
MEng Individual Project

Department of Computing

Imperial College of Science, Technology and Medicine

Local Rewriting in Dependent Type Theory

Author:
Nathaniel Burke

Supervisor:
Dr. Steffen van Bakel

Second Marker:
Dr. Herbert Wiklicky

June 13, 2025

Submitted in partial fulfillment of the requirements for the MEng Computing of Imperial College London

Abstract

Type theory provides a foundation for mechanised mathematics and cutting-edge programming languages. Unfortunately,
to avoid ambiguity and retain decidable typechecking, many computer implementations support only a primitive notion
of equality, forcing tedious manual work onto the user. For example, users of proof assistants often resort to doing
equational reasoning “by hand”, not only specifying which equational lemmas a result relies on, but also exactly how
and where to apply them.

With the aim of resolving this tedium, this report studies type theories with a built-in notion of local equational
assumptions. When designing these, a balance must be struck between automation, predictability and decidability.
Ultimately, we strike such a balance, proving normalisation, and consequently, decidability of typechecking for a
language that we name SCDef. We argue this language could serve as a basis for future proof assistant development.

Acknowledgements

I would like to thank:

▶ Steffen van Bakel, for agreeing to supervise this project, and trying his best to warn me about leaving the
report-writing until the last minute.

▶ David Davies, for giving useful writing advice and super detailed feedback on drafts of this report.
▶ Thorsten Altenkirch and Philip Wadler, for giving me a huge confidence boost by inviting me to collaborate on

“Substitution Without Copy and Paste” after I answered just a couple questions on the Agda Zulip.
▶ Honestly, pretty-much the whole type theory community, for being so open to sharing work in progress and

answering questions across Zulip, Discord, Mastodon, StackExchange, mailing lists etc. A few people helped
answer questions directly relevant to this project, including Guillaume Allais, who taught me the “don’t mash
the potato” principle; Reed Mullanix, who suggested I look into extension types and Raphaël Bocquet, who
resolved my confusions with stabilised neutrals. I also want to shout-out András Kovács, Conor McBride and
Amélia Liao for producing some phenomenal learning resources. I should also thank Anja Petković Komel, Loïc
Pujet and Théo Winterhalter for inspiring me to copy their use of the kaobook LaTeX template!

▶ My friends, for somehow putting up with my incessant rambling about dependent types for the past few years. I
think Daniel, Iurii, Jacob, Jyry, Sophia and Robin probably faced the brunt of it. I also want to especially thank
Alona; our late-night conversations about PL design during 2nd and 3rd year are a huge part of why I fell in love
with this field.

▶ My family, for not only having to also put up with my type theory obsession, but also immediately supporting
my pivot in future plans towards academia. Those plans are admittedly looking a little shaky right now, but I
extremely grateful that I can count on your encouragement regardless.

Contents

Contents iii

1 Introduction 1

2 Background 3

2.1 Agda-as-a-Metatheory . 3
2.2 Simply Typed Lambda Calculus . 10

2.2.1 Syntax . 10
2.2.2 Substitution and Renaming . 11
2.2.3 Soundness . 13
2.2.4 Reduction and Conversion . 16
2.2.5 Explicit Substitutions . 18

2.3 Dependently Typed Lambda Calculus . 21
2.3.1 Syntax . 21
2.3.2 Soundness . 25
2.3.3 From Quotients to Setoids . 26
2.3.4 Strictification . 27

2.4 Normalisation by Evaluation . 30
2.4.1 Naive Normalisation . 30
2.4.2 The Presheaf Model . 33
2.4.3 NbE for Dependent Types . 37

3 Related Work 43

3.1 Dependent Pattern Matching . 43
3.1.1 Indexed Pattern Matching . 43
3.1.2 With Abstraction . 45

3.2 Local Equational Assumptions . 47
3.2.1 Local Equality Reflection . 49
3.2.2 Existing Systems with Local Equations . 50

3.3 Global Equational Assumptions . 51
3.4 Elaboration . 51
3.5 Strict 𝜂 for Coproducts . 52
3.6 Extension Types . 54

4 STLC Modulo Equations 56

4.1 STLC with Boolean Equations . 56
4.1.1 Difficulties with Reduction . 58

4.2 Normalisation via Completion . 60
4.3 Strong Normalisation of Spontaneous Reduction . 63

4.3.1 An Untyped Reduction Proof . 63
4.3.2 Strong Normalisation of Non-Deterministic Reduction . 66

4.4 Locally Introducing Equations . 71

5 A Minimal Language with Smart Case 73

5.1 Syntax . 73
5.2 Soundness . 76
5.3 Normalisation Challenges . 77

5.3.1 Type Theory Modulo (Boolean) Equations . 78
5.3.2 Beyond Booleans . 79

5.4 Typechecking Smart Case . 82

6 Elaborating Smart Case 85

6.1 A New Core Language . 85
6.1.1 Syntax . 86
6.1.2 Soundness . 90

6.2 Normalisation . 92
6.2.1 Conversion and Coherence . 92
6.2.2 Normal and Neutral Forms . 93

6.2.3 Sound and Complete TRSs . 94
6.2.4 Normalisation by Evaluation . 95

6.3 Elaboration . 99
6.3.1 Syntactic Restrictions for Generating TRSs . 99
6.3.2 Elaborating Case Splits . 100

7 Evaluation and Future Work 103

8 Declarations 105

Bibliography 106

Introduction 1

Dependent type theory provides a foundation for mechanised mathematics and cutting-
edge programming languages, in which the proof writer/programmer can say what they
mean with such precision that their claims (“this theorem follows from these lemmas”,
or “this array access will never be out of bounds”) can be unambiguously checked by a
computer implementation.

A significant boon of type-theory-based proof assistants is their generality, being capable
of scaling to modern mathematics [1, 2], and metamathematics, including the study [1]: Escardó et al. (2025), TypeTopology

[2]: Buzzard et al. (2025), FLTof new type theories [3, 4]. However, this generality comes with a curse: using proof
[3]: Pujet et al. (2022), Observational equal-
ity: now for good
[4]: Abel et al. (2023), A Graded Modal De-
pendent Type Theory with a Universe and
Erasure, Formalized

assistants often entails a significant amount of tedium and boilerplate [5].

[5]: Shi et al. (2025), QED in Context: An
Observation Study of Proof Assistant Users

One significant pain-point in proof assistants is having to do equational reasoning man-
ually1 . With a rich literature of techniques designed to automatically decide equational

1: This gets especially egregious when
proving properties of functions which
themselves rely on manual equational
reasoning. In such situations (often
referred to as “transport hell”), we
must employ coherence lemmas to deal
with seemingly entirely bureaucratic
details, unrelated to the underlying
function we actually care about e.g.
showing that coercions (or transports)
can be pushed under function applica-
tions [6, 7].

[6]: Saffrich et al. (2024), Intrinsically Typed
Syntax, a Logical Relation, and the Scourge
of the Transfer Lemma
[7]: Kaposi et al. (2025), Type Theory in Type
Theory Using a Strictified Syntax

theories (the word problem), including term rewriting [8], and E-Graphs [9, 10], it is

[8]: Baader et al. (1998), Term Rewriting and
All That
[9]: Nelson (1980), Techniques for program
verification
[10]: Willsey et al. (2021), egg: Fast and ex-
tensible equality saturation

perhaps surprising that the capabilities of many proof assistants are quite limited in
this area. For example, Agda and Rocq only have only recently gained global rewrite
rules [11, 12]. One possible underlying reason for this state of affairs is that modern

[11]: Cockx (2019), Type Theory Unchained:
Extending Agda with User-Defined Rewrite
Rules
[12]: Leray et al. (2024), The Rewster: Type
Preserving Rewrite Rules for the Coq Proof
Assistant

proof assistants based specifically on intensional type theory (ITT) rely on the built-in
(definitional) equality obeying some quite strong properties, including decidability (so it
can actually be automated), transitivity and congruence. Extending definitional equality
without losing any of these properties is challenging.

For an example of where equational reasoning “by hand” gets tedious, consider the
below proof by cases that for any Boolean function, f : B → B, f tt = f (f (f tt)) (we
can of course also prove f ff = f (f (f ff)), by an analagous argument).

This example is originally from the
Agda mailing list [13].

[13]: Altenkirch (2009), Smart Case [Re:
[Agda] A puzzle with "with"]

B-split : 𝚷 b → (b = tt → A) → (b = ff → A) → A

f3 : 𝚷 (f : B → B) → f tt = f (f (f tt))
f3 f

:≡ B-split (f tt)
-- f tt = tt
(𝝀 p → f tt

= by cong f (sym p)
f (f tt)
= by cong (𝝀 □ → f (f □)) (sym p)

f (f (f tt)) ■)
-- f tt = ff
(𝝀 p → B-split (f ff)

-- f ff = tt
(𝝀 q → f tt

= by cong f (sym q)
f (f ff)
= by cong (𝝀 □ → f (f □)) (sym p)

f (f (f tt)) ■)

2

We could shorten the Agda proof
here by “code golfing”. For example,
we could swap the readable (but ver-
bose) equational reasoning combina-
tors provided by the Agda standard li-
brary [14], for direct appeals to tran-
sitivity of equality (_•_). Specifically,
this final case could be written as
p • sym (cong f (cong f p • q) • q) -
still pretty convoluted!

[14]: Various Contributors (2024), Rela-
tion.Binary.EqReasoning

-- f ff = ff
(𝝀 q → f tt

= by p
ff
= by sym q

f ff
= by cong f (sym q)

f (f ff)
= by cong (𝝀 □ → f (f □)) (sym p)

f (f (f tt)) ■))

In the proof-of-concept dependent typechecker written during this project, the same
theorem can be proved successfully with just the following proof term.

\f. sif (f tt) then Rfl else (sif (f ff) then Rfl else Rfl)

Note that along with being much shorter, the proof is also conceptually simpler. We
merely split on the result of f tt and f ff, and the rest is automated.

This example highlights a strong connection between local equational assumptions and
pattern matching2: every branch of a case split gives rise to an equation between the

2: Which we will analyse in more detail
in Remark 3.2.2

“scrutinee” (the thing being split on) and the “pattern”, which the programmer might
wish to take advantage of. Connecting these two ideas is not novel - Altenkirch et al.
first investigated such a construct during the development of ΠΣ [15, 16], naming it

[15]: Altenkirch et al. (2008), ΠΣ: A Core
Language for Dependently Typed Program-
ming
[16]: Altenkirch et al. (2010), PiSigma: De-
pendent Types without the Sugar

smart case [17]. However, this work was never published, ΠΣ eventually moved away

[17]: Altenkirch (2011), The case of the smart
case

from smart case, and both completeness and decidability (among other metatheoretical
properties) remain open.

This project then, can be seen as an attempt at continuing this work. At risk of spoiling
the conclusion early: our final type theory, SCDef, will actually move away from truly
local equations, showing that we can recover most of the expressivity of smart case while
only introducing new equations at the level of definitions, and most of the convenience via
elaboration. We argue that SCDef has potential to serve as a basis for an implementation
of smart case in e.g. Agda.

On the path towards this conclusion though, we will first investigate the problem of deciding equivalence of simply-typed lambda
calculus (STLC) terms modulo equations, and also spend time studying a minimal dependent type theory featuring “full” smart
case for Booleans, named SCBool. Concretely, our contributions include:

▶ A proof of decidability of STLC modulo 𝛽-conversion, plus a set of Boolean equations (specifically, equations between 𝔹-typed
terms and closed Booleans tt/ff): Section 4.1.

▶ A specification of a minimal dependently-typed language with smart case named SCBool, including an appropriately-
generalised notion of substitution to account for contexts containing equational assumptions: Section 5.1.

▶ Soundness of SCBool, by constructing a model in Agda: Section 5.2.
▶ A typechecking algorithm for SCBool, including a proof-of-concept implementation written in Haskell: Section 5.4.
▶ A specification of an alternative dependently-typed language supporting equational assumptions, but this time at the level of

global definitions, SCDef, along with another soundness proof: Section 6.1.
▶ Decidability of conversion for SCDef, leveraging the technique of normalisation by evaluation (NbE): Section 6.2.
▶ An elaboration algorithm from a surface language with smart case to SCDef (compared to “native” smart case, we lose only

congruence of conversion over case splits): Section 6.3.

The formal results of this project are mostly mechanised in Agda. Some holes (corresponding to boring congruence cases) remain in
the soundness proofs, and the NbE proofs skip over some bureaucratic details pertaining to e.g. naturality of substitution.

Background 2

2.1 Agda-as-a-Metatheory . . . 3

2.2 Simply Typed Lambda

Calculus 10

2.2.1 Syntax 10
2.2.2 Substitution and Renaming . 11
2.2.3 Soundness 13
2.2.4 Reduction and Conversion . 16
2.2.5 Explicit Substitutions 18

2.3 Dependently Typed

Lambda Calculus 21

2.3.1 Syntax 21
2.3.2 Soundness 25
2.3.3 From Quotients to Setoids . . 26
2.3.4 Strictification 27

2.4 Normalisation by Evalua-

tion 30

2.4.1 Naive Normalisation 30
2.4.2 The Presheaf Model 33
2.4.3 NbE for Dependent Types . . 37

2.1 Agda-as-a-Metatheory

In this report, the ambient metatheory in which we will define languages and write
proofs will itself be a type theory (Agda [18, 19]

[18]: Norell (2007), Towards a practical pro-
gramming language based on dependent
type theory
[19]: Agda Team (2024), Agda

, specifically).

This poses a bit of a conundrum for the task of providing background: to formally
introduce type theory, we must first formally introduce type theory. We shall take the
compromise of first informally explaining the syntax/semantics of our metatheory (not
too dissimilarly to how one might work in an “intuitive” set theory without being given
the ZFC axioms), and then look at how to model type theories mathematically.

Readers already familiar with (dependent) type theory and Agda syntax1

1: For the benefit of readers who are
Agda-proficient, we also note that this
entire report is written in literate Agda,
though we take some liberties with
the typesetting to appear closer to on-
paper presentations, writing ∀s as 𝚷s
and swapping the equality symbols
= and _≡_ to align with their con-
ventional meanings in on-paper type
theory

may wish to
skip ahead to .

When working inside a particular type theory, we directly write both terms (typically
denoted with the letters t, u and v) and types (denoted with the letters A, B, C, etc.).
Under the Curry-Howard correspondence [20]

[20]: Howard (1980), The Formulae-as-Types
Notion of Construction

, type theories can be seen to semantically
represent logics or programming languages with terms as programs or proofs, and types
as specifications or theorems. Because of type theory’s ability to act as a logic, we must
carefully distinguish between internal and external judgements: internal judgements are
objects of the type theory itself, arising from regarding terms as proofs, while external
judgements are those made in a metatheory (one level up) about objects of the type
theory. One example of an “external” judgement is typing: every term, t, is associated
with a single type, A2

2: It is of course possible to write
down a string of symbols that appears
syntactically-similar to a term, but is
not type-correct. We do not consider
such strings to be valid terms.

, called the type of t. We denote this relationship between types
and terms with the “:” operator, so “|t| has type |A|” is written t : A.

Variables and Binding

Central to intuitive notation for type theory are the notions of variables and binding.
Effectively, variables provide a way to name “placeholders” which stand for possible
terms (we call the name of a variable its identifier). Terms embed variables, but a
particular variable can only be used after it has been bound, which involves declaring
its type (syntactically, we reuse the “:” operator for denoting the types of variables at
their binding-sites, so e.g. x : A denotes that the variable x is bound with type A).

Variables in type theory closely mirror their functionality in other programming lan-
guages. From a logic perspective, we can view variables as a way of labelling assump-
tions.

Keeping track of which variables are in-scope (having been bound earlier) and their types
is the context: a list of variable identifiers paired with their types. Contexts are extended
via binding, but can also be more generally mapped between using substitutions: maps
from the variables of one context to terms inside another.

When writing programs/proofs internally to a type theory, we usually do not write
contexts or substitutions directly but, when giving examples, it will sometimes be useful
to have some notation for these concepts. We denote contexts with the letters Γ, Δ, Θ
and write them as (comma-separated) lists of bindings x : A , y : B , z : C , We
denote substitutions with the letters 𝛿 , 𝜎 , 𝛾 and write them as lists of “/”-separated terms
and variables, e.g. “t / x , u / y” denotes a substitution where x is mapped to t and
y is mapped to u. Substitutions can applied to types or terms, replacing all embedded
variables with their respective substitutes. We denote the action of substitution postfix,

4

with the substitution itself enclosed in “[]”s, i.e. t [u / x] denotes the result of
replacing all xs in t with u.

Functions

Aside from variables, terms and types are made up of so-called term and type formers3.
3: Sometimes, in other work, these are
also collectively called constructors. We
reserve the term constructor only for
introduction rules associated with in-
ductive datatypes.

Arguably, the most important type former is the Π-type. 𝚷 (x : A) → B, where x : A
is bound inside B. Semantically, 𝚷 (x : A) → B represents functions or implications
from A to B.

Term formers can be divided into introduction and elimination rules which express how
to construct and use terms of that type, respectively. Functions are introduced with
𝜆-abstraction: 𝝀 (x : A) → t : 𝚷 (x : A) → B given t : B, and eliminated with
application, denoted by juxtaposition t u : B [u / x]4 given t : 𝚷 (x : A) → B and

4: Recall that B [u / x] denotes the
result of substituting x for u in B.

u : A. Intuitively, abstraction (𝝀 (x : A) → t) corresponds to binding the parameters
of a function (here, just x), and application (t u) to applying a given function (t) to an
argument (u).

For clarity and convenience, programs/proofs in our metatheory (Agda) can be broken up
into definitions: typed identifiers which stand for specific terms (subprograms/lemmas),
allowing their reuse. Syntactically, we declare definitions to have particular types with
“:” and “implement” them with “:≡”. For example, assuming the existence of a base5 type

5: That is, not parameterised by other
types.

former standing for natural numbers “ℕ”, we can write the identity function on ℕ, named
idℕ as:

Note that while the x-variable in the
type and body of idℕ do semantically
refer to the same ℕ-typed parameter,
they can be given different identifiers.
The 𝚷 binds x in the codomain of the
function type, and the 𝝀 separately
binds x in the body of the abstraction.
We consider types/terms modulo re-
naming of variables to be identical -
𝛼-equivalence.

idℕ : 𝚷 (x : ℕ) → ℕ

idℕ :≡ 𝝀 (x : ℕ) → x

Definitions are similar to variables, but they always stand for a single concrete term (i.e.
substitutions cannot substitute them for other terms). When implementing definitions
of function type, we can equivalently bind variables on the LHS of the :≡, such as

idℕ′ : 𝚷 (x : ℕ) → ℕ

idℕ′ x :≡ x

which evokes the usual syntax for defining functions in mathematics and programming,
f (x) = x (just with the parenthesis optional and using a different equality symbol to
convey directness).

Mixfix Notation Some functions, such as addition of natural numbers (+) are more
intuitively written infix between the two arguments (+ x y vs x + y). Agda supports
using such notational conventions by naming definitions with underscores (“_”) to stand
for the locations of arguments. For example we can declare addition of natural numbers
with _ + _ : ℕ → ℕ → ℕ, and afterwards use it infix (x + y : ℕ when x : ℕ and
y : ℕ), prefix (_ + _ x y) or even partially apply it to just the LHS or RHS ((x +_) y or
(_+ y) x).

Types can be quite descriptive, and so it is often the case that types and terms alike are
unambiguously specified by the surrounding context (inferable). Taking advantage of
this, we make use of a lot of syntactic sugar. We write _ to stand for a term or type that
is inferable. e.g. assuming existence of type formers ℕ and Vec n where ℕ denotes the
type of natural numbers, and Vec n the type of vectors of length n (where n a term of
type ℕ), we can write:

Of course, overusing _s can get con-
fusing. They are mostly useful in sit-
uations where we are working with
relations or predicates, and the details
with how the underlying objects are
manipulated are somewhat irrelevant.

zeros : 𝚷 (n : ℕ) → Vec n

origin : Vec 3
origin :≡ zeros _

5

Given the argument to zeros here clearly ought to be 3. Π-types and 𝜆-abstractions with
inferable domains 𝚷 (x : _) → B, 𝝀 (x : _) → t can also be written without the
annotation on the bound variable 𝚷 x → B, 𝝀 x → t. Functions where the codomain
does not depend on the domain (like e.g. idℕ : 𝚷 (x : ℕ) → ℕ above), can also be
written more simply by dropping the 𝚷, idℕ : ℕ → ℕ.

Writing many _s can still get tiresome, so we also allow Π-types to implicitly bind
parameters, denoted with “{ }”s, 𝚷 {x : A} → B. Implicit Π-types can still be
introduced and eliminated explicitly with 𝝀 {x : A} → t and t {x :≡ u}6.

6: Note we specify the name of the
parameter we instantiate here, (x).
t {u } is also a valid elimination-form,
but only applies u to the very first
implicitly-bound parameter, which is
somewhat restrictive.

idVec : 𝚷 {n} → Vec n → Vec n
idVec xs :≡ xs

origin′ : Vec 3
origin′ :≡ idVec (zeros _)

Finally, writing 𝚷s explicitly can also get unwieldy, so we sometimes rewrite type
signatures with seemingly unbound (free) variables, which the assumption being that
they should be implicit parameters of appropriate type.

idVec′ : Vec n → Vec n
idVec′ xs :≡ xs

Computation and Uniqueness

Critical to type theory is the notion of computation. Elimination and introduction forms
compute when adjacent in so-called 𝛽-rules. For example, function applications compute
by replacing the bound variable with the argument in the body. More formally, the
𝛽-rule for Π-types is written

(𝝀 x → t) u ≡ t [u / x]

Dual to computation rules are uniqueness or extensionality laws which we call 𝜂-rules.
Agda features 𝜂 for Π-types, which tells us that all Π-typed terms, t : 𝚷 (x : A) → B,
are equivalent to terms formed by 𝜆-abstracting a fresh variable and applying it to t

t ≡ 𝝀 x → t x

Some 𝜂-rules are a lot trickier to decide than others. A general rule-of-thumb is that
𝜂-laws for negative type formers (e.g. functions (Π), pairs (𝚺), unit (1)) 7

7: Specifically, we can delay checking
of these 𝜂 laws until after 𝛽-reduction,
or alternatively can deal with them di-
rectly via NbE (Section 2.4) by special-
ising unquoting appropriately.
Note that if term-equivalence is not
type-directed (e.g. in efficient imple-
mentations, or some formalisations),
𝜂-rules for negative type formers can
still cause trouble [21, 22]

[21]: Lennon-Bertrand (2022), Á Bas L’𝜂
[22]: Kovács (2025), Eta conversion for the
unit type

)

. 𝜂-laws for
positive type formers on the other hand (e.g. Booleans (𝔹), coproducts (_ + _), natural
numbers (ℕ), propositional equality (_=_)) are more subtle, either requiring significantly
a more complicated normalisation algorithms [23]

[23]: Altenkirch et al. (2001), Normalization
by Evaluation for Typed Lambda Calculus
with Coproducts

or being outright undecidable (we
discuss this in more detail in Section 3.5).

6

Universes

In Agda, types are also first-class (types are themselves embedded in the syntax of
terms)8. This means that we have a “type of types”, named Type and therefore can

8: Note that first-class types are not
essential for a type theory to be depen-
dent (types can depend on terms via
type formers which embed terms). In
fact, the type theories we shall study in
this project will not support first-class
types, or even feature type variables,
as the subtleties of such systems are
generally orthogonal to the problems
we shall consider.

recover polymorphism (á la System F [24–26]) by implicitly quantifying over Type-

[24]: Fenstad (1971), Une Extension De
L’Interpretation De Gödel a L’analyse, Et Son
Application a L’Elimination Des Coupures
Dans L’Analyse Et La Theorie Des Types
[25]: Reynolds (1974), Towards a theory of
type structure
[26]: Girard (1986), The System F of Variable
Types, Fifteen Years Later

typed variables. E.g. the polymorphic identity function can be typed as

id : 𝚷 {A : Type} → A → A

To avoid Russell-style paradoxes, type theories which embed types in terms in this
fashion often employ the concept of a universe hierarchy (we call types of types in
general universes). The term Type itself needs type, but Type : Type is unsound
[27]. Instead we have Type : Type1, and Type1 : Type2 etc... We refer to the Agda

[27]: Hurkens (1995), A Simplification of
Girard’s Paradox

documentation [28] for details of how their implementation of universes works.

[28]: Agda Team (2024), Universe Levels

Equality

Equality in (intensional) type theory is quite subtle. The _≡_ above refers to so-called
definitional equality (or conversion) which the typechecker automatically decides; types
are always considered equal up-to-conversion. We sometimes need to refer to equations
that the typechecker cannot automate, and for this we use a new type former x = y,
called propositional equality. We discuss the intricacies of definitional and propositional
equality in more depth in Section 18.

As with Π-types, propositional equality has associated introduction and elimination
rules. Specifically, _=_ is introduced with reflexivity, refl : x = x (x is equal to itself)
and can be eliminated using the principle of indiscernibility-of-identicals 9 (if x = y,

9: The full elimination rule for iden-
tity types (named axiom-J or path in-
duction) allows the motive P to also
quantify over the identity proof itself:
= -elim : 𝚷 (P : 𝚷 y → x =
y → Type) (p : x = y) →

P x refl → P y p, but transp can be
derived from this.

intuitively we should be able to use terms of type P x in all places where P y is expected,
as long as we specify an appropriate P : A → Type and proof of x = y).

transp : 𝚷 (P : A → Type) → x = y → P x → P y|

transp here stands for transport, evoking the idea of “transporting” objects of type P x
along equalities x = y. Of course, _=_ must also have a 𝛽-rule, transp P refl x ≡ x.
However, we do not assume the corresponding definitional (or strict) 𝜂-law as this makes
conversion (and therefore typechecking) undecidable [29]. [29]: Streicher (1993), Investigations into in-

tensional type theory
We will, however, sometimes take advantage of propositional uniqueness of identity
proofs (UIP). That is, we will consider all =-typed terms to themselves be propositionally
equal, e.g. witnessed with

uip : 𝚷 (p : x = x) → p = refl

Assuming UIP globally is incompatible with some type theories (e.g. □TT), but is very
convenient when working only with set-based structures.

Remark 2.1.1 (Curry Howard Breaks Down, Slightly)
While the Curry-Howard correspondence can be useful for intuition when learning
type theory, some types are much better understood as logical propositions and others
as classes of data. E.g. the natural numbers are a very boring proposition given their
inhabitation can be trivially proved with ze : ℕ. Conversely, in most type theories
=-typed programs always return refl eventually, and so cannot do much meaningful
computation10

10: Actually, computational interpre-
tations of Homotopy Type Theory
(HoTT) [30]

[30]: Univalent Foundations Program
(2013), Homotopy Type Theory: Univalent
Foundations of Mathematics

such as Cubical Type The-
ory (□TT) [31]

[31]: Cohen et al. (2015), Cubical Type The-
ory: A Constructive Interpretation of the Uni-
valence Axiom

propose an alternative
perspective, where transporting over
the identity type (renamed the path
type) is a non-trivial operation. For ex-
ample, paths between types are gen-
eralised to isomorphisms (technically,
equivalences).

.

7

Inductive Types

Agda also contains a scheme for defining types inductively. We declare new inductive
type formers with the data keyword, and then inside a where block, provide the
introduction rules.

data 𝔹 : Type where
tt : 𝔹

ff : 𝔹

data ℕ : Type where
ze : ℕ

su : ℕ → ℕ

As well as plain inductive datatypes like these, Agda also supports defining parametric
inductive types and inductive families, along with forward declarations to enable mutual
interleaving. We refer to the documentation for the details on what is supported and
the conditions that ensure inductive types are well-founded (namely, strict-positivity)
[32]. [32]: Agda Team (2024), Data Types

Note we do not need to explicitly give an elimination rule. Inductive types (being positive
type formers) are fully characterised by their introduction rules (constructors).

Intuitively, eliminators correspond with induction principles, and can be derived me-
chanically by taking the displayed algebra [33] over the inductive type11. For example, [33]: Kovács (2023), Type-theoretic signa-

tures for algebraic theories and inductive
types

11: At least for simple inductive types.
When one starts defining inductive
types mutually with each-other along
with recursive functions, quotienting,
mixing in coinduction etc... matters ad-
mittedly get more complicated [34].

[34]: Kovács (2023), What are the complex
induction patterns supported by Agda?

the displayed algebra over 𝔹 is a pairing of the motive P : 𝔹 → Type along with
methods P tt and P ff, so the eliminator is written as

𝔹-elim : 𝚷 (P : 𝔹 → Type) b → P tt → P ff → P b

Slightly unusually (e.g. compared to more Spartan type theories like MLTT [35] or CIC

[35]: Martin-Löf (1975), An Intuitionistic
Theory of Types: Predicative Part

[36], or even other type theories implemented by proof assistants like Lean [37] or

[36]: Pfenning et al. (1989), Inductively De-
fined Types in the Calculus of Constructions

[37]: Moura et al. (2021), The Lean 4 Theo-
rem Prover and Programming Language

Rocq [38]), Agda does not actually build-in these elimination principles as primitive.

[38]: The Rocq Team (2025), The Rocq Ref-
erence Manual – Release 9.0

Instead, Agda’s basic notion to eliminate inductive datatypes is pattern matching, which
is syntactically restricted to the left-hand-side of function definitions.

not : 𝔹 → 𝔹

not tt :≡ ff
not ff :≡ tt

Note that traditional eliminators can be defined in terms of pattern matching.

𝔹-elim P tt Ptt Pff :≡ Ptt
𝔹-elim P ff Ptt Pff :≡ Pff

Equivalence Relations, Quotients and Setoids

Many types have some associated notions of equivalence which are not merely syn-
tactic. For example we might define the integers as any number of applications of
successor/predecessor to zero.

Of course, we could pick a more
“canonical” encoding of the integers,
which does support syntactic equality.
For example, a natural number
magnitude paired with a Boolean sign
(being careful to avoid doubling-up
on zero, e.g. by considering negative
integers to start at -1.).

Sticking only to structures where
equality is syntactic is ultimately
untenable though. The canonical
encoding of some type might be more
painful to work with in practice, or
might not even exist.

data ℤ : Type where
ze : ℤ

su : ℤ → ℤ

pr : ℤ → ℤ

Syntactic equality on this datatype does not quite line up with how we might want this
type to behave. E.g. we have ¬ pr (su ze) = ze.

Remark 2.1.2 (Proving Constructor Disjointness)
Agda can automatically rule-out “impossible” pattern matches (i.e. when no construc-

8

tor is valid) and allows us to write absurd patterns, “()”, without a RHS. This syntax
effectively corresponds to using the principle of explosion, and relies on Agda’s
unification machinery building-in a notion of constructor disjointness.

pr-ze-disj : ¬ pr x = ze
pr-ze-disj ()

This feature is merely for convenience though. In general, we can prove

Being able to pattern match on a term
and return a Type relies on a feature
known as large elimination. In type the-
ories with universes, this arises natu-
rally from allowing the motive of an
elimination rule/return type of a pat-
tern matching definition to lie in an
arbitrary universe.

disjointness
of constructors by writing functions that distinguish them, returning 1 or O. Then
under the assumption of equality between the two constructors, we can apply the
distinguishing function to both sides and then transport across the resulting proof of
O = 1 to prove O from ⟨⟩.

is-pr : ℤ → Type
is-pr (pr _) :≡ 1
is-pr ze :≡ O
is-pr (su _) :≡ O
pr-ze-disj′ : ¬ pr x = ze
pr-ze-disj′ p :≡ transp is-pr p ⟨⟩

prsu-ze : ¬ pr (su ze) = ze
prsu-ze :≡ pr-ze-disj

This situation can be rectified by quotienting. Quotient inductive types allow us to
define datatypes mutually with equations we expect to hold, e.g.

data Qℤ : Type where
ze : Qℤ

su : Qℤ → Qℤ

pr : Qℤ → Qℤ

prsu : pr (su x) = x
supr : su (pr x) = x

When pattern matching on quotient types, we are forced to mutually show that our
definition is sound (i.e. it preserves congruence of propositional equality). Syntactically,
each pattern matching definition f defined on Qℤ must include cases for each propo-
sitional equation p : x = y (in the case of Qℤ, prsu and supr), returning a proof of
f x = f y. For example, we can define doubling on integers doubleQℤ : Qℤ → Qℤ,
accounting for prsu and supr like so:

doubleQℤ ze :≡ ze
doubleQℤ (su x) :≡ su (su (doubleℤ x))
doubleQℤ (pr x) :≡ pr (pr (doubleℤ x))
doubleQℤ prsu :≡

doubleQℤ (pr (su x))
= by refl

pr (pr (su (su (doubleQℤ x))))
= by cong pr prsu

pr (su (doubleQℤ x))
= by prsu

doubleQℤ x ■
doubleQℤ supr :≡

doubleQℤ (su (pr x))
= by refl

su (su (pr (pr (doubleQℤ x))))
= by cong su supr

su (pr (doubleQℤ x))

9

= by supr
doubleQℤ x ■

For technical reasons12, in the actual Agda mechanisation for this project, we do not
12: In short: Agda currently only
supports quotient types as a special
cases of higher-inductive type (HIT)s
when using the cubical extension, is
incompatible with UIP and lacks some
useful pattern matching automation.
Sometimes, HITs also have to be made
significantly more complicated to
account for [#7602].

Furthermore, sometimes it is ac-
tually useful to be able to temporarily
reason about the syntactic structure
of objects, even if all operations we
might define should ultimately respect
the equivalence. For example, when
working with reduction, Section 2.2.4.

[#7602]: Xie (2025), Transport in HIT not
strictly positive

use quotients. We can simulate working with quotient types (at the cost of significant
boilerplate) by working explicit inductively-defined equivalence relations. E.g. for ℤ

data _~ℤ_ : ℤ → ℤ → Type where
-- Equivalence
rfl~ : x ~ℤ x
sym~ : x1 ~ℤ x2 → x2 ~ℤ x1

•~ : x1 ~ℤ x2 → x2 ~ℤ x3 → x1 ~ℤ x3

-- Congruence
su : x1 ~ℤ x2 → su x1 ~ℤ su x2

pr : x1 ~ℤ x2 → pr x1 ~ℤ pr x2

-- Computation
prsu : pr (su x) ~ℤ x
supr : su (pr x) ~ℤ x

Using this relation, we can implement operations on ℤ, such as doubling, as ordinary
pattern matching definitions, and separately write proofs that they respect the equiva-
lence.

doubleℤ : ℤ → ℤ

doubleℤ ze :≡ ze
doubleℤ (su x) :≡ su (su (doubleℤ x))
doubleℤ (pr x) :≡ pr (pr (doubleℤ x))
doubleℤ~ : x1 ~ℤ x2 → doubleℤ x1 ~ℤ doubleℤ x2

doubleℤ~ rfl~ :≡ rfl~
doubleℤ~ (sym~ x~) :≡ sym~ (doubleℤ~ x~)
doubleℤ~ (x~1 •~ x~2) :≡ doubleℤ~ x~1 •~ doubleℤ~ x~2

doubleℤ~ (su x~) :≡ su (su (doubleℤ~ x~))
doubleℤ~ (pr x~) :≡ pr (pr (doubleℤ~ x~))
doubleℤ~ prsu :≡ pr prsu •~ prsu
doubleℤ~ supr :≡ su supr •~ supr

Note that unlike matching on QITs, we have to explicitly account for cases corresponding
to equivalence and congruence13.

13: It is not too difficult to abstract
over rfl~/sym~/_•~_ when mapping
between equivalence relations, but this
is not really achievable with congru-
ence, which is arguably the worse
problem given the number of congru-
ence cases grows with the number of
datatype constructors

Furthermore, when writing definitions/abstractions parametric over types, when rele-
vant, we must explicitly account for whether each type has an associated equivalence
relation. A general design pattern arises here: to pair types with their equivalence rela-
tions in bundles called setoids. The result is sometimes described as “setoid hell” [39]

[39]: Altenkirch (2017), From setoid hell to
homotopy heaven?

but for smaller mechanisations that stay as concrete as possible, it can be managed.

Setoids can be turned into isomorphic QITs (in theories which support them) by quoti-
enting by the equivalence relation.

data _/_ (A : Type) (_~_ : A → A → Type) : Type where
⌜_⌝ : A → A / _~_
quot : 𝚷 {x y} → x ∼ y → ⌜ x ⌝ = ⌜ y ⌝

Translating from QITs to setoids has been explored as part of the work justifying
Observational Type Theory (OTT), a type theory that natively supports quotient types
and UIP [3, 40, 41]. We will detail the small additional complications when translating [3]: Pujet et al. (2022), Observational equal-

ity: now for good
[40]: Altenkirch (1999), Extensional Equal-
ity in Intensional Type Theory
[41]: Altenkirch et al. (2019), Setoid Type
Theory - A Syntactic Translation

types indexed by QITs into setoid fibrations (applied to the concrete example of a syntax
for dependent type theory) in Section 2.3.3.

10

2.2 Simply Typed Lambda Calculus

Section 1

Having established our metatheory informally, it is time to start studying type theory
rigorously. As a warm-up, we begin by covering the theory of simply-typed lambda
calculus (STLC), and then will later cover the extensions necessary to support dependent
types.

2.2.1 Syntax

There is no such thing as a free variable. There
are only variables bound in the context.

Conor McBride [42]

In this report, we will present type theories following the intrinsically-typed discipline.
That is, rather than first defining a grammar of terms and then separately, the typing
relation (i.e. inference rules), we will define terms as an inductive family such that only
well-typed terms can be constructed.

Remark 2.2.1 (Syntax-Directed Typing)
Intrinsic typing enforces a one-to-one correspondence between term formers and
typing rules (in the language of separate syntax and typing judgements, our inference
rules must all be syntax-directed). However, features that appear in conflict with
this restriction (such as subtyping or implicit coercions) can still be formalised via
elaboration: that is, in the core type theory, all coercions must be explicit, but this
does not prevent defining also an untyped surface language without coercions along
with a partial mapping into core terms (the elaborator).

In STLC, the only necessary validity criteria on types and contexts is syntactic in nature,
so we define these as usual. We include type formers for functions A → B, pairs A × B,
sums A + B, unit 𝟙 and the empty type 𝟘, and define contexts as backwards lists of
types.

data Ty : Type where
_→ _ : Ty → Ty → Ty
_ × _ : Ty → Ty → Ty
_ + _ : Ty → Ty → Ty
𝟙 : Ty
𝟘 : Ty

data Ctx : Type where
• : Ctx
▷ : Ctx → Ty → Ctx

Variables can be viewed as (computationally-relevant14) proofs that a particular type
14: Note that contexts can contain mul-
tiple variables of the same type, and it
is important to distinguish these.

occurs in the context. Trivially, the type A occurs in the context Γ ▷ A, and recursively
if the type B occurs in context Γ, then the type B also occurs in the context Γ ▷ A.

data Var : Ctx → Ty → Type where
vz : Var (Γ ▷ A) A
vs : Var Γ B → Var (Γ ▷ A) B

After erasing the indexing, we are effectively left with de Bruijn variables [43]; natural [43]: de Bruijn (1972), Lambda calculus no-
tation with nameless dummies, a tool for au-
tomatic formula manipulation, with appli-
cation to the Church-Rosser theorem

numbers counting the number of binders between the use of a variable and the location
it was bound.

11

We avoid named representations of variables in order to dodge complications arising
from variable capture and 𝛼-equivalence. For legibility and convenience, when writing
example programs internal to a particular type theory, we will still use named variables
and elide explicit weakening, assuming the existence of a scope-checking/renaming
algorithm which can translate to de Bruijn style. When writing such examples we will
also separate binding(s) and body with “.” rather than “→” (along with a non-bolded
𝜆-symbol) as to more clearly distinguish object-level abstraction from that of the meta.

Terms embed variables, and are otherwise comprised of the standard introduction and
elimination rules for _→ _, _ × _, _ + _, 𝟙.

In this report, when notation for var-
ious constructs is potentially ambigu-
ous between the metatheory and ob-
ject language, we ensure the meta-level
version is denoted in bold. We also
denote object-level function applica-
tion with the binary operator _·_ as
opposed plain juxtaposition (though
when giving example programs, we
will sometimes elide it).

data Tm : Ctx → Ty → Type where
`_ : Var Γ A → Tm Γ A
𝜆_ : Tm (Γ ▷ A) B → Tm Γ (A → B)
· : Tm Γ (A → B) → Tm Γ A → Tm Γ B
_, _ : Tm Γ A → Tm Γ B → Tm Γ (A × B)
𝜋1 : Tm Γ (A × B) → Tm Γ A
𝜋2 : Tm Γ (A × B) → Tm Γ B
in1 : Tm Γ A → Tm Γ (A + B)
in2 : Tm Γ B → Tm Γ (A + B)
case : Tm Γ (A + B) → Tm (Γ ▷ A) C

→ Tm (Γ ▷ B) C → Tm Γ C
〈〉 : Tm Γ 𝟙

2.2.2 Substitution and Renaming

We define parallel renaming and substitution operations by recursion on our syntax.
Following [44], we avoid duplication between renaming (the subset of substitutions [44]: Altenkirch et al. (2025), Substitution

without copy and pastewhere variables can only be substituted for other variables) and substitutions by factoring
via a boolean algebra of Sorts, valued either V : Sort or T : Sort with V < T (V
standing for “Variable” and T for “Term”). We will skip over most of the details of how
to encode this in Agda but define explicitly Sort-parameterised terms:

Tm[_] : Sort → Ctx → Ty → Type
Tm[V] :≡ Var
Tm[T] :≡ Tm

and lists of terms (parameterised by the sort of the terms, the context they exist in, and
the list of types of each of the terms themselves):

data Tms[_] : Sort → Ctx → Ctx → Type where
𝜀 : Tms[q] Δ •
_, _ : Tms[q] Δ Γ → Tm[q] Δ A → Tms[q] Δ (Γ ▷ A)

We regard lists of variables as renamings, Ren :≡ Tms[V] and lists of terms as
full substitutions Sub :≡ Tms[T]. The action of both is witnessed by the following
recursively defined substitution operation:

[] : Tm[q] Γ A → Tms[r] Δ Γ → Tm[q ⊔ r] Δ A

Note that 𝜀 : Sub Δ • gives us the substitution that weakens a term defined in the
empty context into Δ, and _, _ : Sub Δ Γ → Tm Δ A → Tms Δ (Γ ▷ A) expresses
the principle that to map from a term in a context Γ extended with A into a context
Δ, we need a term in Δ to substitute the zero de Bruijn variable for, Tm Δ A, and a
substitution to recursively apply to all variables greater than zero, Sub Δ Γ.

12

To implement the computational behaviour of substitution, we need to be able to coerce
up the sort of terms (terms are functorial over sort ordering, _≤_) and lift substitutions
over context extension (substitutions are functorial over context extension15):

15: Concretely, we can take the cate-
gory of context extension as dual to
the category of weakenings
Wk : Ctx → Ctx → Type where
𝜀 : Wk • • and
+ : Wk Δ Γ → 𝚷 A →

Wk (Δ ▷ A) Γ.

tm≤ : q ≤ r → Tm[q] Γ A → Tm[r] Γ A
ˆ : Tms[q] Δ Γ → 𝚷 A → Tms[q] (Δ ▷ A) (Γ ▷ A)
vz [𝛿 , t] :≡ t
vs i [𝛿 , t] :≡ i [𝛿]
(` i) [𝛿] :≡ tm≤ ≤T (i [𝛿])
(t · u) [𝛿] :≡ (t [𝛿]) · (u [𝛿])
(𝜆 t) [𝛿] :≡ 𝜆 (t [𝛿 ˆ _])
〈〉 [𝛿] :≡ 〈〉
in1 B t [𝛿] :≡ in1 B (t [𝛿])
in2 A t [𝛿] :≡ in2 A (t [𝛿])
case t u v [𝛿] :≡ case (t [𝛿]) (u [𝛿 ˆ _]) (v [𝛿 ˆ _])
𝜋1 t [𝛿] :≡ 𝜋1 (t [𝛿])
𝜋2 t [𝛿] :≡ 𝜋2 (t [𝛿])
(t , u) [𝛿] :≡ (t [𝛿]) , (u [𝛿])

We also use a number of recursively-defined operations to build and manipulate renam-
ings/substitutions, including construction of identity substitutions id (backwards lists
of increasing variables), composition _;_, single weakenings wk and single substitutions
<_>.

Single-weakening of terms via suc[_]
and its fold over substitutions _+_ can
be regarded ultimately as implemen-
tation details in service of ensuring
our definitions stay structurally well-
founded.

id : Tms[q] Γ Γ

+ : Tms[q] Δ Γ → 𝚷 A → Tms[q] (Δ ▷ A) Γ
suc[_] : 𝚷 q → Tm[q] Γ B → Tm[q] (Γ ▷ A) B
; : Tms[q] Δ Γ → Tms[r] Θ Δ → Tms[q ⊔ r] Θ Γ

wk : Ren (Γ ▷ A) Γ
<_> : Tm[q] Γ A → Tms[q] Γ (Γ ▷ A)
id {Γ :≡ •} :≡ 𝜀

id {Γ :≡ Γ ▷ A} :≡ id ˆ A

suc[V] :≡ vs
suc[T] :≡ _[id {q :≡ V} + _]
𝜀 + A :≡ 𝜀

(𝛿 , t) + A :≡ (𝛿 + A) , suc[_] t

𝛿 ˆ A :≡ (𝛿 + A) , tm≤ V≤ vz

𝜀 ; 𝜎 :≡ 𝜀

(𝛿 , t) ; 𝜎 :≡ (𝛿 ; 𝜎) , (t [𝜎])
wk :≡ id + _
< t > :≡ id , t

13

2.2.3 Soundness

To show how we can prove properties of type theories from our syntax, we will now
embark on a proof of soundness for STLC.

Soundness expresses that STLC as
a logic is consistent relative to our
metatheory (Agda). From a PL per-
spective, constructing the standard
model effectively entails writing in-
terpreter/evaluator for STLC programs,
and soundness is strongly related to
STLC being a total programming lan-
guage - it does not admit general recur-
sion or unchecked exceptions.

Definition 2.2.1 (Soundness of a Type Theory)
A type theory with an empty type 𝟘 is sound if there are no 𝟘-typed terms in the
empty context.

stlc-sound : ¬ Tm • 𝟘

Our strategy to prove this will be based on giving denotational semantics to STLC: we
will interpret STLC constructs as objects in some other theory (i.e. construct a model).
A natural choice is to interpret into corresponding objects in our metatheory (Agda),
developing what is known as the ‘standard model’ or ‘meta-circular interpretation’.

In the standard model, we interpret object-theory types into their counterparts in Type.
We call the inhabitants of these interpreted types values - i.e. J A KTy is the type of
A-typed closed values.

JTyK : Type1

JTyK :≡ Type

J_KTy
: Ty → JTyK

J A → B KTy :≡ J A KTy
→ J B KTy

J A × B KTy :≡ J A KTy
× J B KTy

J A + B KTy :≡ J A KTy
+ J B KTy

J 𝟙 KTy :≡ 1
J 𝟘 KTy :≡ O

Contexts are interpreted as nested pairs of values. We call inhabitants of these nested
pairs environments - i.e. J Γ KCtx is the type of environments at type Γ.

JCtxK : Type1

JCtxK :≡ Type

J_KCtx
: Ctx → JCtxK

J • KCtx :≡ 1
J Γ ▷ A KCtx :≡ J Γ KCtx

× J A KTy

Terms are then interpreted as functions from environments to values, so in non-empty
contexts, variables project out their associated values. In other words, we can evaluate a
term of type A in context Γ into a closed value of type A, J A KTy, given an environment
𝜌 : J Γ KCtx. Application directly applies values using application of the meta-
theory and abstraction extends environments with new values, using abstraction of the
meta. Given we are working inside of a constructive type theory, meta-functions are
computable-by-construction and so well-foundedness is ensured by structural recursion
on our syntax.

JTmK : JCtxK → JTyK → Type
JTmK JΓK JAK :≡ JΓK → JAK

JVarK :≡ JTmK

lookup : Var Γ A → JVarK J Γ KCtx J A KTy

lookup vz (𝜌 , tV) :≡ tV

lookup (vs i) (𝜌 , tV) :≡ lookup i 𝜌

J_KTm
: Tm Γ A → JTmK J Γ KCtx J A KTy

J ` i KTm
𝜌 :≡ lookup i 𝜌

J 𝜆 t KTm
𝜌 :≡ 𝝀 x → J t KTm (𝜌 , x)

14

J t · u KTm
𝜌 :≡ (J t KTm

𝜌) (J u KTm
𝜌)

J t , u KTm
𝜌 :≡ (J t KTm

𝜌) , (J u KTm
𝜌)

J 𝜋1 t KTm
𝜌 :≡ J t KTm

𝜌 .𝝅1

J 𝜋2 t KTm
𝜌 :≡ J t KTm

𝜌 .𝝅2

J in1 B t KTm
𝜌 :≡ in1 (J t KTm

𝜌)
J in2 A t KTm

𝜌 :≡ in2 (J t KTm
𝜌)

J case t u v KTm
𝜌 with J t KTm

𝜌

... | in1 tV :≡ J u KTm (𝜌 , tV)

... | in2 tV :≡ J v KTm (𝜌 , tV)
J 〈〉 KTm

𝜌 :≡ ⟨⟩

Soundness of STLC can now be proved by evaluating the 𝟘-typed program in the empty
context.

stlc-sound t :≡ J t KTm ⟨⟩

The standard model is useful for more than just soundness. Note that after interpreting,
computationally-equivalent closed terms become definitionally equal.

𝛽-example : J (𝜆 ` vz) · 〈〉 KTm = J 〈〉 {Γ :≡ •} KTm

𝛽-example :≡ refl

This makes sense, given the definitional equality of our metatheory (Agda) encompasses
𝛽-equality. Computationally-equivalent terms in general can be described as those which
are propositionally equal after interpreting. E.g.

J𝛽K : J (𝜆 t) · u KTm = J t [< u >] KTm

Though, to prove J𝛽K, we need to show that substitution is preserved appropriately by
the standard model - i.e. substitution is sound w.r.t. our denotational semantics.

Definition 2.2.2 (Soundness with Respect to a Semantics)
An operation f : A → B is sound w.r.t. some semantics on A and B if its action
respects those semantics.
The nature of this respect depends somewhat on the semantics in question: for
soundness w.r.t. a model, we show that the model admits an analogous operation JfK
such that the following diagram commutes16

16: We say a diagram commutes if
all paths (compositions of the arrows)
that begin and end at the same pair of
points are equivalent (e.g. applying the
associated actions in sequence always
produces the same end-result). In the
case of commuting squares like this,
we therefore require that going right
and then down is equivalent to going
down and then right.

x J x KA

f x J f x KV
= JfK J x KA

J_KA

f JfK

J_KV

Given an equational semantics (Section 2.2.4), we instead must show that f preserves
the equivalence, and in the case of operational semantics, reduction should be stable
under f.

Soundness of Substitution

Substitutions that map terms from context Γ to context Δ can be interpreted as functions
from Δ-environments to Γ-environments.

JSubK : JCtxK → JCtxK → Type
JSubK JΔK JΓK :≡ JΔK → JΓK

J_KSub
: Sub Δ Γ → JSubK J Δ KCtx J Γ KCtx

J 𝜀 KSub
𝜌 :≡ ⟨⟩

J 𝛿 , t KSub
𝜌 :≡ J 𝛿 KSub

𝜌 , J t KTm
𝜌

15

The contravariant ordering of Sub’s indices is now justified! Γ-terms being interpreted as
functions from Γ-environments makes them contravariant w.r.t. environment mappings.
The semantic action of substitution (i.e. substitution inside the model) is just function
composition.

J[]K : JTmK JΓK JAK → JSubK JΔK JΓK → JTmK JΔK JAK
J[]K JtK J𝛿K 𝜌 :≡ JtK (J𝛿K 𝜌)

Soundness of _[_] w.r.t. the standard model can now be stated as:

[]-sound : J t [𝛿] KTm = J[]K J t KTm J 𝛿 KSub

The case for e.g. t :≡ 〈〉 is trivial ([]-sound { t :≡ 〈〉} :≡ refl), but to prove this law in
general, we also need to implement semantic versions of our other recursive substitution
operations (i.e. _ˆ_, _+_, etc...) and mutually show preservation of all them.

After all of this work, we can finally prove J𝛽K using []-sound and also preservation of
<_>, <>-sound.

<>-sound : J < t > KSub = J<>K J t KTm

J𝛽K { t :≡ t} {u :≡ u} :≡
J (𝜆 t) · u KTm

= by refl
(𝝀 𝜌 → J t KTm (𝜌 , J u KTm

𝜌))
= by refl
J[]K J t KTm (J<>K J u KTm)
= by cong (J[]K J t KTm) (sym (<>-sound { t :≡ u}))
J[]K J t KTm J < u > KSub

= by sym ([]-sound { t :≡ t})
J t [< u >] KTm ■

16

2.2.4 Reduction and Conversion

Constructing a model is not the only way to give a semantics to a type theory. We can
also give operational and equational semantics to STLC using inductive relations named
reduction and conversion respectively.

We arrive at (strong) one-step 𝛽-reduction by taking the smallest monotonic relation on
terms which includes our computation rules:

data _>𝛽_ : Tm Γ A → Tm Γ A → Type where
-- Computation
→𝛽 : (𝜆 t) · u >𝛽 t [< u >]

+𝛽1 : case (in1 B t) u v >𝛽 u [< t >]
+𝛽2 : case (in2 A t) u v >𝛽 v [< t >]
*𝛽1 : 𝜋1 (t , u) >𝛽 t
*𝛽2 : 𝜋2 (t , u) >𝛽 u

-- Monotonicity
𝜆_ : t1 >𝛽 t2 → 𝜆 t1 >𝛽 𝜆 t2

l· : t1 >𝛽 t2 → t1 · u >𝛽 t2 · u
·r : u1 >𝛽 u2 → t · u1 >𝛽 t · u2

in1 : t1 >𝛽 t2 → in1 B t1 >𝛽 in1 B t2

in2 : t1 >𝛽 t2 → in2 A t1 >𝛽 in2 A t2

case1 : t1 >𝛽 t2 → case t1 u v >𝛽 case t2 u v
case2 : u1 >𝛽 u2 → case t u1 v >𝛽 case t u2 v
case3 : v1 >𝛽 v2 → case t u v1 >𝛽 case t u v2

,1 : t1 >𝛽 t2 → t1 , u >𝛽 t2 , u
,2 : u1 >𝛽 u2 → t , u1 >𝛽 t , u2

𝜋1 : t1 >𝛽 t2 → 𝜋1 t1 >𝛽 𝜋1 t2

𝜋2 : t1 >𝛽 t2 → 𝜋2 t1 >𝛽 𝜋2 t2

We say a term t1 reduces to its reduct, t2, if t1 >𝛽* t2 (where _>𝛽*_ : Tm Γ A →

Tm Γ A → Type is the reflexive-transitive closure of _>𝛽_). Using this relation, we
define terms to be equivalent w.r.t. reduction (algorithmic conversion) if they have a
common reduct.

record _<~>_ (t1 t2 : Tm Γ A) : Type where field
{common} : Tm Γ A
reduces1 : t1 >𝛽* common
reduces2 : t2 >𝛽* common

Reduction as a concept becomes much more useful when the relation is well-founded.
For a full one-step reduction relation that proceeds under 𝜆-abstractions, we call this
property strong normalisation, because we can define an algorithm which takes a term t
and, by induction on the well-founded order, produces an equivalent (w.r.t. algorithmic
conversion) but irreducible term tNf, t’s normal form17

17: Technically, if reduction is not con-
fluent, it might be possible to reduce
a term t to multiple distinct normal
forms. In principle, we can still explore
all possible reduction chains in parallel
and compare sets of irreducible terms
to decide algorithmic conversion. In
this scenario, we can consider the sets
of irreducible terms themselves to be
the normal forms (with equivalence de-
fined by whether any pair of terms in
the Cartesian product are equal syntac-
tically).

(we show how to do this explicitly
in Section 2.4.1).

Note that we do not enforce that
normal forms are subset of the
original type, which is sometimes
useful flexibility - see e.g. [23].

If we do have an embedding
⌜_⌝ : NfA

→ A, then complete-
ness is equivalent to the property
⌜ norm x ⌝ = x: if we assume
norm x = norm y, then by congru-
ence ⌜ norm x ⌝ = ⌜ norm y ⌝,
which simplifies to x = y.

[23]: Altenkirch et al. (2001), Normalization
by Evaluation for Typed Lambda Calculus
with Coproducts

Definition 2.2.3 (Normalisation)
In this report, we define normalisation algorithms as sound and complete mappings
from some type, A, to a type of normal forms, NfA, with decidable equality.
Soundness here is defined as usual (i.e. the mapping preserves equivalence), while
we define completeness as the converse property: that equal normal forms implies
equivalence of the objects we started with.
In the formal definition, we assume A is quotiented by equivalence, and so soundness
is ensured by the definition of quotient types. Completeness still needs to ensured
with a side-condition though.

17

record Norm : Type where
field

norm : A → NfA

compl : norm x = norm y → x = y

Perhaps uninventively, for theories
which already have decidable equiva-
lence, we are forced to accept the iden-
tity mapping as a valid (if trivial) im-
plementation of normalisation. We can
make sense of this situation by viewing
normalisation as a strategy/technique
for deciding equivalence, rather than
an objective in-and-of-itself.

From normalisation and decidable equality of normal forms _ =Nf ?_, we can easily
decide equality on A.

_ =Nf ?_ : 𝚷 (xNf yNf
: NfA) → xNf = yNf + ¬ xNf = yNf

_ = ?_ : 𝚷 (x y : A) → x = y + ¬ x = y
x = ? y with norm x =Nf ? norm y
... | in1 p :≡ in1 (compl p)
... | in2 p :≡ in2 𝝀 q → p (cong norm q)

If we instead take the smallest congruent equivalence relation which includes the
computation rules, we arrive at declarative 𝛽-conversion.

data _~_ : Tm Γ A → Tm Γ A → Type where
-- Equivalence
rfl~ : t ∼ t
sym~ : t1 ∼ t2 → t2 ∼ t1

•~ : t1 ∼ t2 → t2 ∼ t3 → t1 ∼ t3

-- Computation
→𝛽 : (𝜆 t) · u ∼ t [< u >]

+𝛽1 : case (in1 B t) u v ∼ u [< t >]
+𝛽2 : case (in2 A t) u v ∼ v [< t >]
*𝛽1 : 𝜋1 (t , u) ∼ t
*𝛽2 : 𝜋2 (t , u) ∼ u

-- Congruence
𝜆_ : t1 ∼ t2 → 𝜆 t1 ∼ 𝜆 t2

· : t1 ∼ t2 → u1 ∼ u2 → t1 · u1 ∼ t2 · u2

in1 : t1 ∼ t2 → in1 B t1 ∼ in1 B t2

in2 : t1 ∼ t2 → in2 A t1 ∼ in2 A t2

case : t1 ∼ t2 → u1 ∼ u2 → v1 ∼ v2 → case t1 u1 v1 ∼ case t2 u2 v2

_, _ : t1 ∼ t2 → u1 ∼ u2 → t1 , u1 ∼ t2 , u2

𝜋1 : t1 ∼ t2 → 𝜋1 t1 ∼ 𝜋1 t2

𝜋2 : t1 ∼ t2 → 𝜋2 t1 ∼ 𝜋2 t2

We now have three distinct semantics-derived equivalence relations on terms.

Algorithmic and declarative 𝛽-conversion (as we have defined them here) are themselves
equivalent notions. t1 ∼ t2 → t1 <~> t2 requires proving transitivity of _<~>_, which
follows from confluence (which itself can be proved by via parallel reduction [45]). [45]: Takahashi (1995), Parallel Reductions

in lambda-CalculusThe converse, t1 <~> t2 follows from _>𝛽_ being contained inside _~_ (t1 >𝛽 t2 →

t1 ∼ t2).

We can also prove that the standard model preserves _~_, but it turns equality in the
standard model is not equivalent to conversion as we have defined it. The model also
validates various 𝜂 equalities (inherited from the metatheory), including

J𝟙𝜂K : 𝚷 { t : Tm Γ 𝟙} → J t KTm = J 〈〉 KTm

J𝟙𝜂K :≡ refl

and

J→𝜂K : 𝚷 { t : Tm Γ (A → B) }
→ J t KTm = J 𝜆 ((t [wk]) · (` vz)) KTm

18

(though the latter requires an inductive proof).

Declaring a 𝛽𝜂-conversion relation which validates such equations is easy (we can
just add the relevant laws as cases), but doing the same for reduction (while retaining
normalisation and confluence) is tricky [46, 47]. [46]: Ghani (1995), Adjoint Rewriting

[47]: Lindley (2007), Extensional Rewriting
with SumsThese interactions motivate taking declarative conversion as the “default” specification

of the semantics when defining type theories from now on. Of course, poorly-designed
conversion relations might be undecidable or equate “morally” distinct terms (e.g. tt ∼ ff
is likely undesirable). We therefore should aim to justify our definitions of declarative
conversion by e.g. constructing models which preserve the equivalence and proving
desirable metatheoretic properties of the theory, such as normalisation. Given most
operations on terms ought to respect conversion, it can be quite convenient to quotient
(Section 1.1 - Equivalence Relations, Quotients and Setoids) terms by the relation (of
course, up to conversion, reduction is a somewhat ill-defined concept).

2.2.5 Explicit Substitutions

For STLC, we were able to get away with first defining terms inductively, and then
substitutions later as a recursive operation (and conversion after that, as an inductive

If one takes untyped terms as primi-
tive and then defines typing relations
explicitly, recursive substitution for de-
pendent types is achievable directly
[48]

[48]: Abel et al. (2018), Decidability of con-
version for type theory in type theory

, but this approach requires many
tedious proofs that e.g. substitution
preserves typing.

relation). It is unclear how to do the same for dependent type theory (specifically, ITT)
given types (with embedded terms) must be considered equal up to at least 𝛽-conversion
(and 𝛽-conversion at Π-types inevitably refers to substitution.) One might hope to find
a way to define a dependently-typed syntax mutually with a recursive substitution
operation, but unfortunately it is currently unclear how to make this work in practice
[7]

[7]: Kaposi et al. (2025), Type Theory in Type
Theory Using a Strictified Syntax

.

We therefore give an explicit substitution syntax for STLC, based on categories with
families (CwFs)[49, 50]

[49]: Dybjer (1995), Internal Type Theory
[50]: Castellan et al. (2019), Categories with
Families: Unityped, Simply Typed, and De-
pendently Typed

, which can be more easily adapted to the setting of dependent
types.

Unlike our previous syntax, our explicit substitution calculus only contains four main
sorts: contexts, types, terms and substitutions but no variables. Without variables, we
no longer parameterise substitutions by whether they are renamings or “full” substitu-
tions.

Ctx : Type
Ty : Type
Tm : Ctx → Ty → Type
Tms : Ctx → Ctx → Type

19

Definition 2.2.4 (Category)
A type of objects Ob and family of mor-
phisms Hom : Ob → Ob → Type
forms a category if Hom includes iden-
tity and composition.

record Category : Type where field
id : Hom x x
◦ : Hom x y → Hom y z

→ Hom x z
id◦ : id ◦ f = f
◦id : f ◦ id = f
◦◦ : (f ◦ g) ◦ h = f ◦ (g ◦ h)

We denote flipped composition with _;_,
which is convenient for substitutions as
it aligns with their action on terms being
denoted postfix.

We start with some properties of substitutions. Substitutions should form a category with
contexts as objects (i.e. there is an identity substitution, and they can be composed).

We quotient by substitution laws here, but of course we could work up to some equiva-
lence relation instead. By quotienting by the substitution laws, but not 𝛽/𝜂, we can obtain
a syntax that is isomorphic (w.r.t. propositional equality) to the recursive substitution
approach (the proof of this is given in detail in [44]).

[44]: Altenkirch et al. (2025), Substitution
without copy and paste

id : Tms Γ Γ

; : Tms Δ Γ → Tms Θ Δ → Tms Θ Γ

id; : id ; 𝛿 = 𝛿

;id : 𝛿 ; id = 𝛿

;; : (𝛿 ; 𝜎) ; 𝛾 = 𝛿 ; (𝜎 ; 𝛾)

Definition 2.2.5 (Terminal Object)
An object 𝟙 : Ob in a category C with a
family of morphisms Hom is terminal if
there is a unique morphism from every
other object in the category, x : Ob, to
𝟙, ! : Hom x 𝟙.

record Terminal : Type where field
! : Hom x 𝟙

uniq : f = !

The category of substitutions features a terminal object (the empty context). The unique
morphism 𝜀 applied to terms will correspond to weakening from the empty context.

• : Ctx
𝜀 : Tms Δ •
•𝜂 : 𝛿 = 𝜀

Terms are a presheaf on substitutions. That is, there is a (contravariantly) functorial
action that applies substitutions to terms.

Definition 2.2.6 (Presheaf)
We call family of types F : A →

Type a presheaf on a category C (with
Ob :≡ A and a family of morphisms
Hom) if it is a contravariant functor on
C. More concretely, there should exist
a functorial action which “lift”s mor-
phisms in C, Hom y x, to functions,
F x → F y.

record Presheaf : Type where field
map : Hom y x → F x → F y
map-id : map id xs = xs
map-◦ : map (f ◦ g) xs

= map f (map g xs)

[] : Tm Γ A → Tms Δ Γ → Tm Δ A
[id] : t [id] = t
[][] : t [𝛿] [𝜎] = t [𝛿 ; 𝜎]

To support binding, we must equip our CwF with context comprehension, including a
context extension operation _▷_ : Ctx → Ty → Ctx, and an associated way to
extend substitutions a fresh term to replace the new variable with.

▷ : Ctx → Ty → Ctx
_, _ : Tms Δ Γ → Tm Δ A → Tms Δ (Γ ▷ A)
, ; : (𝛿 , t) ; 𝜎 = (𝛿 ; 𝜎) , (t [𝜎])

We call laws like “, ;” which cover how the various constructs of type theory interact
with the functor operations, naturality laws. We can express these laws as commutative
diagrams, e.g.

𝛿 𝛿 ; 𝜎

𝛿 , t (𝛿 , t) ; 𝜎 = (𝛿 ; 𝜎) , (t [𝜎])

_; 𝜎

_, t _, (t [𝜎])

_; 𝜎

Given our intuition of parallel substitutions as lists of terms, we should expect a (natural)
isomorphism:

Tms Δ (Γ ▷ A) ≈ Tms Δ Γ × Tm Δ A

This can be witnessed either directly with projection operations, or we can take single-
weakening and the zero de Bruijn variable as primitive (wk :≡ 𝜋1 id and vz :≡ 𝜋2 id,
or 𝜋1 𝛿 :≡ wk ; 𝛿 and 𝜋2 𝛿 :≡ vz [𝛿]) [50]

[50]: Castellan et al. (2019), Categories with
Families: Unityped, Simply Typed, and De-
pendently Typed.

20

𝜋1 : Tms Δ (Γ ▷ A) → Tms Δ Γ

𝜋2 : Tms Δ (Γ ▷ A) → Tm Δ A
▷𝜂 : 𝛿 = 𝜋1 𝛿 , 𝜋2 𝛿

𝜋1, : 𝜋1 (𝛿 , t) = 𝛿

𝜋2, : 𝜋2 (𝛿 , t) = t
𝜋1; : 𝜋1 (𝛿 ; 𝜎) = 𝜋1 𝛿 ; 𝜎
𝜋2; : 𝜋2 (𝛿 ; 𝜎) = 𝜋2 𝛿 [𝜎]

wk : Tms (Γ ▷ A) Γ
vz : Tm (Γ ▷ A) A
wk; : wk ; (𝛿 , t) = 𝛿

vz[] : vz [𝛿 , t] = t
id▷ : id {Γ :≡ Γ ▷ A} = wk , vz

From these primitives, we can derive single substitutions <_> and functoriality of context
extension _ˆ_. The former just substitutes the zero de Bruijn variable for the given term,
while acting as identity everywhere else. The latter is obtained by first weakening all
terms in the substitution (to account for the new variable) and then mapping the new
zero variable to itself.

<_> : Tm Γ A → Tms Γ (Γ ▷ A)
< t > :≡ id , t

ˆ : 𝚷 (𝛿 : Tms Δ Γ) A → Tms (Δ ▷ A) (Γ ▷ A)
𝛿 ˆ A :≡ (𝛿 ; wk) , vz

We can extend this syntax with functions by adding the relevant type former and
introduction/elimination rules. Rather than the usual rule for application, it is convenient
in explicit substitution syntaxes to take a more pointfree combinator as primitive, which
directly inverts 𝜆_.

_→ _ : Ty → Ty → Ty
𝜆_ : Tm (Γ ▷ A) B → Tm Γ (A → B)
𝜆−1_ : Tm Γ (A → B) → Tm (Γ ▷ A) B

𝜆[] : (𝜆 t) [𝛿] = 𝜆 (t [𝛿 ˆ A])
𝜆−1[] : (𝜆−1 t) [𝛿 ˆ A] = 𝜆−1 (t [𝛿])

Semantically, 𝜆−1_ can be understood as the action of weakening the given function,
and then applying it to the fresh zero variable. We can derive the more standard rule for
application by following this up with a single-substitution:

· : Tm Γ (A → B) → Tm Γ A → Tm Γ B
t · u :≡ (𝜆−1 t) [< u >]

The advantages of 𝜆−1_ should hopefully be evident from now super-concise statement
of the 𝛽/𝜂 equations for→-types.

→𝛽 : 𝜆−1 𝜆 t ∼ t
→𝜂 : t ∼ 𝜆 𝜆−1 t

For other type formers, using an explicit syntax does not change much, so we will stop
here.

21

2.3 Dependently Typed Lambda Calculus

We will define an intensional type theory. See Section 18 for discussion on alternatives.

2.3.1 Syntax

As with our explicit STLC syntax, we define all four sorts mutually.

Ctx : Type
Ty : Ctx → Type
Tm : 𝚷 Γ → Ty Γ → Type
Tms : Ctx → Ctx → Type

As we will detail in Section 2.3.3, it is
possible to split the quotienting into
a separate equivalence relation, but in
the setting of dependent types, the de-
tails get a bit more complicated be-
cause the indexing of types, terms and
substitutions then needs to account for
this equivalence (note that substitu-
tions and computation will now occur
inside types, so type-equivalence is no
longer syntactic).

We start with substitutions. As with STLC, these must form a category. Again, we
quotient our syntax, but this time, we will go a bit further and even quotient by some
𝛽/𝜂 laws to account for definitional equality (in ITT, types should always be considered
equivalent up to computation).

id : Tms Γ Γ

; : Tms Δ Γ → Tms Θ Δ → Tms Θ Γ

id; : id ; 𝛿 = 𝛿

;id : 𝛿 ; id = 𝛿

;; : (𝛿 ; 𝜎) ; 𝛾 = 𝛿 ; (𝜎 ; 𝛾)

The category of substitutions features a terminal object (the empty context).

• : Ctx
𝜀 : Tms Δ •
•𝜂 : 𝛿 = 𝜀

In dependent type theory, types are a presheaf on substitutions, and terms are a displayed
presheaf.

[]Ty : Ty Γ → Tms Δ Γ → Ty Δ

[id]Ty : A [id]Ty = A
[][]Ty : A [𝛿]Ty [𝜎]Ty = A [𝛿 ; 𝜎]Ty

[] : Tm Γ A → 𝚷 (𝛿 : Tms Δ Γ) → Tm Δ (A [𝛿]Ty)
[id] : t [id] = cong (Tm Γ) [id]Ty t
[][] : t [𝛿] [𝜎] = cong (Tm Θ) [][]Ty t [𝛿 ; 𝜎]

To support binding, we must support a (now dependent) context extension operation
▷ : 𝚷 Γ → Ty Γ → Ctx.

▷ : 𝚷 Γ → Ty Γ → Ctx
_, _ : 𝚷 (𝛿 : Tms Δ Γ) → Tm Δ (A [𝛿]Ty) → Tms Δ (Γ ▷ A)
, ; : (𝛿 , t) ; 𝜎 = (𝛿 ; 𝜎) , transp (Tm Θ) [][]Ty (t [𝜎])

Like in STLC, we can witness the isomorphism

Tms Δ (Γ ▷ A) ≈ (𝛿 : Tms Δ Γ) × Tm Δ (A [𝛿]Ty)

either by adding projection operations or by taking single-weakening and the zero de
Bruijn variable as primitive.

22

𝜋1 : Tms Δ (Γ ▷ A) → Tms Δ Γ

𝜋2 : 𝚷 (𝛿 : Tms Δ (Γ ▷ A)) → Tm Δ (A [𝜋1 𝛿]Ty)
▷𝜂 : 𝛿 = 𝜋1 𝛿 , 𝜋2 𝛿

𝜋1, : 𝜋1 (𝛿 , t) = 𝛿

𝜋2, : 𝜋2 (𝛿 , t) = Tm= refl (cong (A [_]Ty) 𝜋1,) t
𝜋1; : 𝜋1 (𝛿 ; 𝜎) = 𝜋1 𝛿 ; 𝜎
𝜋2; : 𝜋2 (𝛿 ; 𝜎)

= Tm= refl (cong (A [_]Ty) 𝜋1 ; • sym [][]Ty) 𝜋2 𝛿 [𝜎]

wk : Tms (Γ ▷ A) Γ
vz : Tm (Γ ▷ A) (A [wk]Ty)
wk; : wk ; (𝛿 , t) = 𝛿

vz[] : vz [𝛿 , t] = Tm= refl ([][]Ty • cong (A [_]Ty) wk;) t
id▷ : id {Γ :≡ Γ ▷ A} = wk , vz

We derive single substitutions <_> and functoriality of context extension _ˆ_ as usual.
Note we need to transport the term in both cases to account for the functor laws holding
only propositionally.

<_> : Tm Γ A → Tms Γ (Γ ▷ A)
< t > :≡ id , transp (Tm _) (sym [id]Ty) t

ˆ : 𝚷 (𝛿 : Tms Δ Γ) A → Tms (Δ ▷ (A [𝛿]Ty)) (Γ ▷ A)
𝛿 ˆ A :≡ (𝛿 ; wk) , transp (Tm _) [][]Ty vz

We can also prove some derived substitution lemmas, such as how single-substitution
commutes with functoriality of context extension.

<>-comm : (𝛿 ˆ A) ; < t [𝛿] > = < t > ; 𝛿

We extend our syntax with dependent function types by adding the relevant type
former, introduction and elimination rules. We take pointfree/categorical application as
primitive.

Π : 𝚷 A → Ty (Γ ▷ A) → Ty Γ

𝜆_ : Tm (Γ ▷ A) B → Tm Γ (Π A B)
𝜆−1_ : Tm Γ (Π A B) → Tm (Γ ▷ A) B

Π[] : Π A B [𝛿]Ty = Π (A [𝛿]Ty) (B [𝛿 ˆ A]Ty)
𝜆[] : (𝜆 t) [𝛿] = Tm= refl Π[] 𝜆 (t [𝛿 ˆ A])
Π𝛽 : 𝜆−1 𝜆 t = t
Π𝜂 : t = 𝜆 𝜆−1 t

We can derive the more standard rule for application as usual. Interestingly, we can also
derive the substitution law for 𝜆−1 from 𝜆[], Π𝛽 and Π𝜂. For explicit STLC quotiented
by 𝛽/𝜂 equations, we can write essentially the same proof, but of course do not need to
worry about accounting for transporting of the term over Π[].

· : Tm Γ (Π A B) → 𝚷 (u : Tm Γ A) → Tm Γ (B [< u >]Ty)
t · u :≡ (𝜆−1 t) [< u >]
𝜆−1[] : (𝜆−1 t) [𝛿 ˆ A] = 𝜆−1 (transp (Tm Δ) Π[] (t [𝛿]))
𝜆−1[] {A :≡ A} { t :≡ t} {𝛿 :≡ 𝛿 } :≡
(𝜆−1 t) [𝛿 ˆ A]
= by sym Π𝛽

𝜆−1 (𝜆 ((𝜆−1 t) [𝛿 ˆ A]))
= by cong 𝜆−1_ (sym[] 𝜆[])
𝜆−1 transp (Tm _) Π[] ((𝜆 (𝜆−1 t)) [𝛿])
= by cong (𝝀 □ → 𝜆−1 transp (Tm _) Π[] (□ [𝛿])) (sym Π𝜂)
𝜆−1 transp (Tm _) Π[] (t [𝛿]) ■

We also show how to extend our syntax with Booleans and their dependent elimination
rule.

Given the term if A t u v, we call A the motive and t the scrutinee.

23

𝔹 : Ty Γ

𝔹[] : 𝔹 [𝛿]Ty = 𝔹

tt : Tm Γ 𝔹

ff : Tm Γ 𝔹

if : 𝚷 (A : Ty (Γ ▷ 𝔹)) (t : Tm Γ 𝔹)
→ Tm Γ (A [< tt >]Ty) → Tm Γ (A [< ff >]Ty)
→ Tm Γ (A [< t >]Ty)

tt[] : tt [𝛿] = Tm= refl 𝔹[] tt
ff[] : ff [𝛿] = Tm= refl 𝔹[] ff
if[] : if A t u v [𝛿]

= Tm= refl (sym <>-commTy • [][]coh {q :≡ refl })

if (A [transp (𝝀 □ → Tms (Δ ▷ □) (Γ ▷ 𝔹)) 𝔹[] (𝛿 ˆ 𝔹)]Ty)
(transp (Tm Δ) 𝔹[] (t [𝛿]))
(transp (Tm Δ) (sym <>-commTy • [][]coh {q :≡ tt[]}) (u [𝛿]))
(transp (Tm Δ) (sym <>-commTy • [][]coh {q :≡ ff[] }) (v [𝛿]))

𝔹𝛽1 : if A tt u v = u
𝔹𝛽2 : if A ff u v = v

So far, while types have been declared to depend on terms, we have no type formers
which explicitly rely on this dependency. In my opinion, this set-up makes it a little too
easy to “cheat” when writing e.g. normalisation proofs, as such theories can ultimately
be compiled into weaker type systems without type-term dependencies [51]. [51]: Barras et al. (1997), Coq in Coq

A common way to account for this without adding much complexity [52, 53] is to add [52]: Danielsson (2006), A Formalisation
of a Dependently Typed Language as an
Inductive-Recursive Family
[53]: Altenkirch et al. (2016), Type theory in
type theory using quotient inductive types

universes. Minimally, we can add one type former standing for a universe U : Ty Γ

and embed U-typed terms in Ty Γ with El : Tm Γ U → Ty Γ. However, because U
cannot contain Π-types (to ensure predicativity18), minimised type theories like this

18: To prevent Russel’s paradox, it
is important that Π-types always be
placed in larger universes than their
domain or range.

are something of a special case. Specifically, in this setting, it is possible to statically
compute the “spine” of Πs associated with each type, and use this to (in proofs) justify
taking the inductive step from e.g. Π A B to B [< u >]Ty [52] (i.e. B [< u >]Ty’s spine
is guaranteed to be smaller than Π A Bs).

In a type theory with a hierarchy of
universes, we could implement depen-
dent and large elimination with the
same primitive by generalising the mo-
tive of “if” to a type of any universe
level.

For the type theories that form the basis of modern proof assistants (e.g. Agda), this
technique does not work due to the presence of large elimination (recall from Remark
2.1.2 that this is the feature that allows us to generically prove constructor disjointness,
among other things). To ensure our proofs generalise to such theories, we therefore add
a primitive large elimination rule for Booleans - i.e. type-level “if” expressions.

IF : Tm Γ 𝔹 → Ty Γ → Ty Γ → Ty Γ

IF[] : IF t A B [𝛿]Ty

= IF (transp (Tm Δ) 𝔹[] (t [𝛿])) (A [𝛿]Ty) (B [𝛿]Ty)
IF-tt : IF tt A B = A
IF-ff : IF ff A B = B

We could go further, and add a recursive large elimination rule e.g. for ℕs, but I think
IF provides a nice balance between forcing us to demonstrate how to account for large
elimination without adding too much extra complexity.

We also show how extend the syntax with a propositional identity type Id A t1 t2.
Elements of this type are introduced with reflexivity and eliminated with the J rule (path
induction).

Id : 𝚷 A → Tm Γ A → Tm Γ A → Ty Γ

refl : Tm Γ (Id A t t)

Id[] : Id A t1 t2 [𝛿]Ty = Id (A [𝛿]Ty) (t1 [𝛿]) (t2 [𝛿])
refl[] : refl { t :≡ t} [𝛿] = Tm= refl Id[] refl

24

J : 𝚷 (B : Ty (Γ ▷ A ▷ Id (A [wk]Ty) (t1 [wk]) vz))
(p : Tm Γ (Id A t1 t2))

→ Tm Γ (B [< t1 > , transp (Tm Γ) wkvz<>Id refl]Ty)
→ Tm Γ (B [< t2 > , transp (Tm Γ) wkvz<>Id p]Ty)

Id𝛽 : J B refl t = t

J[] : J {Γ :≡ Γ } {A :≡ A} { t1 :≡ u1 } { t2 :≡ u2 } B p t [𝛿]
= Tm= refl <>,-comm

J (B [transp (𝝀 □ → Tms (Δ ▷ _ ▷ □) _) wk-commId
((𝛿 ˆ A) ˆ Id (A [wk]Ty) (u1 [wk]) vz)]Ty)
(transp (Tm Δ) Id[] (p [𝛿]))
(transp (Tm Δ) <>,-comm′ (t [𝛿]))

Given the term J B p t, we call B the motive and p the scrutinee.

We can recover transporting (i.e. indiscernibility-of-identicals) from J by weakening the
motive.

transp : 𝚷 (B : Ty (Γ ▷ A)) → Tm Γ (Id A t1 t2)
→ Tm Γ (B [< t1 >]Ty) → Tm Γ (B [< t2 >]Ty)

transp B p t
:≡ transp (Tm _) wk;Ty (J (B [wk]Ty) p (transp (Tm _) (sym wk;Ty) t))

Equality in Type Theory

Both our metatheory (Agda) and the syntax-so-far are examples of intensional type
theory (ITT). Equality judgements are divided into definitional (in Agda, denoted with
≡) and propositional (in Agda, denoted by _=_). As we have quotiented our syntax
by conversion, definitional equality in our object theory corresponds to propositional
equality in the meta, _=_, while propositional equality is represented with the Id type
former.

The key idea behind this division is that deciding propositional equality in general
requires arbitrary proof search (and so is undecidable), so definitional equality carves
out a decidable subset of propositional equality which the typechecker can feasibly
automate.

While ITT is the foundation of many modern proof assistants/dependently typed PLs,
including Rocq [38], Lean [37] and Idris [54] as well as Agda, it is not the only option. [38]: The Rocq Team (2025), The Rocq Ref-

erence Manual – Release 9.0
[37]: Moura et al. (2021), The Lean 4 Theo-
rem Prover and Programming Language

[54]: Brady (2021), Idris 2: Quantitative Type
Theory in Practice

It is perhaps interesting to note that
equality reflection is exactly the con-
verse of the introduction rule for Id (up
to _=_):

rfl′ : t1 = t2 → Tm Γ (Id A t1 t2)
rfl′ refl :≡ refl

So, both of these rules together have
the effect of making propositional and
definitional equality equivalent.

Our type theory can be turned into an extensional type theory (ETT) by adding the
equality reflection rule:

reflect : Tm Γ (Id A t1 t2) → t1 = t2

ETT loses decidable typechecking, but practical proof assistants can still in theory be
built upon it by allowing the user to explicitly write out typing/conversion derivations.

On the other end of the spectrum is weak type theory (WTT) [55], where definitional

[55]: Winterhalter (2020), Formalisation and
meta-theory of type theory

equality is left as pure syntactic equality and 𝛽/𝜂 laws are dealt with via primitive
operations returning propositional equalities.

Even within ITT, there is still quite a large design-space in how to treat equality. For
example:

▶ Whether definitional equality only encompasses 𝛽 laws or if certain 𝜂 laws are
admitted also [22, 56].

[22]: Kovács (2025), Eta conversion for the
unit type
[56]: Maillard (2024), Splitting Booleans with
Normalization-by-Evaluation

25

▶ Whether propositional uniqueness-of-identity-proofs (UIP) holds

uip : 𝚷 (p : Tm Γ (Id A t t)) → Tm Γ (Id (Id A t t) p refl)

Or equivalently, as axiom K

K : 𝚷 (B : Ty (Γ ▷ Id A t t)) (p : Tm Γ (Id A t t))
→ Tm Γ (B [< refl >]Ty) → Tm Γ (B [< p >]Ty)

▶ Whether (propositional) function extensionality is supported

funext : Tm (Γ ▷ A) (Id B (𝜆−1 t1) (𝜆−1 t2))
→ Tm Γ (Id (Π A B) t1 t2)

as in OTT and □TT.
▶ Whether equality at the level of types (i.e. in a type theory with universes)

is relaxed to that of equivalences (and is therefore computationally relevant,
contradicting UIP) as in □TT.

etc...

2.3.2 Soundness

Soundness of dependent type theory can be shown very similarly to STLC - we con-
struct the standard model. Rather than adding a dedicated empty type, we show that
Tm • (Id 𝔹 tt ff) is uninhabited.

sound : ¬ Tm • (Id 𝔹 tt ff)

The main differences are:

▶ Types are now interpreted as functions from environments to Type (so terms
become dependent functions)

▶ We need to mutually show soundness of interpretation w.r.t. conversion. Conve-
niently, all conversion equations hold definitionally in the model (:≡ refl) so we
skip over them in the below presentation.

JCtxK : Type1

JCtxK :≡ Type

JTyK : JCtxK → Type1

JTyK Γ :≡ Γ → Type

JTmK : 𝚷 Γ → JTyK Γ → Type
JTmK Γ A :≡ 𝚷 𝜌 → A 𝜌

JTmsK : JCtxK → JCtxK → Type
JTmsK Δ Γ :≡ Δ → Γ

J_KCtx : Ctx → JCtxK
J_KTy : Ty Γ → JTyK J Γ KCtx
J_KTm : Tm Γ A → JTmK J Γ KCtx J A KTy
J_KTms : Tms Δ Γ → JTmsK J Δ KCtx J Γ KCtx

Note that for type-level (large) IF, we can use B’s recursor, while for term-level (depen-
dent) “if”, we need to use the dependent eliminator.

J • KCtx :≡ 1
J Γ ▷ A KCtx :≡ 𝚺 J Γ KCtx J A KTy

J 𝔹 KTy :≡ 𝝀 𝜌 → B

J Id A t1 t2 KTy :≡ 𝝀 𝜌 → J t1 KTm 𝜌 = J t2 KTm 𝜌

26

J Π A B KTy :≡ 𝝀 𝜌 → 𝚷 uV → J B KTy (𝜌 , uV)
J A [𝛿]Ty KTy :≡ 𝝀 𝜌 → J A KTy (J 𝛿 KTms 𝜌)
J IF t A B KTy :≡ 𝝀 𝜌 → B-rec (J t KTm 𝜌) (J A KTy 𝜌) (J B KTy 𝜌)
J 𝜋1 𝛿 KTms :≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌 .𝝅1

J id KTms :≡ 𝝀 𝜌 → 𝜌

J 𝜀 KTms :≡ 𝝀 𝜌 → ⟨⟩
J 𝛿 , t KTms :≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌 , J t KTm 𝜌

J 𝛿 ; 𝜎 KTms :≡ 𝝀 𝜌 → J 𝛿 KTms (J 𝜎 KTms 𝜌)
J 𝜆 t KTm :≡ 𝝀 𝜌 uV → J t KTm (𝜌 , uV)
J 𝜆−1 t KTm :≡ 𝝀 (𝜌 , uV) → J t KTm 𝜌 uV

J tt KTm :≡ 𝝀 𝜌 → tt
J ff KTm :≡ 𝝀 𝜌 → ff
J t [𝛿] KTm :≡ 𝝀 𝜌 → J t KTm (J 𝛿 KTms 𝜌)
J 𝜋2 𝛿 KTm :≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌 .𝝅2

J if A t u v KTm
:≡ 𝝀 𝜌 → B-elim (𝝀 b → J A KTy (𝜌 , b)) (J t KTm 𝜌)

(J u KTm 𝜌) (J v KTm 𝜌)
J J B p t KTm

:≡ 𝝀 𝜌 → = -elim (𝝀 JuK JpK → J B KTy ((𝜌 , JuK) , JpK))
(J p KTm 𝜌) (J t KTm 𝜌)

tt/ff-disj : ¬ tt = ff
tt/ff-disj ()
sound t :≡ tt/ff-disj (J t KTm ⟨⟩)

2.3.3 From Quotients to Setoids

As previously mentioned in Section 1.1 - Equivalence Relations, Quotients and Setoids,
support for quotient types in modern proof assistants is somewhat hit-or-miss. Quoti-

In a two-level metatheory [57] it is
possible to simultaneously work with
quotients up to equivalence when
convenient and then go down to a raw
syntactic level when required. The key
idea behind 2LTT is to have both an
inner and outer propositional equality,
which differ in their degrees of exten-
sionality. Indeed some exploration has
been done on using this framework to
formalise elaboration [58], a somewhat
inherently syntactic algorithm.

2LTT also comes with some re-
strictions on eliminators mapping
between the two levels though, which
I expect to be problematic in proving
e.g. strong normalisation. A pertinent
question arises here: why not just
scrap intrinsically-typed syntax and
use inductive typing relations on
untyped terms? Perhaps if our only
aim was proving strong normalisation,
this would be a sensible course of
action.

[57]: Annenkov et al. (2023), Two-level type
theory and applications
[58]: Kovács (2024), Basic setup for formal-
izing elaboration

enting by conversion also prevents us from performing more fine-grained “intensional”
analysis on terms [59] or using more “syntactic” proof techniques such as reduction.

[59]: Kovács (2022), Staged compilation with
two-level type theory

Therefore, when mechanising in Agda, we prefer to work with setoids rather than QIITs
directly.

We follow essentially the translation as outlined in [59]. Contexts become a setoid, types
become a setoid fibration on contexts, substitutions become a setoid fibration on pairs
of contexts and terms become a setoid fibration on types paired with their contexts.

We start by declaring the equivalence relations. We place these in a universe of strict
propositions Prop for convenience.

data Ctx~ : Ctx → Ctx → Prop
data Ty~ : Ctx~ Γ1 Γ2 → Ty Γ1 → Ty Γ2 → Prop
data Tm~ : 𝚷 Γ~ → Ty~ Γ~ A1 A2 → Tm Γ1 A1 → Tm Γ2 A2

→ Prop
data Tms~ : Ctx~ Δ1 Δ2 → Ctx~ Γ1 Γ2 → Tms Δ1 Γ1 → Tms Δ2 Γ2

→ Prop

We add constructors to these relations corresponding to equivalence, congruence and
computation (the latter of correspond to the propositional equations that we explicitly
quotient by in a QIIT syntax).

data Ty~ where
-- Equivalence
rfl~ : Ty~ rfl~ A A
sym~ : Ty~ Γ~ A1 A2 → Ty~ (sym~ Γ~) A2 A1

27

•~ : Ty~ Γ12~ A1 A2 → Ty~ Γ23~ A2 A3 → Ty~ (Γ12~ •~ Γ23~) A1 A3

-- Congruence
𝔹~ : Ty~ Γ~ 𝔹 𝔹

Π~ : 𝚷 A~ → Ty~ (Γ~ ▷~ A~) B1 B2 → Ty~ Γ~ (Π A1 B1) (Π A2 B2)
[]~ : 𝚷 (A~ : Ty~ Γ~ A1 A2) (𝛿~ : Tms~ Δ~ Γ~ 𝛿1 𝛿2)

→ Ty~ Δ~ (A1 [𝛿1]Ty) (A2 [𝛿2]Ty)
IF~ : Tm~ Γ~ 𝔹~ t1 t2 → Ty~ Γ~ A1 A2 → Ty~ Γ~ B1 B2

→ Ty~ Γ~ (IF t1 A1 B1) (IF t2 A2 B2)
-- Computation
IF-TT~ : Ty~ rfl~ (IF tt A B) A
IF-FF~ : Ty~ rfl~ (IF ff A B) B

𝔹[]~ : Ty~ rfl~ (𝔹 [𝛿]Ty) 𝔹
Π[]~ : Ty~ rfl~ (Π A B [𝛿]Ty) (Π (A [𝛿]Ty) (B [𝛿 ˆ A]Ty))
[id]~ : Ty~ rfl~ (A [id]Ty) A
[][]~ : Ty~ rfl~ (A [𝛿]Ty [𝜎]Ty) (A [𝛿 ; 𝜎]Ty)

We are missing the computation rule for substitutions applied to IF:

IF[] : IF t A B [𝛿]Ty

= IF (transp (Tm Δ) 𝔹[] (t [𝛿])) (A [𝛿]Ty) (B [𝛿]Ty)

The transport here is essential. t [𝛿] only has type 𝔹 [𝛿]Ty, but IF requires a term
of type 𝔹. Typeability in dependent type theory must account for conversion. We can
achieve this by adding constructors to each indexed sort (Ty, Tm and Tms) corresponding
to coercion over the equivalence:

coeTy : Ctx~ Γ1 Γ2 → Ty Γ1 → Ty Γ2

coeTm : 𝚷 Γ~ → Ty~ Γ~ A1 A2 → Tm Γ1 A1 → Tm Γ2 A2

coeTms : Ctx~ Δ1 Δ2 → Ctx~ Γ1 Γ2 → Tms Δ1 Γ1 → Tms Δ2 Γ2

IF[]~ can now be written with an explicit coercion on the scrutinee:

if[]~ : Ty~ rfl~ (IF t A B [𝛿]Ty)
(IF (coeTm rfl~ 𝔹[]~ (t [𝛿])) (A [𝛿]Ty) (B [𝛿]Ty))

The final ingredient to make this work is coherence: coercion must respect the equiva-
lence.

cohTy : Ty~ Γ~ A (coeTy Γ~ A)
cohTms : Tms~ Δ~ Γ~ 𝛿 (coeTms Δ~ Γ~ 𝛿)
cohTm : Tm~ Γ~ A~ t (coeTm Γ~ A~ t)

2.3.4 Strictification

Whether quotiented or based on setoids, explicit-substitution syntaxes can be painful
to work with in practice. We have already seen how many of the substitution laws for
terms require manual coercion over the corresponding laws for types, e.g.

if[] : if A t u v [𝛿]
= Tm= refl (sym <>-commTy • [][]coh {q :≡ refl })

if (A [transp (𝝀 □ → Tms (Δ ▷ □) (Γ ▷ 𝔹)) 𝔹[] (𝛿 ˆ 𝔹)]Ty)
(transp (Tm Δ) 𝔹[] (t [𝛿]))
(transp (Tm Δ) (sym <>-commTy • [][]coh {q :≡ tt[]}) (u [𝛿]))
(transp (Tm Δ) (sym <>-commTy • [][]coh {q :≡ ff[] }) (v [𝛿]))

28

If substitution instead computed recursively, 𝔹[] : 𝔹 [𝛿]Ty = 𝔹, tt[] : tt [𝛿] =

tt and ff[] : ff [𝛿] = ff would hold definitionally, enabling the substantially
simpler

if[] : if A t u v [𝛿]
= Tm= refl (sym (<>-commTy {B :≡ A }))

if (A [𝛿 ˆ 𝔹]Ty) (t [𝛿])
(transp (Tm Δ) (sym (<>-commTy {B :≡ A})) (u [𝛿]))
(transp (Tm Δ) (sym (<>-commTy {B :≡ A})) (v [𝛿]))

Of course, the rule still requires some transport to account for commuting of substitu-
tions

<>-commTy : B [𝛿 ˆ A]Ty [< t [𝛿] >]Ty = B [< t >]Ty [𝛿]Ty

which does not hold by mere computation. If somehow this law were made strict as
well, we could write the substitution law for “if” as

if[] : if A t u v [𝛿]
= if (A [𝛿 ˆ 𝔹]Ty) (t [𝛿]) (u [𝛿])) (v [𝛿]))

This excessive transporting can get especially painful when constructing displayed
models of syntax19, e.g. when proving properties like canonicity or normalisation. Issues

19: In other words, inducting on syntax
rather than merely recursing.

of this sort were severe enough that the Agda mechanisation of [60] was never fully

[60]: Altenkirch et al. (2017), Normalisation
by Evaluation for Type Theory, in Type The-
ory

finished.

Luckily, there has been some significant progress recently towards taking a well-
understood explicit substitution syntax as primitive and then strictifying various sub-
stitution equations, as to construct something easier to work with. [61] illustrates one

[61]: Kaposi (2023), Towards quotient
inductive-inductive-recursive types

strategy towards achieving this, where operations intended to compute are redefined
recursively and then a new induction principle is derived which refers to these recursive
operations.

Unfortunately, while this approach can make substitution equations arising from direct
computation such as 𝔹 [𝛿]Ty = 𝔹 definitional, the functor laws remain propositional.
[7] presents a much more involved construction based on presheaves, in which all [7]: Kaposi et al. (2025), Type Theory in Type

Theory Using a Strictified Syntaxsubstitution laws, except the 𝜂 law for context extension ▷𝜂 : 𝛿 = 𝜋1 𝛿 , 𝜋2 𝛿 /
id▷ : id {Γ :≡ Γ ▷ A} = wk , vz, are eventually strictified. When implemented in
Agda, both approaches only allow induction via explicit eliminators, rather than pattern
matching.

Some proof assistants also support reflecting a subset propositional equations into
definitional ones via global REWRITE rules (e.g. Dedukti [62], Agda [11] and Rocq [12]). [62]: Assaf et al. (2023), Dedukti: a Logical

Framework based on the 𝜆Π-Calculus Mod-
ulo Theory

[11]: Cockx (2019), Type Theory Unchained:
Extending Agda with User-Defined Rewrite
Rules
[12]: Leray et al. (2024), The Rewster: Type
Preserving Rewrite Rules for the Coq Proof
Assistant

Global rewrite rules can be though of a restricted version of equality reflection from
extensional type theory (in which transports/coercions are fully relegated to the typing
derivations), and [63–65] show that ETT is ultimately conservative over ITT.

[63]: Hofmann (1995), Conservativity of
Equality Reflection over Intensional Type
Theory
[64]: Oury (2005), Extensionality in the Cal-
culus of Constructions
[65]: Winterhalter et al. (2019), Eliminating
reflection from type theory

So, if we start with a QIIT definition of type theory, we have few possible routes towards
strictifying equations. There remain problems though:

▶ Strictification can produce a more convenient induction principle for the syntax,
but this is still just an induction principle. Directly-encoded inductive-recursive
types in Agda allow for pattern matching, which is often more convenient (e.g.
when pattern matching, we do not have to explicitly give cases for how to interpret
the recursive operations).

▶ As mentioned in the previous section, Agda’s support for quotient types is some-
what unsatisfactory, so we would rather use setoids. Rewriting via setoid equa-
tions is unsound (because setoid constructors are still provably disjoint w.r.t.
propositional equality).

▶ Rewrite rules as implemented in Agda struggle somewhat with indexed types
[#7602]. [#7602]: Burke (2024), Associativity of vector

concatenation REWRITE sometimes doesn’t
apply

29

The ultimate goal of this project is to explore new type theories with local equational
assumptions, not to provide a watertight Agda mechanisation. Therefore, in the proofs
of normalisation, where, frankly, we need all the help we can get, I axiomatise strict,
implicit-substitution syntaxes, using a combination of POSTULATEs, REWRITE rules,
NON_TERMINATING and NON_COVERING definitions, and even a new flag which
re-enables [#6643] (these are of course very unsafe features, but the idea is to simulate [#6643]: Liao (2023), #6643: Rewrite rules are

allowed in implicit mutual blocksworking in a “nicer” metatheory where “transport-hell” is less of an issue). Critically,
while substitution is strict, we still deal with 𝛽/𝜂 convertibility via an explicit equivalence
relation, so the syntax remains setoid-based.

For presentation in the report, going over the entire syntax of dependent type theory
again, switching _= _ signs to _≡ _ is probably not a super valuable use of anyone’s
time. I will quickly given the definition of variables though, given these are new to the
strict presentation (though very similar to STLC).

data Var where
coeVar : 𝚷 Γ~ → Ty~ Γ~ A1 A2 → Var Γ1 A1 → Var Γ2 A2

vz : Var (Γ , A) (A [wk]Ty)
vs : Var Γ B → Var (Γ , A) (B [wk]Ty)

We also return to pointful application:

· : Tm Γ (Π A B) → 𝚷 (u : Tm Γ A) → Tm Γ (B [< u >]Ty)

30

2.4 Normalisation by Evaluation

Normalisation by Evaluation (NbE) [66, 67] is a normalisation algorithm for lambda [66]: Berger et al. (1991), An Inverse of the
Evaluation Functional for Typed lambda-
calculus
[67]: Altenkirch et al. (1995), Categorical
Reconstruction of a Reduction Free Normal-
ization Proof

calculus terms, which operates by first evaluating terms into a semantic domain (specif-
ically, the presheaf model), and then inverting the evaluation function to quote back
normal forms. It can be motivated from multiple directions:

▶ No reliance on small-step reductions: NbE is structurally recursive, and is
therefore not reliant on a separate strong normalisation result to justify termina-
tion. This can be especially useful in settings where a strongly normalising set of
small-step reductions is difficult to identify (e.g. dealing with 𝜂-expansion).

▶ Applicability to quotiented syntax: Following on from the first point, unlike
term-rewriting-based approaches to normalisation, NbE does not rely on distin-
guishing 𝛽𝜂-convertible terms (the algorithm can be structured in such a way as
to simply map families of convertible terms to values [60]). [60]: Altenkirch et al. (2017), Normalisation

by Evaluation for Type Theory, in Type The-
ory

▶ Efficiency: NbE avoids repeated expensive single-substitutions (which need to
traverse the whole syntax tree each time to possibly replace variables with the
substitute) [68]. Instead, the mappings between variables and semantic values are [68]: Kovács (2023), smalltt
tracked in a persistent map (the environment), such that variables can be looked
up exactly when they are evaluated.

This all means that NbE is useful both as a technique to prove normalisation for type
theory, and as an algorithm in typechecker implementations for deciding convertibility
of types. We will use NbE for both purposes in this project, and will discuss the shortcuts
we can take when implementing NbE in a partial programming language (specifically
Haskell) in (Section 5.4).

To introduce NbE, we will begin by deriving the algorithm for the the recursive substi-
tution STLC syntax given in Section 2.2.1, and sketch how to prove its correctness. We
will then extend the technique to dependent type theory following [60]. [60]: Altenkirch et al. (2017), Normalisation

by Evaluation for Type Theory, in Type The-
ory

2.4.1 Naive Normalisation

As a warm-up to NbE, we will start by implementing “naive” normalisation, i.e. recursing
on a term, contracting 𝛽-redexes where possible by applying single-substitutions. Using
this approach, termination can only be justified by a separate strong normalisation
result.

We first define our goal: 𝛽-normal forms, Nf Γ A, inductively (mutually recursively with
stuck, neutral terms, Ne Γ A) along with the obvious injections back into ordinary terms,
⌜_⌝, ⌜_⌝ne.

To enforce 𝜂-normality for→, × and
𝟙, we could restrict embedded neutrals
in Nf to only those of positive types,
𝟘 and +. 𝛽𝜂-normal forms accounting
for positive types more complicated
[69]

[69]: Scherer (2017), Deciding equivalence
with sums and the empty type

(and actually 𝛽𝜂 normalisation for
STLC with positive inductive types like
ℕ is undecidable).

data Ne : Ctx → Ty → Type
data Nf : Ctx → Ty → Type

data Ne where
`_ : Var Γ A → Ne Γ A
· : Ne Γ (A → B) → Nf Γ A → Ne Γ B
𝜋1 : Ne Γ (A × B) → Ne Γ A
𝜋2 : Ne Γ (A × B) → Ne Γ B
case : Ne Γ (A + B) → Nf (Γ ▷ A) C → Nf (Γ ▷ B) C → Ne Γ C

data Nf where
ne : Ne Γ A → Nf Γ A
𝜆_ : Nf (Γ ▷ A) B → Nf Γ (A → B)
_, _ : Nf Γ A → Nf Γ B → Nf Γ (A × B)
〈〉 : Nf Γ 𝟙

in1 : 𝚷 B → Nf Γ A → Nf Γ (A + B)
in2 : 𝚷 A → Nf Γ B → Nf Γ (A + B)

31

⌜_⌝Nf : Nf Γ A → Tm Γ A
⌜_⌝Ne : Ne Γ A → Tm Γ A

We can now attempt to define normalisation by direct recursion on terms, relying
on substitution to contract 𝛽-redexes. For the rest of this section, we will restrict our
attention to the cases for _→ _ types, for simplicity.

norm : Tm Γ A → Nf Γ A
nf-app : Nf Γ (A → B) → Nf Γ A → Nf Γ B

norm (𝜆 t) :≡ 𝜆 (norm t)
norm (t · u) :≡ nf-app (norm t) (norm u)
nf-app (ne t) u :≡ ne (t · u)
nf-app (𝜆 t) u :≡ norm (⌜ t ⌝Nf [< ⌜ u ⌝Nf >])

Note that normal forms are not sta-
ble under substitution (i.e. substitution
can create new 𝛽-redexes), so we can-
not easily define substitution on nor-
mal forms to resolve this. It is perhaps
worth mentioning though, that if one
is more careful with the representation
of neutral spines (among other things),
pushing in this direction can lead to
another structurally recursive normal-
isation algorithm known as hereditary
substitution [70]. Unfortunately, it is
currently unknown whether this tech-
nique scales to dependent types.

[70]: Keller et al. (2010), Hereditary Substi-
tutions for Simple Types, Formalized

In a partial language, when applied to normalising terms, this definition is works! The
single substitutions are less efficient on terms with multiple 𝛽-redexes than the NbE
approach of tracking all variable mappings in a single environment, but with effort, it
can be optimised (e.g. we could annotate subterms with the sets of variables that are
actually used, to avoid unnecessary traversals during substitution).

In a total setting, unfortunately, naive normalisation is clearly not well-founded by
structural recursion. ⌜ norm t ⌝Nf [< ⌜ norm u ⌝Nf >] is not structurally smaller
than t · u.

Making naive normalisation total relies on a strong normalisation result: we need
to know that 𝛽-reduction, _>𝛽_, is well-founded. Actually, we will make use of the

Definition 2.4.1 (Accessibility)
Classically, strong normalisation can
be defined as there existing no infinite
chains of reductions. To induct w.r.t. re-
duction order constructively, we instead
use accessibility predicates.

data Acc (_>_ : A → A → Type)
(x : A) : Type where

acc : (𝚷 {y } → x > y
→ Acc _>_ y)

→ Acc _>_ x

Intuitively, Acc _>_ x can be thought of
as the type of finite-depth trees starting
at x, with branches corresponding to
single steps along _>_ and minimal
elements w.r.t. _>_ at the leaves.

We use SN as a synonym for Acc
when the ordering is a small-step reduc-
tion relation that proceeds underneath
abstractions.

accessibility of typed terms w.r.t. interleaved structural ordering, _>s_, and 𝛽-reduction,
but luckily obtaining this from traditional strong normalisation is not too difficult [71].
Note that _>𝛽_ commutes with _>s_ in the sense that

|t >s u → u >𝛽 v → (w : Tm Γ) × t >𝛽 w × w >s v|

or as a diagram:

t u

w v

>s

_>𝛽 _ _>𝛽 _

>s

We therefore skip ahead to defining a single _>𝛽s_ relation on terms encompassing both
structural and reduction orderings, and assume we have a proof that this combined
order is well-founded.

data _>s_ : Tm Γ A → Tm Δ B → Type where
l·> : t · u >s t
·r> : t · u >s u
𝜆> : 𝜆 t >s t

data _>𝛽s_ : BTm → BTm → Type where
𝛽> : t >𝛽 u → ⟨⟨ t ⟩⟩ >𝛽s ⟨⟨ u ⟩⟩
s> : t >s u → ⟨⟨ t ⟩⟩ >𝛽s ⟨⟨ u ⟩⟩

-- All terms are strongly normalisable w.r.t. _>𝛽s_
wf : 𝚷 (t : Tm Γ A) → SN _>𝛽s_ ⟨⟨ t ⟩⟩

Normalisation can then be made total by consistently returning evidence that there
exists a (possibly empty) chain of reductions _>𝛽*_ to go from the input term to the
resulting normal form.

We denote the transitive closure and
reflexive-transitive closures of orders
with + and ∗ respectively.

32

Nf> : 𝚷 Γ A → Tm Γ A → Type
Nf> Γ A t :≡ (tNf : Nf Γ A) × (t >𝛽* ⌜ tNf ⌝Nf)

Actually using our accessibility predicate to justify naive normalisation gets quite
cluttered, but the main idea is to ensure that we are always making progress with
respect to _>𝛽s_.

norm : 𝚷 (t : Tm Γ A) → SN _>𝛽s+_ ⟨⟨ t ⟩⟩ → Nf> Γ A t

nf-app : 𝚷 (tNf
: Nf Γ (A → B)) (uNf

: Nf Γ A)
→ SN _>𝛽s+_ ⟨⟨ t · u ⟩⟩ → t · u >𝛽* ⌜ tNf ⌝Nf · ⌜ uNf ⌝Nf
→ Nf> Γ B (t · u)

norm (` i) a :≡ ne (` i) , rfl*
norm (𝜆 t) (acc a)

using tNf , t>tNf :≡ norm t (a ⟨⟨ s> 𝜆> ⟩⟩)
:≡ (𝜆 tNf) , 𝜆 × t>tNf

norm (t · u) (acc a)
using tNf , t>tNf :≡ norm t (a ⟨⟨ s> l·> ⟩⟩)
| uNf , u>uNf :≡ norm u (a ⟨⟨ s> ·r> ⟩⟩)

:≡ nf-app tNf uNf (acc a) (t>tNf ·* u>uNf)
nf-app (ne t) u _ tu>tuNf

:≡ ne (t · u) , tu>tuNf

nf-app (𝜆 t) u (acc a) rfl*
using tuNf , tu>tuNf :≡ norm (⌜ t ⌝Nf [< ⌜ u ⌝Nf >]) (a ⟨⟨ 𝛽> →𝛽 ⟩⟩)
:≡ tuNf , →𝛽 :: tu>tuNf

nf-app (𝜆 t) u (acc a) (p :: q)
using tuNf , tu>tuNf :≡ norm (⌜ t ⌝Nf [< ⌜ u ⌝Nf >])

(a (𝛽> p ::+ (map* _ 𝛽> q ◦* ⟨⟨ 𝛽> →𝛽 ⟩⟩*)))
:≡ tuNf , (p :: q ◦* ⟨⟨ →𝛽 ⟩⟩* ◦* tu>tuNf)

normalise : Tm Γ A → Nf Γ A
normalise t :≡ norm t (sn+ (wf t)) .𝝅1

Soundness and completeness of normalise follows from equivalence between algorithmic
and declarative conversion (completeness relies on confluence of reduction).

From the Standard Model to Presheaves

To derive a structurally-recursive normalisation algorithm, our attention be focused on
the case for application. Recall that when aiming to produce Nf Γ As directly by recursion
on our syntax, we failed to derive a structurally recursive algorithm because there is no
analogue of _·_ : Tm Γ (A → B) → Tm Γ A → Tm Γ B on normal forms.

For inspiration on how to solve this, we recall the definition of the standard model.
There, we were able to write a structurally-recursive interpreter for closed terms by
interpreting object-level functions, abstractions and applications into their meta-level
counterparts. E.g. we implemented application in the model merely with meta-level
application (plus threading of environments.)

J t · u KTm
𝜌 :≡ (J t KTm

𝜌) (J u KTm
𝜌)

We cannot recover normalisation from the standard model, however. Without an en-
vironment of closed values to evaluate with respect to, we cannot hope to inspect the
structure of evaluated terms (i.e. meta-level functions like J Γ KCtx

→ J A KTy are
opaque). Similarly, even with an environment, we cannot inspect the structure of inter-
preted→-typed values beyond testing their behaviour on particular inputs given these
are again opaque meta-language functions. The “problem” we are encountering is that
our values have no first-order representation of variables.

33

It turns out, by carefully defining a similar model, based on presheaves, we can em-
bed stuck, first-order variables into values20 , implement evaluation in open contexts

20: In fact, we are forced to include gen-
eral, stuck neutral terms to support ap-
plication where the LHS is a variable.

and, critically, invert evaluation, quoting back into normalised first-order terms (i.e.
our normal forms). This evaluation followed by quoting is exactly normalisation by
evaluation.

2.4.2 The Presheaf Model

Central to the presheaf model (perhaps unsurprisingly) is the concept of a presheaf:
contravariant functors into Type (Definition 2.2.6). We actually have a choice about
which category to take presheaves over, with the key restrictions being that it must
be a subset of substitutions, normal/neutral forms must be stable w.r.t. it and it must
include the single-weakening wk : Tms (Γ ▷ A) Γ (we will see why these latter
two restrictions are important later). The two standard choices are renamings Ren Δ Γ,
which we have seen already, and thinnings, Thin Δ Γ. We will use thinnings (also known
as order-preserving embeddings) because type theories we will consider later in this
report will actually not feature renaming-stable normal/neutral forms (Remark 6.2.1).

We define thinnings concretely as

data Thin : Ctx → Ctx → Type where
𝜀 : Thin • •
ˆTh : Thin Δ Γ → 𝚷 A → Thin (Δ ▷ A) (Γ ▷ A)
+Th : Thin Δ Γ → 𝚷 A → Thin (Δ ▷ A) Γ

We can show these are indeed a category by deriving the identity thinning and compo-
sition, and proving the relevant laws

idTh
: Thin Γ Γ

;Th : Thin Δ Γ → Thin Θ Δ → Thin Θ Γ

id;Th
: idTh ;Th 𝛿Th = 𝛿Th

;idTh
: 𝛿Th ;Th idTh = 𝛿Th

;;Th
: (𝛿Th ;Th 𝜎Th) ;Th 𝛾Th = 𝛿Th ;Th (𝜎Th ;Th 𝛾Th)

And indeed thinning encompass weakenings

wkTh
: Thin (Γ ▷ A) Γ

wkTh :≡ idTh +Th _

For their action, we can take a shortcut for now and rely on their embedding into
renamings.

⌜_⌝Th : Thin Δ Γ → Ren Δ Γ

The standard model can be seen as interpreting object-level types into the corresponding
objects in the category Type (where the objects are Types and the morphisms are
functions). In the presheaf model, we instead interpret into corresponding objects in
the category of presheaves (where the objects are presheaves, and the morphisms are
natural transformations).

For example, the unit presheaf (that is, the terminal object in the category of presheaves)
is simply 𝟙Psh :≡ 𝝀 Γ → 1. Similarly, the products in the category of presheaves can
be constructed as F ×Psh G :≡ 𝝀 Γ → F Γ × G Γ.

The exponential object in the category of presheaves is a bit more subtle. We might try
to follow the pattern and define F →Psh G :≡ 𝝀 Γ → F Γ → G Γ but this doesn’t
quite work. When trying to implement
thin : Thin Δ Γ → (F →Psh G) Γ → (F →Psh G) Δ we only have access to an

34

F Δ and a function which accepts F Γs21. The solution is to quantify over thinnings, i.e.
21: Note the Thin Δ Γ thinning can
only transform F Γs into F Δs, not the
other way around.

F →Psh G :≡ 𝝀 Γ → 𝚷 {Δ} → Thin Δ Γ → F Δ → G Δ.

These are (almost) all the ingredients we need to define NbE values. Types in a context
Γ are merely interpreted as the corresponding constructs in the category of presheaves.
The presheaf action _[_]Psh is defined by recursion on types.

J_KPsh
: Ty → Ctx → Type

J A → B KPsh Γ :≡ 𝚷 {Δ} → Thin Δ Γ → J A KPsh Δ → J B KPsh Δ

J A × B KPsh Γ :≡ J A KPsh Γ × J B KPsh Γ

J A + B KPsh Γ :≡ J A KPsh Γ + J B KPsh Γ

J 𝟙 KPsh Γ :≡ 1
J 𝟘 KPsh Γ :≡ O

[]Psh
: J A KPsh Γ → Thin Δ Γ → J A KPsh Δ

Remark 2.4.1 (Naturality of Presheaf Exponentials)
Technically, our presheaf exponentials are still not quite right here. We also need a
naturality condition [72] [72]: Liao (2025), Exponential objects in

presheaf categories
: thinning the argument should be equivalent to thinning

the result of the application.

J A → B KPsh Γ

:≡ (f : (𝚷 {Δ} → Thin Δ Γ → J A KPsh Δ → J B KPsh Δ)
) × (𝚷 {Δ Θ} uV (𝛿Th

: Thin Δ Γ) (𝜎Th
: Thin Θ Δ)

→ f (𝛿Th ;Th 𝜎Th) (uV [𝜎Th]Psh) = (f 𝛿Th uV) [𝜎Th]Psh)

To merely implement NbE algorithm for (unquotiented) STLC, allowing unnatural
→-typed values does not cause any trouble. However, when proving soundness, this
refinement is essential [73] [73]: Kovács (2017), A machine-checked cor-

rectness proof of normalization by evalua-
tion for simply typed lambda calculus

(specifically, when showing preservation of substitution).
For simplicity, we will ignore the naturality condition for now.

A final subtlety arises with the positive type formers _ + _ and 𝟘. E.g. While 𝝀 Γ → O

does satisfy all the necessary laws of an initial object, and terms of type 𝟘 can only occur
[23] explores NbE using model based
on sheaves (instead of presheaves) to
fix this more elegantly and in doing
so decides 𝜂 (as well as 𝛽) equivalence
for sums, We discuss the costs of doing
this in in Section 3.5.

[23]: Altenkirch et al. (2001), Normalization
by Evaluation for Typed Lambda Calculus
with Coproducts

inside empty contexts (i.e. contexts containing 𝟘), when it comes to evaluating a variable
of type 𝟘, we cannot hope to produce a proof ofO (i.e. the context containing the empty
type does not mean evaluation can give up - normalisation requires evaluating under
all contexts).

To solve this, we must embed neutrals into the model. E.g. we could interpret 𝟘 as
𝝀 Γ → Ne Γ 𝟘. 𝝀 Γ → Ne Γ 𝟘 is obviously not an initial object in the category of
presheaves, so by doing this we have slightly broken the model, but it turns out that
only the 𝜂 laws for 𝟘 are actually lost (which lines up exactly with the consequences of
embedding neutrals in Nf). We are aiming only to 𝛽-normalise terms for now, and will
therefore actually take a more extreme option, embedding neutrals of all types as to line
up more closely with our 𝛽-normal forms.

Val : Ctx → Ty → Type
PshVal : Ctx → Ty → Type

Val Γ A :≡ PshVal Γ A + Ne Γ A

PshVal Γ (A → B) :≡ 𝚷 {Δ} → Thin Δ Γ → Val Δ A → Val Δ B
PshVal Γ (A × B) :≡ Val Γ A × Val Γ B
PshVal Γ (A + B) :≡ Val Γ A + Val Γ B
PshVal Γ 𝟙 :≡ 1
PshVal Γ 𝟘 :≡ O

Note that although we are mixing inductively (i.e. Ne) and recursively (i.e. PshVal)
defined type families here, the combination remains well-founded.

35

Thinning can now be implemented for PshVal Γ A by recursion on the type A. For
thinning of values in general, we can delegate to thinning on PshVal Γ As and Ne Γ As
as appropriate.

[]Val : Val Γ A → Thin Δ Γ → Val Δ A
thinPshVal : 𝚷 A → Thin Δ Γ → PshVal Γ A → PshVal Δ A

in1 tV [𝛿Th]Val :≡ in1 (thinPshVal _ 𝛿Th tV)
in2 tNe [𝛿Th]Val :≡ in2 (tNe [𝛿Th]Ne)
thinPshVal (A → B) 𝛿Th tV :≡ 𝝀 𝜎Th uV → tV (𝛿Th ;Th 𝜎Th) uV

thinPshVal (A × B) 𝛿Th (tV , uV) :≡ tV [𝛿Th]Val , uV [𝛿Th]Val

thinPshVal (A + B) 𝛿Th (in1 tV) :≡ in1 (tV [𝛿Th]Val)
thinPshVal (A + B) 𝛿Th (in2 tV) :≡ in2 (tV [𝛿Th]Val)
thinPshVal 𝟙 𝛿Th ⟨⟩ :≡ ⟨⟩

To implement NbE, we need to define both evaluation from terms to values and quotation
from values to normal forms.

data Env : Ctx → Ctx → Type

qval : 𝚷 A → Val Γ A → Nf Γ A
eval : Tm Γ A → Env Δ Γ → Val Δ A

We start with evaluation, which is quite similar to J_KTm in the standard model, but
needs to deal with the cases for stuck neutrals appropriately. Evaluation is done w.r.t. an
environment, which unlike the standard model is now parameterised by two contexts,
similarly to Thin/Tms: first, the context each of the values exist in and second the list of
types of the values themselves.

data Env where
𝜀 : Env Δ •
_, _ : Env Δ Γ → Val Δ A → Env Δ (Γ ▷ A)

Note that environments can be thinned by simply folding _[_]Val, and identity environ-
ments can be constructed by lifting over context extension and embedding variables by
composing `_ : Var Γ A → Ne Γ A and in2 : Ne Γ A → Val Γ A.

[]Env : Env Δ Γ → Thin Θ Δ → Env Θ Γ

^Env : Env Δ Γ → 𝚷 A → Env (Δ ▷ A) (Γ ▷ A)
idEnv

: Env Γ Γ

Evaluation then proceeds by recursion on the target term. The main subtlety is in
application of values, where the LHS is neutral. In this case we need to turn quote the
RHS back to an Nf via qval to apply _·_ : Ne Γ (A → B) → Nf Γ A → Ne Γ B (i.e.
evaluation actually depends on quotation).

lookupVal : Var Γ A → Env Δ Γ → Val Δ A
lookupVal vz (𝜌 , tV) :≡ tV

lookupVal (vs i) (𝜌 , tV) :≡ lookupVal i 𝜌

appVal : Val Γ (A → B) → Val Γ A → Val Γ B
appVal (in1 tV) uV :≡ tV idTh uV

appVal (in2 tNe) uV :≡ in2 (tNe · qval _ uV)
𝜋1Val : Val Γ (A × B) → Val Γ A
𝜋1Val (in1 (tV , uV)) :≡ tV

𝜋1Val (in2 tNe) :≡ in2 (𝜋1 tNe)
𝜋2Val : Val Γ (A × B) → Val Γ B
𝜋2Val (in1 (tV , uV)) :≡ uV

𝜋2Val (in2 tNe) :≡ in2 (𝜋2 tNe)

36

caseVal : Val Γ (A + B)
→ (Val Γ A → Val Γ C) → Nf (Γ ▷ A) C
→ (Val Γ B → Val Γ C) → Nf (Γ ▷ B) C
→ Val Γ C

caseVal (in1 (in1 tV)) uV uNf vV vNf :≡ uV tV

caseVal (in1 (in2 tV)) uV uNf vV vNf :≡ vV tV

caseVal (in2 tNe) uV uNf vV vNf :≡ in2 (case tNe uNf vNf)
eval (` i) 𝜌 :≡ lookupVal i 𝜌
eval (𝜆 t) 𝜌 :≡ in1 𝝀 𝛿Th uV → eval t ((𝜌 [𝛿Th]Env) , uV)
eval (t · u) 𝜌 :≡ appVal (eval t 𝜌) (eval u 𝜌)
eval (t , u) 𝜌 :≡ in1 (eval t 𝜌 , eval u 𝜌)
eval (𝜋1 t) 𝜌 :≡ 𝜋1Val (eval t 𝜌)
eval (𝜋2 t) 𝜌 :≡ 𝜋2Val (eval t 𝜌)
eval (in1 B t) 𝜌 :≡ in1 (in1 (eval t 𝜌))
eval (in2 A t) 𝜌 :≡ in1 (in2 (eval t 𝜌))
eval 〈〉 𝜌 :≡ in1 ⟨⟩
eval (case t u v) 𝜌

:≡ caseVal (eval t 𝜌)
(𝝀 tV → eval u (𝜌 , tV)) (qval _ (eval u (𝜌 ˆEnv _)))
(𝝀 tV → eval v (𝜌 , tV)) (qval _ (eval v (𝜌 ˆEnv _)))

To implement qval, we instead proceed by recursion on types. Being able to weaken
values is critical to quoting back→-typed values, where to inspect their structure, we
need to be able to apply them to a fresh variable vz.

qval A (in2 t) :≡ ne t
qval (A → B) (in1 f) :≡ 𝜆 qval B (f wkTh (in2 (` vz)))
qval (A × B) (in1 (t , u)) :≡ qval A t , qval B u
qval (A + B) (in1 (in1 t)) :≡ in1 B (qval A t)
qval (A + B) (in1 (in2 t)) :≡ in2 A (qval B t)
qval 𝟙 (in1 ⟨⟩) :≡ 〈〉

Normalisation can now be implemented by evaluation followed by quoting.

nbe : Tm Γ A → Nf Γ A
nbe t :≡ qval _ (eval t idEnv)

We are done! Of course, to verify our normalisation algorithm is correct (actually
prove normalisation for STLC), we need to do more work, checking soundness and
completeness as defined in Definition 2.2.3. We refer to [73] for the details, but in short, [73]: Kovács (2017), A machine-checked cor-

rectness proof of normalization by evalua-
tion for simply typed lambda calculus

we can prove:

▶ Soundness by proving that eval preserves conversion by induction on terms,
which in turn requires proving preservation of substitution (and to do this, we
also need to enforce naturality of→-typed values as mentioned in Remark 2.4.1).

▶ Completeness by defining a logical relation between terms and values by in-
duction on types, showing t [𝛿] and eval t 𝜌 are logically related given the
terms in 𝛿 are all logically related to the values in 𝜌 and finally proving that qval
preserves the logical relation.

37

2.4.3 NbE for Dependent Types

When applying NbE for dependent types, we need to deal with terms embedded inside
types. As a first approximation, we might try and keep a similar type for Val and construct
identity environments to evaluate embedded terms in on demand:

Val : 𝚷 Γ → Ty Γ → Type
Val Γ (if t A B) with eval t idEnv

... | tt :≡ Val Γ A

... | ff :≡ Val Γ B

... | ne tNe :≡ Ne Γ (if t A B)

However, this definition poses difficulties for the case of Π-types, where we need to
recurse at types A [𝛿] and B [𝛿 , u].

Val Γ (Π A B)
:≡ 𝚷 {Δ 𝛿 } (𝛿Th

: Thin Δ Γ 𝛿) (uV
: Val Δ (A [𝛿]))

→ Val Δ (B [𝛿 , u])

Unfortunately, multiple things go wrong here:

▶ A [𝛿] and B [𝛿 , u] are not structurally smaller than Π A B, so it is not
obvious that Val as defined above is well-founded. The case for A can be fixed by
relying on how thinnings do not structurally alter (substitution-normal) types
in a meaningful way. However, B [𝛿 , u] is harder In the presence of large
elimination Remark 2.1.2, there is no easy structurally-derived order on types
which is also stable w.r.t. substitution22

22: Consider e.g. recursing on a natu-
ral number to build an iteratedΠ-types,
as is sometimes done in dependently-
typed languages to achieve arity-
polymorphism.

▶ It turns out that some of the cases in qval/uval depend on completeness of the
NbE algorithm. We could attempt to mutually prove correctness, but this does
not appear to work in practice, as explained in [60].

[60]: Altenkirch et al. (2017), Normalisation
by Evaluation for Type Theory, in Type The-
ory

To solve the latter issue, we need to pair NbE values with the correctness proofs (fusing
the presheaf model with the logical relation), and therefore index values by the term
which we are evaluating (and environments by the list of terms they contain values of).
To solve the former, we can additionally parameterise types by a substitution, and the
corresponding environment in which to evaluate embedded terms.

Env : 𝚷 Δ Γ → Tms Δ Γ → Type
Val : 𝚷 Γ A Δ 𝛿 → Env Δ Γ 𝛿 → Tm Δ (A [𝛿]Ty) → Type

Evaluating both terms and substitutions can then be specified like so:

eval : 𝚷 (t : Tm Γ A) (𝜌 : Env Δ Γ 𝛿) → Val Γ A Δ 𝛿 𝜌 (t [𝛿])
eval* : 𝚷 𝛿 (𝜌 : Env Θ Δ 𝜎) → Env Θ Γ (𝛿 ; 𝜎)

Given we are indexing values by the evaluated term, it is convenient to also index normal
forms by the normalised term (ultimately, working up to conversion, any term which
happens to be convertible to the normal form).

data Ne : 𝚷 Γ A → Tm Γ A → Type
data Nf : 𝚷 Γ A → Tm Γ A → Type

data Ne where
`_ : 𝚷 i → Ne Γ A (` i)
· : Ne Γ (Π A B) t → Nf Γ A u → Ne Γ (B [< u >]Ty) (t · u)
if : 𝚷 A { t u v}

→ Ne Γ 𝔹 t → Nf Γ (A [< tt >]Ty) u → Nf Γ (A [< ff >]Ty) v
→ Ne Γ (A [< t >]Ty) (if A t u v)

data Nf where

38

ne𝔹 : Ne Γ 𝔹 t → Nf Γ 𝔹 t
neIF : Ne Γ 𝔹 u → Ne Γ (IF u A B) t → Nf Γ (IF u A B) t
𝜆_ : Nf (Γ ▷ A) B t → Nf Γ (Π A B) (𝜆 t)
tt : Nf Γ 𝔹 tt
ff : Nf Γ 𝔹 ff

Of course, if we are using a setoid-based model of syntax, we also need coercion opera-
tions

coeNe~ : 𝚷 Γ~ A~ → Tm~ Γ~ A~ t1 t2 → Ne Γ1 A1 t1 → Ne Γ2 A2 t2

coeNf~ : 𝚷 Γ~ A~ → Tm~ Γ~ A~ t1 t2 → Nf Γ1 A1 t1 → Nf Γ2 A2 t2

We will elide these coercions (and cases pertaining to them) from now on because
dealing with coercions is ultimately very mechanical.

We also index thinnings by equivalent substitutions

data Thin : 𝚷 Δ Γ → Tms Δ Γ → Type where
𝜀 : Thin • • 𝜀
ˆTh : Thin Δ Γ 𝛿 → 𝚷 A → Thin (Δ ▷ (A [𝛿]Ty)) (Γ ▷ A) (𝛿 ˆ A)
+Th : Thin Δ Γ 𝛿 → 𝚷 A → Thin (Δ ▷ A) Γ (𝛿 ; wk)

[]Nf : Nf Γ A t → Thin Δ Γ 𝛿 → Nf Δ (A [𝛿]Ty) (t [𝛿])
[]Ne : Ne Γ A t → Thin Δ Γ 𝛿 → Ne Δ (A [𝛿]Ty) (t [𝛿])

We can now define environments by recursion on contexts. An inductive definition like
we had for STLC would still be well-founded, but causes some subtle technical issues
later on

Env Δ • 𝛿 :≡ 1
Env Δ (Γ ▷ A) 𝛿 :≡ (𝜌 : Env Δ Γ (𝜋1 𝛿)) × Val Γ A Δ (𝜋1 𝛿) 𝜌 (𝜋2 𝛿)

Values are a bit more complicated. Again, the key idea is interpret types into the category
of presheaves, but dealing with large elimination requires evaluating the embedded
Boolean term.

As in STLC (Remark 2.4.1), we techni-
cally should enforce naturality of Π-
typed values here. To keep the presen-
tation simpler, we again skip this.

if-Val : 𝚷 Γ A B Δ 𝛿 (𝜌 : Env Δ Γ 𝛿) {u[]}
→ Tm Δ (IF u[] (A [𝛿]Ty) (B [𝛿]Ty))
→ Nf Δ 𝔹 u[] → Type

if-Val Γ A B Δ 𝛿 𝜌 t tt
:≡ Val Γ A Δ 𝛿 𝜌 (coe~ rfl~ IF-tt t)

if-Val Γ A B Δ 𝛿 𝜌 t ff
:≡ Val Γ B Δ 𝛿 𝜌 (coe~ rfl~ IF-ff t)

if-Val Γ A B Δ 𝛿 𝜌 {u[]} t (ne𝔹 _)
:≡ Ne Δ (IF u[] (A [𝛿]Ty) (B [𝛿]Ty)) t

Val Γ 𝔹 Δ 𝛿 𝜌 t :≡ Nf Δ 𝔹 t
Val Γ (IF b A B) Δ 𝛿 𝜌 t :≡ if-Val Γ A B Δ 𝛿 𝜌 t (eval b 𝜌)
Val Γ (Π A B) Δ 𝛿 𝜌 t

:≡ 𝚷 {Θ 𝛾 } (𝛾Th
: Thin Θ Δ 𝛾)

{u} (uV
: Val Γ A Θ (𝛿 ; 𝛾) (𝜌 [𝛾Th]Env) u)

→ Val (Γ ▷ A) B Θ ((𝛿 ; 𝛾) , u) ((𝜌 [𝛾Th]Env) , uV) ((t [𝛾]) · u)

We also enforce 𝜂-equality of functions this time by embedding neutrals only at 𝔹
and stuck IF types. This will slightly simplify the case in the fundamental theorem for
function application, at the cost of making the embedding of neutrals into values more
complicated. We call this embedding operation unquoting, and define it mutually with
qval.

39

uval : 𝚷 A { t} → Ne Δ (A [𝛿]Ty) t → Val Γ A Δ 𝛿 𝜌 t
qval : 𝚷 A { t} → Val Γ A Δ 𝛿 𝜌 t → Nf Δ (A [𝛿]Ty) t

Evaluation of variables looks up the corresponding value in the environment as usual.
Evaluation of abstractions relies on coercing the value at term t [(𝛿 ; 𝛾) , u] to
(𝜆 (t [(𝛿 ; 𝛾) ˆ A]) · u

lookupEnv
: 𝚷 (i : Var Γ A) (𝜌 : Env Δ Γ 𝛿) → Val Γ A Δ 𝛿 𝜌 (lookup i 𝛿)

eval (` i) 𝜌 :≡ lookupEnv i 𝜌
eval tt 𝜌 :≡ tt
eval ff 𝜌 :≡ ff
eval (𝜆 t) 𝜌 {𝛾 :≡ 𝛾 } 𝛾Th {u :≡ u} uV

:≡ coeVal rfl~ (sym~ (Π𝛽 { t :≡ t [(_ ; _) ˆ _] } {u :≡ u}))
(eval {𝛿 :≡ (_ ; _) , _} t ((𝜌 [𝛾Th]Env) , uV))

Dealing with the elimination rules (application and “if”-expressions) is a bit trickier. We
want evaluate t · u in 𝜌 by evaluating each term independently and directly applying
them with the identity thinning, eval t 𝜌 idTh (eval u 𝜌) but hit two different type
errors:

▶ First of all, eval t 𝜌 idTh expects a value in the environment 𝜌 [idTh]Env, rather
than 𝜌 . We can separately prove the identity law for thinning of values and
environments to account for this discrepancy.

▶ The overall type of the application ends up as

Val (Γ ▷ A) B Δ (𝛿 , (u [𝛿])) (𝜌 , eval u 𝜌) ((t [𝛿]) · (u [𝛿]))

but the inductive hypothesis requires

Val Γ (B [< u >]Ty) Δ 𝛿 𝜌 ((t [𝛿]) · (u [𝛿]))

We seemingly need to “shift” substitutions onto and off of the type (𝛿 , (u [𝛿]) ≡
< u > ; 𝛿).

shiftVal[] : Val Δ (A [𝛿]Ty) Θ 𝜎 𝜌 t = Val Γ A Θ (𝛿 ; 𝜎) (eval* 𝛿 𝜌) t

We can get a better picture of the latter puzzle here by concretely writing out the motives
of the displayed (presheaf plus logical relation) model we are implicitly constructing via
evaluation. The motives for Ctx, Ty, Var, Tm and Tms are:

record Motives : Type2 where field
PCtx : Ctx → Type1

PTy : PCtx Γ → Ty Γ → Type1

PVar : 𝚷 (ΓP
: PCtx Γ) → PTy ΓP A → Var Γ A → Type

PTm : 𝚷 (ΓP
: PCtx Γ) → PTy ΓP A → Tm Γ A → Type

PTms : 𝚷 (ΔP
: PCtx Δ) (ΓP

: PCtx Γ) → Tms Δ Γ → Type

and in the case of evaluation, we instantiate these as follows

NbE : Motives
NbE .PCtx Γ :≡ 𝚷 Δ → Tms Δ Γ → Type
NbE .PTy ΓP A :≡ 𝚷 Δ 𝛿 → ΓP Δ 𝛿 → Tm Δ (A [𝛿]Ty) → Type
NbE .PVar ΓP AP i :≡ 𝚷 Δ 𝛿 (𝜌 : ΓP Δ 𝛿) → AP Δ 𝛿 𝜌 (lookup i 𝛿)
NbE .PTm ΓP AP t :≡ 𝚷 Δ 𝛿 (𝜌 : ΓP Δ 𝛿) → AP Δ 𝛿 𝜌 (t [𝛿])
NbE .PTms ΔP ΓP 𝛿 :≡ 𝚷 Θ 𝜎 (𝜌 : ΔP Θ 𝜎) → ΓP Θ (𝛿 ; 𝜎)

such that, modulo reordering of arguments, these match the types of Env, Val, eval and
eval*

40

elimCtx : 𝚷 Γ → PCtx Γ

elimTy : 𝚷 A → PTy (elimCtx Γ) A
elimVar : 𝚷 i → PVar (elimCtx Γ) (elimTy A) i
elimTm : 𝚷 t → PTm (elimCtx Γ) (elimTy A) t
elimTms : 𝚷 𝛿 → PTms (elimCtx Δ) (elimCtx Γ) 𝛿
elimCtx Γ Δ 𝛿 :≡ Env Δ Γ 𝛿

elimTy A Δ 𝛿 𝜌 t :≡ Val _ A Δ 𝛿 𝜌 t
elimVar i Δ 𝛿 𝜌 :≡ lookupEnv i 𝜌
elimTm t Δ 𝛿 𝜌 :≡ eval t 𝜌
elimTms 𝛿 Θ 𝜎 𝜌 :≡ eval* 𝛿 𝜌

From this perspective, we can see that the law we need corresponds exactly to preserva-
tion of type substitution in the model:

[]PTy : PTy ΓP A → PTms ΔP ΓP 𝛿 → PTy ΔP (A [𝛿]Ty)
AP [𝛿P]PTy :≡ 𝝀 Θ 𝜎 𝜌 t → AP Θ _ (𝛿P Θ 𝜎 𝜌) t

elim-[]Ty : 𝚷 {𝛿 : Tms Δ Γ }
→ elimTy (A [𝛿]Ty) = elimTy A [elimTms 𝛿]PTy

shiftVal[] {𝜌 :≡ 𝜌 } { t :≡ t} :≡
cong-app (cong-app (cong-app (cong-app elim-[]Ty _) _) 𝜌) t

It turns out we will also rely on preservation of id and wk:
These laws are why we decided to im-
plement Env recursively. In an induc-
tive definition of Env, we would only
get isomorphisms here.

_,P _ : 𝚷 ΓP → PTy ΓP A → PCtx (Γ ▷ A)
ΓP ,P AP :≡ 𝝀 Δ 𝛿 → (𝜌 : ΓP Δ (wk ; 𝛿)) × AP Δ (wk ; 𝛿) 𝜌 ((` vz) [𝛿])
wkP

: 𝚷 {AP
: PTy ΓP A} → PTms (ΓP ,P AP) ΓP (wk {A :≡ A})

wkP :≡ 𝝀 𝜃 𝜎 𝜌 → 𝜌 .𝝅1

idP
: PTms ΓP ΓP id

idP :≡ 𝝀 𝜃 𝜎 𝜌 → 𝜌

elim-id : elimTms (id {Γ :≡ Γ }) = idP

elim-wk : elimTms (wk {A :≡ A}) = wkP {AP :≡ elimTy A}

From now on, we assume both the functor laws for _[_]Env and the above preserva-
tion equations hold definitionally. Of course, we will need to prove these properties
propositionally later.

With elim-[]Ty holding definitionally, evaluation of substitutions is merely of fold of
eval over the list of terms.

eval* 𝜀 𝜌 :≡ ⟨⟩
eval* (𝛿 , t) 𝜌 :≡ eval* 𝛿 𝜌 , eval t 𝜌

Finally, we return to dealing with the eliminator cases of eval. Evaluation of application
just applies the left and right-hand-side values, while evaluation of “if”-expressions
splits on the scrutinee. In the tt and ff cases, we just select the appropriate value, while
if the scrutinee is a stuck neutral, we build a neutral “if” expression and embed it into
Val by unquoting.

eval-if : 𝚷 A { t u v} (tNf
: Nf Δ 𝔹 t)

→ Val (Γ ▷ 𝔹) A Δ (𝛿 , tt) (𝜌 , tt) u
→ Val (Γ ▷ 𝔹) A Δ (𝛿 , ff) (𝜌 , ff) v
→ Val (Γ ▷ 𝔹) A Δ (𝛿 , t) (𝜌 , tNf) (if (A [𝛿 ˆ 𝔹]Ty) t u v)

eval-if {𝛿 :≡ 𝛿 } A tt uV vV

:≡ coeVal (rfl~ {A :≡ A}) (sym~ (𝔹𝛽1 (A [𝛿 ˆ 𝔹]Ty))) uV

eval-if {𝛿 :≡ 𝛿 } A ff uV vV

:≡ coeVal (rfl~ {A :≡ A}) (sym~ (𝔹𝛽2 (A [𝛿 ˆ 𝔹]Ty))) vV

41

eval-if {𝛿 :≡ 𝛿 } A (ne𝔹 tNe) uV vV

:≡ uval A (if (A [𝛿 ˆ 𝔹]Ty) tNe (qval A uV) (qval A vV))

eval (t · u) 𝜌 :≡ eval t 𝜌 idTh (eval u 𝜌)
eval (if A t u v) 𝜌 :≡ eval-if A (eval t 𝜌) (eval u 𝜌) (eval v 𝜌)

We must also check in both Val and eval that 𝛽 (and 𝜂 in the case of Π-typed terms) equa-
tions are preserved. IF-tt and IF-ff are preserved up to coherence (Val Γ (IF tt A B) Δ 𝛿 𝜌 t ≡
Val Γ A Δ 𝛿 𝜌 (coe~ _ _ t). IF𝛽1 and IF𝛽2 are conserved similarly eval (if A tt u v) 𝜌 ≡
coeVal _ _ (eval u 𝜌).

Π𝛽 and Π𝜂 are more subtle. We have

eval ((𝜆 t) · u) 𝜌 ≡ coeVal _ _ (eval t (𝜌 , eval u 𝜌))

and

eval (𝜆 ((t [wk]) · (` vz))) 𝜌
≡ 𝝀 𝛾Th {u} uV → coeVal _ _ (eval (t [wk])

((𝜌 [𝛾Th]Env) , uV) idTh uV)

But this does not get us quite far enough in either case. We need preservation of term
substitution.

[]P : 𝚷 {ΓP
: PCtx Γ } {ΔP

: PCtx Δ} {AP
: PTy ΓP A}

→ PTm ΓP AP t → 𝚷 (𝛿P
: PTms ΔP ΓP 𝛿)

→ PTm ΔP (AP [𝛿P]PTy) (t [𝛿])
tP [𝛿P]P :≡ 𝝀 Δ 𝜎 𝜌 → tP Δ (_ ; 𝜎) (𝛿P Δ 𝜎 𝜌)

elim-[] : elimTm (t [𝛿]) = elimTm t [elimTms 𝛿]P

Finally, we can proceed to the definitions of quoting and unquoting. These functions are
mutually recursive on types, with much of the complexity coming from dealing with
large IF.

uval-if : 𝚷 A B {u[] t} (uNf
: Nf Δ 𝔹 u[])

→ Ne Δ (IF u[] (A [𝛿]Ty) (B [𝛿]Ty)) t
→ if-Val Γ A B Δ 𝛿 𝜌 t uNf

qval-if : 𝚷 A B {u[] t} (uNf
: Nf Δ 𝔹 u[])

→ if-Val Γ A B Δ 𝛿 𝜌 t uNf

→ Nf Δ (IF u[] (A [𝛿]Ty) (B [𝛿]Ty)) t

uval 𝔹 tNe :≡ ne𝔹 tNe

uval (Π A B) tNe 𝛾Th {u} uV :≡ uval B ((tNe [𝛾Th]Ne) · qval A uV)
uval (IF b A B) tNe :≡ uval-if A B (eval b _) tNe

uval-if A B tt tNe :≡ uval A (coeNe~ rfl~ IF-tt coh tNe)
uval-if A B ff tNe :≡ uval B (coeNe~ rfl~ IF-ff coh tNe)
uval-if A B (ne𝔹 uNe) tNe :≡ tNe

qval 𝔹 tV :≡ tV

qval (IF b A B) tV :≡ qval-if A B (eval b _) tV

qval (Π A B) tV :≡ coeNf~ rfl~ rfl~ (sym~ Π𝜂) tNf

where vzV :≡ uval {𝛿 :≡ _ ; wk {A :≡ (A [_]Ty) } } A (` vz)
tNf :≡ 𝜆 qval B (tV wkTh vzV)

qval-if A B tt tV

:≡ coeNf~ rfl~ (sym~ IF-tt) (sym~ coh) (qval A tV)
qval-if A B ff tV

42

:≡ coeNf~ rfl~ (sym~ IF-ff) (sym~ coh) (qval B tV)
qval-if A B (ne𝔹 uNe) tV :≡ neIF uNe tV

Again, we need to ensure IF-tt and IF-ff are preserved by uval and qval, and indeed they
are (up to coherence), so finally, we obtain normalisation:

nbe : 𝚷 t → Nf Γ A t
nbe t :≡ qval {𝛿 :≡ id} _ (eval t idEnv)

We have checked soundness throughout the development of the algorithm. Completeness
instead follows from a simple inductive proof (on normal forms) that for tNf

: Nf Γ A t,
we have t = ⌜ tNf ⌝Nf.

We should also technically check preservation of substitution operations and the functor
laws for thinning of values/environments. Functor laws for thinnings follow by induction
on types/contexts and eventually (in the 𝔹 base case) on normal/neutral forms.

Preservation of substitution operations requires checking the associated naturality laws
(which in-turn requires ensuring naturality of Π-typed values are natural). Staying well-
founded is a little tricky: assuming substitution operations all respect some well-founded
order, we could in principle induct w.r.t. that, though in Agda (as we saw in Section
2.4.1), well-founded induction gets quite ugly. We could also pivot to explicit eliminators,
via which preservation laws would hold definitionally (see e.g. the canonicity proof
given in [7]), but we would still have to check all naturality equations, and we would [7]: Kaposi et al. (2025), Type Theory in Type

Theory Using a Strictified Syntaxlose the conciseness of pattern matching. Ultimately I argue these technical details are
not fundamental to the algorithm/proof.

Related Work 3

3.1 Dependent Pattern Match-

ing 43

3.1.1 Indexed Pattern Matching . . 43
3.1.2 With Abstraction 45

3.2 Local Equational Assump-

tions 47

3.2.1 Local Equality Reflection . . 49
3.2.2 Existing Systems with Local

Equations 50

3.3 Global Equational Assump-

tions 51

3.4 Elaboration 51

3.5 Strict 𝜂 for Coproducts . . 52

3.6 Extension Types 54

3.1 Dependent Pattern Matching

Pattern matching in simply-typed languages (assuming a structural restriction on recur-
sive calls) can be viewed as syntax sugar for using recursion principles. For example,
addition of natural numbers can be defined alternatively by pattern matching or ℕ’s
recursor, ℕ-rec:

_ +ℕ _ : ℕ → ℕ → ℕ

ze +ℕ m :≡ m
su n +ℕ m :≡ su (n +ℕ m)

ℕ-rec : ℕ → A → (A → A) → A

_ +ℕ _ : ℕ → ℕ → ℕ

n +ℕ m :≡ ℕ-rec n m su

In dependently-typed languages, we are not limited to only recursion principles though.
Dependently-typed eliminators can perform induction, enabling, for example, the induc-
tive proof that ze is a right identity of _ +ℕ _.

ℕ-elim : 𝚷 (P : ℕ → Type) (n : ℕ)
→ P ze → (𝚷 {k} → P k → P (su k)) → P n

+ze : n +ℕ ze = n
+ze {n :≡ n} :≡ ℕ-elim (𝝀 n′ → n′ +ℕ ze = n′) n refl (cong su)

Dependent pattern matching is the extension of pattern matching to dependently-typed
programming languages [74, 75], supporting such inductive definitions. The key idea is, [74]: Coquand (1992), Pattern matching

with dependent types
[75]: Cockx (2017), Dependent Pattern
Matching and Proof-Relevant Unification

in the bodies of matches, to substitute each matched-on variable (“scrutinee”) for the
corresponding pattern everywhere in the typing context. For example, we can again
prove +ze, this time by pattern matching:

+ze : n +ℕ ze = n
+ze {n :≡ ze} :≡ refl
+ze {n :≡ su n} :≡ cong su (+ze {n :≡ n})

In the n :≡ ze case, the substitution ze / n is applied everywhere, including in the
goal type n +ℕ ze = n to produce the refined goal ze +ℕ ze = ze, at which refl
typechecks successfully (ze +ℕ ze reduces to ze definitionally). A similar process makes
the n :≡ su n case work out.

A limitation of dependent pattern matching, defined in this way, is that matching
anything other than individual variables is hard to justify. Substitutions can only target
variables. Many functional programming languages (e.g. Haskell [76]) support case_of_ [76]: Marlow (2010), Haskell 2010 Language

Reportexpressions on the RHS of definitions, where the scrutinee can be any appropriately-typed
term.

Some dependently-typed languages feature with-abstractions, enabling similar match-
ing on intermediary expressions on the LHS. However, as we will explain in Section
3.1.2, this feature has some significant drawbacks.

3.1.1 Indexed Pattern Matching

Another important aspect of pattern matching in dependently-typed languages is dealing
with indexed types. For example, the type, Fin n, of natural numbers bounded by n : ℕ.

44

data Fin : ℕ → Type where
fz : Fin (su n)
fs : Fin n → Fin (su n)

“Any natural number the programmer
wants, as long as it’s su n!”

“Fording” [77] shows us how to reduce indexed inductive types to parameterised inductive

[77]: McBride (2000), Dependently typed
functional programs and their proofs

types, assuming the existence of a propositional identity type

data FinF (m : ℕ) : Type where
fzF : m = su n → FinF m
fsF : m = su n → FinF n → FinF m

but this does not immediately solve the puzzle of how to support “convenient” pattern
matching. Without a way to match on the inductive propositional equality type x = y,
we are forced into heavily (ab)using manual transport. To give an example, let us define
the datatype of length-indexed vectors (again in ordinary and “Forded” style)

data Vec (A : Type) : ℕ → Type where
[] : Vec A ze
:: : A → Vec A n → Vec A (su n)

data VecF (A : Type) (m : ℕ) : Type where
[]F : m = ze → VecF A m
::F : m = su n → A → VecF A n → VecF A m

for which we will attempt to implement a total vector lookup operation. Under the
“Forded” approach (without being able to match on _=_), we must use manual equational
reasoning (including relying on a proof of injectivity of su) to get the indices to align
in the recursive case, and we need to explicitly appeal to constructor disjointness to
demonstrate that out-of-bounds accesses are impossible.

su-inj : su n = su m → n = m
ze/su-disj : ¬ ze = su n

vlookupF : FinF n → VecF A n → A
vlookupF (fzF p) ([]F q) :≡ O-elim (ze/su-disj (sym q • p))
vlookupF (fsF p i) ([]F q) :≡ O-elim (ze/su-disj (sym q • p))
vlookupF (fzF p) (::F q x xs) :≡ x
vlookupF (fsF p i) (::F q x xs)

:≡ vlookupF (transp FinF (su-inj (sym p • q)) i) xs

With Agda’s built-in support for indexed pattern-matching, we can instead simply
write:

vlookup : Fin n → Vec A n → A
vlookup fz (x :: xs) :≡ x
vlookup (fs i) (x :: xs) :≡ vlookup i xs

Behind the scenes, vlookup is elaborated to simultaneously match on the ℕ-typed
variable, n. We do not need to give cases for n ≡ ze because Agda builds-in constructor
disjointness, and in the recursive case, we get that the n in i : Fin n and in xs : Vec A n
are equal from built-in constructor injectivity.

A key idea here is forced patterns (also called dot patterns) [75]. Variables, i, can be [75]: Cockx (2017), Dependent Pattern
Matching and Proof-Relevant Unificationmatched with arbitrary expressions, t, if the equation between the variable and expres-

sion (i ≡ t) is forced by simultaneous matches on indexed types.

In Agda, we can explicitly write forced patterns by prefixing the expression with a “ . ”.
Note that below, we match on the n : ℕ argument to _::_ with the existing variable m
(bound from matching on the Fin n index), rather than introducing a fresh variable. We
are only able to do this because Agda internalises the fact that su is injective (so there is
ultimately no other option).

45

vlookup : Fin n → Vec A n → A
vlookup {n :≡ . (su m) } (fz {n :≡ m}) (_::_ {n :≡ .m} x xs) :≡ x
vlookup {n :≡ . (su m) } (fs {n :≡ m} i) (_::_ {n :≡ .m} x xs) :≡ vlookup i xs

Indexed pattern matching makes it possible to reflect a subset of propositional equations
(specifically those where the LHS or RHS is a single variable). For example, consider this
(slightly intimidating) law stating that transports can be pushed underneath (dependent)
function applications.

subst-application′ : 𝚷 {A : Type} (B : A → Type) {C : A → Type}
{x1 x2 : A} {y : B x1 }
(g : 𝚷 x → B x → C x) (p : x1 = x2)

→ transp C p (g x1 y) = g x2 (transp B p y)

In Agda, we can prove this just by matching on p : x1 = x2 with refl, simultane-
ously forcing the match x2 :≡ .x1. It remains to prove transp C refl (g x1 y) =

g x1 (transp B refl y), which reduces to g x1 y = g x1 y, at which point refl
typechecks successfully.

subst-application′ B {x1 :≡ x1 } {x2 :≡ .x1 } g refl :≡ refl

3.1.2 With Abstraction

Both Agda and Idris 2 support matching on intermediary expression to a limited extent
via with-abstractions (originally named "views") [78–80]. The key idea is to apply a [78]: McBride et al. (2004), The view from

the left
[79]: Agda Team (2024), With-Abstraction
[80]: Various Contributors (2023), Views
and the "with" rule

one-off rewrite to the context, replacing every occurrence of the scrutinee expression
with the pattern. In Agda, the implementation also elaborates with-abstractions into
separate top-level functions which abstract over the scrutinee expression (so the final
“core” program only contains definitions that match on individual variables).

Unfortunately, the one-off nature of with-abstraction rewrites limits their applicability.
If we re-attempt the f tt = f (f (f tt)) proof from the introduction (Chapter 1), taking
advantage of this feature, the goal only gets partially simplified:

f3 : 𝚷 (f : B → B) → f tt = f (f (f tt))
f3 f with f tt
f3 f | tt :≡ ?0

At ?0, Agda has replaced every occurrence of f tt in the context with tt exactly once,
and so now expects a proof of tt = f (f tt), but it is not obvious how to prove this. We
could match on f tt again, but Agda will force us to cover both the tt and ff cases, with
no memory of the prior match.

For scenarios like this, with-abstractions in Agda are extended with an additional piece
This feature can also be simulated
without special syntax via the "inspect"
idiom [81].

[81]: Various Contributors (2024), Rela-
tion.Binary.PropositionalEquality

of syntax: following a with-abstraction with “in p” binds evidence of the match (a proof
of propositional equality between the scrutinee and pattern) to the new variable p.

f3 : 𝚷 (f : B → B) → f tt = f (f (f tt))
f3 f with f tt in p
f3 f | tt :≡ tt

= by sym p
f tt
= by cong f (sym p)

f (f tt) ■
f3 f | ff with f ff in q
f3 f | ff | tt :≡ sym p
f3 f | ff | ff :≡ sym q

46

We could also avoid all manual equational reasoning by repeating previous matches,
forced, by simultaneously matching on the propositional equality.

f3 : 𝚷 (f : B → B) → f tt = f (f (f tt))
f3 f with f tt in p
f3 f | tt with f tt | p
... | .true | refl with f tt | p
... | .true | refl :≡ refl

f3 f | ff with f ff in q
f3 f | ff | tt with f tt | p
... | .false | refl :≡ refl

f3 f | ff | ff with f ff | q
... | .false | refl :≡ refl

Agda contains yet another piece of syntactic sugar to make this pattern neater: rewrite
takes a propositional equality, and applies a one-off rewrite to the context by implicitly
with-abstracting over the LHS.

f3 : 𝚷 (f : B → B) → f tt = f (f (f tt))
f3 f with f tt in p
f3 f | tt rewrite p

rewrite p
:≡ refl

f3 f | ff with f ff in q
f3 f | ff | tt rewrite p

:≡ refl

f3 f | ff | ff rewrite q
:≡ refl

But by now we are up to four distinct syntactic constructs, and the proof is still signifi-
cantly more verbose than with smart if:

\f. sif (f tt) then Rfl else (sif (f ff) then Rfl else Rfl)

with-abstractions also have a critical issue that smart case intends to solve: the one-off
nature of the rewrite can produce ill-typed contexts. Specifically, it might be the case
that for a context to typecheck, some neutral expression must definitionally be of that
neutral form, and replacing it with some pattern, without “remembering” their equality,
causes a type error.

In practice, this forces implementations to re-check validity of the context after a with-
abstraction and throw errors if anything goes wrong.

Example 3.1.1 (Ill-typed with-abstraction Involving Fin)
In the following code snippet, we attempt a forced match on n +ℕ m, as this
expression occurs in the index of i : Fin (n +ℕ m). Unfortunately, after rewriting
n +ℕ m to su k, we are left with i : Fin (su k) and Pred n m i (which relies on i
having type Fin n +ℕ m) is no longer typeable.

Pred : 𝚷 n m → Fin (n +ℕ m) → Type
foo : 𝚷 n m (i : Fin (n +ℕ m)) → Pred n m i → 1

foo n m i p with n +ℕ m
foo n m fz p | . (su _) :≡ ⟨⟩
foo n m (fs i) p | . (su _) :≡ ⟨⟩

Agda cannot do better here than just throwing an error:

[UnequalTerms]
w != n +ℕ m of type ℕ

47

when checking that the type
(n m w : ℕ) (i : Fin w) (p : Pred n m i) → 1 of the generated with
function is well-formed

This type of error is especially prevalent when working with heavily indexed types, and
contributes to the well-known problem of “green slime” [82] (the general term for pain [82]: McBride (2012), A polynomial testing

principlearising from indexing types by neutral expressions, like n +ℕ m as above). A common
issue is that a with abstraction works just fine when implementing some operation on
an indexed type, but when attempting to later prove properties about this operation,
repeating the same with abstraction suddenly fails.

3.2 Local Equational Assumptions

As mentioned in the introduction, this work is largely inspired by Altenkirch et al.’s
work on smart case [17]. Following the dependently-typed syntax introduced in Section [17]: Altenkirch (2011), The case of the smart

case2.3, we can add a smart case rule for Booleans (we name this smart if for short), assum-
ing a way to extend contexts with equational assumptions (_▷_~_) and an associated
weakening operator (wk~) as follows:

▷~_ : 𝚷 Γ {A} → Tm Γ A → Tm Γ A → Ctx
wk~ : Tms (Γ ▷ t1 ∼ t2) Γ
if : 𝚷 (t : Tm Γ 𝔹)

→ Tm (Γ ▷ t ∼ tt) (A [wk~]Ty)
→ Tm (Γ ▷ t ∼ ff) (A [wk~]Ty)
→ Tm Γ A

We explore a type theory using a similar typing rule for “if” in Chapter 5. To give a small
taste of what makes this theory tricky metatheoretically, we introduce the notions of
definitional inconsistency and equality collapse.

Definition 3.2.1 (Definitional Context Inconsistency)
We define contexts to be definitionally inconsistent if tt and ff are convertible under
that context.

incon : Ctx → Type
incon Γ :≡ _=_ {A :≡ Tm Γ 𝔹} tt ff

In ITT, definitionally identifying non-neutral terms is dangerous as it can lead to equality
collapse [83]. [83]: McBride (2010), W-types: good news

and bad news

Definition 3.2.2 (Equality Collapse) We define equality collapse as the state when
all terms/types are convertible. Equality collapse specifically at the level of types is
very dangerous, as we shall see shortly.

collapse : Ctx → Type
collapse Γ :≡ 𝚷 (A B : Ty Γ) → A = B

Remark 3.2.1 (Definitional Inconsistency Implies Equality Collapse)
Assuming congruence of conversion (which is highly desirable for definitional equality
to behave intuitively), and large elimination of Booleans, we can derive equality
collapse (A = B for arbitrary types A and B) from definitional inconsistency
(tt = ff).

incon-collapse : incon Γ → collapse Γ

48

incon-collapse Γ! A B :≡
A
= by sym IF-tt

IF tt A B
= by cong (𝝀 □ → IF □ A B) Γ!

IF ff A B
= by IF-ff

B ■

Assuming 𝛽-rules for Booleans, we can also also derive that definitionally inconsistent
contexts collapse the term equality, using a similar argument.

Convertibility of all types is dangerous, as we can perform self-application, and define
terms that loop w.r.t 𝛽-reduction.

Example 3.2.1 (Equality Collapse Enables Self-Application)
Under definitional equality of all types, we have that, e.g. A → A ≡ A, which
means we can type self-application.

[]! : incon Γ → Tms Δ Γ → incon Δ

self-app : incon Γ → Tm Γ (Π A (A [wk]Ty))
self-app Γ!

:≡ 𝜆 transp (Tm _) wk<>Ty
(transp (Tm _) (incon-collapse (Γ! [wk]!) _ _) vz · vz)

To jump from here to truly looping terms such as Ω ((𝜆 x. x x) (𝜆 x. x x)) we only
need to repeat the construction.

Of course, if a particular context is definitionally inconsistent, conversion is trivially
decidable (any two terms must be convertible, assuming a 𝛽-law for Booleans). However,
if definitional inconsistency is not decidable, then the above example means we also
lose normalisation/decidable conversion in open contexts, and therefore in the setting
of dependent types (specifically ITT) decidability of typechecking is lost.

In SCBool, collapsing the definitional equality is easy. We can just case split on a closed
Boolean (or some term that is convertible to a closed Boolean). Then, one of the contexts,
of one of the “if” branches, most contain the definitionally-inconsistent assumption
tt ∼ ff (or reversed).

Normalising the scrutinee before checking the branches of “if” (to see if it reduces to a
closed Boolean) is not enough to detect definitional inconsistency. For example, consider
the program (in a context where b : 𝔹 and not :≡ 𝜆 b. if b ff tt)

if (not b) (if b ?0 ?1) ?2

When checking the inner “if” expression (in the left branch of the outer “if”), the scrutinee,
b, is is normal form (the assumption not b ∼ tt is not enough to derive b ≡ ff by pure
equational reasoning). However, in ?0, the context becomes definitionally inconsistent
(b ∼ tt and the 𝛽-rule for Booleans implies not b ≡ not tt ≡ ff, so not b ∼ tt
enables deriving ff ≡ tt).

Possible solutions here include:

▶ Iterating over the set of equations reducing LHSs1 w.r.t. all other equations. We
1: For more general equations where
the RHS might be reducible, we can
reduce both sides, and use a notion of
a well-founded term ordering to orient
them appropriately.

repeat this until either a fixed point is reached, and we are left with a confluent
term rewriting system (TRS), or a definitional inconsistency is detected. This
technique is named completion, and on ground first-order equations it is known
to terminate [8].

[8]: Baader et al. (1998), Term Rewriting and
All That

49

▶ Placing syntactic restrictions on the equations which can be introduced (i.e. the
scrutinees of smart if expressions) to try and prevent situations like this early
(for example, perhaps we could require that all LHSs are irreducible from the
start).

We will consider both of these strategies over the course of Chapter 4, Chapter 5 and
Chapter 6.

A more direct use of local equational assumptions is local equality reflection.

3.2.1 Local Equality Reflection

Recall the equality reflection rule from ETT

reflectETT : Tm Γ (Id A t1 t2) → t1 = t2

If we turn this from a meta-level judgement to an object-level one, we arrive at a syntactic
construct we call “local equality reflection” (assuming some way of extending contexts
with local equational assumptions)

reflect : Tm Γ (Id A t1 t2) → Tm (Γ ▷ t1 ∼ t2) (B [wk~]Ty)
→ Tm Γ B

reflect is significantly less powerful than “full” ETT equality reflection (reflectETT);
the programmer must specify every equality proof they want to reflect, rather than
assuming the existence of an oracle which can do proof search during typechecking2

2: This is perhaps a slightly unfair in-
terpretation of reflectETT given the
system is not expected to have decid-
able typechecking.

. The utility over transport comes from not requiring the programmer to also specify
where to apply each equation (we assume definitional equality is congruent).

Perhaps surprisingly then, typechecking dependent types with this local reflection rule is
still undecidable, as shown in [84]. They present the example of reflecting the definition

[84]: Sjöberg et al. (2015), Programming up
to Congruence

of the Collatz function (in a context where f : ℕ → 𝔹 is a variable).

Id (ℕ → 𝔹) f (𝜆 n. if even? n then f (n /ℕ 2) else su (3 ×ℕ n))

If we accept the new definitional equality, f had better halt on all ℕ-typed inputs or 𝛽-
reduction might run into a loop (e.g. deciding f k ≡ tt for k : ℕ). At least in the context
of “obviously” definitionally inconsistent Remark 3.2.1 equations such as Id 𝔹 tt ff,
we can skip conversion-checking (all terms must be convertible). For equations like
the above though, we cannot assume inconsistency: without a counter-example to the
Collatz conjecture, we have no way of deriving a contradiction from its assumption.

For another example, imagine the programmer reflects a propositional equation between
two arbitrary closed functions from ℕs to 𝔹s, Id (ℕ → 𝔹) f g. Assuming our type
theory is not anti-classical, assuming identity between pointwise-equal functions is
reasonable (even if we do not build-in function extensionality). However, if we reflect
f ≡ g for a f and g for which there exists a closed natural number n : ℕ such that f n ≡
tt and g n ≡ ff, then by congruence we are in a definitionally inconsistent context, and
self-application is typeable. We have no hope of catching this in a typechecker, as the
problem of deciding whether two functions with infinitary domains are equal on all
inputs (for any reasonably expressive theory3) is undecidable.

3: E.g. is capable for formalising Peano
arithmetic.Local equality reflection and smart case are not ultimately so different.

Remark 3.2.2 (Smart Case is Local Equality Reflection)
Assuming indexed matching (via forced patterns) and ordinary eliminators, an un-
restricted smart case is exactly as powerful as reflect. To reflect a propositional
equality, p : Id A u v, with smart case, we can simultaneously match on p with refl
and the term u : A with the forced pattern .v. To go the other direction, we can apply
the associated splitter for the type, and then in each branch, reflect the provided

50

propositional equality.
As a corollary, typechecking unrestricted smart case is undecidable! Therefore, when
justifying a language featuring smart case or local equality reflection, we must pay
specific attention to identifying restrictions on the class of equations which can be
reflected, so decidability can be maintained.
Generally in this project, we focus on using smart case-style syntax to introduce
local equations, as we argue it often makes examples cleaner. Furthermore, in the
absence of indexed pattern matching/forced patterns, smart case suggests some nice
potential restrictions on equations (e.g. smart if can only introduce equations of the
form t ∼ tt and t ∼ ff).

3.2.2 Existing Systems with Local Equations

GHC Haskell may not be a full dependently-typed language (it is instead based on a
System FC core theory) but the surface language does include many quite sophisticated
features, including automation of its type-level equality constraints [85] (implemented in [85]: Sulzmann et al. (2007), System F with

type equality coercionsthe constraint solving typechecking phase). Combined with type families, which enable
real computation at the type level, we can actually “prove”4 our standard f True =

4: There are a few caveats here:
1. Haskell does not allow types to di-
rectly depend on values, so we have to
encode dependently-typed functions
with singleton encodings [86, 87]

[86]: Lindley et al. (2013), Hasochism: the
pleasure and pain of dependently typed
haskell programming
[87]: Eisenberg (2020), Stitch: the sound
type-indexed type checker (functional pearl)

.
2. Haskell is a partial language, so a
“proof” of any type can be written as
undefined . Manual inspection is re-

quired to check totality/termination.
3. Haskell does not yet support unsat-
urated type families [88]

[88]: Kiss et al. (2019), Higher-order type-
level programming in Haskell

. We simulate
such a feature here using a concrete
type family with no cases, but of course
this cannot be instantiated with a “real”
type-level function on booleans later.

f (f (f True)) example.

Example 3.2.2 (f b = f (f (f b)), in Haskell)

type data Bool :≡ True | False
type SBool :: Bool → Type
data SBool b where

STrue :: SBool True
SFalse :: SBool False

type F :: Bool → Bool
type family F b where
boolLemma :: (forall b. SBool b → SBool (F b))

→ F True :~: F (F (F True))
boolLemma f :≡ case f STrue of

STrue → Refl
SFalse → case f SFalse of

STrue → Refl
SFalse → Refl

Unfortunately, Haskell’s constraint solving is undecidable, and in practice many desirable
properties of conversion (such as congruence) do not hold.

Example 3.2.3 (Conversion is not Congruent in GHC Haskell)
In GHC 9.12.2, we can try to derive equations between arbitrary types from the
constraint True ∼ False:

type IF :: B → a → a → a
type family IF b t u where

IF True t u :≡ t
IF False t u :≡ u

bad :: True ∼ False
⇒ IF True () (() → ()) :~: IF False () (() → ())

bad :≡ Refl

But this produces the following type error:

• Couldn’t match type ‘ () ’ with ‘ () → () ’
Expected: IF True () (() → ()) :~: IF False () (() → ())

Actual: () :~: ()
• In the expression: Refl

In an equation for ‘bad’: bad :≡ Refl

51

Haskell is not the only language to support a smart case-like feature. The dependently-
typed language “Zombie” builds congruence closure into the definitional equality of
the surface language and implements smart case in full, while retaining decidable
typechecking [84]. The sacrifice is 𝛽-conversion: Zombie does not automatically apply [84]: Sjöberg et al. (2015), Programming up

to Congruencecomputation rules, requiring manual assistance to unfold definitions during typecheck-
ing.

This is certainly an interesting point in the design-space of dependently-typed lan-
guages, coming with additional advantages such as the possibility of accepting non-total
definitions without endangering decidability of typechecking. However, the focus of

One could view traditional definitional
equality as a hack, carefully defining
an equational theory that happens to
be a decidable subset of propositional
equality, and building it into the type-
checker, but it is undeniably effective.

this project is justifying extending the definitional equality of existing mainstream proof
assistants, which generally assume 𝛽-equality.

The Lean proof assistant features a tactic for automatically discharging equality proofs
following from congruence closure [89], but their algorithm is not capable of interleaving

[89]: Selsam et al. (2016), Congruence Clo-
sure in Intensional Type Theory

congruence and reduction (which is required in our setting to ensure transitivity of
conversion).

Sixty [90] is a dependent typechecker which also implements a form of smart case along
[90]: Fredriksson (2019), Sixtywith full 𝛽-conversion, but there is no published work justifying its implementation

theoretically.

Andromeda 2 [91] is a proof assistant that supports local equational assumptions via [91]: Komel (2021), Meta-analysis of type
theories with an application to the design of
formal proofs

rewriting with the goal of supporting user-specified type theories. The system goes
beyond the class of equations we consider here, supporting also rewrite rules that
themselves quantify over variables (standing for all appropriately-typed terms). In this
report, we refer to such contextual equations that only refer to prior-bound variables
as ground, and therefore view this work as accounting also for non-ground equations5.

5: We justify this terminology by not-
ing that, in a fixed context, variables es-
sentially act like constants. Of course,
unlike ordinary ground term rewriting,
we do need to worry about what hap-
pens when these bound variables are
substituted for other terms.

They focus primarily on proving soundness of their equality checking algorithm, and
leave confluence/termination checking and completeness results for future work.

[92] also deals with non-ground equations, following work on controlling unfolding in

[92]: Winterhalter (2025), Controlling com-
putation in type theory, locally

type theory [93]. In their setting, equations cannot refer directly to local bound variables

[93]: Gratzer et al. (2022), Controlling un-
folding in type theory

as smart case requires.

3.3 Global Equational Assumptions

There has been a significant body of work examining type theories extended with
global (non-ground) rewrite rules, plus implementations in Dedukti [62], Agda [11] and [62]: Assaf et al. (2023), Dedukti: a Logical

Framework based on the 𝜆Π-Calculus Mod-
ulo Theory

[11]: Cockx (2019), Type Theory Unchained:
Extending Agda with User-Defined Rewrite
Rules

Rocq [12]. Work in the area has examined automatic (albeit necessarily conservative)

[12]: Leray et al. (2024), The Rewster: Type
Preserving Rewrite Rules for the Coq Proof
Assistant

confluence [94] and termination [95] checking of these rewrites. Agda’s implementation

[94]: Cockx et al. (2021), The taming of the
rew: a type theory with computational as-
sumptions

[95]: Genestier (2019), SizeChangeTool: A
Termination Checker for Rewriting Depen-
dent Types

of REWRITE rules specifically checks confluence, but not termination.

A key difference between these works and smart case is that global equations cannot
refer to local variables bound inside terms/definitions. We also cannot ever disable
global rewrites which earlier definitions might depend on without endangering subject
reduction, which becomes problematic when building larger developments. For example,
two different modules might rely on distinct sets of global rewrites that are individually
confluent and terminating, but together are not. It is now impossible to safely import
code from both of these modules.

3.4 Elaboration

A principled and increasingly popular way to design and implement programming
languages [96–98] is by elaboration into a minimal core syntax. A significant benefit of [96]: Eisenberg (2015), System FC, as imple-

mented in GHC
[97]: Brady (2024), Yaffle: A New Core for
Idris 2
[98]: Ullrich (2023), An Extensible Theorem
Proving Frontend

this approach is modularity [99]: multiple extensions to the surface language can be

[99]: Cockx (2024), Agda Core: The Dream
and the Reality

52

formalised and implemented without having to worry about their interactions. Elabo-
ration can also increase trust in the resulting system, ensuring that all extensions are
ultimately conservative over the, perhaps more-rigorously justified, core theory.

[65, 100] investigate elaborating ETT and ITT plus global rewrite rules into an ITT [65]: Winterhalter et al. (2019), Eliminating
reflection from type theory
[100]: Blot et al. (2024), From Rewrite Rules
to Axioms in the 𝜆𝛱 -Calculus Modulo The-
ory

with explicit transports. Both of these works rely on Uniqueness of Identity Proofs
(UIP)/axiom K, which is incompatible with type theories that feature proof-relevant
equality (such as Homotopy Type Theory)6.

6: Note that implicit transporting
along equivalences between com-
pletely distinct types (such as ℕ

and ℤ) could be used to implement
coercions/subtyping, so automating
equational reasoning on types with
proof-relevant equality could still
be useful if there is a distinguished
“default” mapping.
Such use-cases appear impossible
to handle properly without an
elaboration-like process inserting
transports, given some sort of
term-level computation is ultimately
required to map between distinct
types.

In this report, we do not consider the problem of similarly elaborating smart case to
an ordinary intensional type theory, without contextual equational assumptions (one
could consider this mostly covered by the above-cited prior work). Instead, in Chapter 6
we leverage a quite simple elaboration algorithm based on lambda-lifting to give the
appearance of smart case while maintaining a more well-behaved core theory than
SCBool.

3.5 Strict 𝜂 for Coproducts

Another use-case for tracking equational assumptions is to decide conversion in the
presence of strict 𝜂 for Booleans or, more generally, coproducts. For example, [101] and

[101]: Dougherty et al. (2000), Equality be-
tween Functionals in the Presence of Coprod-
ucts

[23] introduce collections of equations between (A + B)-typed neutrals and terms of

[23]: Altenkirch et al. (2001), Normalization
by Evaluation for Typed Lambda Calculus
with Coproducts

the form in1 i or in2 i (where i is a variable), the latter naming these “neutral constrained
environments”.

We formally define the simply-typed 𝜂-law for Booleans, following the syntax introduced
in Section 1 (assuming fully strict substitution laws, and propositional quotienting by
conversion).

Definition 3.5.1 (𝜂 For Booleans)
𝜂-conversion for Booleans can be stated as

𝔹𝜂 : u [< t >] = if t (u [< tt >]) (u [< ff >])

In words: every term containing a boolean-typed sub-expression, t : Tm Γ 𝔹, can be
expanded into an “if” expression, with t replaced by tt in the tt branch and ff in the ff
branch.
In dependent type theory, we can prove this law internally by induction on Booleans
(even if our theory, like Agda, does not implement 𝜂 for such types definitionally).

B-𝜂 : 𝚷 (f : B → A) b
→ f b = B-rec b (f tt) (f ff)

B-𝜂 f tt :≡ refl
B-𝜂 f ff :≡ refl

𝜂 for Booleans is quite powerful. For example, it enables deriving commuting conver-
sions.

Example 3.5.1 (Commuting Conversions)
Commuting conversions express the principle that case-splits on inductive types can
be lifted upwards (towards the root of the term) as long as the variables occurring in
the scrutinee remain in scope. i.e.

𝔹-comm : f [< if t u v >] = if t (f [< u >]) (f [< v >])

This follows from 𝔹𝜂 and 𝔹𝛽1/𝔹𝛽2 as follows

𝔹-comm { f :≡ f} { t :≡ t} {u :≡ u} {v :≡ v} :≡
(f [< if t u v >])
= by 𝔹𝜂 {u :≡ f [wk ˆ _] [< if (` vz) (u [wk]) (v [wk]) >] }

53

if t (f [< if tt u v >]) (f [< if ff u v >])
= by cong2 (𝝀 □1 □2 → if t (f [< □1 >]) (f [< □2 >])) 𝔹𝛽1 𝔹𝛽2

if t (f [< u >]) (f [< v >]) ■

Again, we can prove an analagous propositional law internally, using B-𝜂.

Bool-comm : 𝚷 (f : A → B) (b : B) (x y : A)
→ f (B-rec b x y) = B-rec b (f x) (f y)

Bool-comm f b x y :≡ B-𝜂 (𝝀 b → f (B-rec b x y)) b

In a system with strict 𝜂 for functions and another type A, definitional equality of
functions on A is observational7.

7: Observational equality in type the-
ory refers to the idea that evidence of
equality of terms at a particular type
can follow the structure of that type
[102].
For functions f and g, observational
equality takes the form of a function
from evidence of equal inputs x = y
to evidence of equal outputs f x = f y
- i.e. pointwise equality (functions are
equal precisely when they agree on all
inputs).

[102]: Altenkirch et al. (2007), Observational
equality, now!

Theorem 3.5.1 (Strict 𝜂 for Functions and Booleans Implies Definitional Observa-
tional Equality of Boolean Functions)
Assuming f · tt = g · tt and f · ff = g · ff, we can derive f = g from→𝜂 and 𝔹𝜂.

𝔹⇒ : 𝚷 { f g : Tm Γ (𝔹 → 𝔹) }
→ f · tt = g · tt → f · ff = g · ff
→ f = g

𝔹⇒ { f :≡ f} {g :≡ g} tt≡ ff≡ :≡
f
= by →𝜂

𝜆 f′ · ` vz
= by cong (𝝀 □ → 𝜆 f′ · □) (𝔹𝜂 {u :≡ ` vz})
𝜆 f′ · if (` vz) tt ff
= by cong (𝜆_) (𝔹-comm { f :≡ f′ [wk] · ` vz})
𝜆 (if (` vz) (f′ · tt) (f′ · ff))
= by cong2 (𝝀 □1 □2 → 𝜆 (if (` vz) □1 □2)) tt≡′ ff≡′
𝜆 if (` vz) (g′ · tt) (g′ · ff)
= by cong (𝜆_) (sym (𝔹-comm { f :≡ g′ [wk] · ` vz}))
𝜆 g′ · if (` vz) tt ff
= by cong (𝝀 □ → 𝜆 g′ · □) (sym (𝔹𝜂 {u :≡ ` vz}))
𝜆 g′ · ` vz
= by sym →𝜂

g ■
where f′ :≡ f [wk]

g′ :≡ g [wk]
tt≡′ :≡ cong _[wk] tt≡
ff≡′ :≡ cong _[wk] ff≡

Subtly, propositional, observational equality of Boolean functions (f tt = g tt →

f ff = g ff → f = g) is not provable internally using the with propositional B-𝜂
unless we also assume function extensionality to get our hands on aB-typed term to
pass as b.
This is to be expected, given we have seen that propositional 𝜂-laws for inductive
types can be proven merely by induction, but observational equality of functions
(called “function extensionality” in the general case) is not provable in intensional
MLTT [29] [29]: Streicher (1993), Investigations into in-

tensional type theory
.

It is perhaps also worth noting that in a dependently-typed setting, 𝜂 for A + B binary
coproducts can be obtained merely with 𝜂 for booleans, 𝚺 types and large elimination,
via the encoding A + B :≡ 𝚺 B (𝝀 b → if b A B) [103]. [103]: Kovács (2022), Strong eta-rules for

functions on sum types
As mentioned in Section 1.1 - Computation and Uniqueness, while 𝜂 rules for positive
types (such as Booleans or coproducts), can be useful, they do have some downsides.

▶ First, the meta-theory gets quite complicated. Previous proofs of normalisation for
STLC with of strict 𝜂 for binary coproducts have relied on somewhat sophisticated
rewriting [46, 47] or sheaf [23] theory. Normalisation for dependent type theory [46]: Ghani (1995), Adjoint Rewriting

[47]: Lindley (2007), Extensional Rewriting
with Sums
[23]: Altenkirch et al. (2001), Normalization
by Evaluation for Typed Lambda Calculus
with Coproducts

54

with boolean 𝜂 remains open (though some progress on this front has been made
recently [56]). [56]: Maillard (2024), Splitting Booleans with

Normalization-by-Evaluation▶ Second, efficient implementation appears challenging. Algorithms such as [23]
aggressively introduce case-splits on all neutral subterms of coproduct-type and
lifts the splits as high as possible, in an effort to prevent the build-up of stuck
terms. In the worst-case, this requires re-normalising twice for every distinct
coproduct-typed neutral subterm. [56] proposes a similar algorithm for type-
checking dependent types with strict boolean 𝜂, using a monadic interpreter with
an effectful splitting operation. [104] is even more extreme: when a variable f [104]: Altenkirch et al. (2004), Normaliza-

tion by evaluation for 𝜆→2of type B → B is bound, for example, case splits are generated on f tt and
f ff (regardless of whether such terms actually occur anywhere in the body), in
essence enumerating over all possible implementations of f.

The (current) lack of normalisation result for dependent types with strict Boolean 𝜂

prevents justifying smart case merely by piggy-backing on existing work. The problem
we examine in this report is further distinguished from 𝜂-equality due to its potential
to target a wider variety of equations than is allowed in the “neutral constrained envi-
ronments” of Dougherty [101] or Altenkirch [23]. Specifically, we are also interested in [101]: Dougherty et al. (2000), Equality be-

tween Functionals in the Presence of Coprod-
ucts

equations where both sides are neutral, or equations between infinitary-typed terms (ℕ,
List A, Tree A, etc..., for which 𝜂-equality is undecidable).

3.6 Extension Types

In retrospect, the machinery we introduce in SCBool and SCDef to extend contexts with
convertibility assumptions and generalise substitutions appropriately can be seen as a
subset of extension types [105, 106]. [105]: Riehl et al. (2017), A type theory for

synthetic∞-categories
[106]: Zhang (2023), Three non-cubical ap-
plications of extension types

Extension types assume the existence of a sort of propositions F that we can extend
contexts with

F : Ctx → Type
▷F : 𝚷 Γ → F Γ → Ctx

Extension types, A | 𝜙 { u, encode terms that are convertible u under the assumption
of 𝜙 .

|{_ : (A : Ty Γ) (𝜙 : F Γ) → Tm (Γ ▷F 𝜙) (A [wkF]Ty)
→ Ty Γ

The introduction rule inS is often writ-
ten as

inS′ : 𝚷 (t : Tm Γ A)
→ t [wkF] = u
→ Tm Γ (A | 𝜙 { u)

making explicit that t needs to be con-
vertible to u under the assumption 𝜙 .
Assuming a quotiented syntax, these
two rules are equivalent (inS′ is just
the “Forded” version of inS).

inS : 𝚷 (t : Tm Γ A) → Tm Γ (A | 𝜙 { (t [wkF]))
outS : Tm Γ (A | 𝜙 { u) → Tm Γ A
out{ : 𝚷 { t : Tm Γ (A | 𝜙 { u) } → outS t [wkF] = u
ext𝛽 : outS (inS {𝜙 :≡ 𝜙 } t) = t

In the context of Cubical type theory,
extension types with propositions F Γ

corresponding to interval expressions
that must definitionally equal i1 are are
also called Cubical subtypes ([107]).

Assuming a universe of types, U, and an F Γ which includes 𝔹-typed convertibility

[107]: Agda Team (2024), Cubical

assumptions, we can give the following elimination rule for Booleans.

U : Ty Γ

El : Tm Γ U → Ty Γ

~ : Tm Γ 𝔹 → Tm Γ 𝔹 → F Γ

ext-if : 𝚷 {A : Tm Γ U} (t : Tm Γ 𝔹)
(Att : Tm Γ (U | (t ∼ tt) { (A [wkF])))
(Aff : Tm Γ (U | (t ∼ ff) { (A [wkF])))

→ Tm Γ (El (outS Att))
→ Tm Γ (El (outS Aff))
→ Tm Γ (El A)

55

This bears some resemblance with smart if: the LHS and RHS branches of the if expres-
sion can differ in type up to replacing the scrutinee with tt/ff. Unlike the typing rule
for smart case suggested in [17], the LHS and RHS branch are still typed in context Γ, [17]: Altenkirch (2011), The case of the smart

casewhich could make the metatheory much easier.

Unfortunately, this construct is more limited than we would like. The concise proof of
f tt = f (f (f tt)) from the introduction (Chapter 1) cannot be replicated with ext-if. If
we make an attempt (working internally, for convenience)

Type inference also appears to be trick-
ier for ext-if, than full smart if hence
the explicitly annotated for the LHS
and RHS types. smart if (as defined
in Section 3.2) can check the LHS and
RHS branches at the same type as the
entire if expression, A : Ty Γ, only
weakened to account for the new equa-
tion. ext-if, on the other hand, requires
coming up with types in Γ for the LHS
and RHS branches with the constraint
that they are convertible to A after
weakening (the choices here are not
unique, because distinct types can be
made convertible after introducing an
equation).

f3 : Id 𝔹 (f tt) (f (f (f tt)))
f3 :≡ ext-if (f tt) (inS (Id 𝔹 tt tt)) (inS (Id 𝔹 ff (f (f ff))))

refl
ext-if (f ff) (inS (Id 𝔹 ff (f tt))) (inS (Id 𝔹 ff ff))

?0 refl

we get stuck in the case labelled ?0. The problem is that, as with with-abstraction, ext-if
does not have “memory” of the prior case splits. ext-if still does manage a better job
than with-abstraction, being able to apply the equation to the type multiple times (e.g.
simplifying f (f (f tt)) all the way to tt in the left branch of the split on f tt). However,
in ?0, we need to reuse the fact that f tt = ff, and no longer have access to it.

I therefore argue that smart case truly does need to type the branches of the split in a
context extended with the appropriate equation. Therefore, it appears that the existing
theory of extension types is not directly applicable to this use-case.

STLC Modulo Equations 4

4.1 STLC with Boolean Equa-

tions 56

4.1.1 Difficulties with Reduction . 58

4.2 Normalisation via Comple-

tion 60

4.3 Strong Normalisation of

Spontaneous Reduction . . 63

4.3.1 An Untyped Reduction Proof 63
4.3.2 Strong Normalisation of

Non-Deterministic Reduction 66

4.4 Locally Introducing Equa-

tions 71

In this chapter, we prove decidability of conversion for STLC modulo a fixed (global) set
of Boolean equations via rewriting to completion. We end by discussing the challenges
in adapting this proof to a setting where these equations can be introduced locally.

4.1 STLC with Boolean Equations

We begin our exploration of smart case/local equality reflection by studying convert-
ibility of STLC terms modulo equations. We will focus on equations of a restricted form:
t ≡ b, where t is a 𝔹-typed term and b is a closed Boolean.

We use an intrinsically-typed syntax with recursive substitutions following Section 2.2.1,
containing→ and 𝔹 type formers, with their standard introduction and elimination
rules. Note that simply-typed “if”-expressions require the left and right branches to have
exactly the same type.

if : Tm Γ 𝔹 → Tm Γ A → Tm Γ A → Tm Γ A

The computation rules then just select the appropriate branch.

𝔹𝛽1 : if tt u v ∼ u
𝔹𝛽2 : if ff u v ∼ v

We will package the set of equations with which we decide conversion modulo into
equational contexts. For our restricted class of equations, these take the form of lists of
pairs of 𝔹-typed terms and closed Booleans.

data Eqs (Γ : Ctx) : Type where
• : Eqs Γ

▷ { _ : Eqs Γ → Tm Γ 𝔹 → B → Eqs Γ

Substituting equational contexts folds substitution over the LHS terms.

[]Eq : Eqs Γ → Tms[q] Δ Γ → Eqs Δ
• [𝛿]Eq :≡ •
(Ξ ▷ t { b) [𝛿]Eq :≡ (Ξ [𝛿]Eq) ▷ (t [𝛿]) { b

Conversion relative to a set of in-scope equations can then be defined inductively.
Our starting point is to copy over the definition of 𝛽-conversion given in Section 2.2.4
(specialised to our pair of type formers).

data _⊢_~_ (Ξ : Eqs Γ) : Tm Γ A → Tm Γ A → Type where
-- Equivalence
rfl~ : Ξ ⊢ t ∼ t
sym~ : Ξ ⊢ t1 ∼ t2 → Ξ ⊢ t2 ∼ t1

•~ : Ξ ⊢ t1 ∼ t2 → Ξ ⊢ t2 ∼ t3 → Ξ ⊢ t1 ∼ t3

-- Congruence
𝜆_ : Ξ [wk]Eq ⊢ t1 ∼ t2 → Ξ ⊢ 𝜆 t1 ∼ 𝜆 t2

· : Ξ ⊢ t1 ∼ t2 → Ξ ⊢ u1 ∼ u2 → Ξ ⊢ t1 · u1 ∼ t2 · u2

if : Ξ ⊢ t1 ∼ t2 → Ξ ⊢ u1 ∼ u2 → Ξ ⊢ v1 ∼ v2

→ Ξ ⊢ if t1 u1 v1 ∼ if t2 u2 v2

-- Computation

57

→𝛽 : Ξ ⊢ (𝜆 t) · u ∼ t [< u >]
𝔹𝛽1 : Ξ ⊢ if tt u v ∼ u
𝔹𝛽2 : Ξ ⊢ if ff u v ∼ v

We account for local equations by defining a type of evidence that a particular equation,
t { b, occurs in an equational context, Ξ: EqVar Ξ t b.

data EqVar : Eqs Γ → Tm Γ 𝔹 → B → Type where
ez : EqVar (Ξ ▷ t { b) t b
es : EqVar Ξ t b1 → EqVar (Ξ ▷ u { b2) t b1

eq : EqVar Ξ t b → Ξ ⊢ t ∼ ⌜ b ⌝𝔹

Note that the congruence rule for “if” here is not smart in the sense of smart case: we
do not introduce equations on the scrutinee in the branches.

if : Ξ ⊢ t1 ∼ t2 → Ξ ▷ t1 { tt ⊢ u1 ∼ u2 → Ξ ▷ t1 { ff ⊢ v1 ∼ v2

→ Ξ ⊢ if t1 u1 v1 ∼ if t2 u2 v2

We will study the effect of locally introducing equations with rules like this later in
section Section 4.4.

Before moving on, we give a couple important definitions.

Definition 4.1.1 (Definitional Inconsistency)
We define definitionally inconsistent equational contexts identically to the depen-
dently typed setting (Remark 3.2.1). That is, contexts in which tt and ff are convertible.

def-incon : Eqs Γ → Type
def-incon Ξ :≡ Ξ ⊢ tt ∼ ff

Again, under definitionally-inconsistent contexts, all terms are convertible.

collapse : def-incon Ξ → Ξ ⊢ u ∼ v
collapse {u :≡ u} {v :≡ v} tf~ :≡

u
∼by sym~ 𝔹𝛽1

if tt u v
∼by if tf~ rfl~ rfl~
if ff u v
∼by 𝔹𝛽2

v ■

However, because of the lack of computation at the level of types in STLC (that is, the
absence of large elimination), we do not get a type-level equality collapse. Definitional
inconsistency is therefore a bit less dangerous in the setting of STLC, but we must still
keep the consequences it in mind when deciding conversion.

Definition 4.1.2 (Equational Context Equivalence)
We define equivalence of equational contexts observationally: two equational contexts
Ξ1 and Ξ2 are equivalent if they equate the same sets of terms via conversion _⊢_~_.

record _∼Eqs_ (Ξ1 Ξ2 : Eqs Γ) : Type where field
to : Ξ1 ⊢ t1 ∼ t2 → Ξ2 ⊢ t1 ∼ t2

from : Ξ2 ⊢ t1 ∼ t2 → Ξ1 ⊢ t1 ∼ t2

58

4.1.1 Difficulties with Reduction

Rewriting gives a nice intuition for the operational behaviour of these equations (in
the context Γ ▷ t { tt, t should reduce to tt), but declarative conversion being
an equivalence by definition makes it perhaps more powerful than we might initially
expect.

For example, if we try to directly translate this definition of conversion into a small-step
reduction relation

data _⊢_>_ (Ξ : Eqs Γ) : Tm Γ A → Tm Γ A → Type where
-- Computation
→𝛽 : Ξ ⊢ (𝜆 t) · u > t [< u >]
𝔹𝛽1 : Ξ ⊢ if tt u v > u
𝔹𝛽2 : Ξ ⊢ if ff u v > v

-- Rewriting
rw : EqVar Ξ t b → Ξ ⊢ t > ⌜ b ⌝𝔹

-- Monotonicity
𝜆_ : Ξ [wk]Eq ⊢ t1 > t2 → Ξ ⊢ 𝜆 t1 > 𝜆 t2

l· : Ξ ⊢ t1 > t2 → Ξ ⊢ t1 · u > t2 · u
·r : Ξ ⊢ u1 > u2 → Ξ ⊢ t · u1 > t · u2

if1 : Ξ ⊢ t1 > t2 → Ξ ⊢ if t1 u v > if t2 u v
if2 : Ξ ⊢ u1 > u2 → Ξ ⊢ if t u1 v > if t u2 v
if3 : Ξ ⊢ v1 > v2 → Ξ ⊢ if t u v1 > if t u v2

while we do at least stay conservative over conversion

pres> : Ξ ⊢ t1 > t2 → Ξ ⊢ t1 ∼ t2

we find that the induced notion of algorithmic convertibility is much weaker than our
declarative specification. Problems arise from how the LHS terms in contextual equations
need not themselves be irreducible, so e.g. in the equational context • ▷ if tt tt v { ff,
we can derive tt ∼ ff, but not tt >* ff (or ff >* tt)

ex1 : • ▷ if tt tt v { ff ⊢ tt ∼ ff
ex1 {v :≡ v} :≡

tt
∼by sym~ 𝔹𝛽1

if tt tt v
∼by eq ez
ff ■

ex2 : ¬ • ▷ if tt ff v { tt ⊢ tt >* ff
ex2 (rw (es ()) :> _)

This reduction relation has other problems as well. In the context • ▷ tt { tt, reduction
is not well-founded1 and in the context • ▷ tt { ff, reduction is non-confluent2.

1: There is an infinite chain of reduc-
tion tt > tt > tt >

2: We can pick two terms u and v such
that ¬ u > v, e.g. the Church Booleans
u :≡ 𝜆 x y. x and v :≡ 𝜆 x y. y,
and then start with the term if tt u v.
We can either reduce with 𝛽𝔹1 directly
and get if tt u v > u or we can apply
the rewrite and follow up with 𝛽𝔹2,
obtaining if tt u v > if ff u v > v.

The situation is slightly improved by explicitly preventing rewriting of terms that are
syntactically equal to closed Booleans:

𝔹? : Tm Γ A → B

𝔹? tt :≡ tt
𝔹? ff :≡ tt
𝔹? _ :≡ ff

rw : ¬is 𝔹? t → EqVar Ξ t b → Ξ ⊢ t > ⌜ b ⌝𝔹

59

⊢>_ is now even weaker, and is still non-confluent, but as it turns out, it is strongly
normalising! More significantly, we will show that this reduction stays strongly normal-
ising even without the EqVar Ξ t b pre-condition on rw . Intuitively, closed Booleans

Removing this pre-condition is equiv-
alent to being allowed to “swap” the
equational context after every reduc-
tion.

>Swap : Tm Γ A → Tm Γ A
→ Type

>Swap { Γ :≡ Γ } t1 t2
:≡ (Ξ : Eqs Γ) × Ξ ⊢ t1 > t2

Intuitively, this is a useful property, be-
cause it allows us to freely modify the
equational context while performing
well-founded induction.

are irreducible, so reduction chains which collapse the entire 𝔹-typed term to a closed
Boolean with rw must terminate at that point, but of course replacing subterms in some
large expression with tt or ff can unlock new reductions, so well-foundedness is not
completely trivial.

60

4.2 Normalisation via Completion

In the prior section, we ended by gesturing at a reduction relation similar to _⊢_>_,
but without a pre-condition on Boolean rewriting (beyond the LHS not already being
a closed Boolean). We will now make this notion concrete, and name it spontaneous
reduction (𝔹-typed terms may “spontaneously” collapse to tt or ff).

Recall that ¬is 𝔹? here ensures that t is
not already a closed Boolean, prevent-
ing reductions like tt >! tt.

data _>!_ : Tm Γ A → Tm Γ A → Type where
-- Computation
→𝛽 : (𝜆 t) · u >! t [< u >]
𝔹𝛽1 : if tt u v >! u
𝔹𝛽2 : if ff u v >! v

-- Spontaneous rewriting
rw : ¬is 𝔹? t → t >! ⌜ b ⌝𝔹

-- Monotonicity
𝜆_ : t1 >! t2 → 𝜆 t1 >! 𝜆 t2

l· : t1 >! t2 → t1 · u >! t2 · u
·r : u1 >! u2 → t · u1 >! t · u2

if1 : t1 >! t2 → if t1 u v >! if t2 u v
if2 : u1 >! u2 → if t u1 v >! if t u2 v
if3 : v1 >! v2 → if t u v1 >! if t u v2

In Section 4.3 we will prove that _>!_ is strongly normalising. Before we dive into that
proof though, we will show how to derive a normalisation algorithm using this result.

The key idea here will be completion. We call equational contexts where every LHS is
irreducible w.r.t. all other equations complete3.

3: Slightly confusingly, equational con-
texts being complete is required to
prove soundness of normalisation (to
ensure we appropriately identify all
convertible terms and do not miss any
reductions), rather than completeness
(which will ultimately be provable by
Ξ ⊢_>_ being contained in Ξ ⊢_~_).

Stk : Eqs Γ → Tm Γ A → Type
Stk Ξ t :≡ 𝚷 u → ¬ Ξ ⊢ t > u

- : 𝚷 (Ξ : Eqs Γ) → EqVar Ξ t b → Eqs Γ

(Ξ ▷ t { b) - ez :≡ Ξ

(Ξ ▷ u { b′) - es e :≡ (Ξ - e) ▷ u { b′

data AllStk (Ξ : Eqs Γ) : Eqs Γ → Type where
• : AllStk Ξ •
▷ : AllStk Ξ Ψ

→ 𝚷 (e : EqVar Ξ t b) → ¬is 𝔹? t
→ Stk (Ξ - e) t → AllStk Ξ (Ψ ▷ t { b)

Complete : Eqs Γ → Type
Complete Ξ :≡ AllStk Ξ Ξ

Under complete equational contexts Ξ, there are no critical pairs w.r.t. Ξ ⊢_>_ (LHSs can-
not overlap). Therefore, we can prove that reduction is confluent (ordinary 𝛽-reduction
cases are dealt with by switching to parallel reduction [45] - we know the new rw case [45]: Takahashi (1995), Parallel Reductions

in lambda-Calculuscan only apply if the term is otherwise irreducible from Stk (Ξ - e) t).

compl-confl : Complete Ξ → Ξ ⊢ t >* u → Ξ ⊢ t >* v
→ (w : Tm Γ A) × (Ξ ⊢ u >* w × Ξ ⊢ v >* w)

We can define algorithmic conversion and, via confluence, prove that declarative con-
version is preserved.

record _⊢_<~>_ (Ξ : Eqs Γ) (t1 t2 : Tm Γ A) : Type where
constructor _|_
field
{common} : Tm Γ A

61

reduces1 : Ξ ⊢ t1 >* common
reduces2 : Ξ ⊢ t2 >* common

<~>-trans : Complete Ξ → Ξ ⊢ t1 <~> t2 → Ξ ⊢ t2 <~> t3 → Ξ ⊢ t1 <~> t3

<~>-trans ΞC (t1> | t2>) (t2>′ | t3>)
using w , t1>′ , t3>′ :≡ compl-confl ΞC t2> t2>′

:≡ (t1> ◦* t1>′) | (t3> ◦* t3>′)
<~>-pres : Complete Ξ → Ξ ⊢ t1 ∼ t2 → Ξ ⊢ t1 <~> t2

Algorithmic convertibility of stuck terms implies syntactic equality (Stk<~>), so we can
further derive uniqueness of normal forms (stuck terms under complete equational
context reduction).

Stk>* : Stk Ξ t1 → Ξ ⊢ t1 >* t2 → t1 = t2

Stk>* ¬t1> rfl* :≡ refl
Stk>* ¬t1> (t1> :> t1>*) :≡ O-elim (¬t1> _ t1>)
Stk<~> : Stk Ξ t1 → Stk Ξ t2 → Ξ ⊢ t1 <~> t2 → t1 = t2

Stk<~> ¬t1> ¬t2> (t1>* | t2>*) :≡ Stk>* ¬t1> t1>* • sym (Stk>* ¬t2> t2>*)
nf-uniq : Complete Ξ → Stk Ξ t1 → Stk Ξ t2 → Ξ ⊢ t1 ∼ t2 → t1 = t2

nf-uniq ΞC ¬t1> ¬t2> t~ :≡ Stk<~> ¬t1> ¬t2> (<~>-pres ΞC t~)

We now specify the completion algorithm as a function that completes equational
contexts while preserving equivalence.

complete : Eqs Γ → Eqs Γ

complete-pres : Ξ ∼Eqs complete Ξ

complete-compl : Complete (complete Ξ)

Under complete equational contexts Ξ, we have shown that algorithmic conversion
induced by Ξ ⊢_>eq_ is equivalent to declarative conversion Ξ ⊢_~_. Therefore, we
can obtain a sound and complete normalisation algorithm from completion and the
existence of a function which fully reduces terms w.r.t. Ξ ⊢_>eq_.

Decidability of convertibility normal
forms (terms which are Stk w.r.t.
Complete equational contexts) follows
from decidability of syntactic equality
on first-order datatypes.

“reduce” fully reduces terms w.r.t.
⊢>_.

reduce : Eqs Γ → Tm Γ A → Tm Γ A
reduce-reduces : Ξ ⊢ t >* reduce Ξ t
reduce-Stk : Stk Ξ (reduce Ξ t)

norm : Eqs Γ → Tm Γ A → Tm Γ A
norm Ξ t :≡ reduce (complete Ξ) t

reduce-pres : Ξ ⊢ t ∼ reduce Ξ t
reduce-pres :≡ pres>* reduce-reduces

norm-sound : Ξ ⊢ t1 ∼ t2 → norm Ξ t1 = norm Ξ t2

norm-sound {Ξ :≡ Ξ} { t1 :≡ t1 } { t2 :≡ t2 } t~
:≡ nf-uniq complete-compl reduce-Stk reduce-Stk (

norm Ξ t1

∼by sym~ reduce-pres
t1

∼by complete-pres .to t~
t2

∼by reduce-pres
norm Ξ t2 ■)

norm-pres : Ξ ⊢ t ∼ norm Ξ t
norm-pres :≡ complete-pres .from reduce-pres

norm-compl : norm Ξ t1 = norm Ξ t2 → Ξ ⊢ t1 ∼ t2

norm-compl {Ξ :≡ Ξ} { t1 :≡ t1 } { t2 :≡ t2 } t= :≡

62

t1

∼by norm-pres
norm Ξ t1

∼by ≡~ t=
norm Ξ t2

∼by sym~ norm-pres
t2 ■

There is a remaining subtlety: completion as specified cannot be implemented on defini-
tionally inconsistent contexts. Specifically, it is provable that in all equational contexts
satisfying Complete, deriving Ξ ⊢ tt ∼ ff is impossible, so clearly completion cannot
preserve context equivalence in these cases.

complete-not-incon : Complete Ξ → ¬ Ξ ⊢ tt ∼ ff

contradiction : O

contradiction
:≡ complete-not-incon (complete-compl {Ξ :≡ Ξ⊥}) (complete-pres .to (eq ez))

where Ξ⊥ :≡ • ▷ tt {Γ :≡ •} { ff

It follows that completion in our setting should be partial. We will either complete an
equational environment, or discover a syntactically inconsistent equation like tt { ff
and conclude that it is definitionally inconsistent.

Our corrected specification of completion is (we fuse the correctness conditions with
the definition to simplify the spec)

data Complete? (Ξ : Eqs Γ) : Type where
compl : 𝚷 Ξ′ → Ξ ∼Eqs Ξ′ → Complete Ξ′ → Complete? Ξ
!! : def-incon Ξ → Complete? Ξ

complete : 𝚷 (Ξ : Eqs Γ) → Complete? Ξ

We also have to update our definition of normal forms. In definitionally inconsistent
contexts, all terms are convertible, so our normal forms be characterised by the unit
type.

Note that these normal forms do not
cleanly embed back into the STLC
terms (all information about the struc-
ture of the term is lost in the case of
inconsistent contexts) but we can still
decide equality by first completing the
context, and then either syntactically
comparing stuck terms (the Stk part is
proof-irrelevant and so can be ignored)
or immediately returning reflexivity.

Nf : 𝚷 Γ (Ξ : Eqs Γ) → Ty → Complete? Ξ → Type
Nf Γ Ξ A (compl Ξ′ _ _) :≡ (t : Tm Γ A) × Stk Ξ′ t
Nf Γ Ξ A (!! _) :≡ 1
norm : 𝚷 (Ξ : Eqs Γ) → Tm Γ A → Nf Γ Ξ A (complete Ξ)

norm-sound : Ξ ⊢ t1 ∼ t2 → norm Ξ t1 = norm Ξ t2

norm-complete : norm Ξ t1 = norm Ξ t2 → Ξ ⊢ t1 ∼ t2

Normalisation can then be implemented as before in the case completion succeeds (i.e.
returns compl ...) or otherwise can just return ⟨⟩.

norm Ξ t with complete Ξ

... | compl Ξ′ _ _ :≡ reduce Ξ′ t , reduce-Stk

... | !! _ :≡ ⟨⟩

Of course, this normalisation function is only actually implementable if we can de-
fine complete and reduce with all appropriate correctness conditions. Given well-
foundedness of _>!_, reduce can be defined very similarly to naive normalisation as in
Section 2.4.1 (recurse over the term, contracting redexes where possible, now addition-
ally checking for rewrites by syntactically comparing subterms to LHSs in the equational
context). complete then can be implemented by repeatedly reducing LHS terms, with
termination justified by extending _>!_ lexicographically over the equational context.

63

4.3 Strong Normalisation of Spontaneous

Reduction

All that remains then is strong normalisation of _>!_. We will prove this in two steps,
using an intermediary notion of “non-deterministic” reduction, _>N.D._: a slightly gen-
eralised version of 𝛽-reduction, where “if”-expressions can be non-deterministically
collapsed to the LHS or RHS branch irrespective of the scrutinee.

▶ First we will prove that strong normalisability w.r.t. non-deterministic reduction,
SN _>N.D._ t, implies SN w.r.t. spontaneous reduction, SN _>!_ t. We will actually
show this on untyped terms (generalising _>!_ appropriately) to simplify the
presentation.

▶ Then we will show strong normalisation of typed terms w.r.t. _>N.D._ by the
technique of computability/(unary) logical relations.

4.3.1 An Untyped Reduction Proof

In this section, we show that the untyped terms which are strongly-normalising w.r.t.
non-deterministic reduction are also strongly-normalising w.r.t. spontaneous reduc-
tion.

We define untyped terms indexed by the number of variables in the context (“intrinsically
well-scoped”). Note that in this section, the symbols Γ, Δ, Θ denote untyped contexts
(i.e. natural numbers) rather than lists of types.

vz : Var (su Γ)
vs : Var Γ → Var (su Γ)
`_ : Var Γ → Tm Γ

· : Tm Γ → Tm Γ → Tm Γ

𝜆_ : Tm (su Γ) → Tm Γ

tt : Tm Γ

ff : Tm Γ

if : Tm Γ → Tm Γ → Tm Γ → Tm Γ

In this section, we will be dealing with quite a few distinct reduction relations at a
fine-grained level of detail. To assist with this, we define generically the monotonic
closure of term relations, _[_]>_. This lets us lift term relations _>_ over our various
term formers.

[]>_ : Tm Γ → (𝚷 {Γ } → Tm Γ → Tm Γ → Type)
→ Tm Γ → Type

⟨⟨_⟩⟩ : t1 > t2 → t1 [_>_]> t2

l· : t1 [_>_]> t2 → t1 · u [_>_]> t2 · u
·r : u1 [_>_]> u2 → t · u1 [_>_]> t · u2

𝜆_ : t1 [_>_]> t2 → 𝜆 t1 [_>_]> 𝜆 t2

if1 : t1 [_>_]> t2 → if t1 u v [_>_]> if t2 u v
if2 : u1 [_>_]> u2 → if t u1 v [_>_]> if t u2 v
if3 : v1 [_>_]> v2 → if t u v1 [_>_]> if t u v2

Monotonic closure is functorial over mappings between the closed-over reduction
relations.

map> : (𝚷 {Γ } { t u : Tm Γ } → t >1 u → t >2 u)
→ t [_>1_]> u → t [_>2_]> u

64

We can now define our reduction relations as a “step” relation containing the interesting
cases, lifted using _[_]>. Ordinary 𝛽-reduction can then just be defined as the monotonic
closure of the computation rules for→ and 𝔹:

data 𝛽-step : Tm Γ → Tm Γ → Type where
→𝛽 : 𝛽-step ((𝜆 t) · u) (t [< u >])
𝔹𝛽1 : 𝛽-step (if tt u v) u
𝔹𝛽2 : 𝛽-step (if ff u v) v

>𝛽 : Tm Γ → Tm Γ → Type
>𝛽 :≡ _[𝛽-step]>_

Spontaneous reduction _>!_ in this section refers only to the relation which rewrites
terms to closed Booleans (as long as the terms not already syntactically equal to tt or
ff); we do not, by default, include 𝛽-reductions as well. We also do not require the LHS
term to have Boolean type, which we are somewhat forced into given we are working
with untyped terms. We therefore will end up proving strong normalisation of a larger
relation than our concrete goal of typed spontaneous (plus 𝛽) reduction.

data !-step : Tm Γ → Tm Γ → Type where
!TT : ¬is 𝔹? t → !-step t tt
!FF : ¬is 𝔹? t → !-step t ff

>! : Tm Γ → Tm Γ → Type
>! :≡ _[!-step]>_

Non-deterministic reduction treats “if”-expressions like non-deterministic choices, ig-
noring the scrutinee.

data N.D.-step : Tm Γ → Tm Γ → Type where
→𝛽 : N.D.-step ((𝜆 t) · u) (t [< u >])

ndl : N.D.-step (if t u v) u
ndr : N.D.-step (if t u v) v

>N.D. : Tm Γ → Tm Γ → Type
>N.D. :≡ _[N.D.-step]>_

We need one more monotonic relation on terms, _>𝔹_, where t >𝔹 u holds when u is
syntactically equal to t except for replacing a single arbitrary subterm with a closed
Boolean (tt or ff).

>𝔹 : Tm Γ → Tm Γ → Type
>𝔹 :≡ _[(𝝀 _ u → is 𝔹? u)]>_

Our overall goal is to prove that all terms which are strongly-normalising w.r.t. non-
deterministic reduction are also strongly-normalising w.r.t. spontaneous reduction plus
𝛽 rules, _>𝛽 !_.

>𝛽 ! : Tm Γ → Tm Γ → Type
>𝛽 ! :≡ _[_>𝛽_ | _>!_]_

snN.D.-sn𝛽 ! : SN _>N.D._ t → SN _>𝛽 !_ t

The key lemma we need to show is that _>𝔹*_ (i.e. the relation defined by replacements
of arbitrary subterms of the LHS term with closed Booleans) commutes with non-
deterministic reduction:

𝔹*/nd-comm> : t >𝔹* u → u >N.D. v → (w : Tm Γ) × t >N.D. w × w >𝔹* v

Note that _>N.D._ does not commute with _>!_ in the same way. _>N.D._ includes the
𝛽-rule for functions, and so any reduction relation which commutes with _>N.D._ must

65

be stable under substitution. Spontaneous reduction is not stable under substitution,
because e.g. we can rewrite ` i >! tt, but if we apply the substitution ff / i to both sides
then we are left with ff >! tt which is impossible (the LHS of _>!_ cannot be tt or ff).

Luckily, _>𝔹*_ does not face the same issue: tt >𝔹 ff and ff >𝔹 tt are valid. We can prove
𝔹*/nd-comm> by checking all the cases for individual N.D.-steps/single Boolean rewrites
(_>𝔹_) and then extending over the monotonic closure of N.D.-step and transitive closure
of _>𝔹_. The relevant cases are:

▶ When the N.D.-step is a→𝛽 contraction, then the Boolean rewrite (_>𝔹_) must
have occurred inside the lambda body or the argument, and so we can first
𝛽-reduce and then rewrite (multiple times, if the rewrite took place inside the
argument specifically4) to get back to the same term.

4: E.g. given u >𝔹 u′, then we can get
from (𝜆 x. f x x) u to f u′ u′ by first
𝛽-contracting to get f u u and then
applying the rewrite twice.

▶ When the step is a non-deterministic choice, the Boolean rewrite must have
occurred inside the scrutinee, LHS, or RHS, of the “if” expression. We can instead
perform the non-deterministic choice before the rewrite, and then either get back
to the term immediately (if the rewrite was wither inside the scrutinee or the
dropped branch of the “if”), or apply the rewrite again to the retained branch.

[]𝔹>* here witnesses a generalisa-
tion of _>𝔹*_ being stable under substi-
tution. Specifically, we allow the substi-
tute terms to also be reduced via _>𝔹*_.

data _>Tms𝔹*_ : Tms Δ Γ → Tms Δ Γ → Type where
refl : 𝛿 >Tms𝔹* 𝛿
_, _ : 𝛿 >Tms𝔹* 𝜎 → t >𝔹* u → (𝛿 ▷ t) >Tms𝔹* (𝜎 ▷ u)

[]𝔹>* : t >𝔹* u → 𝛿 >Tms𝔹* 𝜎 → t [𝛿] >𝔹* u [𝜎]
𝔹/N.D.-comm : t >𝔹 u → N.D.-step u v → (w : Tm Γ) × N.D.-step t w × w >𝔹* v
𝔹/N.D.-comm (l· (𝜆 p)) →𝛽

:≡ _ , →𝛽 , ⟨⟨ p ⟩⟩* [refl]𝔹>*
𝔹/N.D.-comm (·r { t :≡ 𝜆 t} p) →𝛽

:≡ _ , →𝛽 , rfl* {x :≡ t} [refl {𝛿 :≡ id} , (p :: rfl*)]𝔹>*
𝔹/N.D.-comm (if1 p) ndl :≡ _ , ndl , rfl*
𝔹/N.D.-comm (if2 p) ndl :≡ _ , ndl , ⟨⟨ p ⟩⟩*
𝔹/N.D.-comm (if3 p) ndl :≡ _ , ndl , rfl*
𝔹/N.D.-comm (if1 p) ndr :≡ _ , ndr , rfl*
𝔹/N.D.-comm (if2 p) ndr :≡ _ , ndr , rfl*
𝔹/N.D.-comm (if3 p) ndr :≡ _ , ndr , ⟨⟨ p ⟩⟩*

We can also prove that spontaneous reduction alone is strongly normalising by structural
induction on terms (once we rewrite a term to a Boolean, it cannot reduce further).

sn! : 𝚷 (t : Tm Γ) → SN _>!_ t

Using our commuting lemma to ensure we keep making progress w.r.t. non-deterministic
reduction, we can prove by mutual well-founded induction on non-deterministic and
spontaneous reduction that the strongly normalising terms w.r.t. _>N.D._ are exactly
those which are strongly normalising w.r.t. _>N.D.!_ (interleaved _>N.D._ and _>!_).

Note that we generalise the induc-
tive hypothesis over _>𝔹*_ here to ac-
count for subterms getting rewritten
to Booleans. We name the lemma that
spontaneous reduction is included in
>𝔹, !𝔹>, and prove it by considering
!-step cases and lifting with map>.

>N.D.! : Tm Γ → Tm Γ → Type
>N.D.! :≡ _[_>N.D._ | _>!_]_

!𝔹> : t >! u → t >𝔹 u

snN.D.! : t >𝔹* u → SN _>N.D._ t → SN _>!_ u → SN _>N.D.!_ u
snN.D.!> : t >𝔹* u → SN _>N.D._ t → SN _>!_ u → u >N.D.! v

→ SN _>N.D.!_ v

snN.D.! p N.D.Acc !Acc :≡ acc (snN.D.!> p N.D.Acc !Acc)
snN.D.!> p (acc N.D.Acc) !Acc (in1 q)

using v , q′ , p′ :≡ 𝔹*/nd-comm> p q
:≡ snN.D.! p′ (N.D.Acc q′) (sn! _)

snN.D.!> p N.D.Acc (acc !Acc) (in2 q)
:≡ snN.D.! (p <: !𝔹> q) N.D.Acc (!Acc q)

66

snN.D.-snN.D.! : SN _>N.D._ t → SN _>N.D.!_ t
snN.D.-snN.D.! N.D.Acc :≡ snN.D.! rfl* N.D.Acc (sn! _)

Finally, we recover our original goal

snN.D.-sn𝛽 ! : SN _>N.D._ t → SN _>𝛽 !_ t

from _>𝛽 !_ reduction being included inside _>N.D.!_.

𝛽-N.D. : 𝛽-step t u → N.D.-step t u
𝛽-N.D. →𝛽 :≡ →𝛽

𝛽-N.D. 𝔹𝛽1 :≡ ndl
𝛽-N.D. 𝔹𝛽2 :≡ ndr

snN.D.-sn𝛽 ! N.D.Acc

:≡ accessible (map+ (map> 𝛽-N.D.) (𝝀 p → p)) (snN.D.-snN.D.! N.D.Acc)

4.3.2 Strong Normalisation of Non-Deterministic Reduction

We now return to the world of simply typed terms in order to prove that all such terms
are strongly normalising w.r.t. non-deterministic reduction. For this, we will use the
technique of logical relations (also known as computability [108] or reducibility candi- [108]: Tait (1967), Intensional Interpretations

of Functionals of Finite Type Idates). The specific proof we attempt is based on Girard’s proof of strong normalisation
for STLC in chapter 6 of [109], translated into Agda by András Kovács [110]. [109]: Girard et al. (1989), Proofs and Types

[110]: Kovács (2020), StrongNorm.agda
To simplify the proof, we will assume all substitution equations hold definitionally.
For STLC, we can prove these equations by induction on the syntax following [44], [44]: Altenkirch et al. (2025), Substitution

without copy and pasteso to justify this decision, we merely need to reflect these propositional equations as
definitional ones (by conservativity of ETT over ITT [63, 65] we, in principle, lose [63]: Hofmann (1995), Conservativity of

Equality Reflection over Intensional Type
Theory
[65]: Winterhalter et al. (2019), Eliminating
reflection from type theory

nothing by simplifying the presentation in this way).

We recall the definition of non-deterministic reduction.

data _>N.D._ : Tm Γ A → Tm Γ A → Type where
-- Computation
→𝛽 : (𝜆 t) · u >N.D. t [< u >]

ndl : if t u v >N.D. u
ndr : if t u v >N.D. v

-- Monotonicity
𝜆_ : t1 >N.D. t2 → 𝜆 t1 >N.D. 𝜆 t2

l· : t1 >N.D. t2 → t1 · u >N.D. t2 · u
·r : u1 >N.D. u2 → t · u1 >N.D. t · u2

if1 : t1 >N.D. t2 → if t1 u v >N.D. if t2 u v
if2 : u1 >N.D. u2 → if t u1 v >N.D. if t u2 v
if3 : v1 >N.D. v2 → if t u v1 >N.D. if t u v2

We define computability (i.e. the logical relation) as follows

P : 𝚷 Γ A → Tm Γ A → Type
P Γ 𝔹 t :≡ SN _>N.D._ t
P Γ (A → B) t

:≡ 𝚷 {Δ} (𝛿 : Ren Δ Γ) {u} → P Δ A u → P Δ B ((t [𝛿]) · u)

The resemblance to Val in NbE (Section 2.4) should not be so surprising. If we naively
attempt to prove strong normalisation by direct structural induction on terms, we will
again get stuck in the case of application, where the LHS and RHS being strongly
normalising does not imply that their application is.

67

Like in NbE, we can parameterise function computability over renamings or thinnings,
corresponding to the presheaf exponential over the category of renamings or the category
of thinnings. We choose renamings here only for convenience.

Our analogue of NbE environments is evidence of computability of each of the terms
we will substitute every variable for.

data Ps (Δ : Ctx) : 𝚷 Γ → Sub Δ Γ → Type where
𝜀 : Ps Δ • 𝜀
_, _ : Ps Δ Γ 𝛿 → P Δ A t → Ps Δ (Γ ▷ A) (𝛿 , t)

We can prove that non-deterministic reduction is stable under substitutions and inverting
renamings.

[]> : t1 >N.D. t2 → (𝛿 : Tms[q] Δ Γ) → t1 [𝛿] >N.D. t2 [𝛿]
[_]>−1_ : 𝚷 (𝛿 : Ren Δ Γ) → t [𝛿] >N.D. t[]′

→ (t′ : Tm Γ A) × (t >N.D. t′ × t′ [𝛿] = t[]′)

These stability properties follow pretty directly from induction on the definition of
reduction (plus definitional substitution equations). E.g. for the case of applying a
substitution to→𝛽 , we need ((𝜆 t) · u) [𝛿] >N.D. t [< u >] [𝛿], which is satisfied
immediately with→𝛽 because

((𝜆 t) · u) [𝛿] ≡ (𝜆 (t [𝛿 ˆ A])) · (u [𝛿])

and

t [< u >] [𝛿] ≡ t [𝛿 , (u [𝛿])] ≡ t [𝛿 ˆ A] [< u [𝛿] >]

From stability of reduction under inverted renamings, we can show that SN is stable
under (forwards) renaming, and therefore computability is also. Note that we needed
stability w.r.t. inverted renamings to show this because the reduction itself appears in
contravariant position (i.e. left of arrow) in the type of acc (intuitively, we are trans-
forming reduction chains starting from t [𝛿] into reduction chains starting from
t).

[]SN : SN _>N.D._ t → 𝚷 (𝛿 : Ren Δ Γ) → SN _>N.D._ (t [𝛿])
acc tAcc [𝛿]SN

:≡ acc 𝝀 p → let t′ , p′ , q :≡ [𝛿]>−1 p
in transp (SN _>N.D._) q (tAcc p′ [𝛿]SN)

[]P : P Γ A t → 𝚷 (𝛿 : Ren Δ Γ) → P Δ A (t [𝛿])
[]Ps : Ps Δ Γ 𝛿 → 𝚷 (𝜎 : Ren Θ Δ) → Ps Θ Γ (𝛿 ; 𝜎)

By analogous reasoning, strong normalisation is also stable under inverting substitu-
tion.

[_]SN−1_ : 𝚷 (𝛿 : Tms[q] Δ Γ) → SN _>N.D._ (t [𝛿]) → SN _>N.D._ t
[𝛿]SN−1 (acc t[]Acc)

:≡ acc 𝝀 p → [𝛿]SN−1 (t[]Acc (p [𝛿]>))

We are now ready to prove the fundamental theorem: t [𝛿] is computable as long as
all terms in 𝛿 are.

fndThm : 𝚷 (t : Tm Γ A) → Ps Δ Γ 𝛿 → P Δ A (t [𝛿])

To prove the fundamental theorem, we need a couple of lemmas. Specifically, that it
is possible to derive strong normalisation from computability (P-SN) and that if all

68

immediate reducts of a term (not headed by 𝜆-abstraction) are computable, then the
original term must be also (P<). These lemmas resemble quoting and unquoting in
NbE.

𝜆? : Tm Γ A → B

𝜆? (𝜆 _) :≡ tt
𝜆? _ :≡ ff

P-SN : P Γ A t → SN _>N.D._ t
P< : ¬is 𝜆? t → (𝚷 { t′ } → t >N.D. t′ → P Γ A t′) → P Γ A t

The fundamental theorem is proved by induction on terms, similarly to evaluation in
NbE. We use the fact that tt, ff and fresh variables are trivially computable (there are no
reductions with these constructs on the LHS). The cases for 𝜆-abstraction and “if” are
more complicated, so we will cover these separately.

lookupP : 𝚷 (i : Var Γ A) → Ps Δ Γ 𝛿 → P Δ A (i [𝛿])
tt-sn : SN _>N.D._ (tt {Γ :≡ Γ })
tt-sn :≡ acc 𝝀 ()
ff-sn : SN _>N.D._ (ff {Γ :≡ Γ })
ff-sn :≡ acc 𝝀 ()
`P : P Γ A (` i)
`P :≡ P< ⟨⟩ 𝝀 ()
fndThm-𝜆 : (𝚷 {u} → P Γ A u → P Γ B (t [< u >]))

→ SN _>N.D._ t → P Γ A u → SN _>N.D._ u → P Γ B ((𝜆 t) · u)
fndThm-if : SN _>N.D._ t → P Γ A u → SN _>N.D._ u → P Γ A v → SN _>N.D._ v

→ P Γ A (if t u v)
fndThm (` i) 𝜌 :≡ lookupP i 𝜌
fndThm (𝜆 t) 𝜌

:≡ 𝝀 𝜎 uP → fndThm-𝜆 (𝝀 uP′ → fndThm t ((𝜌 [𝜎]Ps) , uP′))
(P-SN (fndThm t ((𝜌 [𝜎 + _]Ps) , `P)))
uP (P-SN uP)

fndThm (t · u) 𝜌 :≡ fndThm t 𝜌 id (fndThm u 𝜌)
fndThm tt 𝜌 :≡ tt-sn
fndThm ff 𝜌 :≡ ff-sn
fndThm (if t u v) 𝜌

:≡ fndThm-if (fndThm t 𝜌) uP (P-SN uP) vP (P-SN vP)
where uP :≡ fndThm u 𝜌

vP :≡ fndThm v 𝜌

To prove the fundamental theorem in the case of 𝜆-abstractions and “if” expressions,
we repeatedly appeal to P< to step along the chain of reductions, and rely on SN of
subterms to induct w.r.t. reduction order in the cases where a subterm is reduced. When
we finally hit→ 𝛽 or ndl/ndr, we return computability of the reduct. To carry along
computability evidence until this point, we also need that computability is stable under
reduction, P>.

P> : t1 >N.D. t2 → P Γ A t1 → P Γ A t2

fndThm-𝜆> : (𝚷 {u} → P Γ A u → P Γ B (t [< u >]))
→ SN _>N.D._ t → P Γ A u → SN _>N.D._ u
→ (𝜆 t) · u >N.D. t′ → P Γ B t′

fndThm-𝜆 tP tAcc uP uAcc :≡ P< ⟨⟩ (fndThm-𝜆> tP tAcc uP uAcc)
fndThm-𝜆> tP tAcc uP uAcc →𝛽

:≡ tP uP

fndThm-𝜆> tP tAcc uP (acc uAcc) (·r u>)
:≡ fndThm-𝜆 tP tAcc (P> u> uP) (uAcc u>)

69

fndThm-𝜆> tP (acc tAcc) uP uAcc (l· (𝜆 t>))
:≡ fndThm-𝜆 (𝝀 {u :≡ u′ } uP′ → P> (t> [< u′ >]>) (tP uP′))

(tAcc t>) uP uAcc

fndThm-if> : SN _>N.D._ t → P Γ A u → SN _>N.D._ u
→ P Γ A v → SN _>N.D._ v
→ if t u v >N.D. t′ → P Γ A t′

fndThm-if tAcc uP uAcc vP vAcc :≡ P< ⟨⟩ (fndThm-if> tAcc uP uAcc vP vAcc)
fndThm-if> tAcc uP uAcc vP vAcc ndl :≡ uP

fndThm-if> tAcc uP uAcc vP vAcc ndr :≡ vP

fndThm-if> (acc tAcc) uP uAcc vP vAcc (if1 t>)
:≡ fndThm-if (tAcc t>) uP uAcc vP vAcc

fndThm-if> tAcc uP (acc uAcc) vP vAcc (if2 u>)
:≡ fndThm-if tAcc (P> u> uP) (uAcc u>) vP vAcc

fndThm-if> tAcc uP uAcc vP (acc vAcc) (if3 v>)
:≡ fndThm-if tAcc uP uAcc (P> v> vP) (vAcc v>)

We now prove the remaining lemmas by recursion on types.

▶ Stability of computability under reduction is proved by considering larger and
larger spines (always applying the reduction to the LHS) until we reach base 𝔹

type.
▶ Mapping from computability to strong normalisation is achieved by repeatedly

applying computability of→-typed terms to a fresh variable, and then taking
advantage of how strong normalisability is stable under taking subterms and
renaming to get back to SN of the original→-typed term.

P> {A :≡ 𝔹} t> (acc tAcc) :≡ tAcc t>
P> {A :≡ A → B} t> tP :≡ 𝝀 𝛿 uP → P> (l· (t> [𝛿]>)) (tP 𝛿 uP)
SN-l· : SN _>N.D._ (t · u) → SN _>N.D._ t
SN-l· (acc tuAcc) :≡ acc 𝝀 p → SN-l· (tuAcc (l· p))
P-SN {A :≡ 𝔹} tAcc :≡ tAcc

P-SN {A :≡ A → B} tP

:≡ [wk]SN−1 SN-l· (P-SN (tP wk (`P { i :≡ vz})))

P< (all reducts of a term being computable implies the term itself is) is a bit more
complicated.

We mutually prove a more specialised version for the case of applications, P<·, where
we have direct computability of the RHS and know every term the LHS reduces to is
computable. We prove this by appealing to P<: if the reduction occurs in the LHS, we
can obtain computability of the application immediately by combining computability
info, while if the reduction occurs in the RHS, we proceed by induction w.r.t. reduction
order (computability of the RHS implies it is strongly normalising). We avoid needing
to consider the case where the overall application contracts with→𝛽 by assuming the
LHS is not 𝜆-abstraction headed.

Then to prove P< itself at→-type, we take advantage of having access to computability
of the argument to apply P<·.

P<· : ¬is 𝜆? t → (𝚷 { t′ } → t >N.D. t′ → P Γ (A → B) t′)
→ P Γ A u → SN _>N.D._ u → P Γ B ((t · u))

P<·> : ¬is 𝜆? t → (𝚷 { t′ } → t >N.D. t′ → P Γ (A → B) t′)
→ P Γ A u → SN _>N.D._ u → (t · u) >N.D. t′ → P Γ B t′

P<· ¬𝜆 tP uP uAcc :≡ P< ⟨⟩ (P<·> ¬𝜆 tP uP uAcc)
P<·> ¬𝜆 tP uP uAcc (l· t>) :≡ tP t> id uP

P<·> ¬𝜆 tP uP (acc uAcc) (·r u>) :≡ P<· ¬𝜆 tP (P> u> uP) (uAcc u>)
P< {A :≡ 𝔹} ¬𝜆 tP :≡ acc 𝝀 p → tP p

70

P< {A :≡ A → B} { t :≡ t} ¬𝜆 tP

:≡ 𝝀 𝛿 uP → P<· (¬𝜆 [𝛿]¬o)
(𝝀 p 𝜎 uP′ → let _ , p′ , q :≡ [𝛿]>−1 p

in transp (𝝀 □ → P _ B ((□ [𝜎]) · _)) q
(tP p′ (𝛿 ; 𝜎) uP′))

uP (P-SN uP)

Now to obtain strong normalisation, we merely need to derive computability of all
variables in the identity substitution, so we can apply the fundamental theorem and
follow it up with P-SN.

idP
: Ps Γ Γ id

idP {Γ :≡ •} :≡ 𝜀

idP {Γ :≡ Γ ▷ A} :≡ idP [wk]Ps , `P

sn : SN _>N.D._ t
sn { t :≡ t} :≡ P-SN (fndThm t idP)

71

4.4 Locally Introducing Equations

Back in Section 4.1, we discussed potentially enhancing our notion of conversion-
modulo-equations by introducing new equations on the scrutinee inside the LHS and
RHS branches of “if”-expressions.

if : Ξ ⊢ t1 ∼ t2 → Ξ ▷ t1 { tt ⊢ u1 ∼ u2 → Ξ ▷ t1 { ff ⊢ v1 ∼ v2

→ Ξ ⊢ if t1 u1 v1 ∼ if t2 u2 v2

I would argue this rule is about as close as we can get to a simply-typed analogue of
Boolean smart case. Of course, typeability of STLC is independent of conversion, so this
rule does not expand the expressivity of the language (i.e. make more terms typeable)
like dependent smart case does, but it does still expand our notion of convertibility to
somewhere between pure 𝛽-equivalence and adding in full 𝜂-equality of Booleans.

For example, in the empty equational context, we can now obtain if t t t ∼ if t tt ff, but
unlike Boolean 𝜂, we cannot simplify further to just t. We also cannot derive commuting
conversions (Example 3.5.1). We argue that this more limited notion of conversion can
be advantageous though. As mentioned in Section 3.5, known algorithms which can
decide 𝜂-equality for positive types are quite inefficient (e.g. renormalising terms 2𝑛

times where 𝑛 is the number of distinct neutral Boolean subterms). I claim that we can
take a smarter approach with _⊢_~_. Specifically, we can split on Boolean neutrals only
at stuck “if”-expressions, and normalise the left and right branch just once under the
corresponding equation (e.g. given if t u v, we must normalise u under t ∼ tt, but not
t ∼ ff).

Mutually calling into completion dur-
ing normalisation when recursing un-
der stuck “if”-expressions is exactly the
approach I am employing in my SCBool

typechecker (Section 5.4).

Justifying normalisation for this theory is quite subtle, however. Retaining our strategy
of first completing the equational context and then reducing seems promising, but we
now hit a new case in reduction where, after recursing into the LHS or RHS of an “if”
expression, we must call back into completion again. Even though “if”-expressions only
add equations one-at-a-time, completion might have to run for many iterations (i.e. if
the new equation unblocks existing neutral LHSs) so the termination metric here is
non-obvious (if indeed this algorithm does actually terminate).

Remark 4.4.1 (Adding One Equation to a Complete Equational Context can Trigger
an Arbitrary Number of Completion Iterations)
To show that we cannot meaningfully take advantage of prior completion evidence
and the fact we only introduce one equation at a time, we construct an example
pair of Boolean equations which requires an arbitrarily high number of iterations to
complete.
Concretely, let us first consider the equation x { tt (in a context where x : 𝔹).
Clearly the equational context containing only this equation is complete. If we then
add the equation if x y i >Rw tt (in this example, the letters x, y, z and i, j, k all
stand for distinct 𝔹-typed variables in the context), clearly, the LHS is reducible
if x y i > if tt y i > y, so the completed set of equations becomes

x { tt
y { tt

Now let us instead consider the pair of equations

if (if x y i) x j { tt
if x y i { tt

The first equation’s LHS is now reducible (to x), but then this returns us to the original
equation pair:

x { tt
if x y i { tt

To clarify the pattern, we repeat it once more, now considering the pair of equations:

72

if (if x y i) x j { tt
if (if (if x y i) x j) (if x y i) k { tt

The second equation’s LHS is now the immediately-reducible (to if x y i). The general
construction we are employing here is to repeatedly replace the smaller LHS, u, with
if t u v where t is the larger LHS and v is some arbitrary 𝔹-typed term. Given the
other equation must be of the form t { tt, this new LHS must reduce down to u.
The equational context containing only the smallest equation is always be complete,
but to complete the extended equational context, completion must alternate between
reducing each of the LHSs exactly as many times as we have repeated the construction.

I leave the question of decidability of _⊢_~_, with the local-equation-introducing “if”
rule, open.

We also leave discussion of how to deal with more general classes of equations (e.g.
at types other than 𝔹) for the coming chapters, as there is not too much insight to be
gained by focusing on the special case of simple types (in some ways, STLC makes
such extensions more challenging, as the expressivity of dependent types gives us ways
to encode many type formers in terms of simpler ones - e.g. coproducts in terms of
Booleans and large elimination).

A Minimal Language with Smart

Case 5

5.1 Syntax 73

5.2 Soundness 76

5.3 Normalisation Challenges 77

5.3.1 Type Theory Modulo
(Boolean) Equations 78

5.3.2 Beyond Booleans 79

5.4 Typechecking Smart Case 82

In this chapter, we introduce and study a minimal dependently-typed language featuring
a smart case-like elimination principle for Booleans. We name this language SCBool.
Our large chunk of the chapter is dedicated to explaining why normalisation for this
theory is so challenging, with examples. We will also detail the core ideas behind the
Haskell typechecker for an extended version of this language.

5.1 Syntax

When moving from STLC with local equations to dependent types, we note while
equations of course must depend on the context (i.e. the LHS or RHS terms can embed
variables), it is also sometimes desirable for types in the context to depend on local
equations. For example, in a context where we have x : 𝔹, y : IF x 𝔹 A and the
(definitional) equation x ≡ tt holds, we have y : 𝔹 (congruence of definitional equality),
and so ought to be able bind z : IF y B C.

To support this, we fuse the ordinary and equational context: contexts can now be
extended either with types (introducing new variables) or definitional equations (ex-
panding conversion).

We build upon our quotiented, explicit-substitution syntax laid out in Section 2.3. Again,
we have four sorts:

Ctx : Type
Ty : Ctx → Type
Tm : 𝚷 Γ → Ty Γ → Type
Tms : Ctx → Ctx → Type

In principle, we could also make type-
level, “large” IF “smart” in the same
way, adding equations to the contexts
the LHS and RHS types are defined in.
We avoid considering this here only
for simplicity.

We carry over all the substitution laws, the existence of context extension and the
term/type formers associated with Π and 𝔹 types, except term-level (dependent) “if”. In
SCBool, “if” will be “smart” in the sense that it will add equations to the context in the
left and right branches, as opposed to requiring an explicit motive.

We start by defining the obvious embedding of Booleans into SCBool, and prove the
substitution law on embedded Booleans by cases.

⌜_⌝𝔹 : B → Tm Γ 𝔹

⌜ tt ⌝𝔹 :≡ tt
⌜ ff ⌝𝔹 :≡ ff

⌜⌝𝔹[] : ⌜ b ⌝𝔹 [𝛿] = Tm= refl 𝔹[] ⌜ b ⌝𝔹
⌜⌝𝔹[] {b :≡ tt} :≡ tt[]
⌜⌝𝔹[] {b :≡ ff } :≡ ff[]

The key idea behind SCBool is to allow extending contexts with Boolean equations
which we expect to hold definitionally.

▷ { _ : 𝚷 Γ → Tm Γ 𝔹 → B → Ctx

We need to define an analagous rule to _, _ for context extension by equations. Concretely,
the question is this: given a substitution 𝛿 : Tms Δ Γ, what additional information
do we need to map from Γ extended by a new equation, Γ ▷ t > eq b? Recall that local
equations are used in terms/types to derive convertibility, so I claim that the appropriate

74

notion here is that t and b are convertible in the new context Δ (i.e. with the substitution
applied).

,{ : 𝚷 (𝛿 : Tms Δ Γ) → t [𝛿] = Tm= refl 𝔹[] ⌜ b ⌝𝔹
→ Tms Δ (Γ ▷ t { b)

Note that requiring convertibility evidence (as opposed to e.g. evidence of the substituted
rewrite exactly occurs somewhere in Δ) enables removing rewrites from contexts when
they become redundant.

We now give also the associated naturality laws and projections:

, ;{ : 𝚷 {𝛿 : Tms Δ Γ } {𝜎 : Tms Θ Δ} { t= }
→ (𝛿 ,{ t=) ; 𝜎
= (𝛿 ; 𝜎) ,{ (transp (Tm Θ) 𝔹[] (t [𝛿 ; 𝜎])

= by cong (transp (Tm Θ) 𝔹[]) (sym [][])
transp (Tm Θ) 𝔹[] (transp (Tm Θ) [][]Ty (t [𝛿] [𝜎]))
= by coh[][] {p :≡ 𝔹[]}

transp (Tm Θ) 𝔹[] (transp (Tm Δ) 𝔹[] (t [𝛿]) [𝜎])
= by cong (transp (Tm Θ) 𝔹[]) (cong (_[𝜎]) t=)

transp (Tm Θ) 𝔹[] (⌜ b ⌝𝔹 [𝜎])
= by ⌜⌝𝔹[]
⌜ b ⌝𝔹 ■)

𝜋1{ : Tms Δ (Γ ▷ t { b) → Tms Δ Γ

𝜋2{ : 𝚷 (𝛿 : Tms Δ (Γ ▷ t { b))
→ t [𝜋1{ 𝛿] = Tm= refl 𝔹[] ⌜ b ⌝𝔹

▷𝜂{ : 𝛿 = 𝜋1{ 𝛿 ,{ 𝜋2{ 𝛿

𝜋1{, : 𝚷 { t= : t [𝛿] = Tm= (refl { x :≡ Δ }) 𝔹[] ⌜ b ⌝𝔹}
→ 𝜋1{ (𝛿 ,{ t=) = 𝛿

𝜋1eq; : 𝜋1{ (𝛿 ; 𝜎) = 𝜋1{ 𝛿 ; 𝜎

Note that 𝜋2{ id allows us to make use of the most recently bound equation in the
context as convertibility evidence.

We define derived notions of weakening contexts by assuming new equations, wk{ ,
instantiating contextual equations with evidence of convertibility, <_> {, and finally
functoriality of context extension by equations, _ˆ_ { _

wk{ : Tms (Γ ▷ t { b) Γ
wk{ :≡ 𝜋1{ id

<_> { : t = ⌜ b ⌝𝔹 → Tms Γ (Γ ▷ t { b)
<_> { { t :≡ t} {b :≡ b} t=

:≡ id
,{ (transp (Tm _) 𝔹[] (t [id])
= by cong (transp (Tm _) 𝔹[]) (shift [id])

transp (Tm _) (sym [id]Ty • 𝔹[]) t
= by cong (transp (Tm _) (sym [id]Ty • 𝔹[])) t=

transp (Tm _) (sym [id]Ty • 𝔹[]) ⌜ b ⌝𝔹
= by coh⌜⌝𝔹 {A= :≡ sym [id]Ty • 𝔹[]}
⌜ b ⌝𝔹 ■)

ˆ { _ : 𝚷 (𝛿 : Tms Δ Γ) t b
→ Tms (Δ ▷ transp (Tm Δ) 𝔹[] (t [𝛿]) { b) (Γ ▷ t { b)

𝛿 ˆ t { b
:≡ (𝛿 ; wk{)
,{ (transp (Tm _) 𝔹[] (t [𝛿 ; wk{])

= by cong (transp (Tm _) 𝔹[]) (sym [][])
transp (Tm _) 𝔹[] (transp (Tm _) [][]Ty ((t [𝛿]) [wk{]))
= by coh[][] {p :≡ 𝔹[]}

75

transp (Tm _) 𝔹[] (transp (Tm _) 𝔹[] (t [𝛿]) [𝜋1{ id])
= by 𝜋2{ id
⌜ b ⌝𝔹 ■)

We also prove some equations about how these new substitution operations commute.
These are very similar to familiar laws pertaining to context extension by types, rather
than equations: weakening commutes with lifting over the new equation, and weakening
followed by instantiation is identity.

wk^{ : wk{ ; (𝛿 ˆ t { b) = 𝛿 ; wk{

wk<>{ : 𝚷 { t= : t = ⌜ b ⌝𝔹} → wk{ ; < t= »eq = id {Γ :≡ Γ }

if : 𝚷 (t : Tm Γ 𝔹)
→ Tm (Γ ▷ t { tt) (A [wk{]Ty)
→ Tm (Γ ▷ t { ff) (A [wk{]Ty)
→ Tm Γ A

if[] : if t u v [𝛿]
= if (transp (Tm Δ) 𝔹[] (t [𝛿]))

(transp (Tm _) wk^Ty
{ (u [𝛿 ˆ t { tt]))

(transp (Tm _) wk^Ty
{ (v [𝛿 ˆ t { ff]))

𝔹𝛽1 : if tt u v

= Tm= refl (sym (wk<>Ty
{ { t= :≡ refl })) u [< refl »eq]

𝔹𝛽2 : if ff u v

= Tm= refl (sym (wk<>Ty
{ { t= :≡ refl })) v [< refl »eq]

As with our simply-typed equational contexts, SCBool contexts can become definitionally
inconsistent, and collapse the definitional equality.

Definition 5.1.1 (Definitional context inconsistency)

An SCBool context is considered def.-inconsistent iff under that context, tt
and ff are convertible.

incon : Ctx → Type
incon Γ :≡ _=_ {A :≡ Tm Γ 𝔹} tt ff

Recall from Remark 3.2.1 that definitionally inconsistent contexts lead to equality col-
lapse: are types become convertible (assuming large elimination of Booleans).

collapse : Ctx → Type
collapse Γ :≡ 𝚷 (A B : Ty Γ) → A = B

incon-collapse : incon Γ → collapse Γ

As an example of how the substitution calculus of SCBool works, we will prove also that
definitional inconsistency implies the collapse of the term equality.

tm-collapse : Ctx → Type
tm-collapse Γ :≡ 𝚷 A (u v : Tm Γ A) → u = v

tm-incon-collapse : 𝚷 Γ → incon Γ → tm-collapse Γ

Note that, the u and v inside the “if” must be weakened to account for the new local
equation, and contracting the “if” requires explicitly instantiating this equation with a
substitution. Our wk<>{ lemma from earlier is exactly what we need to show that the
composition of these two actions has no ultimate effect.

76

tm-incon-collapse Γ p A u v :≡
u
= by sym (subst-subst-sym wk<>Ty

{)
transp (Tm Γ) (sym (wk<>Ty

{ { t= :≡ refl}) • wk<>Ty
{ { t= :≡ refl}) u

= by cong (transp (Tm Γ) wk<>Ty
{) (sym[] (wk<>eqTm { t= :≡ refl}))

transp (Tm Γ) wk<>Ty
{ (u [wk{] [< refl »eq])

= by sym[] (𝔹𝛽1 {u :≡ u [wk{] } {v :≡ v [wk{] })
if tt (u [wk{]) (v [wk{])
= by cong (𝝀 □ → if □ (u [wk{]) (v [wk{])) p

if ff (u [wk{]) (v [wk{])
= by shift 𝔹𝛽2

transp (Tm Γ) wk<>Ty
{ (v [wk{] [< refl »eq])

= by cong (transp (Tm Γ) wk<>Ty
{) (shift (wk<>eqTm { t= :≡ refl}))

transp (Tm Γ) (sym (wk<>Ty
{ { t= :≡ refl}) • wk<>Ty

{ { t= :≡ refl}) v
= by subst-subst-sym wk<>Ty

{

v ■

5.2 Soundness

We prove soundness of SCBool by updating the standard model construction given in
Section 2.3.2.

The model gets a little more interesting for SCBool though. Our metatheory does not
feature a “first-class” definitional equality, so we instead interpret definitional contextual
equalities propositionally (i.e. J Γ ▷ t >eq b KCtx == J Γ ▷ Id 𝔹 t ⌜ b ⌝𝔹 KCtx).

J Γ ▷ t { b KCtx :≡ (𝜌 : J Γ KCtx) × J t KTm 𝜌 = b

J 𝜋1{ 𝛿 KTms :≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌 .𝝅1

When interpreting _,{_, we split on the particular Boolean RHS so the substitution on
it computes definitionally (slightly simplifying the equational reasoning, at the cost of
having to repeat it).

J _,{_ { t :≡ t} {b :≡ tt} 𝛿 t= KTms
:≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌

, cong-app
(J t [𝛿] KTm
= by sym (cohJKTm { t :≡ t [𝛿] } {A= :≡ 𝔹[]} {JAK= :≡ refl})
J transp (Tm _) 𝔹[] (t [𝛿]) KTm
= by cong J_KTm t=
J tt KTm ■) 𝜌

J _,{_ { t :≡ t} {b :≡ ff } 𝛿 t= KTms
:≡ 𝝀 𝜌 → J 𝛿 KTms 𝜌

, cong-app
(J t [𝛿] KTm
= by sym (cohJKTm { t :≡ t [𝛿] } {A= :≡ 𝔹[]} {JAK= :≡ refl})
J transp (Tm _) 𝔹[] (t [𝛿]) KTm
= by cong J_KTm t=
J ff KTm ■) 𝜌

77

For all finite types A, the “splitter” and
eliminator are equally powerful.
To derive the splitter, splitting on a
scrutinee x : A, producing a type B,
from the eliminator, we instantiate the
motive P : A → Type with P y :
≡ x = y → B. The elim-
inator’s methods then exactly corre-
spond to the splitter’s cases, and pass-
ing refl : x = x to the result of elimi-
nating gets back to type B.
To derive the eliminator from the split-
ter, we instead instantiate B :≡ P x,
and transport the appropriate over
the provided propositional equality in
each case.
Of course, splitters cannot induct, so
the splitter for infinitary types like ℕ is
weaker than the associated eliminator.

To interpret smart “if”, we define an analagous operation in our metatheory that takes
a propositional equality instead: the Boolean “splitter”.

B-split : (b : B) → (b = tt → A) → (b = ff → A) → A
B-split tt t f :≡ t refl
B-split ff t f :≡ f refl

J if t u v KTm :≡ 𝝀 𝜌 → B-split (J t KTm 𝜌)
(𝝀 t= → J u KTm (𝜌 , t=))
(𝝀 t= → J v KTm (𝜌 , t=))

Finally, to ensure soundness, we also need to show that conversion is preserved. The
updated computation rules for “if” still hold definitionally in the meta, but the new
𝜋2{ law does not. We need to manually project out the propositional equality from the
substituted environment, but to do this, we need to get our hands on an environment
to substitute (alternatively: evaluate the substitutes in). For this, we need function
extensionality (also, we again split on the Boolean to simplify the reasoning):

J 𝜋2{ { t :≡ t} {b :≡ tt} 𝛿 KTm :≡
J transp (Tm _) 𝔹[] (t [𝜋1{ 𝛿]) KTm
= by cohJKTm { t :≡ t [𝜋1{ 𝛿] } {A= :≡ 𝔹[]} {JAK= :≡ refl}
J t [𝜋1{ 𝛿] KTm
= by funext (𝝀 𝜌 → J 𝛿 KTms 𝜌 .𝝅2)
J tt KTm ■

J 𝜋2{ { t :≡ t} {b :≡ ff } 𝛿 KTm :≡
J transp (Tm _) 𝔹[] (t [𝜋1{ 𝛿]) KTm
= by cohJKTm { t :≡ t [𝜋1{ 𝛿] } {A= :≡ 𝔹[]} {JAK= :≡ refl}
J t [𝜋1{ 𝛿] KTm
= by funext (𝝀 𝜌 → J 𝛿 KTms 𝜌 .𝝅2)
J ff KTm ■

Soundness itself can be proved as usual: by passing the empty environment to the
interpreted proof of Id 𝔹 tt ff.

sound : ¬ Tm • (Id 𝔹 tt ff)
sound t :≡ tt/ff-disj (J t KTm ⟨⟩)

5.3 Normalisation Challenges

Normalisation of SCBool is tricky. From our simply-typed investigations in Chapter 4,
we already know that completing sets of equations (that is, turning them into confluent,
terminating, rewriting systems) is essential to decide equivalence under equational
assumptions, and that when such equations can be introduced locally, normalisation
and completion must be interleaved.

In SCBool, checking whether the equational context can be completed before reducing
is even more important, given under definitionally inconsistent contexts, terms that
loop w.r.t. 𝛽-reduction can be defined (Example 3.2.1). We need to be careful to only
ever reduce terms after we have completed at least the set of equations that their typing
directly depends on.

Example 5.3.1 (SCBool Reduction W.R.T. a TRS Can Loop Even if the TRS Is Complete)

Consider following the SCBool context (assuming support for neutral equations at

78

𝔹-type1

1: We can avoid this assumption by re-
placing x and y with slightly more com-
plicated 𝛽-neutral terms t and u that
are convertible modulo a particular
Boolean equation. E.g. t :≡ if x tt ff
and u :≡ if x tt tt are equal assuming
x { tt.

).

Γ :≡ x : 𝔹
, y : 𝔹

, z : IF x 𝔹 (𝔹 → 𝔹)
, x ∼ y
, (if x (𝜆 _. tt) z) (if y z tt) { tt
, x ∼ ff
, y ∼ tt

The TRS x >Rw FF, y >Rw tt is conservative over this equational context, and is
complete at least in the sense that all LHSs are irreducible (with respect to the other
TRS rewrite and 𝛽 reduction). However, if (during completion of the full context) we
reduce (if x (𝜆 _. tt) z) (if y z tt) w.r.t. this TRS, we get a self-application!

Technically, self-application does not
immediately imply the existence of re-
duction loops, but we can easily repeat
this construction to obtain Ω (Example
3.2.1).

(if x (𝜆 _. tt) z) (if y z tt)
> (if ff (𝜆 _. tt) z) (if tt z tt)
> z z

The problem here is that (if x (𝜆 _. tt) z) (if y z tt) relies on the equation x ∼ y to
typecheck (specifically, so that in the left branch of the second “if” expression, z : 𝔹 as
required). However, this equation is not validated by the TRS. Essentially, the context
is definitionally inconsistent, but we failed to detect this.
If we instead required x ∼ y to be in the TRS when reducing (if x (𝜆 _. tt) z) (if y z tt),
then completing the TRS with x ∼ ff and y ∼ tt also included will find the definitional
inconsistency, so we can avoid blindly reducing.

5.3.1 Type Theory Modulo (Boolean) Equations

Note that difficulties associated with
completion can in principle be avoided
by requiring the set of equations to sat-
isfy completion criteria by construc-
tion. In this setting, our problem here
is effectively a special case of [94].
Unfortunately, when moving to locally-
introduced equations, relying on the
LHSs all being mutually irreducible is
not really feasible. As we will discuss in
Section 5.3.2, any restrictions on equa-
tions must be stable under substitution,
and irreducibility of LHSs does not sat-
isfy this criteria.

[94]: Cockx et al. (2021), The taming of the
rew: a type theory with computational as-
sumptions

A nice first-step towards normalisation for SCBool would be to attempt to prove decid-
ability of conversion for for dependent types modulo a fixed (global) set of Boolean
equations. We can arrive at an explicit syntax for this problem by just replacing SCBool’s
smart if with the ordinary dependent one2.

2: Note that in such a setting, we can
consider a vastly restricted subset of
SCBool’s substitutions, where the re-
gion of the context up to the last equa-
tional assumption always remains con-
stant, and no new equations can be
added.

A natural strategy here is to make an attempt at adapting our simply-typed result from
Section 4.2. Unfortunately, it seems impossible to reuse the same techniques. For starters,
non-deterministic reduction on dependent “if” does not preserve typing. Recall that in
the definition of “if”

if : 𝚷 (A : Ty (Γ ▷ 𝔹)) (t : Tm Γ 𝔹)
→ Tm Γ (A [< tt >]Ty) → Tm Γ (A [< ff >]Ty)
→ Tm Γ (A [< t >]Ty)

the LHS and RHS have type A [< tt >] and A [< ff >]Ty respectively, while the
overall expression instead has type A [< t >]Ty (where t is the scrutinee).

Actually, the problem is more fundamental: we can construct terms in dependent type
theory (with just with ordinary, dependent “if”) that, after projecting out the untyped
term, loop w.r.t. non-deterministic (or spontaneous) reduction. For example (working
internally, in a context where b : 𝔹 and x : A for some type A), the following term is
typeable with IF b A (A → A) → A.

𝜆 (y : IF b A (A → A)) .
(if [b′. IF b′ A (A → A) → A → A] b (𝜆 _. x) y)
(if [b′. IF b′ A (A → A) → A] b y x)

The untyped projection of this term is just

𝜆 y. (if b (𝜆 _. x) y) (if b y x)

79

Under non-deterministic reduction, we can collapse the first “if” the right branch (y),
and the second “if” the left branch (also, y) resulting in 𝜆 y. y y (and under spontaneous
reduction, we can do the same thing in two steps, but first collapsing the scrutinee the
the appropriate closed Boolean). We then just need to repeat the same construction,
replacing A with IF b A (A → A) → A, and we are left with (after erasing types)

(𝜆 y. (if b (𝜆 _. x) y) (if b y x)) (𝜆 y. (if b (𝜆 _. x) y) (if b y x))

which (spontaneously or non-deterministically) reduces down to Ω

(𝜆 y. y y) (𝜆 y. y y)

This puts us essentially back to square-one. We know to normalise SCBool, we need
to do completion, but completion can only be justified by making progress w.r.t. to
some well-founded order, and our best candidate from STLC does not work. Perhaps
one potential route forwards could be to define a TRS for an SCBool context as a list of
Boolean rewrites, plus a small-step relation covering the steps of completion (reducing
a LHS, removing a redundant equation, concluding definitional inconsistency from an
inconsistent one).

Another difficulty with SCBool is that we must account for weakening the context by
equations when recursing on the syntax (specifically, when recursing into the LHS and
RHS branches of smart if). Strong normalisation defined as just accessibility w.r.t. the
reduction relation is clearly not stable under extending the context with new Boolean
equations (the new equations can unlock new reductions)! One route forwards here could
be take inspiration from the positively-characterised neutral forms of [93, 111]. There, [93]: Gratzer et al. (2022), Controlling un-

folding in type theory
[111]: Sterling et al. (2021), Normalization
for Cubical Type Theory

neutral forms being unstable w.r.t. renamings was dealt with by pairing an inductively
defined neutral with a function from evidence that the neutral becomes reducible (is
destabilised) in some renamed context to a normal form. I think applying a similar idea
to strong normalisation (parameterising accessibility over all thinned contexts) could
assist a strong normalisation proof for SCBool similarly.

5.3.2 Beyond Booleans

On top of the prior-mentioned issues, SCBool’s scope is somewhat limited. Specifically,
generalising the smart case construct more general local equality reflection, admitting
a larger class of equations, appears impossible.

As covered in Remark 3.2.2, when we start generalising smart case, it is useful to view
it through the lens of local equality reflection. A significant constraint with introducing
equations locally, as in SCBool, is that the restrictions we enforce on reflected equations
must be stable under substitution. This is a consequence of being able to introduce
equations underneath 𝜆-abstractions and definitional 𝛽-reduction: if the equation re-
striction is not stable under substitution, then 𝛽-reduction could take a well-typed term
that reflects a valid equation, and reduce it to a term where the reflected equation is no
longer valid.

Neutral Types

This has significant consequences. One class of equations we may aim to support are
equations between arbitrary terms of neutral type. For example, in a context with
variables b : 𝔹 and x : IF b A B, such that the term t : Π b. IF b A B is typeable (and
t b is neutral), we might want to reflect the equation t b ≡ x. However, if we then
applied the substitution tt / b, we get the new equation t tt ≡ x, where both sides now
have type A. This was possible for any type A and term t that blocks on its argument,
so for example, we could make this example more concrete by setting A :≡ ℕ → 𝔹

and t :≡ 𝜆 b. if [b′. IF b′ (ℕ → 𝔹) B] b u v. Now, t tt 𝛽-reduces to u, an arbitrary

80

ℕ → 𝔹-typed term. As mentioned in Section 3.2.1, reflecting equations higher-order-
typed equations like this quickly leads to undecidability. Therefore, we must prevent
u ≡ x, and so to ensure stability under substitution, we must also reject the original
t b ≡ x equation. In practice, I argue this example is repeatable for pretty-much all
equations of neutral type3.

3: The main exception that I can
think of is equations typed with large
O-elim . As O-elim has no computa-
tion rules, it cannot possibly reduce
down to a higher order type. Techni-
cally, I suppose one could also look into
the branches of IF to see if all branches
return first-order types, and design a
restriction based on that.

A more skeptical reader might wonder
whether our desire here - i.e. reflecting
neutral equations - is at all realistic. I
reply “yes, because I have found a way
to do it!” and “skip ahead to the next
chapter to see how!”

In our minimal type theory, where the only neutral types can be constructed out of
large IF, perhaps this does not seem so important. One should consider though, that in
theories with type variables, equations of neutral type are extremely common. Consider,
for example, code that is generic over a functor, F : Type → Type. Note the functor
laws such as fmap-id : fmap id xs = xs are all at neutral type. While our focus on
manual equality reflection of individual propositional equalities does not aim for quite
the same convenience as building the functor equations into the typechecker (i.e. we still
need to manually instantiate the particular functor law with our particular F A-typed
term), we argue that this kind of automation would still go a long way towards resolving
the issues that motivated work such as [112]. Being restricted only to Boolean equations

[112]: Allais et al. (2013), New equations for
neutral terms: a sound and complete decision
procedure, formalized

is unnacceptable!

Finitary Types

Going a little beyond our Boolean equations appears to be achievable to some extent
though. The first obvious equality-reflection-motivated generalisation is to allow 𝔹-
typed equations where the RHS is not restricted to be a closed Boolean. Assuming
an irreducible LHS and RHS, the new equations here are all between neutral terms of
𝔹-type, and can be dealt with either directly via completion (using a term ordering on
neutrals to orient them appropriately) or (as exchanging neutral terms cannot unblock
𝛽-reductions) conversion modulo these equations can be delayed until after 𝛽-reduction
(and then decided using any approach we like - perhaps ground term rewriting, perhaps
E-Graphs).

Note that the subject reduction issues we encountered with equations of neutral type do
not crop up here, because while substitutions might unblock the LHS or RHS and allow
it to reduce, this reduction can only ever produce another 𝔹-typed neutral term or a
closed Boolean (though we still would have to repeat completion after substitution).

By extending our language with dependent pairs (𝚺-types) with strict 𝜂, we also get
sum/coproduct-typed equations “for free” via a similar argument to [103]. Specifically, [103]: Kovács (2022), Strong eta-rules for

functions on sum typeswe can define sums/coproducts with Boolean large elimination like so

A + B :≡ 𝚺 (b : 𝔹) . IF b A B

in1 t :≡ tt , t
in2 t :≡ ff , t

Equations of the form t ≡ in1 u at type A + B can now be decomposed into a Boolean
equation 𝜋1 t ≡ tt and an A-typed equation 𝜋2 t ≡ u. Of course, this approach only
works if the A-typed equation is itself valid.

Example 5.3.2 (Decomposing Coproduct Equations)
I find it is interesting that taking this encoding can deal with rewrites that otherwise
appear like they should inevitably loop. For example, consider the equations

t { in1 (case t tt ff)

where t is some neutral term of type 𝔹 + 𝔹. Without decomposing using the above en-
coding, we appear to be stuck. The rewrite must be oriented towards in1 (case t tt ff)
or we risk missing 𝛽-reductions for case expressions blocking on t, but because t is
also a subterm of the RHS, this rewriting process appears to have no end.
If we decompose this using the encoding above, and 𝜂-expand the RHS, we get

(𝜋1 t , 𝜋2 t) { (tt , 𝜋2 (case t tt ff))

81

This can be decomposed into the Boolean equation 𝜋1 t { tt and the neutral
equation at 𝔹-type 𝜋2 t ∼ 𝜋2 (case t tt ff). Under a reasonable term ordering (that is,
one which is a monotonic simplification ordering), we would probably expect the
latter equation to be oriented 𝜋2 (case t tt ff) { 𝜋2 t, but given both sides are
neutral, this reorienting is fine!

Equations between neutrals t ≡ u of type A + B are unfortunately a bit more
problematic: the first 𝜋1 t ≡ 𝜋2 u component is fine, assuming validity of neutral
Boolean equations, but 𝜋2 t ≡ 𝜋2 u has type if b A B - this is a neutral equation of
neutral type, which as explained above, is hard to justify.

Infinitary Types

We can attempt to use a similar generic encoding to deal with infinitary types such as
natural numbers, ℕ. By considering the underlying functor, we can decompose inductive
types into a fixpoint operation.

fixℕ : 𝟙 + ℕ → ℕ

unfixℕ : ℕ → 𝟙 + ℕ

Using this decomposition, and assuming a definitional 𝜂 rule n ≡ fixℕ (unfixℕ n), the
equation n ∼ su m is equivalent to

-- Original
n ∼ su m
-- 𝜂-expanding fix
fixℕ (unfixℕ n) ∼ fixℕ (in2 m)
-- 𝜂-expanding 𝚺

fixℕ (𝜋1 (unfixℕ n) , 𝜋2 (unfixℕ n)) ∼ fixℕ (ff , m)

which can be decomposed into the two equations

𝜋1 (unfixℕ n) { ff

𝜋2 (unfixℕ n) ∼ m

However, with infinitary types, we do need to be a bit more careful, as this decomposition
process can end up producing infinitely-many equations.

n ∼ su n
-- 𝜂-expanding fix and +
fixℕ (𝜋1 (unfixℕ n) , 𝜋2 (unfixℕ n)) ∼ fixℕ (ff , n)
-- Decomposing
𝜋1 (unfixℕ n) { ff

𝜋2 (unfixℕ n) ∼ n
-- But now if we 𝜂-expand n on the RHS...
𝜋2 (unfixℕ n) ∼ fixℕ (𝜋1 (unfixℕ n) , 𝜋2 (unfixℕ n))
-- ...the first decomposed rewrite applies!
𝜋2 (unfixℕ n) ∼ fixℕ (ff , 𝜋2 (unfixℕ n))
-- And we are left with the same structure of equation as we got from initially
-- 𝜂-expanding

Intuitively, the problematic cases here all arise when one side of the equation occurs
as a subterm of the other. We might hope to do a sort of “occurs check” to explicitly
prevent this, but we again hit issues with stability substitution. n ∼ su x might pass the
occurs check, but after applying the substitution n / x it certainly does not.

82

5.4 Typechecking Smart Case

We end this section with a short description of the SCBool typechecker implemented
in Haskell as a component of this project. As explained previously in Section 5.3, I do
not know how to prove normalisation of SCBool, and therefore do not claim that this
typechecker is complete. In practice though, it has handled the examples which I have
thrown at it correctly, without getting stuck in loops.

Idris2 also features Type : Type,
though there are plans to add a uni-
verse hierarchy eventually.

The language we check is a slight extension of SCBool, including a single impredicative
universe (Type : Type). This is technically unsound ([27]), but I argue that program-

[27]: Hurkens (1995), A Simplification of
Girard’s Paradox

s/proofs which might actually abuse this inconsistency are quite rare in practice (the
Type : Type sledgehammer is also much simpler to implement than an actual universe
hierarchy, and concerns with universes are pretty orthogonal to the new features of
SCBool).

Other than the extensions to specifically support smart if, the implementation of
SCBool is pretty standard. Following [113], it implements bidirectional typechecking in [113]: Coquand (1996), An Algorithm for

Type-Checking Dependent Typesterms of mutually recursive “infer” and “check” functions, and decides convertibility
of types using normalisation by evaluation (NbE). To guard against mistakes in the

We also use GADTs to explicitly
maintain a slightly more unusual
invariant: that terms do not contain
“obviously ill-typed” 𝛽-redexes. That
is, introduction rules in scrutinee
position are always associated with
the appropriate type former.

Assuming a correct implementa-
tion, this is completely reasonable (it
is a subset of terms being well-typed in
general), but alone it is not necessarily
preserved over operations such
as substitution or reduction. The
compromise being struck here is
essentially that Haskell’s type system
is not powerful enough to model full
intrinsically-typed syntax, so I am
encoding this weaker invariant and
then coercing (technically unsafely)
when necessary. It is somewhat
unclear whether this was a good
idea, and for the code snippets in the
section, we prune away the details
associated with this aspect.

implementation, it also makes extensive use of GADTs (including singleton encodings
[86]) to maintain invariants, including that terms are intrinsically well-scoped [87] (after

[86]: Lindley et al. (2013), Hasochism: the
pleasure and pain of dependently typed
haskell programming

[87]: Eisenberg (2020), Stitch: the sound
type-indexed type checker (functional pearl)

we complete a scope-checking pass, turning names into well-scoped de Bruijn variables)
and normal/neutral forms do not contain 𝛽-redexes.

When implementing NbE in a partial language, we can take a couple shortcuts4:

4: The optimisations I decided to make
here were generally motivated by sim-
plicity rather than performance. There
is certainly a lot of potential to op-
timise further, e.g. by using a more
efficient variable representation than
unary de Bruijn indices, using de
Bruijn levels in values, switching from
metalanguage closures to first-order
ones, eliminating the overheads as-
sociated with singleton encodings by
unsafeCoerce-ing more often, using
more efficient data structures, unbox-
ing etc.

▶ Rather than defining values as a type family on object-language types, and defin-
ing quoting and unquoting by recursion on types, we define values directly as a
non-positive inductive datatype.

▶ Rather than always quoting before deciding conversion, we can decide conversion
directly on values.

The novel part of the typechecker is dealing with the local equations. We explain the
implementation of this aspect in more detail, starting with evaluation and then finishing
with the actual typechecking.

To track equations, we store a map of rewrites, EqMap g, from neutrals to values,
with the invariant that all neutral LHSs are stuck w.r.t. all other rewrites. We pair this
map with a list of values associated with every variable in scope to form generalised
environments, Env d g

type EqMap g :≡ [(Ne g, Val g)]
type Env d g :≡ (Vals d g, EqMap d)

Unquoting neutral terms during evaluation corresponds exactly to looking up the neutral
in the map. In the case the lookup fails (no rewrite applies), we just embed the neutral
into Val directly (for simplicity, we do not support 𝜂-conversion, though adding support
for 𝜂 of functions by tweaking equality testing of neutral/normal forms should be
possible [21])

[21]: Lennon-Bertrand (2022), Á Bas L’𝜂

lookupNe :: EqMap g → Ne g → Val g
lookupNe es t :≡ fromMaybe (Ne t) (lookup t es)
appVal :: EqMap g → Val g → Val g → UnkVal g
appVal es (Ne t) u :≡ lookupNe es (App t u)

To support extending the context with new equations, we must interleave evaluation
and completion. For example, to evaluate smart if, we add the relevant equation (with
addEq) between the scrutinee and tt/ff to the environment in which we evaluate each
branch.

83

evalOrAbsrd :: Maybe (Env d g) → Model g → PresVal d
eval :: Env d g → Tm g → Val d
smrtIfVal :: Env d g → Maybe (Val d) → Val d

→ Tm g → Tm g
→ Val d

addEq :: Env d g → Val d → Val d
→ Maybe (Env d g)

smrtIfVal r _ tt u _ :≡ eval r u
smrtIfVal r _ ff _ v :≡ eval r v
smrtIfVal r m (Ne t) u v
| rT ← addEq r (Ne t) tt
, rF ← addEq r (Ne t) ff
, u’ ← evalOrAbsrd rT u
, v’ ← evalOrAbsrd rF v
:≡ lookupNe (eqs r) (SmrtIf m t u’ v’)

eval r (SmrtIf m t u v)
:≡ smrtIfVal r m’ t’ u v

where m’ :≡ fmap (eval r) m
t’ :≡ eval r t

Dedicated absurd syntax is partially in-
spired by Agda’s impossible patterns.

Note that addEq is partial in order to account for the context possibly becoming defini-
tionally inconsistent (Nothing means “def. inconsistent”). To guard against the danger
of evaluating under such contexts, and make the behaviour of the typechecker more
predictable, we introduce dedicated syntax for “absurd” terms in def. inconsistent con-
tests (“!” or Absrd). We regard using any term other than ! in a def. inconsistent to be a
type error5. We always check typeability of terms before evaluating them, so evaluation

5: We also regard usage of ! in def. con-
sistent contexts to be a type error.

should never encounter this case.

evalOrAbsrd (Just r) t :≡ eval r t
evalOrAbsrd Nothing Absrd :≡ Absrd
evalOrAbsrd Nothing _ :≡ __IMPOSSIBLE__

Adding equations to the environment calls completion, which itself operates by repeat-
edly iterating over the set of equations, evaluating LHSs w.r.t. all other equations, until
a fixed point is reached (as mentioned in Section 5.3, we need to be careful here to not
evaluate under sets of rewrites that might be definitionally inconsistent).

addRw and mkEq together add the
new equation t ∼ u to the set of
rewrites, after ensuring it is not already
“obviously inconsistent” (that is, liter-
ally of the form tt ∼ ff or ff ∼ tt. We
also slightly optimise the case of equa-
tions on variables, replacing the value
in the value environment rather than
tracking an equation.
evalVals r” vs re-evaluates the value
environment w.r.t. the new completed
equations.

complete :: Env g g → Maybe (Env g g)
complete r :≡ iterMaybeFix complStep r

addEq (vs, es) t u :≡ do
r’ ← addRw (mkEq t u) (idVals, es)
r” ← complete r’
pure (evalVals r” vs, eqs r”)

Similarly to evaluation, inference for smart if adds new equations to the environment
before recursively typechecking the branches. We of course must check that terms in def.
inconsistent branches are absurd, though unlike evaluation though, failing this check
throws a human-readable type error (as opposed to raising an internal exception).

checkMaybeAbsurd :: Ctx g → Maybe (Env g g) → Ty g → Tm g → TCM ()
checkMaybeAbsurd g (Just r) a t :≡ check g r a t
checkMaybeAbsurd _ Nothing _ Absrd :≡ pure ()
checkMaybeAbsurd _ Nothing _ t :≡ throw
("Body in inconsistent contexts must be absurd, but was instead "

<> show t)
infer g r (SmrtIf (Just m) t u v) :≡ do

84

check g r U m
check g r B t
let t’ :≡ eval r t
let rT :≡ addEq r t’ tt
let rF :≡ addEq r t’ ff
checkMaybeAbsurd g rT m u
checkMaybeAbsurd g rF m v
let m’ :≡ eval r m
pure m’

Note that while type inference for smart if does not require a motive parameterised
over the scrutinee, it still does require an expected type to check at (Just m above). We
support optionally annotating smart if expressions with their return type, but to take
advantage of the type we are checking at if it is known, check adds annotations before
calling “infer”

check g r a t :≡ case t of
SmrtIf Nothing t’ u’ v’ → do

_ ← infer g r (SmrtIf (Just a) t’ u’ v’)
pure ()

In retrospect, having “infer” erase annotations and call into “check” for the actual
typechecking logic would have probably been a bit neater, but this approach also
works.

Elaborating Smart Case 6

6.1 A New Core Language . . 85

6.1.1 Syntax 86
6.1.2 Soundness 90

6.2 Normalisation 92

6.2.1 Conversion and Coherence . 92
6.2.2 Normal and Neutral Forms . 93
6.2.3 Sound and Complete TRSs . 94
6.2.4 Normalisation by Evaluation 95

6.3 Elaboration 99

6.3.1 Syntactic Restrictions for
Generating TRSs 99

6.3.2 Elaborating Case Splits 100

In this chapter, we define a new type theory, named SCDef, which introduces equational
assumptions at the level of global definitions. We motivate SCDef with the insight that
the challenges presented in the prior chapter (Section 5.3) vanish when giving up just
a couple conversion rules. Removing these conversion rules outright leaves us with a
poorly behaved theory, but it turns out that global definitions, by remaining opaque
until the scrutinee they block on reduces, enable us to achieve a similar effect while
retaining e.g. congruence of conversion. We prove normalisation (by evaluation), and
describe an elaboration algorithm to turn local smart case-like splits into top-level
definitions.

6.1 A New Core Language

To recap the findings of the previous chapter, locally-introduced equations caused two
main issues:

▶ Any restrictions on equations (enforced in order to retain decidability) must be
stable under substitution (to support introducing equations under 𝜆-abstractions
without losing subject reduction).

▶ Any proofs by induction on the syntax must account for weakening the context
with new equations. This is problematic for normalisation proofs, because neutral
terms are not stable under introducing equations.

The latter of these issues is, in principle, solved if we give up congruence of conversion
over smart if (or in general, whatever piece of syntax happens to introduce equations).
Specifically, if we give up

if~ : 𝚷 (t~ : Tm~ Γ~ 𝔹 t1 t2)
→ Tm~ (Γ~ ▷ t~ {) (A~ [wkeq~ t~]) u1 u2

→ Tm~ (Γ~ ▷ t~ {) (A~ [wkeq~ t~]) v1 v2

→ Tm~ Γ~ A~ (if t1 u1 v1) (if t2 u2 v2)

then normalisation no longer needs to recurse into the LHS/RHS branches of “if” ex-
pressions until the scrutinee actually reduces to tt or ff.

The first issue can also be fixed by carefully relaxing the substitution law for “if”, if[].

if[] : Tm~ rfl~ rfl~ (if t u v [𝛿])
(if (coe~ rfl~ 𝔹[] (t [𝛿]))
(coe~ rfl~ wk^eq (u [𝛿 ^eq t]))
(coe~ rfl~ wk^eq (v [𝛿 ^eq t])))

Intuitively, we want substitutions to apply recursively to the scrutinee (so we check if it
reduces to tt or ff), but stack up on the LHS/RHS (so we do not invalidate the equation
in each branch). One way we can achieve this is by outright throwing away if[], and
generalising the 𝛽-laws 𝔹𝛽1 and 𝔹𝛽2

wk,Ty : Ty~ rfl~ (A [𝛿]) (A [wk{] [𝛿 ,{ t~])
𝔹𝛽1 : 𝚷 (t~ : Tm~ rfl~ 𝔹[] (t [𝛿]) tt)

→ Tm~ rfl~ wk,Ty (if t u v [𝛿]) (u [𝛿 ,{ t~])
𝔹𝛽2 : 𝚷 (t~ : Tm~ rfl~ 𝔹[] (t [𝛿]) ff)

→ Tm~ rfl~ wk,Ty (if t u v [𝛿]) (v [𝛿 ,{ t~])

86

Using these new laws, the equational theory for “if” somewhat resembles that of a
weak-head reduction strategy. That is, normalisation may halt as soon as it hits a stuck
“if” expression, instead of recursing into the branches.

This seems like an exciting route forwards. In practice, losing congruence of definitional
equality over case splits is not a huge deal, as the proof in question can always just repeat
the same case split, proving the desired equation in each branch separately. Unfortunately,
from a metatheoretical standpoint, non-congruent conversion is somewhat hard to justify.
QIIT and GAT signatures, for example, bake-in congruence of the equational theory (we
used an explicit conversion relation, Tm~, above for a reason).

The key insight in solving this comes in the form of lambda lifting. For context, Agda’s
core language only supports pattern-matching at the level of definitions, but it can still
support with-abstractions [79] and pattern-matching lambdas [114] via elaboration: new [79]: Agda Team (2024), With-Abstraction

[114]: Agda Team (2024), Lambda Abstrac-
tion

top-level definitions are created for every “local” pattern-match. Because definitions are
generative, from the perspective of the surface language, Agda also loses congruence of
conversion (actually, even reflexivity of conversion) for pattern-matching lambdas. For
example, consider the equation between these two seemingly-identical implementations
of Boolean negation.

not-eq : _=_ {A :≡ B → B}
(𝝀 where tt → ff

ff → tt)
(𝝀 where tt → ff

ff → tt)

Attempting to prove not-eq with reflexivity (refl) returns the error:

(𝝀 { tt → ff; ff → tt}) x !=
(𝝀 { tt → ff; ff → tt}) x of type B
Because they are distinct extended lambdas: one is defined at

/home/nathaniel/agda/fyp/Report/Final/c6-1_scdef.lagda:110.15-111.37
and the other at

/home/nathaniel/agda/fyp/Report/Final/c6-1_scdef.lagda:112.15-113.37,
so they have different internal representations.

In SCDef, we pull essentially the same trick. We can rigorously study a core type theory
which introduces equations via top-level definitions (proving soundness and normal-
isation), and then describe an elaboration algorithm to take a surface language with
a smart case-like construct, and compile it into core SCDef terms (by lifting smart
case-splits into top-level definitions).

6.1.1 Syntax

To support global definitions, we introduce an additional sort: signatures (Sig). Signatures
are similar to contexts in that they effectively store lists of terms that we can reuse, but
unlike contexts, signatures also store the concrete implementation of every definition,
and do not allow for arbitrary substitution.

Sig : Type
Ctx : Sig → Type

We associate with Sig a set of morphisms, Wk, forming a category of signature weak-
enings. Ctx is a presheaf on this category, and substitutions (Tms) are appropriately
generalised to map between contexts paired with their signature (we will embed signa-
ture weakenings into Tms).

87

Ty : Ctx Ξ → Type
Tm : 𝚷 (Γ : Ctx Ξ) → Ty Γ → Type
Wk : Sig → Sig → Type
Tms : Ctx Φ → Ctx Ψ → Type

We consider all signature weakenings to be equal (i.e. every morphism Wk Φ Ψ is
unique; signature weakenings form a thin category1).

1: There is a slightly confusing clash of
terminology here. The category of thin-
nings is not a thin category, because
e.g. the context • ▷ 𝔹 can be thinned
to • ▷ 𝔹 ▷ 𝔹 either by inserting a
new 𝔹 typed variable at the end or the
start of the context. Wk does not have
this same freedom: it can only append
definitions to the end of the signature.

Remark 6.1.1 (Specialised Substitutions)
We could alternatively build a syntax taking non-generalised (or “specialised”) substi-
tutions as primitive (enforcing that the signatures contextualising the domain and
range contexts must be the same, Tms : Ctx Ξ → Ctx Ξ → Type). If we
committed to this approach, we would have to add two distinct presheaf actions to
Ty and Tm (one for Wk and one for Tms), and also ensure Tms itself is a displayed
presheaf over signature weakenings. Our category of generalised substitutions can
then be derived by pairing 𝜙 : Wk Φ Ψ and 𝛿 : Tms Δ Γ morphisms, with the
overall effect of on terms being to take them from context Γ to context Δ [𝜙].
We will take exactly this approach in the strictified syntax, where it is desirable for sig-
nature weakenings embedded in generalised substitutions to compute automatically.
For the explicit substitution presentation though, defining generalised substitutions
directly leads to a more concise specification.

We give the standard categorical combinators (substitution operations), and context
extension (as in Section 2.3), eliding projections and equations for brevity.

idWk
: Wk Ψ Ψ

;Wk : Wk Φ Ψ → Wk Ξ Φ → Wk Ξ Ψ

id : Tms Γ Γ

; : Tms Δ Γ → Tms Θ Δ → Tms Θ Γ

[]Wk
Ctx : Ctx Ψ → Wk Φ Ψ → Ctx Φ

[]Ty : Ty Γ → Tms Δ Γ → Ty Δ

[] : Tm Γ A → 𝚷 (𝛿 : Tms Δ Γ) → Tm Δ (A [𝛿]Ty)
• : Ctx Ξ

▷ : 𝚷 (Γ : Ctx Ξ) → Ty Γ → Ctx Ξ

𝜀 : Tms {Φ :≡ Ξ} {Ψ :≡ Ξ} Δ •
_, _ : 𝚷 (𝛿 : Tms Δ Γ) → Tm Δ (A [𝛿]Ty) → Tms Δ (Γ ▷ A)

Signatures are simply lists of definitions. Our first approximation for these definitions is
a bundle containing a telescope of argument types Γ : Ctx Ξ (recall that contexts are
just lists of types), a return type A : Ty Γ, and a body Tm Γ A.

Note that •Sig is the terminal object in
the category of signature weakenings.
After we define single-weakenings, we
can derive the associated morphism
Wk Φ •Sig by composing them.

•Sig
: Sig

▷→ _≔_ : 𝚷 Ξ (Γ : Ctx Ξ) A → Tm Γ A → Sig

Intuitively, to call a definition with argument telescope Γ while in a context Δ, we must
provide an appropriate list of arguments, specifically a list Δ-terms matching each type
in Γ. This is exactly a substitution (Tms Δ Γ).

Of course, we also want to be able to put equational assumptions in contexts, as in
SCBool.

▷~_ : 𝚷 (Γ : Ctx Ξ) {A} → Tm Γ A → Tm Γ A → Ctx Ξ

_,{ _ : 𝚷 (𝛿 : Tms Δ Γ) → t1 [𝛿] = t2 [𝛿]
→ Tms Δ (Γ ▷ t1 ∼ t2)

Rather than shying away from this generalisation, and defining specific argument
telescope/argument list types, we commit fully to our extended notions of context and
substitution, and take advantage of the flexibility.

88

Specifically, placing equations in argument telescopes gives us a way to preserve defini-
tional equalities across definition-boundaries. Intuitively, to call a definition that asks for
a definitional equality between t1 and t2 (its argument telescope contains t1 ∼ t2), the
caller must provide evidence that t1 [𝛿] ≡ t2 [𝛿] (where 𝛿 is the list of arguments
prior to the equation). In other words, to call a function that asks for a definitional
equality, that equation must also hold definitionally at the call-site.

With that said, by only preserving equations (not reflecting new ones) our definitions are
still more limited than we need for SCDef. Analogously to let-bindings, we could inline
the body of every definition and retain a well-typed program (so their only possible
application as-currently-defined, like let-bindings, would be to factor out code reuse).
We support equality reflection local to each definition by allowing them to each block
on one propositional equality.

Id : 𝚷 A → Tm Γ A → Tm Γ A → Ty Γ

▷→ _reflects_≔_ : 𝚷 Ξ (Γ : Ctx Ξ) A {B t1 t2 } → Tm Γ (Id B t1 t2)
→ Tm (Γ ▷ t1 ∼ t2) (A [wk{]Ty)

Note that the return type of the definition, A, must still be valid without the equational
assumption, and therefore weakened while typing the body. If this were not the case,
the result of calling definitions could be ill-typed (t1 [𝛿] ≡ t2 [𝛿] may not hold at
the call-site).

Note that while each individual definition can only reflect one equation at a time,
definitions can depend on each other linearly, and preserve previous reflected equa-
tions (by asking for them in their argument telescopes), thus nesting multiple equality
reflections.

Returning to Booleans

For closer comparison with SCBool, and frankly, to simplify the coming normalisation
proof, we return to only supporting Boolean equations.

▷ { _ : 𝚷 (Γ : Ctx Ξ) → Tm Γ 𝔹 → B → Ctx Ξ

,{ : 𝚷 (𝛿 : Tms Δ Γ) → t [𝛿] = Tm= refl 𝔹[] ⌜ b ⌝𝔹
→ Tms Δ (Γ ▷ t { b)

We could retain the existing _▷_ → _reflects_≔_-style definition by adding the ap-
propriate restriction the RHS term (it needs to be a closed Boolean). Together with
the ordinary dependent “if”, we can recover smart if by splitting on the scrutinee
t : Tm Γ 𝔹 and calling the appropriate definition with the propositional evidence
Tm Γ (Id 𝔹 t tt)} / {Tm Γ (Id 𝔹 t FF) in each branch.

For simplicity though, we instead fuse this notion of case-splitting into the signature
definitions. Instead of blocking on a propositional equation, definitions now block on
a 𝔹-typed scrutinee, and reduce to the LHS or RHS when the substituted scrutinee
becomes convertible to tt or ff.

▷→ _if_≔_|_ : 𝚷 Ξ (Γ : Ctx Ξ) A (t : Tm Γ 𝔹)
→ Tm (Γ ▷ t { tt) (A [wk{]Ty)
→ Tm (Γ ▷ t { ff) (A [wk{]Ty)
→ Sig

As well as cutting down on the number of term formers, this removes our dependence
on having a propositional equality type.

We now define single signature weakenings, and the embedding of signature weakenings
into substitutions

89

wkWk
: Wk (Ψ ▷ Γ → A if t ≔ u | v) Ψ

wkSig
: Tms (Γ [wkWk { t :≡ t} {u :≡ u} {v :≡ v}]Wk

Ctx) Γ

⌜_⌝Wk
: 𝚷 (𝜙 : Wk Φ Ψ) → Tms (Γ [𝜙]Wk

Ctx) Γ
⌜ id ⌝Wk :≡ transp (𝝀 □ → Tms □ _) (sym [id]) id
⌜ 𝜙 ; 𝜓 ⌝Wk :≡ transp (𝝀 □ → Tms □ _) [][] (⌜ 𝜙 ⌝Wk ; ⌜ 𝜓 ⌝Wk)
⌜ wkSig ⌝Wk :≡ wkSig

Finally, we give the term former for function calls. Because terms are a presheaf on
signature weakenings, we only need to handle the case where the called definition is the
last one in the signature (in the strictified syntax, we instead use first-order de Bruijn
variables).

call : Tm {Ξ :≡ Ξ ▷ Γ → A if t ≔ u | v} (Γ [wkWk]Wk
Ctx) (A [wkSig]Ty)

Note that we also do not ask for a list of arguments here. Explicit substitutions handle
this for us.

Of course, the 𝛽-laws for call must account for the list of arguments, and so target
substituted call expressions.

call-tt : 𝚷 (t= : t [wkSig ; 𝛿] = Tm= refl 𝔹[] tt)
→ call { t :≡ t} {u :≡ u} [𝛿]
= Tm= refl (sym wk{Sig ,Ty)

u [wkSig ; transp (Tms _) (sym ▷>eq[])
(𝛿 ,{ (sym[] {p :≡ Tm= refl (sym 𝔹[]) } wkSig;Tm • t=))]

call-ff : 𝚷 (t= : t [wkSig ; 𝛿] = Tm= refl 𝔹[] ff)
→ call { t :≡ t} {v :≡ v} [𝛿]
= Tm= refl (sym wk{Sig ,Ty)

v [wkSig ; transp (Tms _) (sym ▷>eq[])
(𝛿 ,{ (sym[] {p :≡ Tm= refl (sym 𝔹[]) } wkSig;Tm • t=))]

Dealing with explicit substitutions here gets a little messy, but the key idea is just that
if the scrutinee is convertible to tt or ff after substituting in the arguments, then the
call should reduce to the appropriate branch. We have made use of the following two
commuting lemmas.

wkSig;Tm : t [wkSig ; 𝛿]
= Tm= refl (𝔹[] • sym 𝔹[])

transp (Tm (Γ [wkWk]Wk
Ctx)) 𝔹[] (t [⌜ wkWk ⌝Wk]) [𝛿]

wk{Sig ,Ty : 𝚷 { t= : t [wkSig ; 𝛿] = Tm= refl 𝔹[] tt}
→ A [wk{]Ty

[wkSig ; transp (Tms _) (sym ▷>eq[])
(𝛿 ,{ (sym[] {p :≡ Tm= refl (sym 𝔹[]) } wkSig;Tm • t=))]Ty

= A [wkSig]Ty [𝛿]Ty

We do not need any other substitution laws for call. The composition functor law is
already enough for additional substitutions to recursively apply to the argument list (by
composing the substitutions).

call [𝛿] [𝜎] = call [𝛿 ; 𝜎]

90

6.1.2 Soundness

We prove soundness of SCDef by constructing a model. Our model contains two notions
of environments: one relating to signatures (we denote signature environments with
“𝜒”) and one to local contexts (we denote context environments with “𝜌” as usual).
Signature weakenings can be interpreted as functions between signature environments,
while generalised substitutions become pairs of signature environment and context
environment mappings.

JSigK : Type1

JSigK :≡ Type

JCtxK : JSigK → Type1

JCtxK JΨK :≡ JΨK → Type

JTyK : JCtxK JΨK → Type1

JTyK JΓK :≡ 𝚷 𝜒 → JΓK 𝜒 → Type

JTmK : 𝚷 (JΓK : JCtxK JΨK) → JTyK JΓK → Type
JTmK JΓK JAK :≡ 𝚷 𝜒 𝜌 → JAK 𝜒 𝜌

JWkK : JSigK → JSigK → Type
JWkK JΦK JΨK :≡ JΦK → JΨK

J[]CtxK : JCtxK JΨK → JWkK JΦK JΨK → JCtxK JΦK
J[]CtxK JΓK J𝛿K :≡ 𝝀 𝜒 → JΓK (J𝛿K 𝜒)
JTmsK : JCtxK JΦK → JCtxK JΨK → Type
JTmsK {JΦK :≡ JΦK} {JΨK :≡ JΨK} JΔK JΓK

:≡ (J𝛿K : JWkK JΦK JΨK) × (𝚷 { 𝜒 } → JΔK 𝜒 → J[]CtxK JΓK J𝛿K 𝜒)
J_KSig : Sig → JSigK
J_KCtx : Ctx Ψ → JCtxK J Ψ KSig
J_KTy : Ty Γ → JTyK J Γ KCtx
J_KTm : Tm Γ A → JTmK J Γ KCtx J A KTy
J_KWk : Wk Φ Ψ → JWkK J Φ KSig J Ψ KSig
J_KTms : Tms Δ Γ → JTmsK J Δ KCtx J Γ KCtx

The interpretations of ordinary constructs from dependently-typed lambda calculus are
mostly unchanged in this new model, except for having to account for both environments.
E.g. Π-types are now interpreted as

J Π A B KTy :≡ 𝝀 𝜒 𝜌 → 𝚷 tV → J B KTy 𝜒 (𝜌 , tV)

We therefore focus on the new cases. Local equations are interpreted as propositional
equations, as in SCBool (Section 5.2) and the new presheaf action on contexts is just
function composition.

J Γ ▷ t { b KCtx :≡ 𝝀 𝜒 → (𝜌 : J Γ KCtx 𝜒) × J t KTm 𝜒 𝜌 = b
J Γ [𝛿]Ctx KCtx :≡ 𝝀 𝜒 → J Γ KCtx (J 𝛿 KWk 𝜒)

As previously mentioned, we interpret signatures as environments. Our Boolean-splitting
definitions are interpreted with a single body, plus equations it evaluates evaluate to the
appropriate branch depending on which closed Boolean the scrutinee reduces to.

J •Sig KSig :≡ 1
J Ξ ▷ Γ → A if t ≔ u | v KSig

:≡ (𝜒 : J Ξ KSig) ×
(f : (𝚷 𝜌 → J A KTy 𝜒 𝜌)) ×
(𝚷 𝜌 (t= : J t KTm 𝜒 𝜌 = tt)
→ f 𝜌 = J u KTm 𝜒 (𝜌 , t=)) ×

91

(𝚷 𝜌 (t= : J t KTm 𝜒 𝜌 = ff)
→ f 𝜌 = J v KTm 𝜒 (𝜌 , t=))

Single signature weakenings are interpreted as projections:

J wkWk KWk :≡ 𝝅1

J wkSig KTms :≡ 𝝅1 , 𝝀 𝜌 → 𝜌

and calls to definitions merely project out the body

J call KTm (𝜒 , f , f-tt , f-ff) 𝜌
:≡ f 𝜌

The only non-trivial equations arise from 𝜋2{ and callTT/callFF. We can account for the
former of these using the equation in the environment and function extensionality, as in
SCBool. The computation laws for call also require function extensionality; depending
on whether the scrutinee reduces to tt or ff, we apply the relevant equation in the
signature environment.

92

6.2 Normalisation

In the below section, we switch to use a strictified SCDef syntax. Compared to the presen-
tation with explicit substitutions, the main differences (beyond substitution equations
holding definitionally) are as follows:

▶ Tms Δ Γ now refers only to specialised substitutions (Remark 6.1.1).
▶ We have dedicated types for representing indexing into signatures (DefVar Ξ Γ A)

and picking out equations from the context (EqVar Γ t b).
These datatypes also need coe con-
structors, corresponding to their role
as setoid fibrations.

data EqVar : 𝚷 (Γ : Ctx Ξ) {A} → Tm Γ A → B → Type where
ez : EqVar (Γ ▷ t { b) (t [wk{]) b
es : EqVar Γ t b → EqVar (Γ ▷ A) (t [wk]) b
eseq : EqVar Γ t b1 → EqVar (Γ ▷ u { b2) (t [wk{]) b1

data DefVar where
fz : DefVar (Ξ ▷ Γ → A if t ≔ u | v) (Γ [wkWk]Wk

Ctx) (A [wkWk]Wk
Ty)

fs : DefVar Ξ Γ A → DefVar (Ξ ▷ Δ → B if t ≔ u | v)
(Γ [wkWk]Wk

Ctx) (A [wkWk]Wk
Ty)

▶ DefVars have an associated lookupSig operation.

record Def Ξ (Γ : Ctx Ξ) (A : Ty Γ) : Type where
constructor if
field

scrut : Tm Γ 𝔹

lhs : Tm (Γ ▷ scrut { tt) (A [wk{]Ty)
rhs : Tm (Γ ▷ scrut { ff) (A [wk{]Ty)

lookupSig
: 𝚷 Ξ {Γ A} → DefVar Ξ Γ A → Def Ξ Γ A

▶ “call”s are now explicitly bundled with their list of arguments.

call : 𝚷 (f : DefVar Ξ Γ A) (𝛿 : Tms Δ Γ)
→ Tm Δ (A [𝛿]Ty)

6.2.1 Conversion and Coherence

When presenting NbE for dependent types in Section 2.4.3, we were able to preserve
the conversion relation at every step. This justified us playing quite “fast and loose”
with details relating to coercion/coherence: using setoids was ultimately just an imple-
mentation detail and we could have achieved the same result using a quotiented syntax
instead [60]. [60]: Altenkirch et al. (2017), Normalisation

by Evaluation for Type Theory, in Type The-
oryIn SCDef, the situation gets a bit trickier. I do not know how to deal with contextual

equations other than via term rewriting, but rewriting is an inherently very syntactic
procedure.

Luckily, setoids give us a framework for working with multiple distinct equivalence
relations. Indexing of the syntax itself must still be up to conversion in order to account
for definitional equality, but this does not stop us from writing functions that e.g.
project out raw untyped terms. I will sometimes refer to equality up-to-coherence merely
referring to the smallest congruence relation including coh. Applied to the syntax of
type theory, this aligns exactly with syntactic equality of untyped projections.

For simplicity of the presentation in the report, we still try to avoid getting too bogged-
down in encoding details associated with these different equivalence relations, but it
is important to keep in mind that some portions of the below algorithm (especially
those parts which directly refer to term rewriting concepts) do not respect conversion
alone.

93

6.2.2 Normal and Neutral Forms

We define SCDef normal forms as usual, assuming some appropriate definition of neutrals.
Like in Section 2.4.3, normal forms form a setoid fibration on conversion, so the term
we index by only needs to be convertible to the normal form.

data Nf : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type
Ne : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type

data Nf where
coe~ : 𝚷 Γ~ A~ → Tm~ Γ~ A~ t1 t2 → Nf Γ1 A1 t1 → Nf Γ2 A2 t2

ne𝔹 : Ne Γ 𝔹 t → Nf Γ 𝔹 t
neIF : Ne Γ 𝔹 u → Ne Γ (IF u A B) t → Nf Γ (IF u A B) t
𝜆_ : Nf (Γ ▷ A) B t → Nf Γ (Π A B) (𝜆 t)
tt : Nf Γ 𝔹 tt
ff : Nf Γ 𝔹 ff

SCDef neutrals are a little more tricky. Boolean equations mean we can no longer define
these purely inductively, as modulo contextual equations, any 𝔹-typed term can in
principle be convertible to tt or ff (which are of course non-neutral - tt and ff do not
block 𝛽-reduction). We start, therefore, by defining pre-neutrals as 𝛽-neutral terms where
all subterms are fully normal/neutral.

data PreNe : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type where
coe~ : 𝚷 Γ~ A~ → Tm~ Γ~ A~ t1 t2 → PreNe Γ1 A1 t1 → PreNe Γ2 A2 t2

`_ : 𝚷 i → PreNe Γ A (` i)
· : Ne Γ (Π A B) t → Nf Γ A u

→ PreNe Γ (B [< u >]Ty) (t · u)
callNe : Ne Δ 𝔹 (lookupSig Ψ f .scrut [𝛿])

→ PreNe Δ (A [𝛿]Ty) (call {A :≡ A} f 𝛿)

We then define the “true” neutrals by pairing the pre-neutral term with explicit evidence
that it is not convertible to a closed Boolean.

As conversion (Tm~ Γ~ A~ t1 t2) lies in
Prop, we normally would need to “box”
the proof here. To hide these encoding
details, we rely on cumulativity, which
includes Prop <: Type subtyping.

predNe : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type
predNe Γ A t :≡ 𝚷 {Γ′ } b Γ~ A~ → ¬ Tm~ {Γ2 :≡ Γ′ } Γ~ A~ t ⌜ b ⌝𝔹

Ne Γ A t :≡ PreNe Γ A t × predNe Γ A t

Remark 6.2.1 (Stability Under Thinnings vs Renamings)
These neutral forms are not stable under arbitrary renamings. For example, in the
context Γ :≡ x : 𝔹 , y : 𝔹 , x { tt, the variable y is neutral. However, if we apply
the renaming y / x, the context becomes Γ [y / x] ≡ y : 𝔹 , y { tt, and y is
now convertible to a closed Boolean. We therefore make sure to take presheaves over
the category of thinnings (which does not encounter this problem) when proving
normalisation.

Remark 6.2.2 (Beyond Booleans)
This definition relies heavily on the fact that all of our equations are of the form
t ∼ ⌜ b ⌝𝔹. If equations e.g. between neutral terms were to be allowed, then these
normal forms would no longer be unique (up to coherence).
As in Section 5.3.2 - Finitary Types I think there are at least two possible solutions to
here:

▶ We could keep the same definition of neutrals as above, and give up on unique-
ness of normal forms. Instead, equivalence of neutrals can be defined modulo
a set of neutral equations. Note that rewriting neutral subterms to other neu-
trals cannot unblock 𝛽-reductions (the whole motivation for neutral terms
is that they block reduction), so NbE still makes progress (it fully decides

94

the 𝛽-equality). To actually decide equality of normal forms, we then can use
standard term rewriting approaches such as ground completion or E-Graphs
(the equational theory on 𝛽-normal forms is, up to coherence, a ground TRS).

When I refer to 𝛽-equality/𝛽-
normality here, I am also implicitly
including 𝜂 for Π types. Actually,
accounting for 𝜂 equality in the
second approach is a little subtle:
we rely on the fact that the result
of 𝜂-expanding any neutral is never
considered smaller than the original.
I argue this is a pretty reasonable
expectation (e.g. it follows from
monotonicity), but alternatively, we
could just require that tNe not be
larger than any alternative 𝛽-neutral
(tNe′ : 𝛽Ne Γ A t) and combine this
with the statement that t is also not
convertible to a closed Boolean given
prior.

▶ Alternatively, we could attempt to fully normalise terms during NbE, by inte-
grating ground completion directly. Specifically, we can define a term ordering
on 𝛽-normal/neutral terms such that tt and ff are minimal, and then generalise
predNe to the non-existence of normal forms (of the same term) smaller than
the given neutral.
To avoid getting bogged down in accounting for conversion/coherence, we
concretely define the term ordering on untyped terms.

UTm : Type
𝛽Ne : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type
𝛽Nf : 𝚷 Γ A → Tm {Ξ :≡ Ξ} Γ A → Type
proj𝛽Ne : 𝛽Ne Γ A t → UTm
proj𝛽Nf : 𝛽Nf Γ A t → UTm

>UTm : UTm → UTm → Type
predNe : 𝚷 Γ A t → 𝛽Ne {Ξ :≡ Ξ} Γ A t → Type
predNe Γ A t tNe

:≡ 𝚷 (tNf
: 𝛽Nf Γ A t) → ¬ proj𝛽Ne tNe >UTm proj𝛽Nf tNf

We will stick with t ∼ ⌜ b ⌝𝔹 equations for simplicity. In either of the above
approaches, I suspect the extra difficulties will primarily relate to needing to be
careful with exactly which types/relations are setoid fibrations on either coherence
or conversion.

Note that all the definitions of normal/neutrals forms presented here are assuming
definitionally consistent contexts. In definitionally inconsistent contexts, we can collapse
all terms to 1 as in Section 4.2.

6.2.3 Sound and Complete TRSs

Justifying completion with a well-founded order (also taking reduction into account) is
hard2. Luckily, because stability under substitution is no longer a requirement, we have a

2: Recall from Section 5.3 that our trick
involving spontaneous reduction Sec-
tion 4.2 does not extend to dependent
types).

lot more freedom in how to restrict equations such that completion is not necessary. For
example, we could require that all Boolean equation LHSs are mutually irreducible (and
check this syntactically), ensuring that our equation set is completed by definition.

We delay the actual details of this syntactic check and recovering the required semantic
properties for Section 6.3.1. For now, we specify the semantic requirement on completed
contexts only: either the context should be definitionally inconsistent, or there must be
a completed TRS, equivalent to the equational context.

Raw TRSs are just lists of paired pre-neutral LHSs and Boolean RHSs.

data TRS (Γ : Ctx Ψ) : Type where
• : TRS Γ

▷>Rw_ : TRS Γ → PreNe Γ 𝔹 t → B → TRS Γ

We then define TRSs to be valid (for a particular context) if rewrites imply convertibility
and vice versa on pre-neutral terms. This is similar in spirit to the observational equiva-
lence property of equational contexts in Section 4.2, but instead of between contexts, we
define the equivalence between the SCDef context (which induces a declarative notion
of conversion) and a concrete set of rewrites (where the induced notion of conversion is
operational).

95

Technically, RwVars here should be
defined up to coherence-equivalence.
To account for this, we must to in-
dex by pre-neutrals of arbitrary type,
A (rather than 𝔹) and then generalise
“from” and “to” appropriately. In “from”
specifically, we need to specify the co-
herence equation CohTy~ _ A 𝔹 to
satisfy the indexing of Tm~ (either at
the declaration, or when applying it).
We can either index RwVar directly by
the coherence equation or project out
the proof by recursion.

data RwVar : TRS Γ → PreNe Γ 𝔹 t → B → Type where
rz : RwVar (ΓTRS ▷ tPreNe >Rw b) tPreNe b
rs : RwVar ΓTRS tPreNe b1 → RwVar (ΓTRS ▷ uPreNe >Rw b2) tPreNe b1

record ValidTRS (Γ : Ctx Ξ) : Type where field
trs : TRS Γ

to : Tm~ rfl~ rfl~ t ⌜ b ⌝𝔹 → 𝚷 (tPreNe
: PreNe Γ 𝔹 t)

→ RwVar trs tPreNe b
from : RwVar { t :≡ t} trs tPreNe b → Tm~ rfl~ rfl~ t ⌜ b ⌝𝔹

def-incon : Ctx Ξ → Prop
def-incon Γ :≡ Tm~ (rfl~ {Γ :≡ Γ }) rfl~ tt ff

data TRS? (Γ : Ctx Ξ) : Type where
compl : ValidTRS Γ → TRS? Γ

!! : def-incon Γ → TRS? Γ

Remark 6.2.3 (Alternative Definition of TRS “to”)
Note that the “to” condition above is equivalent to

to′ : 𝚷 (ΓTRS
: TRS Γ) → EqVar Γ t b

→ 𝚷 (tPreNe
: PreNe Γ 𝔹 t) → RwVar ΓTRS tPreNe b

given the following lemma, which should be provable by introducing reduction and
algorithmic conversion, showing the equivalence with declarative conversion (via
confluence of reduction) and then taking advantage of how the only possible reduction
which can apply to a pre-neutral term is a rewrite targetting the whole thing (recall
that all subterms of pre-neutrals are fully neutral/normal).

inv-lemma : PreNe Γ A t → Tm~ Γ~ A~ t ⌜ b ⌝𝔹 → EqVar Γ (coe~ Γ~ A~ t) b

We rely on this lemma in Section 6.3.1, however, this is a lot of work for a small and
quite technical result, so we will not prove this in detail. Finding an easier way to
prove this (or avoid relying on it entirely) could be interesting future work.

6.2.4 Normalisation by Evaluation

We now extend normalisation by evaluation for dependent types (as initially presented
in Section 2.4.3 to SCDef.

As before, the core of the normalisation argument will hinge on neutral/normal forms
being presheaves on a category of thinnings3. To account for local equational assumptions

3: We will also require stability of com-
pletion evidence w.r.t. thinning, which
follows from applying the thinning
pointwise to the underlying TRS, and
then taking advantage of how thin-
nings can be inverted.

in contexts, we extend thinnings with lifting over contexts extended by equations (i.e. so
it is still possible to construct identity thinnings) but critically do not include equation-
weakenings (Thin (Δ ▷ t { b) Γ (𝛿 ; wk{)), which destabilise neutral terms (and
destroy completion evidence).

data Thin {Ξ} : 𝚷 Δ Γ → Tms {Ξ :≡ Ξ} Δ Γ → Type where
𝜀 : Thin • • 𝜀
ˆTh : Thin Δ Γ 𝛿 → 𝚷 A

→ Thin (Δ ▷ (A [𝛿]Ty)) (Γ ▷ A) (𝛿 ˆ A)
ˆTh { _ : Thin Δ Γ 𝛿 → 𝚷 t b

→ Thin (Δ ▷ t [𝛿] { b) (Γ ▷ t { b) (𝛿 ˆ t { b)
+Th : Thin Δ Γ 𝛿

→ 𝚷 A → Thin (Δ ▷ A) Γ (𝛿 ; wk)

When defining environments and values, we require a valid TRS associated with the tar-
get context (recall that normalisation in definitionally inconsistent contexts is trivial, so
we focus only on the definitionally consistent case here). Throughout the normalisation

96

algorithm, we will never add new equations to the target context, so we can preserve
the ValidTRS the whole way through.

Env : 𝚷 Ξ Δ Γ → ValidTRS Δ → Tms {Ξ :≡ Ξ} Δ Γ → Type
Val : 𝚷 Γ A Δ ΔC 𝛿

→ Env Ξ Δ Γ ΔC 𝛿 → Tm Δ (A [𝛿]Ty) → Type
eval : 𝚷 ΔC (t : Tm Γ A) (𝜌 : Env Ξ Δ Γ ΔC 𝛿)

→ Val Γ A Δ ΔC 𝛿 𝜌 (t [𝛿])
eval* : 𝚷 ΘC 𝛿 (𝜌 : Env Ξ Θ Δ ΘC 𝜎) → Env Ξ Θ Γ ΘC (𝛿 ; 𝜎)

Perhaps surprisingly, and unlike when constructing the standard model, we do not
associate an environment with the signature. We can get away with simply recursively
evaluating definitions every time we hit a call.

We define a specialised version of unquoting on pre-neutrals, uvalpre. The intuition here
is that uvalpre first syntactically compares the given neutral with all LHSs of the TRS to
see if it can be reduced, and then if it is still stuck, delegates to uval, which unquotes as
usual.

uvalpre : 𝚷 A { t} → PreNe Δ (A [𝛿]Ty) t → Val Γ A Δ ΔC 𝛿 𝜌 t
uval : 𝚷 A { t} → Ne Δ (A [𝛿]Ty) t → Val Γ A Δ ΔC 𝛿 𝜌 t
qval : 𝚷 A { t} → Val Γ A Δ ΔC 𝛿 𝜌 t → Nf Δ (A [𝛿]Ty) t

Like in Section 2.4.3, we will cheat a bit, and assume functor laws for thinning environ-
ments hold definitionally (to avoid excessive transport clutter). Actually, for these laws
to typecheck, we now also need to assume functor laws for thinning completed TRSs.

ΓC [idTh]C ≡ ΓC

ΓC [𝛿Th]C [𝜎Th]C ≡ ΓC [𝛿Th ;Th 𝜎Th]C
𝜌 [idTh]Env ≡ 𝜌

𝜌 [𝜎Th]Env [𝛾Th]Env ≡ 𝜌 [𝜎Th ;Th 𝛾Th]Env

The definition of environments now needs to account for local equations. We take
inspiration from the standard model constructions for SCBool and SCDef, and require
environments to hold evidence of convertibility of the LHS and RHS values.

⌜_⌝𝔹Nf
: 𝚷 b → Nf Γ 𝔹 ⌜ b ⌝𝔹

⌜ tt ⌝𝔹Nf :≡ tt
⌜ ff ⌝𝔹Nf :≡ ff

Env Ξ Δ (Γ ▷ t { b) ΔC 𝛿

:≡ (𝜌 : Env Ξ Δ Γ ΔC (𝜋1{ 𝛿)) ×
Nf~ rfl~ rfl~ (𝜋2{ 𝛿) (eval ΔC t 𝜌) ⌜ b ⌝𝔹Nf

Values are defined entirely as usual. Evaluation of substitutions, eval*, now needs to
produce the proof of normal-form equality. This is achievable via mutually proving
soundness of evaluation.

For evaluation, we focus just on the new case for calls. We split on the evaluated scrutinee
in a top-level helper, eval-call.

eval-call : 𝚷 { f : DefVar Ξ Γ A} (𝜌 : Env Ξ Δ Γ ΔC 𝛿)
(tV

: Nf Δ 𝔹 t)
(t~ : Tm~ rfl~ rfl~ t (lookupSig Ξ f .scrut [𝛿]))

→ (𝚷 t~′ → Nf~ rfl~ rfl~ (t~ •~ t~′) tV tt
→ Val Γ A Δ ΔC 𝛿 𝜌 (lookupSig Ξ f .lhs [𝛿 ,{ t~′]))

→ (𝚷 t~′ → Nf~ rfl~ rfl~ (t~ •~ t~′) tV ff
→ Val Γ A Δ ΔC 𝛿 𝜌 (lookupSig Ξ f .rhs [𝛿 ,{ t~′]))

→ Val Γ A Δ ΔC 𝛿 𝜌 (call f 𝛿)

97

eval-call { f :≡ f} 𝜌 tt t~ uV vV

:≡ coeVal {𝜌 :≡ 𝜌 } rfl~ (sym~ (call-tt { f :≡ f} (sym~ t~))) uV′

where uV′ :≡ uV (sym~ t~) rfl~
eval-call { f :≡ f} 𝜌 ff t~ uV vV

:≡ coeVal {𝜌 :≡ 𝜌 } rfl~ (sym~ (call-ff { f :≡ f} (sym~ t~))) vV′

where vV′ :≡ vV (sym~ t~) rfl~
eval-call { f :≡ f} 𝜌 (ne𝔹 tNe) t~ uV vV

:≡ uvalpre _ (callNe { f :≡ f} (coeNe~ rfl~ rfl~ t~ tNe))

Unlike evaluation of dependent “if” (eval-if in Section 2.4.3), we do not rely on quoting
here. When producing stuck calls, we have no reason to the normalise the branches.

To actually make use of eval-call, we need to evaluate the scrutinee, and the LHS and
RHS branch under the appropriate convertibility assumptions.

We can ensure this case of evaluation
stays structurally recursive by “Ford-
ing”. For example, lookupSig _ f .scrut
is not obviously structurally smaller
than call f 𝛿 , but if we “Ford” by
adding an extra term parameter to call,
t : Tm Γ 𝔹 and the propositional equa-
tion t = lookupSig _ f .scrut, the
induction here becomes structurally
well-founded.

eval {𝛿 :≡ 𝜎 } ΔC (call f 𝛿) 𝜌
:≡ eval-call { f :≡ f} 𝛿V tV (≡~ refl) uV vV

where 𝛿V :≡ eval* ΔC 𝛿 𝜌

tV :≡ eval ΔC (lookupSig _ f .scrut) 𝛿V

uV :≡ 𝝀 t~ tNf∼ → eval {𝛿 :≡ (𝛿 ; 𝜎) ,{ t~} ΔC (lookupSig _ f .lhs)
(𝛿V , tNf∼)

vV :≡ 𝝀 t~ tNf∼ → eval {𝛿 :≡ (𝛿 ; 𝜎) ,{ t~} ΔC (lookupSig _ f .rhs)
(𝛿V , tNf∼)

We should make sure to check soundness. call-tt and call-ff are preserved up-to-coherence
just by computation of eval. 𝜋2{ instead requires us to prove

Nf~ rfl~ rfl~ (𝜋2{ 𝛿 [rfl~]~)
(eval ΘC (t [𝜋1{ 𝛿]) 𝜌) (eval ΘC ⌜ b ⌝𝔹 𝜌)

This is why we had to embed equations into environments. After splitting on the
Boolean, the RHS reduces to tt/ff, and if we project our the convertibility evidence the
environment, specifically eval* ΘC 𝛿 𝜌 (focusing on the tt case WLOG), we obtain

Tm~ rfl~ rfl~ (eval ΘC t (eval* ΘC 𝛿 𝜌 .𝝅1)) tt

So it remains to prove equality of eval ΘC (t [𝜋1{ 𝛿]) 𝜌 and eval ΘC t (eval* ΘC 𝛿 𝜌 .𝝅1),
which is just preservation of 𝜋1{ .

The core unquoting (uval) and quoting (qval) operations stay mostly unchanged from
ordinary NbE for dependent types4, but we do of course need to implement uvalpre.

4: I say “mostly” because technically
we do need to call uvalpre rather than
uval in a couple of places to build new
stuck neutrals, but other than that, the
definitions are identical.

We first define a procedure for checking if any TRS rewrites possibly apply to a given
pre-neutral term.

Note that as we are working with plain
TRSs here, we need to work with terms
up to coherence rather than up to con-
version. We can prove that overall con-
version is preserved using the correct-
ness criteria associated with ValidTRSs
after we are done.

data CheckRwResult (ΓTRS
: TRS Γ) : PreNe Γ A t → Type where

rw : RwVar ΓTRS (coe~ rfl~ A~ coh tPreNe) b → CheckRwResult ΓTRS tPreNe

stk : (𝚷 A~ b → ¬ RwVar ΓTRS (coe~ rfl~ A~ coh tPreNe) b)
→ CheckRwResult ΓTRS tPreNe

checkrw : 𝚷 (ΓTRS
: TRS Γ) (tPreNe

: PreNe Γ A t)
→ CheckRwResult ΓTRS tPreNe

We then implement uvalpre by splitting on the result of checkrw, and either returning
the closed Boolean, or the stuck neutral, depending on the result. We need the “from”
and “to” properties of our TRS here to translate between evidence about the existence
or lack of rewrites and convertibility.

uvalpre {ΔC :≡ ΔC } A tPreNe with checkrw (ΔC .trs) tPreNe

... | rw {A~ :≡ A~} {b :≡ b} r

98

:≡ coeVal′ (sym~ A~) (sym~ (ΔC .from r) •~ sym~ coh) ⌜ b ⌝𝔹Nf

... | stk ¬r
:≡ uval A (tPreNe , 𝝀 b Γ~ A~ t~ →

¬r (A~ •~ 𝔹 {Γ~ :≡ sym~ Γ~}) b
(ΔC .to (sym~ coh •~ t~ •~ ⌜⌝𝔹~ {Γ~ :≡ sym~ Γ~})

(coe~ _ _ _ tPreNe)))

Soundness of uvalpre also follows from “from” and “to”, so we are done!

nbe : ValidTRS Γ → 𝚷 t → Nf Γ A t
nbe ΓC t :≡ qval {𝛿 :≡ id} _ (eval ΓC t idEnv)

Of course, we can only call into nbe if we have a ValidTRS, so we move on to the topic
of constructing these now.

99

6.3 Elaboration

We first consider the task of generating ValidTRSs from a set of equational assumptions
in a context, and then move on to presenting an elaboration algorithm which can turn
smart case into SCDef calls.

6.3.1 Syntactic Restrictions for Generating TRSs

As mentioned in Section 6.2.3, justifying completion is hard (because finding a well-
founded order is hard). Luckily, completion is also no longer necessary. In SCDef, we
can place essentially arbitrary restrictions on equations, without endangering subject
reduction (stability under substitutions is no longer necessary).

One such restriction, for example, could be to require that the LHS of every reflected
equation is syntactically a variable, essentially recovering dependent pattern matching
(Section 3.1). Checking equality of variables is easy, so we can iterate through the set of
equations i { b and in the case of overlaps, either remove the offending equation (if it
is redundant - i.e. the RHSs are equal Booleans) or report a definitional inconsistency (if
it is definitionally inconsistent - i.e. the RHSs are not equal). Of course, the resulting
theory would not be super exciting, given dependent pattern matching that is restricted
in this way is standard (and the limitations therein ultimately motivated this entire
project).

A more interesting strategy would be iterate over the set of equations, normalising each
LHS, t : Tm Γ 𝔹, w.r.t. the prior equation set, building a ValidTRS as we go. Before
moving on to the next equation, we inspect the reduced LHS, t, and:

▶ If t is a closed Boolean, we compare it to the RHS and either remove the redundant
equation or immediately report the definitional inconsistency.

▶ If t is a neutral term, we check that it does not occur as a subterm of any of the
prior neutral LHSs. If it does (the new rewrite destabilises the TRS so-far) then we
can just report an error and ask the programmer to rewrite their program (doing
a better job here really does require completion).

To justify this approach is sensible, we need to actually derive the “from” and “to”
conditions associated with the TRS we construct. Attempting these proofs formally in
Agda gets extremely painful, so we will give just the main ideas:

(A) We say a neutral destabilises a TRS if it occurs as a subterm of (or equals) any of
the LHSs of that TRS.

(B) Given a ValidTRS for a context Γ and a proof that a particular neutral tNe : Ne Γ 𝔹 t
does not destabilise the underlying TRS, and a proof that tNe does not occur as a
subterm of (or equals) uNe : Ne Γ 𝔹 u, we can obtain an
Ne (Γ ▷ t { b) 𝔹 (u [wk{]).

(C) Given tNe cannot occur as a subterm of any of tNe’s direct subterms, we can also
obtain PreNe (Γ ▷ { b) 𝔹 (t [wk{]).

(D) (B) and (C) are sufficient to construct the TRS (Γ ▷ t { b), including a rewrite
corresponding to the new equation.

(E) “from” for this new TRS can be proven by cases. If the RwVar is rz (i.e. the rewrite
makes use of the last rewrite in the TRS), then eq ez proves the required equiva-
lence (the last rewrite in the TRS maps exactly from the
PreNe (Γ ▷ { b) 𝔹 (t [wk{]) to b).

(F) If the RwVar instead is of the form rs r, then we know the LHS is some neutral
that was already present in the TRS, so we can reuse the existing evidence of
from.

100

(H) Finally, to prove “to”, we assume some way of getting our hands on a concrete
EqVar corresponding to the convertibility evidence (recall that we should be able
obtain this, albeit painfully, via introducing reduction Remark 6.2.3). We then
perform a similar case split: ez maps to rz and es e can be dealt with using the
prior “to” result.

I leave a full Agda mechanisation of this proof for future work. Most of the pain arises
from parts (F) and (H), where we need to invert the the weakening of neutrals to account
for the new equation.

6.3.2 Elaborating Case Splits

We now quickly outline how to elaborate from an untyped surface language that appears
to feature local smart case, to SCDef. Concretely, we will work with an untyped syntax
resembling SCBool, and write the algorithm in bidirectional style ([115]), with a mutually [115]: Dunfield et al. (2022), Bidirectional

Typingrecursive check and infer (as in [113], and also my Haskell SCBool typechecker (Section
[113]: Coquand (1996), An Algorithm for
Type-Checking Dependent Types

5.4).

To account for local case splits being turned into new top level definitions, we consistently
return a signature weakening along with elaborated SCDef term. To be able to normalise
types and check conversion, we also require the existence of a ValidTRS associated with
the given context.

We also assume the existence of a defi-
nition of normal types (NfTy) here. The
only difference between these are ordi-
nary SCDef types (with strictified sub-
stitution) is that large IF must always
be blocked on a neutral term.

data NfTy : 𝚷 Γ → Ty {Ξ :≡ Ξ} Γ → Type

record InfTm (Γ : Ctx Ξ) : Type where
constructor inf
pattern
field
{ infSig} : Sig
infWk : Wk infSig Ξ

infTy : Ty (Γ [infWk]Wk
Ctx)

infTyNf
: NfTy (Γ [infWk]Wk

Ctx) infTy
infTm : Tm (Γ [infWk]Wk

Ctx) infTy

record ChkTm (Γ : Ctx Ξ) (A : Ty Γ) : Type where
constructor chk
pattern
field
{elabSig} : Sig
elabWk : Wk elabSig Ξ

elabTm : Tm (Γ [elabWk]Wk
Ctx) (A [elabWk]Wk

Ty)

check : ValidTRS Γ → NfTy Γ A → PreTm → Maybe (ChkTm Γ A)
infer : ValidTRS Γ → PreTm → Maybe (InfTm Γ)

Because our input is untyped, check and infer can fail (if the term is not typeable with
the given type, or the type of the term is not inferrable, respectively). We use do-notation
[116] to avoid excessive boilerplate matching on the results of recursive calls (elaboration [116]: Agda Team (2024), Syntactic Sugar
should fail if any recursive call fails).

Elaborated terms being parameterised
by a signature weakening, and need-
ing to compose these for every recur-
sive call, also feels quite monadic in
nature (though the relevant category
is no longer Type). It would perhaps be
interesting for future work to explore
how to eliminate this boilerplate.

check and infer for ordinary lambda calculus constructs (application, abstraction, etc.)
is relatively standard. We just need to make sure to account for new top-level defini-
tions generated during elaboration of subterms by composing the returned signature
weakenings.

(Un-annotated) 𝜆-abstractions are not inferrable

infer ΓC (𝜆 t) :≡ nothing

101

However, we can infer applications by first inferring the LHS, ensuring that the synthe-
sised type of the LHS is headed with Π, and checking also that the argument has the
appropriate type

Technically we should also account for
the case where the synthesised type of
t is headed with a coercion..

infer ΓC (t · u) :≡ do
inf 𝜙1 (Π A B) (Π ANf BNf) t′ :≡ infer ΓC t

where _ → nothing
let ΓC′ :≡ ΓC [𝜙1]Wk

C
chk 𝜙2 u′ :≡ check ΓC′ ANf u
just (inf (𝜙1 ;Wk 𝜙2)

_
(normTy (ΓC′ [𝜙2]Wk

C) ((B [𝜙2]Wk
Ty) [< u′ >]Ty))

((t′ [𝜙2]Wk) · u′))

We can also check (un-annotated) 𝜆-abstractions by checking the body has the expected
type (in the context extended by the domain)

check ΓC (Π ANf BNf) (𝜆 t) :≡ do
chk 𝜙 t′ :≡ check (ΓC [wkTh]C) BNf t
just (chk 𝜙 (𝜆 t′))

Of course, 𝜆-abstractions are only typeable at Π-types

check ΓC _ (𝜆 t) :≡ nothing

We can check applications by first inferring a type, and then checking it matches the
expected one. Actually, all inferrable terms can be checked using this approach.

check {A :≡ A} ΓC ANf (t · u) :≡ do
inf 𝜙 A′ _ tu′ :≡ infer ΓC (t · u)
Γ~ , A~ :≡ convTy ΓC A′ (A [𝜙]Wk

Ty)
just (chk 𝜙 (coe~ Γ~ A~ tu′))

The interesting case here is really elaboration of smart if. We first recursively check
the subterms, then construct a new definition using these, and finally return a call
expression which simply calls the definition.

Note that as we would expect for
smart if, we do not need a motive! In-
stead the LHS and RHS terms are just
checked at the same type of the overall
“if” expression, with dependent elimi-
nation coming from the new equations
added to the context.

check {A :≡ A} ΓC ANf (if t u v) :≡ do
chk 𝜙1 t′ :≡ check ΓC 𝔹 t
ΓttC :≡ complete ((_ [𝜙1]Wk

Ctx) ▷ t′ { tt)
ΓffC :≡ complete ((_ [𝜙1]Wk

Ctx) ▷ t′ { ff)
chk 𝜙2 u′ :≡ check? ΓttC (A [𝜙1]Wk

Ty [wk{]Ty) u

chk 𝜙3 v′ :≡ check? (ΓffC [𝜙2]?+) (A [𝜙1 ;Wk 𝜙2]Wk
Ty [wk{]Ty) v

let 𝜙123 :≡ 𝜙1 ;Wk (𝜙2 ;Wk 𝜙3)
let Ξ′ :≡ _ ▷ _ → (A [𝜙123]Wk

Ty)
if (t′ [𝜙2]Wk [𝜙3]Wk) ≔ u′ [𝜙3]Wk | v′

just (chk (𝜙123 ;Wk wkWk) (call {Ξ :≡ Ξ′ } fz id))

We rely on a few helpers here. complete is a partial implementation of completion
(capable of either returning a ValidTRS, evidence of a definitional inconsistency of
failing). We described some possible implementations of this in Section 6.3.1.

We also need a slightly generalised version of check, to account for (improved) imple-
mentations of complete that sometimes return evidence of definitional inconsistency.

check? : TRS? Γ → Ty Γ A → PreTm → Maybe (ChkTm Γ A)

102

In a definitionally inconsistent context, all types and terms are convertible, so we can
arbitrarily elaborate everything to tt (the inhabitant of the unit type is perhaps more
appropriate, but any term will ultimately do).

check? (compl ΓC) A t :≡ check ΓC (normTy ΓC A) t
check? (!! Γ!) A t :≡ just (chk idWk (coe~ rfl~ (collapse Γ!) tt))

By working with intrinsically-typed syntax, this algorithm must be sound in at least the
sense that it only produces well-typed SCDef terms. However, in principle, we would
probably expect a stronger soundness condition on elaboration, expressing in some
sense that the semantic meaning of the input PreTm is preserved5. Furthermore, we

5: The first step here, naturally, would
be to actually give some semantic
meaning to untyped pre-terms.

might also expect a completeness property, expressing that if a pre-term is sufficiently
annotated and typeable, then elaboration should succeed. Ideas from [58] are likely to

[58]: Kovács (2024), Basic setup for formal-
izing elaboration

be highly relevant here. We leave the work of defining and checking such additional
correctness criteria to future work.

Evaluation and Future Work 7

The goals of this project were to build a proof-of-concept typechecker for smart case,
and to make progress on the metatheory of type theories with local equations. Both
of these were achieved to some extent, though there is still a significant amount of
work remaining before a full implementation in a mainstream proof assistant can be
justified.

SCBool

As demonstrated at the very start of this report (Chapter 1) The poof-of-concept SCBool

typechecker was successful in at least the sense that it admits vastly simpler proofs of
some theorems (specifically those with a heavy reliance on Boolean case splitting, such
as f tt = f (f (f tt))) than one can write in e.g. Agda. This demonstrates the practicality
of smart case and its potential benefits to some extent. Unfortunately, the it is also
very-much specialised to Boolean equations, and extending beyond this without hitting
issues with subject reduction or undecidability appears challenging (Section 5.3). On
the other hand, I argue that the analysis and counter-examples here are still a valuable
contribution, especially given the lack prior work (recall that Altenkirch et al.’s work on
smart case [17] was never published). [17]: Altenkirch (2011), The case of the smart

case

Another interesting optimisation
could be to leverage non-destructive
term rewriting techniques such as E-
Graphs [9, 10] for equations between
neutrals. I think destructive rewriting
is ultimately required for equations
where one side is of introduction form
(so later 𝛽-reductions get unblocked),
but conversion checking modulo
equations between neutrals can be
delayed.

[9]: Nelson (1980), Techniques for program
verification
[10]: Willsey et al. (2021), egg: Fast and ex-
tensible equality saturation

The typechecker is also written in somewhat “naive Haskell”. De Bruijn variables are
encoded in unary form, proofs using singletons will perform computation at runtime
despite their output ultimately being irrelevant and the data structure choices are very
sub-optimal (most glaringly, local equations are stored as a list of pairs of neutrals and
values, rather than an efficient map data structure). Future work on optimising and
exploring the overall performance impact of supporting smart case (e.g. comparing
against ordinary with abstraction) would be a good idea before rushing to implement
the feature in mainstream proof assistants.

SCDef

I feel positive about the potential for ideas from SCDef to form the basis for future proof
assistant development. Being able to restrict equations with properties that are not stable
under substitution gives a huge amount of flexibility, and normalisation not needing to
interleave with completion vastly simplifies the metatheory. Another nice advantage of
the SCDef approach is that fits nicely with the design of some existing proof assistants,
including Agda1.

1: Agda already elaborates with-
abstractions to top-level definitions.An unexpected bonus feature of SCDef is that is suggests a way to enable preserving

definitional equations across top-level definitions2. In Agda, sometimes abstracting over

2: Specifically, by using full substitu-
tions, including those that instanti-
ate contextual equations, as argument
lists.

a repeated argument necessitates additional transport boilerplate, because definitional
equations which hold in the concrete cases can only be stated propositionally in the
abstract setting. To resolve this, it could be interesting to explore direct surface syntax
for this feature, rather than leaving it as a mere detail of the encoding.

There is still a significant amount of remaining work on the metatheory of SCDef.
Our normalisation result only accounts for reflecting Boolean equations, and relies on
the existence of a completed term-rewriting system (TRS) associated with the set of
equations in the context. Section 6.3.1 describes a possible approach to generating these,
but it restricts the set of acceptable equations in a quite significant way3 3: Specifically, LHSs of later equations

cannot occur as subterms in prior ones.
In practice, this means that users of
smart case would sometimes have to
carefully order their case splits in order
to avoid destabilising previous equa-
tions and getting an error.

. Leveraging

104

completion to justify a wider set of equations could be exciting future work (this would
require proving some sort of strong normalisation result).

Before integrating SCDef with the core type theories of existing proof assistant, there also
needs to be extensive work on analysing the interactions between SCDef and a myriad
of other modern proof assistant features (e.g. global rewrite rules [11], cubical identity [11]: Cockx (2019), Type Theory Unchained:

Extending Agda with User-Defined Rewrite
Rules

[31], quotient types). SCDef definitions are also quite limited in the sense that they can

[31]: Cohen et al. (2015), Cubical Type The-
ory: A Constructive Interpretation of the Uni-
valence Axiom

only depend on prior ones - that is, (mutually) recursive definitions are not possible.
Integrating SCDef with with work on justifying (structurally) recursive definitions
[117], type-based termination [118, 119] or even going further and elaborating uses of

[117]: Abel et al. (2002), A predicative anal-
ysis of structural recursion

[118]: Barthe et al. (2006), CIĈ : Type-Based
Termination of Recursive Definitions in the
Calculus of Inductive Constructions
[119]: Nisht (2024), Type-Based Termination
Checking in Agda

induction into eliminators following [120, 121] would be important future work. It could

[120]: Goguen et al. (2006), Eliminating De-
pendent Pattern Matching
[121]: Cockx et al. (2018), Elaborating de-
pendent (co)pattern matching

be interesting to also examine going even further with elaboration, following work
such as [63–65] to elaborate SCDef into a traditional intensional type theory (without

[63]: Hofmann (1995), Conservativity of
Equality Reflection over Intensional Type
Theory
[64]: Oury (2005), Extensionality in the Cal-
culus of Constructions
[65]: Winterhalter et al. (2019), Eliminating
reflection from type theory

equational assumptions).

Because I had the idea for SCDef quite late into the project, I did not have time to
write a typechecker implementation with which to directly demonstrate its utility.
Beyond the elaboration of case splits (which I cover in detail in Section 6.3.2), I expect a
similar implementation to SCBool (tracking neutral to value mappings during NbE) to
be feasible.

Mechanisation and Meta-Metatheory

Taking a more general perspective, this project can also be seen as an exploration in
studying the metatheory of type theory from a perspective grounded in mechanisation.
We have used the proof assistant Agda as our metatheory throughout. A hugely exciting
possibility that arises from committing to this approach is the potential to build correct-
by-construction, type theory implementations (i.e. verified typecheckers) [122]. With [122]: Chapman (2008), Type Theory Should

Eat ItselfSection 6.3.2, a genuine Agda implementation of an SCDef typechecker does not seem
completely out of reach, but of course actually going the distance here would require
much more work fleshing out the details (fleshing out all the details of the NbE proof,
defining normalisation of types, checking equality up-to-coherence of normal forms,
etc.)

We also relied on many unsafe features to define strictified syntaxes. This was successful
at avoiding a lot of the transport boilerplate while staying relatively concise (the full
strictified SCDef syntax is slightly over 500 lines of Agda), but future work could increase
the level of trust in these mechanised proofs by leveraging the construction of [7] to [7]: Kaposi et al. (2025), Type Theory in Type

Theory Using a Strictified Syntaxstrictify substitution laws safely.

Finally, I think it is also worth reflecting on whether the focus on (categorically-inspired)
intrinsically-typed syntax (following e.g. [52, 53]), as opposed to the extrinsic approach [52]: Danielsson (2006), A Formalisation

of a Dependently Typed Language as an
Inductive-Recursive Family
[53]: Altenkirch et al. (2016), Type theory in
type theory using quotient inductive types

(where typing relations are defined on untyped terms, used in e.g. [48]) was ultimately

[48]: Abel et al. (2018), Decidability of con-
version for type theory in type theory

the right decision. I think the benefits of taking a more “semantic” [7] definition of
type theory are in part demonstrated by the soundness proofs and the presentation
of normalisation by evaluation for ordinary dependent type theory (Section 2.4.3), in
which semantic equivalence of terms (conversion) is preserved throughout.

However, in the case of normalisation for SCDef (Section 6.2), the story gets a little
messier, with the term rewriting aspects heavily relying on syntactic analysis of pre-
neutral terms. The overall normalisation algorithm is still sound, but individual steps do
not appear to preserve conversion. Making this rigorous requires some quite ugly and
repetitive setoid reasoning, which I have not gone through the full details of. Future work
could aim to rectify this messiness by somehow adjusting the NbE model/algorithm such
that conversion is fully preserved (though I am not sure how one could actually achieve
this) or by translating the argument into a theory with direct support for working at
different levels of abstraction (i.e. 2LTT [57, 58]). [57]: Annenkov et al. (2023), Two-level type

theory and applications
[58]: Kovács (2024), Basic setup for formal-
izing elaboration

Declarations 8

▶ GenAI Use: GenAI was not used at any point during this project. I remain
unconvinced that GenAI, at least as it currently exists, has a place in formal
methods research.

▶ Ethical Considerations: I do not believe there were any direct ethical risks
associated with this project.

▶ Sustainability: I expect my refusal to use GenAI combined with the fact that
this project did not involve any machine learning techniques immediately places
its carbon footprint on the lower end of Imperial final year projects.

▶ Artifact: The source for the Haskell SCBool typechecker, the various companion
Agda mechanisations and the literate Agda comprising the report itself are all
available at https://github.com/NathanielB123/fyp/tree/main.

https://github.com/NathanielB123/fyp/tree/main

Bibliography

[1] Martín H. Escardó and contributors. TypeTopology. Agda development. 2025. url: https://github.com/
martinescardo/TypeTopology (cited on page 1).

[2] Kevin Buzzard and contributors. FLT. Ongoing Lean formalisation of the proof of Fermat’s Last Theorem. 2025.
url: https://github.com/ImperialCollegeLondon/FLT (cited on page 1).

[3] Loïc Pujet and Nicolas Tabareau. “Observational equality: now for good”. In: Proc. ACM Program. Lang. 6.POPL
(2022), pp. 1–27. doi: 10.1145/3498693 (cited on pages 1, 9).

[4] Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. “A Graded Modal Dependent Type Theory
with a Universe and Erasure, Formalized”. In: Proc. ACM Program. Lang. 7.ICFP (2023), pp. 920–954. doi:
10.1145/3607862 (cited on page 1).

[5] Jessica Shi, Cassia Torczon, Harrison Goldstein, Benjamin C. Pierce, and Andrew Head. “QED in Context: An
Observation Study of Proof Assistant Users”. In: Proc. ACM Program. Lang. 9.OOPSLA1 (2025), pp. 337–363.
doi: 10.1145/3720426 (cited on page 1).

[6] Hannes Saffrich, Peter Thiemann, and Marius Weidner. “Intrinsically Typed Syntax, a Logical Relation, and
the Scourge of the Transfer Lemma”. In: Proceedings of the 9th ACM SIGPLAN International Workshop on
Type-Driven Development, TyDe 2024, Milan, Italy, 6 September 2024. Ed. by Sandra Alves and Jesper Cockx.
ACM, 2024, pp. 2–15. doi: 10.1145/3678000.3678201 (cited on page 1).

[7] Ambrus Kaposi and Loïc Pujet. “Type Theory in Type Theory Using a Strictified Syntax”. 2025. url: https:
//pujet.fr/pdf/strictification_preprint.pdf (cited on pages 1, 18, 28, 42, 104).

[8] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge university press, 1998 (cited on
pages 1, 48).

[9] Charles Gregory Nelson. “Techniques for program verification”. PhD thesis. Stanford University, 1980. url:
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf (cited on pages 1, 103).

[10] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
“egg: Fast and extensible equality saturation”. In: Proc. ACM Program. Lang. 5.POPL (2021), pp. 1–29. doi:
10.1145/3434304 (cited on pages 1, 103).

[11] Jesper Cockx. “Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules”. In: 25th Inter-
national Conference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway. Ed. by
Marc Bezem and Assia Mahboubi. Vol. 175. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019,
2:1–2:27. doi: 10.4230/LIPICS.TYPES.2019.2 (cited on pages 1, 28, 51, 104).

[12] Yann Leray, Gaëtan Gilbert, Nicolas Tabareau, and Théo Winterhalter. “The Rewster: Type Preserving Rewrite
Rules for the Coq Proof Assistant”. In: LIPIcs 309 (2024). Ed. by Yves Bertot, Temur Kutsia, and Michael Norrish,
26:1–26:18. doi: 10.4230/LIPICS.ITP.2024.26 (cited on pages 1, 28, 51).

[13] Thorsten Altenkirch. Smart Case [Re: [Agda] A puzzle with "with"]. The Agda Mailing List. 2009. url: https:
//lists.chalmers.se/pipermail/agda/2009/001106.html (cited on page 1).

[14] Various Contributors. Relation.Binary.EqReasoning. The Agda Standard Library 2.1.1. 2024. url: https://agda.
github.io/agda-stdlib/v2.1.1/Relation.Binary.Reasoning.Setoid.html (visited on 01/20/2025)
(cited on page 2).

[15] Thorsten Altenkirch and Nicolas Oury. “ΠΣ: A Core Language for Dependently Typed Programming”. 2008.
url: https://people.cs.nott.ac.uk/psztxa/publ/pisigma.pdf (cited on page 2).

[16] Thorsten Altenkirch, Nils Anders Danielsson, Andres Löh, and Nicolas Oury. “PiSigma: Dependent Types
without the Sugar”. In: Functional and Logic Programming, 10th International Symposium, FLOPS 2010, Sendai,
Japan, April 19-21, 2010. Proceedings. Ed. by Matthias Blume, Naoki Kobayashi, and Germán Vidal. Vol. 6009.
Lecture Notes in Computer Science. Springer, 2010, pp. 40–55. doi: 10.1007/978-3-642-12251-4_5 (cited
on page 2).

[17] Thorsten Altenkirch. “The case of the smart case. How to implement conditional convertibility?” In: Presented
at NII Shonan Seminar 007. 2011. url: https://shonan.nii.ac.jp/archives/seminar/007/files/2011/
09/altenkirch_slides.pdf (cited on pages 2, 47, 55, 103).

https://github.com/martinescardo/TypeTopology
https://github.com/martinescardo/TypeTopology
https://github.com/ImperialCollegeLondon/FLT
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3607862
https://doi.org/10.1145/3720426
https://doi.org/10.1145/3678000.3678201
https://pujet.fr/pdf/strictification_preprint.pdf
https://pujet.fr/pdf/strictification_preprint.pdf
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf
https://doi.org/10.1145/3434304
https://doi.org/10.4230/LIPICS.TYPES.2019.2
https://doi.org/10.4230/LIPICS.ITP.2024.26
https://lists.chalmers.se/pipermail/agda/2009/001106.html
https://lists.chalmers.se/pipermail/agda/2009/001106.html
https://agda.github.io/agda-stdlib/v2.1.1/Relation.Binary.Reasoning.Setoid.html
https://agda.github.io/agda-stdlib/v2.1.1/Relation.Binary.Reasoning.Setoid.html
https://people.cs.nott.ac.uk/psztxa/publ/pisigma.pdf
https://doi.org/10.1007/978-3-642-12251-4_5
https://shonan.nii.ac.jp/archives/seminar/007/files/2011/09/altenkirch_slides.pdf
https://shonan.nii.ac.jp/archives/seminar/007/files/2011/09/altenkirch_slides.pdf

107

[18] Ulf Norell. “Towards a practical programming language based on dependent type theory”. PhD thesis. Chalmers
University of Technology, 2007 (cited on page 3).

[19] The Agda Team. Agda. Version 2.7.0.1. 2024. url: https://agda.readthedocs.io/ (visited on 05/14/2025)
(cited on page 3).

[20] William Alvin Howard. “The Formulae-as-Types Notion of Construction”. In: To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism. Ed. by Haskell Curry, Hindley B., Seldin J. Roger, and
P. Jonathan. Academic Press, 1980 (cited on page 3).

[21] Meven Lennon-Bertrand. “Á Bas L’𝜂. Coq’s Troublesome 𝜂-Conversion”. In: Presented at the Workshop on the
Implementation of Type Systems (WITS) 2022. 2022. url: https://www.meven.ac/documents/WITS-22.pdf
(cited on pages 5, 82).

[22] András Kovács. “Eta conversion for the unit type. (is still not that simple)”. In: Presented at the Workshop on
the Implementation of Type Systems (WITS) 2024. 2025. url: https://andraskovacs.github.io/pdfs/
wits25prez.pdf (cited on pages 5, 24).

[23] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. “Normalization by Evaluation for
Typed Lambda Calculus with Coproducts”. In: 16th Annual IEEE Symposium on Logic in Computer Science,
Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society, 2001, pp. 303–310. doi:
10.1109/LICS.2001.932506 (cited on pages 5, 16, 34, 52–54).

[24] “Une Extension De L’Interpretation De Gödel a L’analyse, Et Son Application a L’Elimination Des Coupures
Dans L’Analyse Et La Theorie Des Types”. In: Proceedings of the Second Scandinavian Logic Symposium. Ed. by
J.E. Fenstad. Vol. 63. Studies in Logic and the Foundations of Mathematics. Elsevier, 1971, pp. 63–92. doi:
10.1016/S0049-237X(08)70843-7 (cited on page 6).

[25] John C. Reynolds. “Towards a theory of type structure”. In: Programming Symposium, Proceedings Colloque sur
la Programmation, Paris, France, April 9-11, 1974. Ed. by Bernard J. Robinet. Vol. 19. Lecture Notes in Computer
Science. Springer, 1974, pp. 408–423. doi: 10.1007/3-540-06859-7_148 (cited on page 6).

[26] Jean-Yves Girard. “The System F of Variable Types, Fifteen Years Later”. In: Theor. Comput. Sci. 45.2 (1986),
pp. 159–192. doi: 10.1016/0304-3975(86)90044-7 (cited on page 6).

[27] Antonius J. C. Hurkens. “A Simplification of Girard’s Paradox”. In: Typed Lambda Calculi and Applications,
Second International Conference on Typed Lambda Calculi and Applications, TLCA ’95, Edinburgh, UK, April
10-12, 1995, Proceedings. Ed. by Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin. Vol. 902. Lecture Notes
in Computer Science. Springer, 1995, pp. 266–278. doi: 10.1007/BFB0014058 (cited on pages 6, 82).

[28] The Agda Team. Universe Levels. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.io/
en/v2.7.0.1/language/universe-levels.html (visited on 05/14/2025) (cited on page 6).

[29] Thomas Streicher. “Investigations into intensional type theory”. habilthesis. 1993, p. 57. url: https://
ncatlab.org/nlab/files/Streicher-IntensionalTT.pdf (cited on pages 6, 53).

[30] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute
for Advanced Study: https://homotopytypetheory.org/book, 2013 (cited on page 6).

[31] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. “Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom”. In: 21st International Conference on Types for Proofs and Programs,
TYPES 2015, May 18-21, 2015, Tallinn, Estonia. Ed. by Tarmo Uustalu. Vol. 69. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2015, 5:1–5:34. doi: 10.4230/LIPICS.TYPES.2015.5 (cited on pages 6, 104).

[32] The Agda Team. Data Types. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.io/en/
v2.7.0.1/language/data-types.html (visited on 05/14/2025) (cited on page 7).

[33] András Kovács. “Type-theoretic signatures for algebraic theories and inductive types”. PhD thesis. Eötvös
Loránd University, 2023. doi: 10.48550/ARXIV.2302.08837 (cited on page 7).

[34] András Kovács. What are the complex induction patterns supported by Agda? Proof Assistants StackExchange
Answer. 2023. url: https://proofassistants.stackexchange.com/a/2002 (visited on 05/14/2025) (cited
on page 7).

[35] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”. In: Logic Colloquium ’73. Ed. by H.E. Rose
and J.C. Shepherdson. Vol. 80. Studies in Logic and the Foundations of Mathematics. Elsevier, 1975, pp. 73–118.
doi: https://doi.org/10.1016/S0049-237X(08)71945-1 (cited on page 7).

https://agda.readthedocs.io/
https://www.meven.ac/documents/WITS-22.pdf
https://andraskovacs.github.io/pdfs/wits25prez.pdf
https://andraskovacs.github.io/pdfs/wits25prez.pdf
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1007/BFB0014058
https://agda.readthedocs.io/en/v2.7.0.1/language/universe-levels.html
https://agda.readthedocs.io/en/v2.7.0.1/language/universe-levels.html
https://ncatlab.org/nlab/files/Streicher-IntensionalTT.pdf
https://ncatlab.org/nlab/files/Streicher-IntensionalTT.pdf
https://homotopytypetheory.org/book
https://doi.org/10.4230/LIPICS.TYPES.2015.5
https://agda.readthedocs.io/en/v2.7.0.1/language/data-types.html
https://agda.readthedocs.io/en/v2.7.0.1/language/data-types.html
https://doi.org/10.48550/ARXIV.2302.08837
https://proofassistants.stackexchange.com/a/2002
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1

108

[36] Frank Pfenning and Christine Paulin-Mohring. “Inductively Defined Types in the Calculus of Constructions”.
In: Mathematical Foundations of Programming Semantics, 5th International Conference, Tulane University, New
Orleans, Louisiana, USA, March 29 - April 1, 1989, Proceedings. Ed. by Michael G. Main, Austin Melton, Michael W.
Mislove, and David A. Schmidt. Vol. 442. Lecture Notes in Computer Science. Springer, 1989, pp. 209–228. doi:
10.1007/BFB0040259 (cited on page 7).

[37] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and Programming Language”. In:
Automated Deduction - CADE 28 - 28th International Conference on Automated Deduction, Virtual Event, July
12-15, 2021, Proceedings. Ed. by André Platzer and Geoff Sutcliffe. Vol. 12699. Lecture Notes in Computer
Science. Springer, 2021, pp. 625–635. doi: 10.1007/978-3-030-79876-5_37 (cited on pages 7, 24).

[38] The Rocq Team. The Rocq Reference Manual – Release 9.0. 2025. url: https://coq.inria.fr/doc/v9.0/
refman/ (cited on pages 7, 24).

[#7602] Szumi Xie. Transport in HIT not strictly positive. Agda GitHub issue. 2025. url: https://github.com/agda/
agda/issues/7905 (cited on page 9).

[39] Thorsten Altenkirch. “From setoid hell to homotopy heaven? The role of extensionality in Type Theory”. In:
Presented at 23rd International Conference on Types for Proofs and Programs TYPES 2017. 2017. url: https:
//people.cs.nott.ac.uk/psztxa/talks/types-17-hell.pdf (cited on page 9).

[40] Thorsten Altenkirch. “Extensional Equality in Intensional Type Theory”. In: 14th Annual IEEE Symposium
on Logic in Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 1999, pp. 412–420. doi:
10.1109/LICS.1999.782636 (cited on page 9).

[41] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. “Setoid Type Theory - A Syntactic
Translation”. In: Mathematics of Program Construction - 13th International Conference, MPC 2019, Porto, Portugal,
October 7-9, 2019, Proceedings. Ed. by Graham Hutton. Vol. 11825. Lecture Notes in Computer Science. Springer,
2019, pp. 155–196. doi: 10.1007/978-3-030-33636-3_7 (cited on page 9).

[42] Conor McBride. There is no such thing as a free variable. There are only variables bound in the context. Mastodon
Post. 2025. url: https://types.pl/@pigworker/114087501391646354 (visited on 03/07/2025) (cited on
page 10).

[43] N.G de Bruijn. “Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation,
with application to the Church-Rosser theorem”. In: vol. 75. 5. 1972, pp. 381–392. doi: https://doi.org/10.
1016/1385-7258(72)90034-0 (cited on page 10).

[44] Thorsten Altenkirch, Nathaniel Burke, and Philip Wadler. “Substitution without copy and paste”. 2025. url:
https://github.com/txa/substitution/blob/main/lfmtp25-submission.pdf (cited on pages 11, 19,
66).

[45] Masako Takahashi. “Parallel Reductions in lambda-Calculus”. In: Inf. Comput. 118.1 (1995), pp. 120–127. doi:
10.1006/INCO.1995.1057 (cited on pages 17, 60).

[46] Neil Ghani. “Adjoint Rewriting”. PhD thesis. University of Edinburgh, 1995. url: https://era.ed.ac.uk/
bitstream/handle/1842/404/ECS-LFCS-95-339.PDF (cited on pages 18, 53).

[47] Sam Lindley. “Extensional Rewriting with Sums”. In: Typed Lambda Calculi and Applications, 8th International
Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings. Ed. by Simona Ronchi Della Rocca. Vol. 4583.
Lecture Notes in Computer Science. Springer, 2007, pp. 255–271. doi: 10.1007/978-3-540-73228-0_19
(cited on pages 18, 53).

[48] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. “Decidability of conversion for type theory in type theory”.
In: Proc. ACM Program. Lang. 2.POPL (2018), 23:1–23:29. doi: 10.1145/3158111 (cited on pages 18, 104).

[49] Peter Dybjer. “Internal Type Theory”. In: Types for Proofs and Programs, International Workshop TYPES’95,
Torino, Italy, June 5-8, 1995, Selected Papers. Ed. by Stefano Berardi and Mario Coppo. Vol. 1158. Lecture Notes
in Computer Science. Springer, 1995, pp. 120–134. doi: 10.1007/3-540-61780-9_66 (cited on page 18).

[50] Simon Castellan, Pierre Clairambault, and Peter Dybjer. “Categories with Families: Unityped, Simply Typed,
and Dependently Typed”. In: CoRR abs/1904.00827 (2019). url: http://arxiv.org/abs/1904.00827 (cited
on pages 18, 19).

[51] Bruno Barras and Benjamin Werner. “Coq in Coq”. 1997. url: https://www.lix.polytechnique.fr/Labo/
Bruno.Barras/publi/coqincoq.pdf (cited on page 23).

https://doi.org/10.1007/BFB0040259
https://doi.org/10.1007/978-3-030-79876-5_37
https://coq.inria.fr/doc/v9.0/refman/
https://coq.inria.fr/doc/v9.0/refman/
https://github.com/agda/agda/issues/7905
https://github.com/agda/agda/issues/7905
https://people.cs.nott.ac.uk/psztxa/talks/types-17-hell.pdf
https://people.cs.nott.ac.uk/psztxa/talks/types-17-hell.pdf
https://doi.org/10.1109/LICS.1999.782636
https://doi.org/10.1007/978-3-030-33636-3_7
https://types.pl/@pigworker/114087501391646354
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://github.com/txa/substitution/blob/main/lfmtp25-submission.pdf
https://doi.org/10.1006/INCO.1995.1057
https://era.ed.ac.uk/bitstream/handle/1842/404/ECS-LFCS-95-339.PDF
https://era.ed.ac.uk/bitstream/handle/1842/404/ECS-LFCS-95-339.PDF
https://doi.org/10.1007/978-3-540-73228-0_19
https://doi.org/10.1145/3158111
https://doi.org/10.1007/3-540-61780-9_66
http://arxiv.org/abs/1904.00827
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf
https://www.lix.polytechnique.fr/Labo/Bruno.Barras/publi/coqincoq.pdf

109

[52] Nils Anders Danielsson. “A Formalisation of a Dependently Typed Language as an Inductive-Recursive Family”.
In: Types for Proofs and Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006,
Revised Selected Papers. Ed. by Thorsten Altenkirch and Conor McBride. Vol. 4502. Lecture Notes in Computer
Science. Springer, 2006, pp. 93–109. doi: 10.1007/978-3-540-74464-1_7 (cited on pages 23, 104).

[53] Thorsten Altenkirch and Ambrus Kaposi. “Type theory in type theory using quotient inductive types”. In:
(2016). Ed. by Rastislav Bodík and Rupak Majumdar, pp. 18–29. doi: 10.1145/2837614.2837638 (cited on
pages 23, 104).

[54] Edwin C. Brady. “Idris 2: Quantitative Type Theory in Practice”. In: LIPIcs 194 (2021). Ed. by Anders Møller
and Manu Sridharan, 9:1–9:26. doi: 10.4230/LIPICS.ECOOP.2021.9 (cited on page 24).

[55] Théo Winterhalter. “Formalisation and meta-theory of type theory”. PhD thesis. Université de Nantes,
2020. url: https://github.com/TheoWinterhalter/phd- thesis/releases/download/v1.2.1/
TheoWinterhalter-PhD-v1.2.1.pdf (cited on page 24).

[56] Kenji Maillard. “Splitting Booleans with Normalization-by-Evaluation”. In: Presented at 30th International
Conference on Types for Proofs and Programs TYPES 2024. 2024, p. 121. url: https://kenji.maillard.blue/
Presentations/boolextTypes24.pdf (cited on pages 24, 54).

[57] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. “Two-level type theory and applications”.
In: Math. Struct. Comput. Sci. 33.8 (2023), pp. 688–743. doi: 10.1017/S0960129523000130 (cited on pages 26,
104).

[58] András Kovács. Basic setup for formalizing elaboration. GitHub Gist. 2024. url: https://gist.github.com/
AndrasKovacs/1758f83cced957afb00b1382a8974c92 (visited on 01/10/2025) (cited on pages 26, 102, 104).

[59] András Kovács. “Staged compilation with two-level type theory”. In: Proc. ACM Program. Lang. 6.ICFP (2022),
pp. 540–569. doi: 10.1145/3547641 (cited on page 26).

[60] Thorsten Altenkirch and Ambrus Kaposi. “Normalisation by Evaluation for Type Theory, in Type Theory”. In:
Log. Methods Comput. Sci. 13.4 (2017). doi: 10.23638/LMCS-13(4:1)2017 (cited on pages 28, 30, 37, 92).

[61] Ambrus Kaposi. “Towards quotient inductive-inductive-recursive types”. In: Presented at 29th International
Conference on Types for Proofs and Programs TYPES 2023. 2023. url: https://akaposi.github.io/pres_

types_2023.pdf (cited on page 28).

[62] Ali Assaf et al. “Dedukti: a Logical Framework based on the 𝜆Π-Calculus Modulo Theory”. In: CoRR
abs/2311.07185 (2023). doi: 10.48550/ARXIV.2311.07185 (cited on pages 28, 51).

[63] Martin Hofmann. “Conservativity of Equality Reflection over Intensional Type Theory”. In: Types for Proofs
and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers. Ed. by Stefano
Berardi and Mario Coppo. Vol. 1158. Lecture Notes in Computer Science. Springer, 1995, pp. 153–164. doi:
10.1007/3-540-61780-9_68 (cited on pages 28, 66, 104).

[64] Nicolas Oury. “Extensionality in the Calculus of Constructions”. In: Theorem Proving in Higher Order Logics,
18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings. Ed. by Joe Hurd
and Thomas F. Melham. Vol. 3603. Lecture Notes in Computer Science. Springer, 2005, pp. 278–293. doi:
10.1007/11541868_18 (cited on pages 28, 104).

[65] Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. “Eliminating reflection from type theory”. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019,
Cascais, Portugal, January 14-15, 2019. Ed. by Assia Mahboubi and Magnus O. Myreen. ACM, 2019, pp. 91–103.
doi: 10.1145/3293880.3294095 (cited on pages 28, 52, 66, 104).

[#7602] Nathaniel Burke. Associativity of vector concatenation REWRITE sometimes doesn’t apply. Agda GitHub issue.
2024. url: https://github.com/agda/agda/issues/7602 (cited on page 28).

[#6643] Amélia Liao. #6643: Rewrite rules are allowed in implicit mutual blocks. Agda GitHub issue. 2023. url: https:
//github.com/agda/agda/issues/6643 (cited on page 29).

[66] Ulrich Berger and Helmut Schwichtenberg. “An Inverse of the Evaluation Functional for Typed lambda-
calculus”. In: Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam,
The Netherlands, July 15-18, 1991. IEEE Computer Society, 1991, pp. 203–211. doi: 10.1109/LICS.1991.151645
(cited on page 30).

https://doi.org/10.1007/978-3-540-74464-1_7
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.4230/LIPICS.ECOOP.2021.9
https://github.com/TheoWinterhalter/phd-thesis/releases/download/v1.2.1/TheoWinterhalter-PhD-v1.2.1.pdf
https://github.com/TheoWinterhalter/phd-thesis/releases/download/v1.2.1/TheoWinterhalter-PhD-v1.2.1.pdf
https://kenji.maillard.blue/Presentations/boolextTypes24.pdf
https://kenji.maillard.blue/Presentations/boolextTypes24.pdf
https://doi.org/10.1017/S0960129523000130
https://gist.github.com/AndrasKovacs/1758f83cced957afb00b1382a8974c92
https://gist.github.com/AndrasKovacs/1758f83cced957afb00b1382a8974c92
https://doi.org/10.1145/3547641
https://doi.org/10.23638/LMCS-13(4:1)2017
https://akaposi.github.io/pres_types_2023.pdf
https://akaposi.github.io/pres_types_2023.pdf
https://doi.org/10.48550/ARXIV.2311.07185
https://doi.org/10.1007/3-540-61780-9_68
https://doi.org/10.1007/11541868_18
https://doi.org/10.1145/3293880.3294095
https://github.com/agda/agda/issues/7602
https://github.com/agda/agda/issues/6643
https://github.com/agda/agda/issues/6643
https://doi.org/10.1109/LICS.1991.151645

110

[67] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. “Categorical Reconstruction of a Reduction
Free Normalization Proof”. In: Category Theory and Computer Science, 6th International Conference, CTCS ’95,
Cambridge, UK, August 7-11, 1995, Proceedings. Ed. by David H. Pitt, David E. Rydeheard, and Peter T. Johnstone.
Vol. 953. Lecture Notes in Computer Science. Springer, 1995, pp. 182–199. doi: 10.1007/3-540-60164-3_27
(cited on page 30).

[68] András Kovács. smalltt. 2023. url: https://github.com/AndrasKovacs/smalltt (visited on 03/07/2025)
(cited on page 30).

[69] Gabriel Scherer. “Deciding equivalence with sums and the empty type”. In: (2017). Ed. by Giuseppe Castagna
and Andrew D. Gordon, pp. 374–386. doi: 10.1145/3009837.3009901 (cited on page 30).

[70] Chantal Keller and Thorsten Altenkirch. “Hereditary Substitutions for Simple Types, Formalized”. In: Proceed-
ings of the 3rd ACM SIGPLAN Workshop on Mathematically Structured Functional Programming, MSFP@ICFP
2010, Baltimore, MD, USA, September 25, 2010. Ed. by Venanzio Capretta and James Chapman. ACM, 2010,
pp. 3–10. doi: 10.1145/1863597.1863601 (cited on page 31).

[71] Allais Guillaume and Naïm Camille Favier. Combining Accessibility Proofs and Structural Ordering. Discussion
on the Agda Zulip Server. 2024. url: https://agda.zulipchat.com/#narrow/channel/238741-general/
topic/Combining.20Accessibility.20Proofs.20and.20Structural.20Ordering (cited on page 31).

[72] Amélia Liao. Exponential objects in presheaf categories. 1Lab. 2025. url: https://1lab.dev/Cat.Instances.
Presheaf.Exponentials.html (visited on 04/05/2025) (cited on page 34).

[73] András Kovács. “A machine-checked correctness proof of normalization by evaluation for simply typed lambda
calculus”. MA thesis. Eötvös Loránd University, Budapest, 2017. url: https://andraskovacs.github.io/
pdfs/mscthesis.pdf (cited on pages 34, 36).

[74] Thierry Coquand. “Pattern matching with dependent types”. In: Informal proceedings of Logical Frameworks.
Vol. 92. 1992, pp. 66–79. url: https://wonks.github.io/type-theory-reading-group/papers/proc92-
coquand.pdf (cited on page 43).

[75] Jesper Cockx. “Dependent Pattern Matching and Proof-Relevant Unification”. PhD thesis. Katholieke Univer-
siteit Leuven, Belgium, 2017. url: https://lirias.kuleuven.be/handle/123456789/583556 (cited on
pages 43, 44).

[76] “Haskell 2010 Language Report”. In: (2010). Ed. by Simon Marlow. url: https://www.haskell.org/
onlinereport/haskell2010/ (cited on page 43).

[77] Conor McBride. “Dependently typed functional programs and their proofs”. PhD thesis. University of Edin-
burgh, UK, 2000. url: https://hdl.handle.net/1842/374 (cited on page 44).

[78] Conor McBride and James McKinna. “The view from the left”. In: J. Funct. Program. 14.1 (2004), pp. 69–111.
doi: 10.1017/S0956796803004829 (cited on page 45).

[79] The Agda Team. With-Abstraction. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.
io/en/v2.7.0.1/language/with-abstraction.html (visited on 01/20/2025) (cited on pages 45, 86).

[80] Various Contributors. Views and the "with" rule. A Crash Course in Idris 2. 2023. url: https://idris2.
readthedocs.io/en/latest/tutorial/views.html (visited on 05/20/2025) (cited on page 45).

[81] Various Contributors. Relation.Binary.PropositionalEquality. The Agda Standard Library 2.1.1. 2024. url: https:
//agda.github.io/agda-stdlib/v2.1.1/Relation.Binary.PropositionalEquality.html (visited
on 01/20/2025) (cited on page 45).

[82] Conor McBride. “A polynomial testing principle”. 2012. url: https://personal.cis.strath.ac.uk/
conor.mcbride/PolyTest.pdf (cited on page 47).

[83] Conor McBride. W-types: good news and bad news. Epilogue for Epigram. 2010. url: https://mazzo.li/
epilogue/index.html%3Fp=324.html (visited on 01/21/2025) (cited on page 47).

[84] Vilhelm Sjöberg and Stephanie Weirich. “Programming up to Congruence”. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015. Ed. by Sriram K. Rajamani and David Walker. ACM, 2015, pp. 369–382. doi: 10.1145/2676726.
2676974 (cited on pages 49, 51).

[85] Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. “System F with
type equality coercions”. In: Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Nice, France, January 16, 2007. Ed. by François Pottier and George C.
Necula. ACM, 2007, pp. 53–66. doi: 10.1145/1190315.1190324 (cited on page 50).

https://doi.org/10.1007/3-540-60164-3_27
https://github.com/AndrasKovacs/smalltt
https://doi.org/10.1145/3009837.3009901
https://doi.org/10.1145/1863597.1863601
https://agda.zulipchat.com/#narrow/channel/238741-general/topic/Combining.20Accessibility.20Proofs.20and.20Structural.20Ordering
https://agda.zulipchat.com/#narrow/channel/238741-general/topic/Combining.20Accessibility.20Proofs.20and.20Structural.20Ordering
https://1lab.dev/Cat.Instances.Presheaf.Exponentials.html
https://1lab.dev/Cat.Instances.Presheaf.Exponentials.html
https://andraskovacs.github.io/pdfs/mscthesis.pdf
https://andraskovacs.github.io/pdfs/mscthesis.pdf
https://wonks.github.io/type-theory-reading-group/papers/proc92-coquand.pdf
https://wonks.github.io/type-theory-reading-group/papers/proc92-coquand.pdf
https://lirias.kuleuven.be/handle/123456789/583556
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://hdl.handle.net/1842/374
https://doi.org/10.1017/S0956796803004829
https://agda.readthedocs.io/en/v2.7.0.1/language/with-abstraction.html
https://agda.readthedocs.io/en/v2.7.0.1/language/with-abstraction.html
https://idris2.readthedocs.io/en/latest/tutorial/views.html
https://idris2.readthedocs.io/en/latest/tutorial/views.html
https://agda.github.io/agda-stdlib/v2.1.1/Relation.Binary.PropositionalEquality.html
https://agda.github.io/agda-stdlib/v2.1.1/Relation.Binary.PropositionalEquality.html
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/PolyTest.pdf
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://mazzo.li/epilogue/index.html%3Fp=324.html
https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1145/2676726.2676974
https://doi.org/10.1145/1190315.1190324

111

[86] Sam Lindley and Conor McBride. “Hasochism: the pleasure and pain of dependently typed haskell program-
ming”. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September 23-24,
2013. Ed. by Chung-chieh Shan. ACM, 2013, pp. 81–92. doi: 10.1145/2503778.2503786 (cited on pages 50,
82).

[87] Richard A. Eisenberg. “Stitch: the sound type-indexed type checker (functional pearl)”. In: Proceedings of the
13th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP 2020, Virtual Event, USA, August 7, 2020.
Ed. by Tom Schrijvers. ACM, 2020, pp. 39–53. doi: 10.1145/3406088.3409015 (cited on pages 50, 82).

[88] Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. “Higher-order type-level programming in
Haskell”. In: Proc. ACM Program. Lang. 3.ICFP (2019), 102:1–102:26. doi: 10.1145/3341706 (cited on page 50).

[89] Daniel Selsam and Leonardo de Moura. “Congruence Closure in Intensional Type Theory”. In: Automated
Reasoning - 8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July 2, 2016, Proceedings.
Ed. by Nicola Olivetti and Ashish Tiwari. Vol. 9706. Lecture Notes in Computer Science. Springer, 2016,
pp. 99–115. doi: 10.1007/978-3-319-40229-1_8 (cited on page 51).

[90] Olle Fredriksson. Sixty. 2019. url: https://github.com/ollef/sixty (visited on 01/21/2025) (cited on
page 51).

[91] Anja Petković Komel. “Meta-analysis of type theories with an application to the design of formal proofs”.
PhD thesis. University of Ljubljana, 2021. url: https://anjapetkovic.com/img/doctoralThesis.pdf
(cited on page 51).

[92] Th’eo Winterhalter. “Controlling computation in type theory, locally”. In: Presented at the EuroProofNet WG6
meeting 2025. 2025. url: https://theowinterhalter.github.io/res/slides/local-comp-wg6-25.pdf
(cited on page 51).

[93] Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand, and Lars Birkedal. “Controlling unfolding
in type theory”. In: CoRR abs/2210.05420 (2022). doi: 10.48550/ARXIV.2210.05420 (cited on pages 51, 79).

[94] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. “The taming of the rew: a type theory with computa-
tional assumptions”. In: Proc. ACM Program. Lang. 5.POPL (2021), pp. 1–29. doi: 10.1145/3434341 (cited on
pages 51, 78).

[95] Guillaume Genestier. “SizeChangeTool: A Termination Checker for Rewriting Dependent Types”. In: Joint
Proceedings of HOR 2019 and IWC 2019. Ed. by Mauricio Ayala-Rincón, Silvia Ghilezan, and Jakob Grue
Simonsen. Joint Proceedings of HOR 2019 and IWC 2019. Dortmund, Germany, 2019, pp. 14–19. url: https:
//hal.science/hal-02442465v1/file/presentationSCT.pdf (cited on page 51).

[96] Richard A Eisenberg. System FC, as implemented in GHC. Tech. rep. University of Pennsylvania, 2015. url:
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1015&context=compsci_pubs

(cited on page 51).

[97] Edwin Brady. Yaffle: A New Core for Idris 2. Presented at the Workshop on the Implementation of Type Systems
(WITS) 2024. 2024. url: https://www.youtube.com/watch?v=_ApsEm2t6UY (cited on page 51).

[98] Sebastian Ullrich. “An Extensible Theorem Proving Frontend”. PhD thesis. Karlsruhe Institute of Technology,
Germany, 2023. doi: 10.5445/IR/1000161074 (cited on page 51).

[99] Jesper Cockx. Agda Core: The Dream and the Reality. 2024. url: https : / / jesper . cx / posts / agda -
core.html (visited on 01/21/2024) (cited on page 51).

[100] Valentin Blot, Gilles Dowek, Thomas Traversié, and Théo Winterhalter. “From Rewrite Rules to Axioms
in the 𝜆𝛱 -Calculus Modulo Theory”. In: Foundations of Software Science and Computation Structures - 27th
International Conference, FoSSaCS 2024, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part II. Ed. by Naoki
Kobayashi and James Worrell. Vol. 14575. Lecture Notes in Computer Science. Springer, 2024, pp. 3–23. doi:
10.1007/978-3-031-57231-9_1 (cited on page 52).

[101] Daniel J. Dougherty and Ramesh Subrahmanyam. “Equality between Functionals in the Presence of Coproducts”.
In: Inf. Comput. 157.1-2 (2000), pp. 52–83. doi: 10.1006/INCO.1999.2833 (cited on pages 52, 54).

[102] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. “Observational equality, now!” In: Proceedings of
the ACM Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October
5, 2007. Ed. by Aaron Stump and Hongwei Xi. ACM, 2007, pp. 57–68. doi: 10.1145/1292597.1292608 (cited
on page 53).

https://doi.org/10.1145/2503778.2503786
https://doi.org/10.1145/3406088.3409015
https://doi.org/10.1145/3341706
https://doi.org/10.1007/978-3-319-40229-1_8
https://github.com/ollef/sixty
https://anjapetkovic.com/img/doctoralThesis.pdf
https://theowinterhalter.github.io/res/slides/local-comp-wg6-25.pdf
https://doi.org/10.48550/ARXIV.2210.05420
https://doi.org/10.1145/3434341
https://hal.science/hal-02442465v1/file/presentationSCT.pdf
https://hal.science/hal-02442465v1/file/presentationSCT.pdf
https://repository.brynmawr.edu/cgi/viewcontent.cgi?article=1015&context=compsci_pubs
https://www.youtube.com/watch?v=_ApsEm2t6UY
https://doi.org/10.5445/IR/1000161074
https://jesper.cx/posts/agda-core.html
https://jesper.cx/posts/agda-core.html
https://doi.org/10.1007/978-3-031-57231-9_1
https://doi.org/10.1006/INCO.1999.2833
https://doi.org/10.1145/1292597.1292608

112

[103] András Kovács. Strong eta-rules for functions on sum types. Proof Assistants StackExchange Answer. 2022. url:
https://proofassistants.stackexchange.com/a/1886 (visited on 06/06/2025) (cited on pages 53, 80).

[104] Thorsten Altenkirch and Tarmo Uustalu. “Normalization by evaluation for 𝜆→2”. In: Functional and Logic
Programming, 7th International Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings. Ed. by
Yukiyoshi Kameyama and Peter J. Stuckey. Vol. 2998. Lecture Notes in Computer Science. Springer, 2004,
pp. 260–275. doi: 10.1007/978-3-540-24754-8_19 (cited on page 54).

[105] Emily Riehl and Michael Shulman. “A type theory for synthetic∞-categories”. In: Higher Structures 1 (1 2017),
pp. 147–224. doi: 10.21136/hs.2017.06 (cited on page 54).

[106] Tesla Zhang. “Three non-cubical applications of extension types”. In: CoRR abs/2311.05658 (2023). doi: 10.
48550/ARXIV.2311.05658 (cited on page 54).

[107] The Agda Team. Cubical. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.io/en/v2.
7.0.1/language/cubical.html (visited on 05/09/2025) (cited on page 54).

[108] William W. Tait. “Intensional Interpretations of Functionals of Finite Type I”. In: J. Symb. Log. 32.2 (1967),
pp. 198–212. doi: 10.2307/2271658 (cited on page 66).

[109] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge Tracts in Theoretical Computer
Science 7. Cambridge University Press, 1989 (cited on page 66).

[110] András Kovács. StrongNorm.agda. GitHub Gist. 2020. url: https://github.com/AndrasKovacs/misc-
stuff/blob/master/agda/STLCStrongNorm/StrongNorm.agda (visited on 01/16/2025) (cited on page 66).

[111] Jonathan Sterling and Carlo Angiuli. “Normalization for Cubical Type Theory”. In: 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 2021, pp. 1–15.
doi: 10.1109/LICS52264.2021.9470719 (cited on page 79).

[112] Guillaume Allais, Conor McBride, and Pierre Boutillier. “New equations for neutral terms: a sound and complete
decision procedure, formalized”. In: Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-typed
programming, DTP@ICFP 2013, Boston, Massachusetts, USA, September 24, 2013. Ed. by Stephanie Weirich. ACM,
2013, pp. 13–24. doi: 10.1145/2502409.2502411 (cited on page 80).

[113] Thierry Coquand. “An Algorithm for Type-Checking Dependent Types”. In: Sci. Comput. Program. 26.1-3
(1996), pp. 167–177. doi: 10.1016/0167-6423(95)00021-6 (cited on pages 82, 100).

[114] The Agda Team. Lambda Abstraction. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.
io/en/v2.7.0.1/language/lambda-abstraction.html (visited on 06/10/2025) (cited on page 86).

[115] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”. In: ACM Comput. Surv. 54.5 (2022), 98:1–98:38.
doi: 10.1145/3450952 (cited on page 100).

[116] The Agda Team. Syntactic Sugar. The Agda 2.7.0.1 User Manual. 2024. url: https://agda.readthedocs.io/
en/v2.7.0.1/language/syntactic-sugar.html (visited on 06/11/2025) (cited on page 100).

[117] Andreas Abel and Thorsten Altenkirch. “A predicative analysis of structural recursion”. In: J. Funct. Program.
12.1 (2002), pp. 1–41. doi: 10.1017/S0956796801004191 (cited on page 104).

[118] Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. “CIĈ : Type-Based Termination of Recursive
Definitions in the Calculus of Inductive Constructions”. In: Logic for Programming, Artificial Intelligence, and
Reasoning, 13th International Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings.
Ed. by Miki Hermann and Andrei Voronkov. Vol. 4246. Lecture Notes in Computer Science. Springer, 2006,
pp. 257–271. doi: 10.1007/11916277_18 (cited on page 104).

[119] Kanstantin Nisht. “Type-Based Termination Checking in Agda”. MA thesis. 2024. url: https://knisht.
github.io/agda/msc.pdf (cited on page 104).

[120] Healfdene Goguen, Conor McBride, and James McKinna. “Eliminating Dependent Pattern Matching”. In:
Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday.
Ed. by Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer. Vol. 4060. Lecture Notes in Computer
Science. Springer, 2006, pp. 521–540. doi: 10.1007/11780274_27 (cited on page 104).

[121] Jesper Cockx and Andreas Abel. “Elaborating dependent (co)pattern matching”. In: Proc. ACM Program. Lang.
2.ICFP (2018), 75:1–75:30. doi: 10.1145/3236770 (cited on page 104).

[122] James Chapman. “Type Theory Should Eat Itself”. In: Proceedings of the International Workshop on Logical
Frameworks and Metalanguages: Theory and Practice, LFMTP@LICS 2008, Pittsburgh, PA, USA, June 23, 2008.
Ed. by Andreas Abel and Christian Urban. Vol. 228. Electronic Notes in Theoretical Computer Science. Elsevier,
2008, pp. 21–36. doi: 10.1016/J.ENTCS.2008.12.114 (cited on page 104).

https://proofassistants.stackexchange.com/a/1886
https://doi.org/10.1007/978-3-540-24754-8_19
https://doi.org/10.21136/hs.2017.06
https://doi.org/10.48550/ARXIV.2311.05658
https://doi.org/10.48550/ARXIV.2311.05658
https://agda.readthedocs.io/en/v2.7.0.1/language/cubical.html
https://agda.readthedocs.io/en/v2.7.0.1/language/cubical.html
https://doi.org/10.2307/2271658
https://github.com/AndrasKovacs/misc-stuff/blob/master/agda/STLCStrongNorm/StrongNorm.agda
https://github.com/AndrasKovacs/misc-stuff/blob/master/agda/STLCStrongNorm/StrongNorm.agda
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1016/0167-6423(95)00021-6
https://agda.readthedocs.io/en/v2.7.0.1/language/lambda-abstraction.html
https://agda.readthedocs.io/en/v2.7.0.1/language/lambda-abstraction.html
https://doi.org/10.1145/3450952
https://agda.readthedocs.io/en/v2.7.0.1/language/syntactic-sugar.html
https://agda.readthedocs.io/en/v2.7.0.1/language/syntactic-sugar.html
https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1007/11916277_18
https://knisht.github.io/agda/msc.pdf
https://knisht.github.io/agda/msc.pdf
https://doi.org/10.1007/11780274_27
https://doi.org/10.1145/3236770
https://doi.org/10.1016/J.ENTCS.2008.12.114

	Contents
	1 Introduction
	2 Background
	2.1 Agda-as-a-Metatheory
	2.2 Simply Typed Lambda Calculus
	2.3 Dependently Typed Lambda Calculus
	2.4 Normalisation by Evaluation

	3 Related Work
	3.1 Dependent Pattern Matching
	3.2 Local Equational Assumptions
	3.3 Global Equational Assumptions
	3.4 Elaboration
	3.5 Strict η for Coproducts
	3.6 Extension Types

	4 STLC Modulo Equations
	4.1 STLC with Boolean Equations
	4.2 Normalisation via Completion
	4.3 Strong Normalisation of Spontaneous Reduction
	4.4 Locally Introducing Equations

	5 A Minimal Language with Smart Case
	5.1 Syntax
	5.2 Soundness
	5.3 Normalisation Challenges
	5.4 Typechecking Smart Case

	6 Elaborating Smart Case
	6.1 A New Core Language
	6.2 Normalisation
	6.3 Elaboration

	7 Evaluation and Future Work
	8 Declarations
	Bibliography

