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Innovate UK KTN was awarded a 4.5 year contract 
in October 2020 by UKRI to deliver the networking 
element of the Manufacturing Made Smarter ISCF 
challenge.

A £147m investment from the UKRI Industrial 
Strategy Challenge Fund (ISCF) will support the 
transformation of UK manufacturing capabilities 
through the innovation of industrial digital 
technologies. Key digital technologies in this 
challenge include:

•  Artificial intelligence, machine learning and  
data analytics

•  Additive manufacturing
•  Robotics and automation
•  Virtual reality and augmented reality
•  The Industrial Internet of Things (IIoT) and  

connectivity (5G, LPWAN)

We create diverse connections to drive positive 
change.

Innovate UK KTN exists to connect innovators 
with new partners and new opportunities 
beyond their existing thinking – accelerating 
ambitious ideas into real-world solutions. 
Innovate UK KTN is part of the Innovate UK 
Group – the UK’s innovation agency.



DIGITALISED RESEARCH, DEVELOPMENT AND INNOVATION IN THE CHEMICAL SCIENCES 3 

Contents

1.0  Introduction 04
1.1  Strategic context 05
1.2  Industry 4.0 07
1.3  Innovation 4.0 08
1.4  Cutting through the hype 09

2.0  Innovation 4.0 - The Lab of the Future  10
2.1  Lab automation, machine learning and autonomous discovery 11
2.2   Internet of Things (IoT) 14
2.3  Cloud data management 15
2.4  AI and ML 16
2.5  Virtual experiments (computer simulation and modelling)  18

3.0  Digital Maturity Framework 19
3.1  Notes on the levels 22
3.2  Discussion 23

4.0  The Opportunities and the Business Case(s) for Change 24
4.1  The urgency of chemical science research 24
4.2  Resilience 25
4.3  Supply chains and material variability 25
4.4  Scale up 25

5.0  The Challenges 26
5.1  Human factors 26
5.2  Fragmentation 27
5.3  Knowing where to start 27
5.4  Knowing who to engage with 27

6.0  What Next? 28

7.0  Case Study 29
 



DIGITALISED RESEARCH, DEVELOPMENT AND INNOVATION IN THE CHEMICAL SCIENCES 4 

We have written this Playbook to provide guidance to innovators in companies deploying and creating 
advanced materials, chemistry and formulations, on how best to understand and describe the use 
of emerging digital techniques to transform their research, product development, and innovation 
activities. The Playbook will also be of interest to academic groups looking to increase the productivity 
of lab-based research in their respective universities. 

The Playbook has been written for practitioners, and reflects the experience of commercial innovators 
who have successfully applied digital techniques in their research and development (R&D) processes.  
It is grounded in an understanding of the strategic imperative of increasing the end-to-end productivity 
of commercial innovation teams, and also addresses the complex stakeholder management tasks 
which are needed for a successful implementation of new processes.

1. Introduction

Digital technologies are now commonplace across many 
commercial, industrial and civic environments and we rely heavily on 
them to perform many day-to-day tasks. The advantages of adopting 
digital technologies for some tasks and processes are easy to 
recognise, but for others it is not so straightforward.



DIGITALISED RESEARCH, DEVELOPMENT AND INNOVATION IN THE CHEMICAL SCIENCES 5 

This had a clear negative impact on the output of research laboratories as ‘in the lab’ staff numbers 
were cut. The pandemic hit as the UK (and other developed nations) struggled with sluggish 
productivity growth and the need to create more highly-skilled, well-paid employment across the 
country (the ‘levelling-up’ agenda). However, as a result of a drastic and sudden change of working 
practices, companies and organisations have had to quickly innovate and adopt new technologies, 
as the CEO of Microsoft, Satya Nadella, observed: “We saw two years of digital transformation in two 
months”¹.

This digital transformation has already changed how many office tasks are carried out, using video 
conferencing, document sharing tools, and email. However, this is not true for lab-based R&D - for the 
vast majority of R&D companies (and university research departments), laboratory experiments cannot 
be run ‘from home’. Furthermore, due to reduced numbers of researchers permitted into labs under 
physical distancing guidelines, many labs will be working at less than 50% capacity for the foreseeable 
future. For organisations that rely on lab (and related) activity to create commercial value, the impact 
of long-term restrictions on lab use will destroy substantial value. We can estimate this lost value - the 
combined turnover of the chemical and pharmaceutical sectors in the UK is about £49 billion, of which 
£18 billion is value added². If we assume that 20% of this value-added comes from R&D, and 60% of 
R&D value comes from lab work, then a 75% reduction of lab capacity would lead to the destruction of 
more than £1.5 billion of value for each year of physical distancing. Moreover, there is an opportunity 
cost, as companies dedicate this ~25% lab capacity to maintaining current manufacturing output and 
business continuity whilst postponing or cancelling R&D programmes. This ‘innovation gap’ is not 
immediately visible, but in the medium and long term becomes a significant issue for companies and 
society more generally as the ability of our chemistry-related industries to innovate is curtailed.

1.1 Strategic context

Many macroeconomic trends and societal issues are driving the 
‘fourth industrial revolution’, not least the acute problems caused by 
the COVID-19 pandemic, which saw shared working spaces including 
laboratories either closed entirely or dramatically reconfigured to 
implement social distancing and hygiene guidance. 
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We should also highlight here the critical importance and relevance of the chemistry, formulation and 
materials industries to the UK, and the need to focus on the digitalisation opportunity. The chemicals 
and pharmaceuticals sectors, for perspective, are approximately the same size as aerospace and 
automotive, and enable many downstream technologies and innovations. Indeed, the sectors are 
highly innovative, outperforming the financial services sector in total factor productivity over the last 
20 years³. They support the employment of 135,000 directly and approximately 300,000 indirectly. 
However, there is a significant degree of fragmentation, with approximately 80% of the 3,700 registered 
businesses having a headcount of less than 100. This fragmentation increases the challenge of 
digital adoption – there are hundreds of laboratories and research teams in the UK with a myriad of 
experimental processes, data collection and analysis methods, which are unlikely to lend themselves 
completely to a one-size-fits-all approach.
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It also has applicability in an R&D context. A report released in 2017 - The Made Smarter Review4 - 
identified the following Industrial Digital Technologies (IDTs) as drivers of Industry 4.0:

• Additive manufacturing.
• Artificial intelligence/machine learning and data analytics*.
• Robotics and automation*.
• Industrial Internet of Things and connectivity (5G)*.
• Virtual reality and augmented reality.

The application of these technologies is beginning to deliver a wholesale transformation in the way that 
products are manufactured (fuelled in part by the Made Smarter programme funded by Innovate UK 
KTN). Their adoption is also leading to profound changes in work practices and productivity. However, 
it is unlikely that the full potential of Industry 4.0 within the chemistry-related sectors in the UK will be 
achieved without a parallel investment in a range of new innovation platforms and approaches in R&D.

All of the IDTs listed above can be applied in R&D, and in particular, those marked with an asterisk have 
direct applicability to lab-based R&D activities. Other relevant technologies, deployed to various extents 
across the industry, include advanced simulation, modelling and computational chemistry. Digital 
technologies will be used to develop ground-breaking approaches for both academic science and 
commercial R&D and innovation into the future. We call this Innovation 4.0. 

1.2 Industry 4.0

‘Industry 4.0’ has become a ubiquitous phrase amongst industry 
professionals but can mean different things to different people. 
Nominally, Industry 4.0 is the answer to the manufacturing 
productivity puzzle. 
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This Playbook describes how companies who have yet to invest (or wish to invest more to continue 
their journey) can benefit by digitising their R&D work. But ‘Going Digital’ is not easy. Many companies 
are looking with interest at how to transform their research, innovation, and product development by 
implementing digital techniques, but5:

• they don’t know where to start;
• they find it hard to make the business and investment case;
• there is no ‘one-stop shop’ for advice and guidance on adopting digital technologies in chemical  

lab R&D, and they want to partner with the best leaders and organisations in the field to drive  
the change;

• they want to implement the changes that will have the biggest impact and lowest risk. Evaluating 
the impact and risk proves to be a difficult task;

• they have found that many large IT vendors have little real insight into the world of chemical R&D;
• they need to equip their staff with the right digital skills.

These are some of the issues that we address in this Playbook. The concepts and insights we present 
have been developed in a number of large R&D organisations and leading university labs over the 
past 15 years. They are presented here to help other organisations, big and small, to understand and 
describe how digitalisation can transform their innovation practices. This common language will allow 
us to talk about digitalisation in an R&D context, distinct from the manufacturing context.

1.3 Innovation 4.0

Many of the key platforms required for Innovation 4.0 exist in 
prototype form across the UK and Europe in university labs, industrial 
R&D facilities, within the Catapult centres (e.g. Centre for Process 
Innovation), and dedicated research centres (e.g. the Materials 
Innovation Factory, iDMT). 
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To this end, we encourage the reader to pay little attention to the branding of the technologies, and 
more to their function. Furthermore, the implementation of digitised solutions will, in the majority of 
cases, require the business to analyse their current R&D processes to be able to make decisions about 
where changes should be made.

Be assured that the irony of requesting the reader to divert attention from buzzwords, whilst 
introducing a new one (Innovation 4.0), is not lost on us - we do this only to differentiate the part of the 
business we are referring to (R&D, as opposed to manufacturing)!

1.4 Cutting through the hype

For many innovators the key challenge in adopting digitised solutions 
in R&D processes is to translate the buzzwords, corporate slogans 
and jargon into tangible, costed and implementable solutions that 
make sense for their own business. 
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The outcome of Innovation 4.0 is a portfolio of new digital assets, which can be used to re-engineer the 
usual innovation process. The benefits will be any or all of the following:
 
• Speed: Launch bigger innovations faster.
• Innovation: Develop superior, but hard to make, products.
• Scale-Up: Faster and more robust scale-up - no nasty surprises!
• Roll-Out: Consistent delivery and traceability.

2. Innovation 4.0 -  
The Lab of the Future 

The promise of Innovation 4.0 is the wholesale transformation of 
industrial research, development and innovation in the chemistry 
sector, achieved by the widespread adoption of new digital R&D 
technologies and correspondingly new approaches to innovation 
work practices. 
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However, one thing that has remained fairly constant is the role of the researcher, in the way that they 
plan, analyse and conduct experiments to work towards a research objective. Often a large chunk 
of a researcher’s time is spent performing repetitive tasks, from manual execution of laboratory 
experiments to data analysis. These tasks lend themselves to automation, both in terms of robotics, 
and AI techniques for decisions making6. There is an emerging vision in the chemical sciences that 
sees a future in fully autonomous labs7.

The advantages of autonomous labs are numerous. Researchers are liberated from tedious lab work 
and freed up to apply themselves to the higher-level task of scoping, framing and deciding on good 
research questions. Autonomous systems can develop new chemical intuition and explore chemical/
formulation parameter space in more productive ways. The results from each and every experiment 
contribute to a database from which new insight can be gained. The safety of lab workers is enhanced 
as they spend more time in the office and less time in the lab (papercuts notwithstanding).

Fully autonomous labs would be a step up from high-throughput experimentation (HTE). HTE has been 
in use for at least 30 years, and has significantly improved the process of discovering new functional 
materials and drugs8,9. In HTE, large amounts of experiments are conducted by robots (and in hybrid 
approaches, simulations - or ‘virtual experiments’ - are also run). However, traditional HTE approaches 
are ‘exhaustive’ or ‘brute-force’, and their practical performance plateaus due to the combinatorial 
explosion of design space as the systems of interest become more complex. This is where advances 
in artificial intelligence (AI) can play a role. By treating the parameter search as an optimisation 
problem, AI can be used to narrow the search space through optimisation algorithms7. Although this 
approach represents a step-change in autonomous discovery, it is still limited by the application-
specific nature of the hardware and software used and is still only practical with about two to five 
experimental variables7. To take the final step towards self-driving labs that can operate independently 
from humans for long periods of time towards a specified research objective, the ‘loop’ must be closed. 

2.1 Lab automation, machine learning  
and autonomous discovery

The way we perform chemistry, materials and formulation research 
has changed remarkably over the past half-century thanks to 
the increased range of scientific instrumentation and equipment 
available to the modern laboratory. 
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Realising these closed-loop systems requires the use of machine learning (ML)10–12, a sub-branch of AI 
(ML can handle much more complexity than the techniques used previously), along with robust control 
software for scheduling and running automated experiments. 

In this ‘closed-loop’ system, experiments are automatically executed, analysed, and decisions made 
about which experiments to do next. A recent project at the Materials Innovation Factory has shown 
the promise of this approach in the area of catalyst design13.

Where are the productivity gains in autonomous labs?
A direct R&D productivity improvement is achieved when a wide range of workflows are implemented 
with lab robotics in chemistry lab work. These systems do not replace human knowledge workers, but 
instead profoundly augment the human capabilities of an R&D team. 

Let’s start with the robotic lab systems themselves. Robotic lab systems deliver a simultaneous step-
change in three independent aspects of experimental science:
 
(a) Reproducibility
Robots can, almost by definition, repeat a physical process to a high level of precision. In the case 
of a chemistry lab robot, this precision applies to all aspects of an experimental protocol: weighing 
materials, adding liquids, mixing reagents, controlling reaction conditions, measuring reaction 
conditions, measuring end-points etc. Practical experience has shown that for many manual assays, 
the adoption of a robotic protocol can deliver a three-fold to five-fold improvement in reproducibility, i.e. 
experiments run by humans in triplicate can be replaced by a single robotic evaluation. 
 
(b) Traceability
Fully digitally-controlled experiments allow the trivial logging of process conditions throughout the 
protocol. Instead of relying on human paper-based records of what happened, robotic experiments 
automatically log (with high fidelity) exactly what happened, and when. Although this data is rarely the 
desired end-point measurement, the ability to record and store in a retrievable manner the complete 
‘history’ leading up to a measurement is invaluable for troubleshooting and for experiments that seek 
to understand order-of-addition effects (a particularly important aspect in formulation).

(c) Throughput
The capacity of a lab robot is unaffected by its mood, the psychological impact of many external 
events, and fatigue. Even when a robot appears to be moving sedately, it can continue to operate in a 
highly reproducible manner, often for 24 hours per day, five or six days per week (with a day dedicated 
for maintenance work). Overall, this can deliver a markedly increased throughput in terms of the 
number of experiments per unit of time. In addition, the number of experiments required to answer a 
research question will be minimised by the analytics performed on the high-fidelity datasets produced 
by the robotic platform.
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All three of these factors are enhanced simultaneously and independently by the adoption of lab 
robotics. Loosely, we can argue that the total productivity increase would then be a multiplication of the 
increase in productivity in each factor, i.e. taking a factor of two for each would lead to an overall eight-
fold (i.e. 2 X 2 X 2 = 8) improvement in productivity of the experimental protocol.
 
Now, if we include the ‘autonomous’ aspect, i.e. the AI/ML system that generates decision-making 
capability and control of the robotics, there is an additional improvement of productivity. One of 
the unexpected upsides of implementing automation in lab activities is the fact that a high-quality 
experimental data creation process, with well-controlled set-up and high-quality data capture, removes 
a well-known bottleneck in the application of AI – namely the requirement in almost all real ML and AI 
applications to manage ‘dirty-data’14.

In many practical R&D cases in which a predictive model is the target, it may well be more productive 
to create a new robotic + AI workflow in parallel to existing manual activity rather than try and collate, 
curate and cleanse existing legacy data of questionable provenance and quality.  

Robotic experimentation also forces R&D staff to address and record key aspects of the data creation 
process: how the data is gathered, its provenance, what the different parameters mean, etc.

Robotic paradigms
There are two ways to implement robotic experimentation. The first is to put together a fixed or 
semi-fixed (modular) array of robotic equipment that will execute a sequence of experiments/
characterisations (traditional high-throughput experimentation approach). Usually the materials and 
samples will be loaded in at one end and processed by the array. This approach is more relevant if 
the R&D processes involve a set of standard tests that need to be executed often, and do not vary 
too much between sample/product types. A degree of flexibility can be retained if needed, by using 
interchangeable units, however, if the testing requirements vary too much across a period of time, this 
paradigm will become unfeasible.

The alternative paradigm is to use a mobile robot13, which mimics a human researcher in that it will 
move around the physical lab space, prepare samples and run experiments. This approach requires 
some modification of the lab space but still allows parallel human participation. The main difference, 
of course, is that the mobile lab robot can work constantly for days at a time, when coupled with an AI 
system for decision-making. This paradigm makes less sense if the experiments or tests required do 
not vary or are unlikely to vary over time.
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These technologies have recently begun to appear in consumer devices – such as the smart-plugs and 
voice command devices available from Google, Apple and Amazon. 

The same approach can also be deployed throughout an R&D environment16. In a lab, small electronic 
laboratory devices, such as balances, stirrers, thermometers, pH meters, barcode readers etc, are 
now able to be digitally connected and integrated into Wi-Fi enabled IT systems. When deployed in a 
coherent way, these devices allow a complete digital lab bench to be built. An R&D scientist can work 
at a digitised version of their usual lab bench to create digital data at source. This is data which has not 
been manually inputted, e.g. typed into a spreadsheet or written in a notebook, but captured from the 
devices they are working with directly to a time-stamped data file – all without having to change their 
individual work-practices.

In addition, equipping lab staff with mobile technologies, communicating with the equipment in the lab, 
can alert them to changes in conditions in lab experiments etc, which can help the scientist manage 
their own productivity and time.

It should be noted that there are a number of outstanding challenges involved with this approach –  
the digitised chemistry lab bench – which include the lack of widely adopted interoperability standards 
for lab equipment, poorly understood user experience requirements for lab chemists, data privacy 
constraints and GDPR implications which are implicit in the creation of personally identifying data by 
lab infrastructure.

2.2  Internet of Things (IoT)

The widespread deployment of high computing power, low energy 
usage, digital sensor and communication devices has become 
known as the Internet of Things (IoT)15. 
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Third parties can be contracted to provide these services, and in many cases provide some analytical 
tools. However, difficulty in accessing high-quality R&D data is one of the core issues faced by data 
scientists. This needs explicit attention, and is not best served by re-badging enterprise software 
solutions. Innovation 4.0 needs data management platforms which are designed from the ground up to 
record domain relevant meta-data as well as process and end-point data.

2.3 Cloud data management

Cloud computing is a solution for companies who do not have 
sufficient in-house IT expertise to host their own datasets and 
manage their computing infrastructure17.
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These hybrid science-AI approaches are not off the shelf, nor are they trivial applications of off the shelf 
AI-ML techniques. They do not rely on so-called Big Data, but rather they rely on very good quality small 
data and the encoding of pertinent physical insights and laws.

Technological applications of AI require explicit consideration of ‘explainability’ and trust. Here the 
provenance provided by world-class academic science becomes very important.  

The expression artificial intelligence, or AI, is a widely used and general term that refers to hardware or 
software platforms that are able to undertake complex tasks which usually require human intelligence 
or decision-making skills. The field has been researched by computer scientists, neuroscientists 
and statisticians since the 1950s. Early applications tended to focus on rules-based programmes 
that could implement some rudimentary decision-making processes in highly constrained contexts. 
These earliest forms of AI included ‘expert systems’, which were an attempt to capture what human 
specialists knew in order to make expert decisions.

Complex creative tasks, such as those involved in scientific discovery and product innovation, are 
ill-suited to a rules-based AI approach. Real-world scientific and technical challenges are often too 
complex to be solved by computer programmes that follow sets of rules written by experts. What 
experts tend to do is ask a series of complex nested questions, often which loop back to the start of 
the problem during the unfolding process of discovery or innovation.

2.4 Artificial Intelligence and Machine Learning

The use of advanced data science techniques, such as artificial 
intelligence (AI) and machine learning (ML), which are augmented by 
the incorporation of domain-specific scientific insights to constrain 
search strategies and exploration algorithms. 
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Machine learning (ML) is a subset of AI which is not rules-based a priori. As its name suggests, 
machine learning seeks to create a computer programme which has learnt something about the 
structure of the problem through training. Typically, this approach requires a significant set of training 
data, on which the ML algorithm is built. The reason that ML is attractive is that it uses a computer to 
create the ‘rule set’ rather than a team of human experts. This means that pragmatically the cost of 
starting a project can be lower, and more complex and subtle problems can be tackled (and solved). 
Machine learning was defined by the American computer scientist Arthur Samuel (1901 – 1990) as 
the: ‘field of study that gives computers the ability to learn without being explicitly programmed’.

Technological applications of AI require explicit consideration of ‘explainability’ and trust. It is  
here where the provenance provided by world-class academic science becomes very important.  
The reader is directed to the references for in-depth reviews and examples of machine learning in 
chemistry and formulation7,10,12,18.
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One of the main advantages of simulation is the ability to probe length and timescales inaccessible 
to even the most cutting-edge experimental equipment. Thanks to recent advances in computing 
architectures (e.g. HPC and quantum computing) simulations can be run for longer and/or with more 
moving parts. New methods of structuring simulations allows for the extrapolation of results to higher 
and lower length and timescale, boosting their explanatory power. New ‘apps’ and front-ends are under 
development to make it easier for more and more researchers to deploy simulation techniques as part 
of their day-to-day research, without having to become experts in coding or cloud computing. Virtual 
experiments can either be run on an ad-hoc basis to aid decision making, or as part of the ‘closed-loop’ 
autonomous discovery system outlined in section 2.1.

2.5 Virtual experiments  
(computer simulation and modelling) 

In addition to physical experimentation, the use of virtual 
experiments to gain insight into a chemical system of interest are 
increasingly used as part of the innovation process19,20.
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However, the language and relevance of these are heavily focused on (discrete) manufacturing 
operations. Innovate UK KTN, working with partners, identified the need to develop a framework for 
understanding the implementation of Industry 4.0 in an R&D environment  i.e. Innovation 4.0. It is 
important to note that the major changes in both technological and managerial approaches that are 
required to fully implement Innovation 4.0 do not need to be applied in one go. Innovation 4.0 will not 
arrive with a Big Bang! Moreover, attaining the highest level of digital ‘maturity’ need not be the goal. 

Here we outline a framework for understanding the stages of complexity involved in adopting 
Innovation 4.0. The levels build from easy-to-implement digital lab tools (Level 1), through a range of lab 
automation approaches, specialised machine learning (ML), artificial intelligence (AI) and simulation 
platforms (Levels 2-3), to fully integrated, digitised, and autonomous R&D (Level 4). 

3.0 Digital Maturity Framework

Now we consider the implementation of these technologies and 
approaches. There are numerous tools and frameworks available 
under the banner of Industry 4.0 (e.g. 4M) to help companies 
understand the opportunity and identify ways to implement it. 
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LEVEL Physical experiments Virtual experiments Analytics

Level 0 Experiments are run by 
hand, with conditions and 
results recorded by hand 
or written to local data files 
which remain distributed 
on individual machines or 
notebooks. Only simple 
office software file storage 
methods are used.

Minimal, if any, use of 
simulation and modelling 
techniques for generating 
an understanding of 
the material/chemical/
formulation properties.

No deployment of AI or 
ML methods on data. Only 
simple offline analysis 
tools are used. Design 
of Experiments (DoE) 
methods underutilised.

Level 1 Direct digital capture of 
information from manual 
workflows to a secure 
repository. Experiments 
are run by hand, but 
conditions and results are 
automatically recorded 
and stored in a central, 
secure repository, allowing 
enhanced access. (IoT, 
data loggers, sensors, 
integrated lab notebook 
systems).

Some use of simulation 
and modelling techniques 
for understanding the 
material/chemical/
formulation properties, but 
manually executed and/
or conducted on a project-
by-project basis. No direct 
integration with lab data.

DoE methods used 
to inform experiment 
planning.

Level 2 Automated lab robotics 
with experimental data 
management. Execution 
of high frequency, time-
consuming tasks with high 
reproducibility.

Simulation and modelling 
techniques integrated with 
high fidelity, robotically 
generated lab data.

AI and ML methods 
deployed on the high 
quality robotically 
generated datasets for 
enhanced insight and 
experiment planning.

Table 1: High-level descriptions and comments of the different levels of ‘digital maturity’
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LEVEL Physical experiments Virtual experiments Analytics

Level 3 Highly integrated workflow management. A seamless 
blend of digital data capture, lab robotics, simulations 
and flexibly-deployed significant computational 
resources. Physical and virtual experiments are 
conducted in a single workflow.

AI and ML methods are 
informing the experimental 
direction, but the human 
researcher is still in 
ultimate control of the 
workflow, defines the 
end-point and provides 
validation input.

Level 4 Algorithmic control of closed-loop workflows. Autonomous control for discovery, 
optimisation, and routine testing. 

Application of ‘reasoning AI’ methods in formulating hypotheses and designing, and 
executing, physical and/or virtual experiments.

Research questions are posed by humans, but the experimental workflow is created 
and executed entirely by AI and lab robotics. 
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Level 0
We suspect that Level 0 will be familiar to quite a number of readers, either because it describes their 
current research practices or because it describes their practices from the not so distant past. The 
main productivity loss at this level is the lack of centralised and structured data storage, which prevents 
the implementation of analytics and increases the need for experiments to be repeated in the event 
that the original experimenter leaves the organisation. Moreover, because the experimental account is 
significantly subjective, the traceability is sub-optimal.

Level 1
To graduate to Level 1, experimental data generated by manual experimentation should be captured 
and sent to a centralised and structured repository. This can be done using an electronic lab notebook 
as long as minimal amount of information is input manually by the user – the important thing here is 
that the lab instruments produce the data and metadata automatically and it is stored immediately. 
Simulations and modelling should be a regular part of project workflows (if applicable). For experiment 
planning, DoE methods should be used.

Level 2
At Level 2, most if not all of the physical experimentation burden should fall on robotics – either in 
the modular array paradigm or the mobile robot paradigm. This produces higher-quality datasets that 
allows the productive deployment of AI/ML methods and the subsequent integration with simulation 
and modelling methods. The role of the research staff becomes more about research direction and 
workflow planning, and less about actually performing the experiments themselves.

Level 3
Level 3 requires an integration between the robotic experimentation platform (either mobile or static) 
and simulation and modelling methods, as well as a more prominent role for AI/ML in defining the 
experimental direction. Research staff retain ultimate control at this level; however, the workflows are 
largely defined by AI.

Level 4
Level 4 is the ‘closed-loop’ autonomous system that, in real-time, conducts and plans experiments in 
a continuous loop until an acceptable answer to the research question is reached. This represents the 
pinnacle in computer and robot-aided discovery and product development for chemistry, materials and 
formulation R&D. 

3.1 Notes on the levels
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It should be viewed as illustrative, and not prescriptive. Level 4 maturity does not have to be the 
ambition for every organisation, and the progress through the maturity levels can be more flexible than 
the rubric implies.

The specific instrumentation, robotic equipment and software required for any given lab will vary from 
organisation to organisation, but the high-level concepts described in this table should apply to all. 
Companies should be able to look at these descriptions and begin to figure out what level of digital 
maturity they are at - and what the next level might look like.  

It is important to note that innovators should not think that they need to digitally mature every 
single one of their R&D workflows simultaneously - it is possible to choose the workflows that most 
readily lend themselves to automation and start from there. For example, if one workflow involves 
experimentation on only one or two pieces of equipment - e.g. a liquid and powder dispenser, a 
sonicator (for dispersing powders in a liquid), and a rheometer (for measuring flow properties) - this 
may be digitally matured in isolation from other workflows, perhaps as a test case to prove the concept 
of Innovation 4.0 in the company or organisation. Other workflows that involve sample transport 
between rooms, e.g. for microscopy or electrochemical testing, or manipulation that requires a high 
degree of dexterity (not provided by the current state-of-the-art in robotics), can be matured later. 
Hence, digital maturity can be applied either to individual workflows or the organisation as a whole, 
taking into account all R&D activities.

It is also possible that maturity is enhanced along one of the domains, e.g. physical experimentation, 
whilst the others are left alone. However, at some point, the maturity in the other domains may need to 
catch up. For example, suppose you have a robotic experimentation platform producing mountains of 
high-quality data. In that case, it does not make much sense if these datasets are not being analysed 
by state-of-the-art AI/ML methods and/or being used to inform relevant simulation and modelling 
activity. Indeed, to progress to Level 3, the physical and virtual domains should be integrated, and to 
progress to Level 4, further integration with AI/ML methods for decision making is required.

3.2 Discussion 

In general, the Digital Maturity Framework aims to be an antidote to 
the manufacturing-focused reference material already published, 
and to help companies accelerate their digitalisation journeys – by 
providing a common language for defining their starting point, and 
their ambition. 
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4.1 The urgency of chemical science research 

The chemical sciences, of course, have a great deal to contribute towards solutions for many 
outstanding societal challenges (climate change, living standards, health outcomes, food supply 
etc). A chemical science company’s capacity to contribute is dependent on many factors, including 
employee availability, skills, access to finance, access to facilities and manufacturing technologies. 
When it comes to a typical product launch, the bottleneck is likely to be in the initial discovery/
invention/design and scale-up phase, which requires weeks and months of experimentation, 
computer modelling, testing, which often proceeds in a circular manner until the product is ready 
for manufacture. The need for new materials, pharmaceuticals, consumer products could be met 
sooner if this process was streamlined, automated, and scaled.

4.0 The Opportunities and the Business 
Case(s) for Change 
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4.2 Resilience

The COVID-19 pandemic of 2020 significantly disrupted the performance of chemical science research 
in the UK, through a combination of enforced physical distancing, staff absenteeism (self-isolation) 
and the same disruption to supply chains. Industries less affected by the pandemic have been those 
who rely much less heavily on human presenteeism at specific locations, e.g. labs and offices, allowing 
work to continue from home. Working from home is, of course, not feasible for researchers involved in 
lab-based work – however, under Innovation 4.0, laboratories would contain automated experimental 
platforms requiring little human presence.

Beyond the pandemic, resilience will remain an important issue in the face of regulatory changes, 
reformulation requirements, the growth of personalised medicines and other consumer products as 
well as the impact of overseas competition. The UK has the right set of expertise that can make the UK 
the go-to place for digitalised innovation.

4.3 Supply chains and material variability 

Products that contain a large number of components or ingredients which are processed in often 
convoluted ways are particularly susceptible to slight changes in the properties of raw materials. These 
can often lead to quality control issues. A digitised laboratory will be better equipped to document, 
predict and troubleshoot these issues, especially if properly integrated with a digitalised supply chain.

4.4 Scale up 

Scale-up exercises tend to be the most troublesome aspect of product development in chemistry and 
formulation. A digitally mature R&D function will be better equipped to determine the scale-up rules for 
new products and optimise the transfer of knowledge from lab-based R&D to full-scale manufacturing, 
and encode these rules in a way that allows AI methods to derive useful insights.
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5.1 Human factors

The introduction of Innovation 4.0 approaches into an existing R&D workforce is non-trivial. 

Some will view the encroachment of robotics and AI into the realm of R&D as a threat to their 
employment or career prospects; however, it is the prevailing view that these technologies will augment 
rather than replace the work of scientists, as human intervention will be required to provide validation 
of experimental results, research direction and knowledge generation. Scientists will be able to 
dedicate more energy to the intellectual exercises involved in knowledge generation due to AI-driven 
robotic experimentation platforms taking over much of the physical tasks. 

There are a number of critical micro-level and macro-level changes which need to be made for 
successful implementation of Innovation 4.0. For researchers used to driving their programmes ‘one 
experiment at a time’ or with ‘paper lab-books’, the impact can be marked. Robotic platforms, DoE, 
virtual experimentation and AI/ML imply a major disruption to the working style of many scientists. 
Digital skills will become much more important in undergraduate and postgraduate education, and 
continual professional development will be required to upskill the workforce.

Another interesting pitfall to be aware of is that as R&D becomes more automated and streamlined, 
the research culture may prioritise simple, automatable workflows over more complex, manual ones, 
which may have the net effect of discouraging innovation rather than promoting it21. It may turn out to 
be a naive assumption that because machines will be doing all of the simpler, repeatable drudge work, 
scientists will spend more time doing the complicated stuff - perhaps not much of the complicated 
stuff will get done at all. To counter this, it will be important that digitalised solutions provide for new 
modes of working, rather than exclusively speeding up older ones. 

Other emergent issues are the lack of user-friendly interfaces for lab work and data analysis (AR/VR 
has a role to play here), the lack of interoperability standards which allow machines (often of differing 
manufacturer) to communicate with one another. The impact of systems that have some degree 
of agency or rely on autonomous algorithms for part of the decision making process. Larger scale 
organisation of work will also be impacted.

5.0 The Challenges
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5.2 Fragmentation 

The chemicals sector is significantly fragmented, with approximately 80% of the 3,700 registered 
businesses having a headcount of less than 100. This, coupled with the variation in experimental 
methods, data collection and analysis requirements, creates a great challenge for digitalisation. 
Platform technologies will overcome some of this challenge. Still, at some stage of the sector’s digital 
evolution, a certain degree of democratisation will be required to allow companies to modulate, 
adapt and tailor the digital technologies for their individual needs. This will be greatly assisted by the 
development of, e.g. data/communication standards and the upskilling of chemists and formulators in 
digital techniques.

5.3 Knowing where to start 

Companies invariably take their own paths when it comes to investing in infrastructure, skills and 
workflows, and will be at different stages of a digitalisation ‘journey’. We have written this Playbook 
to set out a framework for understanding what digitalisation can do for a company’s R&D and how 
mature a particular company might be at the time. Hopefully this will serve as a way to identify what 
a company might do to take another step on that journey and become more mature. Innovate UK 
KTN can help with this by identifying and introducing you to some key stakeholders and/or solution 
providers relevant to the elements of the R&D you want to digitalise, whether that’s increasing your use 
of virtual experimentation, the adoption of a robotic experimentation platform, or simply connecting 
your lab devices to automatically record and store experimental information. Generally there isn’t a 
one-size-fits-all solution to a company’s digital aspiration, but by working with the right people tailored 
solutions can be developed.

5.4 Knowing who to engage with 

The starting point for many companies will be to engage their IT teams in the implementation of digital 
technologies. This might lead to engagement with the big IT vendors who have little understanding of 
the nature of chemical science innovation. A better path would be to engage directly with the solutions 
providers that do have a working knowledge of chemical science innovation where digital technologies 
can fit in. This will require a large scale socialisation and democratisation exercise whereby companies 
and solution providers can work together to co-create the technology ‘products’ or ‘assets’ that can be 
widely adopted at an affordable price, especially in the area of lab robotics22. This may require further 
investment in testbeds and open access facilities.
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In this regard, Innovate UK KTN is here to continue the conversation, connect you with a community of 
innovators actively putting Innovation 4.0 into practice and provide introductions to digital technology 
providers and the wider innovation ecosystem in the UK. If you would like to have this conversation, 
please reach out to us – we’re here to help!

6.0 What Next?

We have written this Playbook to be the beginning or part of a 
conversation about what R&D digitalisation means for your business 
or organisation. 
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Company background
Founded in 1978, Domino Printing Sciences is a world-class provider of coding, marking, and digital 
printing technologies. With more than 40 years’ experience working at the heart of the industrial and 
commercial printing markets, Domino has established a global reputation for excellence and innovation 
within its core technologies, worldwide aftermarket products, and best-in-class customer service. 
Domino’s continued growth is underpinned by an unrivalled commitment to product development.

The digitalisation opportunity
We are seeing an increasing demand for new ink products caused by the release of new printer 
platforms, new customer applications being required and an ever-changing regulatory and supply 
chain landscape. Reducing the time to market for new inks, with no compromise on quality, is 
therefore critical to ensure continued business success. The digitisation of our ink development 
process has been identified as a way of innovating the way we develop our products with successful 
implementation allowing us to increase productivity within R&D. To achieve this, we have set ourselves 
a goal of introducing and implementing automated equipment and formulation workflows to our ink 
design process.

Adopting digital technologies
As a first step, we identified the key properties which are routinely measured when designs are tested 
and sought to introduce commercially available equipment which had autosampling capabilities. As 
an example, for every formulation that is produced a Chemist will measure viscosity and density. To 
save time and effort, we introduced a viscometer which has the capability to run multiple samples via 
an autosampler. We have estimated that we have saved five minutes operator time per sample and, 
as it can be run unattended overnight, we can run many more samples than would have been possible 
using the conventional equipment we had. This has led to equipment payback within six months of 
introduction. 

The next step has been the introduction of a robotic formulation platform to allow us to perform high 
throughput workflows. We installed the equipment into our laboratories in Spring 2020 and have since 
trained a group of super-users how to use the equipment and design workflows. We took this approach 
to ensure that, as well as effectively using the robotic platform, we were diffusing the knowledge and 
skills across the wider team. Since its introduction we have produced approximately 1,750 samples, 
including formulations for all our ink technologies. The equipment is now being used to augment 

7.0 Case Study

Domino Printing Sciences has kindly provided the following case 
study, to highlight the opportunity, benefits and challenges of 
digitalising their R&D activities.
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the work performed by our Development Chemists in their new product development activities. We 
are targeting an efficiency saving of 10% within our product development cycle which, for a typical 
development project, will result in us getting a product to market around two months faster. We are 
also expecting a decrease in the experimental ‘touch time’ for our Chemists and are aiming to reduce 
this by a minimum of 20%. This should free around 1,500 work hours across the team over a year 
which can then be used for other project activities. Along with these tangible benefits, we are hoping 
for an increase in the amount of innovation capacity within the team as our Chemists find more time 
and space to explore novel chemistries and ways of working.

We also had to consider how to best store and use our data. After searching for commercially available 
electronic lab notebooks, we decided to create and build our own databases using our internal 
software development capability. We are currently in the process of creating different applications to 
enable users to view the data that we collect, along with standard reporting and modelling tools to help 
us get the most from the information. The decision to do this internally was driven by the fact that none 
of the available tools exactly suited our requirements. Although this has been a large piece of work, 
we have noticed a rapid uptake of the software in the department as our Chemists have been heavily 
involved in the design and creation process. 

Benefits
Utilising automated pieces of equipment to produce and test trial formulations has been incredibly 
useful to maintain experimental throughput during the COVID-19 pandemic where we have had to 
significantly limit occupancy numbers in our laboratories.  

Our aim is for automated workflows to become a routine part of our product development process 
during 2021. We will be measuring the number of samples produced each month and overlaying this 
with effort saved and knowledge gained. We are also exploring how to assess the cultural change that 
we expect this equipment to bring and will be looking to measure staff motivation, sharing of best 
practices and the increased innovation capacity and creativity within the team.

What next?
Uptake of equipment has been really positive to date, and we are confident that this will transform 
the way we perform our ink development activities. We will be using the equipment as part of 
our upcoming research and development activities in new ink design projects as well as some 
reformulation activity. We will also use the equipment to help us explore the design space of our 
products and evaluate novel materials. This will enable us to extend and expand our formulation 
capabilities and deliver innovative products for our customers.

We will continue to explore digitisation opportunities over the next year and will be looking for solutions 
to introduce automated ways of performing some of the more complex measurements we make 
including colour, adhesion and resistance properties. Unlike the existing measurements, these all 
require a film of ink to be deposited and cured before a property measurement can be made.
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A final focus will be to explore how we can get more value from the data that we generate. We will 
be investigating how data analytics and machine learning approaches could be used to augment our 
design intelligence.

Domino UK’s Ink Automation Platform lead said:
“Our new automated formulation platform removes any hesitation to make lots of samples, allowing us 
to change how we approach our formulation experiments. The precision, accuracy and speed of robotics, 
coupled with the creativity of our scientists, is already yielding some really exciting results.” 
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The first draft of this Playbook was written by Dr Matthew Reeves (Innovate UK KTN) and  
Prof Matt Reed (Materials Innovation Factory, University of Liverpool). It has benefitted from detailed 
comments by Michael Burnett, Steve Fletcher, and Peter Clark. It has benefitted from detailed 
comments from the wider KTN team: Michael Burnett (Knowledge Transfer Manager for Process 
Manufacturing), Peter Clark (Head of Chemistry and Industrial Biotechnology), and Steve Fletcher 
(former Head of Chemistry and Industrial Biotechnology).

The idea for writing the material came from an Innovate UK KTN organised event in February 2020: 
Going Digital - The Impact of Computational Tools on Chemical R&D, held at the Hartree Centre, 
Daresbury.
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The Innovate UK KTN team received funding from Innovate UK KTN Materials & Manufacturing Team 
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Reed working on this Playbook.
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