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Noise in one-dimensional metamaterials supporting magnetoinductive lattice waves
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Equivalent circuit models are presented for the propagation of noise in one-dimensional negative-index
metamaterials based on split-ring resonators (SRRs) and rods. The SRRs are modeled as lossy lumped-element
L-C resonators, whose reactive components provide the effect of a negative relative permeability over a restricted
frequency range but whose resistive elements act as sources of propagation loss and Johnson noise. Similarly,
the rod loading is modeled as lumped-element inductors, whose reactive components provide the effect of a
negative relative permittivity but whose resistive elements introduce further loss and noise. Coupling between
the magnetic resonators allows the propagation of magnetoinductive lattice waves. The effect on the effective
medium properties is to shift the apparent magnetic resonance up in frequency by an amount depending on
the coupling coefficient and to allow the propagation of noise waves within the resonator array over the entire
magnetoinductive band. The model predicts all the details of the electromagnetic and magnetoinductive noise
inside the array. However, it is shown that the observable effect outside the array matches the prediction of a
simplified model based only on the modified effective medium properties.
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I. INTRODUCTION

Since the suggestion of Pendry1 that electromagnetic (EM)
media with negative effective parameters could be realized
over a finite frequency range using split-ring resonators and
rods, there has been considerable interest in metamaterials.
Negative refraction was quickly demonstrated,2,3 verifying
a much earlier idea of Veselago.4 Since then, attention has
focused on the new applications made possible by media
with controllable properties, such as near-field imaging and
cloaking. However, for any application to be realistic, standard
performance characteristics such as isotropy, spectral flatness,
and loss must be considered. The last aspect is particularly
important for metamaterials, which rely on lossy conductors
to synthesize magnetic and dielectric properties. Even with
high-conductivity metals, the Q factors that can be achieved in
resonant structures at room temperature are low. Consequently
propagation losses are high. While loss may be overcome us-
ing amplification, its inevitable companion—noise—cannot.
Understanding of noise is therefore particularly important
for metamaterials. Many performance characteristics can be
extracted from models of signal propagation. However, noise
models are still at a relatively early stage.

Classically, electromagnetic noise in general media is de-
scribed using Rytov’s theory, originally published in Russian
but available in translation5 and described in standard texts.6–8

The generation of EM waves—or thermal radiation—from
noise is modeled by the addition of further currents or test
sources to the Maxwell curl equations. The currents are
assumed to be uncorrelated, and their average values are
obtained from the imaginary parts of the susceptibility terms
using the fluctuation-dissipation (F-D) theorem. This theorem
represents a fundamental linkage between loss and noise that
was originally derived by Nyquist9 following experimental
measurement of noise in resistors by Johnson10 and later
generalized to other lossy systems.11–13 The theory has been
applied to calculation of the emission from plasmas,14–17 and
more recently to photonic band-gap media.18–20 For electrical

circuits, noise is typically represented using current and
voltage sources, whose average values are again obtained from
the F-D theorem.21 In periodic circuits, or circuits containing
distributed interconnects, these sources again lead to the
propagation of noise waves.22–27

Metamaterials are often represented using equivalent
circuits.28–32 Using this approach, noise models may be
constructed by adding suitable current and voltage sources,
and solving simple circuit equations to find their cumulative
effects. However, in the limit, such models should yield the
results obtained from the use of effective medium properties
in rigorous EM theory. In a series of papers, we have been
attempting to demonstrate the required correspondence. Our
first paper considered noise in split-ring resonator (SRR)
arrays, such as the linear array of coupled resonators in
Fig. 1(a).33 Coupling to EM waves was neglected, leaving the
noise trapped in the array and propagating as internal lattice
waves, equivalent to the well-known magnetoinductive (MI)
waves.34 Others have also considered noise in magnetoin-
ductive communications systems.35 Our second considered
the additional effect of coupling to a suitably polarized EM
wave propagating parallel to the axis of the array, as shown
in Fig. 1(b).36 This model allowed noise to be transferred to
the EM wave, and demonstrated the inherent link between
effective permeability and noise. Our third considered the
additional effect of rod loading, as shown in Fig. 1(c).37 This
model allowed the contributions of the effective permeability
and permittivity to the noise to be separately identified.
However, to simplify the mathematics, coupling between the
resonators was ignored, eliminating the possibility of MI
waves. Since then, a new model has been developed that
treats the properties of an entire uniform slab, including its
noise, as those of a lossy four pole.38 This approach presents
an elegant simplification, especially for calculations involving
thick layers, but obscures the internal detail of the noise.

Each of the structures in Fig. 1 is clearly one dimensional.
An important question is whether models such as Figs. 1(b)
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FIG. 1. Models for 1D metamaterials: (a) magnetoinductive
waveguide, (b) magnetic metamaterial, and [(c), (d)] negative-index
metamaterial, without and with magnetoinductive lattice waves,
respectively.

and 1(c) may be used to represent perpendicular incidence
of a plane wave on a slab of a three-dimensional lattice, for
which the effective permeability and permittivity could have
their conventional meaning. In fact, it is simple to show that for
waves propagating parallel to a principal axis of a cubic lattice,
the only effect of magnetic coupling in the two perpendicular
directions is to alter the apparent inductance of the resonant
loops. However, for propagation in an arbitrary direction, and
more complex unit cells, a full three-dimensional treatment
is required. Such a treatment would naturally lead to tensor
definitions of the effective medium properties, and careful
treatment of the boundaries (which might or might not lie
parallel to a principal axis) would be required.

In this paper, we take our detailed model one step further,
and combine resonator loading, rod loading, and resonator
coupling to allow lattice waves as shown in Fig. 1(d). A further
important question is whether the wires should be considered
infinite or not. The former may be represented as an inductive
loading, while the latter may clearly be resonant. In addition,
cut wires may clearly be coupled end to end or side to side.
The former case may be modeled using a capacitive loading.39

The latter has been shown to lead to additional magnetic
(and hence negative index) effects40 and the propagation of
additional lattice waves.41 Since our aim here is to investigate
the linkage between signal propagation and noise in a material
supporting internal lattice waves, we assume the simplest
example, namely, the case when the wires are infinite and

uncoupled. The model is introduced in Sec. II. The effective
medium properties are derived in Sec. III, example noise
performance is calculated in Sec. IV, and conclusions are
drawn in Sec. V.

II. EQUIVALENT CIRCUIT MODEL

The system of Fig. 1(d) is modeled as the equivalent
circuit shown in Fig. 2(a). The EM wave is represented by a
lossless transmission line, with series inductance L0 = μ0a

and shunt capacitance C0 = ε0a in each section of length
a, where μ0 = 4π × 10−7 H/m and ε0 = 8.85 × 10−12 F/m
are the permeability and permittivity of free space. SRR
loading is modeled as coupling via mutual inductance MM

to a set of lumped-element L-C resonators with inductance
LM (with associated resistance RM) and capacitance CM, and
nearest-neighbor magnetic coupling between the resonators
is described using the mutual inductance M . Rod loading
is modeled via the introduction of shunt inductors LE (with
associated resistance RE).

A finite slab of thickness d of such a medium surrounded
by free space can be modeled as a set of Nel = d/a sections
terminated using loads Z0 = √

μ0/ε0. Propagation through the
slab may then be modeled by introducing a signal source at
one end, and calculating the transmitted and reflected powers.
Here, however, our interest is in thermal noise.

FIG. 2. (a) Transmission line model of a 1D negative-index
metamaterial; model after abstraction of (b) the relative permittivity
and (c) the relative permeability.
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According to Nyquist,9 any resistive element will have as
a companion a series voltage source or a shunt current source
that generates noise. In Fig. 2(a), we have represented the
sources UMn and UEn associated with the resistors RM and
RE as voltages. At absolute temperature θ (assumed the same
everywhere, so the system is in thermal equilibrium) the RMS
voltage of these sources at angular frequency ω in a bandwidth
df is defined (at least, at low frequency) as

UMnU
∗
Mn = 4KθRMdf,

(1)
UEnU

∗
En = 4KθREdf,

where K is Boltzmann’s constant. Here, we have represented
the noise associated with the free-space terminations as current
sources IFS, whose rms value in a bandwidth df can be written
as

IFSI
∗
FS = 4Kθ

Z0
df. (2)

These sources are needed for the metamaterial slab to remain
in thermal equilibrium with its surroundings (a medium of
characteristic impedance Z0, also at temperature θ ), and their
presence allows a simple method of calculating the noise
factor of the slab. In this example, the topology of the shunt
branches is simple. Using standard circuit theory, each set
of components C0 = ε0a, LE and RE can be replaced with
an equivalent, frequency-dependent “capacitor” C = εa. Here
ε = ε0εr, where εr = ε′

r − jε′′
r is the relative permittivity and

εr = 1 − ω2
p

ω2 − jωωτ

. (3)

Here ωp = 1/
√

LEC0 and ωτ = RE/LE are the equivalent
plasma frequency and collision damping frequency of the
rods, respectively. Similarly, each voltage source UEn can be
replaced with a shunt current source IEn, such that

IEnI
∗
En = 4Kθωε0ε

′′
r adf. (4)

With these simple manipulations, the circuit of Fig. 2(a) may
be replaced with the entirely equivalent circuit of Fig. 2(b).

In the absence of coupling between the resonators, a similar
manipulation can be performed. Each set of components L0 =
μ0a, LM, RM, and CM can be replaced with a frequency-
dependent “inductor” L = μa. Here μ = μ0μr, where μr =
μ′

r − jμ′′
r is the relative permeability and

μr = 1 − q2

1 − ω2
0/ω

2 − jω0/ωQ0
. (5)

Here ω0 = 1/
√

LMCM is the resonant frequency of the
resonators, Q0 = ω0LM/RM is their quality factor, and q2 =
M2

M/L0LM is the filling factor. Similarly, it is simple to show
that each voltage source UMn can be replaced with a series
voltage source VMn, such that

VMnV
∗

Mn = 4Kθωμ0μ
′′
r adf. (6)

With these manipulations, the circuit of Fig. 2(b) may be
redrawn as Fig. 2(c), as was done in Ref. 37. Two consequences
will be immediately apparent. First, components such as
resistors, inductors, and capacitors have been replaced with
effective medium parameters. Secondly, noise sources whose
values depend on resistances have been replaced with sources

depending on the imaginary parts of susceptibilities. Thus,
a direct correspondence has been achieved with the Rytov
theory,5 and Fig. 2(c) effectively represents a discrete form of
the Maxwell curl equations in one dimension. The difficulty, of
course, is that this simplification is not immediately possible
when there is coupling between the resonators, since the
series loading on the EM line is no longer so easily reduced.
The remainder of this paper is devoted to determining the
implications.

III. EFFECT OF THE LATTICE ON DISPERSION

We start by considering the effect of the lattice on the
dispersion of the EM wave. In the presence of coupling
between the resonators, Kirchhoff’s laws may be used to
construct circuit equations relating the voltage Vn and the
currents In and Jn in the nth section to values in neighboring
sections. In the uniform region, we obtain

Vn+1 − Vn + jωμ0aIn + jωMMJn = 0,

In − In−1 + jωεaVn = IEn,
(7)(

RM + jωLM + 1

jωCM

)
Jn + jωM(Jn−1 + Jn+1)

+jωMMIn = UMn.

Similarly, in the terminating elements we obtain

I1 + V1

Z0
= IFS,

(8)

−IN−1 + VN

Z0
= IFS.

Here N = Nel + 1. In the absence of the noise sources, the
terms Vn may be eliminated from Eq. (7) to leave a pair of
coupled equations containing only In and Jn,

jωμ0aIn − In+1 − 2In + In−1

jωεa
+ jωMMJn = 0,

(
RM + jωLM + 1

jωCM

)
Jn + ωM(Jn−1 + Jn+1) (9)

+ jωMMIn = 0.

These equations can be written as

In + ω′2
0

ω2εr
(In+1 − 2In + In−1) + MM

L0
Jn = 0,

(10)(
1 − ω2

0

ω2
− jω0

ωQ0

)
Jn + κ

2
(Jn+1 + Jn−1) + MM

LM
In = 0.

Here κ = 2M/LM is the coupling coefficient between the
resonant elements (negative in this arrangement) and ω′

0 =
1/

√
μ0ε0a2. Assuming the traveling wave solutions In =

I0 exp(−jnka), and Jn = J0 exp(−jnka), where k is the
propagation constant of the combined system, we obtain

[
1 + 2

ω′2
0

ω2εr
[cos(ka) − 1]

]
I0 + MM

L0
J0 = 0,

(11)[
1 − ω2

0

ω2
− jω0

ωQ0
+ κ cos(ka)

]
J0 + MM

L0
I0 = 0.
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FIG. 3. (a) Dispersion and (b) attenuation characteristics for the
model of Fig. 2(b), assuming ω′

0/ω0 = 10, Q0 = 200, κ = −0.1,
q2 = 0.1, ωp/ω0 = 1.1, and ωτ/ω0 = 0.01. Circles and crosses:
numerical solution for EM and MI waves; thick and thin lines: analytic
solution for EM and MI waves. (c) Expanded view of the dispersion
characteristics near the interaction region.

Uncoupling then gives the dispersion equation
[

1 − ω2
0

ω2
− jω0

ωQ0
+ κ cos(ka)

] [
1 + 2

ω′2
0

ω2εr
[cos(ka) − 1]

]

− q2 = 0. (12)

This equation is a quadratic in cos(ka), which may be solved
for any value of ω, allowing the complex propagation constant
k = k′ − jk′′ to be found. Two factors complicate the results.
First, there are now two solutions, one corresponding to an
EM-like wave, the other to an MI-like wave. Secondly, each
value of cos(ka) has two possible values of k′a within the range
−π � k′a � π . However, any ambiguity may be removed by
selecting the sign of k so that the wave is lossy.

The discrete points in Fig. 3 show frequency variations
of (a) the dispersion and (b) the attenuation for the typi-
cal parameters ω′

0/ω0 = 10, Q0 = 200, κ = −0.1, q2 = 0.1,
ωp/ω0 = 1.1, and ωτ/ω0 = 0.01, focusing on the important
frequency range near ω0 and ωp. The EM-like solution
(circles) has a small value of |k′a|, while the MI-like solution
(crosses) extends from k′a = 0 down to k′a = −π . If (as is

the case here) the relative permittivity is known analytically,
the relative permeability can be extracted from the dispersion
relation as

μr =
(

kEMa

k0a

)2 1

εr
. (13)

Here kEM is the propagation constant of the electromagnetic
branch, and k0 = ω

√
ε0μ0 is the corresponding value for

an unloaded EM wave. However, rather than extracting μr

numerically, we note that the main interaction in Fig. 3 occurs
when k′a and k′′a are both small. In this case, Eq. (12) may be
approximated as[

1 + κ − ω2
0

ω2
− jω0

ωQ0

] [
1 + ω′2

0

ω2εr
k2a2

]
− q2 = 0. (14)

Rearranging, we can write the above as

1 − ω′2
0

ω2εrμr
k2a2 = 0. (15)

Here μr has the well-known value (see, e.g., Ref. 42)

μr = 1 − q2

1 + κ − ω2
0/ω

2 − jω0/ωQ0
. (16)

This result implies that magnetic behavior is still obtained
when the resonators are coupled, but the resonance is shifted
to a higher frequency ω0κ = ω0/

√
1 + κ . The propagation

constant of the EM-like wave can then be written as kEMa =
nk0a, where n = √

εrμr is the refractive index. This solution
is plotted as the thick lines in Figs. 3(a) and 3(b), and
also in Fig. 3(c), which shows an expanded view of the
dispersion diagram near the region where the two waves
interact. For these generally realistic parameters, Eq. (16) is
a good approximation. However, its accuracy degrades if q2

or Q0 rises significantly, and it becomes extremely inaccurate
when losses tend to zero. In this case, anomalous effects start
to occur. Particularly, a band emerges near ω0κ , for which
the imaginary part of μr is nonzero, despite the absence of
losses.43

What of the MI branch of the dispersion diagram? Numer-
ical evaluation shows that, to good approximation, this is still
described by the standard MI dispersion equation34

1 − ω2
0

ω2
− jω0

ωQ0
+ κ cos(kMIa) = 0. (17)

This solution is plotted as the thin lines in Figs. 3(a)–3(c); it is
clearly in excellent agreement with the numerical data for the
MI-like branch. Thus, interaction between the electromagnetic
wave and the resonator arrays alters the effective medium pa-
rameters, without significantly perturbing the properties of any
magnetoinductive wave supported by the array. Examination
of the eigenvectors (I0,J0) of the coupled system reinforces
this conclusion; the EM-like eigenvector contains both I0 and
J0 in varying proportions, while the MI-like eigenvector is
always dominated by J0.

The frequency dependence of the effective medium param-
eters obtained from Eqs. (3) and (16) is shown in Fig. 4, for
(a) the relative permittivity εr, (b) the relative permeability
μr, and (c) the refractive index n. In each case, the real
part is shown as a full line and the imaginary part as a
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FIG. 4. Frequency dependence of the real (full lines) and imag-
inary (dashed lines) parts of (a) εr and (b) μr and n for the model
of Fig. 2(b). Assumed parameters are as for Fig. 3, but with κ = 0
(gray) and κ = −0.1 (black).

dashed line. The parameter values are generally as before.
However, two sets of data are shown for μr and n: without
coupling between the resonators (κ = 0, in gray) and with
coupling (κ = −0.1, in black). The results are in agreement
with those obtained by many previous authors. The real part
of εr changes monotonically with frequency, and is clearly
negative for ω < ωp. The real part of μr in contrast exhibits
resonant behavior, and can be negative in a region just above
the effective resonance. When εr and μr are both positive,
the refractive index is positive. Conversely, when they are
both negative, n can be negative. However, magnetic coupling
clearly has the effect of reducing the frequency range over
which this can occur.

Finally, we note that, given the approximations to the
dispersion diagram made so far, the standard expression
ZEM = √

μ0μr/ε0εr must also represent an accurate an-
alytic approximation for the characteristic impedance of
the EM-like wave. Similarly, the well-known expression
ZMI = jω M exp(−jkMIa) is a useful approximation for the
impedance of the MI-like wave.

IV. EFFECT OF THE LATTICE ON NOISE

We now consider the effect of the lattice on the thermal
noise. To find the noise, we must solve Eqs. (7) and (8),
assuming the presence of a set of incoherent noise sources.
To do so, we note that the equations can be written together
in matrix form as MY = X. Here M is an M × M matrix
containing the admittances and impedances, Y is an M-
element column vector containing the nodal voltages and line
currents, and X is an M-element column vector containing
the noise voltages and currents, where M = 3Nel + 1. The
unknowns can clearly be found for any input as Y = M−1X.
Since the sources are not correlated, the local noise due to
the material may be found directly, by evaluating Y for each
source in turn and performing an incoherent addition of the
results.

For example, to find the effect at an observation point at
element n inside the array, the magnetic and electric sources
are applied at locations m in turn and the resulting powers are
simply summed. Assuming the currents due to magnetic and
electric sources are IMnm and IEnm, respectively, the local noise
power in the EM wave is then PEMn = PEM Mn + PEM En,
where

PEM Mn =
∑
m

IMnmI ∗
Mnm Re(ZEM),

(18)
PEM En =

∑
m

IEnmI ∗
Enm Re(ZEM).

These powers may be converted into spectral densities pEM Mn,
pEM En, and pEMn, such that pEM Mn = PEM Mn/df , and so on.
Similarly, the power delivered to (say) the right-hand load—the
emitted power—is PEM = PEM M + PEM E, where

PEM M =
∑
m

IMNmI ∗
MNm Re(Z0),

(19)

PEM E =
∑
m

IENmI ∗
ENm Re(Z0).

These powers may be again converted into spectral densities
pEM M, pEM E, and pEM using division by df . The emittance
may then be found as the ratio of the emitted power to the
maximum available power, namely,

E = pEM

Kθ
. (20)

Similarly, by considering the alteration of the signal-to-noise
ratio (SNR) of a signal wave, it is simple to show that the noise
factor is (see, e.g., Ref. 37 for details)

F = 1 + E

T
. (21)

Here T is the power transmittance of the slab, which can be
found numerically by placing a signal source in the left-hand
element and calculating the relative power dissipated in the
RH element. The noise factor is often plotted in dB as the
noise figure 10 log10(F ).

The frequency dependence of these quantities is shown
in Fig. 5, for (a) the EM noise at the center of the array,
(b) the emittance, and (c) the noise factor. Once again,
the parameters are as before, and results are shown for an
array containing Nel = 101 elements. Two sets of data are
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FIG. 5. Frequency dependence of (a) power spectral density of
the EM noise at the slab center, (b) emittance, and (c) noise figure
for the model of Fig. 2(b). Assumed parameters are as for Fig. 3, but
with Nel = 101, κ = 0 (gray), and κ = −0.1 (black).

again provided: without coupling between the resonators
(κ = 0, in gray) and with coupling (κ = −0.1, in black).
Since the variations are generally similar to results previ-
ously presented in Ref. 37, only the main points will be
discussed.

In each case, separate examination of the magnetic and
electric contributions shows that magnetic noise arising from
the lossy resonators dominates in the crucial region where
the effective index can be negative. The effect of coupling
between the resonators is also to upshift the frequency where
the magnetic noise is significant, so that the noise remains
inescapably linked to the effective medium properties. The
frequency dependence of the power spectral density of the
internal noise (pEM) is relatively complicated, but in the limit of
a very thick slab, its value tends to 2Kθ (corresponding to Kθ

per wave direction) in the two propagating bands where losses
are low, as was shown in Ref. 37. The frequency dependence
of the emittance E is also complicated, but again tends to a
limit for very thick slabs. The noise figure clearly rises rapidly

FIG. 6. Frequency dependence of the spectral density of the EM
noise at the slab center, (b) emittance, and (c) noise figure for the
model of Fig. 2(c). Assumed parameters are as for Fig. 3, but with
Nel = 101 and κ = −0.1.

as the effective magnetic resonance is approached, and this
poor performance represents a key limitation of metamaterials.
Particularly, it may prevent large values of negative index
(which are only obtained close to the magnetic resonance)
being exploited in practical applications unless the Q factor is
high.

All the results above were obtained using the model of
Fig. 2(b). Interestingly, the same results can be obtained
to a very high degree of approximation using the model
of Fig. 2(c),36 simply by using the appropriate frequency
variations of Eqs. (3) and (16) for εr and μr. For exam-
ple, Figs. 6(a)–6(c) show results corresponding to those of
Figs. 5(a)–5(c), obtained from the simplified model for the
case when κ = −0.1; they are for all practical purposes
identical. This initially surprising conclusion implies that
the details of any internal lattice waves must be completely
unimportant in determining the electromagnetic noise, but
is entirely consistent with the abstraction of the effective
medium parameters and their associated losses into the reduced
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FIG. 7. Frequency dependence of the power spectral density of
(a) propagating and (b) dissipated MI noise at the slab center for the
model of Fig. 2(b). Assumed parameters are as for Fig. 3, but with
κ = 0 (gray) and κ = −0.1 (black).

representation of Fig. 2(c). On this basis we may expect that
the same results will also be obtained using further abstraction
to the simplest possible four-pole representation of Ref. 38.

The lattice waves must, nonetheless, be present. By analogy,
the local magnetoinductive noise inside the array may be found
as PMIn = PMI Mn + PMI En, where

PMI Mn =
∑
m

JMnmJ ∗
Mnm Re(ZMI),

(22)
PMI En =

∑
m

JEnmJ ∗
Enm Re(ZMI).

Note that alternative quantities may be defined for magne-
toinductive power (for example, as was done in Ref. 33) as
P ′

MIn = P ′
MI Mn + P ′

MI En, where

P ′
MI Mn =

∑
m

JMnmJ ∗
MnmRM,

(23)
P ′

MI En =
∑
m

JEnmJ ∗
EnmRM.

Each expression has particular advantages. The quantities in
Eq. (22) represent local flow of magnetoinductive power,
and may be useful in SNR calculations involving signal
propagation in MI waveguides. In contrast, those in Eq. (23)
represent local dissipation of magnetoinductive power. How-
ever, they are easily measurable with a near-field probe, and
as a result the existence of magnetoinductive noise waves may
be confirmed experimentally.

Figure 7 shows the frequency dependence of (a) propagat-
ing and (b) dissipated magnetoinductive noise at the center
of the array. Once again, the parameters are generally as
before, and results are computed for an array with Nel = 101
elements. Two sets of data are again shown: without coupling
between the resonators (κ = 0, in gray) and with coupling
(κ = −0.1, in black). In the absence of coupling, there is
clearly no propagating MI noise, and the power spectral density
of the dissipated MI noise approximates to that found in a
single lossy resonator, with a single peak near ω = ω0. When
the coupling is present, propagating MI noise exists over the
whole of the MI wave band. Once again its power spectral
density approximates to 2Kθ , and because the MI propagation
losses are higher, it does so more quickly than the EM wave.
The power spectral density of the dissipated noise is also
spread over the MI band, but its average value is reduced
to maintain the total dissipation (as was previously found
in Ref. 33).

Numerically, we have verified that all the other results for
the different one-dimensional media previously presented in
Refs. 33, 36, and 37 are obtainable as special cases using the
new model, confirming that it describes all phenomena present
in Fig. 1.

V. CONCLUSIONS

We have demonstrated a one-dimensional equivalent circuit
model for thermal noise in a slab of negative-index meta-
material based on rods and split-ring resonators, including
the effect of nearest-neighbor magnetic coupling between the
resonators. The noise is represented by a set of mutually
incoherent voltage sources, whose values are obtained from
the fluctuation-dissipation theorem. As is commonly accepted,
rod loading provides an effective nonunity value of relative
permittivity εr. Similarly, SRR loading provides an effective
value of relative permeability μr, with any magnetic coupling
shifting the apparent resonance of the SRRs up in frequency.
However as we show here, another effect of coupling is to allow
propagation of magnetoinductive noise waves. By comparing
two models—one explicitly detailing the magnetoinductive
lattice and the other containing only the modified effective
medium properties—we show that the power spectral density
of the electromagnetic noise inside or outside the medium
may be derived entirely from the extracted values of εr

and μr. All related quantities such as the noise factor then
follow directly. This simple result is entirely as expected
from the fluctuation-dissipation theorem, and we conjecture
that the same general result will hold for other media,
namely, that their noise performance may be computed entirely
from their effective medium properties. However, it ignores
the magnetoinductive noise trapped in the resonator array,
which is directly accessible for measurement using a near-field
probe.
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