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ABSTRACT Matrix inversion is routinely performed in computational engineering, with coupling matrix
filter synthesis considered here as just one of many example applications. When calculating the elements
of the inverse of a matrix, the determinants of the submatrices are evaluated. The recent mathematical
proof of the Desnanot–Jacobi (also known as the ‘‘Lewis Carol’’) identity shows how the determinant of
an N+2 order square matrix can be directly computed from the determinants of the N+1 order principal
submatrices and N order core submatrix. For the first time, this identity is applied directly to an electrical
engineering problem, simplifying N+2 order coupled matrix filter synthesis (general case, which includes
lossy and asymmetrical filters). With the general two-port network theory, we prove the simplification
using the Desnanot–Jacobi identity and show that the N+2 coupling matrix can be directly extracted from
the zeros of the admittance parameters (given by N+1 order determinants) and poles of the impedance
parameters (given by theN order core matrix determinant). The results show that it is possible to decrease the
computational complexity (by eliminating redundancy), reduce the associated cost function (by using less
iterations), and under certain circumstances obtain different equivalent solutions. Nevertheless, the method
also proves its practical usefulness under constrained optimizations when the user desires specific coupling
matrix topologies and constrained coefficient values (e.g, purely real/imaginary/positive/negative). This can
lead to a direct coupling matrix constrained configuration where other similar methods fail (using the same
optimization algorithms).

INDEX TERMS Coupling matrix, determinant, filter synthesis.

I. INTRODUCTION
In computational engineering, matrix inversion is routinely
performed and this requires the calculation of its determinant.
While generally considered a mature subject, there is still
scope for new algorithms [1] and methods [2], which is
critical for simplifying computational effort and ultimately
speeding up simulation time.

For an N order filter, N order coupling matrix filter
synthesis requires N order matrix inversion [3], [4]. The
N+2 coupling matrix, on the other hand, includes an extra
pair of rows (top and bottom) and extra pair of columns
(to the left and right) surrounding the N order core sub-
matrix, to describe all the couplings between the source
and load and the different nodes of the circuit [5], [6].
The N+2 order coupling matrix synthesis can start from

the transversal coupling matrix for the lossless case [6]
and lossy case [7], which can be obtained directly from
the poles and residues of the short-circuit admittance or Y-
parameters. Since transversal coupling is not practical for
physical implementations, the authors of [6], [7] search
for a new coupling matrix that shares the same target
frequency response. Classical synthesis/reconfiguration tech-
niques employ similarity transformations; based on either
rotations [6], [8] or reflections [9] for reciprocal lossless
filters (having symmetrical real coupling matrices), hyper-
bolic rotations [10], [11] or hyperbolic reflections [12] for
reciprocal lossy filters (having symmetrical complex cou-
pling matrices). These transformations are reapplied until
the coupling matrix is transformed into the desired filter
topology. The drawbacks with these methodologies is that
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one may have to find a complicated sequence of transfor-
mations, which has to be applied in order to obtain the
desired filter topology. Furthermore, one cannot impose an
ideal user constrained reconfiguration of the coupling matrix
(supposing one desires a coupling topology with coefficients
values within a specific range). Once the proper sequence
of transformations is found (which reconfigures an initial
coupling matrix to a new one in a desired topology), one
may still have to work on changing the signs of the coupling
coefficients to adjust them to the practical ones. This can be
done analytically using the method of enclosures (proposed
by Cameron) and/or using scaling matrices in order to work
with more practical coupling coefficient values [7]. Alterna-
tively, since it can be cumbersome to find the appropriate
sequence of transformations, it is possible to use optimization
techniques to replace the transversal coupling matrix with
one that can generate an equivalent network topology; for
example, the technique proposed and applied in [13] for a
reciprocal symmetrical lossless filter.

Another synthesis procedure transforms the Y-parameters
of a lossy filter directly into the desired complex cou-
pling matrix, based on the computation of four determi-
nants of three principal (sub)matrices [14]; one of order
N+2 and three of order N+1. However, by exploiting a
recent mathematic proof (Desnanot-Jacobi identity) [2], it
is shown that the synthesis in [14] can be simplified using
lower order determinants for its (sub)matrices; three of order
N+1 and one of order N . With general 2-port network the-
ory, we prove the simplification using the Desnanot-Jacobi
identity and propose a simplified hybrid coupling matrix
extraction/reconfiguration method based on the zeros of
the admittance parameters and poles of the impedance
parameters (or vice versa if one works with admittance
inverter coupling matric models).

II. DESNANOT-JACOBI IDENTITY WITH
NETWORK THEORY
In 2012 it was shown that for a matrixWN+2 of order N + 2
(withN≥1) its determinant |WN+2| can be computed directly
from the determinants of its N+1 order principal submatrices
C,D, E and F and N order core submatrixWN , with |WN | 6=

0 [2]. With reference to (1), C is obtained by deleting the
last row and last column, D by deleting the last row and first
column, E by deleting the first row and last column and F by
deleting the first row and first column; while WN (the core
N ∗ N submatrix of WN+2) is obtained by deleting the first
and last rows and the first and last columns:

WN+2

=


w1,1 w1,2 w1,3 .. w1,N+2
w2,1 w2,2 w2,3 .. w2,N+2
w3,1 w3,2 w3,3 .. w3,N+2
.. .. .. .. ..

wN+2,1 wN+2,2 wN+2,3 .. wN+2,N+2


(1a)

|WN+2|

=
1
|WN |

∣∣∣∣ |C| |D||E| |F|

∣∣∣∣ = |C| |F| − |D| |E||WN |
(1b)

A. Y-PARAMETERS AND N+2 COUPLING MATRIX
Using a low-pass filter prototype and impedance inverters [4],
from [16], the Y-parameters for a 2-port network are related
to the extended coupling matrixMN+2 [14]:

WN+2= (jMN+2 + jωUN+2) (2a)

MN+2=


0 MS,1 MS,2 .. MS,N MS,L

M1,S M1,1 M1,2 .. M1,N M1,L
M2,S M2,1 M2,2 .. M2,N M2,L
.. .. .. .. .. ..

MN ,S MN ,1 MN ,2 .. MN ,N MN ,L
ML,S ML,1 ML,2 .. ML,N 0


(2b)

[Y ] =
(
y11 y12
y21 y22

)
=

(
W−11,1 W−11,N+2

W−1N+2,1 W−1N+2,N+2

)

=−j

(
(MN+2+ωUN+2)

−1
1,1 (MN+2+ωUN+2)

−1
1,N+2

(MN+2+ωUN+2)
−1
N+2,1 (MN+2+ωUN+2)

−1
N+2,N+2

)
(3)

where j =
√
−1 is the complex operator, ω is angular

frequency, WN+2 is the (N + 2) ∗ (N + 2) impedance
matrix [15], and UN+2 is a diagonal matrix of order
N+2 [14] with elements equal to 1, with the exception of
U11 = UN+2,N+2 = 0. Since our computational reduc-
tion procedure is based on (1), where all the coefficients
can be complex, if (2) includes an additional summing term
(represented by a diagonal matrix that includes resonator
losses [17]), the following analysis is unaffected.

Now, (3) can be further simplified as follows. Using deter-
minants for its submatrices, in their (3), the authors of [14]
interchange y22 with y11 by mistake; as can be seen in our
(4), y22 is related to |C|):

[Y ] =
1

|WN+2|

(
|F| (−1)N+3 |D|

(−1)N+3 |E| |C|

)
(4)

From now, if we only address reciprocal networks having
symmetrical coupling matrices, (4) is further simplified to:

[Y ] =
1

|WN+2|

(
|F| (−1)N+1 |D|

(−1)N+1 |D| |C|

)
(5)

Finally, for the first time, we introduce (1b) to make a further
simplification:

[Y ] =
|WN |

|C| |F| − |D|2

(
|F| (−1)N+1 |D|

(−1)N+1 |D| |C|

)
(6)

This result is important because it can now be seen that
admittance parameters are completely determined by lower
order determinants |C|, |D|, |F| and |WN |. In addition, by
combining (6) and (1), with |WN+2| 6= 0, the determi-
nant of [Y ] can be calculated from the new and elegant
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relationship:

|Y | =
(

|WN |

|C| |F| − |D|2

)2 (
|C| |F| − |D|2

)
=

|WN |
2

|C| |F| −
∣∣D2

∣∣ = |WN |
2

|WN+2| |WN |
=
|WN |

|WN+2|
(7)

B. ABCD-, Y- AND Z-PARAMETERS
With traditional normalized synthesis, for a low-pass filter
prototype, the ABCD-parameters can be expressed as [13]:

[ABCD(s)] =
ε

P(s)

(
A(s) B(s)
C(s) D(s)

)
(8)

where complex frequency s = jω (ignoring transient
behavior), P(s) is a polynomial whose degree is given by the
number of finite transmission zeros for the filter and ε is a
normalization constant.

The admittance parameters for a reciprocal network are
related to theABCD-parameters as:

[Y (s)] =
[YNU (s)]
yD(s)

=
1
B(s)

(
D(s) −

P(s)
ε

−
P(s)
ε

A(s)

)
(9)

where [YNU (s)] is the numerator matrix of the admittance
parameters and yD (s) = B(s) is the common denominator.
Using a low-pass filter prototype and impedance inverters,
the associated degrees are:N forC(s);N−1 for A(s) andD(s);
and B(s) would have degree N-2, except with the fully canon-
ical case (i.e. source-load coupling occurs with W1,N+2 =

WN+2,1 6= 0) when it is also N . Note that, if admittance
inverter coupling matrix models are used, WN+2 would be
the (N + 2) ∗ (N + 2) admittance matrix and the associated
degrees would beN for B(s);N−1 for A(s) andD(s); andC(s)
would have degree N−2, except with the fully canonical case
when it is also N [15]).

In a similar way, we can determine the relationship
between the open-circuit impedance or Z -parameters for the
2-port network and ABCD-parameters:

[Z(s)] =
[ZNU (s)]
zD(s)

=
1

C(s)

(
A(s) P(s)

ε
P(s)
ε

D(s)

)
(10)

where [ZNU (s)] is the numerator matrix of the impedance
parameters while zD(s) = C(s) is the common denominator.

C. DESNANOT-JACOBI SIMPLIFICATION TO THE
COUPLING MATRIX
By inverting (6) we obtain:

[Z] =
1
|WN |

(
|C| (−1)N |D|

(−1)N |D| |F|

)
(11)

This shows an important point in that the poles of the
Z -parameters are given by the core N ∗ N coupling matrix
Eigenvalues (with C(s) = |WN |).
With direct synthesis (in a translated generalized

Eigenvalue problem), the authors of [14] force the zeros

of y11, y21 and y22 to be equal to the zeros of |C| = 0, |D| = 0
and |F| = 0; while the poles of the Y-parameters should be
equal to the zeros of |WN+2|. Thus, the authors of [14] impose
the optimized network to share the same values for A(s), B(s),
D(s) and P(s)/ε in (9) as the target filter.

Translating this into a simplified Eigenvalue problem, for
the condition that an N+2 order coupling matrix gener-
ates the same admittance poles as the target network (with
B(s) = |WN+2|), gives [14]:(

MN+2 − λiUN+2
)
xi = 0 (12)

where xi are the Eigenvectors and λi are the corresponding
generalized Eigenvalues.

Using similar expressions for the zeros of the Y-parameters,
based on N+1 order determinants |C|,|D| and |F|, the
associated cost function 1C can be defined as [14]:

1C = [py, z11y , z
21
y , z

22
y ]− [λy, λ′, λ′′, λ′′′] (13)

where py are the poles of the prototype Y-parameters, z11y , z21y
and z22y are the zeros of the target y11, y21 and y22, respectively.
Also, λy are the generalized Eigenvalues of (12), correspond-
ing to the poles of the prototype Y-parameters (while λy are
the zeros of B(s) = |WN+2| in either (5) or (9), and equal
to the zeros of yD(s) in (9)); while λ′, λ′′ and λ′′′ are the set
of generalized Eigenvalues for equations similar to (12), but
now using the N+1 order principal submatrices matrices C,
D and F [14]. During the optimization process λy, λ′, λ′′, λ′′′

are calculated for each iteration, until the target values are
reached.

Now, a classical Eigenvalue equation has the standard form
(A− λiI) xi = 0, where A denotes an arbitrary matrix and
I is the identity matrix (with unity along the main diagonal
and zeros elsewhere); both square matrices having the same
order. With (12), while UN+2 is a diagonal matrix of order
N+2, its diagonal elements are not all equal to 1, since
U11 = UN+2,N+2 = 0; this can be seen as providing
additional and unnecessary redundancy. Therefore, the ‘gen-
eralized Eigenvalues’ [14] obtained from (12) cannot be the
same as the classical Eigenvalues of MN+2 and, thus, (12)
represents a non-standard solution.

Here, since UN (the core N ∗ N submatrix of UN+2) has
only unity along its main diagonal, using (11) with (2), gives
us the standard form of the Eigenvalue equation:

(MN − λiI) xi = 0 (14)

where MN is the core N ∗ N submatrix of MN+2. The
coupling matrix now has the same values for A(s), C(s),
D (s) and P(s)/ε in (10) as the target filter. The resulting cost
function now changes to 1C ′:

1C ′ = [pz, z
11
y , z

21
y , z

22
y ]−

[
λz, λ

′, λ′′, λ′′′
]

(15)

where pz are the poles of the prototype Z-parameters; while
λz are the zeros of C(s) = |WN | in either (10) or (11), and
equal to the zeros of zD(s) in (10).
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It should be noted that (14) generatesN different solutions,
corresponding to the zeros of C(s) in (10). However, (12)
generates either N-2 solutions, corresponding to the zeros of
B(s) in (9), if there is no source-load coupling, or N solutions
with the fully canonical case. This can also be seen from
matrix theory. With reference to (2b), the extended coupling
matrix MN+2 has the first and last elements on the main
diagonal equal to zero [6], [8] (corresponding to no source-
source and load-load self-coupling) and if the source (S) and
load (L) are not coupled together (i.e.MS,L = ML,S = 0) then
W1,1 = W1,N+2 = WN+2,1 = WN+2,N+2 = 0. Using
a Laplace expansion, it can be seen that B(s) = |WN+2|

or (12) only generates N−2 solutions. With the canonical
case, MS,L = ML,S 6= 0 and, therefore, W1,N+2 =

WN+2,1 6= 0 and again, using Laplace expansion, it can be
seen that B(s) = |WN+2| or (12) now generates N solutions.

D. COMPUTATIONAL COST ADVANTAGE
It will be found that (14) has the following computational
advantages over (12): (i) It uses an N order matrix, unlike
the N+2 order matrix in (12); (ii) It is a classical Eigenvalue
problem unlike a generalized Eigenvalue problem in (12);
(iii) It always uses the coreN order coupling matrix and, thus,
avoids taking into account the elements corresponding to the
couplings between the source-load and different resonators –
using less variables in the optimization steps; and (iv) it is
less affected when source-load coupling occurs, as (12) also
generates N solutions.

The resulting computational gain with our standard form
is represented by the difference in time 1t needed for a
processor to solve (12), when compared to (14), at each
iteration step of the optimization process.

The computational gain for arbitrary 2nd to 6th order
filters having symmetrical N+2 order coupling matrices
can be significant, as shown in Fig. 1(a). Here, one
needs more than 400 seconds using Mathematica 9.0 for
N = 6 (coupling matrix of order 8) to solve (12) and only
2.91 seconds for (14), using random symbolic non-numerical
coupling matrix coefficients [18].

With a typical optimization process [19], depending on
the initial numerical values, algorithm used and accuracy
required, from ten to thousands of iterartions may be required
to achieve the target Y-parameters; the associate cost advan-
tage can be clearly seen in Fig. 1(b).

III. FILTER DESIGN EXAMPLES
Design examples will now be given to an arbitrarily
chosen asymmetrical lossy filter [p. 60 in 20]; the target
filter response is given by the scattering or S-parameters
in Fig. 2, for a 4th order filter having both source and
load couplings. With all design examples, the Nelder Mead,
Simulated Annealing and Differential Evolution algorithms
available in [18] for constrained optimizations (direct search
optimization algorithms) are used and compared. Gradient
based optimization algorithms [21] are available in Math-
ematica for unconstrained optimization problems. We also

FIGURE 1. Computation gain using Mathematica 9.0 with an Intel i7
processor and 2 GB RAM: (a) Time taken t for solving (12) (solid lines)
and (14) (dashed line) for arbitrary 2nd to 6th order filters with
symmetrical N+2 order coupling matrix (using symbolic non-numerical
coefficients); (b) Results against iteration number for different order
coupling matrices (using numerical coefficients) (with the cost functions
1C and 1C ′ giving the same final results).

FIGURE 2. Target S-parameters for an asymmetrical lossy filter (low-pass
prototype with unity source and load resistances) [20, p. 60]: solid lines
for |S21| and |S11|; dashed line for |S22|.

tested the Fletcher (conjugate gradient) algorithm, when there
is restrictions on the coupling matrix coefficients. This gave
the best results among the the latter ones available.

The initial solutions for the coupling matrix coefficients
are always considered the ones Mathematica generates
authomatically, mainly a set of points with random num-
bers in the interval [−1,1]. We aim to test our coupling
matrix extraction/reconfigurationmethod in a variety of cases
(i.e. different topologies sharing the same frequency response
but with different constraints on the coefficients). Optimiza-
tions is implememnted using an Intel i5 3317u processor,
with 4 GB of RAM, until the filter is optimized to match
with the target given in Fig. 2. Having a pre-defined topol-
ogy, a search starts for coupling matrix coefficient values
that share those for the target filter response (as in Fig. 2);
optimization is completed once this is achieved. The iteration
number represents the number of times the search algorithm
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TABLE 1. N+2 Coupling matrix obtained with (15).

re-computes the values of the coupling matrix coefficients
during the optimization process.

The general form for the 4th order extended coupling
matrix for a reciprocal filter is given by:

M4+2=


MS,S MS,1 MS,2 MS,3 MS,4 MS,L
MS,1 M1,1 M1,2 M1,3 M1,4 M1,L
MS,2 M1,2 M2,2 M2,3 M2,4 M2,L
MS,3 M1,3 M2,3 M3,3 M3,4 M3,L
MS,4 M1,4 M2,4 M3,4 M4,4 M4,L
MS,L M1,L M2,L M3,L M4,L ML,L


(16)

To meet the target specification given by Fig. 2, if the
elements of the coupling matrix are used as optimization
variables (with the exceptions of MS,S = ML,L = 0 and
MS,L = 0), there will be 18(36) independent complex(real)
variables; loss is considered here to be distributed evenly over
all elements.

A. PROPOSED GENERAL SYNTHESIS
Our optimization routine performs iterations until either
1C < 10−6 or 1C′ < 10−6 or better is achieved; at which
point the reconfigured topology shares the same response
(which would be indistinguishable to see if we plotted this
out). Using our synthesis procedure with (15), we obtain the
extended coupling matrix given in Table 1 with the associated
cost function against iteration number shown in Fig. 3. With
17 iterations and in 28 seconds (fastest using the NelderMead
algorithm) we get 1C ′ ≤ 10−6). With Simulated Annealing
andwith Differential Evoultion we obtain the same results but
in 33 and 40 seconds, respectively. On the other hand the gra-
dient based optimizer achieves this unconstrained coupling
matrix solution in approximately 30 seconds in 300 iterations.

B. PREVIOUS GENERAL SYNTHESIS
By comparison, using the previous synthesis procedure [14]
with (13), we obtain the extended coupling matrix given
in Table 2 with the associated cost function against iter-
ation number shown in Fig. 4. With 27 iterations and
in 102 seconds, we get 1C ≤ 10−6 (fastest using the
Nelder Mead algorithm). With Simulated Annealing and
with Differential Evolution we obtain the same results but

FIGURE 3. Cost function associated with the extended coupling matrix
from Table I, calculated using (15). (solid line-Nelder Mead,
dashed-Simulated Annealing, dots-Differential Evolution).

TABLE 2. N+2 Coupling matrix obtained with (13).

FIGURE 4. Cost function associated with the extended coupling matrix
from Table II, calculated using (16). (solid line-Nelder Mead,
dashed-Simulated Annealing, dots-Differential Evolution).

in 150 and 244 seconds, respectively. On the other hand
the gradient based optimizer Fletcher fails to obtain in any
solution 5000 iterations and 10 minutes.

Bothmatrices can be then uneasymanipulated using hyper-
bolic rotations [7], [10], [11] or hyperbolic reflections [12],
with the proper sequence, to generate a coupling matrix that
is optimal for the implementation technology used.

C. PROPOSED DIRECT SYNTHESIS
Now, we try to directly synthetize a more practical cou-
pling matrix topology (as in many cases no solutions exists),
having symmetry (being reciprocal), and assume complex
coupling coefficients (representing lossy elements) on the
main diagonal only (giving a total of 22 independent real
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TABLE 3. N+2 Coupling matrix obtained with (15) with 4 complex and
14 real non-zero coupling coefficients.

FIGURE 5. Cost function associated with the extended coupling matrix
from Table 3, calculated using (15). (solid line-Nelder Mead, dashed-
Simulated Annealing, dots-Differential Evolution).

variables), using our synthesis procedurewith (15).We obtain
the extended coupling matrix given in Table 3, with the
associated cost function against iteration number shown in
Fig. 5. With 11 iterations and in 5.2 seconds, 1C ′ ≤ 10−6

we get the solutions with the Nelder Mead algorithm and
in less than 6 seconds with the Simulated Annealing and
Differential Evolution. On the other hand with the gradient
based optimizer we get the solution in 2 seconds in this
particular case (with 190 iterations).

D. PREVIOUS DIRECT SYNTHESIS
By comparison, using the previous synthesis procedure [14]
with (13), by imposing the same coupling configuration, we
obtain the extended coupling matrix given in Table 4 with the
associated cost function against iteration number shown in
Fig. 4. With 18 iterations and in 9.7 seconds, 1C ≤ 10−6.
We obtain the soultion with the Nelder Mead algorithm and
in less than 10 seconds with the Simulated Annealing and
Differential Evolution. On the other hand the gradient based
optimizer (Fletcher) fails to find in this case any solution.

E. SYNTHESIS FOR CONDITIONS IMPOSED BY [20]
We now impose the coupling configuration given in [20],
having lossy elements only along the main diagonal and
with the only non-zero cross-coupling coefficientsM1,4,M1,L
and M2,4. We obtain the same coupling matrix as in [20],
shown in Table 5, in less than 3 seconds with both proce-

TABLE 4. N+2 Coupling matrix obtained with (13) with 4 complex and
14 real non-zero coupling coefficients.

FIGURE 6. Cost function associated with the extended coupling matrix
from Table 5, calculated using (13). (solid line-Nelder Mead,
dashed-Simulated Annealing, dots-Differential Evolution).

TABLE 5. N+2 Coupling matrix obtained with (13) and (15) while
searching imposing the coupling elements given in [20] with 4 complex
and 8 real non-zero coupling coefficients.

dures (13) and (15) and with all optimization algorithms. The
associated cost function against iteration number is shown
in Fig. 7. In this particular case the Fletcher algorithm is
fastest finding the solution in 0.5 seconds for (15) and in
1.5 seconds for the previous procedure (13).

F. SYNTHESIS FOR ARBITRARY LOSSLESS RESONATOR
CONDITION
Finally, we now arbitrarily impose that the second and
third resonators be lossless. The extended coupling matrix
using (15) is given in Table 6, while that using (13) is given
in Table 7. The former now requires 151 seconds with Nelder
Mead algorithm (which proves to be the faster in this case as

VOLUME 4, 2016 10047



A. A. Muller et al.: Computational Cost Reduction for N+2 Order Coupling Matrix Synthesis

FIGURE 7. Cost functions associated with the extended coupling matrix
from Table 5, calculated using: (a) (15); and (b) (13). (solid line-Nelder
Mead, dashed-Simulated Annealing, dots-Differential Evolution).

TABLE 6. N+2 Coupling matrix obtained with (15) with 2 lossless central
resonators (16 complex and 2 real variables ).

TABLE 7. N+2 Coupling matrix obtained with (13) with 2 lossless central
resonators (16 complex and 2 real variables).

the other algorithms fail to converge in 10 minutes), while
the latter only requires 30 seconds using the Nelder Mead
algorithm or around 40 seconds using Differential Evolution
or Simulated Annealing. Clearly, for this example, there is
a computation loss with our technique and also a flexibility
in the choice of the optimization algorithm. Further, if we
impose new constrains in the optimization searchwemayfind
that the proposed reconfiguration/extraction procedure leads
to the only direct solution.

G. SYNTHESIS OF A PARALELL COUPLED PAIR FILTER
WITHOUT RESISTIVE COUPLING COEFFICIENTS
As an example, the parallel coupled pair filter is consid-
ered, having its routing schematic shown in Fig. 9 [7].
A search is made for a practical coupling matrix config-
uration with lossy resonators, without resistive couplings.

FIGURE 8. Cost functions associated with the extended coupling matrix
from: (a) Table 6; and (b) Table 7. (solid line-Nelder Mead,
Dashed-Simulated Annealing, dots-Differential Evolution).

FIGURE 9. Parallel coupled filter topology.

TABLE 8. N+2 Coupling matrix obtained with (15) with a parallel coupled
topology without any resistive couplings: M1.

Using our method (15) and the Nelder Mead algorithm we
obtain the coupling matrix given in Table 8 in 72 seconds,
as seen in Fig. 10. The same solution is obtained with the
Simulated Annealing and Differential Evolution Algorithm
within between 72 and 104 seconds; while no solution could
be foundwith the Fletcher-Powell algorithm.Using these four
optimization algorithms with the previous methodology (13),
no solution could be found for this coupling scheme in over
45 minutes of simulation time.

IV. FURTHER DISCUSSION
The classical deterministic reconfiguration process of the
lossless coupling matrices (for reciprocal networks) is based
on similarity transformations involving rotations for the loss-
less cases [1]–[4], [6], [8] and hyperbolic rotations [7], [10],
[11] for lossy cases which are applied to the coupling matrix
via (17). The authors themselves introduced a new class of
similarity transformations (for reciprocal networks) based on
reflections (lossless cases) and hyperbolic reflections (lossy

10048 VOLUME 4, 2016



A. A. Muller et al.: Computational Cost Reduction for N+2 Order Coupling Matrix Synthesis

FIGURE 10. Cost function associated with the extended coupling matrix
from Table 8, calculated using (15) using the Nelder Mead algorithm.
Using (15) reaches a solution, while (13) fails.

TABLE 9. Rotation matrix T.

cases) [9], [12]. By this means the authors reconfigure a given
matrixM1 to a new oneM2 that will have the same frequency
response as the first one, while keeping symmetry (converting
a reciprocal network into a new reciprocal one).

M2 = T ∗M1 ∗ T−1 (17)

Recently, lossless non-reciprocal network synthesis has
reached the attention of the microwave community [22]. The
authors proposed a technique to synthesize and reconfigure
lossless nonreciprocal networks based on coupling matrices.
The transformations used to reconfigure the coupling matri-
ces are still based on [22], a modified form of (17), and thus
on complex similarity transformations.

Let us now consider the simple rotation matrix presented
in Table 9 (one can replace it with a complex rotation matrix,
but for keeping results simple we will consider it a simple
rotation matrix).

For the matrix given in Table 8 and let us consider the
extended generalized impedance matrices:

W1 = (jM1 + jωU6) (18)

W2 =

(
T ∗M1 ∗ T−1 + jωU6

)
(19)

W3 = T ∗W1 = (T ∗ jM1 + T ∗ jωU6) (20)

Using the Desnanot-Jacobi property it can be proven that the
newly proposed form (20) will generate the same admittance
parameters as (18) and (19) if the rotation matrix T has no
pivot on the first and last lines and rows (and thus has just
ones and zeros there). Unlike (18) or (19), the matrix in (20)
will no longer be a symmetrical matrix since (20) is not a
similarity transformation; it is a rotation (we do not apply a
simple rotation to the coupling matrix M1, but to (2a) and
thus toW1).
Indeed, applying T to W1 via (20) gives the matrix in

Table 10, which represents a frequency dependent extended

TABLE 10. Frequency dependent W3 extended impedance matrix.

non-reciprocal impedance matrix sharing the same frequency
response with W1 and W2. Equation (20) shows that the
direct application of rotation matrices (without any pivots on
the first and last rows/columns) to the generalized extended
impedance matrices leads to the same frequency response as
the initial one. Even though the matrix in Table 10 has the
inconveniency of frequency dependence, the result may be of
a theoretical interest in the new topic proposed in [22], since
it is obtained without a similarity transformation and is also
valid for lossy networks.

V. CONCLUSION
It has been shown that, based on the recent mathematic proof
of the Desnanot-Jacobi identity in (1b), the optimization
process for coupling matrix filter extraction and reconfigura-
tion can be simplified; decreasing computational complexity,
by eliminating redundancy, and reducing the cost function.
Until now, (1b) was previous used in the so-called ‘Dodgson
condensation procedure’ [23]. However, by exploiting the
properties of (1b), we derived simplifying expressions for
the Y- and Z -parameters. These results prove that the poles
of the Z -parameters are given by the Eigenvalues of MN
(unlike the poles of the Y-parameters, which are given by
the zeros in |WN+2|). The technique proves especially suit-
able when the search is made for specific constrained cou-
pling matrices configurations, in this case always leading
to a solution, even though the previous technique irrespec-
tive of the proposed algorithm failed (using the same ini-
tial coupling matrix). The proposed method, which exploits
our new equations (14) and (15), simplifies the associated
cost function by computing different lower-order determi-
nants; significantly speeding up the optimization procedure
used in [14], based on impedance inverter coupling matrix
models [4], [15], [17]. Similarly, it will be found that (1b) can
also be used when working with admittance inverter coupling
matrix models [6], [15].
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