
a specific output format, such as JSON, YAML, or simply the answer.

Figures 5.11 and 5.12 display BLEU and ROUGE metrics for two tree banks. Notably, the
maximum ROUGE scores for the simpler trees are slightly higher, indicating that the precision
of responses tends to degrade in deeper trees. Similarly, the BLEU scores for deeper trees show
a higher frequency of near-zero scores compared to shallower trees. This trend underscores the
challenges models face in maintaining precision as the complexity of the task increases.

Figure 5.11: Box plots for BLEU, ROUGE-1 and ROUGE-L Scores for the <2,2,2> trees for
gpt-3.5-turbo-0125.

57

Figure 5.12: Box plots for BLEU, ROUGE-1 and ROUGE-L Scores for the <3,3,2> trees for
gpt-3.5-turbo-0125.

5.2.4 Weakest Link in RAG Pipeline
Table 5.4 outlines the points of failure within the RAG pipeline. Note: NER values remain con-
stant as gpt-3.5-turbo-0125 was used for NER across the board. The data reveals a significant
number of API failures within the pipeline; however, these are beyond the scope of this evaluation.
Implementing a more reliable API could potentially mitigate these failures.

The most substantial failures are attributed to the retrievers, with BM25 performing the worst
and ADA2 the best. This confirms previous observations regarding the relative effectiveness of
different retrievers. Among the generators, Mistral 7B stands out as the most reliable for shallower
trees, demonstrating the fewest failures.

When comparing performance across tree complexities, generators show a slight decline in
effectiveness for deeper trees. This trend highlights the increased difficulty in maintaining high
performance levels as the complexity of the tree structure grows. Overall, the analysis underscores
the importance of selecting optimal components within the RAG pipeline to minimise failures and
enhance performance.

Tree config Model
Cause of Failure (out of 200)

NER API Retriever GeneratorBM25 ADA2 Contriever

<2,2,2>

gpt-3.5-turbo-0125 9 29 78 44 57 19
gpt-4-turbo 9 32 83 47 52 11

Mistral-7B-Instruct 9 27 67 39 56 6
gemma-2b-it 9 29 60 53 53 27

<3,3,2>
gpt-3.5-turbo-0125 9 30 83 50 61 24

gpt-4-turbo 9 35 79 45 66 18
gemma-2b-it 9 31 75 41 60 21

Table 5.4: The causes of failures at each stage of the RAG pipeline. Each cell shows the number
of times the RAG pipeline failed at that particular stage. Note: Mistral-7B-Instruct has been
omitted from <3,3,2> due to cost and time constraints.

5.2.4.1 Example from <3,3,2>

Note: This example is taken from the LexEval Tree id: 402939 from the POPQA subset.

Root node prompt:
Who was the composer of Chances Are?
Leaf node prompt:
Who is tbe creator of Chahcex Are?

The example above illustrates that lexical perturbation of the prompt at the leaf node resulted in
a malformed entity. Consequently, the LLM NER failed to recognise the malformed entity, causing
a breakdown in the NER pipeline. This failure prevented the pipeline from identifying the closest
match in the document store, resulting in no answer to the original prompt.

58

Chapter 6

Conclusions and Future Work

In this project, we have developed a scalable evaluation framework for LLMs. Our framework ad-
dresses variations in human prompt construction and accounts for potential misspellings or typos.
Initially, we aimed to create this framework for the SQuAD dataset (4.1) but soon realised that
this approach was insufficient, prompting a shift to the POPQA dataset (4.2).

The choice to focus on long-tail entities in POPQA was strategic, allowing us to effectively
test the parametric knowledge of LLMs. This dataset’s diverse and less common entities provided
a robust challenge for evaluating the models’ retrieval and generation capabilities. Additionally,
integrating RAG with LexEval offered a valuable avenue for exploration and research. This com-
bination allowed us to better evaluate the models’ performance by leveraging external knowledge
sources and understanding how effectively the models could incorporate retrieved information into
their responses.

Our framework not only tested various LLMs but also assessed different retriever techniques,
providing comprehensive insights into the efficacy of each method (4.2.3). By comparing the
performance of different retrievers, we identified strengths and weaknesses, which informed our
understanding of the best practices for optimising LLM performance in diverse scenarios. This
multi-faceted evaluation approach ensures that our framework is robust, versatile, and applicable
to a wide range of LLMs and retrieval techniques, making it an excellent starting point for future
research in the field of LLM evaluations.

After extensive investigations, we determined that the most common failures in the RAG
pipeline were attributable to the retriever. The selection of retrievers is crucial for the success
of long-tail entity question answering (we recommend ADA2 based on experiments in Section
5.2.1. Additionally, our qualitative experiments revealed that lexically perturbing the entities
being searched for significantly reduces performance. Among models evaluated without RAG,
gpt-4-turbo-2024-04-09 demonstrated the best performance. For an optimal balance between
cost and accuracy, Mistral-7B-Instruct-v0.2 combined with ADA2 RAG provided adequate
performance while being considerably more cost-effective. These findings underscore the impor-
tance of careful retriever selection and highlight viable model options for various performance and
budgetary requirements.

6.0.1 Future Work
There are several avenues for future work stemming from this project. First, the perturbation
strategy used during tree creation could be refined to enhance its precision. This could involve
more targeted perturbations, such as selectively altering the relationship or entity, or implement-
ing multi-step paraphrasing techniques. Additionally, exploring different models for tree creation
would be valuable, though time and cost constraints limited this during our project. Abstractive
summarisation techniques could also be employed to improve prompt perturbation at each level,
resulting in more diverse and challenging prompts.

Certain implementation details could be optimised to reduce tree creation and evaluation time,
such as developing an extendable version of the tree that can be scaled down from larger configu-

59

rations. This would allow for more flexible and efficient evaluations.

In terms of evaluation, incorporating a more fine-grained evaluator could provide deeper in-
sights. Metrics such as BERTScore and windowed highest similarity scores could offer a more
nuanced understanding of model performance. Additionally, enhancing the evaluation function to
account for these detailed metrics would improve the robustness and accuracy of the assessment.

Moreover, a laboratory with higher tier limits and greater resources—both computational and
budgetary—could significantly extend the current TreeBank. This would enable the evaluation
of the entire dataset with varying tree complexities. An interesting extension of this work would
involve testing the framework’s robustness across different datasets, providing a broader validation
of its effectiveness and applicability.

Overall, these enhancements and expansions would not only refine the current framework but
also extend its utility and applicability, making it a more comprehensive tool for evaluating LLMs.

60

Bibliography

[1] Pranav Rajpurkar, Robin Jia, and Percy Liang. “Know What You Don’t Know: Unanswerable
Questions for SQuAD”. In: arXiv:1806.03822 (June 2018). arXiv:1806.03822 [cs]. doi: 10.
48550/arXiv.1806.03822. url: http://arxiv.org/abs/1806.03822.

[2] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations
by back-propagating errors”. en. In: Nature 323.6088 (Oct. 1986), pp. 533–536. issn: 0028-
0836, 1476-4687. doi: 10.1038/323533a0. url: https://www.nature.com/articles/
323533a0.

[3] Hao Li et al. “Visualizing the Loss Landscape of Neural Nets”. In: arXiv:1712.09913 (Nov.
2018). arXiv:1712.09913 [cs, stat]. doi: 10.48550/arXiv.1712.09913. url: http://arxiv.
org/abs/1712.09913.

[4] Vinay Williams et al. “Development of PPTNet a Neural Network for the Rapid Prototyping
of Pulsed Plasma Thrusters”. In: Sept. 2019.

[5] url: https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[6] Tomas Mikolov et al. “Recurrent neural network based language model”. In: vol. 2. Jan. 2010,
pp. 1045–1048.

[7] url: https://matplotlib.org/stable/plot_types/index.html.

[8] Rahuljha. LSTM Gradients. en. June 2020. url: https://towardsdatascience.com/lstm-
gradients-b3996e6a0296.

[9] Ashish Vaswani et al. “Attention Is All You Need”. In: arXiv:1706.03762 (Aug. 2023). arXiv:1706.03762
[cs]. doi: 10.48550/arXiv.1706.03762. url: http://arxiv.org/abs/1706.03762.

[10] url: https : / / www . d2l . ai / chapter _ attention - mechanisms - and - transformers /
transformer.html.

[11] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding”. In: arXiv:1810.04805 (May 2019). arXiv:1810.04805 [cs]. doi: 10.48550/
arXiv.1810.04805. url: http://arxiv.org/abs/1810.04805.

[12] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter”. In: arXiv:1910.01108 (Feb. 2020). arXiv:1910.01108 [cs]. doi: 10.48550/arXiv.
1910.01108. url: http://arxiv.org/abs/1910.01108.

[13] url: https://huggingface.co/blog/bert-101.

[14] url: https://huggingface.co/blog/bert-101.

[15] June 2021. url: https://huggingface.co/datasets/squad.

[16] Alec Radford et al. “Improving Language Understanding by Generative Pre-Training”. In:
(2018). url: https://cdn.openai.com/research- covers/language- unsupervised/
language_understanding_paper.pdf.

[17] Priya Shree. The Journey of Open AI GPT models. en. Nov. 2020. url: https://medium.
com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2.

[18] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: (2019).
url: https://cdn.openai.com/better- language- models/language_models_are_
unsupervised_multitask_learners.pdf.

[19] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv:2005.14165 (July
2020). arXiv:2005.14165 [cs]. doi: 10.48550/arXiv.2005.14165. url: http://arxiv.org/
abs/2005.14165.

61

https://doi.org/10.48550/arXiv.1806.03822
https://doi.org/10.48550/arXiv.1806.03822
http://arxiv.org/abs/1806.03822
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.48550/arXiv.1712.09913
http://arxiv.org/abs/1712.09913
http://arxiv.org/abs/1712.09913
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://matplotlib.org/stable/plot_types/index.html
https://towardsdatascience.com/lstm-gradients-b3996e6a0296
https://towardsdatascience.com/lstm-gradients-b3996e6a0296
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
https://www.d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html
https://www.d2l.ai/chapter_attention-mechanisms-and-transformers/transformer.html
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.48550/arXiv.1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.48550/arXiv.1910.01108
http://arxiv.org/abs/1910.01108
https://huggingface.co/blog/bert-101
https://huggingface.co/blog/bert-101
https://huggingface.co/datasets/squad
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165

[20] OpenAI et al. “GPT-4 Technical Report”. In: arXiv:2303.08774 (Dec. 2023). arXiv:2303.08774
[cs]. doi: 10.48550/arXiv.2303.08774. url: http://arxiv.org/abs/2303.08774.

[21] Albert Q. Jiang et al. “Mistral 7B”. In: arXiv:2310.06825 (Oct. 2023). arXiv:2310.06825 [cs].
doi: 10.48550/arXiv.2310.06825. url: http://arxiv.org/abs/2310.06825.

[22] url: https://ai.meta.com/blog/meta-llama-3/.

[23] Gemini Team et al. Gemini: A Family of Highly Capable Multimodal Models. en. Dec. 2023.
url: https://arxiv.org/abs/2312.11805v3.

[24] url: https://openai.com/index/hello-gpt-4o/.

[25] Zhuosheng Zhang et al. “Automatic Chain of Thought Prompting in Large Language Models”.
In: arXiv:2210.03493 (Oct. 2022). arXiv:2210.03493 [cs]. doi: 10.48550/arXiv.2210.03493.
url: http://arxiv.org/abs/2210.03493.

[26] Shunyu Yao et al. “Tree of Thoughts: Deliberate Problem Solving with Large Language
Models”. In: arXiv:2305.10601 (Dec. 2023). arXiv:2305.10601 [cs]. doi: 10.48550/arXiv.
2305.10601. url: http://arxiv.org/abs/2305.10601.

[27] Rahul Singh et al. “Model Robustness with Text Classification: Semantic-preserving adver-
sarial attacks”. In: arXiv:2008.05536 (Aug. 2020). arXiv:2008.05536 [cs]. doi: 10.48550/
arXiv.2008.05536. url: http://arxiv.org/abs/2008.05536.

[28] John X. Morris et al. “TextAttack: A Framework for Adversarial Attacks, Data Augmenta-
tion, and Adversarial Training in NLP”. In: arXiv:2005.05909 (Oct. 2020). arXiv:2005.05909
[cs]. doi: 10.48550/arXiv.2005.05909. url: http://arxiv.org/abs/2005.05909.

[29] Sebastian Gehrmann et al. “The GEM Benchmark: Natural Language Generation, its Evalu-
ation and Metrics”. In: arXiv:2102.01672 (Apr. 2021). arXiv:2102.01672 [cs]. doi: 10.48550/
arXiv.2102.01672. url: http://arxiv.org/abs/2102.01672.

[30] Milad Moradi and Matthias Samwald. “Evaluating the Robustness of Neural Language Mod-
els to Input Perturbations”. In: arXiv:2108.12237 (Aug. 2021). arXiv:2108.12237 [cs]. doi:
10.48550/arXiv.2108.12237. url: http://arxiv.org/abs/2108.12237.

[31] Jason Wei and Kai Zou. “EDA: Easy Data Augmentation Techniques for Boosting Perfor-
mance on Text Classification Tasks”. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui et al. Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 6382–6388. doi: 10.18653/v1/
D19-1670. url: https://aclanthology.org/D19-1670.

[32] Steffen Eger et al. “Text Processing Like Humans Do: Visually Attacking and Shielding NLP
Systems”. In: Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Ed. by Jill Burstein, Christy Doran, and Thamar Solorio. Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019, pp. 1634–1647. doi: 10.
18653/v1/N19-1165. url: https://aclanthology.org/N19-1165.

[33] Meng Lu. “FastAttacker: Semantic Perturbation Functions via Three Classifications”. en. In:
Journal of Information Security 14.2 (Feb. 2023), pp. 181–194. doi: 10.4236/jis.2023.
142011. url: https://www.scirp.org/journal/paperinformation.aspx?paperid=
124640.

[34] Alex Mallen et al. “When Not to Trust Language Models: Investigating Effectiveness of Para-
metric and Non-Parametric Memories”. In: arXiv:2212.10511 (July 2023). arXiv:2212.10511
[cs]. doi: 10.48550/arXiv.2212.10511. url: http://arxiv.org/abs/2212.10511.

[35] Patrick Lewis et al. “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”.
In: arXiv:2005.11401 (Apr. 2021). arXiv:2005.11401 [cs]. doi: 10.48550/arXiv.2005.11401.
url: http://arxiv.org/abs/2005.11401.

[36] Stephen Robertson and Hugo Zaragoza. “The Probabilistic Relevance Framework: BM25 and
Beyond”. In: Foundations and Trends in Information Retrieval 3 (Jan. 2009), pp. 333–389.
doi: 10.1561/1500000019.

[37] en. url: https://spacy.io/models.

[38] en. url: https://www.anthropic.com/news/claude-3-family.

62

https://doi.org/10.48550/arXiv.2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2310.06825
http://arxiv.org/abs/2310.06825
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2312.11805v3
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.48550/arXiv.2210.03493
http://arxiv.org/abs/2210.03493
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
http://arxiv.org/abs/2305.10601
https://doi.org/10.48550/arXiv.2008.05536
https://doi.org/10.48550/arXiv.2008.05536
http://arxiv.org/abs/2008.05536
https://doi.org/10.48550/arXiv.2005.05909
http://arxiv.org/abs/2005.05909
https://doi.org/10.48550/arXiv.2102.01672
https://doi.org/10.48550/arXiv.2102.01672
http://arxiv.org/abs/2102.01672
https://doi.org/10.48550/arXiv.2108.12237
http://arxiv.org/abs/2108.12237
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://aclanthology.org/D19-1670
https://doi.org/10.18653/v1/N19-1165
https://doi.org/10.18653/v1/N19-1165
https://aclanthology.org/N19-1165
https://doi.org/10.4236/jis.2023.142011
https://doi.org/10.4236/jis.2023.142011
https://www.scirp.org/journal/paperinformation.aspx?paperid=124640
https://www.scirp.org/journal/paperinformation.aspx?paperid=124640
https://doi.org/10.48550/arXiv.2212.10511
http://arxiv.org/abs/2212.10511
https://doi.org/10.48550/arXiv.2005.11401
http://arxiv.org/abs/2005.11401
https://doi.org/10.1561/1500000019
https://spacy.io/models
https://www.anthropic.com/news/claude-3-family

[39] Dan Hendrycks et al. “Measuring Massive Multitask Language Understanding”. In: arXiv:2009.03300
(Jan. 2021). arXiv:2009.03300 [cs]. doi: 10.48550/arXiv.2009.03300. url: http://arxiv.
org/abs/2009.03300.

[40] en. url: https://paperswithcode.com/sota/multi-task-language-understanding-
on-mmlu.

[41] Alex Wang et al. “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding”. In: arXiv:1804.07461 (Feb. 2019). arXiv:1804.07461 [cs]. doi: 10.
48550/arXiv.1804.07461. url: http://arxiv.org/abs/1804.07461.

[42] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. “Neural Network Acceptability
Judgments”. In: arXiv:1805.12471 (Oct. 2019). arXiv:1805.12471 [cs]. doi: 10.48550/arXiv.
1805.12471. url: http://arxiv.org/abs/1805.12471.

[43] Richard Socher et al. “Recursive Deep Models for Semantic Compositionality Over a Sen-
timent Treebank”. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing. Ed. by David Yarowsky et al. Seattle, Washington, USA: Association
for Computational Linguistics, Oct. 2013, pp. 1631–1642. url: https://aclanthology.
org/D13-1170.

[44] Adina Williams, Nikita Nangia, and Samuel R. Bowman. “A Broad-Coverage Challenge
Corpus for Sentence Understanding through Inference”. In: arXiv:1704.05426 (Feb. 2018).
arXiv:1704.05426 [cs]. doi: 10.48550/arXiv.1704.05426. url: http://arxiv.org/abs/
1704.05426.

[45] Alex Wang et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language Under-
standing Systems. en. May 2019. url: https://arxiv.org/abs/1905.00537v3.

[46] Yann Dubois et al. “Length-Controlled AlpacaEval: A Simple Way to Debias Automatic
Evaluators”. In: arXiv:2404.04475 (Apr. 2024). arXiv:2404.04475 [cs, stat]. doi: 10.48550/
arXiv.2404.04475. url: http://arxiv.org/abs/2404.04475.

[47] Xiang Li, Yunshi Lan, and Chao Yang. “TreeEval: Benchmark-Free Evaluation of Large Lan-
guage Models through Tree Planning”. In: arXiv:2402.13125 (Feb. 2024). arXiv:2402.13125
[cs]. doi: 10.48550/arXiv.2402.13125. url: http://arxiv.org/abs/2402.13125.

[48] Vinu Sankar Sadasivan et al. “Fast Adversarial Attacks on Language Models In One GPU
Minute”. In: arXiv:2402.15570 (Feb. 2024). arXiv:2402.15570 [cs]. doi: 10.48550/arXiv.
2402.15570. url: http://arxiv.org/abs/2402.15570.

[49] Xiang Gao et al. “SPUQ: Perturbation-Based Uncertainty Quantification for Large Language
Models”. In: arXiv:2403.02509 (Mar. 2024). arXiv:2403.02509 [cs]. doi: 10.48550/arXiv.
2403.02509. url: http://arxiv.org/abs/2403.02509.

[50] url: https://huggingface.co/docs/api-inference/en/index.

[51] url: https://huggingface.co/datasets/rajpurkar/squad_v2/viewer.

[52] url: https://pandas.pydata.org/docs/.

[53] url: https://platform.openai.com/docs/guides/embeddings.

[54] Yihe Deng et al. “Rephrase and Respond: Let Large Language Models Ask Better Questions
for Themselves”. In: arXiv:2311.04205 (Apr. 2024). arXiv:2311.04205 [cs]. doi: 10.48550/
arXiv.2311.04205. url: http://arxiv.org/abs/2311.04205.

[55] url: https://github.com/alexyorke/butter-fingers.

[56] Jared Kaplan et al. “Scaling Laws for Neural Language Models”. In: arXiv:2001.08361 (Jan.
2020). arXiv:2001.08361 [cs, stat]. doi: 10.48550/arXiv.2001.08361. url: http://arxiv.
org/abs/2001.08361.

[57] en. url: https://scikit- learn.org/stable/modules/generated/sklearn.model_
selection.train_test_split.html.

[58] Google LLC. rouge-score: Pure python implementation of ROUGE-1.5.5. Python. url: https:
//github.com/google-research/google-research/tree/master/rouge.

[59] Jonathan Goldsmith. wikipedia: Wikipedia API for Python. Python. url: https://github.
com/goldsmith/Wikipedia.

[60] url: https://wikipedia.readthedocs.io/en/latest/.

63

https://doi.org/10.48550/arXiv.2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://doi.org/10.48550/arXiv.1804.07461
https://doi.org/10.48550/arXiv.1804.07461
http://arxiv.org/abs/1804.07461
https://doi.org/10.48550/arXiv.1805.12471
https://doi.org/10.48550/arXiv.1805.12471
http://arxiv.org/abs/1805.12471
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.48550/arXiv.1704.05426
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1905.00537v3
https://doi.org/10.48550/arXiv.2404.04475
https://doi.org/10.48550/arXiv.2404.04475
http://arxiv.org/abs/2404.04475
https://doi.org/10.48550/arXiv.2402.13125
http://arxiv.org/abs/2402.13125
https://doi.org/10.48550/arXiv.2402.15570
https://doi.org/10.48550/arXiv.2402.15570
http://arxiv.org/abs/2402.15570
https://doi.org/10.48550/arXiv.2403.02509
https://doi.org/10.48550/arXiv.2403.02509
http://arxiv.org/abs/2403.02509
https://huggingface.co/docs/api-inference/en/index
https://huggingface.co/datasets/rajpurkar/squad_v2/viewer
https://pandas.pydata.org/docs/
https://platform.openai.com/docs/guides/embeddings
https://doi.org/10.48550/arXiv.2311.04205
https://doi.org/10.48550/arXiv.2311.04205
http://arxiv.org/abs/2311.04205
https://github.com/alexyorke/butter-fingers
https://doi.org/10.48550/arXiv.2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
https://github.com/goldsmith/Wikipedia
https://github.com/goldsmith/Wikipedia
https://wikipedia.readthedocs.io/en/latest/

[61] Shuhe Wang et al. “GPT-NER: Named Entity Recognition via Large Language Models”. In:
arXiv:2304.10428 (Oct. 2023). arXiv:2304.10428 [cs]. doi: 10.48550/arXiv.2304.10428.
url: http://arxiv.org/abs/2304.10428.

[62] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: arXiv:2005.14165 (July
2020). arXiv:2005.14165 [cs]. doi: 10.48550/arXiv.2005.14165. url: http://arxiv.org/
abs/2005.14165.

[63] en. url: https://python.langchain.com/v0.1/docs/modules/data_connection/
retrievers/.

[64] url: https://huggingface.co/transformers/v3.0.2/model_doc/auto.html.

[65] url: https://huggingface.co/docs/transformers/en/index.

[66] url: https://huggingface.co/facebook/contriever.

[67] url: https : / / api . python . langchain . com / en / latest / retrievers / langchain _
community.retrievers.bm25.BM25Retriever.html.

[68] en. url: https://platform.openai.com/docs/guides/rate- limits/usage- tiers?
context=tier-one.

[69] en. url: https://docs.together.ai/docs/rate-limits.

64

https://doi.org/10.48550/arXiv.2304.10428
http://arxiv.org/abs/2304.10428
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://python.langchain.com/v0.1/docs/modules/data_connection/retrievers/
https://python.langchain.com/v0.1/docs/modules/data_connection/retrievers/
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/facebook/contriever
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html
https://api.python.langchain.com/en/latest/retrievers/langchain_community.retrievers.bm25.BM25Retriever.html
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one
https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one
https://docs.together.ai/docs/rate-limits

Appendix A

A.1 Retriever Implementations

A.1.1 BM25 Implementation
Creating Documents and retriever:

retriever = BM25Retriever.from_documents(
[

Document(page_content=json.dumps(data))
for data in wiki_data

]
)

Retrieval Function:

def retrieve_bm25(retriever, prompt: str):
return retriever.invoke(prompt)

A.1.2 Contriever Implementation
Creating Documents and retriever:
This implementation is taken from the recommended implementation from HuggingFace, padding
and truncation are set to True since the documents are not of equal size. The mean pooling is
an implementation detail from HuggingFace’s implementation.

def mean_pooling(token_embeddings, mask):
token_embeddings = token_embeddings.masked_fill(

~mask[..., None].bool(), 0.0
)
sentence_embeddings = (

token_embeddings.sum(dim=1) / mask.sum(dim=1)[..., None]
)
return sentence_embeddings

inputs = tokenizer(
[wiki_data],
padding=True,
truncation=True,
return_tensors="pt",

)

embeddings = model(**inputs)
return mean_pooling(embeddings[0], inputs["attention_mask"])

Retrieval Function:

65

def find_closest_contriever_match(wiki_data: List[Dict], prompt: str):
if not wiki_data:

return None
prompt_embedding = contriever_retriever(prompt)
closest_match = None
max_similarity = 0
contriever_db = create_contriever_db(wiki_data)
for i in range(len(contriever_db)):

if contriever_db[i][1] is None:
similarity_score = 0

else:
similarity_score = prompt_embedding @ contriever_db[i][1].T

if similarity_score > max_similarity:
max_similarity = similarity_score
closest_match = contriever_db[i][2]

return closest_match

A.1.3 ADA2 Implementation
Creating Documents and retriever:

texts = [data["summary"] for data in wiki_data]
res = []
for text in texts:

res.append(embedder.encode(text))

Retrieval Function:
The retrieval function has been omitted since it is functionally the same as the retrieval function
for Contriever.

66

	Introduction
	Motivation
	Contributions
	Report Outline

	Background
	Deep Learning
	Neuron
	Feedforward Networks or Multi-Layer Perceptrons
	Training

	Recurrent Neural Networks
	Generating Probability Distribution using RNNs

	Long Short-Term Memory (LSTM)
	LSTM Architecture

	Transformers
	Attention
	Encoder
	Benefits of Self Attention
	Decoder

	Pre-Trained Large Language Models (LLMs)
	Bidirectional Encoder Representations Transformers (BERT)
	Training Data
	Masked Language Model
	Next Sentence Prediction
	BERT Architecture
	Architecture Comparison

	Generative Pre-Trained Transformer (GPT) Series
	Architecture and Evolution

	Models as APIs
	OpenAI
	Together AI

	Prompting and Testing
	Prompting in LLMs
	Chain-of-Thought (CoT)
	Tree-of-Thought

	Prompt Perturbation
	Traditional NLP Perturbation Techniques
	butter_fingers GehrmannAdewumiAggarwalAmmanamanchiAnuoluwapoBosselutChanduClinciuDasDhole
	shuffle_words MoradiSamwald2021
	random_upper_transformation wei-zou-2019-eda
	visual_attack eger-etal-2019-text
	BERT-Based Paraphrasing Perturbation Function

	Datasets
	SQuAD2.0RajpurkarJiaLiang2018
	PopQAMallenAsaiZhongDasKhashabiHajishirzi2023

	Retrieval Augmented Generation
	Retriever
	Vector-Based Retriever
	Keyword-Based Retriever (BM25) bm25

	Named-Entity Recognition

	Existing Benchmarks
	Massive Multitask Language Understanding (MMLU)
	General Language Understanding Evaluation (GLUE) WangSinghMichaelHillLevyBowman2019
	AlpacaEval 2.0 DuboisGalambosiLiangHashimoto2024

	Related Work
	Tree-based LLM Evaluation Frameworks
	TreeEval LiLanYang2024
	BEAST SadasivanSahaSriramananKattakindaCheginiFeizi2024

	Perturbation-based LLM Robustness Testing
	SPUQ GaoZhangMouatadidDas2024
	FastAttacker Lu2023

	Methodologies
	Initial Implementation
	Tree Creation (for SQuAD2.0)
	Subset of Dataset
	Tree Invariant Design
	Creating Paraphrased Children
	Creating Lexical Children

	LexEval Metric Function
	Problems with Initial Approach
	Tree Creation Time and Cost
	Initial LexEval Results
	Prompt Diversity in Tree
	Problems with Combining Thresholding with LexEval Metric Function

	Adapting to POPQA
	POPQA Subset
	Code Changes
	Tree Architecture and make_tree
	Thresholding and Invariant
	LexEval Metric Function
	Prompting Function

	RAG Setup
	Wikipedia API Setup (knowledge-base)
	Named Entity Recognition
	Traditional NER vs LLM NER
	NER in LexEval RAG pipeline
	Problem with Adaptive Retrieval

	Retrievers
	Generator
	Amending make_tree
	Adapting LexEval Eval Function for RAG
	Adding F1-Score
	Adding BLEU and ROUGE

	Batching Calls in the Evaluation Function

	Results and Findings
	Tree Variations
	Tree Complexity
	Qualitative Analysis

	Prompt Diversity
	Qualitative Analysis

	Cost Effectiveness
	Creation
	Evaluation

	RAG Evaluations
	RAG Retriever Evaluation
	RAG Generator Evaluation
	Discussion on the quality of responses
	Weakest Link in RAG Pipeline
	Example from <3,3,2>

	Conclusions and Future Work
	Future Work

	
	Retriever Implementations
	BM25 Implementation
	Contriever Implementation
	ADA2 Implementation

