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ABSTRACT Material characterization of homogeneous dielectric slabs using reflection–transmission mode
spectroscopy can be problematic due to the ambiguity from a phasor term. A comprehensive analytical
review of methods for calculating the normalized power spectra, to extract the effective complex dielectric
properties of a sample, is undertaken. Three generic power response models (zero-order, power propagation,
and electric-field propagation) are derived; these models act as a consolidated mathematical framework for
the whole paper. With our unified engineering approach, the voltage-wave propagation, transmission line,
and telegrapher’s equation transmission line models are then independently derived; the first two giving the
same mathematical solutions, whereas the third generates the same numerical results, as the exact electric-
field propagation model. Mathematically traceable simulation results from the various models are compared
and contrasted using an arbitrarily chosen data set (window glass) from 1 to 100 THz.We show how to extract
the approximate effective complex dielectric properties using time-gated time-domain spectroscopy and also
the exact values with our theoretical graphical techniques from the first-order reflectance and transmittance.
Our approach is then taken further by considering all the Fabry–Pérot reflections with the frequency- and
space-domain spectroscopy. With the scalar reflection–transmission mode infrared spectroscopy, we model
the threshold conditions between the solution space that gives the single (exact) solution for the complex
refractive index and the solution space that gives multiple mathematical solutions. By knowing threshold
conditions, it is possible to gain a much deeper insight, in terms of the sample constraints and metrology
techniques that can be adopted, to determine the single solution. Finally, we propose a simple additional
measurement/simulation step to resolve the ambiguity within the multiple solution space. Here, sample
thickness is arbitrary and no initial guesses are required. In theory, the result from this paper allows for the
exact extraction of complex dielectric properties using simpler and lower cost scalar reflection–transmission
mode spectroscopy.

INDEX TERMS Terahertz, infrared, metrology, spectroscopy, CW-THz, THz TDS, S-parameters,
reflectance, transmittance, absorptance, emissivity, refractive index, permittivity.

I. INTRODUCTION
Spectroscopy represents the study of interaction between
matter and electromagnetic radiation. Crystalline structures
naturally exhibit ‘infrared active’ phonon modes; a lattice
absorption resonance frequency occurs at the intersection
between the light line and optical branch, where the inci-
dent photon and lattice phonon have the same energy and
momentum – impurities may also exhibit strong absorp-
tion resonances. Interfacial and space charge polarization
relaxations are generally observed at very low frequen-
cies. In addition, with molecular solids, dipolar (orientation)

polarization relaxation frequencies may be evident at
microwave frequencies. Intermolecular (bond stretching and
torsional modes) and intramolecular (bond bending and
stretching modes) vibrational absorption resonances can be
seen below and above ca. 10 THz, respectively. With the
former, well-defined intermolecular bonding and good long
range order are needed for sharp spectral features; in contrast,
featureless absorbance spectra are evident from amorphous
solids [1].

Today there is ever increasing interest in the infrared spec-
trum, (betweenmillimeter-wave and visible light frequencies,
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i.e., 300 GHz to 385 THz [2]). More specifically in the
terahertz (THz) and ‘over the THz horizon’ thermal infrared
frequency ranges of 0.1 to 10 THz and 10 to 100 THz,
respectively [3].

With infrared transmission spectroscopy, the frequency
spectrum is split between the ‘complicated’ fingerprint region
(12 to ∼45 THz) used to identify specific molecules and
the ‘cleaner’ diagnostic region (∼45 to 120 THz) used to
identify functional groups associated with specific molecular
(covalent) bonds; the former contains bending and stretch-
ing vibrations from mostly single covalent bonds, while the
latter only contains stretching vibrations from mostly double
and triple covalent bonds. In addition to chemical identifi-
cation with dielectrics, infrared transmission spectroscopy
can be used to observe free carrier motion within semicon-
ductors and novel electron spin resonance within magnetic
materials; while metamaterials exhibit all sorts of exotic
behavior.

Sophisticated spectrometers (be-spoke and commercial
turnkey systems) that provide both the magnitude and phase
information, used to extract the effective complex dielectric
properties (refractive index and relative permittivity) for a
sample under test, are complicated and, therefore, expen-
sive. For example, with terahertz time-domain spectroscopy
(THz TDS) the output from a near infrared (NIR) laser source
is coherently (sub-)picosecond pulsed onto a photoconduc-
tive antenna emitter to generate low THz frequency radia-
tion. Direct frequency-domain solutions include continuous
wave terahertz (CW-THz) spectroscopy, which requires its
signal source to be either a single stable frequency-tunable
oscillator (generally requiring a frequency multiplier chain
to reach ca. 1 THz) or a photomixer fed with two NIR lasers
to produce the THz difference (or beat) frequency (above
ca. 0.1 THz). A space-domain solution is Fourier-transform
infrared (FTIR) spectroscopy, which requires a non-coherent
thermal (polychromatic) source for its adapted Michelson
interferometer; the Fourier transform of the resulting inter-
ferogram gives the measured spectra in terms of free-space
wavenumber. Today, in the area of non-destructive testing,
there is a growing commercial market for relatively low cost
spectrometers that only display normalized power spectra
in reflection and/or transmission modes. Today, there exists
a comprehensive measured normalized power THz spectral
database for different materials [4], created and operated by
the Tera-Photonics Team, RIKEN Sendai, Japan.

Given the effective complex dielectric properties for a
homogeneous dielectric slab, a priori, this paper first exam-
ines mathematical models used to predict the normalized
power spectra of reflectance, transmittance and absorptance.
With a unified engineering approach, the various models
are derived (from first principles), using our common vari-
able definitions to avoid introducing errors and ambiguities.
Mathematically traceable simulation results from the various
models are then compared and contrasted using an arbitrar-
ily chosen dataset (typical clear window glass) from 1 to
100 THz.

The reverse process of extracting (in this case recovering)
the exact effective complex dielectric properties is then exam-
ined. It will be shown that multiple mathematical solutions
are obtained with sufficiently low opacity materials, due to
the ambiguity from a phasor term, making it difficult to
find the correct solution. For this reason, investigators may
resort to making gross approximations in their mathematical
modeling – for example, assuming a lossless material and/or
not considering all reflections between boundaries. However,
we propose a simple additional measurement/simulation step
that resolves this problem, without the need for initial guesses
or iterations.

From the outset and throughout, this paper considers the
most common reflection-transmission mode spectroscopic
scenario of normal incidence of the electromagnetic wave
(or guided-wave mode) onto the sample under test, using
well-established assumptions (outlined in the next section).
Within this context, our modeling techniques for predicting
normalized power spectra and extracting exact values for
the effective complex dielectric properties can be adopted
for a range of reflection-transmission mode spectroscopic
implementations and across the full electromagnetic spec-
trum; from dielectric-filled transmission line/waveguide sec-
tions at microwave [5] and millimeter-wave frequencies to
quasi-optical approaches at millimeter-wave and infrared
frequencies [6] to optical methods at visible light and ultra-
violet wavelengths. It is also worth noting that normal inci-
dence reflection mode measurements are more cumbersome
to implement, especially for (quasi-)optical systems, even
though they are ideal for opaque samples under test that
cannot be measured with the simpler transmission mode
configuration.

II. UNDERLYING ASSUMPTIONS
This paper adopts generally accepted analytical assumptions,
corresponding to an ideal metrology scenario; any devia-
tion is beyond the scope of this paper and represents fertile
areas for further investigation. The sample under test consists
of a dielectric slab (or plate). External to the slab: (i) the
electromagnetic wave is in the form of a continuous plane
wave (or guided-wave mode) at normal incidence to the slab;
(ii) there are no external standing waves; (iii) the electromag-
netic radiation propagates within a free space environment,
either a vacuum or inert gas, such that atmospheric attenua-
tion [3] does not need to be considered; and (iv) moreover, the
phasors associated with the space between the signal source
& slab and slab & signal detector are ignored, as they have
no contribution to the normalized power spectra.

The sample itself has: (i) two parallel broad face surfaces
with a known separation distance between its first and sec-
ond boundaries (measurement reference planes); (ii) the
broad faces are perfectly smooth; (iii) the broad face sur-
face areas encompass the incident electromagnetic wave
beam (or guided-wave mode), such that there are no diffrac-
tion effects to consider; (iv) only homogenous, symmetri-
cal, reciprocal, linear time-invariant materials are considered;
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(v) only non-magnetic materials are considered, but the gen-
eral methodology can also be applied to magnetic materials
and metamaterials; and (vi) the slab is in thermal equilib-
rium with its surrounding environment, such that frequency-
specific emissivity is equal to its absorptance (obeying
Kirchhoff’s law of thermal radiation) [3].

When an electromagnetic wave is incident upon a
non-opaque material, the incident, reflected, transmitted and
absorbed power (as a function of the associated electric- or
E-field) can be respectively represented by Pi(Ei), Pr (Er ),
Pt (Et ) and Pa(Ea). The corresponding definitions for the
normalized power response are: (i) reflectance R = Pr/Pi =
|Er/Ei|2, with return loss given as 10log10 {R}; (ii) trans-
mittance T = Pt/Pi = |Et/Ei|2, with absorbance given as
log10 {1/T} and insertion loss given as 10log10 {T}; and (iii)
absorptance A = Pa/Pi = |Ea/Ei|2.

III. APPROXIMATE POWER RESPONSE MODELING
A. ZERO-ORDER MODEL
The complex electric field wave reflection coefficient at the
boundary between two non-magnetic media is derived from
Fresnel equations and is given for normal incidence as,

ρ =
ñ1 − ñ2
ñ1 + ñ2

(1)

where ñ1 and ñ2 are the complex refractive indices for
the first and second materials, respectively. The zero-order
approximation for reflectance, also referred to as the ‘single-
surface’ or ‘normal’ reflectivity and ‘true reflectivity’ [7], [8],
with the first material being free-space, is given as,

R0 = |ρo|
2
=

(1− n)2 + κ2

(1+ n)2 + κ2
(2)

where ρo = (1− ñ) / (1+ ñ) is the zero-order electric-field
wave reflection coefficient for a sample under test within
a free space environment, ñ = n − jκ is the complex
refractive index for the sample, optical constants n and κ are
the associated index of refraction (or refractive index) and
extinction coefficient (or absorption index), respectively. This
reflectance approximation inherently makes the assumption
that the sample under test has sufficiently high opacity, such
that any reflection from the opposite boundary does not con-
tribute significantly to the overall reflectance R.

A sample of thickness l has an optical path length nl and the
propagation coefficient (or factor) is e−γ l , where the propaga-
tion constant γ = α+ jβ = jβoñ, α and β are the attenuation
and phase constants, respectively. In free space, βo = 2π/λo
is the phase constant and λo = c/f is the associated wave-
length, c is speed of light in free space and f is the excitation
frequency of the electromagnetic radiation. The zero-order
approximation for transmittance, also referred to as ‘true
transmissivity’ [7], [8], is given as,

T0 =
∣∣e−γ l ∣∣2 = e−2αl = e−2βoκl (3)

where 2α = 2βoκ is referred to as the absorption (or atten-
uation) coefficient and 1/2α is the mean free path length.

FIGURE 1. Heuristic engineering approach to the power propagation
model: (top) illustrating individual contributions; (bottom) illustrating
Fabry-Pérot reflections.

Here, the medium’s opacity or optical depth (or thickness),
τ = −ln {T0} = 2αl for a homogeneous material, is dimen-
sionless (i.e., not a physical length). A photon with energy
hf , where h is the Planck constant, on average is absorbed
with τ(f ) = 1. Here, T0 ' 37% (having a reflection-less
insertion loss of −4.34 dB) and, with no reflections, absorp-
tance A0 ' 63%. When τ(f ) < 1 a medium is considered
here to be (semi-)transparent and when τ(f ) < 0.1 trans-
parent (or optically thin, with a reflection-less insertion loss
above −0.434 dB). Conversely, when τ(f ) > 1 a medium
is considered here to be (semi-)opaque and when τ(f ) > 10
opaque (or optically thick, with a reflection-less insertion loss
below −43.4 dB).
This transmittance approximation inherently makes the

unrealistic assumption that the sample under test has
no reflections at its boundaries. Nevertheless, this over-
simplified model provides useful variables for the more real-
istic models that follow.

B. POWER PROPAGATION MODEL
Approximate expressions for reflectance, transmittance and
absorptance/emissivitywere derived for a non-opaque sample
having a physical temperature (i.e., above absolute zero) by
McMahon [7]. The resulting model is given in terms of both
zero-order reflectance and transmittance, while also consid-
ering multiple (i.e., higher order) reflections at its boundaries.
Our heuristic engineering approach is much simpler and gives
the same results.

With reference to a non-opaque sample, illustrated
in Fig. 1, the reflected power from the first-order reflectance
R1 = R0 at the first boundary is Pr1 = R0Pi. A fraction
T10 = (1 − R0) of the incident power penetrates the first
boundary. This proportion is reduced to T10T0 after propa-
gating across the sample. A proportion T01 of the remain-
ing power penetrates the second boundary. The resulting
transmitted power from the first-order transmittance T1 =

T10T0T01 at the second boundary is Pt1 = T1Pi.
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The remaining reflected power at the second bound-
ary has a fraction T10T0R0 of the incident power. Hence,
the reflected power due to the second-order reflectance
R2 = T10T0R0T0T01 at the first boundary is Pr2 = R2Pi.
Once again, a portion of power is reflected back into the sam-
ple, giving rise to an infinite number of internal Fabry-Pérot
reflections. The sum of these contributions is represented by
the overall (or apparent [7]) reflectance,

R =
Pr
Pi
≈

∑
∞

m=1 Prm
Pi

= R0 +
(1− R0)

2

R0

∑p=∞

p=1
(R0T0)

2p

⇒

[
1+

(1− R0)
2 T2

0

1− (R0T0)
2

]
R0 = [1+ TT0]R0 (4)

where the overall (or apparent [7]) transmittance T resulting
from an infinite number of Fabry-Pérot reflections is given as,

T =
Pt
Pi
≈

∑
∞

m=1 Prm
Pi

= (1− R0)
2 T0

∑p=∞

p=0
(R0T0)

2p

⇒
(1− R0)

2

1− (R0T0)
2T0 (5)

The absorptance A can also equate to emissivity E when
derived from first principles by considering a slab in ther-
modynamic equilibrium [7]. More simply, however, it can be
found by directly applying the principle of conservation of
energy, such that,

R+ T +A = 1 (6)

By inserting (4) & (5) into (6), absorptance is given by,

A =
(1− R0) (1− T0)

1− R0T0
(7)

As a sanity check, absorptance can only be zero when the
sample under test is either a perfect electrical conductor
(PEC), such that all the incident radiation is reflected (i.e.,
R = 1 and T = 0 with R0 = 1), or free space, such that all
the incident radiation is transmitted (i.e., R = 0 and T = 1
with R0 = 0 and T0 = 1), as illustrated in Fig. 2 [9].

C. FULL-SPECTRUM POWER RESPONSE
MODELING EXAMPLE
The highly cited work of Rubin [10] illustrates some of
the challenges associated with accurately extracting effective
complex dielectric properties using power response measure-
ments. The dielectric slabs under investigation were various
types of soda lime silica glass; the same sample being both
optically thick within the far infrared and optically thin within
the near infrared and visual spectra.

Since window glass was known, a priori, to be
(semi-)opaque below ca. 60 THz [10], it is reasonable
to assume that there will be no significant transmittance
and, therefore, no observable Fabry-Pérot reflections. For
this reason, only reflectance measurements were performed,

FIGURE 2. Interplay of R, T and A = E, as they vary in relation to one
another for 1 mm thick slabs of various materials at 29, 60 and
600 THz [9].

from 6 to 100 THz, using a thermal infrared IBM Fourier-
transform spectrometer (at near-normal incidence); extrap-
olation assumptions were also made below 6 THz [10].
This allowed Rubin to adopt the zero-order model for
reflectance R0.

The Kramers-Krönig or dispersion equation shows the
dependent relationship between the real and imaginary parts
of an analytic function, such as those associated with com-
plex dielectric properties [11]. For example, the magnitude
|ρ| and phase angle 6 ρ for the overall electric-field wave
reflection coefficient ρ = |ρ| e+j6 ρ are related to one another
through Kramers-Krönig integrals. Rubin uses this technique
for extracting the phase spectra from reflectance R ∼= R0 =

|ρ0|
2 measurements as,

6 ρ0 (ω) =
ω

π

∫
+∞

0

ln {R0 (ω̄)}

ω̄2 − ω2 · dω̄ (8)

With bothR0 and 6 ρ0, the optical constants can be extracted,

ñ ∼=
1− ρ0
1+ ρ0

(9)

n ∼=
(1− R0)

(1+ R0)− 2
√
R0cos (6 ρ0)

(10)

κ ∼=
2
√
R0 sin (6 ρ0)

(1+ R0)− 2
√
R0cos (6 ρ0)

(11)

Using Kramers-Krönig integrals with the zero-order model,
the effective complex dielectric properties for typical clear
window glass were extracted between 1 and 60 THz [10] and
shown in Fig. 3. The vibrational absorption resonance fre-
quencies at approximately 14.3 and 31.5 THz were attributed
to Si-O bond bending and stretching [10], clearly seen
in Fig. 3.

Since window glass was known, a priori, to be
(semi-)transparent above ca. 65 THz [10], it is reasonable
to assume that there will be significant transmittance and,
therefore, observable Fabry-Pérot resonances. For this rea-
son, the backside surface of the samples (i.e., at the second
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FIGURE 3. Published complex refractive index (and associated effective
complex relative permittivity) for typical clear window glass [10] (circular
and triangular data points represent correct solutions extracted using our
two and three equation methods, respectively, discussed in Sections VI
and VII).

boundary) were roughened to ‘prevent’ Fabry-Pérot reso-
nances above 65 THz [10].

Between 65 and 967 THz, conventional reflection and
transmission mode power measurements were undertaken
at normal incidence. However, in this frequency range,
Rubin adopts an empirical-fit dispersion equation for n [12].
For κ , once again, Rubin only adopts the zero-order model
for reflectance R0. However, in addition, the power prop-
agation model for transmittance T, defined for an infinite
number of internal Fabry-Pérot reflections, was used. With
both R0 and T, (5) can be rearranged to extract κ ,

κ = −
λo

4π l
ln {T0} (12)

where,

T0 =

√
(1− R0)

4
+ (2R0T)

2
− (1− R0)

2

2R2
0T

(13)

Using the empirical-fit dispersion equation for n, the zero-
order model for reflectance and the power propagation model
for transmittance, the effective complex dielectric properties
for typical clear window glass were extracted between 65 and
100 THz [10] and shown in Fig. 3.

Clearly, the ultimate accuracy of the dataset in Fig. 3 is
uncertain, due to: (i) experimental limitations in both of
Rubin’s 1980’s measurement setups – Fourier-transform
spectrometer within the thermal infrared (operating between
6 and 100 THz) and conventional power measurements
within the solar spectrum (operating between 65 and 967
THz) – which include ambient atmospheric conditions (e.g.,
absorber concentration levels, temperature and pressure [3]),
systematic errors (e.g., mechanical and calibration accu-
racy) and random errors (e.g., surface roughness unifor-
mity/repeatability, detector noise and any limits in mathe-
matical precision); (ii) approximations used with the extreme
extrapolations, due to the absence of measured spectral data
from dc to infinity required by the zero-to-infinity bounds of
the Kramers-Krönig integrals [11], although Riu and Lapaz
[13] conclude that these relations are practical in almost every

experimental situation [14]; and within the solar spectrum
(iii) inherent errors in the use of the empirical equation for
n; (iv) the specular reflections from the optically flat front-
side surface gives a zero-order reflectivity R0, while dif-
fuse reflections from the roughened backside surface (with
unspecified surface roughness) gives an effective zero-order
reflectivity

...
R0 < R0 – while the sample under test is still

reciprocal, it is no longer symmetrical and so
...
R0 needs to be

characterized and taken into account; (v) adopting the zero-
order model, instead of the more accurate power propagation
reflectance model, which now requires (4) to be modified for
the first boundary reflectance ER (and for completeness the

second boundary reflectance
←

R),

ER ⇒ R0 +
(1− R0)

2 T2
0

1− R0
...
R0T

2
0

...
R0 and

←

R ⇒
...
R0 +

(
1−

...
R0
)2
T2
0

1− R0
...
R0T

2
0

R0 (14)

and (vi) adopting the power propagation transmittancemodel,
which now requires (5) to be modified to,

T ⇒
(1− R0)

(
1−

...
R0
)

1− R0
...
R0T

2
0

T0 (15)

For completeness, inserting (14) & (15) into (6), reveals the
modified absorptance as,

A⇒
(1− R0)

(
1+

...
R0T0

)
(1− T0)

1− R0
...
R0T

2
0

(16)

Clearly, when compared to using (12) & (13) directly, extract-
ing optical constants with (14) & (15) is no longer straightfor-
ward. Nevertheless, while not definitive, Rubin’s combined
dataset for typical clear window glass (given in Fig. 3) is arbi-
trarily adopted within this paper as a useful benchmark for
performing mathematically traceable simulations; its optical
constants have a conveniently wide range of values across our
1 to 100 THz spectral range of interest.

IV. EXACT POWER RESPONSE MODELING
A. ELECTRIC-FIELD PROPAGATION MODEL (EFPM)
In Section III, it was shown how the dielectric sample under
test can behave as a Fabry-Pérot resonator. With terahertz
time-domain spectroscopy, this resonator can be excited by
a short pulse of THz radiation incident upon the slab. The
externally measured signals have temporal features that are
dependent on the multiple internal reflections at its bound-
aries. Theses multiple reflections can be seen as a series of
delayed echoes within the time domain.

Consider the non-opaque sample illustrated in Fig. 4, after
applying Fourier transforms to the THz TDS measurements.
The intrinsic impedances of free space and non-magnetic
materials are η0 and η, respectively, where η = η0/ñ. At nor-
mal incidence, the complex Fresnel reflection coefficients
for electric-field waves travelling from left to right, at the
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FIGURE 4. Heuristic engineering approach to the field propagation
model: (top) calibration; (middle) illustrating individual contributions;
(bottom) illustrating Fabry-Pérot reflections.

respective first and second boundaries are,

ρ0 =
η − η0

η + η0
=

1− ñ
1+ ñ

(17)

ρ1 =
η0 − η

η0 + η
=
ñ− 1
ñ+ 1

= −ρ0 (18)

Also, at normal incidence, the complex Fresnel transmission
coefficients, for electric-field waves travelling from left to
right, at the respective first and second boundaries are,

τ10 = 1+ ρ0 =
2

1+ ñ
(19)

τ01 = 1+ ρ1 =
2ñ

1+ ñ
(20)

Consider the electric field Ei incident at the first boundary of
the sample. A portion of the incident wave energy is reflected
back, giving the first-order electric-field term Er1 = ρ0Ei.
The portion penetrating the first boundary has an electric
field τ10Ei, which then propagates across the sample. The
electric field arriving at the second boundary is τ10e−γ lEi.
The associated energy is then split into two parts; one portion
is reflected backwards and the rest penetrates the second
boundary. The former contributes to the infinite number of
internal Fabry-Pérot reflections. With the latter, the electric
field emerging from the sample is denoted by the first-order
electric-field term Et1 = τ10e−γ lτ01E i, which contributes to
the externally measured signal.

Two reference electric-field measurements, identified by
the ref subscript (seen at the top of Fig. 4), are needed
to effectively calibrate the spectrometer. The first extracts
the Fresnel reflection coefficient of a typically gold-coated
mirror ρm ∼= −1 (approximating ρm = −1 from a PEC) at
the location of the first boundary. The second determines the
propagation through free space between the two boundaries
(i.e., approximating the phasor e−jβ0l between the measure-
ment reference planes), governed by the thickness l of the

sample under test,

Erref = ρmEi ∼= −Ei (21)

Etref ∼= Eie−jβ0l (22)

With THz TDS, in theory, coherent pulse echoes due to
internal Fabry-Pérot reflections can be separated out in time.
Depending on the frequency dispersion encountered by the
pulse, it will have a pulse width tw . 2nl/c, For example,
in theory, tw . 5 ps with a sample having an assumed index
of refraction n = 1.5 and thickness l = 500 µm.
The non-resonant model can be obtained by applying

a time window (also known as time gating with time-
domain reflectometry (TDR) [15]) to capture just the first
reflected and transmitted pulses to emerge from the sam-
ples [16], [17]. After applying Fourier transforms, the result-
ing complex first-order reflection and transmission transfer
functions (or coefficients) are, respectively, given by,

H1
R =

Er1
Erref

∼= −ρ0 =
ñ− 1
ñ+ 1

(23)

H1
T =

Et1
Etref

∼=
τ10e−γ lτ01
e−jβ0l

=
4ñ

(ñ+ 1)2
e−jβ0(ñ−1)l (24)

It will now be shown that the optical constants can be
extracted (in this case recovered) using only transmission
mode THz TDS with (24), where MEAS subscripts refer to
measured variables, as follows,

n = 1+
6 τ10(ñ)+ 6 τ01(ñ)− 6 H1

TMEAS

βol
∼= 1−

6 H1
TMEAS

βol
(25)

κ = −

ln
{ ∣∣H1

TMEAS

∣∣
|τ10(ñ)||τ01(ñ)|

}
βol

∼= −

ln
{ ∣∣H1

TMEAS

∣∣
TF (n)

}
βol

(26)

where H1
TMEAS is the measured complex first-order trans-

mission transfer function (with
∣∣H1

TMEAS

∣∣ = |Et1MEAS | /∣∣EtrefMEAS ∣∣ and 6 H1
TMEAS =

6 Et1MEAS − 6 E trefMEAS ) and
the Fresnel reflection loss TF (n) = τ 10(n) τ01(n) = 1 −
R0(n) [18]. The approximate expressions for the extracted
optical constants, n with (25) and κ with (26), assume that
both complex Fresnel transmission coefficients (τ10 and τ01)
are approximated by replacing the complex refractive index,
seen in (19) and (20), with only the index of refraction [19].
The reason for doing this is that the extraction of n no
longer needs the Fresnel transmission coefficients, while for
κ the approximated coefficients can be calculated using the
extracted approximation for n.
To test these approximations, we swept both target vari-

ables over the ranges of 1 ≤ n ≤ 5 and 0 ≤ κ ≤ 0.07,
for an arbitrary sample thickness of 500 µm and frequency
of 1 THz. Here, the dielectric has a worst-case loss tangent
of tanδ = 0.141 and sample opacity of τ(1 THz) = 1.5.
With (24), to remove any ambiguity, it was first necessary to
replace the wrapped rotating phasor with unwrapped phase
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angle for 6 H1
T ,

6 H1
T =

{
6 ej[
6 τ10(ñ)+6 τ01(ñ)−β0(n−1)l] wrapped

6 τ10(ñ)+ 6 τ01(ñ)−β0(n− 1)l unwrapped
(27)

It was found that the error between the original swept and
extracted approximate values for n [19] was below 0.06% for
our worst-case values at ñ = 1.62 − j0.07; which is well
within experimental error. With (26), the approximation [19]
is also very good, reaching a peak error of 0.16% for our
worst-case values at ñ = 1 − j0.07. However, with both
approximations, the errors increase with opacity.

Other methods for extracting the effective complex dielec-
tric properties are reported in [16] using (23) & (24) and [20]
using just (24), requiring the combination of both magnitude
and phase information. In general, measurements can be
taken from either the first-order reflection or transmission
mode measurements. This is because, in principle, with THz
TDS, the independent measurements of H1

RMEAS and H
1
TMEAS

both give magnitude and phase information (where H1
RMEAS

is the measured complex first-order reflection transfer func-
tion), which can be used to find the two unknown optical
constants (n and κ). With the former, more cumbersome
reflection mode measurements, (23) can be solved directly to
extract the exact optical constants as there is no e−jβonl ambi-
guity to consider. However, in practice, phase information is
not normally available in the reflection mode.

With the latter, more simple transmission mode measure-
ments, (24) cannot be solved directly due to the e−jβonl ambi-
guity. Equation (24) can be solved by using numerical itera-
tive methods, but only when given an initial guess that is very
close to the final solution. An approximation method, without
requiring an initial guess, was proposed by Duvillaret et al.
[20]. They defined a smooth and monotonic error function as,

Error (ñ, f ) =
(
ln
(∣∣∣H1

TSIM (f )
∣∣∣)− ln (∣∣∣H1

TMEAS(f )
∣∣∣))2

+

(
6 H1

TSIM (f )− 6 H
1
TMEAS(f )

)2
(28)

where SIM subscripts refer to simulated variables and H1
TSIM

is the simulated complex first-order transmission transfer
function. This error function is similar to a paraboloid and
can be approximated by the general equation for a paraboloid.
Hence, the problem is to find the minima of the paraboloid,
either analytically or numerically.

By includingmore Fabry-Pérot reflections (i.e., by expand-
ing the time window), the respective overall reflected and
transmitted electric fields from the sample are,

Er = ρ0Ei − τ10τ01ρ0e−2γ lEi − τ10τ01ρ30e
−4γ lEi − · · ·

=

[
ρ0 −

(
1− ρ2o

)
ρ0

∑M

p=1
(ρ0e

−γ l)
2p
]
Ei (29)

Et = τ10τ01e−γ lEi + τ10τ01e−γ l
(
ρ0e−γ l

)2
Ei

+ τ10τ01e−γ l
(
ρ0e−γ l

)4
Ei + · · ·

=

(
1− ρ2o

)
e−γ l

∑M

p=0
(ρ0e−γ l)

2p
Ei (30)

where the power series term
∑M

p=0 (ρ0e
−γ l)2p is sometimes

referred to as the Fabry-Pérot (FP) factor [21], [22]. Hence,
in terms of the complex refractive index, the corresponding
transfer functions are,

HRFP =
Er
Erref

∼= H1
R +

4ñ
1− ñ2

∑M

p=1

(
1− ñ
1+ ñ

e−jβ0ñl
)2p

(31)

HTFP =
Et
Etref

∼=

∑M

p=0

(
1− ñ
1+ ñ

e−jβ0ñl
)2p

H1
T (32)

Note that the integer M represents the theoretical maximum
number of Fabry-Pérot round-trip reflections that can be
captured by an expanded time window. Depending on the
frequency dispersion encountered by the pulse, the period
of the pulse train tp & (1+ 2M) nl/c & (M + 0.5) tw.
For example, a typical THz TDS system can generate fem-
tosecond pulses with an 80 MHz repetition rate [23]; in
theory, capturing M = 2,498 for a transparent sample hav-
ing an assumed index of refraction n = 1.5 and thickness
l = 500 µm.

With conventional frequency- and space-domain spec-
troscopy, M → ∞ in (31) & (32), hence, the respective
overall reflection and transmission transfer functions for the
sample are,

HRFP ⇒

[
1− e−2γ l

1− (ρ0e−γ l)
2

]
H1
R (33)

HTFP ⇒
H1
T

1− (ρ0e−γ l)
2 (34)

B. VOLTAGE-WAVE PROPAGATION MODEL (VWPM)
A vector network analyzer (VNA), normally associated
with general-purpose (i.e., not usually dedicated to mate-
rial characterization) frequency-domain measurements up
to ca. 1.5 THz measures scattering (or S)-parameters
directly [24]. It has been previously shown for metals [25]
and dielectrics [26] that the S-parameters for a 2-port network
(e.g., overall input voltage-wave reflection coefficient S11 and
overall forward voltage-wave transmission coefficient S21)
are given by the transcendental equations,

S11 =

[
1− e−2γ l

1− (ρ0e−γ l)
2

]
ρ0 ≡ −HRFP (35)

S21 =
τ10e−γ lτ01

1− (ρ0e−γ l)
2 ≡ HTFPe−jβ0l (36)

Note that (35) and (36) have also been expressed in a similar
form [27]. For the general spectroscopy scenario considered
here, the S-parameter reference impedance is the intrinsic
impedance of free space η0. A much simpler and cheaper
scalar network analyzer would measure |S11|2 and |S21|2

directly. From the equivalences given in (35) & (36), with
conventional frequency-domain spectroscopy, the respective
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reflectance and transmittance for the sample are,

R = |HRFP|2 ≡ |S11|2 (37)

T = |HTFP|2 ≡ |S21|2 (38)

Measurements from a network analyzer directly applies the
principle of conservation of energy to give,

A = 1− |S11|2 − |S21|2 (39)

Once again, absorptance can only be zero when the sample
under test is either a PEC (i.e., R = 1 and T = 0 with
ρ0 = 1) or free space (i.e., R = 0 and T = 1 with ρ0 = 0
and e−γ l = e−jβ0l).
It is interesting to note that the same exact closed-form

expressions for the S-parameters can also be obtained by
applying Mason’s non-touching loop rule [28] to the signal
flow graphs shown in Fig. 5. This was originally demon-
strated by Nicolson and Ross [29], using the signal flow
graph shown in Fig. 5(a). However, this model is not intu-
itive nor unilateral (i.e., it inherently assumes symmetry
in the sample). For this reason, we propose the complete
model given in Fig. 5(b). Our bilateral signal flow graph has
the advantage in that it can be easily modified to be non-
symmetrical and expanded to cater for a laminated material
system, while still being intuitive (unlike the use of transmis-
sionmatrixmethods). For example, the sample under test may
be a conductive thin-film (e.g., using reflection mode space-
domain spectroscopy [30]) or 2D metamaterial (e.g., using
transmission mode THz TDS [17]) that is deposited with
a thickness <1 µm onto a much thicker (semi-)transparent
substrate. With the former, the substrate can act as a
Fabry-Pérot resonator and the conductivity of the sample
can be investigated by modeling the phase change from the
spectral interference pattern obtained with reflection mode
frequency- or space-domain spectroscopy [30].

C. TRANSMISSION LINE MODEL (TLM)
A uniform, reciprocal lossy transmission line can be used to
represent our simple one-dimensional electromagnetic sce-
nario, as illustrated in Fig. 6. Here, ω = 2π f is the angular
frequency of the excitation signal source. With reference to
Figs. 5 and 6, Vi = a1

√
η0, Vr = b1

√
η0 and Vt = b2

√
η0 are

the unilateral input, reflected and transmitted voltage waves,
respectively; such that Pi = V 2

i /η0 = a21, Pr = V 2
r /η0 = b21

and Pt = V 2
t /η0 = b22. The line’s characteristic impedance

is the sample’s intrinsic impedance η and the common prop-
agation constant γ have the general forms [31],

η =

√
jωµ̃

σ̃ + jωε̃
(40)

γ = jβ0ñ ≡
jωµ̃
η
=

√
jωµ̃(σ̃ + jωε̃) (41)

where the sample’s intrinsic magnetic permeability
µ̃ = µ0µ̃r , µ0 is the magnetic permeability of free space
and µ̃r = µ′r − jµ

′′
r is the relative magnetic permeability of

the sample; intrinsic dielectric permittivity ε̃ = ε0ε̃r , ε0 is

FIGURE 5. Signal flow graphs for conventional frequency-domain
spectroscopy: (a) Original non-intuitive, unilateral model [29]; (b) Our
intuitive and bilateral model (scissor marks indicate the cutting of
branches to give the non-resonant model, where only the first-order
terms are captured by the time window with THz TDS).

FIGURE 6. Symmetrical two-port transmission line model indicating
unilateral signal flow.

the dielectric permittivity of free space and ε̃r = ε′r − jε
′′
r is

the relative dielectric permittivity of the sample; and intrinsic
bulk conductivity due to free charge carriers σ̃ = σ ′ − jσ ′′,
which is usually described by the classical relaxation-effect
(Drude frequency dispersion) model [31].

The intrinsic impedance can also be represented as,

η =

√
jωµ0µ̃r

jωε0ε̃reff
= η0

√
µ̃r

ε̃reff
= η0

µ̃r

ñ
= η0

ñ
ε̃reff

(42)

where the effective complex dielectric properties of refractive
index ñ =

√
µ̃r ε̃reff and relative permittivity (or dielectric

function) ε̃reff = (ε̃ − jσ̃ /ω) /ε0 can be extracted from mea-
surements.

The textbook transmission (or ABCD-parameter) matrix
for the symmetrical two-port network shown in Fig. 6 is,[

A B
C D

]
=

 cosh γ l η sinh γ l
sinh γ l
η

cosh γ l

 (43)

With reference to Figs. 5 and 6, and using standard ABCD-
to S-parameter conversion equations, the respective over-
all voltage-wave reflection and transmission coefficients are
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given by the transcendental equations,

S11 =
b1
a1

∣∣∣∣
a2=0
=
S21
2

(
η

η0
−
η0

η

)
sinh (γ l) ≡

Vr
Vi
≡ S22

(44)

S21 =
b2
a1

∣∣∣∣
a2=0
=

1

cosh (γ l)+ 1
2

(
η
η0
+

η0
η

)
sinh (γ l)

≡
Vt
Vi
≡ S12 (45)

For non-magnetic materials, µ̃r = 1 and ñ =
√
ε̃reff . The

respective overall voltage-wave reflection and transmission
coefficients can now be expressed in terms of the sample’s
complex refractive index as,

S11 =
j(1− ñ2) sin (β0ñl)

2ñ
S21 ≡ S22 (46)

S21 =
2ñ

2ñ cos (β0ñl)+ j(1+ ñ2) sin (β0ñl)
≡ S12 (47)

Note that (44) to (47) can also be given in alternative
equivalent forms. For example, using standard S- to ABCD-
parameter conversion equations, the complex refractive index
can be extracted [17], [32], [33] from,

A = D = cos (β0ñl) =
1− S211 + S

2
21

2S21
(48)

Once again, this extraction method requires the combination
of magnitude and phase information for both reflection and
transmission mode measurements. Moreover, multiple math-
ematical solutions are possible from (48) and so additional
information is needed from the sample to resolve the ambigui-
ties. For example, with a passive material κ ≥ 0 and this gives
a useful constraint that allows one to extract the extinction
coefficient. Unfortunately, useful constraints do not exist for
extracting the index of refraction n. For example, anomalous
frequency dispersion can give 0 < n < 1 with normal
materials near a resonance and n can also be negative with
metamaterials. However, even with a narrow constraint for n,
it would not help to resolve the correct value, since numerical
solutions of (48) for n lie arbitrarily close to one another when
the sample is too thick.

If the sample has no frequency dispersive properties, over
the measurement frequency range, the S-parameters and,
thus, the right-hand side of (48) are frequency invariant.
Therefore, by looking at multiple frequencies within the mea-
surement range, there should only be one fixed solution for n.
However, if the material exhibits frequency dispersion over
the measurement frequency range then samples must be kept
thin and measurements from multiple thicknesses must be
performed to find the correct value for n [32]. Obviously, this
represents a problem if multiple sample thicknesses are not
available.

An alternative, brute force, approach for extracting
the effective complex dielectric properties is to employ
computer-aided design simulation software and directly com-
pare the frequency response of a modeled transmission line

with those from S-parameter measurements across the fre-
quency band of interest [5]. This graphical (non-analytical)
method works to good effect for non-dispersive materials,
but is not appropriate for automated and/or real-time material
characterization.

D. TELEGRAPHER’S EQUATION TRANSMISSION
LINE MODEL (TE-TLM)
The complex refractive index for non-magnetic materials
and the constituent parts of the effective complex relative
permittivity are,

ñ =
√
ε′reff − jε

′′
reff (49)

n =

√
ε′reff +

∣∣ε̃reff ∣∣
2

and κ =
ε′′reff√

2
(
ε′reff +

∣∣ε̃reff ∣∣) (50)

ε′reff = n2 − κ2 and ε′′reff = 2nk (51)

tanδ =
ε′′reff

ε′reff
=

2nκ
n2 − κ2

(52)

With reference to the transmission linemodel shown in Fig. 6,
the intrinsic impedance η of the material can be repre-
sented as,

η =

√
jωµ0

2nκωε0 + jωε0(n2 − κ2)
(53)

With the telegrapher’s equations, the characteristic impedance
Zo and propagation constant γ for a uniform, reciprocal lossy
transmission line of infinite length, illustrated in Fig. 7, have
general forms given by,

Zo =

√
R′ + jωL ′

G′ + jωC ′
≡ η (54)

γ =
√
(R′ + jωL ′) (G′ + jωC ′) (55)

By comparing (53) with (54), the distributed element param-
eters can be extracted directly,

R′ = 0 [�/m]; L ′ = µ0 [H/m]

G′ = 2nκωε0 [S/m]; C ′ = (n2 − κ2)ε0 [F/m]

By knowing these distributed element parameters,
(54) & (55) can be used with (43) to calculate the
ABCD-parameters at each frequency for a line length l.
Alternatively, the S-parameters can be determined directly
from (44) & (45).

Table 1 summarizes the original methods (cited in this
paper) that derive various measurement parameters and any
relevant effective complex dielectric properties. It is worth
noting that, from the papers cited, it was found that some of
the models were insufficient for determining effective com-
plex dielectric properties; while others need the combination
of magnitude and phase information. In addition, a number
of typographical errors within the original publications have
been found and corrected in the Appendix.
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FIGURE 7. Telegrapher’s equation transmission line model.

TABLE 1. Summary of original methods reported for calculating
reflectance, transmittance and absorptance.

V. MODEL COMPARISON AND MATERIAL
CHARACTERIZATION
A. GENERAL MODEL COMPARISON
It will be seen that the exact models – electric field
propagation model (EFPM), voltage-wave propagation
model (VWPM), transmission line model (TLM) and, when
taken to its infinitesimal limit, the telegrapher’s equation
transmission line model (TE-TLM) – all give the exact
same numerical results for calculating the normalized power
spectra.

In this section, the normalized power spectra for the zero
order and power propagation models will be compared to
the exact solutions (set as our benchmark reference). First,
a dielectric slab sample with an arbitrary thickness of 500
µm is investigated at an arbitrary frequency of 10 THz,
while the optical constants are swept within the limits that
accommodate most low loss dielectric materials (1 ≤ n ≤ 6
and 0 ≤ κ ≤ 0.03). Here, the dielectric has a worst-case loss
tangent of tanδ = 0.06 and sample opacity of τ(10 THz) =
6.3. The resulting errors, plotted on a logarithmic scale, are
shown in Fig. 8(a), 8(c) and 8(e) for the zero-order model
and Fig. 8(b), 8(d) and 8(f) for the power propagation model.
As expected, the zero-order model can give larger errors,
when compared to the power propagation model, since inter-
nal reflections are excluded. However, with this particular
example, both models can demonstrate percentage error val-
ues in the thousands.

B. MODEL COMPARISON FOR TYPICAL
CLEAR WINDOW GLASS
The normalized power spectra for arbitrarily chosen 500 µm
thick typical clear window glass are calculated using different
models, with the dataset given in Fig. 3 [10]. It can be seen
from the result shown in Fig. 9 that EFPM, VWPM, TLM and
TE-TLM have perfect fits with one another at all frequencies.

From ca. 60 THz down to 1 THz, it is confirmed that

FIGURE 8. Errors in normalized power spectra for an arbitrarily chosen
500 µm thick dielectric slab sample at 10 THz, for swept values of optical
constants: for zero-order model (a) reflectance, (c) transmittance and
(e) absorptance; for power propagation model (b) reflectance,
(d) transmittance and (f) absorptance.

FIGURE 9. Calculated normalized power spectra for 500 µm thick typical
clear window glass using different models, with the dataset in Fig. 3 [10],
(circular and triangular data points represent correct solutions extracted
using our two and three equation methods, respectively, discussed in
Sections VI and VII).

typical clear window glass is (semi-)opaquewithT < 3% and
A > 75%. Moreover, the zero-order and power propagation
models fit the exactmodels, as seen by the very low calculated
errors given in Fig. 10. There is a sharp spectral feature
at 1 THz, which may be an artifact from the extrapolation
assumptions below 6 THz [10].

From ca. 65 THz up to 100 THz, it is confirmed that typical
clear window glass is (semi-)transparent with T increasing
from ∼33% to an average of ∼75% and A falling from
∼62% to an average of∼15%.As a result, significant spectral
ripples (due to the constructive and destructive interference
associated with Fabry-Pérot resonances; characteristic max-
ima in the reflection spectrum coincide with minima in the
transmission spectrum) can be seen with the exact models,
as they take into account phase information

However, without phase information, no spectral ripples
are seen with the zero-order or power propagation models.
The least accurate zero-order model gives inflated trans-
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FIGURE 10. Errors in calculated normalized power spectra with
zero-order (dotted) and power propagation (dashed) models, relative to
the exact models.

mittance and deflated absorptance spectral results, showing
errors of up to 10%, in this example, when compared to those
from the more accurate power propagation model.

VI. SINGLE SOLUTION AND THRESHOLD ANALYSIS
Extracting the correct values for effective dielectric properties
is problematic due to the ambiguity introduced by the e−jβ0nl

phasor term, found with both reflection and transmission
mode measurements, embedded within the transcendental
equations (33) to (36), generating multiple mathematical
solutions.

A. VECTOR MEASUREMENTS
With numerical methods, effective complex dielectric proper-
ties can be extracted from the combination of magnitude and
phase measurements from the overall reflection and/or trans-
mission transfer functions using (33) & (34) or full 2-port
S-parameters using (35) & (36) with EFPM and VWPM
or (46) & (47) using TLM.

In their highly cited paper [29], Nicolson and Ross
report on a ‘synthetic’ frequency-domain technique. They
essentially take the discrete Fourier-transform (DFT) of
time-domain reflectometry measurements to give complex
frequency-domain S-parameters between 0.4 and 9.6 GHz.
Placed within an air-filled coaxial transmission line medium,
the first boundary of the sample under test is located a
distance 2L from a signal sampling head; while the second
boundary is located at a distance L from a transmission back
short circuit. These delay line lengths (with L = 375 mm)
are long enough so that the measured incident, reflected
and doubly-transmitted transient-voltage waveforms do not
overlap at the sampling head. The reflected and transmitted
waveforms each have a time window of 2L/c = 2.5 ns,
over which it is assumed that there is no contamination by
other reflections. For example, with

√
2 ≤ n ≤ 2, the cor-

responding maximum truncated number of round-trip reflec-
tions captured for 6.35 mm thick semi-transparent samples
is 30 . M . 41; transparent materials will need long
delay lines. With this approach, two reference TDR mea-
surements are initially taken; the first with a reflection short

circuit placed at the first boundary and the second uses the
transmission back short circuit when the sample under test
is removed to leave the air-filled coaxial transmission line.
The sample under test is then inserted and two separate time
window extracted measurements are made. From the DFTs
of these four time-domain measurements, ratios are taken
to give the frequency-domain measurements of −S11 and
S21S12ej2β0l =

(
S21ejβ0l

)2.
The 2.5 ns time window was digitized with 256 discrete

samples, giving aNyquist (or folding) frequency of 51.2GHz.
However, while Nicolson and Ross note that the errors due
to truncation and aliasing with their DFT approximation
were insignificant [29], there are other sources of errors
inherent with time-domain reflectometry; even more so with
‘synthetic-pulse’ TDR (whereby physical measurements are
performed in the frequency domain and an inverse DFT is
applied in order to perform time gating) [15]. Moreover,
with higher dielectric constant samples, timing displacements
cause significant errors as frequency increases.

It is interesting to note here that the UK’s National Physical
Laboratory (NPL) recently undertook an international inter-
comparison of THz TDS, extracting the optical constants
between dc and 3 THz for standard material slabs (including
silicon, quartz, silica glass and HDPE) from 16 high-profile
laboratories (including national measurement institutes,
academia and THz system manufacturers) [35]. The conclu-
sion drawn for THz TDS was that ‘‘these results clearly indi-
cate that standardization of measurement techniques is nec-
essary and urgent’’ [35]. For example, if the extracted optical
constants vary with sample thickness then this indicates a
systematic error in the basic metrology-extraction charac-
terization process. This is evident in the work reported by
Arscott et al., using transmission mode THz TDS [36]. With
ultra-thick negative photoresist SU-8, the index of refraction
and absorption coefficient were measured between 0.1 and
1.6 THz. At 1 THz, ñ(l = 520 µm) = 1.69 − j0.0483 and
ñ (l = 620 µm) = 1.73− j0.0494; representing a noticeable
increase of 2.4% and 2.3% in the index of refraction and
extinction coefficient, respectively, as the sample thickness
increases by 19%. In addition, the spectral ripples they
observe in the measured index of refraction and absorption
coefficient, across the frequency range of interest, were
attributed to ‘‘a slight lack of parallelism in the sample’’ [36].

From the resulting two ‘synthetic’ frequency-domain mea-
surements, Nicolson and Ross then extract ρ0 and e−γ l

with (35) & (36), which inherently assumes M → ∞,
using a rather convoluted mathematical derivation. Finally,
the complex relative permeability and effective permittivity
for 6.35 mm thick samples (including Teflon R©, maple wood,
nylon and Plexiglas R©, all having 2 ≤ ε′reff ≤ 4 within their
frequency range of interest) are extracted. However, their
equation for ñ2 (i.e., their variable c2 with [28, eq. (9)]) has
an infinite number of roots when taking the natural logarithm
of eγ l ; there is an ambiguity because the phase of e−γ l does
not change when the sample thickness is increased by amulti-
ple of a wavelength within the sample [37]. The ambiguity in
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FIGURE 11. Extracted values of effective complex relative permittivity
using the Nicolson and Ross method for typical clear window glass:
(a) real part; and (b) imaginary part.

phase must be resolved at each frequency by matching calcu-
lated and measured differential-phase group delay. Moreover,
at frequencies corresponding to integer multiples of half a
wavelength within the sample (with wavelength λ = λo/n),
reflectance is low (where S11 → 0 with a lossless material)
and their ρ0 and e−γ l become unstable [38], [39]. For this
reason, sample thickness must be constrained to l < λ/2
(i.e., optical path length nl < λ0/2), increasing measurement
uncertainty [38]. The US National Institute of Standards and
Technology (NIST) solved this problem, to allow for any
sample thickness, by applying numerical (Newton-Raphson)
iteration methods with an initial guess for permittivity [38].

The real and imaginary parts of the effective complex
relative permittivity for typical clear window glass have
been extracted using the Nicolson and Ross method for var-
ious sample thicknesses (λ(100 THz) /2, 3λ(100 THz) /4,
λ(100 THz), 5λ(100 THz) /4 and 3λ(100 THz) /2) and com-
pared with the correct values taken from Fig. 3, with results
shown in Fig. 11.

Over the frequency range of interest lmax = λmin/2 →
1µm, in our case λmin corresponds to a frequency of 100 THz
and n(100 THz) = 1.5. It can be seen that when the sample
thickness is only 1 µm (in practice it is very difficult to thin
typical clear window glass to this thickness) then theNicolson
and Ross method generally recovers the correct values for
ε̃reff from dc to 100 THz. However, an error can be seen
between ca. 31 to 33 THz. Within this frequency interval,
κ > n and (51) shows that ε′reff < 0. As a result, the

final expression for permittivity (i.e., their [28, eq. (10)]) can
automatically choose the wrong root from the square root of
a complex number, giving −ε̃reff , as seen in Fig. 11.
As thickness increases beyond lmax , significant discrep-

ancies can be seen between the results from Nicolson and
Ross and the correct values. It is also interesting to note that
the periodic singularities in ε′reff [38], [39], corresponding to
integer multiples of half a wavelength within the sample, are
not observed with our graphical approach (discussed later).
Using a THzVNA, Hammler et al. recently reported a non-

destructive testing methodology for simultaneously deter-
mining both the sample’s thickness l and pure dielectric
property of ε′r [34]. A constrained nonlinear optimization pro-
cess was employed to minimize the discrepancy between the
simulated S21SIM (f ), using (36), and measured sample under
test S21MEAS(f ), according to the residual sum of squares,

Error
(
l, ε′r

)
=

∑f2

f1
|S21SIM(f )− S21MEAS(f )|2 (56)

where f1 and f2 are the respective lower and upper frequency
limits of the VNA measurements. Here, the physical thick-
ness of the samples (measured with calipers) and a realistic
prediction for ε′r were used as an initial guess, although a
multiple-start global search was performed to eliminate the
risk of finding local minima. The fixed combination of

(
l, ε′r

)
that minimizes (56) is assigned to the sample under test.
It should be noted that (36) assumes a non-magnetic (µ̃r = 1)
sample and that the optimization process makes unrealistic
assumptions of the sample being both lossless (ε′′reff = 0),
to reduce calculation complexity, and nondispersive (ε′reff ⇒
ε′r is frequency independent) over themeasurement frequency
range [34]. Nevertheless, good fits between f1 = 0.75 THz
and f2 = 1.1 THz were reported, with the coefficient of deter-
mination R2 ranging between 0.972 and 0.990 for different
sample materials (including polystyrene, silicon and GaAs).
Another numerical iteration methodology for extracting

the effective complex relative permittivity, again using trans-
mission mode VNA measurements, was very recently devel-
oped by Chang et al. [40]. Here, assuming a non-magnetic
sample and applying a Newton iterative algorithm with (47),
in terms of ε̃reff (f ), the following error function is minimized
at each frequency,

Error
(
ε̃reff (f )

)
= S21SIM

(
ε̃reff (f )

)
− S21MEAS

(
ε̃reff (f )

)
(57)

Again with an initial guess, ε̃reff (f ) is updated with a reason-
able increment until the error function converges; in their case
to a preset error tolerance of 10−7. However, a wrong initial
guess for ε̃reff (f ) will result in non-convergence. In prac-
tice, with non-polar dielectrics, very low frequency values
of ε̃reff (f ) can be used as the initial guess, since its value
will not change much below the first vibrational absorption
resonance frequency (normally found within the infrared);
although this information must be known a priori. However,
crystalline structures and molecular solids that exhibit inter-
facial and space charges result in very low frequency disper-
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sion. Furthermore, with dipolar dielectrics, their relaxation
frequencies are found in the (sub-)microwave and millimeter-
wave spectrum, again excluding the use of very low frequency
value guesses for ε̃reff (f ).

B. SCALAR MEASUREMENTS
Extracting optical constants from power measurements only,
using (37) & (38), is still problematic, due to the ambiguity
posed by the e−jβ0nl phasor term.
One obvious exception is in the case of a medium hav-

ing zero reflections/scattering. For example, when predicting
atmospheric attenuation under pristine conditions (having
n ∼= 1) at upper microwave frequencies and shorter wave-
lengths [3]. Here, T ⇒ T0 = e−2βoκl and so the extinction
coefficient can be extracted directly from line-of-sight trans-
mittance measurements.

If only the first reflected and transmitted pulses to emerge
from the sample are captured, as obtained with THz TDS,
the simulated first-order voltage-wave reflection and trans-
mission coefficients can be written as,

S111SIM ≡ −H
1
R and S121SIM ≡ H1

T e
−jβ0l (58)

The optical constants n and κ can now be calculated by
simultaneously solving the following pair of equations,∣∣∣S111SIM(ñ)∣∣∣2 − R1

MEAS = 0 (59)∣∣∣S121SIM(ñ)∣∣∣2 − T1
MEAS = 0 (60)

where, R1
MEAS and T1

MEAS are the first-order normalized
power measurements for reflectance and transmittance,
respectively. With this simple scenario, the e−jβ0nl pha-
sor term will not appear in the normalized power spectra
using (23) & (24) and, therefore, there will be no ambiguities.
It will be shown that by solving this pair of equations graphi-
cally then there will only be a single simultaneous solution for
ñ that is exact, unlike the approximation previously discussed
for THz TDS.

As a reference example, at 60 THz, the index of refrac-
tion and extinction coefficient for typical clear window glass
are n = 1.397 and κ = 0.003 [10], respectively, corre-
sponding to a semi-opaque medium at this frequency (with
τ(60 THz) = 3.8). The corresponding emulated target values
for R1

MEAS and T
1
MEAS , calculated using (37) & (38) with (23)

& (24), for a 500 µm thick sample are approximately 2.74%
and 2.18%, respectively (corresponding to a return loss of
−15.6 dB and insertion loss of−16.6 dB). Using a graphical
approach, we sweep both optical constants (for n ≥ 1 and
κ > 0) and separately plot the individual solutions for both
(59) and (60), using the MATLAB ‘fimplicit function’ [41].
All individual solutions for ñ are plotted in Fig. 12, where
individual solutions for (59) and (60) are represented by the
red and blue curves, respectively. The intersection of these
two curves (indicated within the inset of Fig. 12) represents
the theoretical simultaneous solution for ñ.

FIGURE 12. Calculated individual solutions for arbitrarily chosen 500 µm
thick typical clear window glass and frequency of 60 THz
(opacity τ

(
60 THz

)
= 3.8) from the first-order normalized power

response.

Within conventional frequency- and space-domain spec-
troscopy, the respective overall simulated voltage-wave
reflection and transmission coefficients (35) & (36) can be
rewritten in terms of ñ as,

S11SIM =

(
1− ñ2

) (
1− e−2jβ0ñl

)
(ñ+ 1)2 − (1− ñ)2 e

−2jβ0ñl
(61)

S21SIM =
4ñe−jβ0ñl

(ñ+ 1)2 − (1− ñ)2 e−2jβ0ñl
(62)

Similar to the approach used previously, with (59) & (60),
the optical constants n and κ can be calculated by simultane-
ously solving the following pair of equations,

|S11SIM(ñ)|
2
− RMEAS = 0 (63)

|S21SIM(ñ)|
2
− TMEAS = 0 (64)

It will be found that plots for the individual solutions for
ñ, with both (63) and (64), exhibit decaying ripples that
result from the e−jβ0nl phasor embedded within (61) and (62),
respectively. However, ripples with overall transmittance are
only observed with low opacity samples. The reason for
the greater sensitivity to the e−jβ0nl phasor with overall
reflectance is that an pth-order transmittance requires one
additional damped propagation of the electromagnetic wave
(or guided-wave mode) through the lossy sample, when com-
pared to the pth-order reflectance.
At 5 THz, the index of refraction and extinction coefficient

for typical clear window glass are n = 2.199 and κ = 0.536,
respectively [10], corresponding to an opaque medium at this
frequency with τ(5 THz) = 56.1. The corresponding emu-
lated target values for RMEAS and TMEAS for a 500 µm thick
sample are approximately 16.39 % and 0 %, respectively
(corresponding to a return loss of −7.9 dB and infinite inser-
tion loss). With the same theoretical graphical method used
previously, all individual solutions for ñ are shown in Fig. 13,
where individual solutions for (63) and (64) are represented
by the red and blue curves, respectively. The red curve now
exhibits decaying ripples that result from the e−jβ0nl phasor
embeddedwithin (61). There is only one intersection from the
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FIGURE 13. Calculated individual solutions for arbitrarily chosen 500 µm
thick typical clear window glass and frequency of 5 THz (opacity
τ

(
5 THz

)
= 56.1) from the normalized power responses with frequency-

and space-domain spectroscopy.

plots for (63) and (64), which represents the single (exact)
simultaneous solution for ñ, due to the high opacity of the
sample elevating the blue curve above the background ripples
of the red curve.

Essentially, the single solution found from normalized
power responses with frequency- and space-domain spec-
troscopy for an opaque medium is analogous to the single
solution found from first-order normalized power responses
with THz TDS. The reason is that with opaque materi-
als, both the first-order reflectance dominates the overall
reflectance (i.e., RMEAS ∼= R1 ⇐⇒ R1

MEAS ) and the first-
order transmittance dominates the overall transmittance (i.e.,
TMEAS ∼= T1 ⇐⇒ T1

MEAS ), as characterized by the non-
resonant model.

At 60 THz, however, typical clear window glass is only
semi-opaque with τ(60 THz) = 3.8. The corresponding
emulated target values for RMEAS and TMEAS are approxi-
mately 2.84% and 2.18%, respectively (corresponding to a
return loss of −15.5 dB and insertion loss of −16.6 dB). All
individual solutions for ñ are shown in Fig. 14. It can be seen
that there are now 9 possible simultaneous solutions for ñ, all
within the narrow range of 1.39 < n < 1.42. Without addi-
tional information, the correct simultaneous solution cannot
be determined.

C. SCALAR MEASUREMENTS AND κ − n THRESHOLD
ANALYSIS FOR THE THERMAL INFRARED
In this subsection, a unique empirical model is introduced
using graphical techniques, which defines the threshold con-
ditions that separates the region in κ − n space that gives the
single simultaneous solution for the complex refractive index
from that which gives multiple mathematical simultaneous
solutions.

It has been shown that the intersection(s) of curves
from (63) and (64) can be either singular or multiple, depend-
ing on the opacity and its contribution from the extinction
coefficient κ . It is useful, therefore, to know the threshold
for κT , for a given n. As a result, there will only be one
intersection of the curves from (63) and (64) for κ ≥ κT .

FIGURE 14. Calculated individual solutions for arbitrarily chosen 500 µm
thick typical clear window glass and frequency of 60 THz (opacity
τ

(
60 THz

)
= 3.8) from the normalized power responses with frequency-

and space-domain spectroscopy.

FIGURE 15. Discrete sampling data points for arbitrarily chosen 500 µm
thick dielectric slab and frequency of 5 THz (giving N ∼= 8.34), and the
corresponding empirical-fit threshold curve.

In this single solution space, it will be shown that our graphi-
cal method for extracting the complex refractive index works
only for (semi-)opaque samples (i.e., τ(f ) > 1 and so, for a
fixed frequency, relatively thin samples for when κ is high or
relatively thick samples for when κ is low).
The threshold κT for a dielectric slab with an arbitrary

thickness of 500 µm and frequency of 5 THz are shown
in Fig. 15, with n swept over the range associated with most
normal dielectric materials of 1 ≤ n ≤ 5. The blue circular
data points indicate discrete samples [n, κT ] obtained by
increasing κ(n) from zero to the threshold at which only one
simultaneous solution exists for ñ; the black curve represents
the corresponding empirical-fit threshold curve.

As seen in Fig. 15, the empirical-fit equation for κT (n,N )
consists of two terms; a rectified sinusoidal term κ |Sinusoid |T (its
origin being the Fourier-transform of a unity height ‘top-hat’
function f(n̄) having a width from−n to+n, giving a generic
function F(n,N ) = F {f (n̄)} = 2n {sinc(2πnN )} with its
first zero crossing at N = 1/2n) and an underlying trend
term κTrendT ,

κT = κ
|Sinusoid |
T + κTrendT (65)
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FIGURE 16. Discrete sampling data points [n, κTrend
T ] for an arbitrarily

chosen 500 µm thick dielectric slab at various excitation frequencies and
the empirical-fit underlying trend curves.

κ
|Sinusoid |
T =

∣∣∣∣∣
(
1
2
−

1
3π

)
· 2n

{
sin
(
2πNn− π

4

)
2πNn

}∣∣∣∣∣
= A0

∣∣∣sin (2πNn− π
4

)∣∣∣ (66)

κTrendT =

(
1− e−A1(n−1)

)
·

(
A2 + A3n− A4n2

)
(67)

where A0(N ) = (1 − 2/3π)/2πN is the amplitude of the
sinusoidal term and N = l/λ0 > 1 is the dimensionless
spatial frequency of the sinusoidal term (contained within the
phasor term e−jβ0nl = e−j2πNn), which quantifies the number
of free space wavelengths between the measurement refer-
ence planes when the sample under test is removed. This is
in contrast to the Nicolson and Ross method that requires
N ≤ 1/2n. In addition, A1, A2, A3 and A4 are the variables
associated with the trend term, all having the generic power
law of the form a · N b.
Figure 16 shows the empirical-fit curves for κTrendT against

n based on the discrete sampling data points for an arbitrarily
chosen 500 µm thick dielectric slab at various excitation
frequencies between 5 and 200 THz; resulting in a good fit
having R2 > 0.99 at each frequency.

A1(N ) = 0.1898 · N 0.4207 (68)

A2(N ) = 0.0538 · N−0.7110 (69)

A3(N ) = 0.08527 · N−0.8608 (70)

A4(N ) = 0.005506 · N−0.7487 (71)

The discrete sampling data points and the associated best-
fit curves forA1,A2,A3 andA4 againstN are shown in Fig. 17;
a good fit is obtained with a worst-case R2 ≥ 0.9957.

It should be noted that our empirical model, with
(65) to (71), is only valid for 1 . n . 5 (fitting best with
n & 1.30) and 8.33 < N < 333.33; a more complicated
expression for κTrendT is needed beyond these ranges.

The relationship between threshold κT , n and spatial fre-
quency N is shown in Fig. 18. It can be seen that, for a
fixed spatial frequency, the threshold κT remains periodic
along n, with the amplitude of the sinusoid A0 ∝ 1/N .
Moreover, for a fixed excitation frequency, thicker samples
have a greater(smaller) single(multiple) solution space, when

FIGURE 17. Discrete sampling data points for variables against spatial
frequency N and corresponding best-fit curves: (a) A1 with (68), (b) A2
with (69), (c) A3 with (70) and (d) A4 with (71).

compared to thinner samples, because of the lower values
for κT .

The circular data points in Fig. 3 represent sin-
gle (exact) solutions extracted (in this case recovered)
for the complex refractive index and effective com-
plex relative permittivity using our theoretical graphical
technique.
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FIGURE 18. Predicted 3D plot of threshold κT against n and N .

D. SCALAR MEASUREMENTS AND OPACITY
THRESHOLD ANALYSIS
It has been found that there is a minimum threshold value
for opacity τT that gives the single (exact) simultaneous
solution for ñ and this is a function of sample thickness. For
example, with our arbitrarily chosen case of l = 500 µm,
τT (l = 500 µm) ≈ 7.2, which corresponds to a single simul-
taneous solution for all measurements from 2 to 42 THz (here,
τ(f ) & 7.2). Similarly, with τT (l = 36 mm) ' 10.9, a single
simultaneous solution is obtained for all measurements from
1 to 100 THz (here, τ(f ) & 10.9).

Inherently, it is not possible to find a simple scaling law for
τT (l). For example, for a fixed sample thickness, if opacity
falls below the threshold by a generic factor x then the path
length cannot be simply increased by 1/x to maintain the
threshold opacity. The reason is that, by definition, opacity is
derived from the zero-order approximation for transmittance
T0, which assumes no reflections at its boundaries. Therefore,
as opacity falls below the threshold, higher order transmit-
tance terms now contribute more to the overall transmittance
and so the length generally needs to be increased bymore than
a factor of 1/x; the extra path loss effectively compensates
for the higher order contributions to the transmitted power
through the sample.

VII. CORRECT SOLUTION FROM MULTIPLE
SOLUTIONS SPACE
It had been previously shown that, with our theoretical graph-
ical method, multiple mathematical simultaneous solutions
for the complex refractive index can be obtained from scalar
measurements with frequency- and space-domain spec-
troscopy. In this section, with ideal metrology, the same theo-
retical graphical technique will be used to extract the correct
values of optical constants, by introducing a simple additional
measurement step.

Consider a non-opaque sample under test with an ideal
PEC back short circuit/mirror (or metallic coating on the
backside surface) at the second boundary, as illustrated
in Fig. 19. The Fresnel reflection coefficient at the second
boundary becomes ρPECm = −1.

When considering an infinite number of Fabry-Pérot
reflections, the respective overall reflected electric field and

FIGURE 19. Heuristic engineering approach to the field propagation
model with an ideal PEC mirror at the second boundary: (top) illustrating
individual contributions; (bottom) illustrating Fabry-Pérot reflections.

corresponding reflection transfer function for the sample are,

EPEC
r = ρ0Ei − τ10τ01e−2γ lEi − τ10τ01ρ0e−4γ lEi − · · ·

=

[
ρ0 −

(
1− ρ2o

)
ρ0

∑∞

p=1
(ρ0e

−2γ l)
p
]
Ei (72)

HPEC
RFP ⇒ H1

R +

(
1− ρ2o

)
e−2γ l

1− ρ0e−2γ l
(73)

Hence, the overall simulated voltage-wave reflection coeffi-
cient SPEC11SIM is given as,

SPEC11SIM =
b1
a1

∣∣∣∣PEC = ρ0 − e−2γ l

1− ρ0e−2γ l
≡ −HPEC

RFP (74)

This can be verified by applying Mason’s non-touching
loop rule to the corresponding signal flow graphs shown
in Fig. 20. Equation (74) can be re-written in terms of ñ as,

SPEC11SIM =
(1− ñ)− (1+ ñ) e−2jβ0ñl

(1+ ñ)− (1− ñ) e−2jβ0ñl
(75)

Equivalently, from transmission line theory with a short cir-
cuit termination at the output port, the input wave impedance
is given by,

ηPECIN = η tanh (jβ0ñl) (76)

SPEC11SIM =
ηPECIN − η0

ηPECIN + η0
=

tanh (jβ0ñl)− ñ
tanh (jβ0ñl)+ ñ

(77)

In addition to (63) & (64), the optical constants n and κ can
now be calculated by simultaneously solving the following
equation, ∣∣∣SPEC11SIM (ñ)

∣∣∣2 − RPEC
MEAS = 0 (78)

All individual solutions for ñ, from (63), (64) & (78), for our
500 µm thick typical clear window glass sample at 60 THz,
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FIGURE 20. Signal flow graphs: (a) unique equivalence of the second
boundary after applying a PEC mirror; (b) additional spectroscopy
measurements with an ideal PEC mirror at the second boundary.

FIGURE 21. Calculated individual solutions for arbitrarily chosen 500 µm
thick typical clear window glass and frequency of 60 THz (opacity
τ

(
60 THz

)
= 3.8) from the normalized power responses with frequency-

and space-domain spectroscopy, now including the reflectance with an
ideal PEC mirror at the second boundary.

are shown in Fig. 21. The black curve represents solutions
from (78), exhibiting decaying ripples that result from the
e−jβ0nl phasor term embedded within (75). It can be seen that
any two of the three curves give multiple intersections. How-
ever, with ideal metrology, there is only one intersection for
all the three curves, corresponding to the correct simultaneous
solution (indicated within the inset of Fig. 21).

Figure 22 shows all individual solutions for ñ at 70 THz,
where typical clear window glass is now semi-transparent
with τ(70 THz) = 0.3. The blue curve, now exhibiting
ripples that result from e−jβ0nl embedded within (62), moves
down and creates a greater number of intersections. However,
there will still always be only one correct solution simultane-
ously satisfying (63), (64) and (78); in this case at n = 1.455
and κ = 0.00018.
The triangular data points in Fig. 3 represent single

(correct) solutions extracted (in this case recovered) for the
complex refractive index and effective complex relative per-

FIGURE 22. Calculated individual solutions for arbitrarily chosen 500 µm
thick typical clear window glass and frequency of 70 THz (opacity
τ

(
70 THz

)
= 0.3) from the normalized power responses with frequency-

and space-domain spectroscopy, now including the reflectance with an
ideal PEC mirror at the second boundary.

mittivity using our theoretical graphical technique, by intro-
ducing our third power response measurement for reflectance
with a PEC at the second boundary.

It has been shown that a scalar network analyzer requires
three physical measurements to be performed to extract the
exact complex dielectric properties. However, it is important
to note that, a thirdmeasurement is not physically necessary if
a VNA is employed, as it provides both magnitude and phase
information with both reflection and transmission mode mea-
surements. This is because, by mathematically short circuit-
ing the output port of the two-port network, defined using
the S-parameters from the original pair of reflection and
transmission mode VNA measurements, the simulated ‘mea-
surement’ of RPEC

MEAS from the resulting one-port network
can be conveniently emulated. This can be easily verified
analytically by exploiting the unique equivalence shown
in Fig. 20(a).With the signal flow graph in Fig. 5(b), by insert-
ing a voltage-wave reflection coefficient branch of −1 (i.e.,
representing a PEC mirror) between b2 and a2, the result will
be identical to that in Fig. 20(b).

VIII. SINGLE SOLUTION SEARCH MINIMIZATION
Our theoretical graphical technique requires all the individ-
ual solutions to be determined before either visual inspec-
tion or applying numerical search methods to find the single
(correct) solution. As seen in Fig. 22, for transparent mate-
rials, there are many candidate simultaneous solutions from
any two of the three equations with (63), (64) & (78). Mini-
mizing the single solution search with an automated method
of constraining n will speed-up the extraction process. This
can be done, in principle, with a general purposeVNA, having
the ‘synthetic-pulse’ TDR option [15].

With band-pass(low-pass) frequency-domain opera-
tion, having an ideal ‘boxcar’(also referred to as ‘top-
hat’ or ‘brick-wall’) filtering function with −3 dB band-
width BW , the corresponding full-width at half-maximum
(FWHM) values of the ‘synthetic-pulse’ is tFWHM =

1.2(0.6)/BW [15]. With equal amplitude and time-unlimited
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sinc (x) impulses, the theoretical time-domain response res-
olution is equal to the FWHM [15]. Assuming the sample
under test is non-dispersive within the calibrated bandwidth
of the frequency-domain measurements, with TDR, the time
between the first and second reflected impulses tr12 (corre-
sponding to the first- and second-order reflections) gives the
index of refraction from,

tr12 = 2nl/c (79)

The bounds for tr12 are set by the response resolution between
the second reflected impulse and both the first reflected
impulse and the time aliasing interval of the first reflected
impulse tA = 1/δf , where δf is the spectral frequency
resolution,

tFWHM . tr12 . (tA − tFWHM ) (80)

The time-domain response resolution limits the range of
index of refraction to,

c
2l

1.2(0.6)
BW

. n .
c
2l

(
1
δf
−

1.2(0.6)
BW

)
(81)

For example, with a VNA operating at W-band (75 to
110 GHz) and with 401 discrete frequency points, BW =

35 GHz and δf = BW/(401 − 1) = 87.5 MHz. Therefore,
with a 500 µm thick sample, 10.3 . n . 3418 and this is
well beyond our range for normal dielectric materials, requir-
ing either a thicker sample or an increase in measurement
bandwidth. Our non-dispersion assumption is unrealistic in
practice, but the extracted value for n can be used as a useful
approximation for narrowing down the search window with
our graphical technique.

IX. CONCLUSION
Where suitable, THz TDS is the spectroscopists method
of choice, not least because coherent pump-probe detection
offers extremely high signal-to-noise ratio (S/N) [18], with
excellent dynamic range [1], and the subsequent simplicity
in extracting the complex dielectric properties from a sam-
ple under test. Unfortunately, (sub-)picosecond pulsed-laser
based systems may be considered as a very expensive option,
especially for just the occasional characterization of material
samples. Moreover, the spectral frequency resolution of THz
TDS systems may be limited to the gigahertz range. A lower
cost solution for the spectroscopist is to use either a dedicated
frequency-domain CW-THz or low S/N space-domain FTIR
spectrometer. For the non-spectroscopists, the use of existing
general purpose frequency-domain vector network analysers
would be the preferred option for material characterization,
not least because of their extremely high S/N and sub-
megahertz frequency resolution. However, as with CW-THz
and FTIR spectroscopy, until now, there has been insufficient
information from conventional reflection-transmission mode
measurements for extracting complex dielectric properties
with (semi-)transparent samples.

In this paper, we have undertaken a comprehensive (but
not exhaustive) analytical review of reflection-transmission

mode spectroscopy. Here, we use a consolidated frame-
work of mathematical derivations for explaining the limita-
tions of previously reported methods for extracting effective
complex dielectric properties; such traceability being rarely
considered.

It should be noted that we deliberately chose not to
include experimental validation for our purely theoretical
work, in order to avoid introducing unnecessary systematic
and random errors that are inherent with practical metrology.
Instead, to provide full end-to-end mathematical traceability,
we adopt an arbitrarily chosen dataset, from 1 to 100 THz,
to act as the reference for the effective complex dielectric
properties of a sample under test. Normalized power spectra
were simulatedwith the zero-ordermodel, power propagation
model and exact power response models; the results were
then compared and contrasted. As expected, it was found that
EFPM, VWPM, TLM and TE-TLM give the same numerical
results and, thus, are considered as exact models. For our
ideal metrology scenario, significant discrepancies can be
seen from the zero-order and power propagation models, due
to the lack of phase information, and also the lack of higher
order Fabry-Pérot reflections with the zero-order model.

For extracting the effective complex dielectric properties,
we present a detailed analysis of reported techniques that
employ either scalar or vector reflection-transmission mode
measurements. It is found, in general, that only approximate
values can be extracted with the use of numerical methods;
requiring an initial guess and iterative solutions. Two excep-
tions (Smith et al. and also Nicolson and Ross) can extract the
exact solution, but at the expense of either introducing mul-
tiple sample thicknesses or severely limiting the maximum
thickness of the sample.

Without any initial guesses, we report on a theoreti-
cal graphical technique that requires only one non-lossless
sample, of arbitrary thickness, to extract the exact opti-
cal constants. For an opaque medium, a pair of reflection-
transmission mode measurements may be required; using
either time-, frequency- or space-domain spectroscopy, with-
out needing any phase information.

A unique model is introduced using our graphical tech-
niques, which defines the threshold conditions that sep-
arates the region in κ − n space that gives the sin-
gle simultaneous solution for the complex refractive index
from that which gives multiple mathematical simultaneous
solutions.

Finally, with non-opaque media, in addition to the normal
pair of reflection-transmission mode measurements, an extra
reflection measurement is required (employing a back short
circuit or mirror). This is needed to resolve the e−jβ0nl phasor
term ambiguity within the multiple solution space, giving
the single (correct) solution. With three physical measure-
ments even a scalar measurement system (e.g., low cost scalar
network analyzer or FTIR spectrometer) can in principle be
used to extract the exact values. With a vector measurement
system, the third measurement can be emulated by math-
ematically short circuiting the output port of the two-port
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TABLE 2. Summary of typographical errors in cited references.

network, defined by the S-parameters from the original pair
of reflection-transmission mode measurements.

Finally, with our theoretical graphical technique requiring
all the individual solutions to be determined, visual inspection
for the simultaneous solution can be replaced by numerical
methods for automated and/or real-time material characteri-
zation used in non-destructive testing.

APPENDIX
In this errata appendix, typographical errors discovered in our
cited references (found during the course of our derivations)
are shown and corrected in Table 2. Note that the designated
variables in Table 2 correspond to those from the original
references.
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