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Abstract

Engineering structures are often very complex and difficult to analyse for their dy-

namic, or vibrational, behaviour. It is common practice to divide a complex structure

into a number of components, or substructures, so that each of these can be analysed

individually using whichever method is the most convenient. In this way, by applying

structural assembly analysis methods, it is possible to predict the dynamic behaviour

of the whole assembled structure. Coupled structure analysis is a standard tool in

structural dynamics when dealing with linear structures. Many different methods for

assembling linear structures have been developed and are usually referred to as ”cou-

pling techniques”. However, many practical mechanical structures exhibit a degree

of nonlinearity due to the complex nature of the joints, microclearances in slides or

bearings, nonlinear damping and material properties. So existing methods cannot

be applied. The aim of this work is to advance developments in analytical coupling

methods for prediction of the response of complex nonlinear structures.

The work initially reviews existing techniques of analysing linear and nonlinear

structures. First, a time-domain analysis formulation and the computational aspects

of the technique are described. Then, a frequency-domain method of analysis is

introduced. Different coupling techniques for the solution of linear problems are

investigated and presented in a unified notation. The frequency response function

coupling method often used in linear applications is identified as a possible method

applicable to nonlinear structures through the introduction of a describing function

method that can deal with the representation of the nonlinearities involved in such

systems.
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The basic FRF coupling algorithm is modified by using the describing func-

tion. Then, the combined formulation, namely harmonic nonlinear receptance cou-

pling approach (HANORCA) is used as a basis to derive a multi-harmonic nonlinear

receptance coupling approach (MUHANORCA). In parallel with these new cou-

pling methods, models of a number of nonlinear elements are also developed. The

MUHANORCA analysis method is then used to predict the behaviour of simu-

lated multidegree-of-freedom coupled systems with strongly nonlinear components.

Finally, the MUHANORCA method is used to analyse two experimental systems,

one a stationary structure with a cubic stiffness nonlinearity and the other a rotating

structure with polynomial stiffness nonlinearity. The limitations and difficulties of

some of the problems encountered during these experiments are discussed in details

and the control technique used to obtain the experimental data is also discussed.

The FRFs generated by MUHANORCA are in good agreement with those

measured on the test rigs. From these case studies it is concluded that the methods

developed are capable of accurately predicting the dynamic behaviour of stationary

and rotating structures with pronounced nonlinearities.
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Nomenclature

Roman letters

t time

i unity imaginary number

Roman letters (vectors and matrices)

[C] viscous damping matrix

[D] structural damping matrix

[I ] identity matrix

[K] stiffness matrix

[M ] mass matrice

Time Domain

{f} internal nonlinear forces vector

{f} external excitation force vector

{x} displacement vector

{x}m mth displacement response order

h impulse response function

y
kl

inter-coordinate relative displacement response y between coordinates j and k

{ẍ} acceleration vector

{ẋ} velocity vector

Frequency Domain

G multi-harmonic describing function

ν describing function

{X̄} magnitude of harmonic displacement

{F} complex harmonic nonlinear function

{Ã}(qr) approximate variable A considering harmonics up to qr
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{F} complex harmonic force

{X} complex harmonic displacement

{Y } inter-coordinate complex harmonic displacement

C, C̄, C̃ connection DOFs of assembled system

c, c̄, c̃ connection DOFs of collected substructure

Hm mth order frequency response function

Hnm,Hn experimental higher-order frequency response function

Hn ideal higher-order frequency response function

I internal DOFs of assembled system

i internal DOFs of collected substructure

Q set of harmonics considered in the approximated response

R DOFs of assembled system

r DOFs of collected substructure

r number of harmonics considered in the approximated response

s number of harmonics considered in the approximated nonlinear force

xl slip limit deformation

[
∑

] singular values matrix

[U ],[V ] orthonormal matrices

[Z] impedance of the assembled system

[z] impedance of the substructures

c̄d,c̃d connection DOFs of collected substructure where the response is required

c̄d,c̃d connection DOFs of collected substructure where the response is required

c̄f ,c̃f connection DOFs of collected substructure where the force is excited

c̄u,c̃u connection DOFs of collected substructure where the response is not required

c̄u,c̃u connection DOFs of collected substructure where the response is not required

Id internal DOFs of assembled system where the response is required

Id internal DOFs of assembled system where the response is required

id internal DOFs of collected substructure where the response is required

id internal DOFs of collected substructure where the response is required

if internal DOFs of collected substructure where the force is excited

iu internal DOFs of collected substructure where the response is not required
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iu internal DOFs of collected substructure where the response is not required

Greek letters

ω frequency

φ phase of harmonic displacement response

ψ phase of inter-coordinate-relative harmonic displacement response

τ ωt

τ time

δt time step interval

Other symbols

− magnitude of a complex variable

˜ approximate variable

Subscripts

j general coordinate

kl inter-coordinate

m harmonic order

Abbreviations

BBA building block approach

FEM finite element method

FRF frequency response function

HAIM harmonic nonlinear impedance coupling approach

HANORCA harmonic nonlinear receptance coupling approach

HODEF higher-order describing function

MDOF multiple degree-of-freedom

MUHADEF multi-harmonic describing function
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MUHAIM multi-harmonic harmonic nonlinear impedance coupling approach

MUHANORCA multi-harmonic harmonic nonlinear receptance coupling approach

NLBBA nonlinear building block approach

SDOF single degree of freedom

SVD singular value decomposition
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Chapter 1

Introduction

1.1 Introduction to the Problem

The ongoing demand for lighter structures and higher-speed machinery has intro-

duced many vibration problems that can compromise the performance and reliability

of the structures involved. The acceptable behaviour of a structure can be maximised

by anticipating any performance-related problem during the design process. Design

considerations in vibration involve adjusting the physical parameters of a structure

to meet a required level of performance and reliability. Thus, in the design process, it

is often desirable to be able to predict the dynamic response of a structure accurately

under certain excitation conditions or to understand the effects of structural modifi-

cations in order to be able to make changes to solve possible vibration problems. In

recent years, a range of techniques has been developed to help dynamic design and

vibration analysis of complex structures, and these techniques represent the structure

through models so that the dynamic properties of the structure can be studied. These

models can be broadly categorised into Spatial Models, Modal Models and Response

Models.

The spatial model is a theoretical model in which the differential equations of

motion are obtained by a variety of methods. The two most prevalent methods are the

transfer matrix approach used in some works [75, 76, 77] and the stiffness approach

used in many others works [20, 44, 90]. One of the stiffness approaches is the finite

element method (FEM) which has become the most popular modelling approach to

20
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obtaining a spatial model. Although a complex structure can be modelled by FEM,

the model derived has to be based on certain idealised assumptions and element rep-

resentations and this results in an approximated model of the real structure and also

generally requires the assembly and solution of large-order sets of ordinary differential

equations for complex structures.

The modal model is also a theoretical model which is obtained by extracting dy-

namic properties from analytical or experimental frequency response function (FRF)

measurements such as natural frequencies, mode shapes and damping ratios. Al-

though the model obtained is much closer to the real assembly, called the physical

model, it also shows discrepancies when comparing the vibration results between an-

alytical and physical models, due to the fact that the mathematical model is derived

from incomplete measurements and measurements with noise.

The response model is an analytical or experimental model characterised by

the ratio of a response of the structure to the sinusoidal force. This model is often

considered more promising for the representation of the physical model since it does

not have any approximations due to idealisation or incompleteness of the measure-

ments. However it still presents the problem of noise and systematic errors in the

measurements.

Although the response model can be applied to a very complex structure, it is

incompatible with the design process where design changes have to be made in pro-

totypes and then evaluated until acceptable performance is obtained. Furthermore,

most complex structures are obtained by assembling components or substructures

designed by different engineering groups, at different times and in different locations.

It is desirable, therefore, to be able to use an approach where such designs and mod-

ifications may proceed as independently as possible and accurate predictions of the

total system behaviour obtained. The basic approach which has to be applied with

this aim in mind is related to substructure analysis. In substructure analysis it is

common to break down the whole structure into a number of components, or sub-

structures, each of which is analysed individually using whichever method is the most

convenient. The total system response is then obtained by appropriately coupling

the dynamic characteristics for each component. This technique is very interesting
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for industry since it spreads out the analysis and parallels the design process across

different engineering groups leaving to each group the decision of which model best

represents their components. Thus, engineers responsible for evaluating the total sys-

tem dynamic performance can vary single components in the design and determine

the effect of each change on the performance of the complete system with a high

degree of confidence before the system is fully assembled.

Good results have been obtained with substructure analysis when the assem-

bled structures are basically linear as shown by Urgueira [131]. On the other hand,

improvements are required for other cases that are basically composed of linear sub-

structures and a few nonlinear components mainly concentrated at the joints.

Substructure analysis of linear mechanical systems has been well known since

the 1960s with the analytical work on the development of the Receptance Coupling

concept published by Bishop and Johnson [10], and later on in the work on Component

Mode Synthesis published by Hurty [61] whose formulation was simplified by Craig

and Brampton [24].

Many different substructure methods for assembling linear structures have been

developed and are usually referred to as ”coupling techniques”. Examples are impedance

coupling, receptance coupling and coupling using measured data [32, 67, 100, 131].

Most of the analytical methods available to extract the spatial, modal and re-

sponse models of structures are based on the assumption that the structure to be

analysed is linear. The resultant models are frequently used for examining the dy-

namic response of linear structures [6, 31]. The accuracy of the dynamic response

when using the spatial model depends heavily on the system idealisation and element

representation whereas the modal model depends on the completeness of the original

modal database of the structure. In spite of the fact that mathematical models can

never completely describe real structures, due to model simplifications during dis-

cretisation process and parameter inaccuracies, they can be improved to give better

representation of a structure under relevant conditions by applying a correlation of

the analytical data with the experimental data, followed by a process known as model

updating [98]. However, sometimes these mathematical models can not be improved if

structural oddities, including nonlinearities, often present in most engineering struc-
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tures are not incorporated into the model. For these structures the model can only be

improved by including the structural oddities, therefore introducing nonlinear models.

Although there are many sources of nonlinearity, most practical mechanical structures

exhibit a certain degree of nonlinearity that can be found locally or globally. Global

nonlinearity can be found in the stiffness of structures with large amplitude of vibra-

tion and/or nonlinear material properties. On the other hand, due to the nature of

many structures which have been made up through the assembly of many components,

local nonlinearities can be found in the complex stiffness in joints, microclearances

in slides or bearings and nonlinear damping. If the nonlinearity can be localised and

identified, a better definition of a model for the structure will be possible by defining

a separate appropriate model for the nonlinearity and for the linear structure and

then by combining both models to obtain the model of the complete structure.

In contrast with the well-known methods for linear structures, the methods

available for analysis of nonlinear systems are generally very complicated, restricted

to specific kinds of nonlinearity, applicable to systems with only a few degrees of

freedom and incompatible with experimental modal analysis techniques [57], [65].

With the increasing interest in nonlinear structures, current efforts are being

directed towards developing approaches to obtain nonlinear models. Although it is

possible to obtain a nonlinear spatial model by using FEM for complex structures,

the resultant analysis generally requires the assembly and solution of large order sets

of ordinary differential equations. Yao [141], applied the FEM to obtain a reduced

nonlinear spatial model. The large system of equations usually obtained with FEM

is reduced to a very small set by applying a special transformation matrix. However,

the method is not suitable for all dynamic problems especially when the excitation

is random or transient. Nelson [90] applied the component mode synthesis method

to reduce the order of the spatial model and then to obtain the response of non-

linear multi-shaft rotor-bearing systems. Although the analytical procedures of the

standard methods available for obtaining the modal model can be applied in nonlin-

ear modal analysis, they are based on the theory of linear systems and sometimes

fail to give correct results when the system presents evidence of significant nonlinear

behaviour. Various modal synthesis approaches have been applied to nonlinear dy-
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namic analysis [87, 92], but these approaches still seem very costly for large nonlinear

systems. Improvements in non-linear modal analysis have been achieved by Jezequel

[64] extending the linear modal synthesis method by utilising the nonlinear modes

initially introduced by Rosenberg [105] and later discussed and generalised by Szem-

plinska [119, 120]. This improvement however, cannot be applied to structures with

close natural frequencies. On the other hand, Watanabe and Sato [136] succeeded

in obtaining a first-order nonlinear response model by extending a linear coupling

analysis method called the Building Block Approach (BBA) to a nonlinear coupling

analysis method called the Nonlinear Building Block which uses a frequency-domain

describing function to model the localised nonlinearity.

In general, there are many conditions that can influence the choice of the best

model to represent a structure and therefore the dynamic properties of its components.

However, one must realise that the method to be applied usually requires a specific

model as an input. Therefore, it is necessary to be able to convert from one model to

another. Conversion is possible, but sometimes results in approximations. The only

conversion that does not necessarily involve any approximation is from the spatial and

modal models to a response Model, as presented by Ewins [31]. Accordingly, there

is considerable interest in methods that can predict the dynamics of an assembled

structure using FRFs obtained from different models.

1.2 Review of Current State-of-the-Art

Engineering structures are often assembled from their components by using clamping

devices or mechanisms. The dynamic behaviour of the assembled structures depends

not only on the behaviour of the clamping mechanisms, but also on the properties

of the connecting parts such as the roughness of the surfaces. Clamping mechanisms

and connecting parts together are known as ”joints”. Although in coupling analy-

sis, joints are usually represented analytically by linear models, they are generally

the main source of nonlinearities and sometimes a nonlinear model is required. A

typical example is the dynamic analysis of a rotor system with multiple bearings.

The nonlinearity is concentrated in the bearing support and it is usually considered
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as a linear model for small vibration amplitudes. Although the majority of rotating

structures behave almost linearly for low amplitudes of motion when using journal

bearings, there are many other situations where even with low vibration amplitudes

a linearised model can be unsatisfactory in predicting the dynamic behaviour of the

rotor-bearing structure. This can be found in rotating structures containing dry fric-

tion sliding surfaces, impacts due to contact between components and components

that have material nonlinearities. In such cases, the frequency response functions are

distorted and conventional methods do not lead to accurate models.

Usually, friction forces from dry friction dampers cause nonlinear behaviour and

are the primary source of hysteresis, rather than material damping. Friction dampers

are widely used in order to reduce resonant vibration amplitudes. The simplest in-

terface representation is the well-known Coulomb friction model where the contact

points do not move with respect to each other unless the friction force exceeds a

certain limit. Den Hartog [25] was one of the first researchers to study the dynamic

behaviour of structures with Coulomb friction, as shown in section 3.3.2. One of

the most important properties of frictional joints is the relationship between loading

and deformation, particularly in the tangential direction [140]. Goodman [52], Ma-

suko [78] and Burdekin [16] have shown that slip can initiate at some parts of the

interface before the gross slip occurs. This kind of slip, known as micro-slip, starts

because the contact interface is neither flat nor completely smooth, but composed of

a large number of tiny asperities. Burdekin [17] represented the asperities by equal

stiffness prismatic rods, where each asperity behaves like a macro slip element but

the combined effect is that of micro slip behaviour. Rogers [104] suggested an expo-

nential curve to represent the observed load-displacement behaviour of the friction

interfaces. Shoukry [112] derived an analytical expression to relate the parameters of

the exponential curve to the design parameters. Later on Ren [140] pointed out that

the contact interface consists of numerous tiny asperities that are different in size and

stiffness.

Various models have been proposed to simulate the tangential force-deformation

relationship of joints [17, 83, 112, 140]. Most of these models are assemblies of either

the bilinear element [62] or the spherical contact element [86]. Ren [140] proposed a
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new model based on the concept of stiffness area which assumes that a tiny area of

the interface can be modelled by a bilinear friction element and this is presented in

section 3.3.3. Sanliturk and Ewins [107] proposed a new approach to the modelling

of two-dimensional behaviour of a point friction contact.

These models require certain parameters which need to be identified. Identifica-

tion and response analysis of nonlinear structures are the two main fields in the study

of nonlinear structures. There has been much research devoted to detecting and to

identifying nonlinear characteristics in structures utilising frequency response func-

tions obtained experimentally [5, 18, 30, 35, 58, 59, 66, 114, 125, 126, 127, 128, 134].

The most common approach to the analysis of nonlinear multiple degree-of-

freedom (MDOF) systems is numerical integration and the dynamic response of struc-

tures is usually determined by time-integration of the system differential equations

[1, 29, 53, 106]. The integration methods used to obtain steady-state analysis are

computationally very expensive and aiming to overcome this problem, approximate

frequency domain methods are being developed [19, 23, 33, 69, 70, 73, 88, 121, 122,

136, 139, 140]. In all these methods, the starting point of the analysis is the non-

linear ordinary differential equations of motion. These equations can be obtained

by using discretisation techniques such as the Ritz-Galerkin Method, the Finite Ele-

ment Method or the Modal Decomposition Method. In this differential equations, the

localised nonlinearities can also be represented by either internal or external forces,

although, for frequency-domain analysis the nonlinearities are found to be more appro-

priately represented by internal forces since the number of iterations at each frequency

point is reduced significantly [108, 107]. Then the nonlinear differential equations are

converted to a set of nonlinear algebraic equations. The approximate approaches

utilise such techniques as the Perturbation Method [55], the Average Method [51],

the Ritz-Galerkin Method [55], the Harmonic Balance Method [142], and the De-

scribing Function Method [46]. The response of the system is obtained by solving

the resulting simultaneous equations iteratively and this is achieved by applying a

root-finding method such as Newton-Raphson [97], described in section 2.7. These

approximate methods using the fundamental frequency component have been used

by many researchers, estimating that the error due to neglecting the higher harmonic
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components is generally small [73, 88, 121, 122, 136, 137, 139, 143]. Others have

improved the results by including higher harmonics [23, 69, 70, 101, 135, 140].

Using structural assembly analysis methods, it is possible to predict the be-

haviour of the whole structure. The approaches dealing with this type of problem

are known as ”substructure synthesis”, ”substructuring”, ”building block” and ”cou-

pling” methods. These techniques can work with spatial models, modal models or

response models. The response model can be analytically calculated or measured ex-

perimentally using techniques of modal analysis, or a mixture of both, and are usually

referred as to ”Frequency Response Function Methods”.

Recent researchers have developed techniques to assemble two structures with

nonlinear local elements. Basically, these are programs using the building block

approach [67] extended for nonlinear analysis. A nonlinear building block using a

frequency-domain describing function approach was proposed by Watanabe and Sato

to evaluate the first-order frequency response characteristics of nonlinear structures

systems [136], and this is summarised in section 4.4.2.

Some researchers have successfully applied substructure synthesis for analysis

of nonlinear phenomena in rotor-bearing systems [50, 91].

1.3 Proposed Developments

This thesis is concerned with the development of an FRF substructure approach that

can deal with vibration analysis of complex nonlinear engineering structures. Recent

research has suggested methods which can generate nonlinear FRFs for linear systems

with localised nonlinearities. These theoretical formulations are reviewed here in this

thesis, and then implemented and improved by including higher harmonics and joint

models for combined nonlinear effects. The nonlinearities are represented by internal

forces using describing functions in order to reduce the number of iterations at each

frequency point. The insights gained are applied to predict the response of complex

nonlinear MDOF systems. The effectiveness of the method developed is illustrated

through simulation and experimental analysis.
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1.4 Summary of the thesis

Although the various phenomena of nonlinear oscillations have long been recognised

by many scientists, the practical solution of nonlinear problems has only been stim-

ulated by the growing development in computers. A large volume of investigation

was carried out using the classical time domain techniques. However, as a means

of obtaining the steady-state response solution, these methods are very time con-

suming. Current efforts are directed towards the development of new techniques to

seek approximate solutions for the nonlinear vibration problem. The research pre-

sented in this thesis is intended to improve current coupling analysis methods for

structural dynamic analysis and to develop a new generation of methods with spe-

cial reference to nonlinear multi-degree-of-freedom systems. In Chapter 2 the basic

theoretical vibration analysis of nonlinear structures is given which includes the lin-

earisation concept, the modelling of nonlinear structures, the time-domain analysis,

the frequency-domain harmonic analysis, the frequency-domain multi-harmonic anal-

ysis and the solution of a set of nonlinear algebraic equation by the Newton-Raphson

Method. Chapter 3 reviews the most common joint models already available and de-

velops the describing function concept. In Chapter 4, the standard linear impedance

coupling methods with recent improvements are presented, and a coupling analysis

notation is proposed. The methods currently available for analysing the vibration

behaviour of coupled nonlinear structures are reviewed and the developed methods

for coupling nonlinear structures are presented. Also presented are some refinements

in the proposed methods in order to speed up the computational process. Moreover,

special attention is given to the necessity of developing the multi-harmonic describing

function over the high-order describing function. In Chapter 5 an intelligent nonlin-

ear coupling analysis algorithm using object oriented language is presented. Various

methods have been implemented and the performance of the proposed approach is

demonstrated via various simulations reported in Chapter 6. In Chapter 7, the pro-

posed coupling method is applied to two experimental test cases and special attention

is paid to the measured frequency response functions of the nonlinear structures. The

problems arising from the response of a shaker attached to a nonlinear structure are

discussed and a solution is presented. The algorithm developed to control the force
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is also discussed. Finally, in Chapter 8, all the new developments proposed in the

thesis are brought together and recommendations for further work in this area are

suggested.



Chapter 2

Types of Dynamic Analysis of

Nonlinear Structures

2.0.1 Introduction

Over the years, numerical techniques have been developed continuously to reduce the

time required to solve mathematical models which allow us to predict FRFs of non-

linear structures without compromising the accuracy of the analysis. This chapter

first provides a classification of structures concerned with linear or nonlinear vibra-

tion behaviour. Then the generally established time- and frequency-domain dynamic

analysis techniques to solve nonlinear problems are presented, with emphasis placed

on approximate frequency-domain techniques for the harmonic and higher-harmonics

analysis. Next, the definition of the ideal and measured first- and higher-order fre-

quency response functions, which are the dynamic characteristic of a nonlinear struc-

ture, are introduced. Particular interest is placed here on the Describing Function

and Harmonic Balance methods because these provide the mathematical basis for

a new multi-harmonic describing function technique used in the development of the

Multi-Harmonic Nonlinear Receptance Coupling approach described in Chapter 4.

Finally, the Newton-Raphson method for solving the nonlinear equations of motion

of the above techniques is presented in detail.

30
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2.1 Nonlinear Structures

Most of the problems in mechanics exhibit a certain degree of nonlinearity but good

linearisation solutions are quite satisfactory for most purposes. However, when the

degree of nonlinearity is too high, linear treatments fail to give satisfactory results.

Therefore it is necessary to classify the dynamic behaviour of the system in linear or

nonlinear terms. The way to detect whether a system is to be categorised as linear or

nonlinear can be based on the presence or the absence of the superposition character-

istic. A system shows the superposition characteristic when doubling the input force

results in doubling the vibration response and when the summation of the responses

due to two independent inputs gives the same response as the summation of these

two inputs individually. Simplified forms of the principle of superposition for cate-

gorisation of a system are based on the presence of homogeneity characteristics and

correlation characteristics. A system displays the homogeneity characteristic when

doubling the input force implies doubling the vibration response. A system shows

the correlation characteristic when all the input energy in the structure is completely

correlated with the output. Although these simplified forms give some indication of

nonlinearity, they are a necessary but not sufficient condition for checking linearity.

Linearity can only be fully determined by using the full principle of superposition. On

the other hand, the simplified forms are very easily applied and usually used as a first

check for nonlinearities. If the superposition characteristic is not present, the system is

considered nonlinear. Therefore when the system is classified as nonlinear, nonlinear

techniques must be available which permit the inclusion of nonlinear phenomena in

the dynamic model description and the solution of the nonlinear equations of motion.

The first technique used at the beginning of this century was the analytical solution of

differential equations [57]. Although this can give an exact solution for simple cases,

most nonlinear systems are complex, making it impossible to obtain an analytical

closed-form solution. Thus, for a certain class of differential equations, where the

nonlinear terms are associated with a small parameter, an approximate analytical

solution can be obtained by developing the desired solution in a power series with

respect to the small parameter. The important methods available to find approximate

analytical solutions are (i) the perturbation method, (ii) the iteration method, (iii)
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the averaging method and (iv) the harmonic balance method [57]. The application

of these methods became possible with the invention of high-speed computers and

was a breakthrough in the history of nonlinear dynamics. The computers encouraged

the development of approximate numerical solutions to hitherto intractable analyti-

cal problems and also allowed the experimentation of the analytical solution in a way

that was impossible before [144]. One of the first approximate numerical methods

applied to solving nonlinear problems was the step-by-step numerical integration of

the differential equation in the time domain [26, 27, 118]. Although this method gen-

erally gives accurate results, the procedure is usually extremely time-consuming. To

overcome this problem, approximate frequency-domain methods have been developed

instead [64, 136].

2.2 Modelling of Nonlinear Structures

For many engineering applications, accurate mathematical models are required in

order to predict effects due to structural modifications or to correct undesired high

response levels. The precise derivation of a mathematical model can only be achieved

firstly by choosing the right model assumptions and then selecting the right technique

to solve the problem . Therefore, the first step is to check for the presence of nonlinear

behaviour, so that a linear or nonlinear classification can be determined. Then a

choice must be made either for an analytical model or discretised model. The last

step is the application of the corresponding linear or nonlinear analysis based on the

previous choice.

A better derivation of a nonlinear model can be obtained by studying all the

information available about the particular nonlinearity. Usually, the source of a non-

linearity and its classification give a basic understanding of the nonlinearities involved.

The source of the nonlinearity can be due to many different mechanisms. For example,

measured damping is almost always nonlinear, although usually it is approximated as

linear. This can be seen in a plot of force versus velocity [35]. Stiffness nonlinearity

can be found in springs [136]. Boundary conditions can introduce nonlinearities into

otherwise linear systems. An example is a beam which is clamped at one end and
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has a clearance at the other end [88]. Some elements such as rubber and composites

have nonlinear material elastic properties [84]. Systems with self-excitation such as

dry friction have nonlinear behaviour [140]. Another nonlinear phenomenon often

undetected is the internal resonance [13, 145]. Even rigid body systems like a crank

mechanism are kinematically nonlinear. These and other nonlinearities can even be

found together in the same structure [144]. The presence of nonlinearities can be

regarded either as a useful characteristic or sometimes as an undesirable one. There

are situations where nonlinearities are useful and even so designed. An example is

the desired friction between the blades in the turbines of an aircraft engine [108]. On

the other hand, there are situations where the same kind of nonlinearity can be awk-

ward, for example, the undesired instability in steam turbines due to internal friction

[68, 135].

Although there are large numbers of nonlinearities from different mechanisms,

it is possible to classify the nonlinearities into a global nonlinear behaviour, such as

material properties [103], and a local nonlinear behaviour, such as localised nonlinear

springs [136]. Many of the localised nonlinear phenomena are due to a nonlinear

interaction taking place between two connecting parts. The region between the two

connected parts is usually known as a joint. A real mechanical structure usually

consists of many components which are connected together through different joints

such as bolted joints [45], riveted joints, welded joints, adhesive joints or any other

clamping mechanism [108, 102]. Although the joints are very easily identified on the

structure, a mathematical model of the joint is usually difficult to obtain [12, 45].

One way of obtaining a mathematical model of a joint is by finding the relationship

between an external excitation force applied to the joint and the response [17]. For a

linear joint, the force-response relation can be expressed by equation (2.1).

f(ẍ, ẋ, x) = mẍ+ cẋ+ kx (2.1)

However, for a nonlinear joint the relation becomes much more complicated and is

difficult to generalise. An example of a force-response relationship of a nonlinear joint

where the mass varies with time, the damping varies with velocity and the stiffness

varies with displacement can be expressed by equation (2.2).
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f(t, ẍ, ẋ, x) = m(t)ẍ+ c(ẋ) ẋ+ k(x)x (2.2)

The model validation of a joint is done by correlating the analytical model with

measured dynamic test data, since most structural nonlinearities cannot be predicted

from geometrical information alone and therefore can only be measured. Furthermore,

as stated before, the more information known about the nonlinearities is known, the

better the analytical model derived will be [56].

Once the structure is classified as nonlinear, it becomes necessary to choose

which kind of model is to be used to represent its dynamic behaviour. The dynamic

behaviour of the structure can be represented by an analytical model or by a discre-

tised model. Although analytical models can give accurate solutions, for complicated

practical structures it is extremely difficult to find such solutions. Therefore discrete

approximate models are usually used instead. Three different models can be used

for discretisation of structures, spatial models, modal models and response models.

Although any of the models can be used to represent a structure, there is usually one

model that is more appropriate than the others for the representation [64, 110, 136].

2.3 Time-Domain Analysis

2.3.1 Introduction

Although the main concern in this thesis is to develop an approximate method that

can be used to examine the dynamic behaviour of nonlinear structures, a time-domain

vibration analysis is required to assess the advantages and shortcomings of the approx-

imate frequency-domain methods which have been developed [9]. Here, time-domain

methods serve as a reference and are often referred as ”exact” methods owing to their

high degree of accuracy in nonlinear analysis.

Since a global mathematical model is derived, different methods can be used to

predict the system’s vibration response under certain external excitation conditions.

If the derived mathematical model is in a spatial form, the differential equation of

motion is known and therefore a solution can be obtained. In structural vibration,

most of the mathematical models are described in terms of second-order differential
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equations. The analytical solution of these differential equations can sometimes be

so complicated that a numerical solution is used instead. The time-domain integra-

tion method is among the many procedures used to solve second-order differential

equations which describe a structure subject to a well-defined excitation [26, 27] .

Although the exact methods can be used to predict the response of linear structures,

they are applied only when required due to its very low computational efficiency.

Therefore, they are much more used for problems that involve nonlinearities. As

stated before, they are a very useful tool to evaluate other approximate methods.

A practical numerical method for solving ordinary differential equations is the

Runge-Kutta method [97]. This is a very well-known method because no knowl-

edge is required about the nonlinear structure and it virtually always succeeds with

reasonable precision.

2.3.2 Runge-Kutta Method

The basic idea of the Runge-Kutta integration method is to find a solution for the

equilibrium equation at a discrete time point. In the case of a dynamic engineer-

ing structure, the equilibrium equation can be described by a set of second-order

differential equations (2.3).

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (2.3)

Integration of equation (2.3) by the Runge-Kutta method involves first reducing the

second-order differential equation into a first-order differential equation by rewriting

it as two first-order equations (2.4).

{ẋ} = {u}
[M ] {u̇}+ [C]{u}+ i[D]{x}+ [K]{x}+ {f} = {f}

(2.4)

The equation (2.4) can be rewritten in matrix form as shown in equation (2.5).

 [M ] 0

0 [I ]


 u̇

ẋ

+

 [C] [K] + i[D]

[I ] 0


 u

x

 =

 f − f
0

 (2.5)
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Thus, the ordinary differential equation (2.3) is reduced to a coupled first-order dif-

ferential equation (2.5) which has the explicit form shown by equation (2.6),

 ż

 =

 f (t, z)

 (2.6)

where {f (t, z)} is known and given by equation (2.7),

 f (t, z)

 =

 [M ] 0

0 [I ]


−1 

 f − f
0

−
 [C] [K] + i[D]

[I ] 0


 z


 (2.7)

and the displacement {z} is given by equation (2.8).

 z

 =

 ẋ

x

 =

 u

x

 (2.8)

The procedure of the integration methods is that given the initial value {z}n for a

starting time value tn, the approximate solution {z}n+1 at some final point tn+1 or

at some discrete list of points stepped by stepsize intervals δt can be found. In the

Runge-Kutta method, the solution is propagated over the interval δt from {z}n to

{z}n+1 by combining the information from several smaller steps, each one involving

the evaluation of the right-hand side of equation (2.7), and then using the information

obtained to match a Taylor series expansion up to some higher order. Then the

solution for the next step interval is treated in an identical manner. The fact that

no prior behaviour of the solution is used in its propagation, allows any point along

the trajectory of an ordinary differential equation to be used as an initial point. The

classical fourth-order Runge-Kutta formula is by far the most often used. In each

step the derivative is evaluated four times, once at the initial point, twice at trial

point and once at a trial endpoint. From these derivatives the final function value is

calculated as shown in equation (2.9),

{z}n+1 = {z}n +
h

6
{k1}+

h

3
{k2}+

h

3
{k3}+

h

6
{k4} (2.9)
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where:

{k1} = {f (tn, {zn})}
{k2} = {f (tn + h

2
, {zn + k1

2
})}

{k3} = {f (tn + h
2
, {zn + k2

2
})}

{k4} = {f (tn + h, {zn + k3})}
z = step increment

(2.10)

2.4 Frequency-Domain Analysis

2.4.1 Introduction

The steady-state dynamic response of a multi-degree of freedom nonlinear structure

is usually determined by numerical integration of the equations of motion [26, 27].

Although very high accuracy can be obtained from time-marching analysis, the com-

putational efficiency can be of concern. Generally, the time required depends on the

level of precision aimed at and also on the characteristics of the structure such as

damping, highest natural frequency of interest and the size of the theoretical model.

The level of precision is related to the time step used in the integration. For high

level accuracy, a small fraction of the period that corresponds to the highest natural

frequency of interest must be used. The damping has influence in the transient re-

sponse of the structure. The low damping levels in some dynamic structures imply

very long transients. The size of the model has a direct influence on the time spent

for integration. Consequently, long transients combined with small time steps and

large numbers of degrees-of-freedom result in a very costly computational procedure

for steady-state response analysis. Therefore, special attention has been focused on

alternative, frequency-domain approximate methods for determining the steady-state

response of structures, particularly to periodic external excitation, in which there is

no need for analysis of transient motion. These approximate linearised methods use

techniques that convert the nonlinear differential equations of motion, derived from

the application of a selected model procedure, into nonlinear algebraic equations.

These techniques are known as ”harmonic balance” in mechanical engineering [57]

and ”describing function” in electrical and control engineering [47, 113]. The concept

of linearisation in these techniques differs from the so-called ”true” linearisation in
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its basic assumptions. The true linearised methods are applied only for small oscil-

lations, imposing restrictions on the amplitude of vibration. By contrast, with the

approximate linearised methods there is no restriction on the amplitude of vibration,

thus allowing for vibration analysis of systems that have high levels of response. Fur-

thermore, a true-linearisation model follows the linear theory of superposition and

the approximate linearised methods exhibit the response dependency of the input

that is the basic characteristic of nonlinear behaviour. Besides these advantages, the

approximate linearised methods have some limitations. One important limitation is

related to the hypotheses assumed for the excitation. Thus once the excitation has

sinusoidal form, the method can only be applied for obtaining a periodic solution of

a nonlinear differential equation.

2.4.2 Analysis

Considering a nonlinear structure subject to an external excitation, the matrix dif-

ferential equation of motion derived by the spatial model procedure can be written

as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (2.11)

Assuming the external excitation to be a sinusoidal force, then {f(t)} can be written

as:

{f(t)} = {F}eiωt = {F}eiτ (2.12)

When a nonlinear system is subjected to a sinusoidal excitation, the response is

generally not exactly sinusoidal. Often, the response is periodic, having a period the

same as that of the excitation and can be represented by Fourier series written as:

{x(t)} =
∞∑
m=0

{xm(t)} =
∞∑
m=0

{Xm}eimωt =
∞∑
m=0

{Xm}eimτ (2.13)

where subscript m indicates the mth harmonic order and {xm} is the mth displacement

response order. Then the complex displacement response amplitude X at coordinate

jth in the mth harmonic, Xm
j , can be written as

Xm
j = X̄m

j e
iφmj (2.14)
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where X̄m
j is the magnitude and φmj is the phase of the complex displacement Xj at

harmonic m.

Assuming that the response {x(t)} in equation (2.13) can be well approximated

by a set, Q, of p harmonic terms written as:

Q = {q1, q2, . . . , qp} (2.15)

or by Qr, a subset of Q, composed of its first r-elements defined as:

Qr = {q1, q2, . . . , qr} for 1 ≤ r ≤ n (2.16)

then the approximate time response {x̃(qr)(t)} can be written as:

{x(t)} ≈ {x̃(qr)(t)} =
qr∑

m=q1

{xm(t)} (2.17)

Similarly, the inter-coordinate relative displacement response y between coordinates

k and l, y
kl

, can be represented as:

y
kl

= xk − xl =
∞∑
m=0

ym
kl

=
∞∑
m=0

Y m
kl e

imτ (2.18)

and the approximate response {ỹ(qr)
kl
} can be written as:

{y
kl
} ≈ {ỹ(qr)

kl
} =

qr∑
m=q1

{ym
kl
} =

qr∑
m=q0

Y m
kl e

imτ (2.19)

where:

Y m
kl = Xm

k −Xm
l , (k 6= l)

Y m
kl = Ȳ m

kl e
iψmkl

(2.20)

If the variable y
kl

in the nonlinear function f kl(ykl) has the form assumed in (2.19),

the nonlinear function f kl(ỹ
(qr)
kl

) is complex and is also a periodic function of time.

Then the nonlinear function f kl(ỹ
(qr)
kl

) can be expressed by a Fourier series as:

f kl(ỹ
(qr)
kl

) =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kle

imτ (2.21)
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where:

Fm
kl = F̄m

kle
iϕmkl

F0
kl =

1

2π

∫ 2π

0
f(ỹ(qr)

kl
)dτ (2.22)

Fm
kl =

1

πX

∫ 2π

0
f(ỹ(qr)

kl
)e−imτdτ , (m ≥ 1)

The Fourier series written in complex form (2.21) can be expressed as a function of

sin and cos:

∞∑
m=0

Fm
kle

imτ = A0
kl +

∞∑
m=0

(Am
klcos(nτ) +Bm

klsin(nτ)) (2.23)

where:

A0
kl =

1

2π

∫ 2π

0
f(ỹ(qr)

kl
)dτ

A1
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)sinτdτ

B1
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)cosτdτ

A2
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)sin2τdτ

B2
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)cos2τdτ

...

Assuming that the function f kl(ỹ
(qr)
kl

) can also be well approximated by s har-

monic terms given by a subset Qs, of the set defined in equation (2.15), written

as:

Qs = {q1, q2, . . . , qs} for 1 ≤ s ≤ n (2.24)

then the approximate nonlinear function f̃
(qs)

kl (ỹ(qr)
kl

) can written as:

f̃
(qs)

kl (ỹ(qr)
kl

) =
qs∑

m=q1

fmkl =
qs∑

m=q1

Fm
kle

imτ (2.25)
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2.5 Frequency-Domain Harmonic Analysis

2.5.1 Fundamental Harmonic Analysis

For a nonlinear structure subject to an external excitation, the matrix differential

equation of motion derived by the spatial model procedure can be written as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (2.26)

Assuming the external excitation as a sinusoidal excitation, then {f(t)} can be written

as:

{f(t)} = {F}eiωt = {F}eiτ (2.27)

then the steady-state solution can be represented by a Fourier series as:

{x(t)} =
∞∑
m=0

{xm} =
∞∑
m=0

{Xm}eimωt =
∞∑
m=0

{Xm}eimτ (2.28)

When the higher harmonic terms of the response have small amplitudes relative to the

fundamental component, the response is dominated by the fundamental component

of the Fourier series for x(t). Thus, the response {x(t)} can be written as:

{x} ≈ {x̃(1)} = {x1} = {X1}eiτ (2.29)

and the response x at a general coordinate j can be written as:

xj ≈ x̃(1)
j = x1

j = X1
j e

iτ (2.30)

where the complex displacement response X1
j can be written as:

X1
j = X̄1

j e
iφ1
j (2.31)
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Similarly, the inter-coordinate relative displacement response y between coordinates

k and l can be represented as:

y
kl

= xk − xl ≈ ỹ(1)
kl

= y1
kl

= Y 1
kle

iτ (2.32)

where:

Y 1
kl = X1

k −X1
l , (k 6= l)

Y 1
kl = Ȳ 1

kle
iψ1
kl

(2.33)

The assumed solution y
kl

in equation (2.32) is then inserted in the nonlinear function

f kl(ykl), resulting in a nonlinear force f kl(ỹ
1
kl

) that can also be expanded by a Fourier

series and expressed in complex form as:

f kl(ỹ
1
kl

) =
∞∑
m=0

(f kl)
m =

∞∑
m=0

Fm
kle

imτ (2.34)

where:

(Fkl)
m = F̄m

kle
iϕm

(Fkl)
0 =

1

2π

∫ 2π

0
f(ỹ1

kl
)dτ (2.35)

(Fkl)
m =

1

π

∫ 2π

0
f(ỹ1

kl
)e−imτdτ , (m ≥ 1)

Assuming now that the nonlinear force f kl(ỹ
(1)
kl

) is also dominated by its fundamental

term, then the approximate nonlinear force f̃
(1)

kl (ỹ(1)
kl

) can be written as:

fkl(ykl) ≈ f̃
(1)

kl (ỹ(1)
kl

) = F1
kle

iτ = A1
klcos(nτ) +B1

klsin(nτ) (2.36)

where:

A1
kl =

1

π

∫ 2π

0
f kl(ỹ

(1)
kl

)sinτdτ

B1
kl =

1

π

∫ 2π

0
f kl(ỹ

(1)
kl

)cosτdτ
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2.5.2 First-Order Frequency Response Functions

In concept, the first-order frequency response functions are an extension of the fre-

quency response functions of linear structures to nonlinear structures. In the case of

a pure sinusoidal excitation, the first-order frequency response function of a nonlinear

structure is defined as the spectral ratio of the response xi and the force fj at the

frequency of excitation, ω, written as:

(H11
ij (ω))(qr) =

X1
i

F 1
j

(2.37)

In this case, only the fundamental frequency component of the response x composed of

r harmonics is retained and all the subharmonics, superharmonics and combinations

of both are ignored.

2.5.3 Harmonic Balance Method

The Harmonic Balance Method (HBM) is frequently used for the analysis of periodic

oscillations of nonlinear systems [39, 81, 82, 108, 109] as an alternative to its expensive

time-marching counterpart. The basis of the method is described below.

Assuming a nonlinear system subjected to harmonic excitation, {F 1}, the sys-

tem differential equation can be written, as before, as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f({x}, {ẋ})} = {F 1}eiωt (2.38)

The steady-state solution for x(t) can be represented by a Fourier series as:

{x(t)} =
∞∑
m=0

{xm} =
∞∑
m=0

{Xm}eimτ (2.39)

Considering the response to be dominated by the fundamental component of the

Fourier series, then it is assumed that the response {x(t)} can be approximate by the

fundamental component, {x1(t)} written as:

{x(t)} ≈ {x̃(1)(t)} = {x1(t)} = {X1}eimτ (2.40)
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and the response x at a general coordinate j can be written as:

xj ≈ x̃
(1)
j = x1

j = X̄1
j e

iφ1
j = C1

j + iD1
j (2.41)

where:

C1
j = X̄1

j sin(φ1
j)

D1
j = X̄1

j cos(φ
1
j) (2.42)

The nonlinear force can be approximate by the fundamental component in its Fourier

series written as:

f kl(ykl) ≈ f̃
(1)

kl (ỹ1
kl

) = f 1
kl = F1

kle
iτ = A1

klcos(nτ) +B1
klsin(nτ) (2.43)

where:

A1
kl =

1

π

∫ 2π

0
f kl(ỹ

(1)
kl

)sinτdτ

B1
kl =

1

π

∫ 2π

0
f kl(ỹ

(1)
kl

)cosτdτ

Substituting the fundamental component of response given by equation (2.40) and the

fundamental component of nonlinear force given by equation (2.43) into the nonlinear

differential equation (2.38), yields:

[[K]− [M ]ω2 + iω[C] + i[D]]{X1} = {F 1} − {F1} (2.44)

The solution of the response is based on finding the fundamental linear coefficients

C1
j and D1

j for the response and A1
kl and A1

kl for the nonlinear force in which all the

fundamental harmonic forces in equation (2.44) are balanced by each other. Different

iterative methods are available to solve this kind of mathematical problem.
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2.5.4 Describing Functions

In nonlinear system analysis, the describing function method is frequently used where

the system response may exhibit periodic oscillations close to a pure sinusoid. The

theoretical basis of this describing function is related to the Van der Pol method of

slowly-varying coefficients [132] and to the method of equivalent linearisation pro-

posed by Bogoliubov e Mitroposky [11], both developed to solve nonlinear problems.

Recently, Watanabe and Sato investigated the effects of nonlinear stiffness by devel-

oping a modal analysis approach [137] where the nonlinearity is substituted by the

equivalent first-order describing function. Later, they applied the describing function

method to extend the Building Block Approach (BBA) developed for coupling lin-

ear structures to obtain the Nonlinear Building Block Approach (NLBBA) developed

for coupling nonlinear structures having local nonlinearities [136]. Murakami and

Sato experimentally applied the NLBBA method to evaluate the frequency response

characteristics of a beam with support-accompanying clearance [88]. Tanrikulu et

al. proposed a new spatial frequency domain method for fundamental harmonic

response analysis of structures with general symmetrical nonlinearities using the de-

scribing function method [122]. Kuran and Ozguven developed a modal superposition

method for nonlinear structures based on internal nonlinear forces expressed in matrix

form by using describing functions [70].

The describing function method linearises the nonlinearity by defining the trans-

fer function as the relation of the fundamental components of the input and the output

to the nonlinearity. In order to present the concept of the describing function method,

consider an SDOF system with a nonlinear restoring force driven by a sinusoidal ex-

citation written as:

Mẍ + Cẋ+Kx+F(x, ẋ) = Asinωt (2.45)

To solve the proposed problem by the describing function method it is required to

assume that the variable x appearing in the nonlinear function F(x, ẋ) is sufficiently

close to a sinusoidal oscillation expressed as:

x ≈ X1 sin(ωt+ φ) = X1sinτ (2.46)
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where X1 is a complex response amplitude, ω is the excitation frequency and φ is

phase angle.

If the variable x in the nonlinear function F(x, ẋ) has the sinusoidal form as-

sumed in (2.46), the nonlinear function F(x, ẋ) is complex and is also a periodic

function of time. Defining now the describing function ν as the optimum equivalent

linear complex stiffness representation of the nonlinear force F(x, ẋ) for the harmonic

response X1, the coefficients of the describing function ν(x, ẋ) can be obtained from

an expansion of the nonlinear function F(x, ẋ) by a Fourier series as:

F(x, ẋ) ≈ F̃(x, ẋ) = (ν(x, ẋ))x = N1x+ jN2x+ · · · (2.47)

where the corresponding coefficients of the describing function are:

N1 =
1

πX

∫ 2π

0
F(X1sinτ, ωX1cosτ )sinτdτ

N2 =
1

πX

∫ 2π

0
F(X1sinτ, ωX1cosτ )cosτdτ

N3 =
1

πX

∫ 2π

0
F(X1sinτ, ωX1cosτ )sin2τdτ (2.48)

N4 =
1

πX

∫ 2π

0
F(X1sinτ, ωX1cosτ )cos2τdτ

...

Assuming now that the nonlinear force F(x, ẋ) is also dominated by its fundamental

term, then it can be simplified by its first harmonic component, F1(x, ẋ), as:

F(x, ẋ) ≈ F1(x, ẋ) = N1x+ jN2x (2.49)

and the first-order describing function can be written as:

ν1(x, ẋ) = N1 + jN2 (2.50)

If the kind of nonlinearity in F(x, ẋ) is known, a describing function ν can be cal-

culated from equations (2.48) and (2.50). An important nonlinearity to be analysed

is the cubic stiffness, because many nonlinear physical systems exhibit a behaviour
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of forces proportional to cube of displacement. Therefore the case chosen to demon-

strate the describing function is composed of a spring whose stiffness has a cubic

nonlinearity. Here, the nonlinear force can be written as:

F(x) = K0x+ βx3 (2.51)

Substituting the nonlinear function (2.51) into the equation (2.48), the coefficients of

the describing function (2.48) can be written as:

N1 =
1

πX1

∫ 2π

0
(K0x+ βx3)sinτdτ (2.52)

N2 = 0

Substituting equation (2.46) into (2.52),

N1 =
1

πX1

∫ 2π

0
(K0X

1sinτ + βX13

sin3τ )sinτdτ (2.53)

and splitting equation (2.53) into two integrals,

N1 =
1

πX1

∫ 2π

0
K0X

1sin2τdτ +
1

πX1

∫ 2π

0
βX13

sin4τdτ (2.54)

then equation (2.54) can be written as:

N1 =
K0

π
A+

βX12

π
B (2.55)

where:

A =
∫ 2π

0
sin2τdτ

B =
∫ 2π

0
sin4τdτ (2.56)

The solution of both integrals, A and B, are easily calculated, resulting in:

A =
∫ 2π

0
sin2τdτ = π
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B =
∫ 2π

0
sin4τdτ =

3

4
π (2.57)

Substituting equation (2.57) in (2.55), yields:

N1 = K0 +
3

4
βX12

(2.58)

Therefore, the nonlinear force and the approximate nonlinear force represented by

the describing function can be written as:

F(x) = K0x+ βx3 ≈ F̃ (1)
(x) = ν1(x)x = (K0 +

3

4
βX12

)x (2.59)

Substituting equation (2.46) into equation (2.59), yields:

K0X
1sinτ + βX13

sin3τ ≈ (K0 +
3

4
βX12

)X1sinτ (2.60)

From equation (2.60) it is possible to see that the nonlinear functionF(x) has a linear

term sinτ and a nonlinear term sin3τ , whereas the describing function has only the

linear approximate term sinτ . Figure 2.1 shows the overlay of nonlinear function

F(x) and the approximate nonlinear force represented by the describing function,

ν1(x).

Substituting now the assumed response solution given by equation (2.46) and

the approximate nonlinear force given by equation (2.59) into the nonlinear differential

equation (2.45), yields:

(K − ω2M + iωC + iD+ ν1(x))X1 = F (2.61)

The describing function coefficients of some of the most common nonlinearities can

be found tabulated in [74].

After establishing the describing function, the system of nonlinear differential

equations involved in the coupling analysis is converted in a system of nonlinear

algebraic equations, where a solution can be obtained by any of several different

iterative methods available to solve this kind of mathematical problem.

The describing function method may be regarded as an application of the har-
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Figure 2.1: Nonlinear function F(x) and describing function ν1(x)

monic balance method. A small difference in application can be noticed in the final

system of nonlinear algebraic equations obtained. In the harmonic balance method

the nonlinear force is modelled as an external force, equation (2.44), and in the de-

scribing function method the nonlinear force is modelled as an internal force, equation

(2.61). However, the describing function can also be applied as an external force [139].

2.6 Frequency-Domain Multi-Harmonic Analysis

2.6.1 Multi-Harmonic Analysis

Harmonics are frequency components which are multiplies of the fundamental input

frequency. When a structure is highly nonlinear then is important not to neglect

the effects of these higher-order terms. In multi-harmonic analysis, the response of a

structure subject to simple harmonic excitation can be written as:

{x} ≈ {x̃(qr)} =
qr∑

m=q1

{xm} =
qr∑

m=q1

{Xm}eimωt =
qr∑

m=q1

{Xm}eimτ (2.62)
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where q1, . . . , qr are the elements of the set of harmonics Qr defined in equation (2.16).

The response X at a general coordinate j in the mth harmonic can be written

as:

Xm
j = X̄m

j e
iφmj (2.63)

Similarly, the response in the inter-coordinate relative displacement can be repre-

sented as:

y
kl
≈ ỹ(qr)

kl
=

qr∑
m=q1

ym
kl

=
qr∑

m=q1

Y m
kl e

imτ (2.64)

where:

Y m
kl = Xm

k −Xm
l , (k 6= l)

Y m
kl = Ȳ m

kl e
iψm

(2.65)

If the variable y
kl

in the nonlinear function f kl(ykl) has the form assumed in (2.64),

the nonlinear function f kl(y
(qr)
kl

) is complex and is also a periodic function of time.

Then the nonlinear function fkl(ykl) can be expressed by a Fourier series of the form:

f kl(ykl) ≈ f̃
(qs)

kl (ỹ(qr)
kl

) =
qs∑

m=q1

fmkl =
qs∑

m=q1

Fm
kle

imτ (2.66)

and:

Fm
kl = F̄m

kle
iϕm

F0
kl =

1

2π

∫ 2π

0
f(ỹ(qr)

kl
)dτ (2.67)

Fm
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)e−imτdτ , (m ≥ 1)

where s is the number of harmonics in the approximated nonlinear function f̃
(qs)

kl (ỹ(qr)
kl

).

The Fourier series expressed in complex form in equation (2.66) can also be

expressed as a function of sin and cos terms as:

qs∑
m=q1

Fm
kle

imτ = A0
kl +

qs∑
m=q1

(Am
klcos(mτ ) +Bm

klsin(mτ )) (2.68)
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where:

A0
kl =

1

2π

∫ 2π

0
f(ỹ(qr)

kl
)dτ

A1
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)sinτdτ

B1
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)cosτdτ

A2
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)sin2τdτ (2.69)

B2
kl =

1

π

∫ 2π

0
f(ỹ(qr)

kl
)cos2τdτ

...

2.6.2 Higher-Order Frequency Response Functions

The higher-order frequency response functions have their basis in the Volterra series

[48]. The Volterra series is a general mathematical model used to express the rela-

tionship between the response and excitation of dynamic systems. If the nonlinear

system is time-invariant and stable, the Volterra series can be applied to express the

nonlinearity in polynomial form. The behaviour of a wide range of nonlinear systems

in engineering can be represented as Volterra series. Exceptions are related mainly to

systems with discontinuities. However, even these systems can either be approximate

by a continuous polynomial where this polynomial system will have a Volterra series

representation, or can be represented by a different definition of higher-order FRFs.

Although, in theory, it is possible to calculate the higher-order FRFs obtained

from the Volterra series, the measurement of these quantities has proved difficult in

practice. Several techniques have been developed for obtaining the ideal higher-order

FRFs [7, 48], but when applied to physical structures, the procedures do not obtain

FRFs of good quality [43, 48]. The most promising one is the NARMAX procedure

[7, 8]. Apart from this mathematical definition of higher-order FRF obtained from the

Volterra series, there are other definitions based on experimental measurements that

are a approximations of the ideal one [72]. In the current work, another experimental

definition of higher-order FRFs will be introduced in order to be compatible with

the analytical methods that are based on experimental FRFs. These non-unique
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definitions will still contain useful information about the behaviour of a system and

can be used to represent the system to a good degree of approximation.

In order to define the ideal higher-order FRFs it is necessary to describe briefly

the characteristics of the Volterra series. Considering a nonlinear structure which

can be represented by a Volterra model, the total response at one DOF, x(t), can be

written as

x(t) =

∫ ∞
−∞

h1(τ1)f(t− τ1)dτ1 +

∫ ∞
−∞

∫ ∞
−∞

h2(τ1, τ2)f(t− τ1)f(t− τ2)dτ1dτ2 + · · ·∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, τ2, . . . , τn)f(t− τ1)f(t− τ2) . . . f(t− τn)dτ1dτ2 . . . dτn (2.70)

Equation (2.70) is the Volterra series and the terms h1(τ1),h2(τ1, τ2),. . .,hn(τ1, τ2, . . . , τn)

are known as the first,second,. . .,nth order Volterra kernels of the system. Equation

(2.70) can be expressed as

x(t) =
∞∑
n=1

xn(t) (2.71)

where

xn(t) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, τ2, . . . , τn)
n∏
i=1

f(t− τi)dτi (2.72)

Taking the multiple Fourier transform of the nth order kernel hn(τ1, τ2, . . . , τn) [7],

the generalised nth order frequency response function, Hn(ω1, ω2, . . . , ωn), can be

written as:

Hn(ω1, ω2, . . . , ωn) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

hn(τ1, τ2, . . . , τn)e−i(ω1τ1+···+ωnτn)dτ1 · · · dτn (2.73)

Thus the nth order kernel transform, Hn(ω1, . . . , ωn), is the nth order frequency re-

sponse function, where the expression Hn(ω1, . . . , ωn) gives the magnitude and phase
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of the nth power output component at a frequency equal to ω =
∑n
i=1 ωi due to input

sinusoids at frequencies ω1, ω2, . . . , ωn. It is interesting to notice that the generalised

higher-order frequency response function defined in equation (2.73) are mathemat-

ically unique and independent of the excitation level. Therefore, different kinds of

excitation can be used to measure the ideal higher-order FRFs defined in equation

(2.73). A very useful excitation to measure FRFs in practice is the sinusoidal ex-

citation. The experimental FRFs of nonlinear systems measured in practice using

the sinusoidal excitation are usually input- and output-dependent. For sinusoidal

excitation, the experimental higher-order FRFs are related to the ideal higher-order

FRFs.

In order to define the measured higher-order FRFs and to describe the rela-

tionship with the ideal higher-order FRFs obtained from the Volterra series using

harmonic excitation, the input force to be considered is the idealised simple harmonic

function written as

f(t) = Feiωt (2.74)

Substituting equation (2.74) into the Volterra series equation (2.70), the input/output

relationship can be written as

x(t) =

∫ ∞
−∞

h1(τ1)Feiω(t−τ1)dτ1 +

∫ ∫ ∞
−∞

h2(τ2, τ2)Feiω(t−τ2)Feiω(t−τ2)dτ2dτ2 + · · ·∫
· · ·
∫ ∞
−∞

hn(τn, · · · , τn)Feiω(t−τn) . . .Feiω(t−τn)dτn · · ·dτn (2.75)

Putting the constants outside of the integrals in equation (2.75) yields

x(t) = Feiωt
∫ ∞
−∞

h1(τ1)e
−iωτ1dτ1 + F 2ei2ωt

∫ ∫ ∞
−∞

h2(τ2, τ2)e−i2ωτ2dτ2dτ2 + · · ·
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F neinωt
∫
· · ·

∫ ∞
−∞

hn(τn, · · · , τn)e−inωτndτn · · · dτn (2.76)

From equation (2.76) it is possible to see that the terms of the integral are the multi-

dimensional Fourier transforms. Substituting equation (2.73) into equation (2.76)

yields

x(t) = H1(w)Feiωt +H2(w,w)F 2ei2ωt + · · · +Hn(w, . . . , w)F neinωt (2.77)

The response x(t) can also be expressed by a Fourier series as

x(t) = X1(ω)eiωt +X2(2ω)ei2ωt + · · ·+Xn(nω)einωt (2.78)

Assuming that the input used to derive equation (2.77) is no longer the ideal harmonic

excitation but the physical harmonic excitation expressed as

f(t) = Fcos(ωt) =
F

2
(eiωt + e−iωt) (2.79)

Substituting the ideal harmonic excitation Feiωt in equation (2.77) by the physical
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harmonic excitation F
2

(eiωt + e−iωt) yields

x(t) = H1(ω)(F
2

)eiωt +H1(−ω)(F
2
)e−iωt

+ H2(ω, ω)(F
2

)2ei2ωt +H2(−ω,−ω)(F
2
)2e−i2ωt

+ H2(ω,−ω)(F
2
)2 +H2(−ω, ω)(F

2
)2

+ H3(ω, ω, ω)(F
2

)3ei3ωt +H3(−ω,−ω,−ω)(F
2
)3e−i3ωt

+ H3(ω,−ω, ω)(F
2
)3eiωt +H3(−ω, ω,−ω)(F

2
)3e−iωt

+ H3(−ω, ω, ω)(F
2
)3eiωt +H3(ω,−ω,−ω)(F

2
)3e−iωt

+ H3(ω, ω,−ω)(F
2
)3eiωt +H3(−ω,−ω, ω)(F

2
)3e−iωt

+ H4(ω, ω, ω, ω)(F
2

)4ei4ωt +H4(−ω,−ω,−ω,−ω)(F
2
)4e−i4ωt

+ H4(ω, ω, ω,−ω)(F
2
)4ei2ωt +H4(−ω,−ω,−ω, ω)(F

2
)4e−i2ωt

+ H4(ω, ω,−ω, ω)(F
2
)4ei2ωt +H4(−ω,−ω, ω,−ω)(F

2
)4e−i2ωt

+ H4(ω,−ω, ω, ω)(F
2
)4ei2ωt +H4(−ω, ω,−ω,−ω)(F

2
)4e−i2ωt

+ H4(−ω, ω, ω, ω)(F
2
)4ei2ωt +H4(ω,−ω,−ω,−ω)(F

2
)4e−i2ωt

+ H4(ω, ω,−ω,−ω)(F
2
)4 +H4(−ω,−ω, ω, ω)(F

2
)4

+ H4(ω,−ω, ω,−ω)(F
2
)4 +H4(−ω, ω,−ω, ω)(F

2
)4

+ H4(−ω, ω, ω,−ω)(F
2
)4 +H4(ω,−ω,−ω, ω)(F

2
)4

+ · · ·

(2.80)

Considering the symmetry property of the ideal higher-order FRFs, expressed as

H2(ω,−ω) = H2(−ω, ω)

H3(ω, ω,−ω) = H3(−ω, ω, ω) = H3(ω,−ω, ω)

H4(ω, ω, ω,−ω) = H4(−ω, ω, ω, ω) = H4(ω,−ω, ω, ω) = H4(ω, ω,−ω, ω)

H4(ω, ω,−ω,−ω) = H4(−ω,−ω, ω, ω) = H4(ω,−ω, ω,−ω) = H4(−ω, ω, ω,−ω)
...

(2.81)

and using the symmetry property described in equation (2.81), the expression (2.80)
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can be simplified to

x(t) = H1(ω)(F
2
)eiωt +H1(−ω)(F

2
)e−iωt

+ H2(ω, ω)(F
2
)2ei2ωt +H2(−ω,−ω)(F

2
)2e−i2ωt + 2H2(ω,−ω)(F

2
)2

+ H3(ω, ω, ω)(F
2
)3ei3ωt +H3(−ω,−ω,−ω)(F

2
)3e−i3ωt

+ 3H3(ω,−ω, ω)(F
2
)3eiωt + 3H3(−ω, ω,−ω)(F

2
)3e−iωt

+ H4(ω, ω, ω, ω)(F
2
)4ei4ωt +H4(−ω,−ω,−ω,−ω)(F

2
)4e−i4ωt

+ 3H4(ω, ω,−ω,−ω)(F
2
)4 + 3H4(−ω,−ω, ω, ω)(F

2
)4

+ 4H4(ω, ω, ω,−ω)(F
2
)4ei2ωt + 4H4(−ω,−ω,−ω, ω)(F

2
)4e−i2ωt

+ · · ·

(2.82)

After obtaining the response of the system excited by a physical harmonic excitation

as a function of the idealised higher-order FRFs, equation (2.82), the same response

must be obtained under the same conditions as a function of higher-order FRFs that

can be experimentally measured. The experimental higher-order frequency response

function is defined as the spectral ratio of the nth harmonic response and the mth

harmonic force

Hnm(ω) =
X(nω)

F (mω)
(2.83)

In the case where the input is composed of one sinusoid, the higher-order frequency

response function Hn1(ω) simplified as Hn(ω) is defined as the spectral ratio of the

nth harmonic response and the harmonic force

Hn(ω) =
X(nω)

F (ω)
(2.84)

In the case of a sinusoidal excitation, the FRFs measured using the definition of

equation (2.84) are related with the FRFs obtained using the definition of equation

(2.73). Using the definition of equation (2.84), the total response x(t) can be expressed

as
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x(t) = H1(w)F
2
eiωt +H1(−w)F

2
e−iωt +H2(2w)F

2
ei2ωt +H2(2w)F

2
e−i2ωt + · · ·

· · ·+Hn(nw)F
2
einωt +Hn(−nw)F

2
e−inωt

(2.85)

Comparing equation (2.85) and equation (2.82) yields

H1(ω) = H1(ω) + 3
4
H3(ω, ω,−ω)F (ω)2 + 5

8
H5(ω, ω, ω,−ω,−ω)F (ω)4 + · · ·

H2(ω) = 1
2
H2(ω, ω)F (ω) + 1

2
H4(ω, ω, ω,−ω)F (ω)3

+15
32
H6(ω, ω, ω, ω,−ω,−ω)F (ω)5 + · · ·

...

Hn(ω) =
∞∑
i=0

(n + 2i)!

(n+ i)! i! 2n+2i−1
Hn+2i(n(ω), i(−ω))F (ω)n+2i−1

(2.86)

In equation (2.86) it is possible to see that the experimental higher-order FRFs are

input dependent and that the first-order measured FRF is equal to the first-order

ideal FRF only when the system is linear.

2.6.3 Higher-Order Harmonic Balance Method

The Higher-Order Harmonic Balance Method proposed by Cameron and Griffin [19]

is an extension of the Harmonic Balance Method.

Assuming a nonlinear system subject to harmonic excitation {F}, the system

differential equation can be written as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f({x}, {ẋ})} = {F}eiωt (2.87)

The steady-state solution can be represented by a Fourier series as:

{x} =
∞∑
m=0

{xm} =
∞∑
m=0

{Xm}eimτ (2.88)

The response x at a general coordinate j can be written as:

xj =
∞∑
m=0

xmj =
∞∑
m=0

X̄m
j e

imφmj = Cm
j + iDm

j (2.89)
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where:

Cm
j = X̄m

j sin(mφmj )

Dm
j = X̄m

j cos(mφ
m
j ) (2.90)

and the inter-coordinate relative displacement response y between coordinates j and

k can be written as:

y
kl

=
∞∑
m=0

ym
kl

=
∞∑
m=0

Ȳ m
kl e

imψm (2.91)

The assumed solution y
kl

is then inserted in the nonlinear function f kl(ykl) and ex-

panded by a Fourier series expressed in complex form as:

f kl(ykl) =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kle

imτ (2.92)

where:

Fm
kl = F̄m

kle
i(ϕ)m

F0
kl =

1

2π

∫ 2π

0
f(y

kl
)dτ (2.93)

Fm
kl =

1

π

∫ 2π

0
f(y

kl
)e−imτdτ , (m ≥ 1)

or expressed as a function of sin and cos terms as:

∞∑
m=0

(Fkl)
meimτ = A0 +

∞∑
m=0

(Amcos(nτ) +Bmsin(nτ)) (2.94)

where:

A0
kl =

1

2π

∫ 2π

0
f(y

kl
)dτ

A1
kl =

1

π

∫ 2π

0
f(y

kl
)sinτdτ

B1
kl =

1

π

∫ 2π

0
f(y

kl
)cosτdτ

A2
kl =

1

π

∫ 2π

0
f(y

kl
)sin2τdτ (2.95)
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B2
kl =

1

π

∫ 2π

0
f(y

kl
)cos2τdτ

...

Considering N frequency components, substituting the response given by equation

(2.88) and the nonlinear force given by equation (2.94) into the nonlinear differential

equation (2.87), results in a system of nonlinear algebraic equations:



[[K]− [M ](1ω)2 + i(1ω)[C] + i[D]]{X1} = {F 1} − {F1}
[[K]− [M ](2ω)2 + i(2ω)[C] + i[D]]{X2} = {F 2} − {F2}

...
...

[[K]− [M ](Nω)2 + i(Nω)[C] + i[D]]{XN} = {FN} − {FN}

(2.96)

where {Xm} and {Fm} are the harmonics of the Fourier series of the response and

nonlinear force at frequency mω respectively for (m = 1...N).

The solution for of the response is based on finding the linear coefficients Cm
j

and Dm
j for the response and Am

kl and Am
kl for the nonlinear force in which all the

harmonic forces in equation (2.44) are balanced by each other.

It can be noted that the Harmonic Balance Method is a special case of the

Higher-Order Harmonic Balance Method with just one frequency component. This

extension allows the method to be applied for any type of nonlinearity. The accuracy

of the solution is dependent on the number of harmonics included in the problem.

2.6.4 Higher-Order Describing Functions (HODEF )

In nonlinear system analysis, the higher-order describing function method is used

when it is required to improve the accuracy of the result.

In order to present the concept of the higher-order describing function method,

we shall consider the equation of an MDOF system with nonlinear restoring forces

driven by sinusoidal excitation written as follows:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f({x}, {ẋ})} = {F}eiωt = {F}eiτ (2.97)
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To solve the proposed problem by the describing function method it is required to

make the same hypothesis as used in the multi-harmonic analysis presented in sec-

tion (2.6.1); namely, that x = x(t) appearing in the nonlinear function f(x, ẋ) is

sufficiently close to a periodic function represented by the following equation:

{x} ≈ {x̃(qr)} =
qr∑

m=q1

{xm} =
qr∑

m=q1

{Xm}eimτ (2.98)

Then the components Fm
kl of the nonlinear force fkl(ỹ

(qr)
kl

) can be written as:

Fm
kl = νmklY

m
kl (2.99)

The known describing function νmkl , can be expressed as

νmkl =
Fm
kl

Y m
kl

(2.100)

Considering m harmonics in the Equation (2.99), this can be written in matrix form

as: 

F1
kl

F2
kl

...

Fm
kl


=



ν1
kl 0 0 . . . 0

0 ν2
kl 0 . . . 0

...
. . .

...

0 0 0 . . . νmkl





Y 1
kl

Y 2
kl

...

Y m
kl


(2.101)

Equation (2.101) can be expressed in terms of the general coordinates, {X}, as:



F1
k

F1
l

F2
k

F2
l

...

Fm
k

Fm
l



=



ν1
kl −ν1

kl 0 0 . . . 0 0

−ν1
kl ν1

kl 0 0 . . . 0 0

0 0 ν2
kl −ν2

kl . . . 0 0

0 0 −ν2
kl ν2

kl . . . 0 0
...

. . .
...

0 0 0 0 . . . νmkl −νmkl
0 0 0 0 . . . −νmkl νmkl





X1
k

X1
l

X2
k

X2
l

...

Xm
k

Xm
l



(2.102)
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Equation (2.102) can be written in a more concise form as:

{
Fmk
Fml

}
= [Θ]mkl

{
Xi
k

Xi
l

}
(2.103)

2.6.5 Multi-Harmonic Describing Functions (MUHADEF )

Accepting all the hypotheses already defined in section (2.6.1), the components Fm
kl

of the approximate nonlinear force f̃
(qs)

kl (ỹ(qr)
kl

) can be written as:

Fm
kl =

qr∑
n=q1

Gmnkl Y n
kl for (m = q1, q2, . . . , qs) (2.104)

Equation (2.104) can be rewritten in a matrix form as:



F q1
kl

F q2
kl

...

F qs
kl


=



Gq1q1kl Gq1q2kl Gq1q3kl . . . Gq1qrkl

Gq2q1kl Gq2q2kl Gq2q3kl . . . Gq2qrkl

...
. . .

Gqsq1kl Gqsq2kl Gqsq3kl . . . Gqsqrkl





Y q1
kl

Y q2
kl

...

Y qr
kl


(2.105)

Then the new describing function called Gmnkl for m = qs and n = qr can be obtained

from the following expression:

Gqsqrkl =
f qskl(ỹ

(qr)
kl

)− f qskl(ỹ(qr−1)
kl

)

Y qr
kl

(2.106)

Equation (2.105) can be written as a function of the general coordinate, {X}, as:



Fq1
k

Fq1
l

Fq2
k

Fq2
l

...

F qs
k

F qs
l



=



Gq1q1kl −Gq1q1kl Gq1q2kl −Gq1q2kl . . . Gq1qrkl −Gq1qrkl

−Gq1q1kl Gq1q1kl −Gq1q2kl Gq1q2kl . . . −Gq1qrkl Gq1qrkl

Gq2q1kl −Gq2q1kl Gq2q2kl −Gq2q2kl . . . Gq2qrkl −Gq2qrkl

−Gq2q1kl Gq2q1kl −Gq2q2kl Gq2q2kl . . . −Gq2qrkl Gq2qrkl

...
. . .

...

Gqsq1kl −Gqsq1kl Gqsq2kl −Gqsq2kl . . . Gqsqrkl −Gqsqrkl

−Gqsq1kl Gqsq1kl −Gqsq2kl Gqsq2kl . . . −Gqsqrkl Gqsqrkl





Xq1
k

Xq1
l

Xq2
k

Xq2
l

...

Xqr
k

Xqr
l


(2.107)
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Equation (2.107) can be written in a more concise form as:

{
Fmk
Fml

}
=

qr∑
n=q1

[∆]mnkl

{
Xn
k

Xn
l

}
for (m = q1, q2, . . . , qs) (2.108)

where:

[∆]mnkl =

 Gmnkl −Gmnkl
−Gmnkl Gmnkl

 (2.109)

If the form of nonlinearity f(x, ẋ) is known, all describing functions, Gmnkl for m = qs

and n = qr, can be calculated by using equation (2.106). The case used to demonstrate

here the multi-harmonic describing function is again the cubic stiffness, composed of

a spring whose stiffness has a cubic non linearity. For this, the nonlinear force can be

written as:

f(y) = K0y + βy3 (2.110)

Using the notation of equation (2.62), for the first and the third harmonics (r = 2),

the set of harmonics Qr can be written as:

Qr = {1, 3} (2.111)

Assuming that the response y is composed essentially of the first harmonic, then the

displacement ỹh(1) can be written as:

y ≈ ỹ(1) = Ȳ 1sin(τ ) + Ȳ 1cos(τ ) (2.112)

Assuming that the response y is composed by the first and third harmonics, then the

displacement ỹ(3) can be written as:

y ≈ ỹ(3) = Ȳ 1sin(τ ) + Ȳ 1cos(τ ) + Ȳ 3sin(3τ ) + Ȳ 3cos(3τ ) (2.113)

Using equation (2.105) the components F1
kl and F3

kl of the nonlinear function f can

be written as:
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 F
1
kl

F3
kl

 =

 G11
kl G13

kl

G31
kl G33

kl


 Y 1

kl

Y 3
kl

 (2.114)

Using equation (2.106) it is possible to have the expression of all describing functions

Gsrkl necessary in equation (2.114) as:

G11
kl =

F1(ỹ(1))

Y 1

G13
kl =

F1(ỹ(3))−F1(ỹ(1))

Y 3
(2.115)

G31
kl =

F3(ỹ(1))

Y 1

G33
kl =

F3(ỹ(3))−F3(ỹ(1))

Y 3

Functions F1(ỹ(1)) and F3(ỹ(1)) can be calculated using equations (2.68) and (2.112)

as follows:

F1(ỹ(1)) = (K0Ȳ
1 +

3

2
βȲ 13

) + i(K0Ȳ
1 +

3

2
βȲ 13

) (2.116)

F3(ỹ(1)) = (
1

2
βȲ 13

) + i(−1

2
βȲ 13

) (2.117)

and F1(ỹ(3)) and F3(ỹ(3)) can be calculated using equations (2.68) and (2.113) as:

F1(ỹ(3)) = (K0Ȳ
1 +

3

2
βȲ 13

+ 3βȲ 1Ȳ 32 − 3

2
βȲ 12

Ȳ 3) +

+i(K0Ȳ
1 +

3

2
βȲ 13

+ 3βȲ 1Ȳ 32

+
3

2
βȲ 12

Ȳ 3) (2.118)

F3(ỹ(3)) = (
1

2
βȲ 13

+K0Ȳ
3 + 3βȲ 12

Ȳ 3 +
3

2
βȲ 33

) +

+i(−1

2
βȲ 13

+K0Ȳ
3 + 3βȲ 12

Ȳ 3 +
3

2
βȲ 33

) (2.119)

Substituting equations (2.116),(2.117),(2.118),(2.119) in equation (2.115), the describ-

ing functions can be written as:

G11
kl = (K0 +

3

2
βȲ 12

) + i(K0 +
3

2
βȲ 12

)

G13
kl = (3βȲ 1Ȳ 3)− 3

2
βȲ 12

) + i(3βȲ 1Ȳ 3 +
3

2
βȲ 12

)
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G31
kl = (

1

2
βȲ 12

) + i(−1

2
βȲ 12

) (2.120)

G33
kl = (K0 + 3βȲ 12

+
3

2
βȲ 32

) + i(K0 + 3βȲ 12

+
3

2
βȲ 32

)

Substituting the variable y by the equation (2.113) in the nonlinear function f(y)

given by equation (2.110) and in the approximate function f̃(y) given by equation

(2.66), yields:

K0(Ȳ 1sin(f) + Ȳ 1cos(f) + Ȳ 3sin(3f) + Ȳ 3cos(3f)) + β(Ȳ 1sin(f) + Ȳ 1cos(f) + Ȳ 3sin(3f) + Ȳ 3cos(3f))3

≈ (K0 + 3
2
βȲ 12

)Ȳ 1sinτ + ( 1
2
βȲ 12

)Ȳ 1sin3τ + (3βȲ 1Ȳ 3 − 3
2
βȲ 12

)Ȳ 3sinτ+ (2.121)

+(K0 + 3
2
βȲ 12

)Ȳ 1cosτ + (−1
2
βȲ 12

)Ȳ 1cos3τ + (3βȲ 1Ȳ 3 + 3
2
βȲ 12

)Ȳ 3cosτ+

+(K0 + 3βȲ 12
+ 3

2
βȲ 32

)Ȳ 3sin3τ + (K0 + 3βȲ 12
+ 3

2
βȲ 32

)Ȳ 3cos3τ

The nonlinear function f(y(3)) shown on the left-hand side of equation (2.121) has

linear and nonlinear terms whereas the nonlinear approximate function f̃
(3)

(y(3))

shown on the right-hand side of equation (2.121) has only linear terms as sinτ , cosτ ,

sin3τ , cos3τ . Figure 2.2 shows the nonlinear function f(ỹ(3)) and the approximate

nonlinear functions f̃
(1)

(ỹ(1)) and f̃
(3)

(ỹ(3)).
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Figure 2.2: Nonlinear function f(ỹ(3)) and approximate functions f̃
(1)

(ỹ(1)), f̃
(3)

(ỹ(3))
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2.7 Newton-Raphson Method

The advantage of applying the approximate linearised methods to find the solution of

the nonlinear equations of motion, is to convert from finding a solution of a nonlinear

differential equation to finding a solution of a nonlinear system of equations. Most of

these equations have both a right-hand side and a left-hand side. If all the terms from

the right-hand side are moved to the left-hand side, the solutions are also called roots

of the equations. The most well-known root-finding method is the Newton-Raphson

method. This method gives a very efficient mechanism of converging to a root, given a

sufficiently good initial guess. If the initial estimation is too far from the real solution,

the iteration process may not converge. Different implementations of the Newton-

Raphson method can be found for improving special characteristics. One of the

sophisticated implementations which improves the global convergence, combines the

rapid local convergence of the Newton-Raphson method with a globally-convergent

strategy which will guarantee some progress towards the solution of each iteration.

Considering a typical problem of a vector of function g(y) written as:

{g({y})} = {0} (2.122)

where {y} is a vector involving the unknown variables, the iterative solution by ap-

plying the modified Newton-Raphson can be written as:

{yi+1} = {yi} − λ[J ]−1g(yi) 0 < λ < 1 (2.123)

where:

[J ] =
∂{g(yi)}
∂{yi} =



∂gi(1)
∂yi(1)

∂gi(1)
∂yi(2)

. . . ∂gi(1)
∂yi(n)

∂gi(1)
∂yi(1)

∂gi(1)
∂yi(2)

. . . ∂gi(1)
∂yi(n)

... ... . . . ...

∂gi(1)
∂yi(1)

∂gi(1)
∂yi(2)

. . . ∂gi(1)
∂yi(n)


(2.124)

On each iteration, the aim now is to find a value of λ such that the new step {yi+1}
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always reduces G , given by:

G =
1

2
g.g (2.125)

The full step is always the first guess. If G({yi+1}) does not meet the acceptance

criteria, a smaller value of λ is tried, until a suitable step is found. After finding

suitable step, the procedure will repeat until the unknown vector {y} is obtained for

a prescribed tolerance ε.



Chapter 3

Construction of Models for

Nonlinear Joint Components

3.1 Introduction

Accurate modelling for predicting the dynamic behaviour of mechanical systems is an

essential tool in both design and operational stages. During these stages, a physical

structure for practical tests is generally not available. and an analytical model that

represents the structure is used instead. Many modelling approaches can be used

to obtain a model. In the field of structural vibration analysis, the finite element

method has become the most popular modelling approach used to study the vibra-

tion of structures. Although in principle any structure can be modelled by the finite

element method, in practice it is not so straightforward. Many complex mechani-

cal structures are composed of several substructures connected by different kinds of

clamping mechanisms, and sometimes the dynamic behaviour predicted is unrepre-

sentative due to difficulties in modelling the connection parts of the substructure,

[34]. The clamping mechanism, usually referred to as a joint, is defined as any con-

nection between two distinct parts of a structure and the contact surfaces of a joint

are defined as the interface. These joints have a considerable effect in the dynamic

behaviour of the assembled structures, and so it is important to establish an accu-

rate mathematical model for them. Although the modelling of the substructures can

be obtained by their mass, stiffness and damping matrices derived from the design

67
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data, the modelling of the properties of joints is usually a major problem in vibration

analysis, resulting in significant discrepancies between the numerical predictions and

the measurements. To overcome this problem, hybrid techniques that utilise both

analytical and experimental data have been developed to produce more reliable and

accurate models. Although these techniques can be applied directly to obtain a global

model that represents the physical structure over a frequency range [4, 130], more ac-

curate and general models can be derived if the joints are first modelled and then

incorporated with the substructure models to produce a model of the final assembly

structure [140].

Understanding the nature and configuration of a joint can lead to a suitable

model for it. The most effective way of modelling a joint is first by studying its

dynamic characteristics. This can be done by finding the force-response relationship

obtained, for example. from a response at the joint caused by an external force.

The second step is the development of an accurate general mathematical model of

the joint behaviour. This is the greatest challenge since sometimes a general explicit

equation is difficult to obtain and the resulting model developed can be dependent

on the type of excitation, frequency range and on amplitudes of the response. The

analysis of the force-response relationship can lead to an explicit equation for the

practical force-vibration situation. The last step is to have the parameters of the

proposed model identified. For simple cases this can be obtained by curve-fitting the

experimental force-response relationship.

The force-response relationship used to characterise the joint can be linear or

nonlinear. When it is nonlinear, the first problem of evaluating the vibration be-

haviour is to choose an appropriate excitation force that allows the nonlinear joint

to be easily characterised and then identified. Amongst the excitation methods cur-

rently used in vibration study, the sinusoidal excitation method is strongly favoured

for nonlinearity investigation because of its uniqueness and precision [116].

Many frequently-encountered types of joint have already been studied and iden-

tified [2, 45, 72, 73, 126]. They are a useful reference for later investigations of

practical applications. For example, the results from such studies can provide input

data for the joint characteristic dependent method, such as coupling methods. Usu-
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ally, different mechanisms of connections can be related with a particular joint model,

each of which can be represented by a describing function. This assumption of repre-

senting each of the connections by a describing function can overcome some problems

related with the representation of some basic joints such as springs and dampers in

the coupling procedure. Some of these connections, which are used in the numerical

simulations, are discussed in the following sections.

3.2 Linear Joints

Theoretical linear joints are joints that obey the superposition principle described

previously. On the other hand, it is known that all physical joints exhibit a certain

degree of nonlinearity. For practical purposes, they are regarded as linear joints

when the degree of nonlinearity is small enough to be insignificant in the response

range of interest. For this group, a linearised equivalent model usually represents the

consequent dynamic behaviour. A characteristic of a typical linear joint is that when

a joint is excited at one frequency, it responds only at that frequency. Then, there is

no transfer of energy in frequency domain. These linear joints can be represented by

describing functions in the coupling techniques. The characteristics of the describing

function for this group of linear joints can be summarised as follows:

• The Matrix [Gmnkl ] in equation (2.105) is not amplitude-dependent

• The off-diagonal elements of matrix [Gmnkl ] are zero. Therefore the force harmonic

equations become uncoupled.

3.2.1 Spring

A massless spring, where a force applied to the spring is proportional to the stretch of

the spring, is considered. The equation that describes the relation between the force

and the response can be written as:

f = Kx (3.1)
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The describing function Gmnkl for the linear spring with a constant stiffness K given

by equation (3.1) and shown in Figure 3.1 can be written as follows:

Gmnkl =

 K if m = n

0 otherwise

X

F

K

Figure 3.1: Characteristic of linear spring

3.2.2 Rigid connection

A rigid connection between two coordinates of a structure can be interpreted physi-

cally as coupling these coordinates using a spring joint, which has a very high stiffness,

K. When using the describing function method in coupling analysis, the term related

to the describing function in the coupling equation is the inverse of the describing

function, i.e. the matrix [Gmnkl ]−1, [136]. Therefore, the inverse of a matrix [Gmnkl ]

for a linear spring with a very high stiffness is close to zero. For an infinitely rigid

connection, matrix [Gmnkl ]−1 is actually zero.

3.2.3 Ground

Grounding some DOFs of a structure can be physically interpreted as coupling these

DOFs to DOFs of a structure with infinite mass using rigid connections. As the
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receptance of a structure with infinite mass is zero, all the receptances in the coupling

procedure that involve these DOFs will be zero and all the inverses of the describing

functions corresponding to the rigid connection will be also zero.

3.2.4 Viscous Damping

This is a massless damper where the force applied across the damper is proportional

to the relative velocity of the damper. The equation that describes the relationship

between the force and the response can be written as:

f = Cẋ (3.2)

The describing function Gmnkl for a linear viscous damper with constant damping C

given by equation (3.2) and shown in Figure 3.2 can be written as follows:

Gmnkl =

 iΩChi if m = n

0 otherwise

X
.

F

C

Figure 3.2: Characteristic of linear viscous damper
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3.3 Nonlinear Joints

Nonlinear joints are joints where the effect of nonlinearity in the response range

of interest is so significant that it has to be taken into account in the mathematical

model. These nonlinear joints are usually found in joints designed for ease of assembly

and disassembly of substructures. Their dynamic behaviour is often difficult to predict

and is sensitive to many parameters. The most pronounced characteristic of a typical

nonlinear joint is its energy transfer in the frequency domain. When the joint is

excited at one frequency, it responds in many frequencies, resulting in an harmonic

distortion of the response. The nonlinear joint can be represented by a describing

function whose characteristics can be summarised as follows:

• The Matrix [Gmnkl ] in equation (2.105) is amplitude-dependent.

• As the describing function is dependent on the number of harmonics considered

in the set, it is difficult to find the corresponding analytical describing function

for each case. Instead of obtaining the describing function analytically, it is

much easier to obtain it numerically.
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3.3.1 Cubic Stiffness

Consider a massless nonlinear spring where a force applied across the spring is pro-

portional to the cube of the stretch of the spring, x. The equation that describes the

relation between the force and the response can be written as:

f = Kx3 (3.3)

The describing functions Gmnkl for a nonlinear cubic stiffness with stiffness K given by

equation (3.3), shown in Figure 3.3, and with just two harmonics, first and third, in

the set Q, can be written as follows:

G11

kl = 3/4KY 3
1

G13

kl = 3/2KY1Y3 − 3/4KY 2
1

G31

kl = −1/4KY 2
1

G33

kl = −3/2KY 2
1 + 3/4KY 2

3

(3.4)

X

F

Kx3

Figure 3.3: Characteristic of nonlinear cubic spring

3.3.2 Coulomb Friction

Consider a joint where a constant resisting force, known as a friction force, is affected

by the sign of the relative velocity at the interface of the joint and the value of the
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external force, F . The equation that describes the relationship between the force, f ,

and the response , x, can be written as:

f = F l = µN ẋ > 0

f = F ẋ = 0

f = −F l (̇x) < 0

(3.5)

where:

• F l = limit friction force

• F = external force

• µ = friction coefficient

• N = normal clamping force

• ẋ = relative velocity

From equation (3.5) it is possible to conclude that if the external force is smaller

than the friction limit, F l, the two interfaces of the joint will remain locked and the

friction force at the interface has the same magnitude as the external force acting in

the opposite direction. Once sliding starts, the resistance force is equal to the friction

force limit, and the direction of the friction force is always opposite to the direction

of motion and no force greater than the friction force can be transmitted through the

interface.



Chapter 3 Construction of Models for Nonlinear Joint Components 75

The describing function Gmnkl for a Coulomb friction damper with friction force

limit F l, given by equation (3.3) and shown in Figure 3.4, can be written as follows:

Gmnkl =


4Fl
hiY1Π

if m = m and m = odd

0 otherwise

X
.

F

Fl

−Fl

Figure 3.4: Characteristic of Coulomb friction
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3.3.3 Slip Friction

3.3.3.1 Bilinear Macroslip element

The bilinear friction element consists of a linear spring with a constant stiffness,

K, and a dry friction element. When the deformation, x, is less than the limiting

deformation, xl, the force/deformation relation of the element is linear. When the

deformation, x, exceeds the limit, xl, the force/deformation relation of the element is

constant. The equation that describes the relation between the force and the response

can be written as:

f = Kx x < xl

f = Kxl x > xl
(3.6)

When the element is subjected to a cyclic load, a hysteresis loop is formed, as shown

in Figure 3.5:

X

F

Fl

−Fl

K K

Figure 3.5: Characteristic of a bilinear element

where:

• F l = Limit friction force

• K = tangential or shear stiffness
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3.3.3.2 Burdekin’s Microslip Model

The Burdekin microslip model [17] is an analytical model that considers the effects

of asperities on the mounting surfaces. Each asperity is represented as a prismatic

rod with the same stiffness but different amplitude where each rod is modelled as

a bilinear element. The height distribution for the rods is such that the number of

these contacting rods increases linearly with the approach of the two surfaces. The

force deformation relation can be written as:

F =


ax− bx2 if 0 < x < a

2b

a2

4b
x ≥ − a

2b

where a and b are parameters determined by the apparent contact area, normal and

shear stiffness of the asperities, normal displacement, friction coefficient and a con-

stant relating the number of contacts to the normal displacement of the surfaces.

When the element is subject to a cyclic load, a hysteresis loop is formed as

shown in Figure 3.6:

X

F

Figure 3.6: Characteristic of Burdekin’s element
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3.3.3.3 Shoukry’s Microslip Model

The Shoukry Microslip model [112] is a model that uses a spherical contact element

as the basic element. The height distribution of the contact of the peak height of

the elements is assumed to be exponential. The force/deformation relation can be

written as:

F = µN(1− ε−
γx
σ )

where:

• µ = friction coefficient

• N = normal force

• γ = standard deviation of peak height distribution

• σ = 2(1−ν)
µ(2−ν)

• ν = Poisson ratio

When the element is subject to a cyclic load, a hysteresis loop is formed as shown in

Figure 3.7:

X

F

Figure 3.7: Characteristic of Shoukry’s element
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3.3.3.4 Ren’s Microslip Model

The Ren Microslip model [140] is a model that uses a small area of the interface as

the basic element instead of using an element for each single asperity as assumed in

Burdekin’s and Shoukry’s models. Each area is modelled by a bilinear element. A

stiffness area h was defined as a proportion of the total initial stiffness contributed

from the area. The total stiffness area h is unity. Defining this stiffness area, the

problem was transformed from modelling the joint in the displacement domain x [0,∞]

to h domain [0, 1], where xi = x(hi). Now all the bilinear elements have the same

stiffness ki but not the same maximum elastic deformation xi. The force deformation

relation can be written as:

F =



kx x < a

−k(x−a+x(b−ln x+ln a))
b

a ≤ x < aεb

Ka(εb−1)
b

if x ≥ aεb

where a represents the maximum elastic deformation, and b represents the difference

between microslip and bilinear elements.

When the element is subject to a cyclic load, depending on the values chosen

for a and b, different hysteresis loops can be formed. When b is close to zero, the

hysteresis loop formed is the same as the bilinear element as shown in Figure 3.5.

When b starts to increase, the hysteresis loop has a mixture of macro and microslip

as shown Figure 3.8(a). As the difference increases, the hysteresis loop will mainly

contain microslip as shown in Figure 3.8(b).
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X

F

(a) Microslip and Macroslip

X

F

(b) Microslip

Figure 3.8: Characteristic of Ren’s element
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3.4 Concluding Remarks

In this Chapter, the relationship between force and deflection for different kinds of

joints are presented. It was shown that the describing function can be applied for

different linear and nonlinear joints. A review of the available friction models is

presented.

The major drawback of the describing function is the difficulty encountered in

seeking to obtain the analytical describing function coefficients. On the other hand,

once the relationship between the force and the deflection has been obtained, the

coefficients of the describing functions can be easily numerically calculated.



Chapter 4

Impedance Coupling Methods

4.1 Introduction

The problem of modelling a complex structure can be greatly simplified by first divid-

ing the structure into substructures where each substructure can be better represented

by a smaller, more accurate and refined mathematical model. Then, using a coupling

analysis, the dynamic response of the assembled system can be calculated from the

properties of the substructures. The great popularity of this analysis is related to the

information about the system often being known only at the substructure level, thus

allowing each substructure model to be obtained by the ideal model approach. When

analysing a complex structure, there are situations where the dynamic properties of

some components are best described by an experimental model and others by an

analytical model. As a result, attention has been focused on coupling methods that

allow a mixture of theoretical and experimental models. The impedance coupling

methods were proposed to provide these advantages. This chapter outlines the cou-

pling notation used in this thesis, reviews the existing impedance coupling methods

available for the analysis of linear and nonlinear structures and also deals with the

development of new nonlinear coupling methods using the multi-harmonic describing

function presented in Chapter 2.

82
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4.2 Coupling Analysis Notation

Although several methods of predicting the dynamic behaviour of the assembled struc-

ture from the properties of the substructures are available, there is no consistent basic

notation available [4, 63, 94, 115, 131, 140]. The objective of this section is to propose

a standard reference notation in FRF coupling analysis to support later developments.

The coupling analysis process involves structures, DOFs , FRFs, and also forces and

responses. There are two distinct stages, before-coupling and after-coupling. All the

representation of variables in the before-coupling stage will be represented by small

letters and after-coupling by capital letters. All the structures in the before-coupling

stage will be collected into a unique set and will be called Collected Substructures.

The resulting structure in the after-coupling stage will be called Assembled System.

All the DOFs of a structure belong to a set denoted by the subscript r. This set

will be divided into two groups. DOFs related with the connections are called ”con-

nection DOFs” and are denoted by the subscript c, and DOFs not related with the

connections are called ”internal DOFs” and are denoted by the subscript i. A con-

nection, usually represented by a joint, is composed of two DOFs. In order to give a

separate identity for each degree of freedom of the joint involved in the connection,

the connection DOFs set c will be subdivided in two groups , c̄ and c̃, where both

DOFs that belong to each joint are split, one in each group.

All the substructures to be connected as a Collected Substructure can be rep-

resented graphically as shown in Figure 4.1:

Figure 4.1: Collected Substructures

where:

r = all DOFs



Chapter 4 Impedance Coupling Methods 84

i = internal DOFs

c, c̄, c̃ = connection DOFs

A diagram of the Assembled System having DOFs with local linear elements, local

nonlinear elements, rigid and ground connections is shown in Figure 4.2:

Figure 4.2: Assembled System

where:

R = all DOFs

I = internal DOFs

C, C̄, C̃ = connection DOFs

4.3 Linear Impedance Coupling Methods

4.3.1 Introduction

Impedance Coupling Methods can be classified into two groups, Spatial Coupling

Methods and FRF Coupling Methods. The first group is extensively applied in the-

oretical analysis where substructure models are derived from spatial models and are

based on the application of analytical impedance of the substructures. The second

group is utilised in experimental analysis where substructure models are derived from

response models and are based on the application of measured FRFs of the substruc-

tures. Since all the models can be interrelated with each other [131], both methods

allow the use of a combination of analytical and experimental data. However, the

disadvantage of the spatial coupling methods when using experimental data is that

the accuracy of the assembled system obtained is related to the frequency truncation

of the substructure models. This accuracy is always difficult to achieve because the
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substructure models derived from experimental data have the shortcoming of includ-

ing data for only a limited number of measured nodes and a limited frequency range of

interest, which implies a propagation of errors in each phase of the conversion process

from the response model to the spatial model[28]. The FRF coupling methods do not

suffer from frequency truncation since the effects of the higher modes are inherent in

the measured data.

4.3.2 Spatial Coupling Method

This is the method used in theoretical analysis where the impedance matrix of the

assembled system, [Z], is obtained from the impedance matrix of the substructures,

[z], by applying the basic conditions of compatibility of displacements and equilibrium

of forces between the substructures.

Consider two substructures a and b described by their impedance properties,

where the internal DOFs are represented by ia and ib, respectively, and the connection

DOFs are represented by ca and cb, respectively. The corresponding equilibrium

equation of each substructure can be written as:

 fia

fca

 =

 ziaia ziaca

zcaia zcaca


 xia

xca

 (4.1)

 fib

fcb

 =

 zibib zibcb

zcbib zcbcb


 xib

xcb

 (4.2)

The coupling coordinate sets can be written as:

i = {iaib}
c = {cacb}
c̄ = {ca}
c̃ = {cb}

(4.3)

The equilibrium equation of the collected substructures can be written in terms of
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the coordinate sets (4.3) as:

[z] =


zii zic̄ zic̃

zc̄i zc̄c̄ zc̄c̃

zc̃i zc̃c̄ zc̃c̃

 =



ziaia ziaib ziaca ziacb

zibia zibib zibca zibcb

zcaia zcaib zcaca zcacb

zcbia zcbib zcbia zcbcb

 =



ziaia 0 ziaca 0

0 zibib 0 zibcb

zcaia 0 zcaca 0

0 zcbib 0 zcbcb


(4.4)

The equilibrium of the forces between the substructures can be written as:

{FC̄} = {FC̃} = {fc̄}+ {fc̃}
{fi} = {FI}

(4.5)

The compatibility of displacements of the substructures can be written as:

{xi} = {XI}
{xc̄} = {XC̄}
{xc̃} = {XC̃}

{xc̄} − {xc̃} = {0}

(4.6)

Substituting the compatibility and equilibrium equations (4.5) and (4.6) into (4.1)

and (4.2), the overall impedance of the assembled system can be written in terms of

the collected substructure properties as:

[Z] =

 zii zic̄ + zic̃

zc̄i + zc̃i zc̄c̄ + zc̃c̃ + zc̄c̃ + zc̃c̄

 =


ziaia 0 ziaca

0 zibib zibcb

zcaia zcbib zcaca + zcbcb

 (4.7)

The overall impedance of the assembled system given by equation (4.7) can be derived

by the FE assembling technique written in a standard form as:

[Z] = [az ] ] [ bz ] (4.8)
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where the operation sign ] means the following impedance assembly:

[Z] =


ziaia ziaca 0

zcaia zcaca + zcbcb zcbib

0 zibcb zibib

 (4.9)

This analysis is suitable when the substructure model is theoretically-derived, but it

is not generally used for experimentally-derived models.

4.3.3 FRF Coupling Method

The FRF coupling method is based on using FRFs derived from two sources, usually

from measured data and sometimes from theoretical models. This method represents

each substructure by a set of suitably chosen physical DOFs of the system, which pro-

vides an exact coupled system. Care must be taken to include the maximum amount

of relevant data, especially if the interactions between systems involve not only forces

but also moments. In these cases, the inclusion of translational quantities only will

introduce errors. Thus, it is necessary to have a sufficient number of connection DOFs

that can really represent the physical behaviour involved in the connection.

There are different formulations for the FRF coupling method [131]. The basic

formulation is based on converting the FRFs measured from the substructures to the

corresponding impedance functions using the following expression:

[Z] = [H]
−1

(4.10)

After converting all the measured FRFs to the impedance functions, the spatial cou-

pling method developed in section 4.3.2 is applied. Then, the calculated impedance

functions of the assembled structure are converted back to FRFs. The simplest cou-

pling procedure where it is possible to describe the procedure method by mathematical

expression, is the coupling of two substructures. For two substructures, a and b, the

FRF of the assembled structure can be written as:

[H(ω)] =
[
[Ha(ω)]

−1 ] [Ha(ω)]
−1
]−1

(4.11)
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From equation (4.11), it is possible to see that the whole assembled system FRF is

obtained after three matrix inversions, two of them carried out in the substructures

FRFs matrices [Ha(ω)],[Hb(ω)] and another inversion on the assembled impedance

matrix. The advantage of this method is that it involves only the basic matrix

operations and requires no data processing such as in the modal coupling or spatial

coupling where a modal analysis is first required. The disadvantage is related to the

number of matrix inverses necessary in the procedure which not only make it slow but

also increase the problems related with numerical errors. However, the development

of an alternative impedance coupling method proposed by Jetmundsen, Bielawa and

Flannelly [63], reduced the number of matrix inversions at each frequency point from

three to one, and the size of the matrix for inversion is restricted to that of the

number of connection DOFs, regardless of the number of internal DOFs used in the

formulation. The algorithm is derived in full in Appendix A, leading to the following

expression:


Xia

Xca

Xcb

Xib

 =




Hiaia Hiaca 0 0

Hcaia Hcaca 0 0

0 0 Hcbcb Hcbib

0 0 Hibcb Hibib

−


Hiaca

Hcaca

Hcbcb

Hibca

 [Hcaca +Hcbcb ]
−1


Hiaca

Hcaca

Hcbcb

Hibca


T


Fia

Fca

Fcb

Fib


(4.12)

where:

subscript a = substructure a

subscript b = substructure b

subscript i = internal connections

subscript c = coupling connections

4.4 Harmonic Nonlinear Coupling Approaches

4.4.1 Introduction

The substructuring methods discussed so far are based on the assumption that the

resultant system to be coupled is linear. This assumption is often inadequate for

the accurate description of some systems due to the inevitable existence of nonlin-

earity at many structural joints. One of the outcomes of this problem where the
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methods of solving the nonlinear equation of motion by approximate procedures.

These approximate procedures assume that the steady-state response is essentially

harmonic, keep only the first term of the Fourier series expansion of the nonlinear

force and finally convert the nonlinear differential equation of motion to a nonlin-

ear algebraic equation. Two of the most popular procedures are known as Har-

monic Balance Method [57] and Describing Function Method [47, 113], as described

in Chapter 2. In the following section we discuss the coupling methods available

based on these procedures such as Harmonic Nonlinear Building Block Approach

and Harmonic Nonlinear Impedance Coupling using the Harmonic Balance Method,

and the ones developed during this work such as Harmonic Nonlinear Impedance

Coupling using Describing Functions (HANIM), Harmonic Nonlinear Receptance

Coupling Approach (HANORCA), Multi-Harmonic Nonlinear Impedance Coupling

using Multi-Harmonic Balance Method, Multi-Harmonic Nonlinear Impedance Cou-

pling using High-Order Describing Function, Multi-Harmonic Nonlinear Impedance

Coupling using Multi-Harmonic Describing Function (MUHANIM), and Multi-

Harmonic Nonlinear Receptance Coupling using Multi-Harmonic Describing Function

(MUHANORCA).

4.4.2 Harmonic Nonlinear Building Block

This was one of the first coupling techniques proposed to evaluate analytically the fre-

quency response characteristics of a nonlinear system containing nonlinear elements.

This is an extension of the Building Block Approach [67] for structures containing

nonlinearities. This method linearises the nonlinearity by using the describing func-

tion method.

In order to describe the method, the assembled system to be analysed is divided

into two substructures as shown in Figure 4.3.

Equations for each substructure are described by the FRF matrices as follows:


x1

x2

x3

 =


H11H12H13

H21H22H23

H31H32H33



F1

F2

F3

 (4.13)
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Figure 4.3: Illustration of Nonlinear Building Block Approach


x4

x5

x6

 =


H44H45H46

H54H55H56

H64H65H66



F4

F5

F6

 (4.14)

The conditions of equilibrium are:

F2 + F4 = 0 =⇒ F2 = −F4 = f1

F3 + F5 = 0 =⇒ F3 = −F5 = f2

(4.15)

If the joints are assumed to have infinite stiffness, then the compatibility conditions

can be written as:

x2 = x4

x3 = x5

(4.16)

If the joints are not of infinite stiffness, the compatibility conditions can be written

as:

x2 − x4 = −f1/G11
24 (4.17)

x3 − x5 = −f2/G11
35 (4.18)

where:

G11
24 : describing function of element 1

G11
35 : describing function of element 2

From equations (4.13) and (4.17), we have:

H21F1 +H22F2 +H23F3 −H44F4 −H45F5 −H46F6 = −f1/G11
24 (4.19)
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Substituting equation (4.15) into equation (4.19), yields:

H21F1 +H22f1 +H23f2 +H44f1 +H45f2 −H46F6 = −f1/G11
24 (4.20)

H21F1 −H46F6 + (H22 +H44 + 1/G11
24)f1 + (H23 +H45)f2 = 0 (4.21)

From equations (4.14) and (4.18), we have:

H31F1 +H32F2 +H33F3 −H54F4 −H55F5 −H56F6 = −f2/G11
35 (4.22)

Substituting equation (4.15) into equation (4.22), yields:

H31F1 +H32f1 +H33f2 +H54f1 +H55f2 −H56F6 = −f2/G11
35 (4.23)

H31F1 −H56F6 + (H32 +H54)f1 + (H33 +H55 + 1/G11
35)f2 = 0 (4.24)

Using equations (4.13,4.14,4.15,4.21,4.24), the full equation of the assembled structure

can be written as:

x1

x2

x3

x4

x5

x6

0

0



=



H11 0 H12 H13

H21 0 H22 H23

H31 0 H32 H33

0 H46 −H44 −H45

0 H56 −H54 −H55

0 H66 −H64 −H65

H21 −H46 H22 +H44 + 1/G11
24 H23 +H45

H31 −H56 H32 +H54 H33 +H55 + 1/G11
35





F1

F6

f1

f2


(4.25)

Equation (4.25) can be written in a simplified form as: {Xr}
{0}

 =

 [Hri] [Hrc]

[Hci] [Hcc] + [G11
c̄c̃ ]
−1


 {Fi}{fc}

 (4.26)

From equation (4.26), {fc} can be written as:
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{fc} = ([Hci] {Fi})
[
[Hcc] + [G11

c̄c̃ ]
−1
]−1

(4.27)

Then {Xr} can be derived by substituting {fc} given by equation (4.27) into equation

(4.26) resulting in:

{Xr} =
[
[Hri]− [Hrc]

[
[Hcc] + [G11

c̄c̃ ]
−1
]−1

[Hci]
]
{Fi} (4.28)

The above equation is the standard FRF form i.e.:{X} = [H]{F} so that it is possible

to conclude that the desired FRF matrix of the assembled system, [H], in terms of

the FRFs matrix of the substructure, is as follows:

[H] =
[
[Hri]− [Hrc]

[
[Hcc] + [G11

c̄c̃ ]
−1
]−1

[Hci]
]

(4.29)

This equation is used to obtain the FRFs of the assembled structure using the FRFs

of the substructures.

4.4.3 Harmonic Nonlinear Impedance Coupling using Har-

monic Balance Method

The Harmonic Nonlinear Impedance Coupling using the Harmonic Balance Method

is applied when spatial properties of the substructure models are available. In this

method the nonlinear force, {f}, is treated as an external force, and all the substruc-

tures are considered as linear. Then the spatial coupling technique is applied first to

the substructures. Secondly the impedance of the assembled structure is obtained.

In the last step, the Harmonic Balance Method is applied to the impedance equation

of the linear structure.

Consider the matrix differential equation of motion of the assembled structure

where the internal nonlinear forces, {f}, are treated as pseudo external forces:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]x = {f} − {f} (4.30)
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Equation (4.30) can be written in impedance form as:

[Z]{x} = {f} − {f} (4.31)

where [Z] is given by:

[Z] = [[K]− ω2[M ] + iω[C] + i[D]] (4.32)

In order to consider the fundamental harmonics it is necessary to assume that the

hypothesis of the absolute response, {x}, the relative response, {y}, and the nonlinear

force, {f}, can be expressed in a Fourier series shown by equations (2.62,2.64,2.66)

and also that the external periodic forcing, fkl, can be represented in a Fourier series

as:

fkl =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kl e

imΨ (4.33)

where:

Fm
kl = F̄m

kl e
i(ϕ)m (4.34)

Considering the first harmonic of the force and the response, equation (4.31) can be

written as a set of nonlinear algebraic equations as follows:

[Z1]{X1} = {F 1} − {F1} (4.35)

The Harmonic Balance Method theory presented in Chapter 2 converts a set of n

nonlinear equations (4.30) to a set of n nonlinear algebraic equations (4.35). The re-

sponse of the structure under harmonic excitation can be obtained by solving equation

(4.35) iteratively. Equation (4.35) can be written in a more compact form as:

{g1(y)} = {0} (4.36)

where:
{
g1(y)

}
=
{

[Z1]{X1} − {F 1}+ {F1}
}

(4.37)

Equation (4.37) can be solved by using the Newton-Raphson method previous pre-

sented in section 2.7.
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4.4.4 Harmonic Nonlinear Impedance Coupling using De-

scribing Functions (HAIM)

The Harmonic Nonlinear Impedance Coupling using Describing Functions is also ap-

plied when the spatial properties of the substructure models are available. After the

nonlinear joint is represented by the describing function method, the joint is also

considered as a linear substructure together with the other substructures. Thus, the

substructures are coupled by the spatial coupling technique.

Consider the matrix differential equation of motion of the structure with internal

nonlinear forces:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (4.38)

where {f} is the internal nonlinear force.

Equation (4.38) can be written in impedance form as:

[Z]{x}+ {f} = {f} (4.39)

where [Z] is given by the following equation:

[Z] = [[K]− ω2[M ] + iω[C] + i[D]] (4.40)

In order to substitute the nonlinear force by its describing function, it is necessary to

assume the hypothesis shown by equations (2.62,2.64,2.66) and also that the external

periodic forcing, fkl, can be represented in a Fourier series as:

fkl =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kl e

imΨ (4.41)

where:

Fm
kl = F̄m

kl e
iϕm (4.42)

Substituting the internal nonlinear force {f} in equation (4.39) by the corresponding

describing function, equation (2.103), yields the harmonic differential equation written
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as:

[[Z1] + [Θ11]]{X1} = {F 1} (4.43)

where [Z1] is given by the following equation:

[Z1] = [[K]− (1ω)2[M ] + i(1ω)[C] + i[D]]

The describing function theory presented in Chapter 2 converts a set of n nonlinear

differential equations (4.38) into a set of n nonlinear algebraic equations (4.43). The

response of the structure under harmonic excitation can then be obtained by solving

equation (4.43) iteratively together with the describing functions which couple the

harmonic equation. Equations (4.43) can be written together in a more compact

form as:

{g1(y)} = {0} (4.44)

where: {
g1(y)

}
=

 ([Z1] + [Θ]1kl){X1}
[ν1
kl] ({X1

k} − {X1
l })− {F1

kl}

 (4.45)

Equation (4.45) can be solved by using the Newton-Raphson method previous pre-

sented in section 2.7.

4.4.5 Harmonic Nonlinear Receptance Coupling Approach

(HANORCA)

In this section a new FRF coupling method is proposed for predicting the analytical

response characteristics of a nonlinear system containing nonlinear joints. Although

the linear method proposed by Jetmundsen, Bielawa and Flannelly [63], can be ap-

plied for coupling various substructures at the same time, it is difficult to apply it

for real complex structures. The reason is related to the fact that this method was

first developed to couple two substructures and then extended to couple various sub-

structures. However, the method had a computational and numerical advantage by

reducing the essential number of matrix inversions from three to one, and by having

the size of the matrix inversion dictated only by the number of connection DOFs,
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regardless of the number of internal DOFs used in the model.

In order to preserve this computational and numerical efficiency and to extend

this method of analysis to structures with nonlinearities, a new nonlinear receptance

coupling approach is proposed. Since the joint is represented by a describing function,

the method is applicable to systems containing almost any kind of nonlinear joint.

This method also overcomes some common problems encountered when representing

some basic linear joints such as springs and dampers in the coupling procedure by

representing any kind of connection involved in the procedure by a describing func-

tion. Therefore the method developed below can be applied to linear or nonlinear

structures. On the other hand, it is possible to see that an accurate model of the

joint is crucial in the analysis.

The general nonlinear coupling method HANORCA is derived by considering

all the different kinds of connections expected to be present in the procedure and

by assuming that there are more than two substructures to be coupled. Using the

coupling notation presented in section (4.2), where all the substructures and com-

ponents to be connected are represented by just one structure called the Collected

Substructure, shown in Figure 4.1, and the final coupled system called the Assembled

System, shown in figure (4.2), the equation for the Collected Substructure, relating

the displacement vector and the force vector can be written in matrix form as:


xi

xc̄

xc̃

 =


Hii Hic̄ Hic̃

Hc̄i Hc̄c̄ Hc̄c̃

Hc̃i Hc̃c̄ Hc̃c̃



fi

fc̄

fc̃

 (4.46)

or in more compact form as:

{xr} = [Hr]{fr} (4.47)

Looking at the Assembled System, the displacement in each point can be written as


XI

XC̄

XC̃

 =


HII HIC̄ HIC̃

HC̄I HC̄C̄ HC̄C̃

HC̃I HC̃C̄ HC̃C̃



FI

FC̄

FC̃

 (4.48)
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or in more compact form as:

{XR} = [HR]{FR} (4.49)

The equilibrium conditions can be written as:

{FC̄} = {FC̃} = {fc̄}+ {fc̃}
{fi} = {FI}

(4.50)

The compatibility conditions can be written in two forms:

{xi} = {XI}
{xc̄} = {XC̄}
{xc̃} = {XC̃}

{xc̄} − {xc̃} = −[Gc̄c̃]
−1{fc̄}

(4.51)

or:

{xi} = {XI}
{xc̄} = {XC̄}
{xc̃} = {XC̃}

{xc̃} − {xc̄} = −[Gc̄c̃]
−1{fc̃}

(4.52)

Now, using equations (4.46,4.48,4.50,4.51,4.52) it is possible to find the desired rela-

tionship between the FRF submatrices of the assembled structure, [HR], in terms of

the FRF submatrices of the collected substructures, [Hr]. This relationship can be

derived by first substituting equations (4.46) into (4.51) and (4.52), yielding:

[Hc̄i]{fi}+ [Hc̄c̄]{fc̄}+ [Hc̄c̃]{fc̃} − [Hc̃i]{fi} − [Hc̃c̄]{fc̄} − [Hc̃c̃]{fc̃} + [Gc̄c̃]
−1{fc̄} = {0} (4.53)

[Hc̃i]{fi} + [Hc̃c̄]{fc̄} + [Hc̃c̃]{fc̃} − [Hc̄ifi]− [Hc̄c̄]{fc̄} − [Hc̄c̃]{fc̃}+ [Gc̄c̃]
−1{fc̃} = {0} (4.54)

Substituting now the equilibrium equations (4.50) into (4.53) and (4.54), yields:

[Hc̄i]{FI}+ [Hc̄c̄]{fc̄}+ [Hc̄c̃]({FC̃} − {fc̄})− [Hc̃i]{FI} − [Hc̃c̄]{fc̄} − [Hc̃c̃]({FC̃} − {fc̄}) + [Gc̄c̃]
−1{fc̄} = {0}

(4.55)

[Hc̃i]{FI}+ [Hc̃c̄]({FC̄} − {fc̃}) + [Hc̃c̃]{fc̃} − [Hc̄i]{FI} − [Hc̄c̄]({FC̄} − {fc̃})− [Hc̄c̃]{fc̃}+ [Gc̄c̃]
−1{fc̃} = {0}

(4.56)
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Isolating the Collected Substructure forces, {f}, in terms of the Assembled System

forces, {F}, in equations (4.53,4.54,4.55,4.56), yields:

{fc̄} = [B]
−1{([Hc̃i]− [Hc̄i]){FI}+ ([Hc̃c̃]− [Hc̄c̃]){FC̃}} (4.57)

{fc̃} = [B]
−1{([Hc̄i]− [Hc̃i]){FI}+ ([Hc̄c̄]− [Hc̃c̄]){FC̄}} (4.58)

{fc̄} = ([I ]− [B]
−1

([Hc̄c̄]− [Hc̃c̄])){FC̄} − [B]
−1

([Hc̄i]− [Hc̃i]){FI} (4.59)

{fc̃} = ([I ]− [B]
−1

([Hc̃c̃]− [Hc̄c̃])){FC̃} − [B]
−1

([Hc̃i]− [Hc̄i]){FI} (4.60)

where:

[B] = [Hc̄c̄] + [Hc̃c̃]− [Hc̃c̄]− [Hc̄c̃] + [G c̄c̃]
−1

(4.61)

Rewriting equation (4.46) as follows,

{xi} = [Hii]{fi}+ [Hic̄]{fc̄}+ [Hic̃]{fc̃} (4.62)

{xc̄} = [Hc̄i]{fi}+ [Hc̄c̄]{fc̄}+ [Hc̄c̃]{fc̃} (4.63)

{xc̃} = [Hc̃i]{fi}+ [Hc̃c̄]{fc̄}+ [Hc̃c̃]{fc̃} (4.64)

and substituting equations (4.50), (4.60), (4.57) into (4.62), and substituting equa-

tions (4.50), (4.59), (4.58) into (4.62) yields the internal displacement of the assembled

structure, {XI}, in terms of the FRFs of the substructures as follows:

{XI} = [Hii]{FI}+ [Hic̃]{FC̃}+ ([Hic̄]− [Hic̃])[B]
−1

([Hc̃i]− [Hc̄i]){FI}+

([Hic̄]− [Hic̃])[B]
−1

([Hc̃c̃]− [Hc̄c̃]){FC̃} (4.65)

{XI} = [Hii]{FI}+ [Hic̄]{FC̄}+ ([Hic̃]− [Hic̄])[B]
−1

([Hc̄i]− [Hc̃i]){FI}+

([Hic̃]− [Hic̄])[B]
−1

([Hc̄c̄]− [Hc̃c̄]){FC̄} (4.66)

Comparing equation (4.48) with equations (4.65) and (4.66) gives the first row of the

matrix in equation (4.48). This row comprises submatrices which are given as:

[HII] = [Hii]− ([Hic̄]− [Hic̃])[B]
−1

([Hc̄i]− [Hc̃i]) (4.67)
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[HIC̃] = [Hic̃]− ([Hic̄]− [Hic̃])[B]
−1

([Hc̄c̃]− [Hc̃c̃]) (4.68)

[HIC̄] = [Hic̄]− ([Hic̄]− [Hic̃])[B]
−1

([Hc̄c̄]− [Hc̃c̄]) (4.69)

Substituting now equations (4.50), (4.57), (4.60) into (4.63), and substituting equa-

tions (4.50), (4.58), (4.59) into (4.63), yields the connection displacements {XC̄} in

function of the FRFs of the substructures as follows:

{XC̄} = [Hc̄i]{FI}+ [Hc̄c̃]{FC̃}+ ([Hc̄c̄]− [Hc̄c̃])[B]
−1

([Hc̃i]− [Hc̄i]){FI}+

([Hc̄c̄]− [Hc̄c̃])[B]
−1

([Hc̃c̃]− [Hc̄c̃]){FC̃} (4.70)

{XC̄} = [Hc̄i]{FI}+ [Hc̄c̄]{FC̄}+ ([Hc̄c̃]− [Hc̄c̄])[B]
−1

([Hc̄i]− [Hc̃i]){FI}+

([Hc̄c̃]− [Hc̄c̄])[B]
−1

([Hc̄c̄]− [Hc̃c̄]){FC̄} (4.71)

Comparing equation (4.48) with equations (4.70) and (4.71) gives the second row of

the matrix in equation (4.48). This row comprises submatrices which are given as:

[HC̄I ] = [Hc̄i]− ([Hc̄c̃]− [Hc̄c̄])[B]
−1

([Hc̃i]− [Hc̄i]) (4.72)

[HC̄C̃] = [Hc̄c̃]− ([Hc̄c̃]− [Hc̄c̄])[B]
−1

([Hc̃c̃]− [Hc̄c̃]) (4.73)

[HC̄C̄] = [Hc̄c̄]− ([Hc̄c̃]− [Hc̄c̄])[B]
−1

([Hc̃c̄]− [Hc̄c̄]) (4.74)

Substituting now equations (4.50), (4.57), (4.60) into (4.64), and substituting equa-

tions (4.50), (4.58), (4.59) into (4.64), yields the connection displacements {XC̃} in

function of the FRFs of the substructures as follows:

{XC̃} = [Hc̃i]{FI}+ [Hc̃c̃]{FC̃}+ ([Hc̃c̄]− [Hc̃c̃])[B]
−1

([Hc̃i]− [Hc̄i]){FI}+

([Hc̃c̄]− [Hc̃c̃])[B]
−1

([Hc̃c̃]− [Hc̄c̃]){FC̃} (4.75)

{XC̃} = [Hii]{FI}+ [Hc̃c̄]{FC̄}+ ([Hc̃c̃]− [Hc̃c̄])[B]
−1

([Hc̄i]− [Hc̃i]){FI}+

([Hc̃c̃]− [Hc̃c̄])[B]
−1

([Hc̄c̄]− [Hc̃c̄]){FC̄} (4.76)

Comparing equation (4.48) with equations (4.75) and (4.76) gives the third row of
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the matrix in equation (4.48). This row comprises submatrices which are given as:

[HC̃I ] = [Hc̃i]− ([Hc̃c̄]− [Hc̃c̃])[B]
−1

([Hc̄i]− [Hc̃i]) (4.77)

[HC̃C̃] = [Hc̃c̃]− ([Hc̃c̄]− [Hc̃c̃])[B]
−1

([Hc̄c̃]− [Hc̃c̃]) (4.78)

[HC̃C̄] = [Hc̃c̄]− ([Hc̃c̄]− [Hc̃c̃])[B]
−1

([Hc̄c̄]− [Hc̃c̄]) (4.79)

Equations (4.67), (4.68), (4.69), (4.72), (4.73), (4.74), (4.77), (4.78), (4.79), can be

arranged together to yield the displacement {X} in function of the FRFs of the

substructures as follows:


{XI}
{XC̄}
{XC̃}

 =

 [Hii] [Hic̄] [Hic̃]

[Hc̄i] [Hc̄c̄] [Hc̄c̃]

[Hc̃i] [Hc̃c̄] [Hc̃c̃]

− (4.80)


([Hic̄]− [Hic̃])

([Hc̄c̄]− [Hc̄c̃])

([Hc̃c̄]− [Hc̃c̃])

[[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]
−1
]−1


([Hic̄]− [Hic̃])

([Hc̄c̄]− [Hc̄c̃])

([Hc̃c̄]− [Hc̃c̃])


T


{FI}
{FC̄}
{FC̃}


Equation (4.80) can be arranged in a more concise form resulting the equation of the

HANORCA approach written as:

{
{XI}
{XC}

}
=

([
[Hii] [Hic]

[Hci] [Hcc]

]
− (4.81)

{
([Hic̄]− [Hic̃])

([Hcc̄]− [Hcc̃])

}[
[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]

−1
]−1
{

([Hic̄]− [Hic̃])

([Hcc̄]− [Hcc̃])

}T){
{FI}
{FC}

}

The previous equation is the standard FRF form i.e.:{X} = [H]{F}. So that it is

possible to conclude that the desired FRF matrix of the assembled system, [H], in

terms of the FRFs matrix of the substructure, is as follows:

[H] =

([
[Hii] [Hic]

[Hci] [Hcc]

]
−
{

([Hic̄]− [Hic̃])

([Hcc̄]− [Hcc̃])

}[
[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]

−1
]−1{

([Hic̄]− [Hic̃])

([Hcc̄]− [Hcc̃])

}T)
(4.82)

This equation is used to obtain the FRF of the assembled structure using the FRFs

of the collected substructures. Here, [G c̄c̃], known as the describing function for

representing the nonlinear joints, is a function of the harmonic displacement {XC}.
Therefore the describing function assumes different values at different response am-
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plitudes. The response is determined by solving the equation (4.81) interactively by

applying the Newton-Raphson method previous presented in section 2.7.

4.4.6 Refinements in HANORCA

4.4.6.1 Pseudo inverse using Singular Value Decomposition (SVD)

Inversion of matrices can occasionally lead to numerical difficulties, particularly if

the matrix concerned is ill-conditioned. In FRF coupling analysis, this problem can

have a significant effect on the prediction of the response of the assembled structure,

[131]. A common technique for inverting an ill-conditioned matrix is to calculate the

pseudo-inverse based on the singular value decomposition (SVD) method, [97]. The

SVD is a numerical algorithm which can minimise computational errors involving

large matrix operations. The SVD decomposes a matrix [B] into three component

matrices, as follows:

[B]m×n = [U ]m×m[
∑

]m×n[V ]tn×n (4.83)

The diagonal matrix [
∑

] contains the singular values of matrix [B]. The matrices [U ]

and [V ] are orthonormal singular vector matrices such that:

[U ]t [U ] = [I ]

[V ]t [V ] = [I ]
(4.84)

where [I ] is a diagonal identity matrix.

If the matrix [B] is ill-conditioned, one or more singular values are below the

limits of numerical precision, ε . The singular value matrix thus becomes:

[
∑

]m×n =

 [
∑

]m×r

0

 (4.85)

where r is the rank of matrix [B].

Once the SVD of a matrix [B] is calculated, the pseudo inverse [B]
−1

can be
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calculated by using the following form:

[B]
−1

= [V ]

 [
∑

]
−1

m×r

0

 [U ]t (4.86)

4.4.6.2 Inverse of a partitioned matrix [B]

Equation (4.81) has to be solved using an iterative process. The inverse of matrix [B]

represents the most time-consuming calculation involved in the process. Matrix [B]

has to be evaluated and inverted in all the iterations until the solution is obtained.

Although the size of this matrix is just related with the interface data between the

substructures, usually not all the connections will be nonlinear connections. This

indicates that not all the elements in the matrix B are varying during the iterations,

but only those related to the nonlinear connections. For this reason, there are cases

where the iteration process can be speeded up by partitioning matrix [B] in such a

way that the submatrix related with the linear connection is inverted just once, while

only the submatrix relating to the nonlinear connection DOFs is inverted in all the

iterations. These refinements can be derived by assuming that the connection DOFs

{XC} can be partitioned according to two regions corresponding to:

• the linear DOFs denoted as l

• the nonlinear DOFs denoted as n{
XC

}
=

 Xl

Xn

 (4.87)

The matrix [B] can be partitioned as follows:

[
B

]
=

 Bll Bln

Bnl Bnn

 (4.88)

where:

[Bll] = [Bll]
T

[Bnn] = [Bnn]T (4.89)

[Bnl] = [Bln]T
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Using the Moore-Penrose inverse equation [95], matrix [B] can be expressed as

[B] = [B][X ][B] (4.90)

If [B] is non-singular, it is clear that [X ] = [B]
−1

and yields:

[B][X ] = [I ] (4.91)

The matrix [X ] can be partitioned as follows:

[
X
]

=

 Xll Xln
Xnl Xnn

 (4.92)

Substituting equations (4.88), (4.92) into (4.91) yields

 Bll Bln

Bnl Bnn


 Xll Xln
Xnl Xnn

 =

 Ill 0

0 Inn

 (4.93)

The matrix equation (4.93) can be expressed as the following system of submatrices

equations:

[Bll] [Xll] + [Bln][Xnl] = [Ill] (4.94)

[Bll] [Xln] + [Bln][Xnn] = [0] (4.95)

[Bnl] [Xll] + [Bnn][Xnl] = [0] (4.96)

[Bnl] [Xln] + [Bnn][Xnn] = [Inn] (4.97)

The [Xln] and [Xnl] matrices are calculated from equations (4.95) and (4.96) as:

[Xln] = −[Bll]
−1

[Bln][Xnn] (4.98)

[Xnl] = −[Bnn]
−1

[Bnl][Xll] (4.99)
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The well-known properties of the inverse matrix can be written as:

([A]T)
−1

= ([A]
−1

)T

([A][B])
−1

= [B]
−1

[A]
−1

(4.100)

([I ]− [A][B])
−1

= [I ] + [A]([I ]− [B][A])
−1

[B]

The [Xnn] matrix is calculated substituting equation (4.98) into equation (4.97) writ-

ten as follows:

[Xnn] = ([Bnn]− [Bnl][Bll]
−1

[Bln])
−1

(4.101)

and the [Xll] matrix is calculated substituting equations (4.99), (4.100), (4.101) into

equation (4.94), yielding:

[Xll] = [Bll]
−1

+ [Bll]
−1

[Bln][Xnn][Bnl][Bll]
−1

(4.102)

The [Xln] matrix can be rearranged by substituting equations (4.100), (4.101) into

equation (4.98) leading to:

[Xln] = ([Bnn][Bln]
−1

[Bll]− [Bnl])
−1

(4.103)

Using equations (4.89) and (4.100), the transpose of equation (4.103) can be calculated

as:

[Xln]T = ([Bll][Bnl]
−1

[Bnn]− [Bln])
−1

(4.104)

The [Xnl] matrix can be rearranged by substituting equations (4.100), (4.102) into

equation (4.99), yielding:

[Xnl] = ([Bll][Bnl]
−1

[Bnn]− [Bln])
−1

(4.105)

From equation (4.104) and (4.105) it is clear that:

[Xnl] = [Xln]T (4.106)
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Substituting equations (4.98), (4.101), (4.102) and (4.106) into (4.92), yields the

inverse of matrix [B] in function of the inverse of its submatrices as follows:

 Bll Bln

Bnl Bnn


−1

=

 [Bll]
−1

+ [Bll]
−1

[Bln][Xnn][Bnl][Bll]
−1 −[Bll]

−1
[Bln][Xnn]

(−[Bll]
−1

[Bln][Xnn])T [Xnn]


(4.107)

As mentioned before, the main advantage of using this formulation is related to the

crucial operation of inversion during the convergence process. Herein, instead of cal-

culating the inverse of the whole matrix [B]C∗C, at each iteration it is only necessary

to calculate the inverse of a matrix of size n ∗ n, the submatrix [Xnn], which depends

only on the non-linear connection DOFs. All the submatrices of [X ] include the term

[Bll]
−1

, which should be calculated only once since it contains only linear DOFs and

does not change during the iteration process. After the responses at these connec-

tion DOFs {XC} are calculated, the interior DOFs {XI} can be easily determined

without affecting significantly the required computational time, as it involves only

multiplication.

4.4.6.3 Local iterations

When working with an assembled system having a large number of connections and

a large number of degrees of freedom, it is generally the case that not all the DOFs

involved in the process of the calculation of the response are required or are going

to be excited. Therefore, better efficiency can be achieved if only those which are

required are involved in the process. The response and excitation vector is going to

be subdivided to derive the refined formulation.

Consider the equation for this Collected Substructure, relating the displacement

vectors and the force vector shown in matrix form as follows:
xi

xc̄

xc̃

 =


Hii Hic̄ Hic̃

Hc̄i Hc̄c̄ Hc̄c̃

Hc̃i Hc̃c̄ Hc̃c̃



fi

fc̄

fc̃

 (4.108)
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Looking at the Assembled System, the displacement in each point can be written as:


XI

XC̄

XC̃

 =


HII HIC̄ HIC̃

HC̄I HC̄C̄ HC̄C̃

HC̃I HC̃C̄ HC̃C̃



FI

FC̄

FC̃

 (4.109)

The displacement vectors {xi}, {xc̄}, {xc̃} can be arranged as shown below: as:

{xi} =

 xid

xiu

 {xc̄} =

 xc̄d

xc̄u

 {xc̃} =

 xc̃d

xc̃u

 (4.110)

where subscript d and u represent desired and undesired DOF respectively. There-

fore, the equation for the Collected Substructure, relating the required displacement

vectors and the force vector can be written in matrix form as follows:
xid

xc̄d

xc̃d

 =


Hidi Hidc̄ Hidc̃

Hc̄di Hc̄d c̄ Hc̄d c̃

Hc̃di Hc̃d c̄ Hc̃d c̃



fi

fc̄

fc̃

 (4.111)

Looking now at the Assembled System, the equation relating the required displace-

ment vector and the force vector can be written as:
XId

XC̄d

XC̃d

 =


HIdI HIdC̄

HIdC̃

HC̄dI
HC̄dC̄

HC̄dC̃

HC̃dI
HC̃dC̄

HC̃dC̃



FI

FC̄

FC̃

 (4.112)

where:

Id = internal DOFs where the response is desired

C̄d, C̃d = connection DOFs where the response is desired

The equilibrium conditions can be written as:

{FC̄} = {FC̃} = {fc̄}+ {fc̃}
{fi} = {FI}

(4.113)
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The compatibility conditions can be written in two forms:

{xid} = {XId}
{xc̄d} = {XC̄d

}
{xc̃d} = {XC̃d

}
{xc̄} − {xc̃} = −[Gc̄c̃]

−1{fc̄}

(4.114)

or:

{xid} = {XId}
{xc̄d} = {XC̄d}
{xc̃d} = {XC̃d

}
{xc̃} − {xc̄} = −[Gc̄c̃]

−1{fc̃}

(4.115)

Now by using equations (4.108,4.109,4.113,4.114,4.115) it is possible to find a rela-

tionship between the FRF submatrices of the assembled structure, [HR], in terms of

the FRF submatrices of the collected substructures, [Hr]. The detailed derivation of

this relationship can be found in Appendix B, resulting the following equation:


{XId}
{XC̄d}
{XC̃d}

 =

 [Hidi] [Hidc̄] [Hidc̃]

[Hc̄di] [Hc̄dc̄] [Hc̄dc̃]

[Hc̃di] [Hc̃dc̄] [Hc̃dc̃]

− (4.116)


([Hidc̄]− [Hidc̃])

([Hc̄dc̄]− [Hc̄dc̃])

([Hc̃dc̄]− [Hc̃dc̃])

[[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]
−1
]−1


([Hic̄]− [Hic̃])

([Hc̄c̄]− [Hc̄c̃])

([Hc̃c̄]− [Hc̃c̃])


T


{FI}
{FC̄}
{FC̃}


Equation (4.116) can be arranged in a more concise form resulting the formulation

of HANORCA with the refinement of local iterations as follows:

{
{XId}
{XCd}

}
=

([
[Hidi] [Hidc]

[Hcdi] [Hcdc]

]
− (4.117){

([Hidc̄]− [Hid c̃])

([Hcdc̄]− [Hcdc̃])

}[
[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]

−1
]−1
{

([Hic̄]− [Hic̃])

([Hcc̄]− [Hcc̃])

}T){
{FI}
{FC}

}

This formulation allows us to calculate only the response where it is required to avoid

spending time in unnecessary calculations. But there still remains some calculations

which can be avoided. One of these is when connecting one point to another point

or more than one point with rigid connections. This coordinate in the Assembled
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System will be only one coordinate, but in this approach all DOFs are still going to

be calculated. To overcome this problem, the connection DOFs C, c are composed

of all non repetitive DOFs. Another calculation that can be avoided is related with

the excitation force. The excitation can be applied in all points, but usually many of

these points do not have excitation, therefore there still remains some multiplication

by zero. To eliminate this excitation points, it is necessary to create a new group of

points where the excitation points will be desired.

The final refined algorithm can be derived assuming that the DOFs I , C, i, c

can be partitioned again according to two regions corresponding to the DOFs where

the force is desired denoted with subscript, f , and to the DOFs where the force is

undesired denoted with subscript, u. The final equation of the Collected Substructure,

relating displacement vectors where the response and force vector are desired is shown

in matrix form as: follows:

{
{XId}
{XCd}

}
=

([
[Hidif ] [Hidcf ]

[Hcdif ] [Hcdcf ]

]
− (4.118){

([Hidc̄]− [Hidc̃])

([Hcdc̄]− [Hcdc̃])

}[
[Hc̄c̄] + [Hc̃c̃]− [Hc̄c̃]− [Hc̃c̄] + [Gc̄c̃]

−1
]−1
{

([Hif c̄]− [Hif c̃])

([Hcf c̄]− [Hcf c̃])

}T){
{FIf }
{FCf }

}

A detailed studied of these improvements based on the number of floating operations

can be seen in Appendix C.

4.5 Multi-Harmonic Nonlinear Coupling Approaches

4.5.1 Introduction

The harmonic analysis technique has been found to be quite successful in many cases

where the higher harmonics components are small [23, 88, 136, 139]. However, there

are some special nonlinear structures, such as structures containing quadratic or bi-

linear joints, where the harmonic response is not enough to represent the dynamic

characteristics [72]. Therefore a more accurate representation of the dynamic charac-

teristics can be achieved by the multi-harmonic analysis. In this section, the harmonic

nonlinear methods developed in the previous sections were extended to overcome this

problem.
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4.5.2 Multi-Harmonic Nonlinear Impedance Coupling using

Multi-Harmonic Balance Method

Consider the matrix differential equation of motion of the structure where the internal

nonlinear forces are treated as pseudo external forces:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]x = {f} − {f} (4.119)

Equation (4.119) can be written in impedance form as:

[Z]{x} = {f} − {f} (4.120)

where [Z] is given by:

[Z] = [[K]− ω2[M ] + iω[C] + i[D]]

(4.121)

In order to consider the higher harmonics it is necessary to assume the hypothesis

shown by equations (2.62,2.64,2.66) and also that the external periodic forcing can

be represented in Fourier series as follows:

fkl =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kl e

imΨ (4.122)

Then considering n harmonics in the response, equation (4.120) can be written as a

set of nonlinear algebraic equations as:



[Z1] 0 0 . . . 0

0 [Z2] 0 . . . 0
... 0

. . .
...

0 0 0 . . . [Zn]





{X1}
{X2}

...

{Xn}


=



{F 1}
{F 2}

...

{F n}


−



{F1}
{F2}

...

{Fn}


(4.123)

The quasi-linear theory presented here converts a set of n nonlinear equations (4.119)

to a set of n nonlinear algebraic equations (4.123). From equation (4.123) it is possible

to see that although the harmonics equations are uncoupled, all the harmonics will
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be excited as an external force, then the response of the structure under harmonic

excitation can be obtained by solving equation (4.123) iteratively. Equation (4.123)

can be written in a more compact form as:

{gm(y)} = {0} (4.124)

where: 

{g(y)1}
{g(y)2}

...

{g(y)n}


=



{[Z1]{X1} − {F 1}+ {F1}}
{[Z2]{X2} − {F 2}+ {F2}}

...

{[Zn]{Xn} − {F n}+ {Fn}}


(4.125)

Equation (4.125) can be solved by using the Newton-Raphson method previously

shown in section (2.7).

4.5.3 Multi-Harmonic Nonlinear Impedance Coupling using

High-Order Describing Function (MUHAIM)

Consider the matrix differential equation of motion of the structure with internal

nonlinear forces can be written as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (4.126)

Equation (4.126) can be written in impedance form as:

[Z]{x}+ {f} = {f} (4.127)

where [Z] is given by:

[Z] = [[K]− [M ]ω2 + iω[C] + i[D]]

In order to substitute the nonlinear force by its describing function, it is necessary to

assume the hypothesis shown by equations (2.62,2.64,2.66) and also that the external
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periodic forcing can be represented in Fourier series as:

fkl =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kl e

imΨ (4.128)

Substituting the internal nonlinear force {f} by the corresponding describing function

equation (2.103) in equation (4.127) yields the mth harmonic differential equation as:

[[Zm] + [Θ]m]{Xm} = {Fm} (4.129)

where [Zm] is given by:

[Zm] = [[K]− [M ](mω)2 + imω[C] + i[D]]

Considering n harmonics in the response, the differential equation of the system can

be written as:



[Z1] + [Θ]1 0 0 . . . 0

0 [Z2] + [Θ]2 0 . . . 0
... 0

. . .
...

0 0 0 . . . [Zn] + [Θ]n





{X1}
{X2}

...

{Xn}


=



{F 1}
{F 2}

...

{F n}


(4.130)

The quasi-linear theory presented here converts a set of n nonlinear equations (4.126)

to a set of n nonlinear algebraic equations (4.130). From equation (4.130) it is possible

to see that the harmonics equations are uncoupled, which indicates that the response

of the structure under harmonic excitation can be obtained iteratively by solving

equation (4.130) together with the describing functions that couple the harmonic

equation. Equations (4.130,2.99) can be written together in a more compact form as:

{g(y)} = {0} (4.131)
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where: 

{g1(y)}
{g2(y)}

...

{gn(y)}



=



([Z1] + [∆]1){X1}
([Z2] + [∆]2){X2}

...

([Zn] + [∆]1){Xn}
ν1(X1

k −X1
l )−F1

kl

ν2(X2
k −X2

l )−F2
kl

...

νn(Xn
k −Xn

l )−Fn
kl



(4.132)

Equation (4.132) can be solved by using the Newton-Raphson method.

4.5.4 Multi-Harmonic Nonlinear Impedance Coupling using

Multi-Harmonic Describing Function (MUHANORCA)

Consider the matrix differential equation of motion of the structure with internal

nonlinear forces written as:

[M ]{ẍ}+ [C]{ẋ}+ i[D]{x}+ [K]{x}+ {f} = {f} (4.133)

Equation (4.133) can be written in impedance form as:

[Z]{x}+ {f} = {f} (4.134)

where [Z] is given by:

[Z] = [[K]− [M ]ω2 + iω[C] + i[D]]

(4.135)

In order to substitute the nonlinear force by its multi-harmonic describing function,

it is necessary to assume the hypothesis shown by equations (2.62,2.64,2.66) and also
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that the external periodic forcing can be represented in Fourier series as:

fkl =
∞∑
m=0

fmkl =
∞∑
m=0

Fm
kl e

imΨ (4.136)

Substituting the internal nonlinear force {f} by the corresponding multi-harmonic

describing function equation (2.108) in equation (4.134) yields the mth harmonic

differential equation as:

[Zm]{Xm}+
m∑
i=1

[∆]mi{Xi} = {Fm} (4.137)

Considering n harmonics in the force and response, the differential equation of the

system can be written as:



[Z1] + [∆]11 [∆]12 [∆]13 . . . [∆]1n

[∆]21 [Z2] + [∆]22 [∆]23 . . . [∆]2n

...
. . .

...

[∆]n1 [∆]n2 [∆]n3 . . . [Zn] + [∆]nn





{X1}
{X2}

...

{Xn}


=



{F 1}
{F 2}

...

{F n}


(4.138)

The quasi-linear theory presented here converts a set of n nonlinear equations (4.133)

to a set of n nonlinear algebraic equations (4.138). From equation (4.138) it is possible

to see that the harmonics equations are coupled, which indicates that the response of

the structure under harmonic excitation can be obtained by solving equation (4.130).

Equation (4.138) can be written together in a more compact form as:

{g(y)}= {0} (4.139)

where:

{g1(y)}
{g2(y)}

...

{gn(y)}


=



[[Z1] + [∆]11]{X1}+ [∆]12{X2}+ . . .+ [∆]1n{Xn} − {F1}
[∆]21{X1}+ [[Z2] + [∆]22]{X2}+ . . .+ [∆]2n{Xn} − {F1}

...

[∆]n1{X1}+ [∆]n2{X2}+ . . .+ [[Zn] + [∆]nn]{Xn} − {F1}


(4.140)

Equation (4.140) can be solved by using the Newton-Raphson method.
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4.5.5 Multi-Harmonic Nonlinear Receptance Coupling using

Multi-Harmonic Describing Function

Let us assume all the substructures to be connected and the assembled system as presented

in section 4.2 . The equation of the Collected Substructure, relating the displacement vector

and the force vector for n harmonics for the displacement and m harmonics for the force is

shown in matrix form as:

x1
i

x1
c̄

x1
c̃

x2
i

x2
c̄

x2
c̃

...

xni

xnc̄

xnc̃



=



H11
ii H11

ic̄ H11
ic̃ · · · H1m

ii H1m
ic̄ H1m

ic̃

...
. . .

...

Hn1
ii Hn1

ic̄ Hn1
ic̃ · · · Hnm

ii Hnm
ic̄ Hnm

ic̃

H11
c̄i H11

c̄c̄ H11
c̄c̃ · · · H1m

c̄i H1m
c̄c̄ H1m

c̄c̃

...
. . .

...

Hn1
c̄i Hn1

c̄c̄ Hn1
c̄c̃ · · · Hnm

c̄i Hnm
c̄c̄ Hnm

c̄c̃

H11
c̃i H11

c̃c̄ H11
c̃c̃ · · · H1m

c̃i H1m
c̃c̄ H1m

c̃c̃

...
. . .

...

Hn1
c̃i Hn1

c̃c̄ Hn1
c̃c̃ · · · Hnm

c̃i Hnm
c̃c̄ Hnm

c̃c̃





f1
i

f1
c̄

f1
c̃

f2
i

f2
c̄

f2
c̃

...

fmi

fmc̄

fmc̃



(4.141)

Looking at the Assembled System, the displacement in each point can be written as:



X1
I

X1
C̄

X1
C̃

X2
I

X2
C̄

X2
C̃
...

Xn
I

Xn
C̄

Xn
C̃



=



H11
II H11

IC̄
H11
IC̃

· · · H1m
II Hnm

IC̄
H1m
IC̃

...
. . .

...

Hn1
II Hn1

IC̄
Hn1
IC̃

· · · Hnm
II Hnm

IC̄
Hnm
IC̃

H11
C̄I

H11
C̄C̄

HC̄C̃11 · · · H1m
C̄I

H1m
C̄C̄

H1m
C̄C̃

...
. . .

...

Hn1
C̄I

Hn1
C̄C̄

Hn1
C̄C̃

· · · Hnm
C̄I

Hnm
C̄C̄

Hnm
C̄C̃

H11
C̃I

H11
C̃C̄

H11
C̃C̃

· · · H1m
C̃I

H1m
C̃C̄

H1m
C̃C̃

...
. . .

...

Hn1
C̃I

Hn1
C̃C̄

Hn1
C̃C̃

· · · Hnm
C̃I

Hnm
C̃C̄

Hnm
C̃C̃





F 1
i

F 1
C̄

F 1
C̃

F 2
I

F 2
C̄

F 2
C̃
...

FmI

Fm
C̄

Fm
C̃



(4.142)

Assuming that all the harmonics order of the displacement can be arranged in a the set

called Qr and that all the harmonics order of the force can be arranged in a the set called

Qs. For the displacement harmonic n = qr and for the force harmonic m = qs, the Collected
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Substructure equation can be written in a more concise form as:


xqri

xqrc̄

xqrc̃

 =


Hqrqs
ii Hqrqs

ic̄ Hqrqs
ic̃

Hqrqs
c̄i Hqrqs

c̄c̄ Hqrqs
c̄c̃

Hqrqs
c̃i Hqrqs

c̃c̄ Hqrqs
c̃c̃



fqsi

fqsc̄

fqsc̃

 (4.143)

and the Assembled System equation can also be written in a more concise form as:


Xqr
I

Xqr
C̄

X
qr
C̃

 =


Hqrqs
II Hqrqs

IC̄
Hqrqs
IC̃

Hqrqs
C̄I

Hqrqs
C̄C̄

Hqrqs
C̄C̃

H
qrqs
C̃I

H
qrqs
C̃C̄

H
qrqs
C̃C̃



F qsI

F qs
C̄

F
qs
C̃

 (4.144)

The equilibrium conditions can be written as:

{F qs
C̄
} = {F qs

C̃
} = {fqsc̄ }+ {fqsc̃ }

{fqsi } = {F qsI }
(4.145)

The compatibility conditions can be written in two forms:

{yqrc̄c̃} = {xqrc̄ } − {xqrc̃ }
{xqri } = {Xqr

I }
{xqrc̄ } = {Xqr

C̄
}

{xqrc̃ } = {Xqr
C̃
}

{yqrc̄c̃} = −[Gqsqrc̄c̃ ]
−1{fqsc̄ }

(4.146)

or:

{yqrc̃c̄} = {xqrc̃ } − {x
qr
c̄ }

{xqri } = {Xqr
I }

{xqrc̄ } = {Xqr
C̄
}

{xqrc̃ } = {Xqr
C̃
}

{xqrc̃ } − {x
qr
c̄ } = −[Gqsqrc̄c̃ ]

−1{fqsc̃ }

(4.147)

Now using the previous equations (4.141,4.142,4.145,4.146,4.147) it is possible to find a

relation between the FRF submatrices of the assembled structure, [HR], in terms of the FRF

submatrices of the collected substructures, [Hr]. The detailed derivation of this relationship
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can be found in Appendix D, resulting the following equation:
{Xqr

I }
{Xqr

C̄
}

{Xqr
C̃
}

 =

 [Hqrqs
ii ] [Hqrqs

ic̄ ] [Hqrqs
ic̃ ]

[H
qrqs
c̄i ] [H

qrqs
c̄c̄ ] [H

qrqs
c̄c̃ ]

[Hqrqs
c̃i ] [Hqrqs

c̃c̄ ] [Hqrqs
c̃c̃ ]

− (4.148)


([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])

([Hqrqs
c̃c̄ ]− [Hqrqs

c̃c̃ ])

[[Hqrqs
c̄c̄ ] + [Hqrqs

c̃c̃ ]− [Hqrqs
c̄c̃ ]− [Hqrqs

c̃c̄ ] + [Gqsqrc̄c̃ ]
−1
]−1


([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])

([Hqrqs
c̃c̄ ]− [Hqrqs

c̃c̃ ])


T


{F qsI }
{F qs
C̄
}

{F qs
C̃
}


where matrix [Gqsqrc̄c̃ ] is given by:

[Gqsqrc̄c̃ ] =


G11
c̄c̃ G12

c̄c̃ · · · G1qr
c̄c̃

...
. . .

...

Gqs1c̄c̃ Gqs2c̄c̃ · · · Gqsqrc̄c̃



Equation (4.148) can be arranged in a more concise form as:

{
{Xqr

I }
{Xqr

C }

}
=

([
[Hqrqs
ii ] [Hqrqs

ic ]

[Hqrqs
ci ] [Hqrqs

cc ]

]
− (4.149){

([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])

([Hqrqs
cc̄ ]− [Hqrqs

cc̃ ])

}[
[Hqrqs
c̄c̄ ] + [Hqrqs

c̃c̃ ]− [Hqrqs
c̄c̃ ]− [Hqrqs

c̃c̄ ] + [Gqsqrc̄c̃ ]
−1
]−1
{

([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])

([Hqrqs
cc̄ ]− [Hqrqs

cc̃ ])

}T){
{F qsI }
{F qsC }

}

Equation (4.149) is the standard FRF form i.e.:{X} = [H ]{F}. So that it is possible to

conclude that the desired FRF matrix of the assembled system, [H ], in terms of the FRFs

matrix of the substructure, is as follows:

[H]=

[
[Hqrqs
ii ] [Hqrqs

ic ]

[H
qrqs
ci ] [H

qrqs
cc ]

]
−
{

([Hqrqs
ic̄ ]−[Hqrqs

ic̃ ])

([H
qrqs
cc̄ ]−[H

qrqs
cc̃ ])

}[
[Hqrqs
c̄c̄ ]+[Hqrqs

c̃c̃ ]−[Hqrqs
c̄c̃ ]−[Hqrqs

c̃c̄ ]+[Gqsqrc̄c̃ ]
−1
]−1{

([Hqrqs
ic̄ ]−[Hqrqs

ic̃ ])

([H
qrqs
cc̄ ]−[H

qrqs
cc̃ ])

}T
(4.150)

This equation is used to obtain the FRF of the assembled structure using the FRFs of

the collected substructures. Here, Gqsqrc̄c̃ is a function of the harmonic displacement Y qr
C̄C̃

,

known as the describing function. Therefore the describing function assumes different values

at different response amplitudes. The response is determined by solving the system of

equations (4.149) simultaneously and interactively.



Chapter 4 Impedance Coupling Methods 117

4.6 Concluding Remarks

This Chapter started with the development of a new coupling notation which unifies all

the current notations available. Then various coupling methods for analysis of linear and

nonlinear structures were reviewed. This was followed by the proposal of a new harmonic

nonlinear receptance coupling method, HANORCA, using the describing function. This

method was later extended to the multi-harmonic nonlinear receptance coupling approach,

MUHANORCA.

Several other methods were also developed in this work, such as (i) Harmonic Nonlin-

ear Impedance Coupling using Describing Functions, (ii) Multi-Harmonic Nonlinear Impedance

Coupling using Multi-Harmonic Balance Method, (iii) Multi-Harmonic Nonlinear Impedance

Coupling using High-Order Describing Function and (iv) Multi-Harmonic Nonlinear Impedance

Coupling using Multi-Harmonic Describing Function. They were essentially used to improve

the basic understanding of the higher-order analysis. The accumulated understanding as-

sisted in the development of the definitive nonlinear coupling method, MUHANORCA.



Chapter 5

Intelligent Nonlinear Coupling

Analysis INCA++

5.1 Introduction

Chapter 4 presented the existing impedance coupling methods and also proposed methods

for analysing nonlinear coupled structures. After new methods are developed, they must be

evaluated in order to validate and to assess the accuracy of technique involved. This can be

achieved either by using analytical or numerical approximate solutions. For the validation

of techniques simulating nonlinear responses, numerical approximate solutions, such as the

time-marching method with a very fine time-step, are frequently used as a benchmark of

the accuracy. In most cases this validation applies in the development of a new software,

where a numerical analysis of the exact method and of the new developed method can be

obtained.

In engineering education, the initial step in developing programs involves the con-

struction of simple analysis tools to validate the fundamental principles. During this time

little attention is paid to common factors such as the implementation details, portability and

reusability of the software being developed. On the other hand, the developer also would

like to utilise standard functions that are already programmed and checked. Thus, even

though one is only testing the principles, it is important to use a language that supports the

above common factors, such as FORTRAN which is traditionally used in the engineering

environment. After the preliminary stage, the program is usually extended to cope with

large models. General-purpose programs are rarely developed by the academic researches

118
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because they are limited to developing the individual contributions within the constraints

of the degree programme engaged. Although, from the point of view of the researcher, it is

important to validate the method numerically with these small specific programs, the idea

behind any research is to apply the method developed to a large physical complex structure,

and this is usually accomplished by a reliable general-purpose program. These programs are

not easily reshaped to perform modifications that allow researchers to reuse the program,

and often the developers are required to redesign and to rebuild their own program to suit

their own needs. Although these specifically-developed programs available over the years

of research are rarely used outside their original development environment, their published

theoretical foundations are often examined and implemented in new contexts by other re-

searchers. However, occasionally these publications, along with others documentation, allow

modifications to be made in those specific programs, but a great amount of time is spent

on understanding the structure of the program and to maintain the integrity of the original

design.

A solution to these problems is to improve the code modularity. An evolutionary soft-

ware development can be achieved by using object-oriented language (OOL) [14]. Although

OOL solves the problem with code modularity, OOL also brings another problem of being

numerically inefficient. Usually, programs which will involve a lot of computation should

use languages that take advantage of hardware developed for this purpose. Among them, C

language is considered to be a very efficient language for solving numerical problems. But

even this language does not satisfy all the current requirements and future demands. The

solution is to apply hybrid methods such as the C++ programming language [117], which

is designed to improve the modularity of the code by supporting object-oriented program-

ming, and at the same time allowing a very efficient numerical performance by remaining

almost completely a superset of C language, [40].

Recently, there has been a growing interest in applying the object-oriented approach to

engineering analysis. For example, Forde et al. [41] developed an object-oriented static finite

element analysis program. Zimmerman et al. [146] showed that object-oriented languages

such as Smalltalk are able to handle FEM processing. Scholz [111] describes the benefits

of the object-oriented language C++ for finite element analysis programs. Pidaparti et

al. [96] developed a object-oriented dynamic finite element analysis program. Menetrey et

al. [80] developed a finite element program for nonlinear static analysis. Miki et al. [85]

developed a Smalltalk program to do object-oriented structural and geometric analyses of

truss structures.
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Due to the iterative and incremental nature of object-oriented languages, the aim here

is to design a product that can be easily modified to introduce new analysis procedures,

new kinds of solvers or even new kinds of structural components. The software developed

called Intelligent Nonlinear Coupling Analysis INCA++ is a completely new program in an

Object-Oriented Language using the hybrid language C++.

5.2 Object-Oriented Language

5.2.1 Introduction

The idea behind the Object-Oriented Language is that the object-oriented approach adapts

the computer to the problem instead of trying to mould the problem into something familiar

to the computer. A useful way to understand this idea is to look at some aspects of

programming in different ways. The object-oriented approach requires that the user to

develop a program in its own terms using all the key features available in the language.

Following this rule makes it easier to develop the program in OOL and to keep the solution

under control rather than developing the program in a procedural language that keeps

the solution in the terms of the computer. This approach permits the use of artificial

intelligent techniques such as the event-driven architectures used extensively in modern

word-processing and spreadsheet applications, and knowledge-based expert systems [40].

The basic concept of the event-driven approach is that actions taken by the user result

in events. Applications obtain the events by continual extraction of events from an event

queue. This application responds to each event with the execution of an associated action.

The knowledge-based technology has the ability to perform a forward and backward

chain of operations to provide the missing data for the task to be completed.

5.2.2 Object Model

A model is a concept in computer science that consists of various elements. If a model is

composed of the major known elements which can be described as abstraction, encapsula-

tion, modularity, and hierarchy, it is called an Object Model. If all the basic elements are

used at the same time, the final model is an Object Model with Object-Oriented Design.
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5.2.3 Basic Elements of Object Model

An object-oriented language means a programming language that supports the basic ele-

ments of the Object Model. If any of these elements are missing in the program, the level

of control over the complexity of the problem is reduced.

These elements are explained in the following sections. To aid understanding of these

elements, some examples have been given related to the INCA++ software.

5.2.3.1 Abstraction

Abstraction describes the process of abstracting a real-world entity into a representation in

the computer. The result is the creation of a new data type called ”class” that behaves just

like any other data type which is already defined into the language such as an integer, float,

etc. Deciding the right set of abstractions for a given plan is usually the central problem in

object-oriented program design.

An example of abstraction can be a physical structure represented by the abstraction

class Structure. Every physical system can now have a mathematical representation inside

the computer using the class Structure. The inside view of the class Structure is composed

of DOFs, nodes, elements, loads, etc. From the outside view, a class Structure is just a

class that can answer any questions which are asked, such as the displacement in a specific

DOF or the stress over all the elements, frequency response function when excited in DOF1

and measured in DOF2, etc.

5.2.3.2 Object

A single object is an example of a class. In other words, when creating a variable of a data

type, we are creating an object. So it is possible to say that variables are now called objects.

Each object is an entity that exhibits some well-defined behaviour, having a state and a

unique identity. Using the type already defined in the language a good example could be a

definition of three different integer variables such as follows:

integer A,B,C;

where A,B and C are objects of type integer.

In the same way using the class Structure that was proposed in the last section it is

possible to define three different structures:

Structure D,E,F;

where D, E and F are objects of type Structure.
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5.2.3.3 Encapsulation

In procedural language the main point is concentrated in the subroutines whereas in object-

oriented language the focus is in the objects.

Encapsulation organises the variables, hides the complexity of the inside view of the

objects and gives internal control over the object. Encapsulation teaches the objects how

to handle messages and gives it structure and behaviour. Encapsulation also serves to

distinguish between the interface of a class and its implementation. The interface describes

what the class does, and the implementation defines how the class works.

The interface of the class consist of two sets of elements, Attributes and Methods:

• Attributes: sets of variables that belong to the object. Example of attributes of

a class Structure can be nodes, elements, stiffness matrix, mass matrix, eigenvalue

diagonal matrix, eigenvector full matrix, load list, etc.

• Methods: operations that an object is able to execute. An example could be the

following method:

giveStiffnessMatrix();

This method can be used by another class when sending a message to a specific class

Structure. For example imagine the stiffness matrix of the object Structure D

defined in section (5.2.3.2) is required. The way to obtain it is to send the following

message:

D.giveStiffnessMatrix();

The way to read this message is: ”Structure D, give me your stiffness matrix”.

The implementation is the way in which the methods of the class execute the message

using a group of commands. An example of the implementation could be how the method

giveStiffnessMatrix gets the stiffness matrix. In this case, the implementation is a group

of commands used to query the user to feed in the stiffness matrix via the keyboard, or a

group of commands to enter the name of the file where the stiffness matrix is stored and

them to read from this file. Imagine another example related with the coupling procedure

where the structure is composed of some substructures. In this case the method can be

composed of some commands that first send a message to each substructure asking for its
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stiffness matrix. With the matrix of each substructure thus obtained, the method assembles

the global stiffness matrix and returns it. It is important to notice that the way the

method processes the message giveStiffnessMatrix is not relevant for the class sending

this message. The class sending the message just needs the contents of the global stiffness

matrix.

5.2.3.4 Modularity

Modularity consists of a physical set of packages of logically-related classes, producing a

system physical architecture. The use of modules is essential to manage complexity in large

problems. In C++, it is possible to say that there is a convention for two modules, the

module interface where the files has the extension .h, known as header files, and for the

module implementation where the files have the extension .cpp. The dependencies among

files can then be stated by using the #include macro. An example of a module could be a

module called FRFMethods which is composed of all the FRF methods related to coupling

procedures such as Impedance Method, Receptance Method, Nonlinear Receptance method,

etc.

5.2.3.5 Hierarchy

Hierarchy is the idea of defining a new class from another class already defined using inher-

itance. Inheritance defines relationship among classes where one class shares the structure

or behaviour defined in one or more classes. Typically, this new class enhances or redefines

the existing structure and behaviour of its superclasses. Consider all the approaches related

to coupling procedures. A generalised class of FRFMethods will describe our abstrac-

tion of coupling approaches. However, different approaches demand different specialised

coupling procedures. For instance, the Impedance approach needs to have the impedance

matrix of all substructures whereas it is completely different in the Receptance Coupling

Approach which requires the assembly of a special matrix composed of Frequency Response

Functions. In this example, the Impedance Approach will be represented by a class called

Impedance that could have a method called giveImpedance() and the Receptance Coupling

Approach will be represented by a class called Receptance that could have a method called

giveH(). On the other hand, all approaches need to know which are the connection coordi-

nates and the internal coordinates. The methods that could represent these messages could

be getCoonectionCoordinates() and getInternalCoordinates(). Therefore those methods
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that are common to all procedures can be defined in the superclass called {FRFMethod as

shown in the following definition:

class FRFMethod{
...

getCoonectionCoordinates();

getInternalCoordinates();
...

}

An example of inheritance from the class FRFMethod is the Impedance class and the Receptance

class as shown from the following definition:

class Impedance : public FRFMethod{
...

giveImpedance();
...

}
class Receptance : public FRFMethod{
...

giveH();

...

}

5.2.3.6 Polymorphism

Polymorphism is a concept in type theory where a single name may denote an appropriate

behaviour of a derived class among many different derived classes that are related by some

common superclass. This means that methods in different classes with completely different

operations can share the same name. For the superclass FRFMethod and the subclasses

Impedance and Receptance it is possible to have the same message to execute a specific

task. For example in order to have the solution at a particular frequency, the message needed

to execute this task can be a method called solveY ourselfAt. Although the message is the
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same for both classes, the operations inside each method are completely different from each

other. The message solveY ourselfAt in each class is shown in the following definition:

class FRFMethod{
...

virtual solveYourselfAt();

...

}

class Impedance : public FRFMethod{
...

assembleYourselfAt(){
...

giveImpedance();

...

}
...

}

class Receptance : public FRFMethod{
...

assembleYourselfAt(){
...

giveH();
...

}
...

}
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5.2.4 Advanced Concept

Programming in OOL means that at least all the basic concepts are used. However, an

intrinsic inconvenience from the procedural programming still remains when programming

only with the basics concepts. It is concerned with the fact that a code is designed as

a sequence of operations and all the operations are dependent on the correct previous

executions of the methods. To overcome this problem, another element is introduced in the

Object Model, the concept of non-anticipation. This concept implies that the content of a

method should not be dependent on previous assumptions of the state of the program.

This can be better seen when comparing the standard concept against the non-

anticipation concept. In the standard approach if the connection coordinates necessary

during the coupling are required, the programmer should call up a procedure which will

manage to obtain this data, such as:

getConnectionCoordinates();

Later on, if the same data is required again during the program, another procedure that

would just return these coordinates could be called for:

return ConnectionCoordinates();

This decision avoids wasting time getting these variables again, but it tends to create

difficulties in future extensions. Alternatively, if the programmer does not assume anything

about the state of the variable, only one message would ever need to be sent for all situations:

giveConnectionCoordinates();

The code inside this method should contain a simple test that checks whether the variable

already exists or not. If the variable does not exist, get the variable and return it or, if the

variable exist, just return it. The following code describes this situation:

ObjectList *Coupling::giveConnectionCoordinates(){

if(!ConnectionCoordinates)getConnectionCoordinates();

return ConnectionCoordinates;

}

5.2.5 Achieving Object Model

A good object model can be best achieved when the development process is divided into

phases known as Object-Oriented Analysis, Object-Oriented Design and Object-Oriented

Programming.
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Object-Oriented Analysis is the phase where the nebulous requirements of the experts

in the problem are transferred into a description of the task to be solved by the programmer.

Object-Oriented Design is the phase where the programmer must start defining classes

and modules listing all the operations and their relationships to other classes.

Object-Oriented Programming is the phase where the Object Model is physically

implemented. The classes and methods are coded, tested and integrated with each other.

After completing these phases, the programmer’s developing experience can usually

result in improvements and modifications to the model through further iterations of the

process.

When developing a general program, the object model can be better understood with

the help of a visual tools. The Booch notation [14, 138] is an example of visual tool used

for development of software and to produce automatic documentation of the program. A

brief summary of the Booch notation is shown in Appendix F. The Booch method presents

a set of steps which are applied iteratively and incrementally to pieces of the system. This

is desirable since it is possible to analyse just small parts, design them and code them, and

then make this an iterative cycle and incrementally enhance the strategies adopted during

the design.

5.3 Specifications of INCA++

The development of the Object-Oriented Analysis of the INCA++ is performed by first

defining all the required specifications. The general requirement is to produce a software in

order to be able to perform static and dynamic analyses of linear and nonlinear structures

in time and frequency domains based on current and emerging computer technology. The

software should also provide support for rapid development of new methods. The specific

requirements are now concerned with the physical problem to be analysed. The physical

structure can be composed of substructures which are represented by the discrete system.

The linear and nonlinear structural dynamic coupling techniques are applied to obtain the

assembled structure. The input data can be eigenvalues, eigenvectors, mass, stiffness and

damping matrices, and frequency response functions. A structure will have a name, where

all of the input and output data of the structure will be related to its name. The structure

is defined by the elements of the spatial model, modal model and response model. The

spatial model is defined with mass, stiffness and damping matrices, the modal model is
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defined with eigenvalues, and eigenvectors and the response model is defined by frequency

response functions. After defining a structure with a specific model, the program should be

able to produce all the remaining elements for working with the other models.

The aim of the first phase is to produce an intermediate release INCA++, which

will provide the desired tool for checking and comparing different approaches for different

inputs. The second phase is to add a post-processor in the program in order to show the

results obtained from the calculations. The last phase is to add a pre-processor that will

allow a visual mode of entering all the data involved in the procedures. During this work,

the objective was to produce only the first phase.

A point to be considered in the Object Model related to the coupling procedure is

that the class Structure can be composed of n classes Structure and any of these n

classes Structure can be again composed of n classes Structure as shown in Figure 5.1.

Another point that must be decided is the way to start developing the software. A software

A

B

C C D

C

E F

D

E F

Figure 5.1: Example of structure A composition

can be developed by using some very well-checked libraries that are carefully developed

for all possible general-purpose cases. Therefore the software is the last product to be

developed since all the libraries must be very well widely developed first. This kind of

development is called ”bottom-up”. Another approach is to develop only the software

necessary for the program. This kind of development is called ”top-down”, and experts in

the development field claim it to be more efficient because only what it is really required is

developed [14].Therefore the ”top-down” development procedure was adopted here.
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5.4 First Design of INCA++ Object Model

The object-oriented system is a programming environment in which the fundamental pro-

cessing model is to send a message to an object rather than using the more traditional

approach of calling a procedure to operate on some data. This approach qualitatively en-

hances the design, creation, and maintenance of a software system. The great advantage

achieved from this language is the modularity.

Every entity in engineering analysis is considered as an object, each object is an

instance of each class, and these classes have a class hierarchy. All the knowledge is divided

into small parts, and they are stored in pertinent classes. Therefore the primary part of

the research involves the development of the class hierarchy and the data structure in each

class and specifying the behaviour of each class. The class hierarchy and the data structures

are static representations of the knowledge, whereas methods by which objects respond to

messages are dynamic representations of the knowledge.

When dealing with discrete systems, various basic terms come to mind, such as coor-

dinates, nodes, elements, degrees of freedom, load, force, displacement, etc. The first step is

to specify all these entities. The next step is to decide which entity should be created as an

object and what the tasks of this object should be. These are the most difficult questions

to be answered. Since it is not necessary to decide everything in one step, since another

characteristic of the language is to support iterative approach, the optimum procedure is to

define the obvious objects like DOF, node, element, structure, and progressively continue

making the decisions about the less-obvious objects when necessary.

An important point to remember concerns making the code readable. A significant

help towards understanding the code better is to choose the right names for the classes,

objects and methods. These names should be immediately clear enough so that just reading

the name, it is possible to understand the abstraction, concept or picture represented by

the class, object or messages.

Another decision concerns where to start and what exactly is to be developed. It

is obvious that certain basic objects will be necessary to organise and classify the input

data and the data to be calculated. Such basic objects can be highlighted as an array,

single-linked-list and double-linked-list. Sometimes using an array instead of a single linked

list or double linked list will work faster, use less memory, among other advantages. From

previous experience, it has become clear that whether the class to be developed is related

with the input or output data, it is not so important if the task takes one or two seconds
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more to do using either the array or the single-linked list or the double linked-list. Hence

it is more important to know where and when it will be necessary to use all of these basic

classes rather than to start developing all of them and trying to guess which to use. Since

the program can be enhanced progressively after checking where it should be improved,

another decision was to use the entire data dictionary as a double-linked-list.

From the specification, the first design of the class Structure is shown in Figure 5.2.

Structure

Spatial Modal Response

Figure 5.2: Class Structure

The class Structure will have all the attributes that define a structure model such as

elements, nodes, dynamics characteristics, etc. Some other less-obvious classes are defined as

Spatial, Modal and Response. The class Spatial is an instance of class Structure and is

created with the spatial characteristics of the structure model (stiffness, mass and damping

matrix). The class Modal is an instance of class Structure and is created with the modal

characteristics of the structure model (eigenvalues and eigenvectors). The class Response

is an instance of class Structure and is created with the response characteristics of the

structure model (frequency response functions). The idea of defining these less-obvious

classes came when determining how the class Structure should choose which function it

will use. For example, to generate a frequency response function, the class Structure could

use the spatial properties or use the modal properties or even get it from a file. But if the

structure is defined as Modal class, the process of calculation is fixed and the frequency

response function will be calculated using the modal properties.

Another point mentioned in the specifications concerned the structure composition

showed in Figure 5.1. After reviewing how to introduce this specification in the Structure

Model, a solution was found whereby the class Structure requires a list of reference of

Structure classes, as the solution shown in Figure 5.3 suggests: From this example it is
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Structure

Spatial Modal Response Structure

0

n

Figure 5.3: Enhanced Structure class

possible to start considering the advantages of Object-Oriented Language. As previously

described, since the language supporting the iterative approach, it is possible to develop

the first Structure Model, shown in Figure 5.2, and then to enhance that model with the

introduction of this new specification, shown in Figure 5.3.

Another consideration arises in connection with the notation, that after applying the

Booch notation, Figures 5.2,5.3, we can more easily capture the overall picture.

The modules of the program can be seen in Figure 5.4 and a list of the significant

classes are sketched in the hierarchy tree shown in Figure 5.5. The latest release of

INCA++ is a program written in C++, designed to promote software reuse and minimise

system maintenance. This release can be used to calculate the dynamic response of a struc-

ture in the time domain and in the frequency domain. In the time domain the integration

method used was Runge-Kutta. In the frequency domain the methods available for linear

analysis are the linear impedance method (LI) and the linear receptance coupling method

(LIRCA). For nonlinear analysis the methods available are the nonlinear impedance (NLI)

and the multi-harmonic nonlinear receptance coupling approach (MUHANORCA), both

using the multi-harmonic describing function to represent the nonlinearity.

The gyroscopic effect required for analysis of rotor-dynamic structures is already

implemented.

The joints available in the program are rigid connection, linear spring, viscous damp-

ing, nonlinear cubic stiffness , coulomb friction, hysteretic damping using the macro/micro

slip friction and polynomial.
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Figure 5.4: Modules of INCA++
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Figure 5.5: Hierarchy tree



Chapter 6

Numerical Case Studies of Coupled

Structures using INCA++

6.1 Introduction

The release of INCA++ software prepared for this thesis has been validated using different

sets of simulated data. It is not intended here to show all the validation cases studied, but

instead to show the cases that have all the key features already tested and implemented. A

detailed simple case can be seen in Appendix E.

6.2 Linear Numerical Simulation

This case shows a linear application where the substructures are connected by using all

the linear connections implemented in the software. The following simulation consists of

obtaining an equation of the assembled structure composed of three substructures, with a

linear spring element and a viscous damping element between ground g and coordinate x1,

x2 and x6, x4 and x10,with a rigid element between coordinates x3 and x9, x6 and x8, x8

and x9, x11 and ground g. The Collected Substructure and Assembled System can be seen

in figures (6.1) and (6.2)

This example has two internal coordinates x5, x7, ten pairs of connection coordinate

(g, x1), (g, x1), (x2, x6), (x2, x6), (x4, x10), (x4, x10), (x3, x9), (x6, x8), (x8, x9), (x11, g),

the response is required in two connection coordinates x4, x10 and one internal coordinate

x5, and one excitation at the connection coordinate x6 as shown in the groups,

134
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Figure 6.1: Collected Substructure

Figure 6.2: Assembled Structure



Chapter 6 Numerical Case Studies of Coupled Structures using INCA++ 136

i = {5, 7}

c̄ = {1, 1, 2, 2, 4, 4, 6, 8, 9, 11} (6.1)

c̃ = {g, g, 6, 6, 10, 10, 8, 9, 3, g}

c = {1, 2, 4, 6, 10}

cd = {4, 10}

id = {5}

cf = {6}

if = {}

The physical characteristics of the system are taken to be

m1 = 5 kg m2 = 0.3 kg m3 = 3 kg m4 = 4 kg

m5 = 1 kg m6 = 3 kg m7 = 5 kg m8 = 1 kg

m9 = 1 kg m10 = 1 kg

k1 = 9.106 N/m k2 = 3.106 N/m k3 = 5.106 N/m

k4 = 4.106 N/m k5 = 3.106 N/m k6 = 2.106 N/m

k7 = 4.106 N/m k8 = 5.106 N/m k9 = 9.106 N/m

k10 = 4.106 N/m k11 = 4.105 N/m

c1 = 3 Nm/s c2 = 1 Nm/s c3 = 1 Nm/s

c4 = 2 Nm/s c5 = 4 Nm/s c6 = 3 Nm/s

c7 = 2 Nm/s c8 = 1 Nm/s c9 = 4 Nm/s

c10 = 5 Nm/s c11 = 5 Nm/s

Applying the HANORCA method, a set of linear algebraic equations are obtained and the

displacement of this Assembled System can be calculated by solving these equations. The

coupled results of the coordinates X4,X5 and X10 can be seen in figures (6.3,6.4,6.5)

6.3 Simulation using HANORCA

These simulations consist of obtaining a harmonic response equation of the assembled struc-

ture composed of three substructures, with one nonlinear element between coordinates x4
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Figure 6.3: Displacement in coordinate X4
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Figure 6.4: Displacement in coordinate X5
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Figure 6.5: Displacement in coordinate X10

and x10, with coordinates x3 and x9, and x2,x6 and x8 rigidly connected. The Collected

Substructure and Assembled System can be seen in figures (6.1),(6.2)

Figure 6.6: Collected Substructure

This example has four pairs of connection coordinates (x2, x6), (x6, x8), (x3, x9),

(x4, x10) and three external coordinates as shown in the groups:

i = {1, 5, 7}
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Figure 6.7: Assembled Structure

c̄ = {2, 6, 3, 4} (6.2)

c̃ = {6, 8, 9, 10}

c = {2, 3, 4, 10}

cd = {4, 10}

id = {}

cf = {}

if = {1}

The physical characteristics of the system are taken to be:

m1 = 5 kg m2 = 1 kg m3 = 1 kg m4 = 1 kg

m5 = 1 kg m6 = 3 kg m7 = 5 kg m8 = 1 kg

m9 = 1 kg m10 = 1 kg

k1 = 9.106 N/m k2 = 2.106 N/m k3 = 5.106 N/m

k4 = 4.106 N/m k5 = 1.106 N/m k6 = 1.106 N/m

k7 = 6.106 N/m k8 = 4.106 N/m k9 = 10.106 N/m

Gnl = 4.105 +
3
2 ∗ 1.105 ∗ (x4 − x10)2

Using the groups in equation(6.3), it is possible to define the following submatrices
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Hc̄c̄ =


H22 0 H23 H24

0 H66 0 0

H32 0 H33 H34

H42 0 H43 H44

 (6.3)

Hc̃c̃ =


H66 0 0 0

0 H88 H89 H810

0 H98 H99 H910

0 H108 H109 H1010



Hc̄c̃ =


0 0 0 0

H66 0 0 0

0 0 0 0

0 0 0 0



Hcdc̄ =

 H42 0 H43 H44

0 0 0 0



Hcdc̃ =

 0 0 0 0

0 H108 H109 H1010


Hif c̄ =

[
H12 0 H13 H14

]

Hif c̃ =
[

0 0 0 0
]

The equation of the Assembled System relating both the desired connection and excitation

points can be determined by substituting equations (6.3) into equation(4.118), leading to

the following equation,

 X4

X10

 =


 H14

0

−
 H42 0 H43 H44

0 −H108 −H109 −H1010

 [B]−1



H12

0

H13

H14




{
F1

}

(6.4)
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where:

[B] =


H22 +H66 −H66 H23 H24

−H66 H66 +H88 H89 H810

H32 H98 H33 +H99 H34 +H910

H42 H108 H43 +H109 H44 +H1010 + 1
Gnl


The displacement response of the Assembled System is obtained by solving the nonlinear

algebraic simultaneous equation (6.5) using the Newton-Raphson method. Equation (6.5)

is solved for the linear case and for the nonlinear case with forces varying from 2.5 ∗ 105N

to 2.0 ∗ 106N with an increment of 2.5 ∗ 105N . The receptance α41 and α10 1 can be seen in

Figures 6.8,6.9 respectively.
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Figure 6.8: Receptance α41

6.4 Simulation using MUHAIM

This simulated case utilises the Multi-Harmonic Impedance approach. The simulation con-

sists of obtaining an equation for the Assembled Structure of Figure 6.10 with one nonlinear

hysteretic element between ground and coordinate X1. The model used to represented the

nonlinear hysteretic element is the Ren’s model previous presented in section 3.3.3.4.
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Figure 6.9: Receptance α10 1

Figure 6.10: Assembled Structure
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The physical characteristics of the system are taken to be:

m1 = 1 kg m2 = 1 kg

c1 = 4 Nm/s c2 = 4 Nm/s

k1 = 4.104 N/m k2 = 4.104 N/m

G1 = macroslip model

 Kd = 4.104 N/m

µN = 1 to 250 N

The displacement response of the Assembled System is obtained by solving the nonlinear

algebraic simultaneous equation (4.138) using the Newton-Raphson method. This result

is compared to the solution obtained from the time integration, considered as the exact

solution.

Figure 6.11 shows a comparison of the receptance {H11
11}1 calculated using equation

(4.138) assuming the first harmonic {X}1 , the receptance {H11
11}3 calculated using equation

(4.138) assuming the first and third harmonics {X}1 and {X}3, the receptance {H11
11}5

calculated using equation (4.138) assuming the first, third and fifth harmonics {X}1, {X}3

and {X}5, and the receptance {H11
11}t calculated using time integration.
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Figure 6.11: Influence of the number of harmonic terms on the frequency response
for µ.N=5 and µ.N=7.5

The frequency response functions {H11
11}1, {H11

11}3 and {H11
11}5 for various levels of

force µN varying from 1 to 250N are shown in Figures 6.12,6.13 and 6.14.
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Figure 6.12: Frequency Response {H11
11}1
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Figure 6.13: Frequency Response {H11
11}3
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Figure 6.14: Frequency Response {H11
11}5

6.5 Simulation using MUHANORCA

This simulated case uses the MUHANORCA approach. The simulation consists of obtain-

ing an equation for the Assembled Structure composed of three substructures, with a linear

spring and viscous damping elements connecting coordinate 2 with 6 and 4 with 10, with

one nonlinear hysteretic element between ground g and coordinate 6, and rigid connections

between coordinates 6 and 8, 4 and 10. The Collected Substructure and Assembled System

can be seen in figures (6.15) and (6.16)

This example has seven pairs of connection coordinates (x2, x6), (x2, x6), (x3, x9),

(x4, x10), (x4, x10), (x6, x8) and (x6, g), and three external coordinates as shown in the

groups:

i = {1, 5, 7} cd = {6}
c̄ = {2, 2, 3, 4, 4, 6, 6} id = {}
c̃ = {6, 6, 9, 10, 10, 8, g} cf = {6}
c = {2, 3, 4, 10} if = {}

(6.5)
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Figure 6.15: Collected Substructure

Figure 6.16: Assembled Structure
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The physical characteristics of the system are:

m1 = 5 kg m2 = 0.3 kg m3 = 3 kg m4 = 4 kg

m5 = 1 kg m6 = 3 kg m7 = 5 kg m8 = 1 kg

m9 = 1 kg m10 = 1 kg

k1 = 3.103 N/m k2 = 2.104 N/m k3 = 5.103 N/m

k4 = 4.103 N/m k5 = 4.104 N/m k6 = 2.104 N/m

k7 = 6.103 N/m k8 = 4.103 N/m k9 = 3.103 N/m

k10 = 4.102 N/m k11 = 4.103 N/m

c1 = 3.103 Nm/s c2 = 8 Nm/s c3 = 2 Nm/s

c4 = 1 Nm/s c5 = 4 Nm/s c6 = 8 Nm/s

c7 = 2 Nm/s c8 = 1 Nm/s c9 = 9 Nm/s

c10 = 5 Nm/s c11 = 5 Nm/s

G6 = macroslip model

 Kd = 1.105 N/m

µN = 5 N

F6 = 100 N

The displacement response of the Assembled System is obtained by solving the nonlinear

algebraic simultaneous equation (4.149) using the Newton-Raphson method. Figure 6.17

shows a comparison of the receptance {H11
11}1 calculated considering the first harmonic {X}1

, the receptance {H11
11}3 calculated considering the first and third harmonics {X}1 and {X}3,

the receptance {H11
11}5 calculated considering the first, third and fifth harmonics {X}1, {X}3

and {X}5, and the receptance H t
11 calculated using the time integration method.

Figure 6.18 shows a comparison of the receptance {H31
11}3 calculated considering the

first and third harmonics {X}1 and {X}3, the receptance {H31
11}5 calculated considering

the first, third and fifth harmonics {X}1, {X}3 and {X}5, and the receptance H t
11 calcu-

lated using time integration method. Figure 6.19 shows the receptance {H51
11}5 calculated

considering the first, third and fifth harmonics {X}1, {X}3 and {X}5.
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Figure 6.17: Influence of the number of harmonic terms on the FRF
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Figure 6.18: Comparison of {H31
31}3, {H31

31}5 and Ht
31
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Figure 6.19: Frequency Response {H51
31}5

6.6 Concluding Remarks

This chapter highlights the application of the analysis methods developed in this thesis to

structural dynamics by numerical simulation. The developed methods using the describing

function are found to be very accurate when compared with existing time integration meth-

ods. Quantitative comparisons of computer costs between the multi-harmonic nonlinear

receptance coupling approach and the time integration method reveal that there is a well

defined advantage of the former over the latter.



Chapter 7

Experimental Case Studies

7.1 Introduction

In this chapter, the nonlinear coupling procedure developed in Chapter 4 is applied to two

real structures. One structure is obtained by coupling a clamped beam with two nonlinear

cubic stiffness joints as shown in Figure 7.14. The other structure is a Rotor Kit RK4 from

Bentley Nevada with some modifications in the original supports in order to exhibit a clear

nonlinear stiffness behaviour as presented in Figure 7.52. All the FRF data measured from

the nonlinear structures were obtained by a sinusoidal excitation with a special control of

the force where the level of the fundamental force is kept constant and the level of the

harmonics is kept zero for all the frequencies measured. This technique is discussed in the

following sections.

7.2 FRF Measurements on Nonlinear Structures

The frequency domain analysis of linear structures is characterised by a set of unique fre-

quency response functions which can be defined as frequency-dependent quantities calcu-

lated from the ratio between a harmonic displacement response and the harmonic driving

force. For nonlinear structures, the frequency response function has two principal differ-

ences compared with the definition for a linear system. The first is that the total response

of a nonlinear system in the time domain is represented by a sequence of frequency response

functions in the frequency domain in contrast to only one function in the linear case. The

stronger the nonlinearities are, the more frequency response functions are needed to repre-

sent the total response. On the other hand, for a wide class of nonlinear systems, most of

150
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the dominant effects are contained in the so-called first-, second- and third-order frequency

response functions and these are often sufficient to characterise the system quite accurately

[108, 133]. The second difference is that each frequency response function is a multi-variable

function, even for a system under single input and single output. This feature increases the

difficulty of the analysis of nonlinear structures.

Frequency response functions have been successfully measured for many years in a

wide variety of modal testing applications using different types of excitation to drive the

test structure. Although the measured frequency response functions of linear structures are

independent of the choice of the excitation technique, most engineering structures are often

found to exhibit the problem that the overall structure response is nonlinearly dependent

on the level and the kind of excitation. An appropriate excitation technique should be

selected in order to study a nonlinear system. There are mainly three types of excitation

method widely used in vibration analysis: periodic, random and transient, and they are

each discussed below.

7.2.1 Sine Excitation

Sine excitation is one of the most periodic commonly-applied excitation techniques to obtain

frequency response functions because of its uniqueness and precision characteristics. This

frequency response function is obtained by using steady-state harmonic excitation. For

each frequency, a force is applied which consists of a constant-amplitude sine wave. The

displacement response is allowed to reach a steady-state condition and the spectral analysis

of the excitation and the response is calculated. For linear structures, when the input

is a sinusoid, the response is also a sinusoid with the same frequency as the excitation

but with a different magnitude and phase. Thus, for a linear case, just one component

of the frequency spectrum is extracted at each frequency point. However, for nonlinear

systems, even when the input is a pure sinusoid, the response is composed of a number of

frequency components, such as harmonics and intermodulation frequencies. In this case, the

first and higher frequency response functions can be calculated using the ideal mathematical

definition related with the Volterra series or the measured approximated frequency response

function defined in several different ways, both presented in Chapter 2. The latter, if

correctly defined, can still contain useful information about the behaviour of the system.

The great advantage of a sinusoidal excitation is related with its frequency-selective

nature. In this case, the level of the input force can be accurately controlled, a feature
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which becomes very important in the successful evaluation of frequency response functions

of nonlinear structures [116] due to the fact that harmonic excitation reveals the distortions

of the FRFs in the resonance regions for different levels of force. Harmonic excitation

also reveals the subharmonic and superharmonic responses that are clear manifestations of

nonlinear behaviour. Furthermore, the measurements can be concentrated where they are

required, having a different frequency increment in different frequency ranges. For instance,

near resonances and antiresonances, the FRFs exhibit rapid changes and a fine frequency

increment is recommended. On the other hand, away from resonances and antiresonances,

the variation is very slow and a wider frequency gap can be used instead. In addition,

the signal-to-noise ratio is generally good because once the energy is concentrated at one

frequency, the response in the same frequency and in the harmonics and intermodulations

can be averaged out through an integration process.

Two different conditions can be used to obtain frequency response functions of non-

linear systems. The first one is by keeping the amplitude of the force level constant at

all the different excitation frequencies. This technique allows us to observe the distortion

of the frequency response functions such as the ”jump” phenomenon as the input level is

increased. The second one is by keeping the amplitude of the response level constant at

different excitation frequencies. Here, the frequency response function obtained looks like

the frequency response function of a linear system. This allows us to apply standard modal

analysis techniques to obtain some linearised characteristics of the system.

The main drawback of the sinusoidal excitation technique is that the time spent to

obtain a typical frequency response function is greater then that required by the other

commonly-used techniques. This is related to the fact that the excitation is performed on a

frequency-by-frequency basis and, at each frequency, a delay is imposed in the measurement

in order to allow the system to achieve the required steady-state response before starting

measurements. Occasionally, however, the correct measurement of the frequency response

is more important than the time spent during the procedure. Normally, when the objective

is to improve the analytical model using the correlation of the analytical data with the test

data, the more accuracy obtained in the FRF measured, the better is the derived analytical

model.
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7.2.2 Random Excitation

Random excitation is widely used in linear structural dynamic tests because of the charac-

teristics of random signals of containing energy over a wide range of frequencies simultane-

ously, thus enabling the random excitation to have a potential time-saving in obtaining the

frequency response functions. The random signal is a continuous signal which never repeats

itself and whose amplitude can only be predicted in terms of statistical terms.

The process of measuring frequency response functions begins with the sampling of the

random force and the response in the time domain at discrete points in time. The original

signals are continuous in time but the sampled time history signals are finite in length and

are nonperiodic. These sampled time history signals are converted to the frequency domain

by applying Fourier analysis. The use of Fourier analysis places restrictions, for example the

nonperiodic sample time history signals are considered periodic and as a result, a leakage

problem occurs in the estimation of the frequency response functions. However, this effect

can be minimised by using weighting functions, such as a Hanning window, before the

Fourier analysis is performed. After the signal is processed, the required frequency response

function of the structure is derived by an appropriate combination of a number of force and

response spectra. The limitation is related with the constraints imposed by the conventional

methods of Fourier analysis for equally-spaced points in the frequency domain and the

limited number of points available. In this case, the points cannot be concentrated around

the resonances and antiresonances as can be done in the case of sinusoidal excitation. On the

other hand, the points can be shaped to fit the frequency range of interest by filtering and

modulating the original broad band signal. Thus the system is not excited by frequencies

outside the analysis bandwidth, giving a better dynamic range in the analysis.

For nonlinear systems, the frequency response function obtained by using random

excitation appears to be undistorted and similar to that of a linear system. This is due

to the averaging effect of using the random excitation. Although the FRFs do not show

any distortions, different FRFs will be obtained for different input levels, resulting in input

dependency. This technique is also extended to obtain higher-order FRFs [48, 123, 89].

In addition, although the procedure does not seem to produce higher-order FRFs of good

quality, the FRFs are improved by applying a linear global fitter that fits a linear model to

the obtained data [49].
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7.2.3 Impact Excitation

Transient, as impact, excitation is a very popular and convenient excitation technique for

mechanical structures. This popularity is mainly due to the simplicity of the excitation

method which makes it very adaptable to a wide range of testing conditions. Impact

excitation can be produced by using an instrumented hammer with a force transducer on

which an impact tip is mounted. When the structure is excited by the hammer, energy

is transferred to the structure in a very short period of time. The process of measuring

frequency response functions begins with the sampling of force and the response time history

signals due to the impact. Once again, the time histories are converted to the frequency

domain by applying Fourier analysis. Because of the constraints imposed from the Fourier

analysis, a leakage problem can occur, usually in the response signal. If the response does

not decay almost to zero by the end of the sampling period, the exponential window is

applied to reduce the leakage. Then the frequency response is obtained by dividing the

spectrum of the response by the spectrum of the force.

The shape of the force signal depends on the type of hammer tip, the mass of the

hammer and the dynamic characteristics of the structure under investigation. As the fre-

quency bandwidth of the force spectrum is determined by the duration of the impulse, these

characteristics will determine the upper cutoff frequency of the excitation signal. The stiffer

the hammer tip and the structure are, the shorter the pulse, and the wider the frequency

span. Extra mass on the hammer lengthen the force pulse and therefore lowers the cutoff

frequency as well as increasing the excitation force level. The advantages of the impact

test are related with the short time spent to obtain the frequency response function due to

only few averages being needed and to it being very easy to use in the field. However, the

disadvantage of impact excitation comes from the fact that the excitation bandwidth has a

limited control, low input energy and a low signal-to-noise ratio.

Unfortunately, an impact force can rarely be used for nonlinear structures because

of inconsistency in the duration and force of the impacts and the low RMS signal levels

produced due to the brief duration of the active input. This means that the level of energy

applied can be very difficult to control and the high peak levels can overdrive the system and

exaggerate its nonlinear response. In addition, the low RMS value can result in poor signal-

to-noise ratios of the measured signals. However, it has been already applied to identify

simple localised nonlinearities [42] and has been used to measure second-order FRFs of

nonlinear structures by using a special electric impact hammer [21, 22].
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7.2.4 Discussion of Different Excitation Techniques

As mentioned earlier, there are a number of excitation techniques available nowadays for

vibration tests on structures, among them the three main types of excitation were presented.

Each of these methods has its advantages and disadvantages, and the choice becomes more

important when having to analyse nonlinear structures.

For linear structures, since all kinds of excitation should give the same unique FRF,

the choice of the excitation, among other things, is related with the test application, time

available for the analysis and data quality required. For nonlinear structures, it is important

to realise that these structures respond in different ways to different types of excitation.

Therefore the choice of excitation is dependent on the analysis required of the structure. If

the main concern is first to understand and to diagnose structural vibration characteristics,

then impact excitation can be considered. Because of its characteristics of simplicity and

adaptation, the impact test provides a simple and fast way to understand what a given

structure is doing dynamically. When the dynamic modelling of the nonlinear structures is

the main interest, the primary concern will be to extract a linear model of the system that

will behave dynamically as similar as possible to the nonlinear system. Random excitation

can be an efficient technique in this case because of its characteristics of considering the

effects of nonlinearities as a systematic error in the output. Therefore the frequency response

function obtained will give a ”best” linear approximation to the system. On the other hand,

if the main concern is to investigate nonlinearities, how the spatial, modal or response model

of a nonlinear structure will change for different vibration response levels, the sinusoidal

excitation technique is the most appropriate procedure, because of the well controlled input

force level. In this study only the sinusoidal excitation is applied.

7.2.5 Practical Considerations of Measuring FRF properties

of Nonlinear Structures

As discussed above, in the case where the frequency response functions of nonlinear struc-

tures for different vibration response levels are going to be measured, sinusoidal excitation is

strongly recommended. However, the choice of the excitation is only the first step to obtain

the frequency response function. There are still a number of possible practical problems

which need to be carefully considered in order to achieve a successful frequency response

measurement.
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Most FRF measurements using sinusoidal excitation require a function generator to

generate a sinusoidal voltage, the attachment of a single electrodynamic shaker to drive the

test structure, a power amplifier that applies the sinusoidal voltage from the function gener-

ator to the shaker, a flexible stinger to transmit the excitation force to the structure, a force

transducer measuring the input force and multiple accelerometers to measure the structural

responses. The excitation and response signals are acquired and then processed by using a

digital spectrum analyser to perform the FRF calculations. In theory, acquiring the FRF

using the described measurement system should be straightforward. However, in practice,

to ensure good measurements of structural frequency response functions requires consid-

eration of many aspects of the whole measurement system. Many types of error related

with the transducers, signal conditioning, boundary conditions, shakers, power amplifier

and stingers can affect the accuracy of the measurements. Choosing the right measurement

system is an important part of the pre-test planning. After obtaining some FRFs of the

structure under test, it is also good practice to perform simple checks for common errors re-

lated with instrument installation, excitation location, excitation installation and response

measurements [31].

The connection between the exciter and the structure through the use of the stinger

can be a source of errors. Ideally, the stinger should have a high axial stiffness but be very

flexible in the transverse directions. In practical situations, this can be difficult to achieve

and the stinger will generally present some stiffness in its transverse directions, introducing

secondary forms of unwanted excitations such as bending moments and shear forces, which

will act on the force transducer and the structure. This will cause errors in the measured

FRFs. Various studies related with the analytical modelling of this problem [54, 60] as well

as some solutions [3, 15, 71] can be found. This problem usually can be minimised by an

appropriate dimensioning of the stinger [3, 60].

The interaction between the shaker and the structure can be another source of error.

Errors attributed to the impedance mismatch between the shaker and the structure can

often be eliminated or significantly reduced by studying the interaction between the shaker

and the structure [79, 93, 99], and then deciding on an appropriate choice for the shaker . In

summary, the shaker should be chosen such that the mass and stiffness characteristics are

negligible with respect to the generalised mass and stiffness characteristics of the structure

under test.

Another problem related with the shaker is that the force input to a system near a

system resonance can vary considerably. In theory, when a sinusoidal voltage is applied to
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the shaker via an amplifier, the shaker should generate a similar simple harmonic force in

the force transducer. This is due to the fact that although the magnetic field of the shaker is

nonlinear, it is assumed linear for small amplitudes of vibration of the armature. However,

in practice, when the structure under test resonates, the displacements are relatively large

and the reaction force between the exciter and the structure tends to become very small.

At this resonant condition the armature movement is in the nonlinear magnetic field and

higher harmonics will be present in the input force [124]. It should be stressed that if the

structure under test is linear then in theory the frequency response function is independent

of the variation in the input force spectrum. However, reliable experimental results can be

obtained by applying the techniques for filtering out unwanted harmonics [31]. Many com-

mercial instruments include this feature. On the other hand, if the structure is nonlinear,

this problem is accentuated because of the interaction of the shaker and the structure. Other

harmonics can also be predominant in the input force due to the nonlinear response of the

structure. Therefore the measured FRF obtained with this force could result in problems

when used in analytical procedures [129]. Indeed, all the theoretical work concerning the

harmonic forced response of nonlinear systems assumes a simple harmonic excitation with

a constant force level as a input force. Hence the external force should be tuned to ensure

a constant pure harmonic excitation force. This requires a robust nonlinear force control

algorithm. In other words, the algorithm should not fail by estimating a wrong excitation

force that will damage either the measurement equipment or the structure.

There is an additional difficulty in achieving uni-directional excitation: undesirable

excitation in the other directions. Around resonance this problem becomes more acute. To

overcome this problem, the shaft can be excited in two directions. The first shaker is in the

direction of desired excitation. The second shaker excites in the perpendicular direction. By

applying an acceleration control algorithm, any acceleration in the perpendicular direction

can be minimised. The basic acceleration control algorithm is the same as the force control

algorithm. Both control algorithms are developed in the next sections.

7.2.6 Nonlinear Force Control Algorithm

The nonlinear force algorithm can be derived by first representing the voltage applied in

the shaker armature, v, and the force in the transducer, f , as Fourier series:

v =
∞∑
m=0

vm =
∞∑
m=0

VmeimΨ (7.1)
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f =
∞∑
m=0

fm =
∞∑
m=0

FmeimΨ (7.2)

Considering n harmonic components in the force, the coefficients in equations (7.1,7.2) can

be written in matricial form as

v =



V1

V2

...

Vn


f =



F1

F2

...

Fn


(7.3)

The relation between the required force in the force transducer, f , and the adjusted har-

monic input voltage signal, v, at frequency, ω, in the shaker armature can be expressed via

an unknown functional relationship, F , as:

f = F (v, ω) (7.4)

If (vd, fd) is the solution which satisfies equation (7.4), then:

fd − F (vd, ω) = 0 (7.5)

Equation (7.5) can be solved by the Newton-Raphson method described in section (2.7).

This method gives a very efficient means of converging to a solution, given a sufficiently

good initial guess. Therefore, it is desirable to find a good initial guess that can be used to

find the solution and at the same time avoid the problem of estimating a wrong excitation

force that will damage either the measurement equipment or the structure. Test experience

showed that a good initial guess is the first harmonic solution. Thus, instead of finding

a solution for a set of nonlinear system of equations, the problem is reduced to a one-

dimensional nonlinear equation where the only concern is to first find a voltage (V)1 and

ignore the higher harmonics. It is interesting to point out that for the first harmonic only

the amplitude is controlled, whereas for the remaining harmonics, both the amplitude and

phase must be controlled.

The first hypothesis assumed is that the solution is bracketed in the range of the

function generator voltage. A solution is said to be bracketed in the interval (a, b) if f(a)

and f(b) have opposite signs. Then a quick check is performed to secure that the solution

is really bracketed.
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There is not much theory available as to how to determine this bracketing. If it is

assumed that the function is continuous, then at least one root must lie in that interval. The

procedure adopted is: given an initial guess, take positive and negative steps of increasing

size until the root is bracketed.

Once it is known that an interval contains the solution, several classical procedures

are available to locate it precisely. The bisection method is one that cannot fail as long

as the solution is bracked. The problem with the bisection method is slow convergence.

The Newton-Raphson method is one that has a poor global convergence but can locate the

solution precisely after having a good initial guess. A fail-safe algorithm is the one that

combines the bisection method and the Newton-Raphson method. The hybrid algorithm

takes a bisection step whenever Newton-Raphson would take a solution out of the brackets,

or whenever Newton-Raphson is not reducing the size of the brackets rapidly enough.

After obtained the harmonic solution, the resulting solution is used as an initial guess

for the Newton-Raphson method using now all the nonlinear equations. Before applying

the Newton-Raphson method, a check is carried out to evaluate the n important harmonics

that should be controlled. When the solution is found assuming the n harmonics, since

the structure is nonlinear new harmonics may now need to be controlled. A new check

is performed to assess weather the new harmonics have become relevant. If it is found

that some new harmonics should be controlled, they are added to the previous set and

the Newton-Raphson solution is repeated. When it reaches the solution, the frequency is

then incremented and this solution is now used as the next guess to find the new bracketed

interval.

The implementation is presented in an algorithm form below:

1. Initial guess for driving voltage

v =



V1

V2

...

Vn


2. Find lower and higher voltages V l1 and Vh1 that bracket the solution F l1 and Fh1.

3. Using the one-dimension Newton-Raphson method combined with the Bisection method,

find the solution of the function bracketed between V l1 and Vh1

4. Create a set of harmonics to be controlled .
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5. Using as the initial guess to the solution from the step 3, find the solution by the

multi-dimension Newton-Raphson method.

6. Check the harmonics to be controlled to establish, if there are any new harmonics,

update the harmonics set and go back to step 5.

7. Increment the frequency.

8. Update the initial guess of step 1 with the solution of the step 5 and start the proce-

dure again on step 1.

7.2.7 Acceleration Control Algorithm

The acceleration control algorithm can be derived by first representing the voltage applied

in the shaker armature, v, and the measured acceleration, ẍ, in frequency domain as :

v = VeiΨ (7.6)

ẍ = ẌeimΨ (7.7)

The relation between the required acceleration in the accelerometer, ẍ, and the adjusted

harmonic input voltage signal, v, at frequency, ω, in the shaker armature can be expressed

via an unknown functional relationship, F , as:

ẍ = F (v, ω) (7.8)

If (vd, ẍd) is the solution which satisfies equation (7.8), then:

ẍd − F (vd, ω) = 0 (7.9)

Equation (7.9) can be solved by the Newton-Raphson method described in section (2.7). It

is interesting to point out that the amplitude and phase of the harmonic component (V)1

must be controlled.

The implementation is presented in an algorithm form below:

1. Initial guess for driving voltage

v = V1

2. Using the initial guess, find the solution by using the Newton-Raphson method.
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3. Measure FRFs in the perpendicular direction.

4. Increment the frequency.

5. Update the initial guess of step 1 with the solution of the step 2 and start the proce-

dure again on step 1.

7.3 Experimental Setup

The overall setup for both test rigs can be seen in Figures 7.1 and 7.2. The experimen-

tal setup for both structures tested consisted of a shaker connected via a push-rod to a

B&K 8200 force transducer which was used to measured the input force to the structure.

All the resulting responses at selected points were measured using the ENDEVCO 2222C

lightweight accelerometers which were attached to the structure using beeswax.

Two frequency response analysers were used to measure FRFs of the structures. The

first one, the Beran 402 Frequency Response Analyser, was used to measure the linear FRFs

of Test Rig I. The second one, a ”virtual analyser” developed during this project, was used

to obtain FRFs when a special parameter is required to be controlled. The virtual analyser

consisted of a Pentium 200MHz computer, a National Instruments card AT-MIO-64E-3, an

HP 33120A function generator and the INCA++ software. This virtual analyser was used

to obtain the linear FRFs of the Test Rig II and also to obtain the FRFs of both nonlinear

structures. Both analysers can be seen in Figure 7.1. The block diagram of the linear and

nonlinear experimental setup of Test Rig I using both analysers can be seen in Figures 7.3

and 7.4, respectively. The block diagram of the linear and nonlinear experimental setup of

Test Rig II using the virtual analyser can be seen in Figures 7.5 and 7.6, respectively.

The a National Instruments card AT-MIO-64E-3 has 64 analogue input channels and

two analogue outputs. The analogue output channel is used as an arbitrary waveform

generator where the waveform generated can be updated on the fly when the card is driven

by an external clock. The external clock used is via the HP 33120A function generator

which has the capability of changing the clock rate of the square output signal without

discontinuity. This requirement is essential because if there is a burst between the wave

forms generated, a long settling time is again required for the structure to achieve the

steady-state response.

The INCA++ software employs a correlation technique to calculate the amplitude

and phase components of the fundamental and harmonics of excitation force and response
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Figure 7.1: Overall setup Test Rig I
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Figure 7.2: Overall setup Test Rig II
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Figure 7.3: Block diagram of the linear experimental setup Test Rig I

Figure 7.4: Block diagram of the nonlinear experimental setup Test Rig I
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Figure 7.5: Block diagram of the linear experimental setup Test Rig II

Figure 7.6: Block diagram of the nonlinear experimental setup Test Rig II
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signals. This technique requires a synchronisation between the excitation and the response,

which is obtained by having both the system acquisition and the arbitrary wave form gen-

erator of the National Instruments card, driven by one single external clock via the HP

33120A function generator.

Before any measurements were made, the overall system measurement sensitivity was

calibrated for both the static test and the dynamic test. The static test refers to obtaining

the relationship between static loading and structure deformation while the dynamic test

involves the measuring structure’s FRFs. The displacement for the static test was obtained

by a Solartron DF9150 LVDT transducer and the force was obtained by a Saxeway J7100-

500N load cell with a Fylde FE-492-BBS bridge conditioner. The LVDT was calibrated

against a dial gage and the setup calibration can be seen in Figure 7.7(a). The load cell was

calibrated against a set of standard masses and the setup calibration can be seen in Figure

7.7(b).

Since all the FRFs of the nonlinear structures were measured using force control,

it was necessary firstly to check that the sensitivity of the force transducer was the same

as that specified by the manufacturer. Such a measurement is quite difficult to achieve

and usually the sensitivity of the force transducer is trusted from the calibration chart

given by the manufacturer and is checked against other transducer force considered in good

condition. Then the FRFs were calibrate by using the ratio calibration technique [31]. The

accelerometers and proximity sensors were attached to a freely-suspended mass which was

excited by shaker in the same way as measurements would be made on the structure itself,

as shown in Figure 7.7(c). Therefore the sensitivity of the force transducer given by the

manufacture was used and a correction scale factor for the accelerometer was adjusted such

that the FRF level obtained over a frequency range is equal to the reciprocal of the mass

of the calibration block.
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(a) LVDT calibration (b) Load Cell calibration

(c) FRF Calibration

Figure 7.7: Calibration Setup
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7.4 Experimental Test Rig I

7.4.1 Test Rig Model

The Test Rig I was made of a continuous system having a local nonlinear cubic stiffness,

as shown in Figure 7.8. It consists of a uniform beam, A, of 420 mm length with a cross

Figure 7.8: System configuration

section of 12mm by 8mm, which was clamped at one end and supported at the other

end by two clamped-clamped beams, B1 and B2, of 380mm length with a cross section

of 13mm by 1.5mm. The stiffness of the beam A is linear and the local nonlinear cubic

stiffness is produced by two clamped-clamped beams, B1 and B2, due to the increase of

the longitudinal tension under large amplitude of vibrations. Three accelerometers and

one force-measuring transducer were attached along the beam. The first, second and third

accelerometers were placed at 6mm, 82mm and 308mm respectively from the free end of

the beam. The force transducer was located at 6mm from the free end of the beam. Both

beams, B1 and B2, modelled as the nonlinear joint, were clamped to the beam A at the

place of intersection as shown in Figure 7.8. They are bolted together on one side by the

force transducer and on the other side by a block mass with a thread. A detailed photograph

can be seen in Figure 7.14.

7.4.2 Linear Test Rig I Assembly

The linear assembly rig is identical to the rig shown in Figure 7.8 except for the beams, B1

and B2, which were removed. The linear test rig setup is shown in Figure 7.9.
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Figure 7.9: Linear Test Rig I assembly

7.4.3 Measured and Updated FRF of Linear Test Rig I As-

sembly

Due to different stiffness conditions which apply to the analytical and experimental config-

urations, an updated analytical model was used to represent the linear clamped beam as

shown in Figure 7.10.

Figure 7.10: Analytical linear model test rig I

The beam was modelled using Timoshenko beam elements with the updated values of
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elasticity modulus of 1.96E11 N/m2 and density of 7900 kg/m3. The updated translational

and rotational springs used to model the clamped joint were 20E6 N/m and 1E4 N.m/rad

respectively. The updated mass and moment of inertia used in nodes 6 and 17 were 1 g

and 3.8E − 8 Kgm2, respectively. The updated mass and moment of inertia used in node

2 were 37 g and 9.6E − 6 Kgm2, respectively. The mass of the shaker was 46 kg and the

updated spring of the shaker used in node 2 was 250 N/m.

Three FRFs, H11, H21 and H31, were measured by INCA++ software using the

BERAN 402 frequency response analyser. The frequency range was from 20 Hz to 1500

Hz and the excitation frequency was increased by steps of 0.01 Hz. For all three FRFs,

excitation was at node 2 and responses were measured at nodes 2, 6 and 17 respectively.

The measured and updated frequency response functions of the linear structure for

the three positions along the beam are shown in Figures 7.11,7.12,7.13.

0 500 1000 1500
−180

−160

−140

−120

−100

−80

−60

−40

−20

Frequency [Hz]

R
e

ce
p

ta
n

ce
 [

d
B

 m
/N

] Measured
Updated 

Figure 7.11: Frequency Response Function H11



Chapter 7 Experimental Case Studies 171

0 500 1000 1500
−180

−160

−140

−120

−100

−80

−60

−40

−20

Frequency [Hz]

R
e

ce
p

ta
n

ce
 [

d
B

 m
/N

] Measured
Updated 

Figure 7.12: Frequency Response Function H21
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Figure 7.13: Frequency Response Function H31



Chapter 7 Experimental Case Studies 172

7.4.4 Nonlinear Test Rig Assembly

This test rig was designed to have the first mode with nonlinear behaviour and at the

same time to have a very small influence of the rotational degree of freedom. This allows

us to predict the behaviour of the first mode using only translational measurements. The

nonlinear test rig assembly is presented in Figure 7.14.

Figure 7.14: Test Rig I assembly



Chapter 7 Experimental Case Studies 173

7.4.5 Experimental properties of the joints

The properties of the nonlinear joints were obtained by first performing a static test. After

the static test was done, a curve of the type k1 ∗ x+ k2 ∗ x3 was fitted and the parameters

k1 = 6500 N/m and k2 = 11800E5 N/m were obtained. The same beam was modelled in

ANSYS and the relationship between force and deformation for all these cases is shown in

Figure 7.15.
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Figure 7.15: Relationship between loading and deformation
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7.4.6 First Assembly Model Test Rig I

The first analytical model used to represent the nonlinear dynamic test rig is shown in

Figure 7.16.

Figure 7.16: Analytical model Test Rig I

The nonlinear beams, B1 and B2, shown in Figure 7.8 were modelled here as a

concentrated nonlinear spring with mass. This model was used to predict the behaviour of

the first mode using only translational FRFs obtained experimentally. The only parameter

that had to be updated was the mass of the nonlinear beams to be used in the model. The

updated concentrated mass at node 2 used to represent the nonlinear beams was 48 g.

7.4.7 Measured FRFs of Test Rig I

The fundamental frequency response functions H11
11 , H11

21 and H11
31 and the higher-order

frequency response functions H31
11 , H31

21 and H31
31 were measured by the INCA++ software

using the virtual frequency response analyser presented in section 7.3. The frequency range

was from 20 Hz to 210 Hz. The excitation frequency was increased by steps of 0.1 Hz way

from the resonance region and by steps of 0.01 Hz around the natural frequencies. The

excitation force level was 0.1N, 0.5N and 1N . Figure 7.17 shows the FRF H11
11 and figure

7.18 shows the FRF H31
11 both measured from point 2. Figure 7.19 shows the FRF H11

21 and

figure 7.20 shows the FRF H31
21 both measured from point 6. Figure 7.21 shows the FRF

H11
31 and figure 7.22 shows the FRF H31

31 both measured from point 17.
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Figure 7.17: Measured Frequency Response H11
11
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Figure 7.18: Measured Frequency Response H31
11
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Figure 7.19: Measured Frequency Response H11
21
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Figure 7.20: Measured Frequency Response H31
21
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Figure 7.21: Measured Frequency Response H11
31
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Figure 7.22: Measured Frequency Response H31
31
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7.4.8 Measured and Predicted Coupling FRFs using First

Assembly Model Test Rig I

Using the joint parameters obtained in section 7.4.5 in the first analytical model presented

in section 7.4.6, the frequency response functions {H11
11}3, {H31

11}3 and {H51
11}3 for forces of

0.1N, 0.5N and 1N were predicted by the INCA++ software using the MUHANORCA

method. Figure 7.23 shows the FRF {H11
11}3 data measured from point 2 within a certain

frequency range and the corresponding predicted FRF data. Figure 7.24 shows the FRF

{H31
11}3 measured from point 2 and the corresponding FRF predicted data. Figure 7.25

shows the FRF {H11
21}3 measured from point 6 and the corresponding FRF predicted data.

Figure 7.26 shows the FRF {H31
21}3 measured from point 6 and the corresponding FRF

predicted data. Figure 7.27 shows the FRF {H11
31}3 measured from point 17 and the corre-

sponding FRF predicted data. Figure 7.28 shows the FRF {H31
31}3 measured from point 17

and the corresponding FRF predicted data.
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Figure 7.23: Frequency Response {H11
11}3
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Figure 7.24: Frequency Response {H31
11}3
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Figure 7.25: Frequency Response {H11
21}3
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Figure 7.26: Frequency Response {H31
21}3
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Figure 7.27: Frequency Response {H11
31}3
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Figure 7.28: Frequency Response {H31
31}3
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7.4.9 Discussion of Results

The first analytical model presented in section 7.4.6 succeeded in predicting the dynamic

behaviour of the first mode using only translational measurements. The predicted assembly

first-order FRFs obtained agreed extremely well with those measured on the assembled

structure-see Figures 7.23, 7.25 and 7.27. On the other hand, for the higher-order FRFs, the

amplitudes of the measured FRFs were shifted from the predicted ones, and this suggested

that a systematic error could have occurred in the measurements.

Good results cannot be expected when predicting the second mode using the first

analytical model as shown by the predicted FRF {H11
11}3 for a force level of 0.1N in Figure

7.29. This can be explained by the fact that the rotational degree of freedom, not included in
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Figure 7.29: Frequency Response {H11
11}3

this model, is important for the prediction of the second mode. In addition, it is possible to

conclude from the measurements that the second mode is almost linear. From a comparison

of the amplitudes of vibration of the first and second modes at node 2, the level of the

receptance where the nonlinearity starts to exert an influence is around -70dB and the

response of the second mode is lower than that value, as seen in Figure 7.23. Thus, the

source of error is probably coming from the lack of the rotational degree of freedom not

included in this model, and not from the nonlinear behaviour of the joint. To improve

the prediction around the second mode, a better analytical model representing the linear

behaviour of the nonlinear beams, B1 and B2, must be used. It is going to be done in the

next section.
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For cubic stiffness nonlinearity, mathematics shows that there are three response

solutions for some frequencies. The conventional idea is that two response solutions are

stable and one that is unstable. The two stable solutions are usually obtained by measuring

the response from frequency sweeps up and down. According to the conventional idea,

the unstable one is impossible to measure. No other known recorded results show the

measurements of the unstable solution. Therefore it was a surprise to be able to ”measure”

all three cases.

A reasonable explanation is as follows. The assembly structure can be considered as

a sum of two substructures: the nonlinear structure itself and the shaker-push-rod system.

Although the former has the unstable response, when put together, the assembly is stable.

Therefore using the transducer force between both substructures and the accelerometer in

the nonlinear substructure, it is possible to measure a stable response of the assembly which

corresponds to the unstable response of the nonlinear substructure.

7.4.10 Second Assembly Model Test Rig I

In order to improve the prediction of the coupled structure behaviour in the frequency

range measured, a second analytical model was used to represent the nonlinear test rig and

is shown in Figure 7.30.

This assembly model consists of two substructures coupled to each other at node 2. The first

substructure composed of the beam A is modelled as a linear clamped-free beam, discretised

as 21 2D Timoshenko beam elements. The second substructure, composed of the beams B1

and B2, is modelled as two parallel linear clamped-clamped beams each one discretised with

20 2D Timoshenko beam elements. The nonlinear behaviour of the substructure is modelled

as a concentrated nonlinear massless spring joint. The assembly structure was updated by

changing only parameters from the second substructure, once the first substructure was

already updated in section 7.4.3. This is equivalent to updating the linear behaviour of the

nonlinear beams. The linear response of the assembled structure was measured assuming

that for low amplitudes of vibration, without controlling the force, the FRF measured is

the closest linear representation of the linear dynamic behaviour.

The beams were modelled with the updated values of elasticity modulus of 2.3E11 N/m2

and density of 7800 kg/m3. The stiffnesses of the translational spring in the y direction and

the rotational spring in relation to the x axis used to model the clamped condition in both

ends of the beams were 1E6 N/m and 500 Nm/rad, respectively. In order to represent the
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Figure 7.30: Second analytical model Test Rig I

boundary conditions imposed by clamping the nonlinear beams to both sides of the linear

beam, the stiffnesses of the beam elements 45,46,47 and 48 were increased by increasing the

section area. The updated value of the area is 4.3E−5 m2. The bolt that connects the lin-

ear beam with the nonlinear beam was modelled using translational and rotational springs.

The updated value for the translational spring stiffness was 2.2E6 N/m and the rotational

spring, 9 Nm/rad. The updating was repeated until the following two conditions were met.

First, the anti-resonance and resonance of the second mode were in good agreement with

the experimental FRF. Second, the reciprocal of an element of the flexibility matrix (which

has been measured) must be 6500 N/m (7.4.5). This element is related to node 2 and its

excitation and response in the y-direction. No attempt was made to update the model to

match the the natural frequency of the first mode because of its strong nonlinearity.

The result of the updated linear assembly structure for nodes 2, 6 and 17 can be seen

in figures (7.31,7.32,7.33).
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Figure 7.31: Frequency Response {H11}
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Figure 7.32: Frequency Response {H21}
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Figure 7.33: Frequency Response {H31}

7.4.11 Measured and Predicted Coupling FRFs using Second

Assembly Model Test Rig I

After updating the linear model of the substructure 2, all the FRFs that were not measured

for substructures 1 and 2 but were required to obtain the coupled system’s response in

nodes 2,6 and 17 were analytically calculated from the updated models. For example, at

node 2, three FRFs from each substructure were required namely, Hyy, Hyθz , and Hθzθz.

Hyy from the first substructure was measured while the other two were obtained from the

updated model. For the second substructure all the required linear FRFs were obtained

from the updated model. Once all the FRFs were obtained, the INCA++ software using

the MUHANORCA method was applied with the nonlinear joints parameters obtained in

section 7.4.5.

The predicted frequency response functions {H11
11}5, {H31

11}5 and {H51
11}5 for a force

of 0.1N, 0.5N and 1N were calculated. Figure 7.34 shows the FRF {H11
11}3 measured from

point 2 and the corresponding predicted FRF data. Figure 7.36 shows the FRF {H31
11}3

measured from point 2 and the corresponding predicted FRF data. Figure 7.38 shows the

FRF {H11
21}3 measured from point 6 and the corresponding predicted FRF data. Figure

7.35 shows the FRF {H31
21}3 measured from point 6 and the corresponding predicted FRF

data. Figure 7.37 shows the FRF {H11
31}3 measured from point 17 and the corresponding
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predicted FRF data. Figure 7.39 shows the FRF {H31
31}3 measured from point 17 and the

corresponding predicted FRF data.
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Figure 7.34: Frequency Response {H11
11}3
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Figure 7.35: Frequency Response {H31
11}3
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Figure 7.36: Frequency Response {H11
21}3
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Figure 7.37: Frequency Response {H31
21}3
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Figure 7.38: Frequency Response {H11
31}3
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Figure 7.39: Frequency Response {H31
31}3
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7.4.12 Discussion of Results

This model was able to represent the dynamic behaviour of the coupled structure in the

frequency range measured. The predicted nonlinear behaviour was calculated by using the

measured FRFs and the analytical FRFs obtained from the updated models. The analytical

FRFs were used in substitution of the FRFs that were not measured but were required in

the coupling procedure. Various updated models were obtained for the cantilever beam

but the result predictions were not good because although it has a good representation

of the dynamic behaviour for the frequency range measured, the natural frequencies were

close but not close enough. Small shifts in the resonance and anti-resonance imply in errors

in the prediction. The predicted assembly first-order FRFs obtained for the frequency

range including the first and second mode agree well with those measured in the assembled

structure. These good results were obtained since the model updated for the cantilever

beam was able to have resonance and anti-resonance very close to the measured physical

model. On the other hand, for the higher-order FRFs the result did not improve and is

still shifted. As discussed before, it is possible that a systematic error occurred in the

measurements. From the predicted higher order FRFs is possible to observe that the level

of the harmonic response is very small which implies that for the cubic stiffness nonlinearity

the influence of these higher harmonics is very small.



Chapter 7 Experimental Case Studies 191

7.5 Experimental Test Rig II

7.5.1 Test Rig II

The Test Rig II is based on the RK4 Rotor Kit from BENTLY NEVADA which consists

of a mechanical base with a motor controlled by a direct-current motor speed. The shaft

of the motor is coupled to a long shaft supported at both ends by journal bearings. Each

bearing is attached to a bearing block. There is a possibility of two balance wheels and up

to six proximity probes controlled by a proximitor assembly. The RK4 test rig can be seen

in Figure 7.40.

Figure 7.40: RK4 Rotor Kit

7.5.2 Modified Test Rig II

The Modified Test Rig II was made of a continuous system having a local nonlinear poly-

nomial stiffness, as shown by component D in Figure 7.41. It consists of a uniform shaft,

A, of 660 mm length with a circular cross section of 10mm. This shaft A is supported

by bearings at three locations. Each bearing has a special bearing housing, C, D and E.

Bearing housings C and E are rigid and the D is nonlinear. The design and photograph of

the rigid bearing block C and E can be seen in Figure 7.42 and Figure 7.43 respectively.
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(a) Diagram

(b) Photograph

Figure 7.41: System configuration
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The design and photograph of the nonlinear bearing housing D can be seen in Figure 7.44

and 7.45 respectively. Shaft A has a disk B of a diameter of 150mm and a thickness of

10mm attached at one end and a motor coupled by a special joint F at the other end.

The rotor, the first bearing, the second bearing and the third bearing are placed at 4mm,

134mm, 281mm and 581mm respectively from the end of the shaft that has the disk. The

stiffness of the shaft, A, is linear and the local nonlinear polynomial stiffness is produced

by the special bearing housing, D.

7.5.3 Linear Test Rig Assembly

The linear assembly rig is identical to the rig shown in Figure 7.41 except for the nonlinear

bearing housing , D, which was removed. Four accelerometers and two force-measuring

transducers were attached along the shaft. Two accelerometers were placed at the disk

B at y and z directions respectively. The other two accelerometers and the two force

transducer were placed at 281mm from the free end of the beam at y and z directions. The

linear test rig setup is shown in Figure 7.46.

7.5.4 Measured and Updated FRF of Linear Test Rig II As-

sembly

Due to different stiffness conditions which apply to the analytical and experimental configu-

rations, an updated analytical model, Figure 7.47, was used to represent the physical system.

The shaft was modelled using Timoshenko beam elements with the updated values of elas-

ticity modulus of 2, 1E11 N/m2 and density of 7800 kg/m3. The translational springs used

to model the rigid bearing housing in x and y direction, in node 8 and 34, were 7.5E6 N/m.

The rotational springs, θy and θz, used to model the influence of the shaker-push-rod system

were 6.5E2 N/m and 3.2E2 N/m respectively. The updated mass and moment of inertia

used to model the bearings in nodes 8 and 34 were 10 g and 1E − 6 Kgm2 respectively.

A special adapter, F , was designed to allow a continuous excitation of the system when

the shaft is rotating. The updated masses, my and mz, used to model the mass influence

of the subsystem composed of adapter, F , push rod and shaker in node 14, were 60 g and

80 g respectively. The updated moments of inertia, Iyy and Izz, used in node 14 were

1E − 6 Kgm2. The updated masses, my and mz, in mode 31 used to model the mass in-

fluence of the coupling joint used between the motor and the shaft were 20 g. The updated
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Figure 7.42: Rigid bearing housing design
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Figure 7.43: Rigid bearing housing photograph
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Figure 7.44: Nonlinear bearing housing design
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Figure 7.45: Nonlinear bearing housing photograph
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(a) Diagram

(b) Photograph

Figure 7.46: Linear Test Rig II assembly
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Figure 7.47: Analytical linear model Test Rig II

mass of the disk in node 2 was 3.18 Kg. The updated moments of inertia of the disk in node

2, Iyy, Izz and Ixx, were 1.57E − 2 Kgm2, 1.52E − 2 Kgm2 and 3.1 Kgm2 respectively.

Four FRFs, H11, H21, H33 and H43 were measured by INCA++ software using the

virtual frequency response analyser and are shown in Figures 7.48,7.49,7.50 and 7.51. The

frequency range was from 8 Hz to 300 Hz. The excitation frequency was increased by

steps of 0.01 Hz. For two FRFs, H11, H21, the excitation was in z direction at node 14

and responses were measured in z direction at nodes 14 and 2 respectively. The other two

FRFs, H33, H43, the excitation was in y direction at node 14 and responses were measured

in y direction at nodes 14 and 2 respectively.
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Figure 7.48: Frequency Response Function H11
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Figure 7.49: Frequency Response Function H21
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Figure 7.50: Frequency Response Function H33
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Figure 7.51: Frequency Response Function H43
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7.5.5 Nonlinear Test Rig Assembly

This test rig was designed to have nonlinear behaviour in the z direction and linear behaviour

in the y direction. This was achieved by using the specially designed nonlinear bearing

housing previously shown in picture 7.45. The nonlinear test rig assembly is presented in

Figure 7.52.

Figure 7.52: Test Rig II assembly
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7.5.6 Analytical properties of the joints

The analytical properties of the nonlinear joints were obtained by first doing a static test.

Although it was project to have a cubic stiffness nonlinearity and the precision of the process

of the wire cutter utilised to obtain the desired nonlinearity, it turn out to be a polynomial

nonlinearity as shown in the Figure 7.53. The reason was that the material utilised to

machine the bearing housing had some pre-stress and a stress release should be done a priori.

Instead of machining a new bearing housing with cubic stiffness nonlinearity, it was decided

to use this one by implementing this new polynomial nonlinearity in the INCA++ software.

housing. After the static test was completed, a curve of the type k1∗x+k2∗x2 +k3∗x3 was

fitted and the parameters k1 = −5E4 N/m, k2 = −3.8E5 N/m and k3 = 1.09E11 N/m

were obtained. The relationship between force and deformation for these cases is shown in

Figure 7.53. The static test setup can be seen in figure 7.54.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

−100

−50

0

50

100

X

F

k1x+k2x+k3x2 3

Experimental
Curve−fitted

Figure 7.53: Relationship between loading and deformation
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Figure 7.54: Static test setup
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7.5.7 Assembly Model Test Rig II

The analytical model used to represent the nonlinear dynamic test rig is shown in Figure

7.55.

Figure 7.55: Analytical assembly model Test Rig II

This model was used to predict the nonlinear dynamic behaviour of system. The

nonlinear bearing housing, C, shown in Figure 7.41 were modelled here as a concentrate

nonlinear spring with mass.

7.5.8 Measured FRFs of Test Rig II

The frequency response functions H11
11 and H31

11 were measured by the INCA++ software

using the virtual frequency response analyser presented in section 7.3. The frequency range

was from 8 Hz to 150 Hz. The excitation frequency was increased in steps of 0.1 Hz way from

the resonance region and in steps of 0.01 Hz around the natural frequencies. The excitation

force level was 0.5N, 1.0N and 1.5N . The rotation speed of the rotor was 500 rpm. Figure

7.56 shows the FRF H11
11 and figure 7.57 shows the FRF H31

11 .
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Figure 7.56: Measured Frequency Response H11
11
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Figure 7.57: Measured Frequency Response H31
11
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7.5.9 Measured and Predicted Coupling FRFs using Assem-

bly Model Test Rig II

After updating the linear behaviour of the Test Rig II using the analytical model presented

in section 7.5.4, all the FRFs required to obtain the coupled system’s response in nodes 14

were analytically calculated from the updated models and the nonlinear joints parameters

required were obtained from section 7.5.6. Three new parameters have to be updated in

order to predicted the FRFs of the assembled system. These are namely, the stiffness of the

housing bearing in y direction with the final value of 1E6 N/m and the rotation stiffness

in θy and thetax directions with the final value of 600 Nm/rad.

The frequency response functions {H11
11}3, and {H31

11}3 for a force of 0.5N, 1.0N and

1.5N were predicted by the INCA++ software using the MUHANORCA method. Figure

7.58 shows the FRF {H11
11}3 data measured from point 14 in z direction for a force level of

0.5N within a certain frequency range and the corresponding FRF predicted data. Figure

7.59 shows the FRF {H31
11}3 measured from point 14 in z direction for a force level of

0.5N and the corresponding FRF predicted data. Figure 7.60 shows the FRF {H11
11}3 data

measured from point 14 in z direction for a force level of 1N within a certain frequency range

and the corresponding FRF predicted data. Figure 7.61 shows the FRF {H31
11}3 measured

from point 14 in z direction for a force level of 1.0N and the corresponding FRF predicted

data. Figure 7.62 shows the FRF {H11
11}3 data measured from point 14 in z direction for a

force level of 1.5N within a certain frequency range and the corresponding FRF predicted

data. Figure 7.63 shows the FRF {H31
11}3 measured from point 14 in z direction for a force

level of 1.5N and the corresponding FRF predicted data.
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Figure 7.58: Frequency Response {H11
11}3 for 0.5N
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Figure 7.59: Frequency Response {H31
11}3 for 0.5N
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Figure 7.60: Frequency Response {H11
11}3 for 1.0N
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Figure 7.61: Frequency Response {H31
11}3 for 1.0N
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Figure 7.62: Frequency Response {H11
11}3 for 1.5N
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Figure 7.63: Frequency Response {H31
11}3 for 1.5N
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7.5.10 Discussion of Results

This analytical model presented in section 7.5.7 was able to represent the dynamic behaviour

of the coupled structure in the frequency range measured. It is possible to observe from the

measurements that the first and second natural frequencies have a very strong gyroscopic

effect splitting each natural frequency in two, known as forward and backward whirl. In

addition it is possible to conclude from the measurements that the forward whirl are linear

and backward whirl are nonlinear. From a comparison of the amplitude of vibration on the

forward and backward whirl of the first and second modes with the third mode at node

14, the level of the receptance where the nonlinearity starts to exert an influence is around

-80dB and the response of both forward whirls are lower than -80Db and the response of

both backward whirls are higher than -80Db as seen in Figure 7.56.

The predicted assembly first-order FRFs obtained agree well with those measured

in the assembled structure. For the higher-order FRFs, although the result presented the

same shifting problem noticed in the first test rig, discussed in section 7.4.12, it is less

marked, which makes it possible to be correlated with a systematic error occurred in the

measurements. Another interesting point to be noticed is related to the fact that that the

level of the harmonic response is very small, which implies that for this polynomial stiffness

nonlinearity the influence of higher harmonics is very small.

7.5.11 Conclusions

Application of the nonlinear FRF-based coupling technique, MUHANORCA, to two differ-

ent practical structures has been examined in this chapter. One was a stationary structure

and the other one was a rotating structure. The limitations and difficulties of some of the

problems encountered during these experiments have been discussed.

The problems related with the predictions using updating models and experimental

data were examined. It has been demonstrated that when a very good updated model is

obtained, small differences in resonance and anti-resonances imply large errors in the pre-

diction. In order to overcome these inconsistencies, it was decided to use synthesised FRFs

for the analysis of the Test Rig II which were calculated using the updated model. During

the updating analysis, two difficulties were encountered. The first one was identifying the

right parameter to updated and the second was finding its sensitive region.

For the first-order FRFs, the overall shape of the predicted FRFs match the measured

counterparts very well. However, for the higher-order FRFs, the difference between the pre-
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dicted and measured FRFs of the assembly structure is much more significant. It is believed

that the true FRF cannot be measured as the high level of noise overwrites the dynamic

behaviour of the structure. Therefore for low amplitudes of vibration, the measurements

are constrained to noise. For large amplitudes of vibration, the measurements follow the

overall trend quite well, as the resonances are reasonably well captured.

A very interesting result was the possibility of measuring FRF in the unstable area,

although it was thought impossible. A reasonable explanation of this fact is that although

the nonlinear structure itself has the unstable response, the structure composed of the

shaker plus the nonlinear structure is now stable.

The MUHANORCA method developed has been successfully verified for the sta-

tionary and rotational structures.



Chapter 8

Conclusion and Future work

8.1 Introduction

The aim of the work reported in this thesis has been to extend the scope of structural

dynamic coupling procedures to nonlinear structures by developing a nonlinear coupling

approach. The general conclusions of the research are presented in the following sections.

One section is devoted to the nonlinear coupling methods developed, the refinements im-

plemented and the accuracy which can be obtained in the coupling analysis when using

higher-order harmonics in the response. Another section is dedicated to the experimental

measurement of frequency response functions of nonlinear structures. In the last section

some suggestions for further work are presented.

8.2 Conclusions on the Nonlinear Receptance Cou-

pling Technique

In considering the dynamic response of many engineering structures, it is necessary to

obtain a good predictive model, either for structural modification purposes (optimisation)

or for structural response behaviour prediction under different input conditions. However,

a suitable mathematical model of a complex structure is very difficult to obtain due to the

fact that most practical engineering structures possess a degree of nonlinearity. To solve this

problem, a complex structure can be subdivided into components that are treated separately

to produce subsystem models that are then coupled by various connection elements to

obtain a model of the complete structure. Unlike many other structural elements, it is

213
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the connection elements that usually contain the nonlinear behaviour. In some cases, they

are treated as linear joints, either because the degree of nonlinearity is small and therefore

insignificant in the frequency range of interest or because a more accurate analysis procedure

is not available. In other cases, the effect of the nonlinearity may become so significant that

it has to be taken into account in the dynamic analysis in order to achieve the necessary

accuracy from the analytical model.

In order to meet this need, a new nonlinear harmonic receptance coupling method

that handles the connection elements as linear or nonlinear joint connections, HANORCA,

has been developed in this work. This method retains the overall computational and numer-

ical efficiency of the linear method proposed by Jetmundsen, Bielawa and Flannelly [63]. In

addition, several refinements were introduced to achieve better efficiency. The implemen-

tation of the refinements helped to obtaining fast and reliable results for the prediction of

complex assembled structures. Then this method was extended to a multi-harmonic non-

linear receptance coupling approach, MUHANORCA. The MUHANORCA method is

based on the premise that the nonlinear joint has already been identified and that response

models of the others substructures that comprise the whole assembly are available. These

response models can be obtained either from analytical or experimental data.

Depending on which kinds of nonlinearity are present in the structure, the higher

frequency components of the response (to a simple harmonic excitation) may sometimes be

as important as the fundamental frequency response component. Therefore, a satisfactory

level of model accuracy can only be obtained if higher-order FRFs are included in the

analysis. As a result, the first-order nonlinear coupling method (which considers only the

fundamental components of the response) was extended to a higher-order nonlinear coupling

method. By extending the first-order nonlinear coupling to higher order nonlinear coupling,

the first-order describing function was also extended to higher-order describing functions.

Both numerical studies and experimental investigations have been carried out to assess

the effectiveness of the method. When comparing predicted and measured FRFs, it can

be seen that both the variation in natural frequency as a function of input level, and

the jump phenomena at resonance, are well predicted. As demonstrated by both studies,

successful prediction of the coupled frequency response behaviour of a linear system with

local nonlinear joints can be achieved provided that the describing function of the nonlinear

joints are properly identified.

The nonlinear coupling algorithm developed in this work is very efficient because

it requires only the inversion of matrices referred to the connection coordinates. This
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advantage becomes even more significant when using all the refinements developed. The

algorithm used to solve the nonlinear set of equations worked very well for all problems

studied. The main difficulty to be overcame was how to find a new initial guess when the

method failed to give a solution. The initial guess is very case-dependent and depends

mainly on the type of nonlinearity present. For each different joint, a different strategy was

adopted to find a good initial guess.

The other coupling methods developed in this work, such as (i) Harmonic Nonlinear

Impedance Coupling using Describing Functions, (ii) Multi-Harmonic Nonlinear Impedance

Coupling using Multi-Harmonic Balance Method, (iii) Multi-Harmonic Nonlinear Impedance

Coupling using High-Order Describing Function and (iv) Multi-Harmonic Nonlinear Impedance

Coupling using Multi-Harmonic Describing Function were essentially used to improve the

basic understanding of the higher-order analysis and to assist in the development of the

definitive nonlinear coupling method, MUHANORCA. Although these previous methods

are not so efficient, they are very simple to program and to understand, and therefore they

can be used to perform analytical simulations when the spatial properties are available.

A unified coupling notation was proposed and used in all the methods developed

during this work. This notation unifies all the current different notations available.

With the help of stepped-sine excitation, a better understanding of the effect of non-

linearity on the frequency response function data measured has been obtained. A practical

difficulty was identified when measuring frequency response functions of a nonlinear struc-

ture at high levels of force. A true frequency response function of a nonlinear structure

subject to a simple harmonic excitation is very difficult to obtain in practice around res-

onance due to the higher harmonics becoming more significant in the input force. If such

measured results are used to compare with a predicted analytical frequency response func-

tion, much care must be taken. In this research, a nonlinear force control algorithm was

developed to overcome this difficulty. Although the method is quite time-consuming, it

gives very good results.

The difficulty in achieving uni-directional excitation was overcome by exciting the

structure in two orthogonal directions. The first shaker was aligned in the direction of the

desired excitation. The second shaker excited in the perpendicular direction. Any accel-

eration in the perpendicular direction was minimised by applying an acceleration control

algorithm. The acceleration control algorithm is an extension of the force control algorithm.

It has previously been thought impossible to measure all three levels of the FRF in the

special region around resonance where, for some nonlinearities, there is no unique solution.
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Conventionally, the upper and lower responses are attainable but not the intermediate one.

However, in this work it has been possible to measure all three. It seems that although

the nonlinear structure on its own has the unstable region, the addition of shaker to the

structure stabilises the response in that region.

8.3 Contributions

Here we present a summary list of the main contributions delivered by this research:

• A notation for the structures and coordinates involved in the coupling procedure that

allows coupling several components at the same time has been developed.

• A Nonlinear Receptance Coupling Approach (HANORCA) for the fundamental har-

monic response component has been proposed, and some numerical improvements in

HANORCA related to time-consumption made.

• A multi-harmonic analysis was also discussed and the Describing Function method

extended to higher-order harmonics, (HODEF ).

• A new Multi-Harmonic Describing Function, (MUHADEF ), was proposed and a new

generalised Multi-Harmonic Nonlinear Receptance Coupling Approach, (MUHANORCA),

was developed. These approaches enable us to couple linear and nonlinear struc-

tures with different types of joint, where the describing functions of all the nonlinear

joint elements are specified. The method is general and can be widely applied. The

Multi-Harmonic Nonlinear Receptance Coupling Approach was obtained as a result of

the development and study of other three quasi-linearisation approaches, the Multi-

Harmonic Nonlinear Impedance Coupling using Multi-Harmonic Balance Method, the

Multi-Harmonic Nonlinear Impedance Coupling using High-Order Describing Func-

tion and the Multi-Harmonic Nonlinear Impedance Coupling using Multi-Harmonic

Describing Function.

• An intelligent coupling analysis program, INCA++, that can couple several linear

or nonlinear structures at the same time using rigid, linear or nonlinear connection

elements and for different analytical methods, has been developed. This program pro-

vides the necessary numerical evaluation for the validation of the developed analytical

methods.
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• Numerical results obtained by the developed method were validated with the response

obtained by the time-integration method, here considered to be the exact result [36,

38, 37].

• An experimental evaluation were carried out successfully on two test cases.

• A robust nonlinear force control algorithm to ensure a constant pure harmonic exci-

tation force was developed.

• An acceleration control algorithm to minimise excitation in the orthogonal direction

was developed.

• A ”virtual analyser” to obtain FRFs from harmonic excitation utilising the correlation

technique was developed.

8.4 Prospects

The study undertaken in this thesis has achieved its original objectives, and in the process

has identified a number of further developments that would be of interest in future work in

the field of Nonlinear Coupling analysis. Some general suggestion are outlined below.

• Applications of the method developed to more complicated structures having different

nonlinearities.

• The procedure used to find the initial guess for the nonlinear force control can be used

as the initial guess for the Newton-Raphson method used in the nonlinear coupling

procedure.

• Alternatives algorithm to bracket the solution in the nonlinear force control must be

investigate.

• Minimisation techniques for finding a minimum of a functions should be investigated

as alternatives to the multidimensional root applied in the nonlinear coupling proce-

dure.

• Application of numerical techniques which enable the calculation of the analytical

FRF in the unstable region.
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Appendix A

Refined Formulation of FRF

Coupling

Let us assume two structures A an B where some coordinates with be connected by rigid

links. The equation of the coupled system, relating displacement vectors and force vector

is shown in matrix form as:

Xia

Xca

Xcb

Xib


=


Hiaia Hiaca Hiacb Hiaib

Hcaia Hcaca Hcacb Hcab

Hcbia Hcbca Hcbcb Hcbb

Hibia Hibca Hibcb Hibib





Fia

Fca

Fcb

Fib


(A.1)

Looking at the substructures, the displacement in each point can be written as:

 xia

xca

 =

 hiaia hiaca

hcaia hcaca

 fia

fca

 (A.2)

 xib

xcb

 =

 hibib hibcb

hcbib hcbcb

 fib

fcb

 (A.3)

The equilibrium conditions can be written as:

Fca = Fcb = fca + fcb

Fia = fia

Fib = fib

(A.4)
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In the case where the joints are assumed to have linear properties such as infinite or

constant stiffness, the compatibility conditions can be written as:

Xia = xia

Xib = xib

xca − xcb = 0

(A.5)

Substituting equations (A.2),(A.3) into (A.5) yields:

hcaiafia + hcacafca − hcbibfib − hcbcbfcb = 0 (A.6)

Substituting the equilibrium equations (A.4) into (A.6) yields:

hcaiaFa + hcacafca − hcbibFb − hcbcb(Fcb − fca) = 0 (A.7)

Isolating the internal force as a function of the external force yields:

fca = (B)−1(hcbibFb − hcaiaFa + hcbcbFcb) (A.8)

fcb = Fcb − (B)−1(hcbibFb − hcaiaFa + hcbcbFcb) (A.9)

where:

B = hcaca + hcbcb

Equations (A.2),(A.3) can be written as:

{xia} = [hiaia ]{fia}+ [hiaca ]{fca} (A.10)

{xca} = [hcaia ]{fia}+ [hcaca ]{fca} (A.11)

{xib} = [hibib ]{fib}+ [hibcb ]{fcb} (A.12)

{xcb} = [hcbib]{fib}+ [hcbcb ]{fcb} (A.13)

Substituting equations (A.3),(A.2) into (A.5) yields:

hcbibfib + hcbcbfcb − hcaiafia − hcacafca = 0 (A.14)
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Substituting the equilibrium equations (A.4) into (A.14) yields:

hcbibFb + hcbcbfcb − hcaiaFa − hcaca(Fca − fcb) = 0 (A.15)

Isolating the internal force in function of the external force yields:

fcb = (B)−1(hcaiaFa − hcbibFb + hcacaFca) (A.16)

fca = Fca − (B)−1(hcaiaFa − hcbibFb + hcacaFca) (A.17)

where:

B = hcaca + hcbcb

Equations (A.2),(A.3) can be written as:

{xia} = [hiaia ]{fia}+ [hiaca ]{fca} (A.18)

{xca} = [hcaia ]{fia}+ [hcaca ]{fca} (A.19)

{xib} = [hibib ]{fib}+ [hibcb ]{fcb} (A.20)

{xcb} = [hcbib]{fib}+ [hcbcb ]{fcb} (A.21)

Substituting equations (A.17), (A.4) into (A.18) yields:

{Xa} = [hiaia ]{Fa}+ [hiaca ]{Fca}− (A.22)

[hiaca ][B]−1([hcaia ]{Fa} − [hcbib ]{Fb}+ [hcaca ]{Fca})

Comparing equation (A.22) with equation (A.1) yields:

[Hiaia ] = [hiaia ]− [hiaca ][B]−1[hcaia ] (A.23)

[Hiaca ] = [hiaca ]− [hiaca ][B]−1[hcaca ]rf (A.24)

[Hiacb ] = [0] (A.25)

[Hiaib ] = [hiaca ][B]−1[hcbib ] (A.26)



Appendix A Refined Formulation of FRF Coupling 237

Substituting equations (A.17), (A.4) into (A.19) yields:

{Xca} = [hcaia ]{Fa}+ [hcaca ]{Fca}− (A.27)

[hcaca ][B]−1([hcaia ]{Fa} − [hcbib ]{Fb}+ [hcaca ]{Fca})

Comparing equation (A.27) with equation (A.1) yields:

[Hcaia ] = [hcaia]− [hcaca ][B]−1[hcaia ] (A.28)

[Hcaca ] = [hcaca ]− [hcaca ][B]−1[hcaca ] (A.29)

[Hcacb ] = [0] (A.30)

[Hcaib ] = [hcaca ][B]−1[hcbib ] (A.31)

Substituting equations (A.9), (A.4) into (A.20) yields:

{Xb} = [hibib ]{Fb}+ [hibcb ]{Fcb}− (A.32)

[hibcb ][B]−1([hcbib ]{Fb} − [hcaia ]{Fa}+ [hcbcb ]{Fcb})

Comparing equation (A.32) with equation (A.1) yields:

[Hibia ] = [hibcb ][B]−1[hcaia ] (A.33)

[Hibcb ] = [hibcb ]− [hibcb ][B]−1[hcbcb ] (A.34)

[Hbca] = [0] (A.35)

[Hibib ] = [hibib ]− [hibcb ][B]−1[hcbib ] (A.36)

Substituting equations (A.9), (A.4) into (A.21) yields:

{Xcb} = [hcbib ]{Fb}+ [hcbcb ]{Fcb}− (A.37)

[hcbcb ][B]−1([hcbib ]{Fb} − [hcaia ]{Fa}+ [hcbcb ]{Fcb})

Comparing equation (A.37) with equation (A.1) yields:

[Hcbia ] = [hcbcb ][B]−1[hcaia ] (A.38)
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[Hcbca ] = [hcbcb ]− [hcbcb ][B]−1[hcbcb ] (A.39)

[Hcbcb ] = [0] (A.40)

[Hcbib ] = [hcbib]− [hcbcb ][B]−1[hcbib ] (A.41)

Substituting Equations (A.23) to (A.26), (A.28) to (A.31), (A.33) to (A.36), (A.38)

to (A.41) into (A.1) yields the refined formulation of FRF Coupling as follows:



Xia

Xca

Xcb

Xib


=




hiaia hiaca 0 0

hcaia hcaca 0 0

0 0 hcbcb hcbib

0 0 hibcb hibib

−


hiaca

hcaca

hcbcb

hibca


[hcaca + hcbcb ]

−1



hiaca

hcaca

hcbcb

hibca



T



Fia

Fca

Fcb

Fib


(A.42)

where:

subscript a = substructure a

subscript b = substructure b

subscript i = internal connections

subscript c = coupling connections
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Local iterations

Consider the equation for this Collected Substructure, relating the displacement vectors

and the force vector shown in matrix form as follows:
xi

xc̄

xc̃

 =


Hii Hic̄ Hic̃

Hc̄i Hc̄c̄ Hc̄c̃

Hc̃i Hc̃c̄ Hc̃c̃



fi

fc̄

fc̃

 (B.1)

Looking at the Assembled System, the displacement in each point can be written as:


XI

XC̄

XC̃

 =


HII HIC̄ HIC̃

HC̄I HC̄C̄ HC̄C̃

HC̃I HC̃C̄ HC̃C̃




FI

FC̄

FC̃

 (B.2)

The displacements xi, xc̄, xc̃ can be written as:

{xi} =

 xid

xiu

 {xc̄} =

 xc̄d

xc̄u

 {xc̃} =

 xc̃d

xc̃u

 (B.3)

where:

i = all internal DOFs

id = internal DOFs where the response is required

iu = internal DOFs where the response is not required

c̄, c̃ = all connection DOFs
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c̄d, c̃d = connection DOFs where the response is required

c̄u, c̃u = connection DOFs where the response is not required

The equation for this Collected Substructure, relating displacement vectors where the re-

sponse is required and the force vector is shown in matrix form as:


xid

xc̄d

xc̃d

 =


Hidi Hidc̄ Hidc̃

Hc̄di Hc̄dc̄ Hc̄dc̃

Hc̃di Hc̃dc̄ Hc̃dc̃



fi

fc̄

fc̃

 (B.4)

Looking at the Assembled System, the displacements where the response is required can be

written as: 
XId

XC̄d

XC̃d

 =


HIdI HIdC̄

HIdC̃

HC̄dI
HC̄dC̄

HC̄dC̃

HC̃dI
HC̃dC̄

HC̃dC̃




FI

FC̄

FC̃

 (B.5)

where:

Id = internal DOFs where the response is desired

C̄d, C̃d = connection DOFs where the response is desired

The equilibrium conditions can be written as:

{FC̄} = {FC̃} = {fc̄}+ {fc̃}
{fi} = {FI}

(B.6)

The compatibility conditions can be written in two forms:

{xid} = {XId}
{xc̄d} = {XC̄d

}
{xc̃d} = {XC̃d

}
{xc̄} − {xc̃} = −[G c̄c̃]−1{fc̄}

(B.7)

or

{xid} = {XId}
{xc̄d} = {XC̄d

}
{xc̃d} = {XC̃d

}
{xc̃ − xc̄} = −[Gc̄c̃]−1{fc̃}

(B.8)
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Substituting equations (B.1) into (B.7) yields:

Hc̄ifi +Hc̄c̄fc̄ +Hc̄c̃fc̃ −Hc̃ifi −Hc̃c̄fc̄ −Hc̃c̃fc̃ + fc̄/Gc̄c̃ = 0 (B.9)

Substituting the equilibrium equations (B.6) into (B.9) yields:

Hc̄iFI +Hc̄c̄fc̄ +Hc̄c̃(FC̃ − fc̄)−Hc̃iFI −Hc̃c̄fc̄ −Hc̃c̃(FC̃ − fc̄) + fc̄/Gc̄c̃ = 0 (B.10)

Isolating the force of the collected substructure in terms of the force of the assembled system

yields:

fc̄ = (B)−1{(Hc̃i −Hc̄i)FI + (Hc̃c̃ −Hc̄c̃)FC̃} (B.11)

fc̃ = (1− (B)−1(Hc̃c̃ −Hc̄c̃)FC̃ − (B)−1(Hc̃i −Hc̄i)FI) (B.12)

where:

B = Hc̄c̄ +Hc̃c̃ + 1/Gc̄c̃ −Hc̃c̄ −Hc̄c̃ (B.13)

Substituting equations (B.1) into (B.8) yields:

Hc̃ifi +Hc̃c̄fc̄ +Hc̃c̃fc̃ −Hc̄ifi −Hc̄c̄fc̄ −Hc̄c̃fc̃ + fc̃/Gc̄c̃ = 0 (B.14)

Substituting the equilibrium equations (B.6) into (B.14) yields:

Hc̃iFI +Hc̃c̄(FC̄ − fc̃) +Hc̃c̃fc̃ −Hc̄iFI −Hc̄c̄(FC̄ − fc̃)−Hc̄c̃fc̃ + fc̃/Gc̄c̃ = 0 (B.15)

Isolating the force of the collected substructure in terms of the force of the assembled system

yields

fc̃ = (B)−1{(Hc̄i −Hc̃i)FI + (Hc̄c̄ −Hc̃c̄)FC̄} (B.16)

fc̄ = (1− (B)−1(Hc̄c̄ −Hc̃c̄)FC̄ − (B)−1(Hc̄i −Hc̃i)FI) (B.17)

Equation (B.4), can be written as:

{xid} = [Hidi]{fi}+ [Hidc̄]{fc̄}+ [Hidc̃]{fc̃} (B.18)

{xc̄d} = [Hc̄di]{fi}+ [Hc̄dc̄]{fc̄}+ [Hc̄dc̃]{fc̃} (B.19)

{xc̃d} = [Hc̃di]{fi}+ [Hc̃dc̄]{fc̄}+ [Hc̃dc̃]{fc̃} (B.20)
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Substituting equations (B.6), (B.11), (B.12) into (B.18) yields:

{XId} = [Hidi]{FI}+ [Hidc̃]{FC̃}+

([Hidc̄]− [Hidc̃])[B]−1([Hc̃i]− [Hc̄i]){FI}+ (B.21)

([Hidc̄]− [Hidc̃])[B]−1([Hc̃c̃]− [Hc̄c̃]){FC̃}

Comparing equation (B.5) with equation (B.21) yields:

[HIdI] = [Hidi]− ([Hidc̄]− [Hidc̃])[B]−1([Hc̄i]− [Hc̃i]) (B.22)

[HIdC̃
] = [Hidc̃]− ([Hidc̄]− [Hidc̃])[B]−1([Hc̄c̃]− [Hc̃c̃]) (B.23)

Substituting equations (B.6), (B.16, (B.17) into (B.18) yields:

{XId} = [Hidi]{FI}+ [Hidc̄]{FC̄}+

([Hidc̃]− [Hidc̄])[B]−1([Hc̄i]− [Hc̃i]){FI}+ (B.24)

([Hidc̃]− [Hidc̄])[B]−1([Hc̄c̄]− [Hc̃c̄]){FC̄}

Comparing equation (B.2) with equation (B.24) yields:

[HIdI] = [Hidi]− ([Hidc̄]− [Hidc̃])[B]−1([Hc̄i]− [Hc̃i]) (B.25)

[HIdC̄
] = [Hidc̄]− ([Hidc̄]− [Hidc̃])[B]−1([Hc̄c̄]− [Hc̃c̄]) (B.26)

Substituting equations (B.6), (B.11), (B.12), into (B.19) yields:

{XC̄d
} = [Hc̄di]{FI}+ [Hc̄dc̃]{FC̃}+

([Hc̄dc̄]− [Hc̄dc̃])[B]−1([Hc̃i]− [Hc̄i]){FI}+ (B.27)

([Hc̄dc̄]− [Hc̄dc̃])[B]−1([Hc̃c̃]− [Hc̄c̃]){FC̃}

Comparing equation (B.27) with equation (B.5) yields:

[HC̄dI
] = [Hc̄di]− ([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̃i]− [Hc̄i]) (B.28)

[HC̄dC̃
] = [Hc̄dc̃]− ([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̃c̃]− [Hc̄c̃]) (B.29)
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Substituting equations (B.6), (B.16), (B.17) into (B.19) yields:

{XC̄d
} = [Hc̄di]{FI}+ [Hc̄dc̄]{FC̄}+

([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̄i]− [Hc̃i]){FI}+ (B.30)

([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̄c̄]− [Hc̃c̄]){FC̄}

Comparing equation (B.5) with equation (B.30) yields:

[HC̄dI
] = [Hc̄di]− ([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̃i]− [Hc̄i]) (B.31)

[HC̄dC̄
] = [Hc̄dc̄]− ([Hc̄dc̃]− [Hc̄dc̄])[B]−1([Hc̃c̄]− [Hc̄c̄]) (B.32)

Substituting equations (B.6), (B.11), (B.12) into (B.20) yields:

{XC̃d
} = [Hc̃di]{FI}+ [Hc̃dc̃]{FC̃}+

([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̃i]− [Hc̄i]){FI}+ (B.33)

([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̃c̃]− [Hc̄c̃]){FC̃}

Comparing equation (B.5) with equation (B.33) yields:

[HC̃dI
] = [Hc̃di]− ([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̄i]− [Hc̃i]) (B.34)

[HC̃dC̃
] = [Hc̃dc̃]− ([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̄c̃]− [Hc̃c̃]) (B.35)

Substituting equations (B.6), (B.16), (B.17) into (B.20) yields:

{XC̃d
} = [Hidi]{FI}+ [Hc̃dc̄]{FC̄}+

([Hc̃dc̃]− [Hc̃dc̄])[B]−1([Hc̄i]− [Hc̃i]){FI}+ (B.36)

([Hc̃dc̃]− [Hc̃dc̄])[B]−1([Hc̄c̄]− [Hc̃c̄]){FC̄}

Comparing equation (B.5) with equation (B.36) yields:

[HC̃dI
] = [Hc̃di]− ([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̄i]− [Hc̃i]) (B.37)

[HC̃dC̄
] = [Hc̃dc̄]− ([Hc̃dc̄]− [Hc̃dc̃])[B]−1([Hc̄c̄]− [Hc̃c̄]) (B.38)
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Equations (B.22), (B.23), (B.25), (B.26), (B.28), (B.29), (B.31), (B.32), (B.34), (B.35),

(B.37), (B.38), can be arranged as:


XId

XC̄d

XC̃d

 =



Hidi Hidc̄ Hidc̃

Hc̄di Hc̄dc̄ Hc̄dc̃

Hc̃di Hc̃dc̄ Hc̃dc̃

− (B.39)


(Hidc̄ −Hidc̃)

(Hc̄dc̄ −Hc̄dc̃)

(Hc̃dc̄ −Hc̃dc̃)

 [Hc̄c̄ +Hc̃c̃ −Hc̄c̃ −Hc̃c̄ + 1/Gc̄c̃]−1


(Hic̄ −Hic̃)

(Hc̄c̄ −Hc̄c̃)

(Hc̃c̄ −Hc̃c̃)


T



FI

FC̄

FC̃


Equation (B.39) can be arranged in a more concise form as:

 XId

XCd

 =

 Hidi Hidc

Hcdi Hcdc

− (B.40)

 (Hidc̄ −Hidc̃)

(Hcdc̄ −Hcdc̃)

 [Hc̄c̄ +Hc̃c̃ −Hc̄c̃ −Hc̃c̄ + 1/Gc̄c̃]−1

 (Hic̄ −Hic̃)

(Hcc̄ −Hcc̃)


T

 FI

FC





Appendix C

Floating-Point Operations in

HANORCA

C.1 Basic Concepts

Considering real variables, each multiplication, division, subtraction, addition counts as one

flop.

C.2 Matrix Algebra

C.2.1 Matrix Addition and Subtraction

For matrix addition and subtraction the number of operations can be counted using the

following expressions:

Axy + Bxy counts x ∗ y flops

Axy − Bxy counts x ∗ y flops
(C.1)

C.2.2 Matrix Multiplication

For matrix multiplication, the number of operations can be counted using the following

expression:

Axy ∗ Byz counts 2 ∗ x ∗ y ∗ z flops (C.2)

245
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C.2.3 Matrix Inverse

In order to obtain an approximate expression that gives the number of operations required

to find a matrix inverse of order n, two functions available in MATLAB were used: the

inverse matrix function that inverts a matrix of order m and the flops function that gives

the number of floating-point operations (KFLOPS). Varying the order of the matrix from

0 to 500, for each matrix order the MATLAB inverse function algorithm was used and

the number of operations required in this process was evaluated using the MATLAB flops

function. Then the following expression was fitted to these points:

invf(m) = 2.69066 ∗m+ 5.07287 ∗m2 + 1.99589 ∗m3 (C.3)

where:

m = order of the matrix

The evaluated points and the expression fitted can be seen in figure (C.1).

100 200 300 400 500
Nc

50000

100000

150000

200000

250000

KFlops

Figure C.1: Fitted curve in INV

C.2.4 Matrix Inverse using Singular Value Decomposition

In order to obtain an approximate expression that gives the number of operations required

to find the singular values with the respective singular vectors of a matrix order m, two



Appendix C Floating-Point Operations in HANORCA 247

functions available in MATLAB program were used, the Singular Value decomposition

function that gives the singular values with respective eigenvector of a matrix order m and

the flops function that gives the number of floating-point operations (KFLOPS). Varying

the order of the matrix from 0 to 500, for each matrix order the MATLAB Singular Value

Decomposition function algorithm was used and the number of operations required in this

process was evaluated using the MATLAB flops function. Then the following expression

was fitted to these points:

svdf(m) = −39.2029 ∗m+ 23.739 ∗m2 + 16.5502 ∗m3 (C.4)

where:

m = order of the matrix

The evaluated points and the expression fitted can be seen in figure (C.2).

100 200 300 400 500
Nc

500000

     6
1. 10

      6
1.5 10

     6
2. 10

KFlops

Figure C.2: Fitted curve in SVD

The evaluated points using the expression (C.3), (C.4) can be seen in figure (C.3).
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100 200 300 400 500
Nc

200000
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Figure C.3: SVD and INV

C.2.5 Partitioned Matrix Inverse

The expression that gives the number of operations required for equation (4.107) to find a

matrix inverse of order m, with partition of size n, is given by the follow expression:

invfp(m, n) = xnn+ xln+ xll (C.5)

where:

xnn = invf(l) + (2 ∗ n ∗ l ∗ l) + (2 ∗ n ∗ l ∗ n) + (n ∗ n) + invf(n), flops related with

equation (4.101)

xll = (2 ∗ l ∗ n ∗ n) + (2 ∗ l ∗ l ∗ n), flops related with equation (4.98)

xln = (2 ∗ l ∗ n ∗ l) + (l ∗ l), flops related with equation (4.102)

m = order of the matrix B in equation (4.107)

n = order of the partition Bnn in equation (4.107)

l = m− n, order of the partition Bll in equation (4.107)

invf = function that gives the number of operation for inverse a matrix, equation (C.3)
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The evaluated points using the expression (C.3) and (C.5) can be seen in figure (C.4).
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Figure C.4: INV partitioned

C.2.6 Partitioned Matrix Inverse using Singular Value De-

composition

The expression that gives the number of operations required for equation (4.107) to find a

matrix inverse of order m, with partition of size n using the singular value decomposition

algorithm to invert the matrices, is given by the follow expression:

svdfp(m, n) = xnn+ xln+ xll (C.6)

where:

xnn = invf(l) + (2 ∗n∗ l ∗ l) + (2 ∗n∗ l ∗n) + (n∗n) + svdf(n), flops related with equation

(4.101)

xll = (2 ∗ l ∗ n ∗ n) + (2 ∗ l ∗ l ∗ n), flops related with equation (4.98)

xln = (2 ∗ l ∗ n ∗ l) + (l ∗ l), flops related with equation (4.102)

m = order of the matrix B in equation (4.107)
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n = order of the partition Bnn in equation (4.107)

l = m− n, order of the partition Bll in equation (4.107)

svdf = function that gives the number of operation for inverse a matrix, equation (C.4)

The evaluated points using the expression (C.3), (C.5), (C.4), (C.6), can be seen in

figure (C.5).
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Figure C.5: SVD and INV partitioned

C.2.7 Partitioned Matrix Inverse using Singular Value De-

composition for HANORCA

The expression that gives the number of operations required for equation (4.107) to find

a matrix inverse of order m, with partition of size n, with ni iteration knowing that just

the Bnn submatrix varies during the process and using the singular value decomposition

algorithm to invert the matrices is given by the follow expression:

svdfpr(m, n, ni) = svdf(l) + ni ∗ (xnni+ xln+ xll) (C.7)

where:
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svdf(l) = flops related with expression [Bll]
−1 in equation (4.101)

xnni = (2 ∗ n ∗ l ∗ l) + (2 ∗ n ∗ l ∗ n) + (n ∗ n) + invf(n), flops related with expression

[Bll]
−1[Bln][Xnn][Bnl][Bll]

−1 in equation (4.101)

xln = (2 ∗ l ∗ n ∗ n) + (2 ∗ l ∗ l ∗ n), flops related with equation (4.98)

xll = (2 ∗ l ∗ n ∗ l) + (l ∗ l), flops related with equation (4.102)

m = order of the matrix B in equation (4.107)

n = order of the partition Bnn in equation (4.107)

l = m− n, order of the partition Bll in equation (4.107)

svdf = function that gives the number of operation for inverse a matrix, equation (C.4)

ni = number of iterations

It is possible to see from equation (C.7) that the inverse of matrix Bll is going to be

calculated just once because this partitioned matrix does not change during the iteration

process.

C.3 KFLOPS in Traditional Impedance Method

The Traditional Impedance Method (TIM) [131] in its general equation to be solved is

known as:

X = ([HA]−1 + [HB]−1 + [Gnj])
−1 ∗ F (C.8)

The expression that gives the number of operations is dependent on the order of the

system m, the number of connections c̄ that is the same order of c̃, the number of nonlinear

connections n, and the number of iterations ni, and is given by the follow expression:

TIM(m, c̄, n, ni) = ni ∗ (2 ∗ svdf(mab)+ (C.9)

2 ∗ (mab ∗mab) + svdf(ms) + (2 ∗ms ∗ms ∗ 1) + n ∗ 1 + 4 ∗ n)

where:

(c̄) = number of connections
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(n) = number of nonlinear connections

(l) = c̄− n, number of linear connections

(iab) = (m− 2 ∗ l − 2 ∗ n)/2, order of the non-connection coordinates of system A and B

(mab) = l+ n+ iab, order of the system A and B

(ms) = 2 ∗ n + 2 ∗ iab+ l, order of the system A and B

(2 ∗ svdf(mab)) = related with the two inverse (HA)−1 and (HB)−1)

(2 ∗mab ∗mab) = related with the addition of (HA)−1 and (HB)−1)

(svdf(ms)) = related with the calculation of ((HA)−1 + (HB)−1)−1 by equation (C.4)

(2 ∗ms ∗ms ∗ 1) = related with the multiplication between

((HA)−1 + (HB)−1)−1 and F

(n ∗ 1) = related with the subtraction between xc̄n and xc̃n to use in describing function

(4 ∗ n) = related with the addition of the nonlinear part from describing function Gnj in

(HA)−1 + (HB)−1

C.4 KFLOPS in HANORCA in General Equation

The HANORCA in general equation (4.81) to be solved can be written in a more concise

form as:

X = (A− B ∗ [C + 1/Gnj]
−1 ∗BT ) ∗ F (C.10)

The expression that gives the number of operations is dependent on the order of the

system m, the number of connections c̄ that is the same order of c̃, the number of nonlinear

connections n and the number of iterations ni, and is given by the follow expression:

HANORCA(m, c̄, n, ni) = ni ∗ ((m ∗m) + (2 ∗m ∗ c̄ ∗ c̄)+ (C.11)

(2 ∗m ∗ c̄ ∗m) + (2 ∗m ∗m ∗ 1) + (n ∗ 1) + (svdf(c̄)) + (n ∗ 1))

where:

(m ∗m) = related with the difference between A and (B ∗C−1 ∗BT )
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(2 ∗m ∗ c̄ ∗ c̄) = related with the multiplication between B and C−1

(2 ∗m ∗ c̄ ∗m) = related with the multiplication between (B ∗ C−1) and BT

(2 ∗m ∗m ∗ 1) = related with the multiplication between

(A− (B ∗ C−1 ∗BT )) and F

(n ∗ 1) = related with the subtraction between xc̄n and xc̃n to use in describing function

(svdf(c̄)) = related with the calculation of C−1 by equation (C.4)

(n ∗ 1) = related with the addition of the nonlinear part from describing function Gnj in C

C.5 KFLOPS in HANORCA considering local it-

erations refinements in response desired coor-

dinate

The local iteration algorithm included the improvements developed to reduce the number

of operations during the iteration process relative to the nonlinear coordinates Xcn. The

HANORCA local iterations equation (4.118) to be solved can be written in a more concise

form as:

Xcn = (Arn −Brn ∗ [C + 1/Gnj]
−1 ∗BT ) ∗ F (C.12)

where:

Xcn = response only in nonlinear connection coordinates

rn = refined considering the nonlinear coordinates involved in the process

After it converges, it is possible to calculate the desired response in all coordinates as

follows:

X = (A− B ∗ [C + 1/Gnj]
−1 ∗BT ) ∗ F (C.13)

where:

X = response in all coordinates

The expression that gives the number of operations is dependent on the order of the

system m, the number of connections c̄ that is the same order of c̃, the number of nonlinear
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connections n, and the number of iterations ni, and is given by the follow expression:

HANORCA(m, c, n, ni) = ni ∗ ((cn ∗m) + (2 ∗ cn ∗ c̄ ∗ c̄)+

(2 ∗ cn ∗ c̄ ∗m) + (2 ∗ cn ∗m ∗ 1) + (n ∗ 1) + (C.14)

(svdf(c̄)) + (n ∗ 1)) + xt

where:

(cn ∗m) = related with the difference between Arn and (Brn ∗ C−1 ∗BT )

(2 ∗ cn ∗ c̄ ∗ c̄) = related with the multiplication between Brn and C−1

(2 ∗ cn ∗ c̄ ∗m) = related with the multiplication between (Brn ∗C−1) and BT

(2 ∗ cn ∗m ∗ 1) = related with the multiplication between

(Arn − (Brn ∗ C−1 ∗BT )) and F

(n ∗ 1) = related with the subtraction between xc̄n and xc̃n to use in describing function

(svdf(c̄)) = related with the calculation of C−1 by equation (C.4)

(n ∗ 1) = related with the addition of the nonlinear part from describing function Gnj in C

xt = (m ∗m) + (2 ∗m ∗ c̄ ∗ c̄) + (2 ∗m ∗ c̄ ∗m) + (2 ∗m ∗m ∗ 1), flops related with equation

C.13

n = number of nonlinear connection

cn = 2 ∗ n, number of nonlinear connection coordinates

C.6 KFLOPS in HANORCA considering local it-

erations refinements in response desired and

excitation force coordinates

The local iteration algorithm included both improvements developed to reduce the number

of operations during the iterations process, one related to the nonlinear coordinates, Xcn,

and the other relative with the excitation coordinates, Frf . The HANORCA equation
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(4.118) to be solved using the local iteration refinements can be written in a more concise

form as:

Xcn = (Arn − Brn ∗ [C + 1/Gnj]
−1 ∗BTrf ) ∗ Frf (C.15)

where:

Xcn = response only in nonlinear connection coordinates

rn = refined considering the nonlinear coordinates involved in the process

rf = refined considering the excitation coordinates involved in the process

After it converges, it is possible to calculate the desired response in all coordinates:

X = (A− B ∗ [C + 1/Gnj]
−1 ∗BTrf ) ∗ Frf (C.16)

where:

X = response in all coordinates

rf = refined considering the excitation coordinates involved in the process

The expression that gives the number of operations is dependent on the order of the

system, m, the number of connections c̄ that is the same order of c̃, the number of nonlinear

connections, n, the number of excitation points, cf and the number of iterations, ni, and is

given by the follow expression:

HANORCA(m, c, n, ni) = ni ∗ ((cn ∗ cf) + (2 ∗ cn ∗ c̄ ∗ c̄)+

(2 ∗ cn ∗ c̄ ∗ cf ) + (2 ∗ cn ∗ cf ∗ 1) + (n ∗ 1) + (C.17)

(svdf(c̄)) + (n ∗ 1)) + xt

where:

(cn ∗ cf) = related with the difference between Arn and (Brn ∗ C−1 ∗BTrf )

(2 ∗ cn ∗ c̄ ∗ c̄) = related with the multiplication between B and C−1

(2 ∗ cn ∗ c̄ ∗ cf) = related with the multiplication between (B ∗ C−1) and BT

(2 ∗ cn ∗ cf ∗ 1) = related with the multiplication between

(Arn − (Brn ∗ C−1 ∗BTrf )) and Frf
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(c̄ ∗ 1) = related with the subtraction between xc̄n and xc̃n to use in describing function

(svdf(c̄)) = related with the calculation of C−1 by equation (C.4)

(n ∗ 1) = related with the addition of the nonlinear part from describing function Gnj in C

xt = (m ∗ cf) + (2 ∗m ∗ c̄ ∗ c̄) + (2 ∗m ∗ c̄ ∗ cf) + (2 ∗m ∗ cf ∗ 1), flops related with equation

C.16

n = number of nonlinear connection

cn = 2 ∗ n, number of nonlinear connection coordinates

C.7 KFLOPS in refined HANORCA equation

The refined HANORCA equation included all the improvements developed to reduce the

number of operations during the whole process, one relative to the nonlinear coordinates

Xcn, another relative to the excitation coordinates, Frf , and another relative with the

partition of the matrix to be inverted, C. The refined HANORCA in equation (4.118)

using partitioned inverse matrix equation (4.107) can be written in a more concise form as:

Xcn = (Arn − Brn ∗ [C + 1/Gnj]
−1 ∗BTrf ) ∗ Frf (C.18)

where:

Xcn = response only in nonlinear connection coordinates

rn = refined considering the nonlinear coordinates involved in the process

rf = refined considering the excitation coordinates involved in the process

After it converges, it is possible to calculate the desired response in all coordinates as

follows:

X = (A− B ∗ [C + 1/Gnj]
−1 ∗BTrf ) ∗ Frf (C.19)

where:

X = response in all coordinates

rf = refined considering the excitation coordinates involved in the process
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The expression that gives the number of operations is dependent on the order of the

system m, the number of connections c̄ that is the same order of c̃, the number of nonlinear

connections n, the number of excitation points cf and the number of iterations ni, and is

given by the follow expression:

HANORCAr(m, c, n, ni) = ni ∗ ((cn ∗ cf) + (2 ∗ cn ∗ c̄ ∗ c̄)+

(2 ∗ cn ∗ c̄ ∗ cf ) + (2 ∗ cn ∗ cf ∗ 1) + (n ∗ 1) + (C.20)

(svdfp(c̄, cn, ni)) + (n ∗ 1)) + xt

where:

(cn ∗ cf) = related with the difference between A and (B ∗ C−1 ∗BT )

(2 ∗ cn ∗ c̄ ∗ c̄) = related with the multiplication between B and C−1

(2 ∗ cn ∗ c̄ ∗ cf) = related with the multiplication between (B ∗ C−1) and BT

(2 ∗ cn ∗ cf ∗ 1) = related with the multiplication between

(A− (B ∗ C−1 ∗BT )) and F

(c̄ ∗ 1) = related with the subtraction between xc̄n and xc̃n to use in describing function

(svdfp(c̄, cn, ni)) = related with the calculation of C−1 by equation (C.6)

(n ∗ 1) = related with the addition of the nonlinear part from describing function Gnj in C

xt = (m ∗ cf) + (2 ∗m ∗ c̄ ∗ c̄) + (2 ∗m ∗ c̄ ∗ cf) + (2 ∗m ∗ cf ∗ 1), flops related with equation

C.19

(n ∗ 1) = number of nonlinear connection coordinates

(n ∗ 1) = 2 ∗ n, number of nonlinear coordinates



Appendix D

Multi-Harmonic Nonlinear

Receptance Coupling using

Multi-Harmonic Describing

Function

Assuming that all the substructures to be connected and the assembled system are as pre-

sented in section 4.2 . The equation of the Collected Substructure, relating the displacement

vector and the force vector for n harmonics for the displacement and m harmonics for the

force is shown in matrix form as:

x1
i

x1
c̄

x1
c̃

x2
i

x2
c̄

x2
c̃

...

xni

xnc̄

xnc̃



=



H11
ii H11

ic̄ H11
ic̃ · · · H1m

ii H1m
ic̄ H1m

ic̃

...
. . .

...

Hn1
ii Hn1

ic̄ Hn1
ic̃ · · · Hnm

ii Hnm
ic̄ Hnm

ic̃

H11
c̄i H11

c̄c̄ H11
c̄c̃ · · · H1m

c̄i H1m
c̄c̄ H1m

c̄c̃

...
. . .

...

Hn1
c̄i Hn1

c̄c̄ Hn1
c̄c̃ · · · Hnm

c̄i Hnm
c̄c̄ Hnm

c̄c̃

H11
c̃i H11

c̃c̄ H11
c̃c̃ · · · H1m

c̃i H1m
c̃c̄ H1m

c̃c̃

...
. . .

...

Hn1
c̃i Hn1

c̃c̄ Hn1
c̃c̃ · · · Hnm

c̃i Hnm
c̃c̄ Hnm

c̃c̃





f1
i

f1
c̄

f1
c̃

f2
i

f2
c̄

f2
c̃

...

fmi

fmc̄

fmc̃



(D.1)
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For the Assembled System, the displacement in each point can be written as:

X1
I

X1
C̄

X1
C̃

X2
I

X2
C̄

X2
C̃
...

Xn
I

Xn
C̄

Xn
C̃



=



H11
II H11

IC̄
H11
IC̃

· · · H1m
II Hnm

IC̄
H1m
IC̃

...
. . .

...

Hn1
II Hn1

IC̄
Hn1
IC̃

· · · Hnm
II Hnm

IC̄
Hnm
IC̃

H11
C̄I

H11
C̄C̄

HC̄C̃11 · · · H1m
C̄I

H1m
C̄C̄

H1m
C̄C̃

...
. . .

...

Hn1
C̄I

Hn1
C̄C̄

Hn1
C̄C̃

· · · Hnm
C̄I

Hnm
C̄C̄

Hnm
C̄C̃

H11
C̃I

H11
C̃C̄

H11
C̃C̃

· · · H1m
C̃I

H1m
C̃C̄

H1m
C̃C̃

...
. . .

...

Hn1
C̃I

Hn1
C̃C̄

Hn1
C̃C̃

· · · Hnm
C̃I

Hnm
C̃C̄

Hnm
C̃C̃





F 1
i

F 1
C̄

F 1
C̃

F 2
I

F 2
C̄

F 2
C̃
...

FmI

Fm
C̄

Fm
C̃



(D.2)

Assuming that all the harmonics order of the displacement can be arranged in a the set

called Qr and that all the harmonics order of the force can be arranged in a the set called

Qs. For the displacement harmonic n = qr and for the force harmonic m = qs, the Collected

Substructure equation can be written in a more concise form as:


xqri

xqrc̄

xqrc̃

 =


Hqrqs
ii Hqrqs

ic̄ Hqrqs
ic̃

Hqrqs
c̄i Hqrqs

c̄c̄ Hqrqs
c̄c̃

Hqrqs
c̃i Hqrqs

c̃c̄ Hqrqs
c̃c̃



fqsi

fqsc̄

fqsc̃

 (D.3)

and the Assembled System equation can also be written in a more concise form as:


Xqr
I

Xqr
C̄

Xqr
C̃

 =


Hqrqs
II Hqrqs

IC̄
Hqrqs
IC̃

Hqrqs
C̄I

Hqrqs
C̄C̄

Hqrqs
C̄C̃

Hqrqs
C̃I

Hqrqs
C̃C̄

Hqrqs
C̃C̃



F qsI

F qs
C̄

F qs
C̃

 (D.4)

The equilibrium conditions can be written as:

{F qs
C̄
} = {F qs

C̃
} = {fqsc̄ }+ {fqsc̃ }

{fqsi } = {F qsI }
(D.5)
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The compatibility conditions can be written in two forms:

{yqrc̄c̃} = {xqrc̄ } − {xqrc̃ }
{xqri } = {Xqr

I }
{xqrc̄ } = {Xqr

C̄
}

{xqrc̃ } = {Xqr
C̃
}

{yqrc̄c̃} = −[Gqsqrc̄c̃ ]−1{fqsc̄ }

(D.6)

or:

{yqrc̃c̄} = {xqrc̃ } − {x
qr
c̄ }

{xqri } = {Xqr
I }

{xqrc̄ } = {Xqr
C̄
}

{xqrc̃ } = {Xqr
C̃
}

{xqrc̃ } − {x
qr
c̄ } = −[Gqsqrc̄c̃ ]−1{fqsc̃ }

(D.7)

Substituting equations (D.3) into (D.6), yields:

[H
qrqs
c̄i ]{fqsi } + [H

qrqs
c̄c̄ ]{fqsc̄ } + [H

qrqs
c̄c̃ ]{fqsc̃ } − [H

qrqs
c̃i ]{fqsi } − [H

qrqs
c̃c̄ ]{fqsc̄ } − [H

qrqs
c̃c̃ ]{fqsc̃ }+ [Gqsqrc̄c̃ ]−1{fqsc̄ } = 0

(D.8)

Substituting the equilibrium equations (D.5) into (D.8), yields:

[Hqrqs
c̄i ]{F qsI }+ [Hqrqs

c̄c̄ ]{fqsc̄ }+ [Hqrqs
c̄c̃ ]({F qs

C̃
} − {fqsc̄ })− [Hqrqs

c̃i ]{F qsI }−

−[Hqrqs
c̃c̄ ]{fqsc̄ } − [Hqrqs

c̃c̃ ]({F qs
C̃
} − {fqsc̄ }) + [Gqsqrc̄c̃ ]−1{fqsc̄ } = 0 (D.9)

Isolating the Collected Substructure force {f} in terms of the Assembled System force {F},
yields:

{fqsc̄ } = [B]−1{([Hqrqs
c̃i ]− [Hqrqs

c̄i ]){F qsI }+ ([Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ]){F qs
C̃
}} (D.10)

{fqsc̃ } = ([I ]− [B]−1([Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ])){F qs
C̃
} − [B]−1([Hqrqs

c̃i ]− [Hqrqs
c̄i ]){F qsI } (D.11)

where matrix B is given by:

[B] = [Hqrqs
c̄c̄ ] + [Hqrqs

c̃c̃ ]− [Hqrqs
c̃c̄ ]− [Hqrqs

c̄c̃ ] + [Gqsqrc̄c̃ ]−1 (D.12)
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Substituting equations (D.3) into (D.7), yields:

[Hqrqs
c̃i ]{fqsi } + [Hqrqs

c̃c̄ ]{fqsc̄ } + [Hqrqs
c̃c̃ ]{fqsc̃ } − [Hqrqs

c̄i ]{fqsi } − [Hqrqs
c̄c̄ ]{fqsc̄ } − [Hqrqs

c̄c̃ ]{fqsc̃ }+ [Gqsqrc̄c̃ ]−1{fqsc̃ } = 0

(D.13)

Substituting the equilibrium equations (D.5) into (D.13), yields:

[Hqrqs
c̃i ]{F qsI }+ [Hqrqs

c̃c̄ ]({F qs
C̄
} − {fqsc̃ }) + [Hqrqs

c̃c̃ ]{fqsc̃ } − [Hqrqs
c̄i ]{F qsI }−

−[H
qrqs
c̄c̄ ]({F qs

C̄
} − {fqsc̃ })− [H

qrqs
c̄c̃ ]{fqsc̃ }+ [Gqsqrc̄c̃ ]−1{fqsc̃ } = 0 (D.14)

Isolating the internal force in terms of the external force yields:

{fqsc̃ } = [B]−1{([Hqrqs
c̄i ]− [Hqrqs

c̃i ]){F qsI }+ ([Hqrqs
c̄c̄ ]− [Hqrqs

c̃c̄ ]){F qs
C̄
}} (D.15)

{fqsc̄ } = ([I ]− [B]−1([Hqrqs
c̄c̄ ]− [Hqrqs

c̃c̄ ]){F qs
C̄
} − [B]−1([Hqrqs

c̄i ]− [Hqrqs
c̃i ]){F qsI } (D.16)

Equation (D.3), can be written as:

{xqri } = [Hqrqs
ii ]{fqsi }+ [Hqrqs

ic̄ ]{fqsc̄ }+ [Hqrqs
ic̃ ]{fqsc̃ } (D.17)

{xqrc̄ } = [Hqrqs
c̄i ]{fqsi }+ [Hqrqs

c̄c̄ ]{fqsc̄ }+ [Hqrqs
c̄c̃ ]{fqsc̃ } (D.18)

{xqrc̃ } = [Hqrqs
c̃i ]{fqsi }+ [Hqrqs

c̃c̄ ]{fqsc̄ }+ [Hqrqs
c̃c̃ ]{fqsc̃ } (D.19)

Substituting equations (D.5), (D.10), (D.11) into (D.17) yields:

{Xqr
I } = [Hqrqs

ii ]{F qsI }+ [Hqrqs
ic̃ ]{F qs

C̃
}+

([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])[B]−1([Hqrqs
c̃i ]− [Hqrqs

c̄i ]){F qsI }+ (D.20)

([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])[B]−1([Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ]){F qs
C̃
}

Comparing equation (D.4) with equation (D.20) yields:

[Hqrqs
II ] = [Hqrqs

ii ]− ([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])[B]−1([Hqrqs
c̄i ]− [Hqrqs

c̃i ]) (D.21)

[Hqrqs
IC̃

] = [Hqrqs
ic̃ ]− ([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])[B]−1([Hqrqs

c̄c̃ ]− [Hqrqs
c̃c̃ ]) (D.22)
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Substituting equations (D.5), (D.15), (D.16) into (D.17) yields:

{Xqr
I } = [Hqrqs

ii ]{F qsI }+ [Hqrqs
ic̄ ]{F qs

C̄
}+

([H
qrqs
ic̃ ]− [H

qrqs
ic̄ ])[B]−1([H

qrqs
c̄i ]− [H

qrqs
c̃i ]){F qsI }+ (D.23)

([Hqrqs
ic̃ ]− [Hqrqs

ic̄ ])[B]−1([Hqrqs
c̄c̄ ]− [Hqrqs

c̃c̄ ]){F qs
C̄
}

Comparing equation (D.4) with equation (D.23) yields:

[Hqrqs
II ] = [Hqrqs

ii ]− ([Hqrqs
ic̄ ]− [Hqrqs

ic̃ ])[B]−1([Hqrqs
c̄i ]− [Hqrqs

c̃i ]) (D.24)

[Hqrqs
IC̄

] = [Hqrqs
ic̄ ]− ([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])[B]−1([Hqrqs

c̄c̄ ]− [Hqrqs
c̃c̄ ]) (D.25)

Substituting equations (D.5), (D.10), (D.11) into (D.18) yields:

{Xqr
C̄
} = [Hqrqs

c̄i ]{F qsI }+ [Hqrqs
c̄c̃ ]{F qs

C̃
}+

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])[B]−1([Hqrqs
c̃i ]− [Hqrqs

c̄i ]){F qsI }+ (D.26)

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])[B]−1([Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ]){F qs
C̃
}

Comparing equation (D.4) with equation (D.26) yields:

[H
qrqs
C̄I

] = [H
qrqs
c̄i ]− ([H

qrqs
c̄c̃ ]− [H

qrqs
c̄c̄ ])[B]−1([H

qrqs
c̃i ]− [H

qrqs
c̄i ]) (D.27)

[H
qrqs
C̄C̃

] = [H
qrqs
c̄c̃ ]− ([H

qrqs
c̄c̃ ]− [H

qrqs
c̄c̄ ])[B]−1([H

qrqs
c̃c̃ ]− [H

qrqs
c̄c̃ ]) (D.28)

Substituting equations (D.5), (D.15), (D.16) into (D.18) yields:

{Xqr
C̄
} = [Hqrqs

c̄i ]{F qsI }+ [Hqrqs
c̄c̄ ]{F qs

C̄
}+

([Hqrqs
c̄c̃ ]− [Hqrqs

c̄c̄ ])[B]−1([Hqrqs
c̄i ]− [Hqrqs

c̃i ]){F qsI }+ (D.29)

([Hqrqs
c̄c̃ ]− [Hqrqs

c̄c̄ ])[B]−1([Hqrqs
c̄c̄ ]− [Hqrqs

c̃c̄ ]){F qs
C̄
}

Comparing equation (D.4) with equation (D.29) yields:

[Hqrqs
C̄I

] = [Hqrqs
c̄i ]− ([Hqrqs

c̄c̃ ]− [Hqrqs
c̄c̄ ])[B]−1([Hqrqs

c̃i ]− [Hqrqs
c̄i ]) (D.30)

[Hqrqs
C̄C̄

] = [Hqrqs
c̄c̄ ]− ([Hqrqs

c̄c̃ ]− [Hqrqs
c̄c̄ ])[B]−1([Hqrqs

c̃c̄ ]− [Hqrqs
c̄c̄ ]) (D.31)
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Substituting equations (D.5), (D.10), (D.11) into (D.19) yields:

{Xqr
C̃
} = [Hqrqs

c̃i ]{F qsI }+ [Hqrqs
c̃c̃ ]{F qs

C̃
}+

([H
qrqs
c̃c̄ ]− [H

qrqs
c̃c̃ ])[B]−1([H

qrqs
c̃i ]− [H

qrqs
c̄i ]){F qsI }+ (D.32)

([Hqrqs
c̃c̄ ]− [Hqrqs

c̃c̃ ])[B]−1([Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ]){F qs
C̃
}

Comparing equation (D.4) with equation (D.32) yields:

[Hqrqs
C̃I

] = [Hqrqs
c̃i ]− ([Hqrqs

c̃c̄ ]− [Hqrqs
c̃c̃ ])[B]−1([Hqrqs

c̄i ]− [Hqrqs
c̃i ]) (D.33)

[Hqrqs
C̃C̃

] = [Hqrqs
c̃c̃ ]− ([Hqrqs

c̃c̄ ]− [Hqrqs
c̃c̃ ])[B]−1([Hqrqs

c̄c̃ ]− [Hqrqs
c̃c̃ ]) (D.34)

Substituting equations (D.5), (D.15), (D.16) into (D.19) yields:

{Xqr
C̃
} = [Hqrqs

ii ]{F qsI }+ [Hqrqs
c̃c̄ ]{F qs

C̄
}+

([Hqrqs
c̃c̃ ]− [Hqrqs

c̃c̄ ])[B]−1([Hqrqs
c̄i ]− [Hqrqs

c̃i ]){F qsI }+ (D.35)

([Hqrqs
c̃c̃ ]− [Hqrqs

c̃c̄ ])[B]−1([Hqrqs
c̄c̄ ]− [Hqrqs

c̃c̄ ]){F qs
C̄
}

Comparing equation (D.4) with equation (D.35) yields:

[H
qrqs
C̃I

] = [H
qrqs
c̃i ]− ([H

qrqs
c̃c̄ ]− [H

qrqs
c̃c̃ ])[B]−1([H

qrqs
c̄i ]− [H

qrqs
c̃i ]) (D.36)

[H
qrqs
C̃C̄

] = [H
qrqs
c̃c̄ ]− ([H

qrqs
c̃c̄ ]− [H

qrqs
c̃c̃ ])[B]−1([H

qrqs
c̄c̄ ]− [H

qrqs
c̃c̄ ]) (D.37)

Equations (D.21), (D.22), (D.24), (D.25), (D.27), (D.28), (D.30), (D.31), (D.33), (D.34),

(D.36), (D.37), can be arranged as:


{Xqr

I }
{Xqr

C̄
}

{Xqr

C̃
}

 =


[
H
qrqs
ii

]
[H

qrqs
ic̄ ] [H

qrqs
ic̃ ][

Hqrqs
c̄i

]
[Hqrqs
c̄c̄ ] [Hqrqs

c̄c̃ ][
Hqrqs
c̃i

]
[Hqrqs
c̃c̄ ] [Hqrqs

c̃c̃ ]

− (D.38)


([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])

([H
qrqs
c̃c̄ ]− [H

qrqs
c̃c̃ ])

[[H
qrqs
c̄c̄ ] + [H

qrqs
c̃c̃ ]− [H

qrqs
c̄c̃ ]− [H

qrqs
c̃c̄ ] + [Gqsqrc̄c̃ ]−1]−1


([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
c̄c̄ ]− [Hqrqs

c̄c̃ ])

([H
qrqs
c̃c̄ ]− [H

qrqs
c̃c̃ ])


T


{F qs
I
}

{F qs
C̄
}

{F qs
C̃
}


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Equation (D.38) can be arranged in a more concise form as:

{
{Xqr

I }
{Xqr

C
}

}
=

([ [
Hqrqs
ii

]
[Hqrqs
ic ][

Hqrqs
ci

]
[Hqrqs
cc ]

]
− (D.39)

{
([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
cc̄ ]− [Hqrqs

cc̃
])

}
[[Hqrqs

c̄c̄ ] + [Hqrqs
c̃c̃ ]− [Hqrqs

c̄c̃ ]− [Hqrqs
c̃c̄ ] + [Gqsqrc̄c̃ ]−1]−1

{
([Hqrqs

ic̄ ]− [Hqrqs
ic̃ ])

([Hqrqs
cc̄ ]− [Hqrqs

cc̃
])

}T){
{F qs
I
}

{F qs
C
}

}

where matrix [Gqsqrc̄c̃ ] is given by

[Gqsqrc̄c̃ ] =


G11
c̄c̃ G12

c̄c̃ · · · G1qr
c̄c̃

...
. . .

...

Gqs1c̄c̃ Gqs2c̄c̃ · · · Gqsqrc̄c̃


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Illustration of the HANORCA

E.1 Basic Impedance Coupling Process

Let us assume two structures to be connected with one local nonlinear element, as shown

by figure (E.1):

Figure E.1: Two structures connected with one local nonlinear element

The equation of the coupled system, relating displacement vectors and force vectors

is shown in matrix form as:

X1

X2

X3

X4


=


γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44





F1

F2

F3

F4


(E.1)

Consider a force F1 applied in coordinate 1 as shown in figure (E.2):

Looking at the substructures, the displacement in each point can be written as:

x1 = H11f1 +H12f2 (E.2)

x2 = H21f1 +H22f2 (E.3)

265
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Figure E.2: Force applied in x1

x3 = H33f3 (E.4)

x4 = H43f3 (E.5)

The equilibrium conditions can be written as:

f2 + f3 = 0 =⇒ f2 = −f3

F1 = f1

(E.6)

The compatibility conditions can be written as:

X1 = x1

X2 = x2

X3 = x3

X4 = x4

x3 − x2 = −f3/Gn1

(E.7)

Substituting equations (E.4),(E.3) into (E.7) yields:

H33f3 −H21f1 −H22f2 + f3/Gn1 = 0 (E.8)

Substituting equation (E.6) into (E.8) yields:

(H33 +H22 + 1/Gn1)f3 = H21F1 (E.9)

f3 = (H33 +H22 + 1/Gn1)−1H21F1 (E.10)

As the external force is applied in coordinateX1 and now it is known that the internal

forces as function of this external force, it is possible to calculate all the elements of the
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first column of equation (E.1) as follows:

 γ11 = X1/F1

X1 = H11F1 −H12(H33 +H22 + 1/Gn1)−1H21F1

(E.11)

γ11 = H11 −H12(H33 +H22 + 1/Gn1)−1H21 (E.12)

 γ21 = X2/F1

X2 = H21F1 −H22(H33 +H22 + 1/Gn1)−1H21F1

(E.13)

γ21 = H21 −H22(H33 +H22 + 1/Gn1)−1H21 (E.14)

 γ31 = X3/F1

X3 = H33(H33 +H22 + 1/Gn1)−1H21F1

(E.15)

γ31 = H33(H33 +H22 + 1/Gn1)−1H21 (E.16)

 γ41 = X4/F1

X4 = H43(H33 +H22 + 1/Gn1)−1H21F1

(E.17)

γ41 = H43(H33 +H22 + 1/Gn1)−1H21 (E.18)

Consider a force F2 applied in coordinate 2 as shown in figure (E.3):

Figure E.3: Force applied in x2

Looking at the substructures, the displacement in each point can be written as:

x1 = H12f2 (E.19)

x2 = H22f2 (E.20)

x3 = H33f3 (E.21)

x4 = H43f3 (E.22)
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The equilibrium conditions can be written as:

f2 + f3 = F2 =⇒ f2 = F2 − f3 (E.23)

The compatibility conditions can be written as:

X1 = x1

X2 = x2

X3 = x3

X4 = x4

x3 − x2 = −f3/Gn1

(E.24)

Substituting equations (E.21),(E.20) into (E.24) yields:

H33f3 −H22f2 + f3/Gn1 = 0 (E.25)

(H33 + 1/Gn1)f3 = H22f2 (E.26)

Substituting equation (E.23) into (E.26) yields:

f3 = (H33 +H22 + 1/Gn1)−1H22F2 (E.27)

f2 = (1− (H33 +H22 + 1/Gn1)−1H22)F2 (E.28)

As the external force is applied in coordinateX2 and now it is known that the internal

forces as function of this external force, it is possible to calculate all the elements of the

second column of equation (E.1) as follows:

 γ12 = X1/F2

X1 = H12F2 −H12(H33 +H22 + 1/Gn1)−1H22F2

(E.29)

γ12 = H12 −H12(H33 +H22 + 1/Gn1)−1H22 (E.30)

 γ22 = X2/F2

X2 = H22F2 −H22(H33 +H22 + 1/Gn1)−1H22F2

(E.31)

γ22 = H22 −H22(H33 +H22 + 1/Gn1)−1H22 (E.32)
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 γ32 = X3/F2

X3 = H33(H33 +H22 + 1/Gn1)−1H22F2

(E.33)

γ32 = H33(H33 +H22 + 1/Gn1)−1H22 (E.34)

 γ42 = X4/F2

X4 = H43(H33 +H22 + 1/Gn1)−1H22F2

(E.35)

γ42 = H43(H33 +H22 + 1/Gn1)−1H22 (E.36)

Consider a force F3 applied in coordinate 3 as shown in figure (E.4):

Figure E.4: Force applied in x3

Looking at the substructures, the displacement in each point can be written as:

x1 = H12f2 (E.37)

x2 = H22f2 (E.38)

x3 = H33f3 (E.39)

x4 = H43f3 (E.40)

The equilibrium conditions can be written as:

f2 + f3 = F3 =⇒ f3 = F3 − f2 (E.41)

The compatibility conditions can be written as:

X1 = x1

X2 = x2

X3 = x3

X4 = x4

x2 − x3 = −f2/Gn1

(E.42)
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Substituting equations (E.38),(E.39) into (E.42) yields:

H22f2 −H33f3 + f2/Gn1 = 0 (E.43)

(H22 + 1/Gn1)f2 = H33f3 (E.44)

Substituting equation (E.41) into (E.44) yields:

f2 = (H33 +H22 + 1/Gn1)−1H33F3 (E.45)

f3 = (1− (H33 +H22 + 1/Gn1)−1H33)F3 (E.46)

As the external force is applied in coordinateX3 and now it is known that the internal

forces as function of this external force, it is possible to calculate all the elements of the

third column of equation (E.1) as follows:

 γ13 = X1/F3

X1 = H12(H33 +H22 + 1/Gn1)−1H33F3

(E.47)

γ13 = H12(H33 +H22 + 1/Gn1)−1H33 (E.48)

 γ23 = X2/F3

X2 = H22(H33 +H22 + 1/Gn1)−1H33F3

(E.49)

γ23 = H22(H33 +H22 + 1/Gn1)−1H33 (E.50)

 γ33 = X3/F3

X3 = H33F3 −H33(H33 +H22 + 1/Gn1)−1H33F3

(E.51)

γ33 = H33 −H33(H33 +H22 + 1/Gn1)−1H33 (E.52)

 γ43 = X4/F3

X4 = H43F3 −H43(H33 +H22 + 1/Gn1)−1H33F3

(E.53)

γ43 = H43 −H43(H33 +H22 + 1/Gn1)−1H33 (E.54)

Consider a force F4 applied in coordinate 4 as shown in figure (E.5):
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Figure E.5: Force applied in x4

Looking at the substructures, the displacement in each point can be written as:

x1 = H12f2 (E.55)

x2 = H22f2 (E.56)

x3 = H33f3 +H34f4 (E.57)

x4 = H43f3 +H44f4 (E.58)

The equilibrium conditions can be written as:

F4 = f4

f2 + f3 = 0 =⇒ f2 = −f3

(E.59)

The compatibility conditions can be written as:

X1 = x1

X2 = x2

X3 = x3

X4 = x4

x2 − x3 = −f2/Gn1

(E.60)

Substituting equations (E.56),(E.57) into (E.60) yields:

H22f2 −H33f3 −H34f4 + f2/Gn1 = 0 (E.61)

Substituting equation (E.59) into (E.61) yields:

(H33 +H22 + 1/Gn1)f3 = −H34F4 (E.62)
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f3 = −(H33 +H22 + 1/Gn1)−1H34F4 (E.63)

As the external force is applied in coordinateX4 and now it is known that the internal

forces as function of this external force, it is possible to calculate all the elements of the

fourth column of equation (E.1) as follows:

 γ14 = X1/F4

X1 = H12(H33 +H22 + 1/Gn1)−1H34F4

(E.64)

γ14 = H12(H33 +H22 + 1/Gn1)−1H34 (E.65)

 γ24 = X2/F4

X2 = H22(H33 +H22 + 1/Gn1)−1H34F4

(E.66)

γ24 = H22(H33 +H22 + 1/Gn1)−1H34 (E.67)

 γ34 = X3/F4

X3 = H34F4 −H33(H33 +H22 + 1/Gn1)−1H34F4

(E.68)

γ34 = H34 −H33(H33 +H22 + 1/Gn1)−1H34 (E.69)

 γ44 = X4/F4

X4 = H44F4 −H43(H33 +H22 + 1/Gn1)−1H34F4

(E.70)

γ44 = H44 −H43(H33 +H22 + 1/Gn1)−1H34 (E.71)

The equation of the coupled system, relating displacement vectors and force vector

can be written in matrix form using the properties of each component as:


X1

X4

X2

X3

 =

 H11 −H12(B)−1H21 H12(B)−1H34 H12 −H12(B)−1H22 H12(B)−1H33

H43(B)−1H21 H44 − H43(B)−1H34 H43(B)−1H22 H43 −H43(B)−1H33

H21 −H22(B)−1H21 H22(B)−1H34 H22 −H22(B)−1H22 H22(B)−1H33

H33(B)−1H21 H34 − H33(B)−1H34 H33(B)−1H22 H33 −H33(B)−1H33


F1

F4

f2

f3


(E.72)

where:

B = H33 +H22 + 1/Gn1
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Equation (E.72) can be arranged in a more concise form as:


X1

X4

X2

X3

 =




H11 0 H12 0

0 H44 0 H43

H21 0 H22 0

0 H34 0 H33

−

−H12

H43

−H22

H33

 [H33 + H22 + 1/Gn1]−1


−H12

H43

−H22

H33


T


F1

F4

f2

f3


(E.73)

E.2 HANORCA of two linear structures with a lo-

cal nonlinear element

This approach was applied to obtain the equation of the Assembled System composed of

two substructures and one nonlinear element, as shown in figure (E.6): The analytical

Figure E.6: Two linear structures with local nonlinear element

expression for this system can be obtained using the equilibrium condition, as derived in

section E.1, leading to the following equation:


X1

X4

X2

X3

 =




H11 0 H12 0

0 H44 0 H43

H21 0 H22 0

0 H34 0 H33

−


H12

−H43

H22

−H33

 [H33 + H22 + 1/Gn1]−1


H12

−H43

H22

−H33


T


F1

F4

F2

F3


(E.74)

The same result can be obtained from the approach of Nonlinear Receptance Coupling

approach. This example has only one par of connection coordinate (x2, x3) and two external

coordinates as shown in the following groups:

i = {1, 4}

c̄ = {2} (E.75)

c̃ = {3}

c = {2, 3}
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Using the groups in equation(E.75), it is possible to set the following submatrices:

Hii =

 H11 0

0 H44


Hic̄ =

 H12

0


Hc̄i =

[
H21 0

]
Hc̄c̄ =

[
H22

]
(E.76)

Hic̃ =

 0

H43


Hc̃i =

[
0 H34

]
Hc̃c̃ =

[
H33

]
Hc̄c̃ =

[
0
]

Hc̃c̄ =
[

0
]

The equation of the Assembled System can be determined substituting equations

(E.76) in equation(4.81) leading to the following equation:


X1

X4

X2

X3

 =




H11 0 H12 0

0 H44 0 H43

H21 0 H22 0

0 H34 0 H33

−


H12

−H43

H22

−H33

 [H22 + H33 + 1/Gn1]−1


H12

−H43

H22

−H33


T


F1

F4

F2

F3


(E.77)
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E.3 HANORCA of three linear structures with a

local nonlinear element and rigid connections

This approach was applied to obtain the equation of the Assembled System composed of

three substructures, one nonlinear element, one point rigid connected with two other points

as shown in figure (E.7):

Figure E.7: Three linear structures with local nonlinear element and rigid connections

This example has four par of connection coordinate (x2, x6), (x6, x8), (x3, x9), (x4, x10)

and three external coordinates as shown in the following groups:

i = {1, 5, 7}

c̄ = {2, 6, 3, 4} (E.78)

c̃ = {6, 8, 9, 10}

c = {2, 3, 4, 10}

cd = {4, 10}

id = {}

cf = {}

if = {1}

Using the groups in equation(E.79), it is possible to set the following submatrices:

Hii =


H11 0 0

0 H55 0

0 0 H77


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Hic̄ =


H12 0 H13 H14

0 H56 0 0

0 0 0 0



Hc̄c̄ =


H22 0 H23 H24

0 H66 0 0

H32 0 H33 H34

H42 0 H43 H44

 (E.79)

Hic̃ =


0 0 0 0

H56 0 0 0

0 H78 H79 H710



Hc̃c̃ =


H66 0 0 0

0 H88 H89 H810

0 H98 H99 H910

0 H108 H109 H1010



Hc̄c̃ =


0 0 0 0

H66 0 0 0

0 0 0 0

0 0 0 0



Hic =


H12 H13 H14 0

0 0 0 0

0 0 0 H710



Hcc =


H22 H23 H24 0

H32 H33 H34 0

H42 H43 H44 0

0 0 0 H1010


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Hcc̄ =


H22 0 H23 H24

H32 0 H33 H34

H42 0 H43 H44

0 0 0 0



Hcc̃ =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 H1010



Hcdi =

 H41 0 0

0 0 H107



Hcdc =

 H42 H43 H44 0

0 0 0 H1010



Hcdc̄ =

 H42 0 H43 H44

0 0 0 0



Hcdc̃ =

 0 0 0 0

0 H108 H109 H1010


Hif c̄ =

[
H12 0 H13 H14

]

Hif c̃ =
[

0 0 0 0
]

The equation of the Assembled System relating all non repetitive coordinates can be

determined substituting equations (E.79) in equation(4.81) leading to the following equa-
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tion:

X1

X5

X7

X2

X3

X4

X10


=





H11 0 0 H12 H13 H14 0

0 H55 0 0 0 0 0

0 0 H77 0 0 0 H710

H12 0 0 H22 H23 H24 0

H13 0 0 H32 H33 H34 0

H14 0 0 H42 H43 H44 0

0 0 H710 0 0 0 H1010


− (E.80)



H12 0 H13 H14

−H56 H56 0 0

0 −H78 −H79 −H710

H22 0 H23 H24

H32 0 H33 H34

H42 0 H43 H44

0 −H108 −H109 −H1010


[B]−1



H12 0 H13 H14

−H56 H56 0 0

0 −H78 −H79 −H710

H22 0 H23 H24

H32 0 H33 H34

H42 0 H43 H44

0 −H108 −H109 −H1010



T




F1

F5

F7

F2

F3

F4

F10



where

[B] =


H22 +H66 −H66 H23 H24

−H66 H66 + H88 H89 H810

H32 H98 H33 +H99 H34 +H910

H42 H108 H43 +H109 H44 +H1010 + 1/Gnl

 (E.81)

The equation of the Assembled System relating only the desired connection coordi-
nates can be determined substituting equations (E.79) in equation(4.118) leading to the
following equation:

{
X4

X10

}
=

([
H14 0 0 H42 H43 H44 0

0 0 H710 0 0 0 H1010

]
− (E.82)

{
H42 0 H43 H44

0 −H108 −H109 −H1010

}
[B]−1



H12 0 H13 H14

−H56 H56 0 0

0 −H78 −H79 −H710

H22 0 H23 H24

H32 0 H33 H34

H42 0 H43 H44

0 −H108 −H109 −H1010



T




F1

F5

F7

F2

F3

F4

F10


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The equation of the Assembled System relating both the desired connection and

excitation points can be determined substituting equations (E.79) in equation(4.118) leading

to the following equation:

 X4

X10

 =

 H14

0

− (E.83)

 H42 0 H43 H44

0 −H108 −H109 −H1010

 [B]−1
{
H12 0 H13 H14

}T{ F1

}
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