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Abstract

Thisthesis presents an analysis of the travelling-wave-speed instability between arotating
bladed disc and a flexible casing. This type of interaction with structural contact can
occur under certain circumstances in high-speed turbo-machinery, e.g., aircraft engines or
compressors, and can amplify the vibration of the coupled rotor-stator system in an
unstable manner by feeding the kinetic rotational energy of the rotor into the vibration. In
order for turbo-machinery to operate safely, the travelling-wave-speed coincidences must
be avoided and analysed for the possibility of the occurrence of the associated instability.

Previously, most casings of aircraft engines had additional structures such as the gear
box attached to them. These attachments mistuned the casings, thereby reduced the
travelling-wave components in the response and hence made the mechanism of energy
transfer less efficient, which dropped below a non-critical threshold level defined by other
system parameters such as damping and the gap size between rotating and stationary
parts. New aircraft-engine designs tend towards axisymmetric casings for which the
investigation of the travelling-wave-speed instability becomes more important.

In the literature, the few authors who treated elastic stators in contact with bladed
discs did not investigate the possibility of travelling-wave-speed instability maybe due to
lack of applicability to existing designs, but the majority of researchers analysed systems
with rigid stators only. For systems with eastic rotors and stators, this approach is
inadeguate as the inclusion of the stator dynamics results in an increase in the number of
critical speedsfor the coupled system.

In this thesis, the rotor and the stator are modelled individually as structures with
linear dynamics. In order to reduce the number of differential equations, modal models
are employed to limit the computationa effort to the relevant participating modes. The
contact between the bladed disc and the stator is modelled by an impact friction law,
including impact loss.

The effects of including the casing dynamics in the analysis of rotor-stator systems are
described analytically, computed in a numerical simulation, and demonstrated in an
experiment. Good qualitative agreement is achieved between the predictions and the
experimental results for the investigated instability. Both numerical predictions and the
experimental data show the occurrence of the travelling-wave-speed instability and
validate the selected approach.

The results of the research indicate that the travelling-wave-speed instability exists
and that it is a potential safety threat that must be avoided either by design or by choice of
operating conditions.
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Notation

Symbols
Coordinate systems, unit vectors
(z, y, 2): Cartesian coordinate system
(r,0, 2): Cylindrical coordinate system: radial, tangential, and axial directions
(n, t, b);: local Cartesian coordinate system attached to each blade tip:
normal, tangential, and bi-normal directions
{e};: unit vector

Scalar quantities

W natural frequency [rad/s]

PN eigenvalue [(rad/s)?]

Vi wave velocity [rad/s]

Q speed of rotation [rev/min]

t time

Nytades: number of blades or sectors

N: size of problem

n: mode under investigation, primary mode

m. arbitrary mode, secondary mode, possibly identical ton

Vectors and matrices

[IM], [C], [K]:  mass, damping, and stiffness matrices

[m, ], lc,), [k,]: modal mass, damping, and stiffness matrices (diagonal)
N, [w, )i eigenvalue and natural-frequency matrices (diagonal)

[¢,] damping ratio matrix (diagonal)

{\},, 1o}, arbitrary and mass-normalised modeshape

[0, [®]: arbitrary and mass-normalised modeshape matrix

{z}: position coordinate

{u): response, degree of freedom, vibration around a equilibrium position
{y}: secondary coordinates

{u},: generalised coordinate, response to mode r

{p}: principal coordinates

{f}: force

[1]: identity matrix

[0], {0}: zero matrix and vector



Superscripts

T: transpose
-1 inverse; for functions: inverse functions
": (complex) magnitude
O)F: complex conjugate
(): time derivative
(): (locally) modified quantity
+, - forward/backward travelling or co-/counter-rotating
Subscripts
R, S: rotating, stationary reference frame
T, s: rotor, stator; r+s: both structures, rs, sr: between both structures
10 forward and backward in stationary reference frame
co-rotating and counter-rotating in rotating reference frame
n: nodal diameter
r, 0, z component in the direction of the global cylindrical coordinate system
n, t: component in the direction of the local Cartesian coordinate system
Ooro, f: original, undisturbed, initial and final state

Indices/Counters

T, s rth and sth mode, primary and secondary mode
i general counter

n, m: nodal diameter, primary and secondary mode
Terms

Use

frequency: for the vibration: w [rad/s)

Speed: for the speed of rotation €2 [rev/min]
velocity: for wave propagation. v [rad/s]

forward, backward: inthe stationary reference frame
co-, counter-rotating: in the rotating reference frame

Note: the following terms are explained in the Appendix:
wave — mode, description, reference frame — coordinate system,
direction, frequency — speed — velocity



Chapter 1: Introduction

The basic objective of engineering research is to advance technology safely and make
processes more efficient. Advancing a matter safely requires the researcher to understand
the underlying principles but most engineering achievements were made without a
complete understanding of the underlying principles. Engineers were and still are forced
to develop theories of their own, which would be generalised by scientists only later,
(Evans, 1989, Szabo, 1984, Wilson, 1990).

In vibration engineering in the aerospace industry, researchers have endeavoured to
reduce levels of vibration, increase the life of components, and increase the efficiency of
machines safely.

1.1 Efficiency of Rotating Machines

Efficiency can be defined in many ways but in the context of high-speed turbo-machinery,
one usually means the overall efficiency of the energy-transformation process: the ratio of
energy output to energy input.

The efficiencies of both turbo-generators and jet engines depend strongly on the
clearance between the rotating and the stationary parts: the wider the clearance, the less
efficient the machine. Hence it is desirable to reduce the clearance by as much as
possible. It cannot be reduced below a certain minimum level due to uncertainties in the
dynamic, fluid dynamic, and thermal loads, the machining tolerances and material
properties. The more accurate these forces and parameters are known, the smaller the
clearance can be made.

After the clearance, weight is the second quantity that governs the efficiency of an
engine and a whole plane: lighter aeroplanes carry higher payloads or fly further at the
same fuel consumption or, alternatively, consume less fuel for the same load and
distance. Reducing the weight of an aircraft engine generally reduces its overall stiffness,
which in turn causes larger deflections for a given force.

Reduced clearance and reduced stiffness together increase the possibility of violent
contact between rotor and stator by enabling contact in the first place due to load-
deformed shapes and smaller clearances and by maintaining contact more easily due to
the reduced stiffness, in the second place. Small, possibly random, forces acting on one
structure may cause deflections large enough to bridge the gap between the rotor and the
stator and may cause initial contact. Under certain operating conditions, including the
dynamic properties of the rotor and stator and the speed of rotation, the contacts may
continue and drive the rotor-stator system unstable.

The proof of existence of the instability at a particular set of conditions, namely the
coincidence of rotor and stator travelling wave velocities, or ghertravelling-wave-
speed instability, is the topic of this thesis.
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In the case of atravelling-wave-speed coincidence, the rotational kinetic energy of the
rotor feeds the vibration of the rotor-stator system, which responds with growing
vibration amplitudes.

Most designs of power-generating machines have made provisions to reduce the
chances of contact and to limit the possibly devastating effects of an eventual structural
contact between the rotor and the stator. Uncertainties remain and instabilities like the
travelling-wave-speed instability may cause accidents where the interaction between rotor
and stator was assumed to be instrumental, (Smailes, 1993). In a particular case, a rotor-
stator interaction expelled a fan blade from the engine, causing severe damage to the air
frame, (NTSB, 1975)

Provisions to avoid contact between rotor and stator add both cost and weight to the
structure which stands in conflict with economic goals. Detailed knowledge of the
interaction between rotor and stator will help to optimise the design towards a less
conservative, safe, and affordable solution.

The European Union sponsored research of the possible interactions between rotating
and stationary parts in turbo-machinery to help the European turbo-machinery industry to
maintain their competitiveness under the Brite/Euram framework. The work described in
this thesis was carried out in the project ROSTADYN: Modelling of Rotor/Stator
Interaction Dynamics, (European Union, 1992). In today's international markets,
competitive products only guarantee the long-term survival of a company, and more and
more it is the customer who decides what a ‘competitive’ product constitutes — by
choosing from the variety that the global market produces. Products that once were
competitive must be developed and optimised continuously so as not to loose onward-
moving customers. For users of turbo-machinery the increased competition meant that
they could ask not only for a lower purchasing price but also, and more importantly, a
higher fuel efficiency without compromise on safety.

The necessity to direct research into the area of contacting elastic structures was
highlighted recently by the following note:

The FAA has approved a [...] plan to increase the clearance between [...] fan
blades and case-mounted abradable strips to eliminate potential fan blade rubs
and subsequent engine surges...

Aviation Week and Space Technology, January 1, 1996

1.2 Objectives of Research

A common interest of the rotating-machinery industry is to understand better the dynamic
behaviour of rotating structures and the interaction of these with the surrounding casing
and fluid in order to provide the designers with less conservative design guidelines and
ways of improving their products. The possible improvements are manifold: reduction of

the uncertainty in the design and operation of such machines; reduction in production and
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operation cost; increase in life and maintenance cycles; and increase in safety due to more

accurate predictions. The work described in this thesis forms part of the effort to increase

the understanding and to explain powerful phenomena that occur in high-speed turbo-
machinery such as compressors and aircraft engines.

The specific objectives of the research presented in thisthesis are:

» to establish the existence of the travelling-wave-speed instability;

» to derive the necessary conditions for the occurrence of the travelling-wave-speed
instability;

» to develop a tool for predicting the dynamic behaviour of an elastic rotor and an
elastic stator each individual with linear vibration characteristics when they come into
contact with each other; and

» to demonstrate the validity of the model experimentally.

1.3 Literature Survey
A literature survey was carried out to gain insight into the analysis of rotating structures

with linear dynamics and the contact between two elastic structures. Historically, the field
of rotating machinery splits into two areas: rotor dynamics and dynamics of rotating

discs, Figure 1-1.
X T~

rotating flexible disc with rigid shaft

—

)

fully coupled M \& %
with flexible rotor

and flexible discs

rotor dynamics with rigid discs

Figure 1-1: Analysis path

1.3.1 Rotor dynamics
Rotor dynamics generally considers an elastic shaft with rigid discs supported in bearings,
the earliest work carried out by Foppl (1895), Jeffcott (1919), Laval, and Stodola (1910).
Current textbooks include Biezeno and Grammel (1953), Ehrich (1992), Gasch and
Pfutzner (1975), Kramer (1993), Lee (1993), Rao (1991), and Vance (1988) to name a
few. Nelson (1994) gave a general survey over modelling and analysis techniques.

There are variations to the problem, ranging from the simplest model of a massless,
symmetric shaft in symmetric, undamped bearings with linear dynamics with a disc at
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mid-span to complex models with asymmetric, elastic shafts with internal damping,
multiple discs with different moments of inertia and eccentricities at arbitrary positions
supported in anisotropic, nonlinear bearings on elastic foundations. Correspondingly, the
equations of motion range from those for the ssmple system with constant, symmetric,
mass and stiffness matrices, [M] and [K], respectively:

[IM]{ai} + [Kl{u} = {f,} (1-1)
where the coordinates {«} are either rectilinear (x,) or polar (r,0), to the complex system:

[MI{ii} 4 [C + G()Ha} + [K + S()Hup = {f,} (1-2)

where [C] denotes the damping matrix, [G] the skew-symmetric gyroscopic matrix, and [S]
the geometric stiffness matrix, (Ewins and Henry, 1988, Wang and Kirkhope, 1994). The
latter two matrices depend explicitly on the speed of rotation, while the elements of all
matrices may depend on the cosine and sine of the rotation angle Q. {f,} represents the
forcing vector acting upon the system. Only recently have researchers begun to consider
the effects of disc flexibility on the dynamics of a shaft, Flowers and Ryan (1991), Wang
(1992).

Torsiona vibrations, caused by, for example, electrica motors, gearboxes, misaligned
Hooke’s joints, or pulsating forces from generators, are considered separately by all
researchers, assuming that the bending and axial vibrations are decoupled from the
torsional vibrations, (Stelter, 1995).

1.3.2 Dynamicsof rotating bladed discs
Quite apart from the general field of rotor dynamics is the field of rotating elastic discs,
possibly with blades, (Crawley, 1988, Loewy and Khader, 1984).

1.3.2.1 Shaft-disc coupling

Assuming only small deflections of the shaft at the location of the elastic disc, the
dynamics of discs are coupled to the shaft dynamics by the rigid-body modes of the discs
only. The elastic modes of the disc do not transfer forces or moments to the shaft and thus
do not influence the dynamics of the shaft. This assumption is valid for most turbo-
generators, but must be checked for compliant, light-weight structures used in aircraft-
and spacecraft-engineering. If the assumption of small displacements at the position of
the discs is dropped, which may be the case for overhung flexible discs, the dynamics of
shaft and elastic disc become coupled even for the elastic modes. This fully-coupled
analysis is the most intricate problem, approached by a few researchers only: Flowers and
Ryan (1991), Khader and Loewy (1984, 1990), and Wang (1992).
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1.3.2.2 Bladed discs

Assuming that the shaft and disc motion decouple according to the preceding paragraph,
the rotating shaft and the rotating elastic disc can be studied separately. The shaft
dynamics with rigid discs is covered by the field of classical rotordynamics as outlined
above.

Generally, the elastic discs of a turbo-machine carry blades to exchange impulse with
the surrounding fluid. The rotating bladed disc was studied separately by, for example,
Ewins (1976), Tomioka, Kobayashi and Yamada (1996). The analysis simplifies
considerably, if the bladed disc is not rotating. Ewins (1980) gives an overview over
analytical and experimental aspects of these structures. Many researchers have done work
in the area, but major work was done by Ewins: Ewins (1973, 1988), Ewins and Imregun
(1984), Sanliturk, Imregun and Ewins (1992), and Irretier: Irretier (1979), Irretier and
Reuter (1995). For the stationary analysis, the effects of rotation must be estimated
separately. The influence of the rotation on the bladed disc dynamics is twofold: the
centrifugal force changes the natural frequencies and affects the modeshapes. While the
former isafirst order effect, the latter is often neglected, (Loewy and Khader, 1984).

1.3.2.3 Symmetry

For rotationally periodic structures such as bladed and unbladed discs, symmetry allows

the designer to reduce the three-dimensional problem to two dimensions by using a
Fourier-expansion of the modeshapes, (Elchuri, Smith and Gallo, 1984, Garvey and

Penny, 1994, Méziere, 1993, Minas and Kodiyalam, 1995, Thomas, 1979 and, implicitly,
Biezeno and Grammel, 1953). Most engineering structures have small imperfections due
to machining tolerances or material variations. Ewins (1991) presents a comprehensive
survey on the subject including current questions and an evolution of the research.
Mistuning makes it necessary to describe the modeshape in all three dimensions
explicitly, and complicating the analysis further by changing the natural frequencies and
making predictions more difficult, (Cornwell and Bendiksen, 1992, Ewins, 1975, Irretier,
1983, Kaza and Kielb, 1985, Stange and MacBain, 1983). Mistuning affects the response
level considerably, (Ewins and Han, 1984, Irretier and Schmidt, 1982, Kaneko, Mase,
Fujita and Nagashima, 1994, MacBain and Whaley, 1993), which, if not considered or
underestimated, can lead to unexpected fatigue failure, (Basu and Griffin, 1985). Ways to
spatially ‘mistune’ the forcing to reduce the vibration levels in a rotating disc were
investigated by Jones, Barton and O’Brien (1996). Recently, stochastic methods have
been applied to study problems associated with mistuning, Yiu (1995).

1.3.2.4 Disc-blade coupling

Substructure coupling is an important technique to analyse complex systems. The
dynamics of the whole system are obtained by coupling the dynamics of conveniently
defined substructures of the system, (Craig, 1995, Hurty, 1960). For the bladed disc, the



1 INTRODUCTION 8

natural substructures are the disc and the blades, (Ewins, 1973, Irretier, 1979, Imregun,
1988, Loewy and Khader, 1984). The bladed disc assembly can include further elements
such as shrouds connecting the blades, (Cottney and Ewins, 1974, Ewins, 1988, Ewins
and Imregun, 1984).

1.3.2.5 Discsand blades

Rotating discs and rotating blades were studied separately: discs of arbitrary shape by, for
example, Biezeno and Grammel (1953), Eversman and Dodson, (1969), Mignolet, Eick
and Harish (1996), Renshaw and Mote, (1995), and Y ang (1993), and rotating blades by
Biezeno and Grammel (1953), Chen and Chern (1993), Irretier and Mahrenholtz, (1981),
Filippov, (1971), Leissa, Lee and Wang, (1984), and Bauer, (1980). Most of the analyses
were performed for twisted and tapered blades with arbitrary geometry.

1.3.3 Modelsand analysistechniques

Different models are used to represent bladed disc assemblies. Wagner and Griffin (1992)
modelled the bladed disc as a continuous, one-dimensional string, Sanliturk, Imregun and
Ewins (1992) derived a lumped-parameter model, but most other researcher used a
discretised, finite-element model of the continuous structure. Biezeno and Grammel
(1953) and Lamb and Southwell (1921) used low-order polynomials to approximate the
modeshapes in the radial direction. They and Jen and Johnson (1995) used a Rayleigh-
Ritz approach to obtain approximations of the natural frequencies and modeshapes.

Analytical techniques are detailed in, for example, Géradin and Rixen (1994),
Timoshenko (1955), Szabd (1956), and Meirovitch (1970, 1980), and the details of the
numerical realisation of these techniques are described in Argyris and Mlejnek (1991) and
Biezeno and Grammel (1953).

For some systems, the assumption of linearity of the dynamic behaviour is valid only
over a certain range of parameters, for example the bending vibration of thin discs can be
described accurately by a description of the linearised system around the undeflected
position. These approximations, known as Kirchhoff theory for plates and Euler-
Bernoulli theory for beams, (Szabd, 1956), are sufficiently accurate for small deflections
but become increasingly inaccurate for large deflections, (Swamindham, 1990).

1.3.4 Travelling waves as principal coordinates
Complex waves instead of real normal modes have been used as principal coordinates in
the analysis of rotationally periodic structures for a long time (Lamb and Southwell,
1921, Macke, 1966, Srinivasan and Lauterbach, 1971, Tobias, 1957, Tobias and Arnold,
1957).

Backward travelling waves are probably the most common vibration patterns in rotors
as they are easily excited by pressure fluctuations in the surrounding fluid, (Ewins, 1976,
Gorman, 1979, Hardy, 1995, Jones, Barton and O'Brien, 1996, Li-Tang and Qi-Han,
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1992, Owczarek, 1983, Weaver and Fleeter, 1994, Williams, 1991). The forced vibrations
of bladed discs due to general spatial and temporal force patterns were investigated by,
for example, Ewins (1973), Honda, Matsuhisa and Sato (1985), Mehdigohli, Robb and
Ewins (1992), and Schmiechen, Ewins and Bucher (1995).

The transformation of quantities, such as displacements and forces, between the
rotating and stationary reference frame is presented in detail in Bucher, Ewins, Robb,
Schmiechen (1995), Irretier and Reuter (1995) and Okubo, Evensen and van Karsen,

(1995). The principles of atravelling-wave ultrasonic motor were presented by Hagedorn
and Wallaschek (1992) and the industrial application of the theory was shown in Géradin
and Rixen (1994).

Recently Lee started to use negative frequencies to distinguish backward travelling

waves from forward travelling ones, (Lee, 1993, Lee and Kim, 1995, 1996).

1.3.5 Vibration tests of rotating machinery

The complexity of the analysis of rotating bladed discs is quite high, and for academic
studies the problem of validation becomes immense, (Kaiser and Hansen, 1994,
Swaminadham, 1990). The major difficulty is the measurement of the disc dynamics
without changing its characteristics. As mentioned above, a loss of symmetry introduces
large changes to the dynamics of any symmetric structure, and the attachment of a sensor
may mistune a structure. Measuring with a non-contacting sensor in the body-fixed frame
of reference will leave the structure undisturbed but adds cost to the measurements and
the signals must be still transmitted to the stationary observer where they can be analysed.
Measuring with non-contacting sensors in the stationary reference frame makes it
necessary to relate the measured quantities to the quantities experienced by the disc,
(Heath and Imregun, 1995, Irretier and Reuter, 1994, Nava, Paone, Rossi and Tomasini,
1994).

1.3.6 Contact models
Different types of contact were considered by the researchers:

» Frictionless rub: The elastically-supported stator hinders the rotor and causes it to
travel further away from the geometric centre. The stator acts as a time-varying
motion constraint. Without friction, which may be approximately the situation in a
journal bearing, the stator exerts a radial force on the rotor only. The dynamics
follow from the next type by neglecting the effects of friction.

* Rub with friction: in the presence of friction, for example if a journal bearing does
not receive sufficient oil, a tangential force is caused by the friction, generating a
braking torque. It also forces the stator into a different trajectory from the
frictionless case, (Ehrich 1969). Most researchers assume Coulomb-type friction,
relating the tangential force to the normal force by a single, possibly velocity-
dependent, coefficient and the sign of the velocity.
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* Impact with friction: Pfeiffer and Glocker (1994, 1995) and Schweitzer and
Fumigalli (1995, 1996) investigated the high-frequency effects of rubs assuming
that the contact time is smal compared to the wave propagation velocity.
Ostermeyer (1988) and Lesser (1995) gave details on the numerical realisation of
modelling impact friction.

Friction is a non-linear phenomenon. It depends nonlinearly on the relative velocity
between the contacting structures, (Glocker and Pfeiffer, 1994), and the indentation,
(Schweitzer and Fumigalli, 1996).

1.3.7 Dynamic interaction between rotor and stator

The literature search on the interaction between a rotor and a stator reveaded that the
literature splits into two areas according to the machine component investigated.
Goldman and Muszynska (1993), Choy and Padovan (1987), Ehrich (1969) consider
unbladed rotors touching rigid stators supported on springs, with a geometry
representative of bearings, seals, or other low-clearance sections of the shaft.

Recently, Hatman, Haque and Bagchi (1996) have reported research on the contact of
a bladed rotor and a ‘stator’ to study the dynamics of machine tools like polishing
brushes. Only Padovan and Choy (1987) studied the interaction between the rotor and
stator of a turbo-machine but assumed the stator to be rigid, representative possibly for a
compressor section of an aircraft engine.

There was no published literature found on the analysis of a fully-elastic rotor-stator
structures representing systems like low-pressure fans of jet engines. Ehrich (1969), the
National Transportation and Safety Board (1975) and Smailes (1993) have mentioned this
case briefly as the most general one. The difference to the previously-described systems is
that the natural frequencies of the nacelle are of the same order as those of the bladed
rotor. Hence both stator and bladed rotor have to be modelled as elastic structures and
considered simultaneously. This problem will be dealt with in this thesis.

1.4 Scopeand Layout of the Thesis
The scope of the thesis is to investigate the instability caused by a travelling-wave-speed
coincidence. This interaction between an elastic rotor and an elastic stator depends on the
dynamic characteristics of the structures and on the running speed of the machine, it can
be initiated by random disturbances as they are present in any operating machine,
(Schlack and Kessel, 1969, Schmiechen, 1994). The instability can occur in aircraft
engines long after the wear-in period, after many hundreds of hours in operation. For that
reason, it is particularly dangerous, as the close monitoring of new engine designs has
long ended. So, an engine operating normally for many months and years can suddenly
cause catastrophic failure, (Smailes, 1993).

The theoretical development of the instability will be presented in Chapters 2 and 3,
followed by a simulation of the problem, Chapters 4 and 5, and the development and
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design of the test rig and data-acquisition system and the experiments, Chapters 6 and 7.
The epilogue of Conclusions, References and Appendices closes the thesis.

1.4.1 Theoretical development

The theoretical basis for further analysis of the instability includes the dynamic behaviour
of axisymmetric discs and plates and the influence of rotation on the vibration of these
structures, and the dynamics of rotationally-periodic structures, such as bladed discs. Both
analytical and numerical approaches are pursued using general-purpose mathematics
packages available. The theoretical predictions and the numerical approximations are
validated by measurements.

1.4.1.1 Speed-dependent natural frequencies

For non-rotating systems with perfectly linear time-invariant vibration characteristics, the
natural frequencies are constant. Resonance occurs when the excitation has frequency
components at one or more of the natural frequencies of the system. For rotating
structures, the natural frequencies are functions of the rotation speed due to centrifugal
forces, (Biezeno and Grammel, 1956). The transformation of the natural frequencies of a
rotating structure into a frame of reference rotating relative to the structure modulates the
frequencies further, (Schmiechen and Ewins, 1995).

1.4.1.2 Coupled system dynamics

The project concentrates on structures similar to those found in aircraft engines or high-

speed compressors. In these systems the rotating element is disc-shaped with blades

attached to it to impart an impulse on the working fluid or vice versa. This rotor is housed

in a stator to maximise efficiency. For typical aircraft engines and compressors the stators

can be described approximately as conical shells with opening angles between 0° and 90°,
from a cylindrical shell to a flat disc.

If the natural frequencies of two structures are separated by a wide margin, the
analysis can be simplified by splitting it into two independent analyses. For rotating
structures, the natural frequencies depend on the rotation speed and such an approach is
generally not valid. The two structures described above, rotating bladed discs and conical
shells, have natural frequencies in the same frequency band and meaningful investigations
of the rotor and the stator separately are impossible. The inclusion of the stator dynamics
in the model makes this thesis broader in range than previously investigated and
published cases.

1.4.1.3 Modal representation of vibrations
Vibrations of spatially continuous linear time-invariant systems can be represented by an
infinite sum ofgeneralised coordinates or modal responses. Modes are natural vibration
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patterns of the structure. Excited close to one of its natural frequency, the structure will
respond predominantly in the vibration pattern of the associated mode.

For many structures, good approximations of the responses can be achieved with a
small number of modes retained in amodel of their dynamics.

1.4.1.4 Vibration patterns of axisymmetric structures

The modeshapes of rotationally-periodic and axisymmetric structures can be classified by
their number of nodal diameters and nodal circles. Along these nodal lines the vibration
iszero at all times.

The symmetry of the structures gives rise to mode pairs which have identical natural
frequencies and similar or congruent modeshapes. Vibration in the mode pairs can also be
expressed as two travelling waves, one with a positive velocity (forward) and the other
with a negative velocity (backward). For almost-periodic or mistuned periodic structures,
the double modes split into two single modes with distinct natural frequencies and unique
modeshapes and the travelling waves are not of equal amplitude any more.

For the data analysis, the concept of waves and their spatial interpretation has been
developed further. By decomposing the available sensor information of the response in
both temporal and spatial senses, one can obtain information about the wave content of
arbitrary vibration patterns. In this context, negative spatial frequencies can be interpreted
as backward travelling waves. This decomposition is also necessary if a coordinate
transformation is to be performed, as waves of different nodal diameters transform
differently.

1.4.1.5 Change of reference frame

If the response of awave pair of the rotor is transformed into a stationary reference frame,
their velocities are modulated by the speed of rotation times the number of nodal
diameters. Depending on the speed of rotation, the counter-rotating wave can change its
direction in the sationary reference frame from a backward-travelling wave at low
rotation speeds, via a stationary wave at the engine-order speed, to a forward-travelling
wave at rotation speeds higher than the engine-order speed, (Schmiechen, 1994). The
forces that excite the stationary wave at engine-order speed in resonance are time-
invariant forces spatially varying in the angular direction are caled engine-order
excitation. It is a common problem in most turbo-machinery, and is carefully avoided by
design or setting of the operating speed.

1.4.1.6 Travelling-wave-speed coincidence

Current design rules seek to avoid the engine-order speed, where time-invariant forces

drive rotors in resonance due to the frequency modulation of their natural frequencies.
The contact of a rotor vibrating in a specific wave pattern appears to the stator as a

rotating, time-varying engine-order excitation. The force pattern excites the stator
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predominantly in a rotating, spatial pattern similar to that in the rotor, (Schmiechen,
1995). For a certain critical speed, always higher than the engine-order speed, the
counter-rotating wave of the rotor travels at the same absolute speed as the forward-
travelling wave of the stator. At this speed both structures are driven in resonance by the
contact forces. Resonances can cause undesired, large vibration amplitudes and hence
these critical speeds should be avoided. The travelling-wave-speed coincidence implies
an extension to the standard design rule that tries to avoid the rotor resonance due to static
engine-order excitation, which is a special case of the travelling-wave-speed coincidence
when the stator is assumed to behave like arigid body.

By considering the dynamics of the structures in radial, tangential, and axial
directions, an energy transfer mechanism between the kinetic energy of the rotor due to
the rotation and vibration energy in the coupled rotor-stator system can be identified that
can lead to potentially dangerous instabilities. At the critica speeds, where both
structures have the same natural frequencies for particular waves, and assuming initial
contact, rotational energy of the rotor isfed into the stator structure so that the stator tends
to respond with ever increasing vibration amplitudes until failure occurs or non-linearities
change the system behaviour and lead to alimit-cycle response.

The finding of these extra critical conditions, beyond the standard engine-order
speeds, is generaly quite disturbing but it gains special importance from the fact that
future engine designs are moving towards symmetric designs for the casings. This will
result in stronger travelling wave components in the response with an increased potential
for the travelling-wave-speed instability. In this respect, the travelling wave speed
coincidence with its mechanism of energy transfer between rotational energy, which is
plentiful in rotating structures, and vibratory motion is becoming increasingly important.

1.4.1.7 Causeof initial contact

During normal operation of an aircraft engine, background excitation can be expected
from many sources to be always present. Most importantly is the residual unbalance from
the rotor. Reducing the unbalance to zero is technicaly impossible and the residual
unbalance will excite the stator through the bearings. Flight manoeuvres introduce forces
into the stator due to inertial forces and into the rotor where gyroscopic forces act. Static
pressure distributions in the working fluid will force the stator into a static deformation,
while the rotor will react with a standing wave. Bird strikes, where one or many objects
hit the nacelle or the fan may cause initial contact. The list is certainly not complete but
indicates that there will be always initial conditions present capable of starting the
travelling-wave-speed instability, if the other conditions are met.
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1.4.2 Numerical ssimulation

The difficulties of obtaining alow-order analytic description of this time-varying problem
with nonlinear discontinuous contact forces led to the development of a numerical model
to integrate the differential equations of motion.

The model is built from modal data of the structures computed beforehand. The
speed-dependent modal data are obtained from modal tests and are used to confirm the
results of FE computations.

The interface parameters are estimated as experimental data is not available. The
formulation of the contact forces required assumptions on the contact type and the local
material properties, (Lesser, 1995, Schweitzer and Fumigalli, 1996). Impact is a high-
frequency phenomenon and it will require very small time steps to capture the high-
frequency components in the numerical ssmulations. In order to keep the computational
cost as small as possible, the integration scheme used an adaptive time step.

The responses of the structures are approximated by truncated modal summations.
The output of the simulation consists of time histories of the principal coordinates which
describe the state of the rotor-stator system at any time instance, capturing its dynamics
completely. From the principal coordinates, responses at the physical coordinates can be
computed.

1.4.3 Experimental validation

Experiments are conducted on the test rig to validate the theoretical predictions. In order
to ssimplify the modelling and the experiments of the system, advantage is taken of the
fact that the physics are independent of the frame of reference. The change of reference
frame affects the description only. The system is modelled in the rotating frame of
reference: the rotor of the turbo-machine, represented by a bladed disc, is stationary in
this study, while the casing of the turbo-machine, modelled as a disc, rotates here. Thus,
instead of having to analyse a rotating bladed disc and a stationary disc, the tasks
balanced more evenly to the analysis of a stationary bladed disc and a rotating plain disc.
The change greatly simplified the test rig and measurement system. Measurements of the
blade dynamics could be conducted in the stationary reference frame; the measurements
of the continuous surface of the rotating disc are much less difficult than measurements
on rotating blades, (Heath, 1995). By simplifying the geometry of the blades compared
with the geometry of blades in turbo-machinery, the complexity of the vibration of the
blade tipsis reduced to two-dimensions.

Based on the ideas developed above, a test rig is designed and built, (Schmiechen,
1996). The main purpose of the rig is to demonstrate the travelling-wave-speed
instability. This broke down to a short list of major requirements that in turn necessitated
the fulfilment of further constraints. The first requirement is to support the stator at its
interface. For the disc geometry chosen, this meant that the stator is to be supported at its
centre. The second requirement is to support and to drive the rotor. In order to concentrate
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on the travelling-wave-speed instability, the support is designed rigidly so to exclude
shaft dynamics. The third requirement is to enable controlled contact to take place
between the individual structures and to take measurements of all relevant quantities.

The dynamics of rotor and stator dictated the design in many ways, and after initial
considerations, a vertical-axis configuration is chosen. This made the influence of gravity
symmetric on the discs, simplified access to the rig, and made it more convenient for
testing. Further, the decision to put the blades on the stator component, rather than on the
rotor had the advantage of reducing the power requirements for the motor as aero-
dynamic drag is minimised and of making measurements of the blades’ motion much
easier. The parts at the interface are designed so that they could be changed easily in order
to accommodate necessary changes in the design and wear and plastic deformation on the
parts in contact. The stator support provided accurate control in the translational degrees
of freedom and is massive enough to support the stator during heavy rubs.

The design analysis performed included stress and deflection calculations for
stationary and spinning discs and the estimation of the natural frequencies of a spinning
disc and a stationary bladed disc.

A data acquisition system is developed to capture data for analysis. The system with
its functions: data acquisition, waveform generation, signal conditioning and motor
control, is controlled from a PC. The analysis programs are developed in high-level
languages for flexibility.



Chapter 2: Dynamics of Structures

In the course of this study the dynamic behaviour of discs, stationary bladed discs and
rotating unbladed discs, is investigated. The underlying assumption is that the dynamics
of each structure is linear. Emphasis is put on the features particular to the dynamics of
rotationally periodic structures. Different approaches are presented that can be used to
obtain the desired modal data consisting of the natural frequencies and the modeshapes.

2.1 Definition of Linearity

A magjor assumption made in this chapter and the whole study is that of linearity of the
component structures. Linearity in the mathematical context requires that the following
equation holds for all functions:

{f(eduly +Bluky)) = of f({udy)} + B{f(fuly)} (2-1)

which states that the value of a function, { f}, which can be a scalar-, vector- or matrix-
valued function, applied to a sum of (scalar-, vector- or matrix-) arguments {u}, {u},,
scaled by arbitrary scalar factors o, 3, equals the sum of the scaled function values applied
to the individual arguments.

2.2 Modal Superposition
Based on the linear assumption, Equation (2-1), the dynamic response of a structure can
be expressed as sum of modal components or generalised coordinates, (Ewins, 1984):

fult. o)) = St e, 22)
r=1

In the case of continuous structures, the sum has an infinite number of terms, for discrete,
lumped-parameter structures the number is finite. Continuous structures can be approxi-
mated as discrete structures and are called, in this description, discretised structures. The
response and the generalised coordinates are functions of position, {z}, and time, ¢. The
next step is to express the generalised coordinates, {u},, as products of position-
dependent modeshapes, {1(x)},, and time-varying principal coordinatesp,.t):

w(t, iz, = W), p,(t) (2-3)

This Bernoulli-separation has the advantage that the properties of the structure, the
modeshapes, {1}, need to be computed for the structure only once.

Continuous structures have an infinite number of modes, V,,,,.., = o, but for the
subsequent analysis, a truncated modal summation is assumed to be sufficiently accurate
to compute the response, (Gasch and Knothe, 1989) and, in addition, the most efficient
way to express the dynamic behaviour of linear structuresin afinite frequency range:

16
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modcs

fult )} = S o0 & ST, 0,0, Nypoies 200 (2-4)

r=1 r=1

For continuous structures, the modeshapes, {{(z)},, are continuous functions over the
whole structure; for discrete structures and discretised structures, the modeshapes
describe the vibration at discrete points only, {{({x})},..

2.3 Eigenanalysis

The aim of structural dynamics analysis is to gain insight into the dynamic behaviour of
structures: their free vibration behaviour and their responses to time-varying forces. For
ease of analysis, Equation (2-3), the modeshapes, {{)({z})},, need to be determined.

The procedure to obtain the modal properties or eigenproperties is called modal
analysis or eigenanalysis. Because of the intricacies of the anaysis of continuous
structures, these are generally approximated by discretised or lumped-parameter models.
For this reason, the eigenanalysis will be presented for discretised and discrete structures,
the continuous case is presented in the Appendix for completeness.

2.3.1 Equationsof motion

At some stage, most dynamic analyses, independent of their final output (say, displace-
ments or stresses), arrive at a force balance in the form of the equations of motion. For
continuous systems, the force balances are partial differential equations in time and the
spatia coordinates; for discretised, linear, time-invariant, undamped systems they are sets
of ordinary differential equations with constant coefficients which can be presented
compactly in vector notation, dropping the arguments, (Meirovitch, 1986):

(Mt + (K} = {f,} (2-5)

where [M] is the mass matrix or, in more general terms, the inertia matrix, [K] is the
stiffness matrix, and {u} is the vector of the degrees of freedom (trandations and
rotations) that describe the configuration of the system:

{u(t)} =1x(t)} —{xy}

(at)y = {i(t)) (20)

with {z({)} denoting the instantaneous position, {x} the static translational and rotational
position, and dots denoting derivatives with respect to time. The right-hand side, {f,}, is
the vector of external dynamic forces acting upon the system. As the matrices [M] and [K]
and the force vector, { f,}, change with the coordinate basis, {«}, the resulting equations
of motion are referred to as EOM(u). Nonlinear systems can often be approximated
sufficiently accurately by Equation (2-5) for small displacements around an operating
point for which the mass and stiffness matrices are computed.
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If no kinematic constraints exist, one equation can be derived per degree of freedom.
As the consecutive analyses depend on the form of the equations, it is desirable to obtain
the equations in their simplest and most compact form.

2.3.2 Modal description of the system characteristics

For structures with linear dynamic behaviour, the coordinate basis in which the problem
is expressed influences the shape of the solution. In particular, there exists one set of
coordinates, the principal coordinates, for which the equations of motion become un-
coupled from each other, i.e., the describing matrices of the discretised problem are
diagonal, (Ewins, 1984, Gasch and Knothe, 1989). Using this particular set of coordinates
has the advantages of efficiency and clarity when further analysing the solution.

In most cases, the principal coordinates cannot be found directly, but are obtained via
the modal matrix: the modal matrix which contains the eigenvectors and is the solution of
the eigenproblem, which can be stated mathematically as:

FEigenproblem:

Given the homogeneous EOM(u):

M} + [K[{u} = {0}

Find the modal matriz, [V], such that (2-7)
(] M[w] = [m, ]
WM KIW] = [k, ]

where [m,] and [k,] are the diagonal matrices of the modal masses and modal stiffnesses,
respectively. Examples illustrating the eigensolution of continuous, discrete and
discretised systems are given in the Appendix. The orthogonality relation between the
eigenvectors can be written as a scalar equation:

Oy}, z{ 0 r¥s (2-8)
mr

r=s
The eigenvalue matrix, [\, can be computed from:
N =[w?] = [m, ][k, ] (2-9)

Each eigenvector and its associated eigenvalue describe a ‘natural’ vibration pattern or
mode of the structure. Each such mode can be excited independently from the others,
which follows from the orthogonality of the modes, Equation (2-8). This feature is used
commonly in modal analysis to extract the system parameters sequentially, (Ewins,
1984).

The eigenproblem in Equation (2-7) is stated for discretised continuous structures or
lumped parameter models with a finite number of coordinates and hence the degrees of
freedom. The modal information is only available at these coordinates and the eigen-
solution consists of an equal number eigenvalues and eigenvectors, presented in the
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diagonal eigenvalue matrix, [\, ], and the fully populated eigenvector or modal matrix, [W].
The vibration characteristics at other coordinates are estimated by interpolation from
nei ghbouring points.

Only the mode-‘shapes’ are defined, their magnitudes can be scaled arbitrabily. If
is a modal matrix, so also is

(W] =[0]a,] (2-10)

as

. (2-11)
(Wl ) KU, ) = [k, o, 2 =[]

which satisfies Equation (2-7) as it does not destroy the diagonality of the matrj¢es
and|k,], and

] = Iml 7 el = m, IR D = (N, (2-12)

showing the invariance of the eigenvalues with respect to scaling of the eigenvectors.
Following the ideas leading to Equation (2-3), a new set of coordipatean be
introduced:

{u} =[wl{p} (2-13)

Substitution of the new coordinates into Equation (2-5) and premultiplyingvBy
change$tOM(u) to EOM(p)

W M) b} + WKW p} = [W]T{f,}

2-14
[, 1Y + [k, ) = (1) 19

This similarity transformation does not change the eigenvalues of the problem,
(Maciejowski, 1989).EOM(p) are decoupled and, by definitiohp} represents the
principal coordinates. The set of principal coordinates are not unique for the modal matrix
not being unique:

{u} = [, Lo, I7Hp} = [W{p} (2-15)

The key feature of the principal coordinates is, that they allow the multi-degree-of-
freedom system to be described as many single-degree-of-freedom systems, which is
mathematically much easier.

2.3.3 Mass normalisation of the modeshapes
One particular set of scaling factors leading to the mass-normalised modal jhatiix,
Equation (2-15) is the Cholesky decompositi@hof the modal mass matrix:, :

[m,] =[QI'[Q] (2-16)



2 DYNAMICSOF STRUCTURES 20

(@] =[wIQI™" , [o,]=[Q] (2-17)

In the present case of a diagonal mass matrix, the elements of the Cholesky decompo-

sition are simply ¢, = mY?. [®] is called the mass-normalised modal matrix as it scales

the modal masses to unity. The following orthogonality relations hold (from Equations
(2-7) and (2-17)):

(2-18)

where [I] is the identity matrix. This mass normalisation simplifies the equations of

motion to:

B+ NI =10N ) =1, o ) + Wil = (/) (2-19)
and:

{p} =[Qlip} (2-20)

which can be transformed into the generalised coordinates by Equation (2-13).

2.3.4 Effect of damping
Velocity-proportional damping is reflected in the equations of motion of a linear time-
invariant discretised system by the viscous damping matrix [C]:

[MJ{i} + [CHa} + [Kl{u} = {f,} (2-21)

Modal decoupling as described in the previous sections can still be applied and can ill
diagonalise the mass and stiffness matrices, but will do so only under certain assumptions
on the structure of the damping matrix. If the damping matrix can be represented as a
linear combination of the mass and stiffness matrices then it will, by application of
Equation (2-7) and the overall assumption of linearity, also be diagonalised by the change
to the undamped system'’s principal coordinates:

[C] = a[M] + K]

2-22
o] = [®7ICT®] = off] 1 8. ] (-22)

wherea and( are arbitrary, positive, scalar values. More generally, the damping matrix
can be of the form:

[C] = ofM] + BK] + [®] [y, @] !

2-23
[e,] = [@]"[Cll@] = oft] + BN, ]+ [,] &2

wherely,] is a diagonal matrix of arbitrary scalars, and still bring about the same result.
The assumption gdroportional damping has been used successfully in many engineering
applications and hence can be used as good working assumption. Under certain circum-
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stances though, especialy in structures where the damping is very localised, the validity
of this assumption breaks down, (Ewins, 1984), as it causes non-proportional damping.

For the genera case of (3 > 0, the damping increases with the eigenvalue. So modes
with high natural frequencies are more highly damped than modes with low natural
frequencies. This can be modified by the choice of [+, ].

Another advantage of proportional damping is that it does not affect the modeshapes,
(Ewins, 1984). The modeshapes can till be computed from the eigenproblem of the
undamped model, Equation (2-7), which reduces the size of the eigenproblem by a factor
of two compared with the general formulation of the eigenproblem for a damped system,
Equation (2-24):

Eigenproblem (damped):

Given the homogeneous EOM(u):

M} + [CHab + [K]{u} = {0}

or expanded to state — space form:

M 0 |[n 0 —M||u B 0 294
o Mllal [k ¢ laf "o (2-24)
[Alty} + [Bliy} = {0}

Find the modal matrix, [\II], such that

[T [Allw] = [a,]
[l [B]w] = b,]

r

The present analysis is limited to proportional damping for the above mentioned
advantage of decoupling the damped equations of motion. The equations of motion for
the proportionally-damped systemsin the principal coordinates are:

By +20¢, Jlw, Jp) + [w2]{p) = {0} (2-25)

where[(,] is the damping ratio:
[, )= =[m, ] Ve, Jlw, ]! (2-26)

As aresult of the assumption of proportional damping, Equation (2-23), the equations of
motion of the damped system, Equation (2-25), are decoupled by the undamped system’s
principal coordinates.

2.3.5 Forced response behaviour

Up to now, only the free vibration of structures has been studied. For the subsequent
analysis, the response of structures with linear dynamics to external forces will be
investigated.
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2.3.5.1 Equation of motion
The forced response of areal (or complex) mode is computed from the non-homogeneous
force balance, Equation (2-25) extended to the external forces.

)+ 2, w, o} + (Wi ip) = {f,) (2-27)

where w% =\, and { fp} is the modal projection of the external forces, for the discrete
and discretised continuous structure given by

=10/, (2-28)

where [®] is the mass-normalised modal matrix and {f,} is the force in the physical
coordinates w.

2.3.5.2 Spectral distribution: frequency response
Studying the response to a harmonic force of frequency w, the assumption of a harmonic
response at the same frequency leads to the forced response equation:

) = =0 +12¢, Jw, Jo + (W27} = [, (W), ) (2-29)

where the hat denotes the generally complex amplitude and [I] is the r-by-r unit matrix.
[Hp(w)] is the frequency-response-function (FRF) matrix for the coordinates p. Only for
the principal coordinates it is a diagonal matrix: for the physical coordinates, {u}=[®]{p}
and the forces related by Equation (2-28), the FRF matrix is given by

[H,(w)] =[], (w)[@]* (2-30)

p

which is not diagonal any more, (Ewins, 1984). For a single mode r, the vector-equation,
Equation (2-29), reduces to the familiar scalar equation, for example Timoshenko,
(1986):

N 1

pr(w) = - UJ2 N 12C wow -+ U.J2 pr,r(w) = Hpr(w)fp,r(w) (2'31)

where the argument shall indicate that the response amplitude is a function of the
excitation frequency. For a single mode and a small value of damping, (,<1, the scalar
frequency response function has the following shape:
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Figure 2-1: Normalised frequency response function of a mode

The frequency ratio of the abscissa in Figure 2-1 is the ratio of excitation frequency w to
natural frequency w,: at low values, the magnification factor is almost constant 0 dB = 1
and rises to a peak at the natural frequency w,.. At this resonance peak, the phase between
excitation and response equals 90°. The higher the value of damping, the lower the peak
and the wider the frequency smear-out of the peak and the phase change-over. For a
frequency ratio larger than 1, the magnification asymptotically decays ith or
-20dB/decade.

From Equation (2-31) and Figure 2-1 one can conclude that the magnification factor
drops rapidly away from resonance.

2.3.5.3 Spatial distribution

The presence of a physical force does not necessarily mean that it will excite a mode. A
second requirement is a similar spatial distribution of the force and the modeshape. The
spatial information will determine to what extent a force will excite a particular mode,
which follows from Equation (2-28). Assume the following modal matrix, as it may be
the result of an analysis of a pinned-pinned beam, and two representative forcing
functions: a spatially constant and a spatially-varying force pattern:

[0 0 0 1 0
071 1 071 1 1
@®l=| 1 0 —1|,{f};=<1pcoswt, {f =1+ O0pcoswt (2-32)
071 —1 071 1 —1
0 0 0| 1 0

The productsf, }; = [®]"{f,};, Equation (2-28) can be computed to:
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242 0
{fp }1 = 0 |cos U)t, {fp }2 =12 |coswt (2_33)
042 0

Every zero entry in the force vector {f,} implies that the corresponding mode is not
affected by the particular force. The smaller the values, the less efficient is the energy
transfer into the structure. The force must be spatially similar to a mode to excite it, even
at resonance. The second force pattern is proportional to the second mode and, by virtue
of orthogonality of the modes, the force does excite this mode only.

2.4 Finite Element Approach

As mentioned before, the analysis of the dynamics of continuous structures leads to
partial differential equations. Much insight can be gained from a closed form, analytical
eigensolution, but for structures other than the very simplest, solving for the eigen-
properties analytically soon becomes an intractable task. In the light of the need to
analyse a more complex structure, such as a bladed disc, the method of finite elements
(FE) is pursued. This more numerical approach provides a solution for an approximated,
discretised structure, and the difficulty changes from obtaining a solution at al to
assessing the quality of the solution obtained.

2.4.1 Introduction

The advantage of the FE-based analysisis that the solution method is well established for
structures of arbitrary geometry and thus no advanced anaytical analysis is necessary:
after specification of the geometry and the material properties, the algorithm will produce
an eigensolution consisting of the complete moda properties. natural frequencies,
modeshapes and modal masses.

The FE analysis consists of the following steps. discretisation of the structure by
approximating it using the available building blocks (element types); assembly of the
element mass and stiffness matrices into the global system matrices; introduction of the
connections between the elements and the boundary conditions; and solution of the global
eigenproblem.

The data have to be viewed critically as their basis is the discretised structure, not the
continuous structure. The discretisation of the structure and the necessary approximation
of the boundary conditions will have a generally detrimental effect on the accuracy of the
solution.

The following paragraphs are not intended to explain the method (Bathe, 1983, Gasch
and Knothe, 1989, Zienkiewicz, 1982) but only to give a short introduction and then to
identify in detail difficulties encountered in the analysis. An example of the application of
the method of finite elements to a simple beam structure is given in the Appendix.
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2.4.2 Underlyingidea

The idea behind the finite element method is to use small building blocks, the finite
elements, to describe structures of any shape. The dynamics of the elements, expressed in
the element mass and stiffness matrices, are computed prior to the analysis of the
structure.

The element matrices are derived for certain element types. beam, plate, shell, 3D-
brick, and certain element shapes: triangular plate, quadrilateral shell, etc. The geometric
dimensions and the material properties are |eft variable in the element matrices. This way,
versatile building blocks are available that can be combined almost arbitrarily, as long as
certain conditions are fulfilled, (Bathe, 1983, Zienkiewicz, 1982).

2.4.3 Spatial discretisation of the structure

The finite elements are defined geometrically by points and their connections. The set of
points is commonly referred to as a mesh. This mesh must be chosen with as much
physical insight as available at any time. Refinements of the mesh are common after
weaknesses of an initial mesh are identified.

2.4.3.1 Guidelines

As a genera rule, meshes with compact elements and smooth transitions between
elements are desired as they promise to produce more accurate results compared to rough,
erratic meshes of similar detail. A second rule is that in order to capture accurately rapid
changes of the displacement, the element sizes in these regions must be small; in areas
with little or no change, the element sizes can be larger without losing accuracy of the
overall solution.

A more anaytical guideline to selecting the right mesh detail is the characteristic
lengths of the desired modes. The characteristic lengths or wavelengths are related to
Shannon’s sampling theorem, originally devised for temporal data sampling but valid for
all types of sampled data. The theorem states the dependency between the frequency
content of a signal and the minimum sampling frequency:

Shannon’s Sampling Theorem:

In order to extract the frequency components of a sampled, time- (or space-) discrete
signal correctly, the sampling frequency must be at least twice the frequency of the
highest component in the unsampled signal.

In the spatial domain, the theorem implies that two nodes must be spaced less than half
the characteristic length of a mode apart. For example, for modes along the perimeter of a
disc which are described by harmonic functions, the number of nodes must be at least
twice the number of nodal diameters or half a period of the cosine function. A factor of
two is strictly sufficient, but will still not lead to accurate modeshapes in the eigen-
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solution. A factor of 3 to 5 is often advisable. For the modes in the radial direction of a
disc the characteristic length is not so easily defined, but the distance between nodal
circles can be used as an indicator.

Another guideline is concerned with the shape of the resulting e ements: distortion of
the elements, manifesting itself by very different dimensions in different directions or
very acute angles, should be kept as small as possible: a quadrangular element must not
collapse to atriangle; if atriangular shape is required, triangular elements should be used
instead.

2.4.3.2 Example: Stator mesh
As an example of a mesh, that developed for the stator is presented. The highest number
of nodal diameters for a bladed disc with 20 blades is 20/2=10, and the characteristic
length guideline leads to a mesh of 40 nodes in the tangential direction. In order to
capture up to one nodal circle and not to distort the elements too much, 8 nodes in the
radial direction are chosen. To describe the blade dynamics accurately up to and including
the third flapping mode, 9 nodes in the axial direction are chosen by the characteristic
length guideline. Two elements in the direction of the width of the blades, the global
radia direction, lead to areasonable distortion of the blade elements.

The resulting mesh has 600 elements giving approximately 4500 degrees of freedom.
Figure 2-2 shows the discretised stator structure in the deformed state of a computed low-
frequency mode.

Figure 2-2: Mesh and 2ND mode
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Shades of grey indicate the axial deflection of the disc in Figure 2-2 ranging from white
to dark grey for the smallest to largest deflections. Thus a single blade is painted in
uniform colour because the axia deflection of the disc is almost constant over the blade
attachment area. Finding a scheme which can simultaneously colour the disc and blade
deflection is difficult and so a compromise is chosen to use colour to emphasise the disc
pattern and rely on the spatial deflection to identify the blade shapes.

2.4.4 General featuresof the FE solution
It isageneral feature of the finite element analysis that the modes with higher spatial and
temporal frequencies are poorly predicted, both in frequency and modeshape. Refining
the mesh shifts the problem to higher frequencies but inevitably increases the problem
size. This is demonstrated in the Appendix. Therefore, the option for solving only for
modes with low natural frequencies for a mesh of any detail is an economic imperative.
Another general observation is that the eigenvalues are aways over-estimated. Thisis
due to the fact that the computed modeshapes are only approximations to the true
modeshapes and thus the Rayleigh-Ritz quotient over-estimates the eigenvalue, (Bathe,
1983).

2.4.5 Solution methods

The equations of motion of the discretised bladed-disc structure of the stator are solved
for the modal properties, eigenvalues and eigenvectors or modeshapes. The eigenproblem
is computationally very demanding and scales with the cube of the problem size or
number of degrees of freedom. The following paragraphs detail other approaches and
methods to obtain a solution. These steps were initially investigated to understand how
they function but are only partially used to obtain the eigensolution as it was anticipated
that the full solution would not introduce any further approximation or modelling
constraint and thus could be relied on in subsequent analysis. In particular, the coupling
approach is discarded after initial trials.

2.4.5.1 Rea modeshapes
Real eigenvectors are expected for structures with homogeneous equations of motion of
the form of Equation (2-5):

[M{ii} + [K{u} = {0} (2-34)

and the eigensolver should return real modal matrices. Due to numerical inaccuracies

some solvers return ‘complex’ modal matrices, with whole eigenvectors rotated by an
arbitrary angle@,. The modal matrix can be forced to be a matrix with real entries only
by multiplying each modeshape byiﬁr , Equation (2-10):

:Il:eil B’A ] = [\Ilcompleac :II:OLT’]

(w

real ] = [\Ilcompl ex

(2-35)
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Specialised solvers will do this automatically.

2.4.5.2 Preservation of symmetry

Some eigensolvers expect the mass matrix to be the unit matrix. Multiplication of the
eigenproblem with the inverse of the mass matrix should be avoided in this case as it
results generally in a non-symmetric system matrix whose eigensolution can be expected
to be less accurate than the solution of a symmetric matrix. An approach that retains the
symmetry of the stiffness matrix, uses the Cholesky-decomposition of the mass matrix,
Equation (2-16), (Bathe, 1983). Changing the coordinates to:

{u} = [Q My} (2-36)
where [Q] is the Cholesky-decomposition of the mass matrix:

M] = [QI"[Q] (2-37)
results in the equations of motion in the new coordinates

[QI7 T IMIIQI 37} + [QI T IKIQI y) = {0 (2-38)
{it + K, [y} = {0}

where the system matrix[K, | = [QI” " [K]Q] ' is symmetric. After this transformation, a
standard eigensolver can be applied to solve the problem:

(NI + K, ), = {0 (2-39)

2.4.5.3 Treatment of rigid-body modes in the FE solution

Rigid-body modes are inelastic modes with natural frequencies of 0 Hz. They are caused
by an underdetermined configuration with too few constraints. The lack of constraints
makes the system matrix rank-deficient. This can cause problems for the numerical
algorithm and can affect the accuracy of all modes: rigid-body and elastic. The proper
treatment of rigid-body modes will help to improve the quality of the elastic modes as it
conditions the problem. The approach is to reduce the system matrices to the elastic
system by means of the range space of the stiffness matrix prior to the eigensolution.
Starting from the homogeneous eguations of motion in {«}, EOM(u), Equation (2-34):

M} + [K]{u} = {0}

the range space of the stiffness matrix has to be found. The range space [Q] is the
orthogonal basis of the space spanned by the columns of [K]. The number of columns of
the range space is equal to the rank of [K]. Any range space can be normalised so that the
following relation holds:

[Q]'[Q] =[] (2-40)

A new set of coordinatesis introduced:



2 DYNAMICSOF STRUCTURES 29

fu} = [Qliy} (2-41)
thereby transforming EOM(u) into EOM(y)

QT IMIIQNH} + [QITIKIQI{y} = {0}

(2-42)
M )47} + (K, iy} = (0)

The eigenproblem is solved for the elastic modes, non-zero natura frequencies and
modeshapes [®,,] of the structure. The transformations of the previous paragraphs can be
applied subsequently. The modeshapes obtained are back-transformed into the w-coor-
dinates by Equation (2-41).

The rigid-body modes can be found by realising that they span the null-space of the
stiffness matrix:

[®,,] = nullspace(K]) (2-43)

where the null space is the complement of the range space in the N-dimensional space
spanned by the coordinates and the following relation holds for any matrix:

rank(rangespace(K)) + rank(nullspace(K]) = N (2-44)

where N isthe size of the matrix.
Thus the complete set of modeshapes is obtained:

(@] =[®,, O] (2-45)

If the stiffness matrix, [K], is not known exactly, say, due to numerical inaccuracies, a
singular value approach should be used to obtain the range space. It should also be
mentioned that finding the range space of a matrix is a very expensive operation on
computer memory, (Golub and van Loan, 1983, IMSL, 1980).

2.4.5.4 Subspace iteration

As mentioned above, the inaccuracies of the higher modes of an FE solution and the cost
of obtaining a modeshape make it imperative to be able to solve for the modes with lower
gpatial and temporal eigenvalues only. Iterative methods satisfy this requirement and
solve the eigenproblem for the lower modes accurately, (Zienkiewicz, 1982). A subspace
solver will only solve for a user-specified number of lower modes. This feature is the
single most important one in saving computation time. A full solution of a problem of
even a few thousand degrees of freedom would require great computational resources,
and still, the higher modes would be estimated inaccurately due to the discretisation of the
structure.

2.4.5.5 Fourier expansion
If rotationally-periodic or axisymmetric structures are analysed, the problem can be
reduced by one dimension by taking advantage of the fact that the modeshapes must be
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periodic or even harmonic functions in the tangentia direction, (Thomas, 1979,
Wildheim, 1979, 1981). For rotationally periodic structures only one sector need to be
computed; for axisymmetric structures, one cross-section, (Méziere, 1993).

Harmonic boundary conditions are introduced such that the displacement and slope
remain continuous in the tangential direction. A major disadvantage for the present
analysis is that deviations from the symmetry (or mistuning) cannot be modelled using
this techniqgue. Commercial FE programs generally offer axisymmetric analysis. In order
to compute a symmetric structure with asymmetric forcing by this method, the forcing
must be Fourier-decomposed, which may require many terms for an accurate represen-
tation, (Bathe, 1983).

2.4.5.6 Sub-structure coupling

The coupling approach comes quite naturally for a bladed disc as it splits clearly into sub-
structures disc and blades, Gasch and Knothe (1989). The separate sub-structures can be
modelled easily, either analytically or by finite elements. For a large number of blades the
coupling approach carries a big computational advantage.

If only the low-frequency dynamics of the bladed disc are of interest, both structures
can be approximated by a few low-frequency modes. For the blades, these are the first
few flap modes, bending modes around the axis with the smallest moment of inertia, and
for the disc the low-frequency modes are those with a small number of nodal diameters
and few, maybe zero or one, nodal circles.

Hurty (1960) proposed and Gasch and Knothe (1989) presented the standard
component mode synthesis algorithm. It is modified in the following paragraphs to make
it more amenable for use with the structure at hand and to avoid some of the algorithmic
difficulties encountered in the approach as presented by the above authors. The steps of
the proposed algorithm are:

a) to obtain the modal properties of the separate structures by solving the

individual eigenvalue problem&1;]{ii;} + [K, {u,} = {0} = [®,],[\,;],
(the blade matrices can differ from blade to blade to model mistuning),

b) to retain a small number of low-frequency modes dly:=> [®}],

(ideally, the eigensolver obtains the modéjtonly),

c) to reduce the model to the degrees of freedom necelssdey [, 4],

d) to couple the reduced systems, and

e) to compute the eigenproblem of the assembly.

Compared with the order of the direct solution the orders of the eigenproblems to be
solved in a) and e) are much smaller. Considering that the cost of the eigensolution rises
with N3 (Press, Flannery, Teukolsky and Vetterling, 1989), the algorithm still is more
efficient computationally, even thou@h,;,,..+2) eigenproblems must be solved, where
Niiades 1S the number of blades.
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The proposed algorithm couples the sub-structures in the spatial domain, as the
constraints are usually more easily expressed in the physical coordinates. The mode-
truncated modal data are transformed back into the spatial domain and reduced to a mesh
of relevant nodes — nodes where the structures are coupled, or nodes where forces are
introduced or responses are to be computed.
For each sub-structure a different number of modes can be retained, in general, but for a
bladed disc, the same number of modes must be retained for each blade, otherwise the
model cannot be expected to be consistent in the frequency band. The reduced sub-
structure matrices are placed in the matrix of the assembled structure:

Maise] {Waise)
[M'blade ]1 d_2 {ublade }1
: - dr’ :
L | [ blade ]Nblml(fs _ . {Ublade }Nblmi(,s (2-46)
Kaise]: {aise) 0
n [K'bl(zde ]1 {ublade }1 _ 0
0
L [K'blade ]N[)I{Id(js a {Ubla'de }Nblmi(,s 0
(M} + [Kj{u} = {0} (2-47)

Vectors {u}; contain the retained degrees of freedom of the disc and the blades. The
prime denotes the reduced matrices of the system matrices obtained from an FE
computation:

AR AT (248

Up to now, the equations of the sub-structures are still uncoupled as can be deduced from
the block-diagonal form of the matrices. In order to couple the sub-structures, the
coupling conditions must be established. Usually, they relate displacements and/or slopes
of points on two structures, like the blade root and the attachment location on the disc.
The resulting equations form the coupling matrix [B] for which holds:

[Bl{u} =0 (2-49)

Each row of [B] describes one coupling condition. For rigid coupling conditions, the non-
zero entries of [B] are +1. The eigenproblem, Equation (2-7), has to be solved with the
vector constraint of Equation (2-49). The solution to this constrained eigenproblem
involves a coordinate transformation using the null space of the coupling matrix, [B].
Equation (2-49) is the standard null space problem of a rectangular matrix. If a matrix,
[Q], can be found for which the product with the coupling matrix, [B], is identically zero,
then any vector fulfils Equation (2-49).
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BlQl=[0] = [BIQly}=1{0}, {y} arbitrary (2-50)

Together with Equation (2-49), the relation between the two sets of coordinates follows:
{u} = [QHy} (2-51)

Introducing the new coordinates, and noting that the null space is a constant matrix,
changes EOM(u) to EOM(y):

QI IMIIQI + [QITKIQHy = {0}

(2-52)
M, 13 + (K, iy} = {0}

The coupling matrix, [B], is usually not square as there generally exist fewer coupling
equations than degrees of freedom and so the system order is reduced to the number of
unconstrained degrees of freedom. The resulting matrices do not generally possess
diagonal form any more but are fully populated, expressing the coupling between the
degrees of freedom. An eigensolver is then applied to solve the matrix equation for the
modal data.

2.4.6 Program selection
Although commercial FE packages are available and tested, the MATLAB-based code
MATFEM (Link, 1994) is used in the analysis of the rotor and the stator. Among the
advantages are the full accessto al variables, in particular mass and stiffness matrices of
each element and the whol e structure, and to the algorithms. This made it possible to add
a further eigensolver that handles repeated natural frequencies, as they occur in the
analysis of axisymmetric structures correctly, and to modify the post-processor to display
output in the cylindrical coordinate system.

This concludes the description of some of the details particular to the eigensolution of
rotationally-periodic and axisymmetric structures.

2.5 Vibration Properties of Bladed Discs

The goal of this section is to provide an understanding of the dynamics of a bladed disc
such as the stator structure used in this investigation. The dynamics of the coupled system
will be governed by the dynamics of its components: the disc and the blades. Throughout
this thesis only the bending vibrations are considered.

2.5.1 Coupling approach

A coupling approach attempts to describe the dynamics of a complex structure in terms of
the dynamics of simpler sub-structures, the solution to which is known or can be obtained
from recursively sub-structuring, (Cottney and Ewins, 1974, Ewins, 1973). This approach
has the advantage that known solutions for simple shapes can be used as building blocks
to arrive at the solution for a complex structure, thus avoiding going back to first
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principles, (Loewy and Khader, 1984). The stator in this analysis breaks naturally into the
disc and the blades.

The approach considers each sub-structure on its own and includes the remaining sub-
structures in the description as frequency-dependent boundary conditions:. for the blades,
the disc provides the boundary condition at one end.

This substructuring can be repeated to any desired level and often allows the analyst
to maintain the insight gained from the analysis of the dynamics of individual structures.
The next paragraphs demonstrate this approach for the stator.

2.5.2 Discvibrations
The equation of motion of a circular disc of uniform thickness can be derived from a
force or energy balance and solved by different methods.

2.5.2.1 Thin plates

The investigated structures of this thesis are modelled as ‘thin plates’. For these, the
Kirchhoff theory is applicable which describes the bending vibration and arrives at
solutions by neglecting the effects of the rotary inertia and — more importantly — the shear
deformation.

2.5.2.2 Equation of motion

The equation of motion and the boundary conditions for the bending vibration of an
axisymmetric disc can be obtained explicitly. It is a partial differential equation of fourth
order in space and second order in time. The derivation is quite complex but can be found
in many textbooks on dynamics of continua, (Géradin and Rixen, 1994, Meirovitch,
1986). According to Szabo (1953), the equation of motion of a thin disc can be written as:

(A" = BN (@)p(t) = 0 (2-53)

where is an unknown, non-zero, modeshape to be determined in the analysissand

the time-dependent component. Only the shape is determined as arbitrary scaling can be
introduced into Equation (2-53). The general differential Laplace-operator is defined in
cylindrical coordinatesr,6, z) by

¥ 10 10
N L C 2-54
(87“2 ror 2 892J ( )

For axisymmetric modes, the derivatives with respect to the tangential coordinate vanish.
3 is the spatial eigenvalue:

4 2 ph
=W — 2-55
3 D (2-55)

which has to be determined in the analysis, and depends on the radii, the thickness and
the Poisson ratio of the disc, the boundary conditions and the modeshape. The symbols



2 DYNAMICSOF STRUCTURES 34

denote the unknown natural frequency,+ w, the density, p, the thickness of the disc, h,
and the stiffness of the disc, D, given in terms of the modulus of elasticity, F, and the
Poisson’s ratio:

D = E—h3 (2-56)
12(1 — %)
The spatial eigenvalue scales directly with the mass measuyrand inversely with the
stiffness of the disc. This type of scaling holds for other structures, too, such as the beam
described later in this chapter.

Applying a Bernoulli separation in the spatial variables of the modeshape,
1= R(r)©(0), reduces the problem to two independent problems of finding the
amplitude functions in radial and tangential directions separately. The tangential
amplitude function is found by solving:

~—_0+n’0= (2-57)

For n>0 the solution is a harmonic functid®,= a; cosnb + aysinnb, giving a
modeshape withn nodal diameters. As the two coefficients, are arbitrary, two
solutions exist, labelled theosine and sine mode respectively. These mode pairs are
commonly calleddouble modes or twin modes. This is a feature common to all axi-
symmetric structures: rotating a modeshape Ry, around the axis of symmetry results
in that modeshape to coincide with its twin modeshapenFEa®, the equation collapses
and only one solution exist3:= qa, .

To solve for the radial amplitude function, Equation (2-53) can be rewritten as:

(& + B + (1B ) =0 or (& +@{B)*) A + ) =0 (2-58)

reducing the order of the problem by a factor of two. The resulting equations are
equations of the Bessel-type, (Beitz and Kittner, 1985, Rothe, 1952):
2 2
& pildp " R=0

dr? r dr r
o o
dr® rdr r?

with solutions of the form:
Ry = b J,(Br) + b3Y,,(Br)
Ry = b1, (Br) + by K, (Br)

wherel,,.Y,,.J,,, K, are Bessel functions of order of first and second kind and the
modified functions of first and second kind, respectively.

The solution simplifies for circular discs, where for a finite solution, the coefficients
bz, b, must be set equal to zero, leading to:

(2-60)
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R(r) = by J,,(Br) + &1, (Br) (2-61)

The zeros of the radial amplitude function are the nodal circles, concentric circles where
the displacement from this mode is zero. The coefficients, b, and b,, are determined from
two further boundary conditions, Table 2-1.

Deflection =0
Slope N =0

or

a% 1op 1 6%) (The in-plane twisting moment
Shear force e [& + Tor 2 ot =0 m,o Must also vanish.)
2 2

Moment 812p+ l@ntia;b =0

or ror  r* o

Table 2-1: Boundary conditions for an annular disc

The conditions for the shear-force and moment are intricate functions of » due to the two-
dimensional stress field. Two boundary conditions each must be specified at the inner and
outer boundary. The boundary conditions at the centre, finite displacement and slope, are
used already by consideration of the values of the Bessel-functions at zero argument and
resulting in setting b5 and b, to zero.

Using the boundary conditions for zero force and moment at the outer diameter, two
equations for the two unknowns are obtained. These have non-trivial solutions only for
zero determinant, which leads to the following characteristic polynomial, C'P, presented
compactly in vector notation to show the various factors clearly.

(Br,)" + 267, )*(n —n)(l—v)+<n4—n2><1—v>2j

CP =1, (Jn Jn+1)( — 27,1 —v)

—A4@Br,)(n” —n?)(1 - v)
+ In (Jn <]11—|-1)((B ) _ 2(BT ) (TL - n)(l U) + (TL4 . n2)(l . U)Q\J

The common argument of the Bessel-functions, 3, , is dropped for brevity. The characte-

ristic polynomial is a function of the number of nodal diameter n, Poisson’s ratioy, the
boundary conditions, and, of course, the spatial eigenvali&lving the characteristic
polynomial determine8 and the coefficientd, andb, to within a scaling constant. A
solution can be found graphically or numerically, as shown in Figure 2-3 for the two-
nodal-diameter mode,=2.

(2-62)
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Figure 2-3: Zeros of the characteristic polynomial

The lower zero-crossing corresponds to the fundamental mode with zero nodal circles and
the second crossing corresponds to the mode with one nodal circle, (Biezeno and
Grammel, 1953). The separation between the higher spatial eigenvalues of the modes
with more nodal circles approaches, (Blevins, 1984).

With the spatial eigenvalue, the radia amplitude function is determined and it only
remains to determine the natural frequency to specify the mode completely.

2.5.2.3 Natural frequencies

The natural frequency of each mode is obtained from Equation (2-55):
D

4 —

2
w” =
Bph

(2-63)
The natural frequencies for the two modes in a mode pair are identical as they share the
same spatial eigenvalue. For the disc used in the experiments in Chapter 7 with the
following geometry:

r; = 20mm clamped
7, = 250 mm free (2-64)
h= 1mm

the natural frequencies are computed and plotted in ascending magnitude showing the
single and double modes, Figure 2-4.
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Figure 2-4: Natural frequencies versus mode number for the plain disc

The groups with more than two modes, like modes 8-10, have close natural frequencies,
but there are never more than two modes with identical natural frequencies. Using the
spatial features of the modeshapes in the natural-frequency plot, much more information
can be conveyed to the reader and the groups with more than two modes are separated
logically, Figure 2-5, (Ewins, 1980).
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Figure 2-5: Natural frequencies versus nodal diameters, plain disc
In Figure 2-5, crossed circles indicate double modes while empty circles denote single
modes. The natural frequencies group into families of modes, dashed lines in Figure 2-5,
in which all modes have the same numbenadal circles, concentric circles where the
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modeshapes are zero. The families correspond to the zero-crossings of the characteristic
polynomial, Equation (2-62) and Figure 2-3: the ONC family to the first crossing, the INC
family to the second crossing etc. Except for the zero-nodal-diameter modes, the modes
are double modes for the above-mentioned reasons, stemming from the axisymmetry of
the structure. The natural frequency rises with the number of nodal diameters, as the disc
becomes increasingly stiff in the tangential direction.

The group of three modes in Figure 2-4 can now be resolved as the OND single mode
of the INC family and the 4ND double mode of the ONC family, etc.

2.5.2.4 Influence of the blades

The blades will influence the disc dynamics depending of the relation of disc frequency to
cantilever blade frequency. Away from the natural frequencies of the blade, the blades
can be approximated as rigid bodies, (Loewy and Khader, 1984), adding only mass to the
disc and so one can write symbolically

w%‘ =k, /(mr + mblades,r) (2-65)

where k, and m, are the modal stiffness and modal mass of the disc andn,,4, - is the
participating mass of al blades for mode r, in effect a modal mass of the blades. These
modes are called disc modes because the elastic deformations are mainly in the disc.
Computation of the effective blade masses,my,,4.,,, from Equation (2-65) is not
possible as the addition of discrete masses changes the modeshapes. In general, a nodal
circle will lie at or close to the attachment circle of the blades due to the inertia of the
blades.

Close to the natural frequencies of the blades, their dynamics cannot be neglected any
more. The natural frequencies of the bladed disc will asymptotically approach the
cantilever frequency of the blades. In effect, the blades will act as tuned-mass absorbers,
where the disc deflections become small compared with those of the blades. These modes
are called blade modes.

For al these difficulties, the natural frequencies of the bladed disc are computed
numerically and are discussed in Paragraph 2.5.4 below.

2.5.2.5 Modeshape notation

As has been shown above, the modeshapes of discs can be characterised by their numbers
of nodal diameters and nodal circles. Conventionally, the modes are referred to by a pair
of indices: (2,1) or 2ND1 indicate the mode with 2 nodal diameters and 1 nodal circle.
Quite often, if it is clear from the context or when only one family of modes is
considered, the index specifying number of the nodal circles is dropped, so that 2ND
specifies the two nodal diameter mode of the current family.
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To distinguish the modes of a mode pair, indices a and b or ¢ and s are commonly
used, (Irretier, 1994). This classification alows the designer to sort the modes
intelligently by modeshape rather than just by magnitude.

2.5.3 Bladevibrations
The blades are analysed in a similar way to the discs in the previous paragraphs.

2.5.3.1 Thin beams

It is assumed that the blades can be described accurately by Euler-Bernoulli beams. The
assumption behind these is that the effects of rotary inertia and shear deformation on the
bending dynamics can be neglected. For many slender structures this has been found to be
avalid assumption, (Timoshenko, 1986).

2.5.3.2 Equation of motion

From a force and moment balance of a beam element of constant geometric and material
properties the partial differential equation governing the bending dynamics of an Euler-
beam can be derived, (Gasch and Knothe, 1989)

ET

tu(z,t) oA *u(x,1)

1 P R 0 (2-66)

ot

subject to four spatial boundary conditions and two temporal ones. Constants F, I, A, p
are the beam’s modulus of elasticity, its moment of inertia perpendicular to the coordinate
w, itS cross-section area, and its density, respectively. Using a Bernoulli-separation:

u(x,t) = P()p(t) (2-67)

this equation separates into two ordinary differential equations:

d*

d—ﬂ - BAITP =0

d;” P (2-68)
d—t§+w2p:0, B4:w2pE_I

with spatial eigenvalugj, and the natural frequenciesy. As for the disc, the spatial
eigenvalues scale directly with the mass measguteand inversely with the stiffness
measureFI. The general solution for the spatial fourth-order differential equation can be
written as

P(z) = A cosh(Bx) + A, cos(Bzx) + As sinh(Bz) + A, sin(Bx) (2-69)

where the four coefficients);, are determined by four spatial boundary conditions. For a
beam clamped rigidly at one end and force- and moment-free at the other, these are the
cantilever boundary conditions, given by:
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2
Pz, ) =0 ; %ﬂ)(xf) =0 270
an -7
d3
(%l{)(a:c) _0 g Wley) =0

These four equations can be solved for non-trivial coefficients only if the determinant of
the coefficient matrix is zero, which leads to the characteristic polynomial, C'P, whichisa
transcendental equation in the spatial eigenvalue with an infinite number of solutions:

1 1 0 0
o 0 1 1
CP = o (1 + cosh Pl cos () (2-71)
C —c S -—s
S s C —c¢

¢ and s stand short for cosine and sine function and C and S for the hyperbolic cosine and
sine functions respective, all with argument 3/. The zeros of the characteristic polynomial
are the sought spatial eigenvalues. The polynomia cannot be solved analytically, in
general, but is easily solved numerically or graphically using suitable scaling to avoid
infinite function values, Figure 2-6.

characteristic polynomial CP
o

0 1 2 3 4
spatial eigenvalue 3/~

Figure 2-6: Spatial eigenvalue of the cantilever beam

The crossings at higher values of the characteristic polynomia, C'P, in Figure 2-6,
correspond to the higher order flap modes with one and more nodal lines. The modes are

commonly called flap modes and denoted 1F for the first flap mode with 1 nodal line at
the clamped root, etc.
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2.5.3.3 Natural frequencies

After the spatial eigenvalues are obtained either graphically or numerically, the temporal

eigenvalues follow from Equation (2-68):
W2 gt B

2-72
Al (2-72)

The computations are based on a model of the blades with the geometry used later in the
experiment: 175x1x20 mm3, length by thickness by width. The frequencies of the lowest
flap modes estimated by the method of finite elements are given in Table 2-2.

modeshape 1F 2F 3F
frequency [HZ] 27.3 171 479

Table 2-2: Predicted blade natural frequencies

Further modes, like the bending modes about the axis with the larger moment of inertia
(Y: yaw) and torsional modes (T), exist, but cannot be predicted with the bending theory
used. A finite-element computation with plate elements revealed the following additional
modes, Table 2-3.

modeshape 1T 1Y
frequency [HZ] 486 589

Table 2-3: FE-predicted torsion and yawing modes

2.5.3.4 Influence of the disc

The dynamics of the structure at the attachment location define the boundary conditions

of the blade. Obvious this is a feedback, bi-directional, relation: the disc influences the

blade dynamics, but, at the same time, the blades affect the dynamics of the disc, as
described in Paragraph 2.5.2.4. If the dominant influence of the disc on the dynamics of

the blade is modelled by a torsional spring due to the disc’s finite angular stiffness, then
the boundary conditions change to:

e
Wz, =0 a0
and (2-73)
4 d d’
3 ER(z,) = —k,, E“JJ(%) %"""(xf )=0

and the characteristic polynomial changes accordingly:
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1 1 0 0
O e S S BI(+ coshBleosBl) + (2-74)
= oC -
BB —EB k, - cosh {3l cos

5 . o _yyc + B(cosh (I sin 3! — sinh (1 cos B1)

cP

where again ¢ and s stand short for cosine and sine and C' and S for the respective hyper-
bolic functions, al with argument 31. For zero stiffness, £, =0, the characteristic poly-
nomial isthat of the simply-supported-free beam, (Gasch and Knothe, 1989):

B(cosh Bl sin Bl — sinh Bl cos3l) = 0 (2-75)
If the stiffness becomes very large, the polynomia approaches that of the rigidly-
clamped-free, or cantilever beam, Equation (2-71), in accordance with physical intuition:

(1 — coshBlcosBl) =0 (2-76)

Again, the zeros of the characteristic polynomial are found numericaly or graphically,
Figure 2-7.

ky, | EI3 = oo

Q
~ 2
3
g 1
2
s \
s 0 \
L kyy /EIB =0
8]
by
Q
Q
©
[
Ky
Q

0 1 2 3 4

spatial eigenvalue 3/~
Figure 2-7: Spatial eigenvalue sensitivity to boundary condition

The different lines are |abelled with their values of %, / I3 . The shift in eigenvalues is
clearly noticeable, the eigenvalues vary between the two limits of the pinned beam with
zero torsional stiffness at the boundary and the clamped beam with an infinite stiffness.

The situation becomes more intricate as the angular stiffness of the disc, seen as
torsional spring by the blade is frequency-dependent itself. If the natural frequencies of
the blade are to be determined in the described way, the solution would be found by an
iterative method.
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2.5.4 Assembly vibration

With a knowledge of the dynamics of the individual sub-structures, the coupled structure

can be investigated. From the analysis of the disc and the blade separately, one can
anticipate that the assembly modes can be described by three spatial parameters. the
numbers of nodal diameters and circles from the disc modes and the number of nodal

lines from the blade modes, (ND/NC/F). If nodal circles are defined as nodal lines of
constant radius, then the blade-‘nodes’ (F) count towards the number of nodal circles
(NC), and the modeshape of the assembly can be described by only two numbers, (ND,
NC).

Rather than pursuing the described coupling approach, the assembly natural frequen-
cies are calculated directly using the finite element model of the bladed disc described in
Section 2.4, Figure 2-2. The eigenproblem is solved for the lowest 150 modes using an
iterative subspace solver. The natural frequencies are plotted against the number of nodal
diameters in Figure 2-8, where the abscissa is limited to ten nodal diameters which is the
spatial Nyquist frequency for the bladed di$é¢,, ., /2. Higher spatial orders or nodal
diameters are folded back,@rased, and appear as lower nodal diameter modes.
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Figure 2-8: Bladed disc: predicted natural frequencies versus nodal diameters

The modes can be grouped by inspection of the modeshapes in families, indicated by the
dashed lines in Figure 2-8. Modes within one family have common features and can be
considered together. Inspection of the modeshapes of the 6th family identifies the group
as family of 1T-blade modes with mostly in-plane bending in the disc. This family cannot
be predicted by a out-of-plane-bending theory and shows the need to use always a model
that includes the complete dynamics in the frequency range of interest. As the in-plane
vibration of discs is decoupled from the out-of-plane vibration, the 6th family is neglected
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in the further analysis. Below 400 Hz, the simple theory is sufficiently accurate and
predicts all modes. The 5th family in Figure 2-8, the only family decreasing in frequency
with nodal diameters, is actually a case of spatial aliasing: by inspection, it is found that
the modes of the 5th family are the modes with higher nodal diameters, 11 through 20, of
the 4th family.

Figure 2-9 shows the natural-frequency nodal-diameter plot with the 5th and 6th
families of modes removed. This also removes the frequency crossing of the families.
Rather than by number, the mode families are labelled by shape: number of nodal circles
and the flapping mode of the blades. Figure 2-9 reveals severa features familiar from the
analyses of the sub-structures: double modes, mode families and constant blade cantilever
modes. Most modes appear as double modes, except for the OND modes, as before, but
now also the 10ND modes are single modes because of the spatial Nyquist frequency at

Nbl(zdes / 2.
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Figure 2-9: Component frequencies vs. assembly frequencies, predictions

For each mode family, the number of nodal circles is constant, but now, different from
the plain disc, Figure 2-4, more than one family share each nodal circle in the disc, for
example the 3rd and 4th family are both INC families, indicated by the rising dotted lines
in Figure 2-9. These families differ in the slope at the outer diameter, the family with the
higher natural frequencies having an amost horizontal slope at the outer radius.

While the number of nodal circles does not change within a family, the modeshape of
the blade can change between the bracketing blade cantilever modeshapes listed in Table
2-2, indicated by the horizontal dotted lines in Figure 2-9. The 2nd family, for example, is
a ONC mode which vibrates with the 1F blade modeshape for low nodal diameters but
changes to the 2F modeshape with increasing nodal diameters. Thus the family is labelled
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(ONC/1,2F), Figure 2-9. If the nodal lines of the blades are counted towards the number of
nodal circles as explained in Paragraph 2.5.4, the number of nodal circles is unique for
each family, the (ONC/1,2F)-family is labelled INC-family.

In the regions where the natural frequencies remain fairly constant, for example
between 0 and 2, and 8 and 10 nodal diameters for the INC-family, the modes are
predominantly blade modes with the strain energy concentrated in the blades, whereas in
the region where the frequencies change with nodal diameters, 3 to 7 nodal diameters for
the same family, the modes can be categorised as disc modes with most of the strain
energy in the disc, (Loewy and Khader, 1984). The disc modes lie close to the rising
dotted lines in Figure 2-9. For the modes with higher numbers of nodal circles, 2 and 3,
these lines coincide with the natural frequencies of the plain disc, Figure 2-5, which
indicates that the influence of the blades on the natural frequencies of these modesis very
small. For modes with lower numbers of nodal circles in the disc, 0 and 1, the influence
of the blades is very noticeable and reduces the frequencies considerably, (Loewy and
Khader, 1984).

The blade cantilever frequencies are approached asymptotically by the mode families.
The faster the disc frequency rises, the quicker the assembly frequency will reach the
asymptotic value of the blade frequency, both for low and high numbers of nodal
diameters. This can be used during the design stage to obtain rough estimates of the
natural frequencies of the bladed disc: the disc-aone natural frequencies, possibly
corrected for the influence of the blades, and the blade cantilever frequencies are drawn
against the nodal diameters and the assembly natural frequencies are then estimated by
connecting the lines by smooth curves. Additionally, a torsional disc mode is expected at
the cantilever frequency of the blades when the motion of the blades is counteracted by
in-plane tangential motion of the disc. These modes are not shown in the figure but are
computed to lie exactly at the blade cantilever frequencies.

2.5.5 Experimental results
As the low-frequency modes are the most important ones in the subsequent analysis, and
these modes are dominated by the first cantilever frequencies of the blades, this parameter
is determined experimentally and the FE-input data are adjusted to that effective blade
length. After that, results of a calculation based on the FE model of the bladed disc are
compared with the results of a modal test carried out on the bladed disc representing the
stator in this study, Figure 2-10.

The differences are mostly in the natural frequencies of the disc modes and may be
due to modelling errors of the disc thickness and the boundary conditions.

2.5.6 Effectsof mistuning on the dynamics of rotationally periodic structures
Mistuning, i.e., the asymmetric distribution of system parameters, is a very complex
phenomenon. Yiu (1995) gives a detailed overview over the whole area. Only the most
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fundamental aspects of mistuning were relevant to this research, namely the separation of
the mode pairs.
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Figure 2-10: Comparison between measured and predicted natural frequencies

Even though the first cantilever frequency of each blade was adjusted to within 0.3% of
the mean value of all blade frequencies, the natural frequencies of the bladed disc showed
asplit in natural frequencies of the double modes, (Arnold and Tobias, 1957). This effect
of mistuning was noticeable in the low-nodal-diameter modes of the first and second
family, Figure 2-10. As the frequency split was aso detected in the spectrum of the
unbladed rotor, presented later in this chapter, the mistuning is assumed not be caused by
the blades but by initial, static, deformation of the disc. Thisinitial deformation changed
the stiffness of the disc to bending due to the geometric deformation of the bending axis,
and affected the modes of amode pair differently and thus split their natural frequencies.

Mistuning by either mechanism — initial deformation or asymmetric system property
distribution — fixes the modes uniquely in the structure. In mistuned structures,
preferential orientations exist and the modes are defined completely, whereas in the
axisymmetric case no preferential directions exist and the mode pairs are defined up to an
arbitrary angle only, and are free to rotate around the axis of symmetry.

Any spatially distributed system quantity, such as mass of stiffness, can be
decomposed into a spatial Fourier series with each element of the series corresponding to
a different number of nodal diameters. Each non-zero element of the series fixes the
orientation of the mode pairs of that nodal diameter and splits their natural frequencies.
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Figure 2-11: Effect of four-mass mistuning

Figure 2-11 shows a deliberate 2ND-mass mistuning, or detuning. The corresponding
2ND modes are fixed in their orientation: the masses lie on anti-nodal points for the
cosine mode and on the nodal points for the sine mode. The effect on each of the two
3ND modes is similar, and hence, the mode pair does not split. A mass or stiffness
distribution exactly proportional to a modeshape would affect that modeshape only. In
addition to the change of frequency, the modeshapes themselves will be affected and will
not be pure harmonic functions any more, (Ewins, 1975).

The discussion above holds for well-separated modes only, where the effects of
mistuning remain local to a mode pair. If the mistuning causes the modes of two mode
pairs to get intermingled, the effects cannot be described as perturbation of the axi-
symmetric case any more.

2.5.7 Discussion - Stator

In the above paragraphs of Section 2.5 the dynamics of the stator are presented. The
bladed disc dynamic characteristics are deduced from those of the blades and the disc
separately. The coupling effect is described for the individual structures: the blades lower
the natural frequencies of the modes with small numbers of nodal circles, and the natural
frequencies of the blades change according to the boundary stiffness presented by the
disc. Especidly for the low-frequency modes, the dynamics of the blades and the disc
predict those of the bladed disc quite well. The relative difference of disc and blade
frequencies determine whether the assembly mode is a disc mode or a blade mode.

The effects of mistuning or asymmetric mass or stiffness properties on the dynamics
of rotationally periodic structures have been explained. The frequency split of mode pairs
is observed in experimental data and the formation of preferential directionsis discussed.

The finite-element method has proven capable of predicting the dynamic behaviour of
the bladed disc accurately.

As mentioned in the introduction, the change from a rotating bladed disc of turbo-
machinery to a stationary bladed disc in the analysis and the test rig, is possible only
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because the test rig's sole task is to be dynamically similar to typically turbo-machinery
and to enable measurements of the dynamic responses but not to exchange energy
between the rotor and the surrounding working fluid.

2.6 Vibration Properties of Rotating Discs

The natural frequencies of a plain disc at rest can be found analytically. For rotating discs
or discs with non-uniform thickness, introduced by, for example, a centre hole, closed-
form solutions generally do not exist and approximate methods must be employed,
(Eversman, 1969, Harris, 1967, Mansfield, 1961, Irretier, 1979). This section describes
the bending vibrations of the rotor in the body-fixed reference frame.

2.6.1 Admissible modeshapes

The admissible modeshapes for axisymmetric discs, i. e., functions of the position that
fulfil the equation of motion of the disc for all times and positions, are simple harmonic

functions in the tangential direction, (Biezeno and Grammel, 1953). Therefore, a
Bernoulli separation of variables can be used to simplify the equations of motion as
presented previously:

P(r,0) = R(r)cos(nb) (2-77)

where ¢, 6) are the body-fixed coordinates of the disc. The number of periods of the
modeshape along the perimeter,is called the number afodal diameters. The term

‘node’ (not used in the FE sense here) becomes obvious if it is noted thatf6y = 0,

the generalised coordinates is zero for all times and all radii at the nodal lines:For

twin modes exist with cosine and sine shapes in the tangential function with identical
eigenvalues. The analytic shapes of the modeshapes in the tangential direction simplify
considerably the integral expression for the energies, reducing them to integrals in just
one variable. Thus, standard, uni-variate methods can be used.

2.6.2 Computation of the natural frequencies
The natural frequencies of the rotor as a function of the speed of rotation are determined
from an energy balance. The rotor is modelled as a thin disc.

2.6.2.1 Rayleigh-Ritz method
Using Hamilton’s Principle, the variational problem solves for both eigenfrequency and
modeshape, (Szabd, 1956):

b
5[ (U(t)—T(t)dt =0 (2-78)
to

T(t) andU(t) are the kinetic and potential energy, respectively. Maybe the most straight-
forward approach to estimating the natural frequency of conservative systems is the
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Rayleigh-Ritz method, which requires the maxima of the kinetic and potential energiesto
be identical:

\K =U (2-79)

where X is the eigenvalue, the square of the natural frequency, w, K is the maximum
specific kinetic energy, respectively, and U denotes of the maximum potential energy.
The energy terms are functions of the modeshape and the closer the assumed shape is to
the modeshape, the better the approximation of the associated eigenvalue, (Biezeno and
Grammel, 1953). This trandates the problem of finding the eigenvalue into a standard
minimisation: in order to obtain a good estimate for the eigenvalue, the assumed shape is
described in terms of parameterse; and the expression for the eigenvalue is then
minimised with respect to these parameters:

W =X <minU(g;) / K(g;) (2-80)

&

The equality holds for modeshape but for discretised continuous structures the modeshape
Is only an approximation to the continuous eigenfunction, and the eigenvalue is always
over-estimated, (Bathe, 1983). The natural frequency of the mode follows fromx = w?.

2.6.2.2 Determination of the kinetic and potential energies

The potential energy of the rotating disc splits into two parts, (Biezeno and Grammel,
1953, Lamb and Southwell, 1921): a first component due to the bending stiffness of the
disc and a second due to the centrifugal potential:

U=U,+Ug (2-81)
The eigenvalue equation, Equation (2-80), changes accordingly:

P =x <min L&) TVC) _y 1y (2-82)
& K(g;)
where ), is the eigenvalue of the disc at rest and )\, is the eigenvalue of a rotating
membrane without bending stiffness, (Lamb and Southwell, 1921). The rotation increases
the natural frequency of arotating structure, this effect is called centrifugal stiffening.
The maximum specific kinetic energy can be expressed as:

K= gp [hR*rr (2-83)
where r isthe radia coordinate, R = R(r) isthe radial amplitude function of the assumed
shape, {1}, Equation (2-77), h = h(r) is the thickness of the disc, and p is the mass
density, the latter assumed to be constant over the disc. r; and r, are the inner and outer
radii, respectively. The bending energy is given by:
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2
By [dR+lﬁ_n2£]

dr r dr r2
(2-84)
2
_2(1_,,)1053(‘5_}3_”25) (d_R_ﬁ) v dr
r o dr* \dr T dr T

where 7 denotes the modulus of elasticity, v is the Poisson ratio, and n is the number of
nodal diameters. The centrifugal potential is given by:

U = T2 [ (dR) % RQ]dr (2-85)

T r

where (2 is the speed of rotation, and the radial and tangential stresses are denoted by o,
and oy, respectively. For a rotating disc of uniform thickness, the stresses are given by
(Biezeno and Grammel, 1953):

3+ 7
o, = Upﬂz{_%_}_(rf—krf)—?g]

8 r
(2-86)

Oy =

3 +v 2 7“'27’2 2 2 1+ 3v 2
Q) =+ (7 +15) — r

e P ( 3 (r; ) Y

If the centrifugal loading from the blades is to be considered, corrections need to be

applied to the formulae. Without initial stresses on the inner or outer radii, the eigenvalue

equation, Equation (2-82), takes the following form

82T, + Q2 Jq
Iy

W =\< (2-87)
where 3 = /E/p isthe speed of transverse waves in solids and the.J,; contain the terms
that depend on the modeshape and the properties of the disc.

2.6.2.3 Choice of radial amplitude function
A trial solution for the radial amplitude function should satisfy all boundary conditions of
the differential equation, for the Rayleigh approximation only the geometric ones,
(Meirovitch, 1980). For adisc clamped at the inner diameter and free at the perimeter, the
boundary conditions split into geometric conditions at the inner radius — zero deflection
and zero slope, (Mignolet, Eick and Harish, 1996):

R(r;) =0

dR (2-88)
dr( ):0

and the dynamic boundary conditions at the outer radius — moment- and force-free:
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d2—R<ro>+v[ld—R<ro>—n2 Mj ~0

dr? T, dr o

d°R 1 dR R(r,) (59
2 2 o) _

F(TO)—((l—i—uH—n (2—1/))74—2%(7“0)—}—371 3 =0

A low-order polynomial in r that satisfies the boundary conditions at the inner radius
exactly and approximates the conditions at the outer radiusis, for example:

To To

R(r) = (r=n) (1 + aﬂ] (2-90)

where ¢ is the variational parameter used to minimise the eigenvalue estimate, Equation
(2-80). The boundary conditions can be fulfilled exactly by higher-order polynomials,
(Weber, 1996), but the increase in computational effort is large for little gain in accuracy.
So the third-order polynomial, Equation (2-90), is used to compute the natural
frequencies of the rotor used in the experiment, Chapter 7.

2.6.2.4 Influence of boundary conditions

Applying St. Venant’s Principle to slender discs with small inner-to-outer radius ratios,
one can appreciate that the boundary conditions at the inner diameter do not influence the
natural frequencies of slender discs greatly. According to Blevins (1984), the difference
in the natural frequencies for slender discs between a clamped and simply-supported inner
diameter for the 2ND mode is less than 4% and for the 3ND mode it is smaller than the
recorded precision.

2.6.2.5 Experimental Validation
Programs are written to evaluate Equation (2-82) numerically. The geometric data chosen
for the computation are those of the disc eventually used in the experiments: 0.8 mm
thick, 500 mm outer diameter, and 40 mm inner diameter. The disc is clamped at the
inner diameter and free at the outer diameter.

Figure 2-12 shows the computed natural frequencies of the rotor as functions of the
speed of rotation.
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Figure 2-12: Predicted natural frequencies of a plain disc as afunction of speed

As expected, modes with low natural frequencies at zero speed approach their high-speed
asymptotes more quickly than modes with high natural frequencies, which follows from
the dominance of the speed-dependent term in Equation (2-87), Figure 2-13:
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Figure 2-13: Eigenvalue asymptotes for the 3SND mode

Limit values for the expressions J,/J,, and J,/J,, are tabulated in the Appendix for the
disc used in the experiment. From the different slopes of the curvesin Figure 2-12, it can
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be seen that the speed influence rises with the number of nodal diameters. The measured
natural frequencies agree well with the computed ones, validating the numerical method,
Figure 2-14, where the circles denote the measured natural frequencies.
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Figure 2-14: Measured and computed natural frequencies of a plain disc against speed

2.6.2.6 Parameter Sensitivities

As expected, the bending potential governs the magnitudes of the eigenvalues at low
speeds, Equation (2-80), and the speed-dependent components become dominant at high
speeds, Figure 2-13. A more thorough analysisreveals:

2
X=Xy +Xq Eh—4n4 L2l (2-92)
p o, T

The first term represents the dependencies for the eigenvalues of the disc at rest, \;, , and
are the ones given in Blevins (1984), quoted there for the natural frequencies:

Eh o

Wy € |——n (2-93)
Py

The second term in Equation (2-92) shows the proportionality factors of the eigenvalues
of the rotating floppy membrane without bending stiffness, \q, : this component grows
linearly with speed, as shown in Figure 2-13, and with the number of nodal diameters
squared, and inversely with the outer radius.

2.6.3 Discussion - Rotor
The method presented above assumes that the motion is mostly governed by the elastic
potential. The modes with one nodal diameter store elastic energy almost entirely in the
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vicinity of the inner clamped radius, while closer to the outer rim they behave very much
like rigid-body modes. For a thin disc of uniform thickness it is found that the
approximations for the IND mode have much larger relative errors than the estimates of
the ‘truly’ elastic modes with higher numbers of nodal diameters, (Weber, 1996).

The method presented above estimates the modeshapes as functions of the speed of
rotation. From a preliminary study it became evident that the rotation does not distort the
modeshapes greatly but only scales them. The scaling of the modeshapes is arbitrary and
for constant running speed as applies to most of the simulations, Chapter 7, the scaling
does not change. Mignolet, Eick and Harish (1996) investigate singular and regular
perturbation approaches to obtain the modeshapes of a rotating disc as functions of speed,
but limit the investigation to modes with 0, 1, and 2 nodal diameters only.

The presented method allows the designer to understand the influence of the physical
parameters and to carry out parameter studies with relative ease and computational
efficiency.

2.7 Conclusions

In this chapter the analysis of the dynamics of linear structures is presented. This leads to
the eigenanalysis of linear structures. The eigenproperties of a structure are required for
an efficient forced response analysis using modal superposition. This approach relies on
the assumption of linearity and violation of this basic assumption invalidates subsequent
analysis.

The analytic approach operating on continuous structures has the advantage of
providing exact results within the limits of the theory, but can be applied to structures
with simple geometry only, due to the difficulty of having to find the eigenvectors
explicitly. The method of finite elements is presented as a way to obtain the modal
properties of complex, arbitrarily shaped structures. The necessary discretisation of the
structures introduces further errors in the results which show usually in the high-
frequency modes. Only general rules exist to judge the quality of the modal matrix
obtained for discretised structures.

Another disadvantage of the method of finite elements is the potentially high
computational cost. In order to alleviate this, special algorithms exist. Also, the capability
of the solver to solve for a few low-frequency modes only is essential once the model size
reaches a few hundred degrees of freedom. Iterative subspace solvers provide for this
requirement efficiently. The computational saving of a partial low-frequency solution can
be of the order of a hundred. If parameter influences are required, they need to be
determined numerically, which becomes prohibitively expensive.

Any eigensolver for rotationally periodic structures must be able to handle repeated
eigenvalues, where, quite often, numerical inaccuracies help the solver as they change the
eigenvalues slightly, making all the roots of the characteristic polynomial distinct.
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More complex structures can be split into sub-structures which are anaysed
separately. The results of the individual analyses can be combined to give results for the
whole structure. This coupling approach is shown to reduce the computational effort of
the analysis considerably, (Gasch and Knothe, 1989).

On today’s computers, the computation of eigensolutions of the order of 5000 degrees
of freedom takes a reasonable time. And as the solution is computed only once, some of
the methods described in this chapter may not justify the effort it takes to implement
them. Nevertheless, a good understanding of the underlying principles helps to guide in
the interpretation of the results of any finite element analysis.

The eigenproperties of the stator and rotor are obtained using an FE analysis. An
analytic solution of the stator's components — disc and blades — provided qualitative
insight into the dynamic behaviour of the assembly. For the rotor, an energy-based
approach provided the speed dependent natural frequencies while the modeshapes are
computed analytically and by the FE method.



Chapter 3: Dynamics of the Rotor-Stator System

Having modelled the stator and the rotor individually, both systems must be considered
together. To do so, the dynamics of both structures must be expressed in the same frame
of reference. Once the dynamics of both systems are described in one reference frame, the
dynamics of the coupled system can be analysed.

3.1 Description of Dynamic Propertiesin non-body-fixed Coordinates

The choice of the frame of reference in which the dynamics of both structures are
described is entirely arbitrary. From an experimentalist’s point of view, the stationary
frame of reference is favoured as it simplifies conducting the experiments. In order to
express the dynamics of the rotor in the stationary reference frame, a coordinate trans-
formation must be carried out.

3.1.1 Stationary and rotating reference frames

The two reference frames that need to be related to one another are the body-fixed
reference frames of the stator and the rotor, for brevity labelled the stationary and rotating
frame of reference, Figure 3-1.

Rotor Az

/Z

\ 4

Stator Y 0

=k
\4
=
&

Figure 3-1: Coordinate systems

(r,0,2) are the cylindrical coordinate systems, indifeandS denote quantities expres-

sed in the rotating or stationary reference frame respectively. Both cylindrical coordinate
systems are defined as right-hand, orthogonal coordinate systems for which the cross
product gives:

{e,} X{eg} =1e.} (3-1)

and all permutations thereof.

All quantities of either structure, such as displacements and velocities, can be
expressed in either frame. The analysis of the coupled system will be performed in the
stationary reference frame to ease the experimental validation described in Chapter 7, and
so the quantities expressed in the rotating reference frame need to be translated. The

56
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necessary transformation will be developed in the following paragraphs.
For a constant speed of rotation, the tangential coordinates of the two reference
frames are related to each other by a Galilean transformation:

0p =0g — Ot (3-2)

where 2 denotes the rotational speed. The axial z-axes of the two reference frames are
assumed to coincide at all times.

3.1.2 Waves
During the analysis of the individual structures, the modeshapes are assumed to be redl.
Especially for periodic and in the limit axisymmetric structures, it is often convenient to
rewrite the double modes as pairs of complex waves.

The double modes with equal natural frequency and similar modeshape are combined
into two waves, a co-rotating wave and a counter-rotating wave:

C ind
cos(nf) +isin(nb) = e (33)

cos(nb) — isin(nd) = e 1"

As waves are linear combinations of modeshapes, they are solutions to the eigenproblem
and thus are valid modeshapes as well.

In addition to the complex modeshape the natural frequencies are interpreted slightly
differently: instead of taking the positive root of the eigenvalue \ as natural frequency, the
natural frequency of the co-rotating wave is taken as the positive root, as is done
traditionally for al modes, but the natural frequency of the counter-rotating wave is taken
as the negative root of the eigenvalue:

wnf =+
Wpp = _\/E

This distinction may seem academic at first but will become useful in the analysis later.

(3-4)

3.1.3 Frequency-speed diagram

For sake of simplicity, assume a displacement of a rotating structure described in the
body-fixed, rotating reference frame from a single n» nodal diameter wave pair: a co-
rotating wave and counter-rotating wave with equal natural frequencies, w,, ,, excited in

resonance by a harmonic force:
Uppr = %(ei " + e_i "n ) COS wrnRt (3_5)
= cos(w,,gt —nBp) + cos(—w,, gt —nOp)

or, using positive and negative frequencies:

UpnR = COS(UJrant - ne]?) + COS(wrant - ne]?) (3'6)
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where the indices identify the rotating structure, the number of nodal diameters, the
reference frame, and the direction, where consistently f and b are used rather than the
lengthy co-rotating and counter-rotating. Describing the deflection in the stationary
frame of reference by substitution of the angle, Equation (3-2), leads to:

Upps = cos(meft o n(eb o Qt)) + COS(LOTant o n(eb - Qt))

3-7
= cos((wyypf + 1Nt —10g) + cos(wyyzp + PNt —n0g) 37)

or:

Upps = COS(wrnSft - neb) + COS(wrnSbt - neS) (3'8)

It must be stressed that this is only a change in the description of the quantity, not in the
quantity itself. Changing the reference frame changed the apparent frequencies of the
response. The term shall indicate descriptions of quantities in a non-body-fixed frame.
Looking at the indices, it occurs for index combinations =S and s R. Frequencies of both
co-rotating and counter-rotating wave increase by n{2 and it is said they are modulated by
the speed of rotation, Figure 3-2:

wnSf = L")an + n2 (3_9)
W66 = Wypy + NE2

frequenc
q y LunSf wnSb

speed 2

QE()N

Figure 3-2: Frequency transformation

Each natural frequency transforms according to its number of nodal diameters. This
makes the transformation from one reference frame into the other an expensive operation
from an experimental point of view, as not only the frequency but also the spatial
distribution is required to transform quantities between reference frames, (Bucher, Ewins,
Robb and Schmiechen, 1995). This transformation holds for all frequencies, not just the
natural frequencies of the structures.

A single transducer cannot detect the direction of the wave and thus cannot
distinguish between co- and counter-rotating waves and positive and negative
frequencies. Due to this aliasing of negative and positive frequencies, the sign of the
counter-rotating waves is often ignored and their frequencies are given by the absolute
value:
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Wnsh = |Wnprp + N9 (3-10)

frequenc
q Y L'l')n,b'f wn,b'b

/| speed

EOn

Figure 3-3: Aliasing at the O Hz line

In both the preceding figures, the frequency of the counter-rotating wave crosses or
touches the abscissa at a certain speed, Qzp,,:

0= U)an + nQEOn (3‘11)

This speed is called the engine-order speed of the n nodal diameter mode or nth engine-
order speed:

Qpon = —Wpgy /1 (3-12)

w,, pp, 1S Speed-dependent due to the centrifugal forces as shown in Section 2.6 and hence
the engine-order speeds cannot be determined from the natural frequencies of the
structure at rest:

Qron = —Wurs(Qron) /1 (3-13)

Asn isarbitrary, thisresult holds for al nodal diameters.

The natural frequencies are actually functions of the speed of rotation and the straight
lines in Figure 3-2 and Figure 3-3 are bent, (Tobias and Arnold, 1957). Figure 3-4 shows
the computed natural frequencies of the thin rotating disc used to model the rotor in the
experiment, whose properties are given in the Appendix.

The number of nodal diameters of the associated modeshape is indicated for each
natural frequency line in Figure 3-4. The directions are labelled with ‘+" and ‘- for the
co-rotating and counter-rotating waves, respectively. Notice also the reflection of the
frequencies at the 0 Hz line due to aliasing and the bend of the curves due to centrifugal
stiffening.

The number of nodal diameters can be computed from the angle of the departing
frequency lines at low speeds, Equation (3-9): the higher the number of nodal diameters,
the larger the angle at low speeds of rotation:
Aw,gp nd n

A Q

tano =

(3-14)
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Figure 3-4: Computed natural frequencies of the travelling waves in the stationary
frame of reference

The analytic predictions, Figure 3-4, compare favourably with the experimental results,
Figure 3-5, where dark shades of grey indicate strong vibration signals.
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Figure 3-5: Measured natural frequencies of the travelling waves in the stationary
frame of reference
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The figure shows a spectrogram of the time record of a sensor facing the test disc. Each
vertical line represents the magnitude of the Fourier transform of a short period of the
time record.

In addition to the computed features shown in Figure 3-4, Figure 3-5 contains straight
lines that all start at the origin but have different slopes. These are caused by the initial
deformation or wobble of the rotor. In the body-fixed reference frame, this wobble is
time-invariant, or one could say, it vibrates with 0 Hz. Due to the transformation of the
frame of reference, these ‘vibrations’ change their frequency according to Equation (3-9):

wnsf =0 —+ nQ (3‘15)

where n is the number of nodal diameters. The initial deformation can be spatially
Fourier-decomposed, and each component with different number of nodal diameters will
show in the figure as a different line proportional to the speed of rotation, the engine-
order lines.

The same mechanism makes time-invariant forces time-variant in the body-fixed
frame of reference of the rotor.

3.1.4 Wave velocity
The slopes of the curves in Figure 3-2 and Figure 3-3 (and also Figure 3-4 and Figure 3-5)
depend on the number of nodal diameterdntroducing the wave velocity,,:

de

v, & w, /n (3-16)
the relation between the wave velocities measured in the stationary and rotating reference
frame is given by, Equation (3-9):
VnSf = VnRf +

(3-17)
VnsSh = VnRb +Q

and the engine-order speeds, Equation (3-13) just equal the wave velocities of the
counter-rotating waves:

QEOn =V (3-18)

Figure 3-2, changes accordingly:
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Figure 3-6: Wave-velocity diagram

In this representation all waves have a slope of 1:

AUTISf
tanoqg = —— =1 (3-19)
A
The predicted wave velocities of the rotating disc are shown in Figure 3-7, where once
more the effect of the centrifugal forces bends the curves, changing the slope at higher

speeds of rotation.

100w 7
8+
7
+
Q3
& 2+
£ /
S o—so
N
QO 2-
S
3-
S
5-
6-
7-
8-
-100
0 1500 3000 4500 6000

speed [rev/min]
Figure 3-7: Wave-velocity diagram for the rotating disc

The figure is drawn to equal scale, so that the slopes at low speeds are drawn correctly.
Centrifugal stiffening affects very quickly the two nodal diameter mode and changes the
slope of the curve.



3 DYNAMICS OF THE ROTOR-STATOR SYSTEM 63

3.1.5 Senseof direction in therotating and stationary reference frame
In the present analysis the axis of rotation is assumed to be the z-axis of the global coor-
dinate system, Figure 3-1. In rotordynamics, as opposed to bladed disc analysis, the axis
of rotation is usually assigned the z-axis.

Directions are defined in terms of the coordinate directions. A positive rotation will
cause an increase in the tangential direction. This can be determined conveniently by the
cross product of the right-hand cylindrical (r, 0, z) coordinate system, Equation (3-1):

0 T 0
0Fx<30=+7r0) (3-20)
Q 0 0

When an elastic wave propagates through a body, its direction of travel is an important
element in the description of the motion. In rotationaly periodic structures the terms
‘forward’ and ‘backward’ are common but other combinations are used too, like
‘progressive’ and ‘retrogressive’ by Loewy and Khader, (1984). In this thesis, the terms
forward andbackward are used in the stationary frame of referencecanabtating and
counter-rotating are used in the rotating frame of reference. In the rotating frame of
reference, a wave may propagate a finite angle during a petiedicated in Figure 3-8

for the two nodal-diameter mode:

R
t=0: 0,
t:ﬁ/wnR: /\\/\/
t=2m/w, O

A

-2n/n

Figure 3-8: Determination of the wave velocity

The wave velocity can be computed from the indicated angle and time:

y . AGR . —21‘(/?1
b AL 27 [ w,p

=—w,p/n (3-21)

which, by its sign, indicates that the wave is a counter-rotating wave. The indices identify
the wave velocity as the velocity of thenodal-diameter, counter-rotating wave, that is
the backward travelling wave in the rotating reference frame.

If the velocity of the wave in the stationary reference frame is to be determined, the
speed of rotation has to be added to the wave velocity, Equation (3-17):

Vnsh = Vary + 2 =—w,p /n+Q (3-22)
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Index b in the rotating frame of reference denotes the counter-rotating wave, and does not
necessarily indicate a backward travelling wave, Figure 3-9:

2o |2
S|*R OR
t=0: 65
Zg Qlt[) > %R ) R
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t=t,: w m>0Q s
backward i " / ;
travelling = Ak
Zg tao > 0 IS
0O — 0.
wn,R/n_QZ_QEOn S
standin
ng wn]?/nt[)
Zg Q3t0 > 0 IS
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forward < ;
travelling —> wn]?/ nt,

Figure 3-9: Direction of the counter-rotating wave in the stationary frame of reference

For some low speeds, (2,<(2,, the counter-rotating wave is indeed a backward travelling
wave in the stationary frame of reference, not changing its sign:

VnS = VnRrb + Ql = —WyuR /TL + Ql <0 (3'23)

At Q,, the wave velocity is zero and the wave appears to stand still in space, hence the
term standing wave:

Vpg = Vpgy + 9 = —w,p /n+Qpo, =0 (3-24)

The term ‘standing wave’ is used differently in the mathematical literature, where it
describes the time-varying response of a real mode, (Bronstein and Semendjajew, 1981).
Tobias and Arnold (1957) use the more accurate stationary wave. Even though the
wave is stationary in appearance, every particle of the rotor vibrates with the appropriate
natural frequency), is the engine-order speed of thenodal diameter mode, Equation
(3-13).

For higher speeds);>(2,, the counter-rotating wave is actually progressing forward
for a stationary observer and is a forward travelling wave:

Vg = Vpgy + Q3 = —w,p /n+Q3 >0 (3-25)
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This can be depicted in a diagram of natural frequency against rotation speed, Figure 3-
10.
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Figure 3-10: Wave velocity versus rotation speed explaining directional terms

Directly on the lines between the terms, the 45°-line and the speed axis, the waves are
stationary or standing in the respective frame of reference: in the rotating reference frame,
the standing wave is the static deformation of the disc and in the stationary reference
frame, it is the counter-rotating wave in the rotor rotating at that particular engine-order
speed. The co-rotating waves in the rotor are always travelling forward.

In the context of travelling waves and rotating machinery, the notion of negative
frequencies and velocities is very useful and so the conventional simplification of
neglecting the negative roots of the eigenvalues and taking the positive roots only as the
natural frequencies, is actually not simplifying the description, but makes it, at times, less
Clear.

3.2 Interaction Diagram

In the diagrams in the previous section, the crossings of the speed axis at the engine-order
speeds are pointed out to be of special significance. At those speeds, the apparent natural
frequencies of the backward travelling waves in the stationary reference frame are zero
and the structure is in resonance with time-invariant forces. The term ‘time-invariant’ is
used instead of ‘stationary’ to avoid confusion with the use for the reference frames. At
speeds different from the engine-order speeds the backward travelling waves can be
excited by time-invariant forces, too, but, as they are not in resonance, the vibration level
iIs much smaller, which will be explained in the following paragraph.

3.2.1 Travelling-wave-speed coincidence

The wave-velocity diagram, Figure 3-7, is drawn for the rotor alone, not showing the
dynamics of the stator. The only line shown that does not belong to the rotor is the OHz
line. Its crossings with the velocities of the counter-rotating waves determine the engine-
order speeds, where the structure is excited into resonance by a time-invariant force in the
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stationary frame of reference. The wave-velocity diagram, Figure 3-7, is now extended to
include the wave velocities of the stator.

The stator is not experiencing the centrifugal forces and thus its dynamics are not
speed dependent. In the wave-velocity-versus-speed diagram, they are shown as
horizontal lines, Figure 3-11.
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Figure 3-11: Wave velocity over speed for rotor and stator

In order to clarify some important aspects and increase the area of interest, only the waves
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Figure 3-12: Detail of wave velocity over speed diagram



3 DYNAMICS OF THE ROTOR-STATOR SYSTEM 67

with 2 to 5 nodal diameters will be shown in the following plots and the equal axes
constraint will be dropped, Figure 3-12.

r and s denote the rotor and stator quantities and ‘+’ and ‘—' the direction of the waves.
All crossings of rotor and stator natural frequency lines indicate speed-frequency
combinations where both rotor and stator have the same natural frequency in the same
frame of reference, Figure 3-12 in the stationary reference frame:

DG = W,g (3-26)

If the structures are excited at one of these frequencies, they are susceptible to large
vibrations.

3.2.2 Critical Speeds

If the two structures are to contact each other, the vibration of the one would force the
other structure. Assume that the rotor is vibrating predominantly in a counter-rotating
wave, and is rotating at a speed where this wave’s natural frequency crosses a stator
natural frequency. If the rotor is touching the stator under these circumstances, the stator
experiences a force at one of its natural frequencies. The rotor will contact the stator
initially at the crests of the waves and so the forcing pattern will repeatritsieties in

the tangential direction. If the spatial patterns of force and stator wave are similar, the
stator will respond strongly to this excitation. The following relations hold for waves:

1 n=m
0 n#m

1 2n 0 imb
= el’n, (elm )*de —

3-27
) (3-27)

which is a mathematical way of judging similarity between waves. In effect, it directly
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Figure 3-13: Critical travelling-wave-speed coincidences
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shows the energy transfer between the forward travelling wave in the stator and the
counter-rotating wave (the conjugate complex) in the rotor. If the units of the rotor wave
are those of force and the stator wave has units of displacement, then the integrals in
Equation (3-27) have the units of energy.

So, only the frequency-crossings of waves with the same number of nodal diameters
have the potential of driving the coupled system into instability and are indicated by
circlesin Figure 3-13.

The crossings are called critical points in this thesis and occur at critical speeds,
Qcit.n» Critical as they have the potentia of driving the rotor-stator system unstable. The
critical speeds are given by, (Schmiechen, 1994):

VinSh = VenSs (3-28)
or, remembering thatv,,, p;, 1S negative:

Venkb T Qeritn = Vensy (3-29)
Thisform of the derivation of these critical speedsisnew in thisthesis.

A critical speed diagram for an actual aircraft engine exhibits qualitatively the same
features, Figure 3-14:
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Figure 3-14: Wave-speed coincidence diagram of an aircraft engine
More critical speeds exist for all nodal-circle families of the rotor natural frequencies.

The equations of motion of the rotor and stator at these critical points are given by:

p?” + 2c7”w8p7“ + w%pr = fTS(wS’pT7p8)

(3-30)
].jS + 2C8w5p9 + w%ps = Sr(wsﬂprﬂps)
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where the principal coordinates in resonance are the complex counter-rotating wave in the
rotor and the forward travelling wave in the stator. The frequency of the forcing functions
is the natural frequency of these waves of the rotor and stator, and the shape of the forces
will be related to the travelling waves in resonance. By Newton’s Third Law:

frs (ws) = _fsr (ws) (3-31)

3.2.3 Energy transfer from one structureinto the other

The coupling as described in the previous section by itself does not constitute a critical
situation. Only if the energy of the coupled rotor-stator system increases with time, does
the vibration become unstable.

3.2.3.1 Source of energy

An energy source in rotating machinery is the rotational energy of the rotor, and it will be
shown in the subsequent paragraphs that at the identified critical speeds there exists a
mechanism that feeds this rotational energy into the vibration energy of the coupled
dynamics, Equation (3-30).

3.2.3.2 Coupling of the tangential and axial direction of a modeshape

The modeshapes of the bladed disc, Figure 2-2, are coupled, predominantly two-
dimensional vibration patterns, if for simplicity, the radial components are neglected: the
blade tip performs an elliptical motion during one vibration cycle, depicted in Figure 3-15
without showing the blade bending:

2, - path of blade tip
=0

3n/2w,,

TY/UJ-SII "

1

direction of wave

Figure 3-15: Motion of the blade tip

The blade tip is moving in the opposite direction to the forward travelling wave for the
upper part of its cycle and in the same direction for the lower half.

The elliptical path of the blade tips changes with the modeshape. For the stator used
in the experiments whose geometry is given in the Appendix, the two paths are shown in
Figure 3-16, for different nodal diameters: the tangential semi-axis decreases with increa-
sing number of nodal diameters. The axes in both plots are drawn to the same scale and
are normalised to the two-nodal-diameter tangential deflection. The arrows indicate the
direction of motion for a forward, to the right-hand side travelling wave in the structure.
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Figure 3-16: Path of the blade tip of the test stator for different nodal diameter waves

Figure 3-16 shows that the tangential and the axial vibrations are coupled and hence the
ellipses grow in both axial and tangentia directions simultaneoudly if energy is fed into
the vibration of this mode.

3.2.3.3 Modd of the contact force

A contact between rotor and stator at some speed of rotation causes a tangentia force
opposing the motion of the rotor: for a positive speed of rotation in the negative tangen-
tial direction. The friction force is modelled according to Coulomb’s friction law:

F, = —sgn()uF, (3-32)

wheresgn is the signum-function, returning one for positive argument, minus one for
negative arguments, and zero for an argument of zdmthe relative velocity between
the bodies in contact, is the dynamic coefficient of friction, which is generally speed
dependent, and, and F, are the normal and tangential force, respectively. During
contact, the normal force must be always positive, and the surface velocity can be
assumed to be positive, too, due to the large speed of rotation; in detail, the contact
velocity depends on the speed of rotation, the contact radius and the vibration velocities
of the two structures.

The stator experiences the reaction force in the positive tangential direction and one
in the negative axial direction.

3.2.3.4 Integral of the energy input
Energy or work can be expressed as integral of force times displacement:

Ecycle = chcle{F} * {d?“} = L {F} * {U}dt (3-33)

cycle

where the dot denotes the scalar product between the force and the displacement/velocity
vectors, basically saying that only the projection of the velocity vector onto the force
vector contributes to the energy integral. Assuming a two-dimensional model with normal
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and tangentia directions and that energy is to be fed into the stator wave motion at the
blade tips, the integral takes the specific form
21 /w,
Ers = I(ann + F;fvt)dt >0 (3'34)
0

The force-velocity products can be analysed separately.

From Figure 3-15, the following qualitative sketch of the norma components of the
tip displacement, velocity and force can be drawn, Figure 3-17:

n

Tt 21 Wt

Figure 3-17: Normal velocity and force components

The integral of velocity times force over the intervals O to © and « to 2r is very small as
the normal velocity changes sign half way through the interval, even if the actual
magnitude is not constant.

The sketch of the velocity and force in the tangential direction is shown in Figure 3-
18:

Tt 21 Wt

Figure 3-18: Tangentia velocity and force components

For the tangential components, the integral of velocity times force does not vanish. For
the top half cycle of the elliptical path of the tip, corresponding to the interval O to =, the
energy is negative and for the bottom half, the interval from « to 2r, the energy is
positive, velocity and force are acting in the same direction.

So, in order to feed energy into the stator, the contact between rotor and stator must
occur during the bottom half cycle of the blade-tip motion.
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3.2.3.5 Possible vibration pattern

A wave form in the rotor that provides contact between the rotor and the stator during the
bottom half of the cycle according to Figure 3-15, is a travelling wave with the same
number of nodal diameters as the stator, Figure 3-19. The small arrows denote the
tangential velocity of the rotor disc and the blade tips, and the axial velocity of the stator
disc.
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Figure 3-19: Contact cycle

To understand the cycle that drives the system unstable, follow the left blade in Figure 3-
19: the blade swings freely back and hits the rotor that is vibrating in a counter-rotating
wave progressing with the same absolute velocity as the forward travelling wave in the
stator. The material points of the rotor progress with the speed of rotation which is higher
than the wave velocity and drag the blade forward. For the next half cycle the blade and
the rotor stay in contact. During this period, the tangential force and the tangential
displacement are parallel and energy is fed into the stator, according to Equation (3-34).
In the last picture, blade and rotor loose contact, just to start the cycle anew with a larger
amplitude. At the same time other blades go through the identical cycle, while the
remaining blades adhere to a similar cycle but are phased differently.
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In the schematic, Figure 3-19, the amplitude growth during the cycle is not shown and
also, the exact contact times are possibly different from the ones given, but small devia-
tions from the indicated times will affect the magnitude of the energy integral marginally.

The normal force does not contribute to the energy integral as explained before,
Figure 3-18, but it is instrumental to the occurrence of the instability, as it is a
prerequisite for the existence of the tangential force that feeds rotationa energy into the
system’s vibration.

3.2.4 Balance of energy input and dissipation

In the absence of any energy dissipation, the energy input would drive the stator and
hence the system unstable. Assuming that dissipation exists the vibration of a mode
becomes unstable only, if the energy input is larger than the dissipation:

Ers > Edissipation (3-35)

Energy dissipated by proportional damping, described by coefficients (,, in one
mode of the stator driven at its natural frequency can be computed to, e.g., Meirovitch,
(1986):

Edissipation = Gy (d)sﬁs)z = 2w§€sﬂ(¢sﬁs)2 >0 (3-36)

where p, is the amplitude of the principal coordinate a@nds the blade-tip component
of the modeshape that is in resonance. Both the energy dissipagion, . i,,» and the
energy input,lr, ., grow with the amplitude of vibration as the vibration velocity and the
contact force are both functions of the displacement. On a very simple, one-dimensional,
linear calculation, the interaction energy can be roughly estimated to:
™/ w, —ly
E., = kars ((j)T?zﬁT sinwgl — by, P, Sinwyt — zo> . (%‘bs,eﬁs sinwst>dt (3-37)
0+

whereyp is the kinematic coefficient of frictiork,, is the contact stiffness between the
rotor and the blade tipp; are the magnitudes of the principal coordinates,[@ana/w,t]
is the interval of contact, Figure 3-20.
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Figure 3-20: Approximation of geometry during interaction
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t, can be computed to:

t _ L B (3-38)
Wy d)r,zpr o d)s.,zps

Assuming that¢, o = ¢, ., Figure 3-15, and introducing the stator-to-rotor-amplitude
ratioa = o, ,ps / ¢, P, , one can find the following series approximation:

3 5
~ uk b,V ol — o) m— 3| —— 0 Nomha—a) | ©®
Ers (3 ’I‘S(d)T’,Zp"') (1 )[ 3 (d)r,zﬁr(l - OL)J } " [(d)rzﬁr(l B OL)J J ( )

where the fraction is always much smaller than 1 and aready its third power can be
neglected. Comparing Fy;sipations @Nd E,, One can see that both are functions of the
square of the amplitude. Whether the coupled system goes unstable or not depends on the
coefficient of the amplitude:

ol — @) > 22, (3-40)

Due to the simplicity of the assumptions, it is not sensible to derive exact conditions from
this equation. Qualitatively, one can conclude that the low-frequency modes will go
unstable more easily than the high-frequency modes but one has to keep in mind that the
interface stiffnessis afunction of the frequency as well.

The origin of the energy flowing into the stator from the rotor is the rotational energy
and hence the vibration energy of the system increasesif Equation (3-40) holds.

3.2.5 Effect of mistuning on the energy transfer

The above discussion of the interaction and in particular the analysis of the contact
geometry assumed that the responses in both structures are travelling waves. This
happens to be possible for rotationally periodic structures but is not the case for mistuned
structures. For the understanding of the effect that mistuning has on the energy transfer, it
Is sufficient to assume that one structure, either rotor or stator, is mistuned. The responses
of two modes of a mistuned structure do not add up to a purely travelling wave any more,
but there will aways remain a standing, body-fixed wave component. In the case of a
excitation of the rotor by a stationary force, the response sums as follows:

u=1u +uy o Hy(w)coswtcosnd + Hy(w)sin wt sinnd

= H; cos(nd — wt) + (Hy(w) — Hy(w))sinnd sinwi (3-41)

The first part is the travelling wave component and the second part is the standing wave
component, Figure 3-21, drawn for 1% damping.

The frequency ratio of the abscissais the ratio between the excitation frequency and the
mean of the two natural frequencies of the mode pair. Mistuning is defined in this thesis
as
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Wy — Wy

mistuning = T
5 (wg +wy)

(3-42)

where the natural frequencies are those of the two modes of the mistuned structure. If the
mistuning is introduced deliberately by adding mass to the structure, the mean frequency
in the denominator will be lower than the natural frequency of the original, tuned, system.
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Figure 3-21: The effect of mistuning on the wave components, 1% damping

The travelling wave component of the mistuned structure reduces sharply with increasing
levels of mistuning and thus the amount of energy transferred in one cycle is reduced.
More significantly, the standing wave component, which is zero for tuned structures only
and increases rapidly with the degree of mistuning, Figure 3-21, is body-fixed and hence
disturbs the sequence of events depicted in Figure 3-19, by modulating the zero line of
the mistuned structure. This reduces further the energy-transfer, possibly to levels
controlled by damping. Hence mistuning is the prime and most effective way of reducing
the energy transfer and avoiding the travelling-wave-speed instability.

Reducing damping reduces the energy dissipation which is, in the light of instability
not desirable. Interestingly, low damping reduces the chance of the occurrence of the
travelling-wave-speed instability by reducing the possibility of forming atravelling wave:
at low levels of damping the frequency response function peaks very sharply at the modes
and decays very quickly for frequencies away from the natural frequencies. Hence the
travelling wave which is a combination of the responses of the two modes diminishes for
all frequencies for the mistuned, low-damped, system, Figure 3-22.
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Figure 3-22: The effect of mistuning on the wave components, 0.2% damping

Tobias and Arnold (1957) noted that the aerodynamic forces damp the forward travelling

wave. This is caused, it can be argued by the relative velocity between the rotating
structure and the surrounding fluid. A stationary wave in space has no surface velocity

and thus cannot be damped by aerodynamic effects. Similarly, acoustic radiation, related

to the normal surface velocity, is a minimum for a stationary wave, which is noticed

during the experiments presented in Chapter 7. Tobias and Arnold were confronted with

the paradox of having the forward travelling wave affected by aerodynamic damping

only, as they assumed real principal coordinates. If complex principal coordinates —
waves — are used in the analysis, the paradox does not exist.

3.3 Discussion

In this chapter the interaction of the two structures, rotor and stator, has been investigated.
New critical speeds are discovered at which both structures are in resonance. At those
speeds, a counter-rotating wave of the rotor and a forward travelling wave of the stator of
the same number of nodal diameters can interact and drive the coupled system unstable.

This is a new feature, not explored in this way before and, together with the
experimental proof in Chapter 7, forms the main result of this thesis.

The existence of these critical points and the explanation of the energy transfer has
been motivated from basic vibrations theory. An energy balance between energy input
and dissipation is devised, but has to remain of questionable practical application due to
the extreme simplifications. The interaction must be assumed to go unstable for typical
damping levels present in turbo-machines.
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The existence of the identified critical points in the normal range of operation should
cause some concern among the designers of turbo-machinery.

The following chapters will investigate this instability both numericaly and
experimentally. The concepts developed in this chapter influenced the design of the
numerical integrator but also the experimental set-up, and vice versa.



Chapter 4: Numerical Simulation of the Interaction

In the course of the study it became evident that a closed-form solution to the coupled
interaction problem could not be achieved and so a numerical approach was pursued.

4.1 Problem Description

The difficulty of finding a closed-form solution lay to some extent in the complexity of
the structures but mostly in the intermittent and nonlinear nature of the contact forces.
During contact, these forces couple the structures and change their dynamic behaviour to
that of the coupled system. The contact locations change with time, making the problem
analytically intractable.

Thus, efforts were concentrated on developing a numerical ssimulation of the problem.
Advantages of a numerical smulation are: (i) that no physical structure needs to be avail-
able, so the simulation can be carried out at the design stage, and (ii) the relative ease
with which parameter studies can be conducted. Changing a structural parameter like the
damping in an experimental set-up can be very tedious whereas in asimulation it requires
a change of value of a (matrix-) variable only. The simulation can be supplied with data
from an experiment (but see (i)) or from a preceding analysis, or from both. Another
advantage is the output possible from a simulation: time traces of the deflection at any
point of the structures in any reference frame, velocities and accelerations, contact times
and forces, to name but a few. To gather the same information in an experiment would
require a much greater effort, especialy if it involved measurements in the rotating frame
of reference.

In order to fulfil its purpose, a mathematica model must be able to reproduce
measured data from atest rig. After the model has been validated in such a way, it can be
used to conduct parameter studies with confidence for a certain range of the parameters.
Beyond these ranges, the model may yield inaccurate results as the modelling errors
increase.

4.2 Satement of Objective

The mathematical model to be developed shall be able to predict accurately the dynamic
behaviour of the coupled rotor-stator system. By that it is understood that the model shall
be able to predict the positions and velocities of arbitrary points of both structures as
functions of time.

4.3 Mathematical Model of the Rotor-Sator System
In order to describe the travelling wave speed coincidence mathematically, the model
must include the dynamics of the individual structures and the contact dynamics.

78
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4.3.1 Stepsin the modelling process

The necessary steps to obtain a mathematical model include: the determination of the
system boundaries; the abstraction of the physical model; the introduction of simplifi-
cations to keep the model manageable; and, for continuous systems, discretisation in the
gpatial domain. Each of these steps will be detailed in the following paragraphs.

4.3.1.1 System boundaries

Introducing system boundaries separates the problem from its environment that it is
embedded in: the original problem of describing a structure and its environment is
changed to the description of the dynamics of the structure and the description of the
boundaries.

These fictitious system boundaries can be drawn everywhere, but physical insight into
the problem will help to solve the subsequent problems more easily. If the system
boundaries cut through areas with complex coupling, the description of the boundaries,
possibly functions of time themselves, may become very complex and may reduce the
benefits gained from introducing the boundaries in the first place.

4.3.1.2 Abstraction

After the system’s boundaries have been defined, the system dynamics must be derived.
For a complex system this is usually done by breaking down the system into smaller sub-
systems with known solutions. This process continues until the solutions to all (sub-) sub-

systems are known. These solutions are then combined to yield a solution of the

assembly.

Many different elements in physics and engineering exhibit the capability to store,
transfer, or transform a quantity such as energy. The model of a system can be moved
from its original domain into an abstract domain to clarify the task of each of its elements.
The domain in which the abstraction is made, for example mechanical or electrical, is
arbitrary and will strongly depend on various considerations, including past experience
and the tools available, (Karnopp and Rosenberg, 1968).

4.3.1.3 Simplification
The general goal of the process of simplification is to reduce the order and complexity of
the problem without changing its essential physics: in our case, its dynamics.

In the case of engineering structures, manufacturing tolerances will result in small
deviations of the geometry and hence the dynamics of each part of a series built to the
same, nominal, specifications will vary. For example, the dynamic properties of joints
such as screws and rivets are highly affected by differences in geometry, and, as joints are
the major source of damping in engineering steel structures, these structures’
characteristics can change dramatically due to subtle geometric changes. One
simplification is to start from the design data, ignoring the manufacturing differences.
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Assumptions regarding the type of damping or the magnitudes of any other unknown
factors will lead to further simplifications. Modelling a structure by using idealised
simple shapes, such as beams of uniform cross section (which make the problem
amenable to analytical solutions), is another case of simplification.

It isimportant to validate and to justify any of these simplifications. The objective of
simplification is to obtain a manageable model that represents the system under investi-
gation. If the model is neither manageable nor representing the system properly, then the
effort was spent in vain.

4.3.1.4 Discretisation

Closed-form solutions exist only for the simplest of continuous structures. More complex
structures are discretised spatially and the solution is computed at a finite number of
points only. The set of points is commonly called the mesh and the considered
displacements of these mesh points are the degrees of freedom. The solution at other
points of the structure must be obtained by interpolating the results of neighbouring
points.

Generally, the results of calculations based on the discretised structure depend on the
mesh, its detail and topology. The problem of mesh generation cannot be solved determi-
nistically and the mesh will need to be refined continuously with as much physical insight
into the problem asis available at any time.

4.3.2 Modesof theindividual structures
Following the analytical models of Chapter 2, the individual components are modelled as
structures with linear, time-invariant dynamics. The rotor is modelled as arotating disc of
uniform thickness with a central hole, and the stator is modelled as a stationary bladed
disc of uniform thickness with identical blades around the perimeter.

The idealised models will be presented first, followed by a description of the difficul-
ties arising from physical imperfections.

4.3.2.1 Rotor

The rotor is modelled as a thin disc using Kirchhoff theory for thin plates (e. g. Szabdé

1956). Due taentrifugal stiffening caused by the additional in-plane, membrane stresses
causing, the natural frequencies of rotating structures increase with speed of rotation,
(Lamb and Southwell, 1921). The effect of the rotation on the modeshapes is neglected in
the simulation.

For an axisymmetric disc of uniform thickness there exists a closed-form solution,
(Szabd, 1956). Already, a central hole makes the problem intractable analytically, and
approximate or tabulated values must be used, (Blevins, 1984). Following St. Venant's
Principle, by neglecting the effects of the hole, the solutions of slender discs with small
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thickness-to-diameter ratios and inner radii much smaller than the outer radii will
approximate those of discs without a hole.

Due to the continuity of physical structures, the modeshapes of axisymmetric
structures must be harmonic functions in the tangential direction, characterised by the
number of periods or nodal diameters, n, (Tobias and Arnold, 1957).

Most modes of the disc occur in pairs due to the axisymmetry. Both modes of such a
pair have the same eigenvalue and the modeshapes are similar but rotated around the axis
of symmetry by n/2n. Modes with zero nodal diameters do not occur in pairs but are
single modes.

For the simple structure used as rotor in the study, the modeshapes are known
analytically, but for more complex structures they will be obtained from a finite element
computation.

4.3.2.2 Stator

The stator is modelled as athin disc, just like the rotor. The blades which are modelled as
beams or, more accurately, as two-dimensional shells, are equally spaced around the
perimeter of the disc, making the overall structure rotationally-periodic rather than axi- or
cyclic symmetric.

Again, the modeshapes must be continuous and the modes can be characterised by the
dominant number of nodal diameters, n, while smaller components with other numbers of
nodal diameterswill always be present. By design, the coupling in the investigated bladed
disc is dominant between the axial motion of the disc and the bending or flap vibration of
the blades. In the vicinity of the bending modes of the blades, the blades act like tuned-
mass absorbers and the deflections in the disc diminish and the eigenvalues of the
coupled structure approach the cantilever bending frequencies in these cases.

4.3.2.3 Modéelling of Mistuning

The above comments on the dynamics of the rotor and the stator hold for perfectly
periodic or tuned structures only. If the blades have dlightly different dynamics due to
manufacturing or material tolerances, or if the discs are not of uniform thickness, the
structures are said to be mistuned. The modeshapes cannot be separated in tangential and
radial directions any longer and the description of their dynamics generally becomes more
complex. For small amounts of mistuning only, the structures can still be approximated as
tuned structures: the natural frequencies of the mode pairs split and the modeshapes can
be approximated by their dominant spatial Fourier components.

Tuned structures can be modelled analytically, but if mistuning is to be included in
the model, the dynamic characteristics will be obtained generally by the method of finite
elements. The solution of an FE model provides the modal matrix [®] and eigenvalues|, ]
of that model. Most FE programs will not treat damping and so the diagonal non-zero
elements of the assumed modal damping matrix [(,] must be either identified from



4 NUMERICAL SIMULATION 82

measured data or, more likely, set to a nominal value. If extensive measured data are
available, the experimental modal matrix could be used in preference to one obtained
from an FE analysis. Obviously, measured data will only be available for structures which
aready exist and thus cannot be used in the design stage.

4.3.3 Mode of the contact forces

The forces of particular interest in this study are the contact forces acting between the
blade tips and the rotor. These forces are intermittent and nonlinear in nature, making the
whole problem nonlinear. In the force computation the following assumptions are made,
and their validity explored in detail:

* the contact is assumed to occur at the blade tips only;

» theaxial forceis described as afunction of both interference and its time-derivative;

» Coulomb’s friction law defines the tangential force; and that

 the high-frequency impact dynamics are captured by the integration scheme.

4.3.3.1 Points of contact
From the geometry of the problem it is safe to say that the contact would occur only at the
blade tips. One or more blades may be in contact at any time.

4.3.3.2 Determination of the axial force

A complex model of the axial force is developed to include advanced features. In a very
simple, preliminary model, the axial force is assumed to be proportional to the axial
interference at the contact points:

{Az} ={z,} —{z,} + 2

L= {Az}; <0

where an initial gapz,, is taken into account. A contact force exists only for positive
interference. The interference is calculated from the displacementsziditeztion only.

Other approaches to calculate the contact force are possible, such as taking the normal
distance or any other measure involving the deflections of rotor and stator, but these
necessitate the introduction of further assumptions. The accuracy of the presented
approach should be sufficiently accurate for small interferences.

The simple force expression is not differentiable at zero interference, a feature that
can cause problems for the numerical integration routine. In order to avoid problems of
that type, a stiffness force proportional to the square of the interference is introduced
around the zero point which continues linearly after some transition Radye:
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krs({AZ}z - Azlln/z) {AZ}Z > AZlin
by 1021
7 AZ[Z'“

0 (Az}; <0

i) = {Az}, =[0..Az,] (4-2)

The model is further refined by the inclusion of a loss factor for the impact. This is
accomplished by extending the contact force to be a function of the interference and the
relative velocity, generdly F = f(Az,A%). Effectively, this replaces the constant
stiffness in Equation (4-2) by a velocity-dependent one:

k= ke 90 (4-3)

S

where d is a parameter defining the loss factor of the impact.

The development of the contact force from alinear function of the interference over a
smooth function in the derivative to a smooth, dissipative force function is shown for a
sinusoidal interference in Figure 4-1.
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Figure 4-1: Displacement- and speed-dependent contact force

Fumigalli and Schweitzer (1996) pointed out that only a nonlinear interference-force
relation would guarantee physically valid models. Both their model and the model presen-
ted here ensure that the impact force remains always positive. The area encircled by the
thicker line in Figure 4-1 is proportional to the energy dissipated during one impact for
the nonlinear model.

The contact force expression could be modified further to give a non-zero force for
‘negative’ interferences. Physically, this could be justified by the assumption that the
airflow around the rotor excites the stator before actual contact.
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4.3.3.3 Tangential force model

The difficulty in determining the correct friction law lies in the difficulty of understand-

ing the contact dynamics. Even after the mechanism is understood, it remains to identify

the parameters of the model. Especially for the smulation of a non-existing structure,

such as one that is currently in its design stage, it will require a great deal of expertise to

choose the right parameter set. For these reasons, Coulomb’s law of friction is used
frequently in engineering analysis. It relies on a single coefficient, the kinematic
coefficient of friction, relating the friction force to the relative velocity at the interface:

F, = —sgn(v)pk, (4-4)

where sgn is the signum-function returning one for positive arguments, zero for an
argument of zero, and minus one for negative arguments. Although originally only
intended for a small class of rigid body contacts, the Coulomb friction model has been
found to represent a wide range of contact problems quite well.

In the literature, a speed dependency of the friction coefficient is cited, (Stelter, 1996),
but for the current problem it was decided that the coefficient of friction can be taken to
be constant as the contact velocity was assumed to vary only slightly around 80 m/s.

4.4 Formulation of the Dynamics

The abstract model of the structures and their interaction was presented in the preceding
section. The remaining task is to solve the coupled problem by combining the solutions of
the sub-problems. To do this, a mathematical formulation of the problem is derived and
manipulated to render it amenable to numerical solution methods.

4.4.1 Equationsof motion

The problem formulation for the dynamics of a continuous system leads to one or more
partial differential equations. The spatial discretisation transforms these equations into a
system of ordinary differential equations, presented compactly as a vector equation,
where the size of the vectors depends on the detail of the discretisation, and can rise to the
tens of thousands in today’s modelling practises. The form of the equations of motion for
a discretised system is:

(M, Wi, } +[C 0, 3 + (K K, b = {63

4-5
N} 410, + K, = () (4-5)

or more compactly:
M, 0 ([, C, 0 |[u, K, 0 fu. | [ ]
o owfarle ekl el

M,y o} + [CHa, o+ K, b =11, (4-7)



4 NUMERICAL SIMULATION 85

where [0] is the zero matrix, dots indicate differentiation with respect to timet,{v;} isthe
vector of the degrees of freedom, and the indices r, s, and r+s denote quantities of the
rotor, stator, and both structures, respectively. Thus, {u,_} and its derivatives describe
the dynamic motion of the system completely. The mass, damping, and stiffness matrices
of each structure, [M,], [C,], and [K;], are generally fully populated and the quantities
without subscripts are easily recognised as combinations of the properties of both
structures.

The task now is to solve Equation (4-7) for the unknown vector {u,.  } for arbitrary
initial conditions. The right-hand side, {f,}, introduces the coupling between the two
structures: {f,.} is the force exerted on the rotor by the stator, and { f,,} is that exerted
on the stator by the rotor. If there is no external forcing, then, by Newton’s Third Law:

st ==t (4-8)

Generally, the forces can be functions of the degrees of freedom, their time-derivatives,
and time itself explicitly:

{fu} - f(ur+s7ur+s’t) (4'9)

In the simulation the forces will be assumed not to depend on time explicitly, making the
set of equations autonomous. This difference is important for closed-form solutions of
differential equations, (Jordan and Smith, 1992), but it sometimes influences the strategy
of the numerical solver as well.

4.4.2 Standard form of integration
The problem as formulated is not in a standard form for autonomous systems as required
by most solvers:

) = f(lu}) (4-10)

where f is an arbitrary vector-valued function, not to be confused with the force-vector,
{f,}, and{u} is the state vector. Problems in structural dynamics, after spatial discretisa-
tion, lead usually to second-order ordinary differential equations in time, Equation (4-7):

{i} = f({ub,{a}) (4-11)

4.4.2.1 Transformation of the equations of motion to standard form
To cast the differential equations, Equation (4-7), into standard form requires the forma-
tion of a state vector that includes the degrees of freedom and their time derivatives:

fu} = {{“”8}} (4-12)

li )

With this state vector, Equation (4-7) can be rewritten into the standard form:
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o oTNTo i1 0
oo o)

where 1] is the identity matrix. Translating the problem into state space increases its order
by afactor of two.

4.4.2.2 Transformation to principal coordinates
Equation (4-13) can be supplied to the solver, which, starting from initial conditions
would integrate the equations and output the state vector at discrete times. This proves to
be very expensive computationally and a further transformation is introduced. For the
integration of the equations of motion, the direct formulation, Equation (4-13) is not very
well suited. The computationally-expensive full matrix inversion and multiplications can
be avoided if modal decompositions of the individual structures are available. The
following paragraphs describe the application of the theory of moda decoupling as
detailed in Chapter 2 to the problem of integrating the equations of motion. For better
readability, some equations from the earlier chapter are repeated here.

Under the assumption of proportional damping, changing the basis of Equation (4-13)
to principal coordinates, Equation (2-12):

{u} = [®l{p} (4-14)

will uncouple the equations of motion, i.e., the coordinate transformation will diagonalise
the matrices|M],[C], and[K]. Thisis advantageous, as operations on diagonal matrices are
computationally very inexpensive.

The required modal matrix can be obtained either by numerical analysis techniques
like the finite element method or by experiment. The matrix is composed of the modal
matrices of the rotor and stator.

For the mass-normalised modal matrix [®] the following relations hold:

—

(@' [K][®] = [\, ] = [w?] (4-15)
[o]'[Clle] = 2[¢, Jlw,]

[w,] is the diagonal matrix with the natural frequencies on the diagonal, [\,] is the square
of [w,] with the eigenvalues on the diagonal, and [(,] is the diagonal modal damping
matrix. With these relations, Equation (4-13) changes to:

T (B e )

or:
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From Equation (4-16) the advantage of changing to principal coordinates is obvious: a
computationally-expensive matrix inversion is avoided and the blocks of the system
matrix are al diagonal, reducing the matrix-vector multiplication to a summation of two
element-by-element multiplications. The only remaining full matrix-vector operation is
the computation of the force projection into the modal space:[®]* { fud =00

As the modal matrix [®] is time-invariant for the systems investigated in the study, the
time derivatives of {p} obey the same transformation:

{u} = [®{p} {a} =[O p} (4-17)

The modal matrix and eigenvalue matrix of the state vector {u}, introduced in Equation
(4-12), arerelated to those of the physical coordinates {,., .} by:
[® ®, I (W, ] 0
Uy gy — Uyt s 4-18
o, 1| T 0" ) @

[q) ] — ur‘+s]
Uyt g Uy s

e, @, ] dw

Ut Uy g

where the star denotes the complex conjugate. So, neither the modeshapes of the state
vector nor its natural frequencies contain more information than was available from the
initial coordinate set.

4.5 Setting up the Integration

For ease of parameter changes and display of results, the smulation is carried out on a
digital computer. Analogue computers would have been faster but changing system para-
meters would have been more difficult to model and the intermittent nature of the contact
was not very well suited for this type of computer. With digital computers, for all
purposes sequential automata, two variables are of crucial importance: the problem size
and the numerical integration scheme. Migjudging either of these will lead to meaningless
results — and it may be very difficult to identify these as such.

45.1 Problem size
The consideration for the choice of the right problem size are twofold: on the lower side,
the simulation needs to include only the ‘relevant’ dynamics and on the upper side, it will
not finish in reasonable time if the problem is too big. The right reduction will result in a
compact model that predicts the physical events faithfully in reasonable time. The
‘reasonable time’ cannot be defined in absolute terms. For a real engine, a simulation will
take longer than for a simplified model. If many parameter studies are to be performed,
the time constraint becomes even more important.

As with any computation, there exists the trade-off between effort and accuracy. The
smaller the problem size, the more economical it is to solve the problem. Assuming that
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the storage requirements can be fulfilled, the effort trandates into speed: the smaller the
number of modes included, the faster the simulation will run.

The danger of reducing the model too far is the suppression of relevant dynamics of
the structure. By removing physical modes from the simulation, the system is hindered in
its ability to move naturally. So, even if modes are not under direct scrutiny, they may be
instrumental to the initiation of the phenomenon. For undamped systems, Y oram (1995)
found the natural frequency to be the most useful selection criteria. The methods of model
reduction are detailed in, for example, Samar, Postlethwaite, Gu, (1995), and Yae and
Inman, (1992).

Therefore it is safer to approach the minimum problem size from above and to reduce
the size after investigating the effects of the other modes. Approaching the smallest size
viable ensures that al relevant modes are included in the simulation. It makes initially the
computation of more modes necessary, but the excess cannot be avoided as it cannot be
determined beforehand.

45.2 Selection of the integration scheme

The second important choice in the simulation is the choice of the integration scheme.
The algorithm must be capable of integrating the differential equations accurately. For the
problem at hand there are many difficulties for a numerical solver or algorithm: the time-
step, short-time events like impacts, changing system parameters, and intermittent forces.
These difficulties require the algorithm to take extra care when progressing in time. This
trandates into a high computational effort or integration time.

The general program flow of the simulation is summarised in Figure 4-2:

FE Output » Modal Data

\_/\
Speed of
v Rotation

Sf[?_e_ed - Speed
coefficients "' Correction
\/\
\ 4
Mode
Selection

A

Initial Time Displacement
Conditions Integration Plot

h 4

Displacement
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Figure 4-2: Integration Scheme
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The initial set-up takes the modal data of the rotor and stator and corrects the natural
frequencies of the rotor for the selected running speed. It then selects the modes that are
going to be considered in the integration, and reads the initial conditions in both deflec-
tions and velocities. The time integration provides as output the displacements and
velocities as functions of time at the computed time-steps. Immediate display allows the
user to observe the evolution of any computed quantity. The next paragraphs explain
some steps in more detail, concentrating on the numerical and physical aspects of the
problem.

4.5.2.1 Changing system parameters and step size

The function f({u}) in Equation (4-10) describes the dynamic of the states. Any nume-
rical solver will have difficulties with changing system parameters because all integration
schemes have to extrapolate in time at some stage. At times where the system parameters
are constant, the solver can predict the response at the next time step easily from the
recent history and will use large time stepsto increase overall efficiency. When the blades
impact the rotor and the two separate structures change to a coupled system, the system
parameters change and the time extrapolation mispredicts grossly.

After such an ‘error’ the procedure restarts from the last predicted point with a
smaller time step and repeats this until it predicts the next point with sufficient accuracy
or exits with an error. The smaller the time step, the longer the simulation will run. In
order not to be restricted to the smallest necessary time step, a scheme with an adaptive
step size is an absolute necessity for the solution of differential equations describing
systems with changing parameters.

The determination of the step size depends on an error criterion, based on relative and
absolute error bounds. The step size will decrease when the system parameters are
changing and it will increase when the system parameters are constant or change only
slowly, for example, when the structures are vibrating freely without contact. Some of the
discussion is sketched in Figure 4-3, further control parameters are used in actual
algorithms.

4.5.2.2 Determination of the sampling time
Different from the step size and completely independent of it is the sampling frequency,
or the time interval at which the solution is provided.

The minimum sampling time is determined by the highest frequency present in the
simulation. For the present simulation, the frequencies are known and the minimum
sampling rate can be determined exactly. Due to the choice of principal coordinates in
two reference frames, and the speed modulation, the sampling rate must be much higher
than in would be in an experiment, this will be detailed below.
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Figure 4-3: Integration algorithm with adaptive step-size

4.5.3 Selection of modes

Different approaches to select the modes can be used. One possible approach would be to
include only modes with certain spatial patterns, say, only 2ND and 4ND modes, another
approach isto select the modes by frequency.

45.3.1 Selection by spatial pattern

This sort of selection implies that the other modes are irrelevant to the simulation by
consideration that their average contribution tends to zero. In the limit this leads to the
minimum configuration of 2 double modes (one from each structure): the simulation
includes only those modes whose nodal diameter pattern is under investigation.

The danger of this approach is that short-time interactions may be lost. Another diffi-
culty isto obtain the proper initial conditions. Especially random initial conditions cannot
be smulated. For the latter reason, this minimum approach with only 4 modes is too
unrealistic to be pursued further in the current study.

45.3.2 Selection by frequency range

Another way of selecting the modes for the simulation is to select them by frequency.
Usually, a frequency range is chosen and all modes within are included in the simulation.
This approach guarantees that all dynamics in that range are accounted for. Effects
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outside the chosen frequency band, such as short impacts and other high-frequency
phenomena, will not be covered, so care must be taken in the selection of the range.
Where to set the frequency limit is a matter of engineering judgement and careful analysis
of preliminary modelling and simulations.

In selecting the frequency range one has to remember the twofold speed-dependency
of the rotor natural frequencies due to centrifugal stiffening and due to the transformation
into the stationary reference frame. In order to ensure that both points are addressed
properly, the rotor frequencies for a particular set speed of rotation must be calculated
before the selection can be made. Figure 4-4 exemplifies this for one mode: in a smula
tion there would be many of them to be considered.

Even if the rotor natural frequencies at zero speed are outside the band, the frequen-
cies of the counter-rotating waves (the lower of the two rising curves in Figure 4-4) might
rise into the band, so that the modes must be included in the simulation.

Once the mode is included in the simulation, its co-rotating wave (the higher of the
two rising curves in Figure 4-4) defines the highest frequency due to this particular mode.
The maximum of all selected rotor modes defines the upper bound of the frequency band
from which the stator modes are selected. The upper frequency of the frequency band also
determines the sampling frequency. In order to satisfy the Nyquist Criterion, the sampling
frequency must be larger than w,,,;,, :

W, pin = 2max(w,,, () + n) (4-19)

half of whichisindicated in Figure 4-4 by w,,,;,,/2.
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Figure 4-4: Selection of Modes
Selecting the modes according to the outlined scheme may result in a very high upper
frequency, Figure 4-4, which in turn will lead to many stator modes falling into the
frequency band. Analysis of the principal coordinates of the data from an initial smula-
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tion with all selected modes included serves as an indication of which modes need not be
carried through in further ssmulation runs.

4.5.4 Computation of the contact forces

The computation of the contact forces starts from the computation of possible interfer-
ences and the resulting axial forces, sketched in Figure 4-5. The axia force and the state
vector determine the tangential force. The individua steps of the computation of the
contact force are detailed below.

45.4.1 Contact points

It is reasonable to assume the contact to be limited to the blade tips. Depending on the
geometry, one or more nodes will define the tip. In order to find the contact points the
responses of both structures need to be expressed in the same reference frame. In the
following, the contact points and forces will be computed in the stationary frame of
reference, indicated by the shaded area in Figure 4-5; any other frame of reference is
equally valid and possible.

Computation in mixed
rotating/stationary () p,0)
modal coordinates

u(t) w(t)

Interference

Friction Law Contact Forces
Impact Law

System plt+AT)
Matrices p(t+At)

A 4

Figure 4-5: Contact force computation

4.5.4.2 Response Computation
The responses « are computed by modal superposition from the principal coordinates and
the modeshapes:

{u;} =10, 1{p;} (4-20)
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where i = r,s for rotor and stator, respectively. As the principal coordinates of the rotor
are integrated in the rotating frame of reference they must be transformed into the
stationary reference frame by:

t
05 =0p — [Qr)dr (4-21)
0

assuming that the coordinates system originally coincided. For constant speed of rotation
this simplifiesto:
O =0 — Qt (4-22)

45.4.3 Tangential Contact Coordinates
The tangential coordinate is computed from the position of the blade tips around the
perimeter and the angle due to their tangential deflection.

As the rotor node positions will not coincide with the computed contact positions, the
rotor responses, both displacements and velocities, are interpolated to the computed blade
tip positions. The rotations are interpolated linearly and the deflections, quadratically. The
contact is supposed to occur on a constant radius, R,.,,,;..,» Which implies a reduction of
the problem to two dimensions; the extension to three dimensions, making the contact
radius a variable, is straightforward but is deemed unnecessary for the model used due to
Its particular geometry.

4.5.4.4 |nterferences

From the displacements of rotor and stator the interferences, Ax, are computed. The
relevant measure is assumed to be the interference in axial direction for the reason given
in Paragraph 4.3.3.2. The interference is kept small by the adaptive step-size algorithm of
the integration routine and a large contact stiffness, effectively simulating an
Impenetrable rotor and stator.

AX

Node

T~

Figure 4-6: Determination of the interference
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45.4.5 Axia force

The axia force can then be computed from the contact stiffness, the interference, the loss
factor, and the time-derivative of the interference. The force model can accommodate
different impact velocities by weighting the velocity more or less strongly, parameter d in
Equation (4-3):

k'rs = k;TS e_dAi:
The axial force follows from Equation (4-2).

45.4.6 Tangentia force
The tangential force follows from the contact geometry and the axial force, Figure 4-7.

Figure 4-7: Determination of the global tangential force

The normal and tangential forces in the local contact coordinate system are not derived
explicitly, but could be computed if required. The chosen approach combines the coordi-
nate transform, Figure 4-7, with the kinematic condition on the forces:

F,| | cosa  sina |[F,
Fy| |—sina cosa||F (4-23)
F, = sgn(uliF,

where o is the angle between the global axial direction and the local normal direction.

The sign of the velocity will always be positive because of the high surface velocity
due to the rotational speed and so the normal and tangential forces are related by the
coefficient of kinematic friction. Combining the equations yields:

Fy = g, A tAne (4-24)
1+ ptana
which is a highly nonlinear relation between the two forces in the global coordinate

system, Figure 4-8.
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Figure 4-8: Ratio between tangential and axial force

45.4.7 Transformation into physical and modal space

The forces for the stator are easily put into the equations of motion as the computed
contact forces act at the blade tips where there is always a node. For the rotor, the contact
positions generally do not coincide with the positions of the nodes and the computed
contact forces must be split between the neighbouring nodes. Different approaches are

possible, but a ssmple first-order force and moment balance between the adjacent nodes
seems most appropriate.

Fo

right node
Figure 4-9: Computation of nodal forces

The forces are only split between the two neighbouring nodes to introduce the forces into

the system. The response of the structures to these forces then travels from the ‘entry
points’ through the whole structure over time. If the forces were decomposed modally and
applied to all nodes simultaneously, this temporal delay would not be captured. The
underlying assumption is that the wave-propagation speed is not negligible compared
with the system dynamics, (Schweitzer and Fumigalli, 1996).
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Once the nodal forces are obtained, the force vector in the degrees of freedom is
defined and can be transformed into the modal space by left-multiplication with the
transpose of the modal matrix, Equation (4-16).

4.6 Solution Procedure

The integration is performed in the MATLAB environment, (Mathworks, 1994). The
advantages in using this software for solving the differential equations are the full control
over the algorithm with access to the source code. This way, for example, all variables are
accessible and can be saved for later use. Also, a powerful graphics engine is available at
any time to present computed results immediately.

In the computing environment are many different integration algorithms available,
standard Runge-K utta algorithms and Rosenbrook methods for stiff systems of different
orders, Shampine and Reichelt (1995).

Algorithmic stability, as opposed to structural stability, is an important part of any
integration scheme. Two types of algorithmic stability exist: unconditional stability is
independent of the step size while conditional stability depends on the step size and
becomes unstable beyond a certain step size, At, ... As Argyris and Mlgnek (1991)
pointed out, most of the time stability is a necessary, but not sufficient, feature of an
algorithm: naturally, an accurate solution is sought and so accuracy is the second key part
of any solver. How the accuracy can be controlled, and which steps of caution are to be
taken, is detailed in the above references. They also address the phenomenon of
numerical damping. This occurs because of the finite word lengths of digital automata.
and is sometimes useful (Wilson’$-method) to suppress spurious modes at the Nyquist
frequency introduced by the integration scheme, (Xie, 1996). The danger of numerical
damping is that it also suppresses physical modes and the way to overcome this problem
by reducing the step size is very costly.

4.6.1 Selection of the sampling frequency
The sampling frequency,,,;,,, is chosen according to Equation (4-19), and is rounded, so
that, instead of, say, 1858 Hz, a sampling rate of 2000 Hz is used.

4.6.2 Choice of initial conditions

Little has been said about the initial conditions. The theory as outlined above requires that
the initial conditions should not be critical for the occurrence of the phenomenon as the
required modes are in resonance.

For the simulation, it turns out to be difficult to select initial conditions that start the
contact without causing the simulation to exit due to numerical problems caused by
excessively high contact velocities. Implemented choices for the initial conditions are:

e random: assuming nothing about the conditions that caused these initial
conditions.
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» velocity impact at a point: ssmulating an impact of some sort. This should be
promising as the experiment conducted in this way established the travelling-
wave-speed coincidence, Chapter 7.

* modal: asserting that some resonance condition prevailed that amplified the
response of these modes or waves.

4.6.3 Test cases

In order to ensure the proper functioning of the code as it is developed, test cases are
developed, one of them being the engine-order test, where the rotor, spinning at an
engine-order speed, is excited by a spatially-varying, time-invariant force to vibrate in a
standing wave. The speed of a counter-rotating wave, — v,., equals the speed of rotation
Qpo, and so it appears to the stationary observer as if the disc is deflected statically in
space, deformed in an wavy, n-nodal-diameter pattern. As a side effect, the sound
emission from the rotor tends to zero as there is no normal direction to the vibration. The
stator exposed to the same excitation force experiences a static force and deforms into a
force-proportional deflection pattern, after the initial disturbances have decayed.

A general check for the simulation results is to ensure that the frequencies of the
response signals are the correct ones: starting from non-zero initia conditions without
contact throughout the simulation, the stator frequencies are expected to be the natural
frequencies only, and those of the rotor measured in the stationary reference frame should
be modulated by the speed of rotation times the number of nodal diameters, n:

Wypg = Wepp T NS (4-25)

4.6.4 Program description
The programs for the simulation are developed under the MATLAB environment. The
programs are fully portable between IBM PCs and IBM RS/6000 workstations.

In order to keep the programs modular and easy to maintain, the code is broken into
functions residing in separate files. The driver program and the important functions are
given in the Appendix and will be explained below to clarify the program flow:

The simulation is started by calling STARTINT, which sets up al relevant parameters
and global declarations.

The input data from the FE program are computed in MODPARMS, which returns the
modal properties of both structures at interface nodes, selected in PATHR and PATHS. The
modeshapes are returned in cylindrical coordinate system of (r,0, z).

MOoDPARMS also determines the number of nodal diameters of the modes. The modes
are selected according to the methods detailed above to keep the size of the problem
manageable.
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The running speed is set, either arbitrarily or as a function of the natural frequencies
of rotor and stator in OMEGACRT. This function enables one to set the speed of rotation
to, for example, the engine order speed 2 5,,.

Correcting the natural frequencies of the rotor is carried out in CFOMEGA. Due to the
centrifugal forces acting on the rotor, the natural frequencies increase. The correction
factors necessary were calculated in advance.

The initial conditions are set and the integration is started by calling any of the solver
provided in the Matlab ODE-Suite: ODE45 or ODE23s. The solvers are provided with a
function that computes the derivative of the state vector with respect to time, function
DERIV.

Function DERIV computes the deflections of rotor and stator at the position of the
blade tips in DisPCoNT. From the displacements, the possible interferences are computed
in INTERFER and the contact forces are calculated in FORCEC. The axial force is computed
in RsF from the interference and the normal velocity of the impact. The tangential forceis
computed using Coulomb’s friction iroRCEC.

Again in Derlv, the contact forces are transformed into the body-fixed coordinate
systems, rotating for the rotor and non-rotating for the stator, and finally into the modal
space spanned by the principal coordinates.

When the integration proceeds in timesQREPLT is called to plot the responses at
one blade.

After the integration finishes, the responses are computed from the modeshapes and
the principal coordinates inOBTPROC. The response of the rotor is transformed into the
stationary reference frame in RAPRESP and both responses are low-pass filtered and
resampled using the Matlab routineEdMATE. Eventually the evolution of responses
with time can be presented wRRINCPLT, PARTPLT, and Matlab’©wn SURF function.

4.7 Discussion
The mathematical model developed above describes the dynamics of the individual
structures and the dynamics of the contact between the structures. Initial tests, presented
in the next chapter, show the validity of the approach and indicate that the program as
developed can predict the behaviour of the structures within the limits of the assumptions
and approximations made, namely:

* linear, time-invariant dynamics of the structures

» complex impact stiffness for the normal contact force

» Coulomb-friction for the tangential contact force



Chapter 5: Simulation Results

The numerical model developed in the previous chapter has all the necessary elements to
simulate the dynamical behaviour of the fully-elastic rotor-stator system. The first step of
using the simulator is to make sure that it is working correctly by running test cases with
known results. Once the simulator produces the expected results, it is assumed that all
programming errors are corrected, and the simulation of the travelling-wave-speed
coincidence instability can be started.

In order to distinguish between temporal stationarity and spatial stationarity, the term
time-invariant is used for the temporal stationarity.

5.1 Test Cases
The test cases used are the responses to engine-order excitation of both structures
separately. Engine-order excitation is typical for rotating machinery where it can be
caused, for example, by pressure fluctuations in the upstream working fluid. At engine-
order speed a counter-rotating wave of the rotor has a natural frequency of 0 Hz in the
stationary frame of reference, its velocity, v,, being equal and opposite to the speed of
rotation, €2. Hence any time-invariant force with a non-zero spatial Fourier component
with the same number of nodal diameters as the wave excites the rotor in resonance. The
number of nodal diameters, n, of the wave crossing the 0 Hz line gives the engine order
itsname: EOn or nFO.

In the following simulations, the structures are excited by a force with a spatial cos20
pattern and the rotor is assumed to spin at its second engine-order speed, §2 )9, SO that its
two-nodal-diameter, counter-rotating wave is in resonance with the force.

5.1.1 Engine-order excitation of the stator
The response of the stator to a stationary, time-invariant force is a temporally-constant
deflection. The deflection is expected to be relatively small because the stator has no
elastic natural frequency of 0 Hz and is not in resonance with the engine-order excitation.
In the test cases, the amplitude of the force is increased dowly to avoid transient
responses and hence the response of the stator grow with time, see Figure 5-1, where dark
shades of grey indicate large positive deflections and light shades large negative
deflections. The axes are time, the angular coordinate around the structure (labelled
theta), and the axia coordinate (labelled u). The first suffix indicates the structure: s
stands for stator and r for rotor, and the second suffix identifies the reference frame: Sfor
stationary and R for the reference frame co-rotating with the rotor.

99
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Stator response in stationary observer frame
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Figure 5-1: Stator response in the stationary reference frame

The stator does not vibrate but grows in amplitude with the force, it deforms statically. If
the forces were constant in magnitude, the deflection of the stator would not change with
time at all. Thistest validates the stator part of the model.

Stator response in stationary observer frame [mm]
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Figure 5-2: Two-dimensional view of Figure 5-1 (top view)
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The display of the vibration in three dimensions, Figure 5-1, is visualy attractive but
carries no advantage in information density, (Tufte, 1990). Indeed, the perspective view
obscures the direction of travel of the vibration pattern. Also, the third dimension and the
colour are used redundantly, both visualise the magnitude of the displacement. The plot
can be reduced by the third spatial dimension without losing any information, Figure 5-2.
Alternatively, the colour could be disregarded.

The resulting plot is even clearer than the more complex three-dimensional figure, as
it shows immediately that the deflection pattern does not move in the tangential direction,
which runs from bottom to top. The colour coding is explained concisely by a small patch
on the side of the plot. Thistwo-dimensional format will be used throughout the thesis.

5.1.2 Engine-order excitation of therotor

The response of the rotor to a 2ND-engine-order excitation is shown in Figure 5-3 in the
stationary frame of reference (thetarS).

Rotor response in stationary observer frame [mm]
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Figure 5-3: Rotor response in the stationary reference frame

The displacement is growing in the same pattern as the stator in Figure 5-2, but the
displacements increase to much higher levels. This is because the rotor is excited in re-
sonance by the engine-order force pattern. As expected, the response pattern is stationary
In space, a stationary wave, similar to the force pattern. This may lead to the conclusion
that the rotor does not vibrate. That this is not the case can be seen if the displacement is
presented in the body-fixed, rotating frame of reference, as shown inFigure 5-4.
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Rotor response in rotating observer frame [mm]
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Figure 5-4: Rotor response, second engine-order excitation, stationary reference frame

The material points of the rotor vibrate at the natural frequency and from Figure 5-4 it can
be concluded immediately that the rotor is vibrating in a2ND counter-rotating wave, with
velocity, vy, given by:

=37 /2rad _

Vo R e —1178rad/ sec = —118.4rad/ sec =— Qgpo (5-1)
04sec

5.2 Preliminariesfor the numerical Simulation

5.2.1 General layout of figures

The format of the results as presented above is suited for slowly-varying responses only.
In the subsequent plots, the displayed data are further reduced to one tangential position
along the perimeter, corresponding to a single horizontal line in Figure 5-4, to make a
visual interpretation possible. The rotor and stator responses are plotted to resemble as
closely as possible the vertical configuration of the test rig where the rotor is mounted
above the stator, see Chapter 6. In the following figures, the trace in dark grey is the rotor
response and the lighter grey indicates the stator response. Also marked by faint dash-
dotted lines are the static positions of the rotor and stator. Initial tests showed that
changing the initial gap between the two structures only changes the required initial
conditions to make contact and thus the parameter isfixed at 2 mm for all simulations.
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5.2.2 Initial conditions

Except where noted, only the rotor has non-zero initial conditions: a counter-rotating
wave of the nodal diameter under investigation with a magnitude 1.5 mm, three quarters
of the initial gap of 2 mm, and a random excitation with an amplitude of one half of the
initial gap, 1 mm. In this way, contact occurs with a strong initial counter-rotating wave
component. In order to have contact only after the first time step, the random excitation
was in specified for the velocities only.

These initial conditions may be considered to be representative of real aircraft engines
where it can be assumed that some engine-order excitation is present and causes a perma-
nent counter-rotating wave in the rotor, whereas the random vibration can be attributed to
various sources such as flight manoeuvre or abird strike.

5.3 Simulation of the 2ND Travelling-Wave-Speed Coincidence

The next figures show the results of the simulation of the dynamic behaviour of the rotor-
stator system investigating the two-nodal-diameter waves. The following Figure 5-5
shows the speeds of the following simulations.
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Figure 5-5: Critical travelling-wave-speed coincidences

5.3.1 Simulation at critical speed of rotation (Simulation 1)

Figure 5-6 shows the response of the two structures at the critical speed marked Simula-
tion 1 in Figure 5-5. The critical speed of the two-nodal-diameter waves in the simulation
can be computed to be:

Qpiro = 3130rev/ min (5-2)
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Figure 5-6: Response at critical speed, 1.0% damping

with an identical wave velocity of rotor and stator of:

Vog = V,9g = Veg = 63.5rad/s (5-3)

The rotor starts with an almost periodic response due to the initial conditions. The
response decays at first and becomes more random in nature, until it grows again after
about 2.5s. The decay can be explained by the decay of the random component in the
signal. From about 2 s onwards, the rotor bends upward away from the static position
indicated by the upper faint line in Figure 5-6. The dominant frequency of the vibration is
that of the 2ND-counter-rotating wave for which the speed was set to be the critical
speed, 2.,.5¢o-

The stator response starts randomly with no clear envelope shape but becomes
periodic after about 1.5 s, and grows exponentially thereafter. The stator bends downward
from the static position, indicated by the lower faint line. Again, the response is
dominated by the frequency of the resonant, 2 ND-forward-travelling wave.

The simulation aborts after about 3.3 s due to numerical problems, but the simulation
can be stopped long before as in rea structures, such as the test rig or jet engines, the
amplitudes would be limited by nonlinearities, such as contact with the sensors or
nonlinear large-amplitude dynamics of the discs, (Swaminadham, 1990).
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Figure 5-7: Response close to, below critical speed, 1% damping

5.3.2 Simulation at subcritical speed of rotation (Simulation 2 to 4)

The next simulations, Figure 5-8 and Figure 5-9, show the responses of rotor and stator
when the speed of rotation is set below the critica speed. The speed of rotation is
computed from the following relation:

wTR(Q) + (wSS + Aw) = nf} (5'4)

where the argument of the rotor natural frequency shall serve as a reminder of the speed
dependency of the natural frequency of the rotor due to the centrifugal stiffening. Aw is
the desired difference of the natural frequencies.

Two parameters are varied: the distance from the critical point, Figure 5-5, measured
as adifference of either speed or wave velocity, and the amount of damping in the mode.

5.3.2.1 Effect of distance to critical speed (Smulation 2 and 3)
The distance of the set-point to the critical point in the following figures is given as
difference of the natural frequencies of the structures. If the wave velocities differ by Av,
then the natural frequencies differ by Aw=nAv. The difference in Hertz is noted in the
title of the figures.

Very close to the critical speed, Av, = =27 rad/s, Aw = -2 Hz), Simulation 2 in
Figure 5-5, corresponding to a speed difference of aldut= —230 rev/min, the
responses are still unstable, Figure 5-9, and the system behaviour is qualitatively similar
to that at critical speed, Figure 5-6.
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Figure 5-8: Response further below critical speed, 1% damping

Increasing the difference in wave velocities from Av, = —2r rad/s in Figure 5-7 to

Av, = —3r rad/s, Simulation 3 in Figure 5-5, corresponding to a speed difference of
AQ = —350 rev/imin below the critical speed, results in a stable response that decays to
zero, Figure 5-8.

The very small increase of difference in wave velocities ofrdd/s changes the
system behaviour from going unstable to remaining stable. This shows the importance of
the distance of the speed of rotation from the critical speed for the establishment of the
travelling-wave-speed instability. Only if the waves of both structures have the same
spatial pattern and progress with the same speed can sufficient energy be transferred into
the structures to overcome the dissipation by damping.

5.3.2.2 Effect of damping (Simulation 4)
The stabilising effect of the distance to the critical speed is offset by reducing the amount
of damping.

Figure 5-9 shows the system response for a differend®vof= —5r rad/s in wave
velocity (Simulation 4 in Figure 5-5) instead&$, = —3r rad/s, but 0.2% damping only,
1/5th of the damping present in Simulation 3 shown in Figure 5-8. The larger distance to
the critical speed cannot offset the destabilising effect of the reduction in damping and the
response remains marginally stable. For the low level of damping of 0.2%, the response
does not decay to zero but becomes almost periodic at a constant level, Figure 5-9. This
response can be viewed as marginally stable, as any change in parameters will cause the
amplitude of the vibration to either increase, potentially exponentially or decay to zero.
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Figure 5-9: Response below critical speed, 0.2% damping

The running speed was set for a Av, = —5r rad/s difference in the wave velocities, or
Aw, = -5 Hz difference in the natural frequencies:

Qg = 2560rev/ min = 082,

5-5
Ur,sub = 177Hz = 0'751}82 ( )

Due to the centrifugal stiffening, 18% speed reduction causes 25% reduction of wave
velocity.

5.3.3 Simulation at supercritical speed of rotation (Simulation 5)
The next simulation, Simulation 5 in Figure 5-5, shows the system behaviour for a
supercritical speed, Figure 5-10.

For a difference in the wave velocities &, = 5r rad/s orAw, = 5 Hz difference
in the natural frequencies, roughly 25% of the natural frequencies, the running speed is
computed to:

Q = 3720rev/ min = 1.199

super

(5-6)

crit2

The damping level is set to 1%, the same value as in Simulations 1 to 3.
At this supercritical speed, the structures separate after about 1.2 s and the responses
decay to zero.
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Figure 5-10: Response above critical speed, 1.0% damping.

Below Av, = 5nrad/s separation in wave velocities, the system response remains
unstable. For the subcritical speed, the system response becomes stable at a separation of
|Av,| = 3r rad/s. The difference between subcritical and supercritical behaviour can be
explained by the higher contact velocity causing more energy to be exchanged during
impact.

Due to the centrifuga stiffening, the wave velocities change slower than the speed of
rotation: for the same difference in wave velocity, the supercritical speed difference is
larger than the subcritical one:

Q - Qcm’tQ > Qcm’tQ - qub (5'7)

super

5.3.4 Simulation of mistuned stator at critical speed of rotation (Simulation 1m)
The final figure in this series, Figure 5-11, shows the effect of mistuning on the response
of the structures. The mistuning is modelled by changing, or detuning, the natura
frequencies of the wave pair under investigation, here the 2ND wave pair. The split is
introduced as fraction of the nominal natural frequency, w,,, of the original, tuned system.
In the simulation, the relative split of the natural frequencies, ¢, is set to 5%:
Wy = (1— %En)wn (5-8)
Wy = (L+ 5, )0y,
As has been explained in Chapter 3, mistuning has the effect of reducing the travelling-
wave component and of bringing into existence a stationary wave component, and
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Figure 5-11: Response at critical speed, 1.0% damping, stator 5% mistuned

reducing the efficiency of the energy transfer consequently, bringing the responses to
zero.

At the critical speed, Simulation 1, the responses of the tuned system with identical
natural frequencies of the mode pair, become unstable, Figure 5-6. For the simulated
mistuned system where the natural frequencies of the mode pair are split according to
Equation (5-8), the responses remain stable and decay to zero within a few seconds,
Figure 5-11. From the behaviour of the system at the critical speed, it is concluded that
the structures’ responses remain also stable at speeds other than the critical speed, a trenc
shown for the tuned system in the preceding paragraphs.

The degree of mistuning introduced to the stator is set to a realistic value for an
aircraft-engine casing where gearboxes and other support structures may well introduce
even larger mistuning, (Smailes, 1993).

5.4 Conclusions

The presented figures of the simulation results demonstrate the validity of the modelling
method. The developed simulation tool is sufficiently flexible to investigate turbo-
machinery of arbitrary geometry. The geometry chosen for the presented simulation is
that of the test rig in order to ease the comparison between the results of the simulation
and the experiment. Once the eigensolutions of the structures, including the speed
dependency of the modal properties of the rotating, part are available, the damping level
and a small number of contact parameters must be chosen to set up the simulation. From
there on the integration of the equations of motion is a standard procedure.
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For the initial tests of engine-order excitation, the outputs from the designed
numerical simulation, Chapter 4, are the expected results: both rotor and stator respond in
a displacement similar to the applied, time-invariant force. For the stator this implies a
time-invariant deflection, while for the rotor it implies a stationary wave, i.e., a counter-
rotating wave progressing with a velocity equal and opposite to the speed of rotation.

The unstable area of the behaviour of the tuned system derived from the various
simulations is sketched in Figure 5-12.
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Figure 5-12: Stable and unstable areas of the system behaviour

The system response for the modes with other number of nodal diameters is stable for

both levels of damping and in the speed range of the simulations (2560-3720 rev/min),
hence it can be argued that the minimum differences of wave velocies=(

3.7r rad/s,Av, = 7.0w rad/s,Avs; = 6.4 rad/s) are sufficient to avoid the travelling-
wave-speed instability.

For the mistuned system with 5% split in the natural frequencies, the system showed
no unstable behaviour.
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For the simulations of the travelling-wave-speed instability, the results exhibit the

expected parameter dependencies:

» the initial gap controls the onset of the interaction, it governs the level of the
initial disturbance that is required to bring the structures into contact;

» the required distance from the critical speed for stable behaviour is inversely
proportional to the level of damping in the structures, the lower the damping the
larger the unstable speed range around the critical speed; and

» at the critical speeds, where both structures are in resonance, only mistuning can
avoid the establishment of the instability. Any redlistic level of damping, up to
5%, did not change the quality of the behaviour at the critical speed.

With the results from the analysis and the simulation, the design of the test rig can be

continued as it was shown that the two structures of this particular geometry have, at least

theoretically, the potential to exhibit the travelling-wave-speed instability. In view of the
later verification of the results obtained so far, emphasis was put on test cases that could
be conducted experimentally.

The geometry of the structures used in the simulation was influenced by practical
requirements of the experimental set up, the design of which is described in the following
chapter.



Chapter 6: Design of the Test Rig

The validity of the analytical and numerical predictions of the previous chapters have to
be proven experimentally. This chapter describes the design of the test rig, while the next
chapter presents the measurements taken.

6.1 Purpose of the Test Rig

The purpose of the test rig is to conduct measurements of the travelling wave speed
coincidence. In order to perform this task the rig has to support the rotor and the stator in
a defined position; to drive the rotor at arbitrary speeds, including the critical speeds; to
change the clearance between the two elements; to enable vibration measurements at
different locations of the components; and to permit a controlled interaction between the
rotor and the stator.

6.2 Rig Requirements

In addition to fulfilling the main tasks outlined above, the test rig should be as simple as
possible so to facilitate modelling of and measurements on the rotor and the stator as far
as possible. These simplifications must not affect the validity of the measurements or the
relevance of the test results to engineering structures.

Necessary, identified, features of the travelling wave speed coincidence for the design
are: (i) the existence of travelling waves in both structures, (ii) a relative speed between
the two structures, and (iii) a coupling between tangential motion, collinear with the
surface speed vector, and a second direction, such as axia vibration.

The first feature makes it mandatory to have symmetric structures. The second feature
is achieved most easily by having relative rotation between the two structures. The third
feature makes it necessary to have a two-dimensional vibratory motion, coupling two
degrees of freedom.

These are the necessary features that must be present in the test rig, tests will show
whether they are sufficient.

6.3 Design Simplifications
As turbo-machines are generally complex systems, major simplifications have to be made
to make tests feasible.

6.3.1 Simplification of the geometry

A necessary feature mentioned above is the coupling of vibration in two dimensions. In
most turbo-machinery, the vibration patterns are three dimensional, and the geometry is
very complex in order to maximise the efficiency of the energy transfer. To reduce the
complexity of the test rig, a design is developed that reduces the investigated vibration

112
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patterns to two dimensions. A small coupling to the third spatial direction remains but can
be neglected in the current analysis as it is small compared with the vibration in the two
main directions.

The resulting design can be described concisely as afacing-discs design, and is shown
in Figure 6-1.

H

HHH Hi 4 b HHHH
H

Figure 6-1: Facing-disc test rig design

One structure is represented by a plain disc and the other one by a disc to which blades of
simplified geometry are attached by clamps. The blades are equally-spaced around the
perimeter of the stator disc with their longitudina axes parallel to the axis of symmetry.
The structures rotate relative to each other, so that there is a tangential velocity at the
location of the blade tips, where the structures are supposed to touch.

With this design, the complexity of the geometry is kept to the absolute minimum to
fulfil the three requirements mentioned above. The motion of the structures will be
predominantly axia vibration in the discs and axia and tangential vibration in the blades.
By rotating each blade around the global axia direction, aradial component can be added
to the predominantly tangential-axial motions of the blade tips as it is typica aero-
engines.

6.3.2 Change of observer frame

One of the mgor changes compared with turbo-machinery is to change the speed of the
parts around relative to a stationary observer: what is usually the bladed rotor is standing
still in the test rig, and hence called the stator in this thesis, and the component which
represents the housing rotates past it, hence called therotor herein, Figure 6-2.
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Figure 6-2: Notion of rotor and stator

Mathematically, the swap between rotor and stator is a change in the observer frame and
the relation to express quantities in either reference frame, the body-fixed rotating or the
stationary one, is a ssimple Galilean transformation. This change of rotor and stator leads
to many simplifications:

* It makes the analysis smpler by splitting the tasks more evenly, as described in
Chapter 3. Instead of a rotating bladed disc and a stationary unbladed structure, a
non-rotating bladed structure and a rotating structure without blades must be
analysed.

« It smplifies the experiment as the windage is reduced. Windage occurs now
around the unbladed rotor only, and is much reduced as the rotor possesses only
continuous surfaces. The aerodynamic forces are much smaller and can be
considered small compared with the structural forces in the analysis. They will
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enter the simulation as initia conditions and may modify the contact forces
dightly. In addition, the reduced windage requires less power to drive the rotor and
hence the available motor power can be used to maintain constant speed during the
experiment.
» Thedesign change simplifies measurements on the bladed structure.
Measurements of the blade dynamics are always of special interest to turbo-
machine engineers. Usually, this requires measurements in the rotating frame of
reference which is always a demanding task. With the current design of the rig,
taking measurement on the blades is considerably simpler as the blades do not
rotate.
The change of reference frame is possible only because the test rig is designed to
demonstrate the travelling-wave-speed instability and not to produce thrust by imparting
impulse onto the working fluid.

6.4 Geometry Selection
The properties of the rotor and the stator determine the critical speed for the travelling
wave speed coincidence.

6.4.1 Critical speed equation
The starting point of the design of the rig is Equation (3-29), relating the critical speed to
the sum of the natural frequencies of the rotor and the stator, (Schmiechen, 1994):

ana:U > w?’”ﬂ/ + wS’I’l Or Qma:ﬁ > Urn + 1}S’I’L (6_1)

In order to investigate the travelling-wave-speed coincidence with the test rig, the
maximum running speed, €2, ..., times the number of nodal diameters, n, must be larger
than the sum of the natural frequencies of the rotor and stator, w,.,, and w,,, , respectively.
Or, using wave velocities, the speed of rotation must be larger than the combined wave
speeds of rotor and stator, v,,, + v, .

Equation (6-1) governs the design of the rotor and the stator, whose interaction are to
be studied on thisrig.

6.4.1.1 Number of nodal diameters and number of blades

Because of the size of the displacement probes selected to take measurements on the
rotor, the number of nodal diameters that can be investigated is limited. Due to the
initially unknown behaviour at the travelling-wave-speed coincidence, non-contacting
eddy-current sensors with a wide linear measurement range are selected. As the field
disperses with distance, the displacement measurement is an average measurement over
the target area, which is a circle of 25 mm radius for the selected sensors. Also, the
probes cannot be placed closer than 125 mm to each other, and this limits the possible
spatial resolution further. Both constraints make measurement of modes with higher
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numbers of nodal diameters infeasible and thus limit the number of nodal diameters, the
first quantity in the design equation, Equation (6-1).

Modes with 2 to 5 nodal diameters are selected for investigation. It is decided to make
the number of blades a multiple of 2, 4 and 5 but not of 3, so that it is possible to check
whether the travelling wave speed coincidence can be more easily excited by a number of
blades that is an integer multiple of the number of nodal diameters under consideration.
The lowest common multiple of 2, 4 and 5 defines the number of blades: Ny, ., = 20.

6.4.1.2 Speed of rotation

The speed of rotation is the second quantity in Equation (6-1) to be fixed. For safety
reasons, it is desired to limit the running speed to about 3000 rev/min. This putsit at half
the maximum speed of the motor and leaves some flexibility .

6.4.1.3 Natural frequencies of rotor and stator

It turns out that the speed constraint together with the design equation, Equation (6-1), is

quite restrictive for the design of the laboratory rig, especially for modes with only a few

nodal diameters.
Various alternatives to bring the sum of the rotor and stator wave velocities within

this tight band of 3000 rev/min = 100r rad/s are checked. The influence of the main

design parametersis as follows:

+  Blade geometry: Wy isever % b/
The stator natural frequencies are governed mostly by the cantilever frequency of the
blades and thus can be decreased by increasing the length of the blades. Reducing the
thickness will reduce rapidly the out-of-plane load for plastic deformation as the
critical load is proportional to P, ;, o h®/1 , (Szab6, 1984).

«  Disc geometryl;,, « h/r’
Increasing the outer diameter of the disc reduces the natural frequencies, but leads to a
slender structure that is not easily handled. The design of the rig set the limit to about
550 mm. A larger disc makes measurements easier as the deflections can be expected
to be larger and there is more space for the sensors.

Both rotor and stator natural frequencies are influenced by the thickness of their
discs, so reducing the thickness lowers both natural frequencies. For the rotor, the
reduction of natural frequency by a reduction in thickness vanishes at higher speeds.
The membrane frequency, proportional to the speed of rotatiQp,,;rane < /7, ,
and independent of the thickness of the disc, becomes more prominent at higher
speeds and the reduction in frequency introduced by the change in thickness
diminishes quickly at higher speeds. Reducing the thickness for the discs has the same
constraints as for blades: the discs become floppy and deform plastically easily.
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o Material: wye,ging < v E/p
It would be possible to choose a material with alower FE/p-ratio than steel. This was
not pursued further as the effect is only small and light high-strength material was not
available. Reducing the modulus of elasticity by itself leads to soft materials which
often have a smaller resistance to wear, (Rabinowicz, 1969).

From al the possibilities increasing the blade length has the most noticeable effect
without having the large negative effects associated with the other options.

6.4.2 Fixingthe geometry

In order to achieve the desired speed range the discs are made as thin and as large as
reasonably possible and the blade length is adjusted to move the natural frequencies of
the stator into the desired frequency band.

6.4.2.1 Rotor
From the maximum space of the motion-stage and the available material stock the
geometry of therotor is set to:

r; = 20mm clamped
r, = 250mm free (6-2)
h = 0.8 mm

From Equation (6-1) follows that the higher the number of nodal diameters, the larger the
frequency band. For the elastic modes with more than one nodal diameter, the ratio of
natural frequency over nodal diameter, the wave velocity, increases linearly with the
number of nodal diameters for a circular disc, Equation (2-92). For higher speeds, the
wave velocity increases more slowly with the number of nodal diameters, Figure 6-3, for
adisc with the geometry of the rotor, given in Equation (6-2).
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Figure 6-3: Rotor wave velocity as a function of nodal diameter and speed of rotation

6.4.2.2 Stator

After the rotor geometry is fixed, Equation (6-2), the required wave velocities of the

stator are fixed, too. Equation (6-1), with the desired maximum speed of rotation of

3000 rev/min and the data from Figure 6-3, confines the wave velocities of the stator to

about 20-36 rad/s. By varying the blade length, the wave velocities of the stator waves
can be moved into the required band determined by Equation (6-1).
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Figure 6-4: Stator wave velocity as afunction of nodal diameter
The disc and blade geometry of the stator isfixed at:
r; = 20mm clamped
r, = 250mm free (6-3)
h= 10mm
to which Ny, .., (=20) blades with the following geometric data:
[ =175mm 10mm radius at free end
w= 20mm (6-4)
h= 10mm
are attached by means of rigid clamps:
[ =254mm
w = 20mm (6-5)
h = 95mm

With this geometry of the rotor and stator, the critical speeds of the selected 2-, 3-, 4-, and
5-nodal-diameter, 0-nodal-circle modes are located in a speed range from 2000 to
3500 rev/min, Table 6-1, Figure 3-13:

n 2 3 4 5 6 7 8
. [rev/min] | 3126 2281 2129 2206 2366 2563 2779

Table 6-1: Predicted critical speeds for ONC family
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6.4.3 Axisdirection

With the geometry of the individual structures fixed, the ensemble can be rotated freely in
space. Early in the design stage it is decided to build the rig with a vertical axis. This
makes the influence of gravity on the deflections more deterministic: the resulting
bending moment acts over the whole vibration cycle in the same direction, Figure 6-5.

horizontal axis vertical axis

N A

@ bending moment l gravity force

Figure 6-5: Influence of gravity in different axis orientations

At high speeds, the centrifugal forces are much stronger than the gravity force and the
decision to design for a vertical axis might seem overcautious, but conducting tests and
making measurements are simplified in the vertical axis arrangement as sensors can be
moved around with relative ease in this layout.

6.5 Alignment of Rotor and Sator

In the analysis of the interaction phenomenon, it is assumed that contact occurs
symmetrically around the axis of rotation at as many positions as nodal diameters under
Investigation. In order to produce this condition in the experiment, the two structures
need to be aligned with respect to each other, as otherwise, further dynamic components
show in the measured response.

6.5.1 Problem definition
The axes of the rotor and stator are to be made coincident. This shall be called aligning
the rotor and stator.

6.5.2 Alignment dilemma

The rig is designed to have both structures isolated from each other, so that the only
available interface are the blade tips contacting the rotor. For that reason the rotor is
mounted to the wall and the stator rests on the floor that is vibration-isolated from the
wall.
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This compliance, desired for the vibration isolation, makes the task of alignment very
difficult. For the slightest change of the centre of gravity the position of the stator support
may have changed due to the high floor compliance. Given the weight of the support and
the rough handling capabilities, a change of position is amost unavoidable.

So, even when the floor compliance does not change with time, its very existence
increases the difficulty considerably.

One first step to reduce the position uncertainty introduced by the compliant floor is
to confine the position of the feet to a small area by resting the support on rigid blocks.

6.5.3 Theglobal error motions
The position of one frame of reference with respect to another frame is defined by six
independent quantities: three trandations and three rotations. In the present case the
guantities describe the position of one axis of symmetry with respect to the other axis,
and are, as the axes are supposed to coincide, called the global error motions.

Local error motions are the possible motion of adjustment elements between the two
reference frames. In the rotor-stator problem, the change of position in the z-direction of
the four feet are such local error motions.

6.5.4 Solution to thealignment problem

6.5.4.1 Alignment algorithm
Making rotor and stator axes coincide, requires correction of trandational and rotational
error motions, (Schmiechen and Slocum, 1996). The current set-up demanded a three-step
procedure: (i) reducing the trandational error motions for one point on the axis, (ii)
cancelling the rotational error motions, and (iii) correcting trandational error motions re-
introduced by step (ii). The proposed method converges to an accuracy of order two for
both translations and rotations.

To carry out the alignment requires the ability to measure the error motions and to
relate the measured global error motions to corrections to be applied to the constraints
determining the relative position of rotor and stator.

6.5.4.2 Measurement of the error motions

Two cases need to be considered: measurement of trandational and rotational error
motions. The measurement of tranglations is accomplished relatively easily by means of a
x-y-z-motion stage. For the proposed method, the trandational error motions are never
guantified, but corrected only. In contrast, the rotational error motions must be measured.
Measuring angular quantities is difficult and most measurement principles deduce these
guantities from measurement of linear quantities, in the present case from the facing side
and the hypotenuse of aright-angled triangle.
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6.5.4.3 Algorithm to determine local error motions

The local error motions, i.e., the changes of elevation of the positions where the support
structure rests on the floor, its feet, are linked to the global trandational and rotational
error motions by the system matrix, (Schmiechen and Slocum, 1996):

{Slocal} = [S]T{6global} (6'1)

where {8 ) =6, 8, 6. e, g, e}

y y are the magnitudes of the global error

motions (in the direction of the coordinates) and {5,,,,;} = {6;}" are magnitudes of the

local error motions (in the directions of the contact-normals of the feet), ¢ is the number
of feet. If thelocal error motions are applied to the system, the global error motion will be
reduced to zero.

The system matrix, [S], is composed of the geometry of the problem: the position of
the constraints of the support in a coordinate system located in the tip of the stator, {r};,
and the direction of contact by{n}; , defined by the columns of [S]:

With the tranglational error motions being zeroed in the first step, and corrected again in
the last step, and the third rotational degree of freedom not to be corrected, as it coincides
ideally with the axis of rotation, only two rotational error motions, ¢, and €, must be
corrected in the present problem. Thus only the two corresponding rows from the system
matrix need to be retained:

x} (6-3)

Y

€

€

{6local} = [Sred ]T {

Ideally, a structure should be designed deterministicaly as only then can the local error
motions be identified uniquely from the global ones without making any assumptions on
the deformation state of the structure. In the case at hand, three feet or constraints would
restrict the position of the stator support uniquely, (Slocum, 1992). The stator support
used has four feet or constraints, and so it is over-determined which can cause problems
in the correction of the error motions as one of the feet may |ose contact.

6.5.4.4 Practical procedure

After inspecting the support, the coordinate system is selected so that the normal vectors
areall givenby {n}; ={0 0 13T and the position vectors are determined from relative
measurements between the feet and the origin of the coordinate system fixed in the centre
of the stator disc. Thisway, only distances need to be measured, not their projections onto
the coordinate axes. The stator is mounted on an x-y-z-motion stage which rests with four
feet on the vibration-isolated floor of the laboratory, so 3x4 = 12 quantities are to be
determined. Due to symmetry of the support and the assumption that all four feet lie in
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one plane, only 7 quantities have to be determined requiring at least as many
measurements. More measurements can be used to obtain a least-squares solution. With
the positions of the constraints determined the actual alignment can commence:

Thefirst step is to reduce the trandational error motions of the stator tip to zero. This
can be done easily with the linear adjustments of the motion stage. To increase the
accuracy, pointed tips are mounted on each axis.

The second step is to determine the angular error motions. As mentioned before, they
are commonly deduced from measurements of distances. So, too, in the current set-up
where a gauge is fixed the rotor, measuring the change of distance to a disc fixed to the
stator. First, the gauge is rotated one full revolution. This record contains the sought
information from which the error motions can be computed but also the distortion of the
disc, as no engineering structure can be made perfectly flat. The shape of disc is measured
in a second step by rotating the disc while keeping the gauge in a fixed position. Under
the assumption that the axis of rotation does not change during the rotation, this second
trace records the shape of the disc only. The difference of the two records is then
proportional to the deflection caused by misalignment between the two axes. This can be
converted into an angle knowing the radius of the circle prescribed by the gauge.

The correctable error motion is the rigid-body tilting. This component is obtained by
either curve-fitting or by Fourier decomposition. The value will generally be complex:
e, +1ig, Where the subscripts indicate the axis of rotation, and the order and sign of the
terms depends on the starting point of the measurement, which is chosen to be
(O Tgage) -

After applying the corrections to the four feet, any introduced trandational error
motion is minimised in the same way as described in the first step. A final check on the
correction is then carried out: in the current problem, the angular error motions are
reduced by a factor of more than 20, reducing the resulting deflection at the rim of a
500 mm disc from about 2.5 mm to less then 0.1 mm.

This complex procedure is developed for this specific case; with a six-degree-of-
freedom motion stage, the solution of the problem is considerably simpler.

6.5.5 Results

Figure 6-6 shows the measurements from the disc. The trace labelled ‘measurement’ is
taken with the gauge rotating, the trace labelled ‘disc shape’ with the disc rotating and the
gauge standing still. The first measurement contains both disc shape and readings due to
the misalignment, but the datum contains only the disc shape, which explains the
necessity to subtract the disc shape in order to extract the correctable error motions

properly.
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Figure 6-6: Initial error-measurements
The global error motions are determined from a curve-fit or the Fourier series:

e, +ic, = —416+10.70 mrad (6-4)

which results in local error motions of (4.2, 4.0, 0.3, 0) mm. Applying these to the four
feet reduced the global error motions to:

e, +ig, =—013+10.16 mrad (6-5)

Figure 6-7 shows the final error motion on a different scale.
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Figure 6-7: Final error-measurements
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Theresidual local error motions are less than 0.2 mm which is considered not correctable,
due to the problems that the compliant floor causes. The final error compares very
favourably with theinitial error, Figure 6-8
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Figure 6-8: Comparison between initial and final error

6.5.6 Discussion

In the process of applying the computed corrections it is found difficult to maintain the
absolute position of the base. This is due to the weight of the stator support and the
difficulty of finding appropriate attachment points for the lifting gear. Also the location of
the feet is not very well defined, even after small metal plates are used to ensure that the
support rests only at the four corners. The exact knowledge of the position of the four feet
enters the system matrix and affects the accuracy of the computation directly.

The alignment process turns out to be more intricate than initially assumed mostly due
to the compliant floor. It causes a residual globa error motion after the computed
corrections are applied. As described above, the compliant floor is necessary to isolate
rotor and stator from each other so that no energy can pass through the structural
supports. Some time dependency of the floor compliance is noted and so some settling
time has to be allowed to ensure that the steady-state condition is reached after the
corrections are applied. Not waiting long enough for this settling to finish can cause
‘mis’-readings in the process of aligning the rotor and the stator.

6.6 Balancing of the Rotor

6.6.1 Goal of balancing

The aim of balancing is to reduce the reaction forces transmitted from the rotor into its
support and, subsequently, the vibration caused by unbalance forces. These forces stem
from asymmetric mass-distributions, or unbalances, caused by manufacturing tolerances
present in all engineering structures. The unbalance force is synchronous with the speed
of rotation and increases with its square:
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Fy = me)? (6-6)

The product unbalance mass, m, and the distance of the centre of gravity from the axis of
rotation, e, is called the unbalance, (Kramer, 1993):

U =me (6-7)

Balancing seeks to reduce this unbalance as much as possible, ideally to zero.

At low speeds the response due to the unbalance force may be negligible, but at
higher speeds the unbalance response can become very large, a situation which is
undesirable from a point of view of fatigue-life and acoustics.

6.6.2 Requirements
In order to balance a rotor successfully, its design must accommodate the needs of
balancing. The design must include ‘balancing planes’ to which masses can be attached to
or removed at angular locations. From Equation (6-7) it can be deduced that the larger the
radius to which the masses are applied, the smaller the balancing masses can be. By
design, measurements of either force or response of the rotor should be possible close to
the points where the responses are to be minimised. More balancing planes will allow for
more accurate balancing.

In addition, the absolute angular position of the rotor must be available to change the
mass-distribution of the rotor correctly.

6.6.3 Balancing method

There exist many methods to balance a rotor, (Darlow, 1990, Ehrich, 1992), increasing
the sophistication to accommodate for multiple planes, higher speeds, flexible rotors,
modular design, to name but a few.

6.6.3.1 Principle
The underlying idea of all these methods is to counteract the unbalance, Equation
(6-7), by introducing balancing masses:

Uy} =—U} (6-8)

where the unbalance is assumed to be a vectorMWilements/V being the number of
balancing planes.

6.6.3.2 Method of influence coefficients

In the present case, the method of influence coefficients is chosen for its ease of
application. Depending on the measurement, this method can minimise response or
reaction force, and response measurements are chosen in this case. The method is simple
in that it only tries to minimise the response at one selected speed of rotation. It can be
extended to more speeds by maintaining orthogonality between the balancing masses, but
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this is not pursued further, because the next critical speed is well beyond the intended
speed range.

For the considered linear time-invariant systems, the speed-synchronous Fourier-
components of the displacements, {z(t)}, are related to the unbalance, {U}, by the
constant square matrix of the influence coefficients, [o:

o} = o]} (6-9)

where the arguments are dropped for brevity. The phase of the signals is identified
uniquely through the absolute position mark from the rotor encoder.

The goa is to determine [o] which is required to compute the ‘counter-balance’,
Equation (6-8):

U} = o] Ha} (6-10)

The initial unbalance,U}, is unknown (otherwise the exercise was unnecessary) and the
system response to known perturbations will be used to obtain the necessary information.
This is done by attaching a trial mass of known mass to the rotor, causing an additional
unbalance U, }:

{z} =[aflU, + U} (6-11)

or, using Equation (6-9):
{z) —z} = [oflU,} (6-12)

As [a] has N2 elements, this equation does not suffice to determine all influence
coefficients. In order to do so, at ledétindependent tests have to be conducted. Then,
assuming thdty] is time-variant:

{x, — 2} {zy — 2} =[al{U},.. {U} 5] (6-13)
and given the independence of the measuremehtsin be determined from:
o] = [x]lUT! (6-14)

and the balance mass can be determined from Equation (6-10).

6.6.3.3 Practical limitations
The method as presented assumes total linearity of the rotor in its support. Due to bearing
clearances and other effects, the axes of typical rotors will move slightly when rotated
through 360°. This static run-out cannot be corrected by balancing as it is not caused by
the unbalance. It is recorded at low speed, where the unbalance response is assumed to be
negligible, and subtracted from the signals at higher speed.

Most measurements during balancing are differential measurements to start with, so
only Equation (6-10) changes to:
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U} = o] o —=,} (6-15)

If a rigid rotor is balanced in more than one plane, the measurements may not be
independent and the inverse may produce undesirable results. In this case the inverse
should be formed by singular value decomposition. More measurements can be taken to
obtain the least-squares inverse with the advantage to reduce the effects of measurement
error.

Also, the influence balancing minimises the responses for the speed at which the
balancing is carried out. If it is impossible to drive the rotor at the desired speed due to
the large initial unbalance response, a preliminary balancing must be carried out at a
lower speed to reduce the level of vibration at the desired speed.

6.6.4 Results
The outlined procedure will be demonstrated on the two-plane balancing of the rotor of
thetest rig. Theinitial step isto record the static run-out from the upper and lower plane:

.} — 0134 £ —17.3 (6-16)
0.066 £ — 470°

This is done at 500 rev/min, well below any resonance and at a speed where the
unbalance response is still negligible. The second step is to record the unbalance response
at the desired speed, chosen to 3500 rev/min:;

() — 0.165 £9.7 (6.17)
0162 £57.5°

Now two experiments are conducted: in the first the balancing mass is attached to the
upper plane and in the second the same mass is attached to the lower plane:

0176 £50° 0175 £5.3°
{z,} = | and {zy} = i (6-18)
0162 £50.7 0162 £51.1

Looking at these vectors in detail one can see that their difference is very small, that isto
say, they are almost linearly dependent. The balance masses computed by direct inversion
are:

() — | 33384 —38 (6-19)
344g £ —1776°

These are very large and, according to the computation, must be attached almost opposite
to each other. If, instead, the singular value composition is used in the inversion of the
influence coefficient matrix, the following balancing masses for the upper and lower
plane are obtained:
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() — | 248 £ —T65 (6-20)
22g £/ —T778°

The masses are much smaller now and effectively put a combined mass of 4.6 g at about
77°, to balance an unbalance of 4.6 g at about 103°. Returning to the masses obtained by
direct inversion, one notices that the phase was computed very poorly, too.

o

90
112.5° 67.5°

135° 45°

157.5° 22.5°

180°

Figure 6-9: Vectoria split of upper balance mass

The balancing masses cannot be attached at arbitrary locations for the given rotor design,
but are to be attached at tapped holes placed 15° apart, and so the resulting balancing
masses have to be split vectorially, see Figure 6-9 for the mass of the upper balancing
plane.

The effect of the balancing on the vibration level at the balancing speed is shown in
Figure 6-10. It can be seen that the balancing is carried out successfully as the residual
response is almost identical to the uncorrectable static run-out.
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Figure 6-10: Radial response of upper balancing plane before and after balancing

Any further improvement requires the change of other parameters, like correcting the
clearance in the bearings, or, generally, making the support more deterministic.

6.7 Safety and Overload Protection

As the design of the rotor allows for rotation speeds of up to 6000 rev/min, appropriate
safety precautions must be taken. The kinetic energy contained in the rotor at maximum
design speed can be computed with the actual geometry, given in the Appendix, to

(rQ) (pAdr) = 25kJ (6-6)

—_—

_1(,2 —1

=

7

To dissipate this energy in the case of an accident, a cage of 25 mm steel bars encloses
the rotor at all times. In addition, 10 mm-thick polycarbonate sheets ensure that any
smaller parts are contained. Emergency buttons and overload circuits triggered by the
displacement sensors cut the electric power to the motor immediately. The non-contacting
proximity probes are protected by their long range, protective covers, and the overload
circuit.

The motor shaft is protected from excessive structural loads by a helical coupling
which limits the transmitted torque and the residual radial and axial forces from the rotor
shaft, Figure 6-11. The locating and non-locating bearings of the rotor shaft take the
radial and axial loads, both static and dynamic. The rotor disc is connected to the lower
end of the shaft by preloaded conical Belleville springs. This attachment acts as an
overload protection for the bending moments or the torque.

During the travelling-wave interaction, the forces are predicted to be symmetric so
that no bending moments should exist in either structure. In cases where they do exist, the
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Figure 6-11: Rotor arrangement
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stator rests above the motion-stage on a rigid support that provides, for the assumed load
levels, rigidity against moments and forces. The stator is not mounted directly on therigid
motion stage so as to allow easy access to the stator from below for measurement
equipment, Figure 6-12.
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Figure 6-12: Stator arrangement
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6.8 Data-Acquisition System

The subroutines necessary data-acquisition system are written as an extension to
MATLAB. They control the two- and four-channel wave-form generation and the data-
capturing of up to 16 channels at up to 72 kHz (single-channel) continuously to the hard
disc. Thus, long time records can be stored to analyse slow transient phenomena at high
temporal resolution. The response channels can be low-pass filtered by a programmable,
8-pole, 16-channel filter with variable cut-off frequencies.

In addition to the vibration response, the absolute shaft angular position is available as
an analogue signal output from an encoder, from which the instantaneous speed of
rotation can be derived. In a preliminary analysis it turned out that knowledge of the
absolute phase angle is very important and its availability in this test rig increases the
quality of the post-processing considerably.

The advantage of using a personal computer with software instead of a dedicated
analyser is the significant gain in flexibility of employed analysis routines. In particular,
frequency shifts as they occur in rotating machinery may render standard procedures less
useful or meaningless. An open software solution can accommodate all these effects and
will simplify development of further analysis routines.

6.9 Conclusions

A vertical rig has been designed with the potential to demonstrate the travelling-wave-

speed coincidence between a rotor and a stator. The rig’s purpose is to demonstrate the
travelling-wave-speed coincidence for modes with different nodal diameters at rotation
speeds below 3000 rev/min.

The change of observer frame from the stationary reference frame with a non-rotating
plain stator and a rotating bladed disc to a rotating reference frame with a bladed stator
and a rotating plain disc has many advantages: it reduces the complexity of the analysis of
the structures, it simplifies the measurements on the bladed structure, and it makes the
experimental set-up safer. Analysis shows that the results from this test rig are applicable
to turbo-machinery with standard geometry of rotating bladed discs.

The test rig is fully instrumented and controlled via a PC. 16 input channels record
time histories of non-contacting displacement sensors. Additionally, the absolute angular
position of the rotor is recorded synchronously with the displacement data. High sampling
rates and long record lengths are both possible at the same time.

The data can be manipulated subsequently. For the most frequent analysis tasks,
MATLAB programs are written.



Chapter 7: Experimental Results

Once the test rig described in Chapter 6, was designed, and its dynamic properties were
confirmed by modal tests, presented in Chapter 2, experiments were conducted to prove
the existence of the travelling-wave-speed instability.

7.1 Aim of the Test Program

The main purpose of the experiments described in this chapter was to demonstrate the
existence of the travelling-wave-speed instability. In addition, experiments were carried
out to prove the validity of the model developed in Chapter 4 of this thesis and to
demonstrate some of the predicted parameter sensitivities.

7.2 Travelling-Wave-Speed Coincidence Diagram
The speed-dependent modal properties of the rotor and the modal properties of the stator
were obtained from the preliminary tests and the parameters of the prediction tools were
corrected accordingly.

The validated travelling-wave-speed coincidence diagram is plotted in Figure 7-1.
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Figure 7-1: Interaction diagram, wave velocities, tuned condition

Figure 7-1 displays the same quantities as Figure 3-13, but is based on the measured
guantities. It exhibits all the information necessary to conduct the experiments and
analyse the data. The critical speeds are computed as.

132
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n 2 3 4 5
Quiplrev/min] 2500 1980 = 1900 1960

Table 7-1: Measured critical speeds of the tuned system

The critical speeds of the waves with 3, 4, and 5 nodal diameters lie within a band some
80 rev/min wide, and their wave velocities within about 4r rad/s. It was anticipated that
exciting these travelling-wave speed coincidences separately would be more difficult than
exciting the 2ND coincidence and hence the investigation concentrated on the 2ND
coincidence.

The displacement sensors do not measure wave velocities directly but frequencies and
so, in order to make the interpretation of the following experimental results easier, Figure
7-1isreplotted for the natural frequencies, Figure 7-2.
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Figure 7-2: Interaction diagram for test rig, natural frequencies, tuned condition

7.3 Interpretation of the Signals from the Displacement Transducers
The displacement transducers used in all experiments were non-contacting eddy-current
sensors. Due to their principle of operation, the output voltage of the sensors ranges
between OV for contact of the sensor with the measured surface and -28V for the
maximum measurabl e displacement.

7.3.1 ACfiltering

In order to record time-varying signals from the test structures, the initia distance
between the sensors and the surfaces to be measured was set to half the measurement
range, corresponding to an output voltage of -14V. In order to acquire the dynamic
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signals accurately, the resolution of the data-acquisition system would need to be
excessively high. This difficulty was circumvented by high-pass filtering the signa to
reduce its static, DC, component. This operation is commonly called AC coupling. After
the high-pass filter, the signal was amplified to use the full range of the data-acquisition
system.

7.3.2 Low-passfiltering

In addition to the AC filtering, the measured signals were low-pass filtered to remove
high-frequency components prior to sampling, i.e., the analogue-to-digital conversion, in
order to avoid aliasing of high-frequency components in the signal. The anti-aliasing
filters must be set to at most half the sampling frequency of the data-acquisition system to
identify the frequency contents of a signal correctly. Due to the finite drop of the filter
frequency response at the high-frequency end of the pass-band, the sampling rate is
usually increased from twice the cut-off frequency to 2.5 times or higher.

The combined band-pass filter has the following schematic shape, Figure 7-3.

‘{\C coupling pass-band low-pass filtering
e De
3
£y
0 >
0 W frequency

cut-off

Figure 7-3: Frequency response of the AC-filter and low-pass filter combined

Figure 7-4 and Figure 7-5 show the effect that these two filtering operations have on the
signals.
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The filtered signals are not proportional to the displacement any more, as the DC- and the
high-frequency components are not present. Therefore, the filtered sensor signals cannot
be used to identify contact locations easily. However, they can be used to identify the
instability or any time-varying signal within the pass band of the filters.
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Figure 7-4: Simulated sensor signal, before filtering
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Figure 7-5: Simulated sensor signal, Figure 7-4, after filtering
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7.3.3 Spectral analysis

The filtering renders the signal unsuitable for visual interpretation for contact occurrence,
but does not change the frequency contents of the signals in the pass-band, Figure 7-3. In
that band, the spectral decomposition will ook the same, Figure 7-6 and Figure 7-7.
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Figure 7-6: Spectrogram of the rotor signal in Figure 7-4
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Figure 7-7: Spectrogram of filtered rotor signal of Figure 7-5
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The format of the figures will be explained below, but for now it suffices to state that the
frequency components at both ends of the spectrum are attenuated by the filtering
process, as indicated by the white colour at the low- and high-frequency zones in Figure
7-7. The low-pass filter is set to a cut-off frequency of 100 Hz, and reduces the signal
gradually because of the finite slope of the low-pass filter, which can be seen by the
decreasing signa strength above the cut-off frequency. An infinitely-steep filter
characteristic would attenuate the signal completely beyond the cut-off frequency.

7.4 Test of the 2ND Travelling-Wave-Speed Coincidence

The main focus of the work reported in this thesis lay on the demonstration of the
travelling-wave-speed instability. For the reason stated above, the 2ND pattern was
chosen as a representative, ND pattern for demonstration of the instability.

7.4.1 Parameters
The main parameters for the following experiments were:

n = 2
we = 102rad/s =162 Hz Ve = 1621 rad/s (7-1)
Qerita = 2590 rev/ min

The initial gap for all experiments was set at about 3 mm. It was difficult to measure
because of the static deflection of the disc but the analysis indicated that the exact sizeis
not important after initial contact. The sampling frequency was chosen to 250 Hz,
2.5 times the cut-off frequencies of the anti-aliasing filters. The next experiments form
the main part of the investigation. They were conducted at different speeds, Figure 7-8.
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Figure 7-8: Tuned system’s interaction diagram, natural frequencies, tested speeds
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7.4.2 Test at critical speed of rotation (Test 1)

The rotor speed was set to the criticdl speed of the two-nodal-diameter mode,
Q.10 = 2590 rev/imin, marked Test 1 in Figure 7-8, and the stator was impacted with a
plastic hammer close to its outer radius at about 0.5 s.

7.4.2.1 Timehistories

Figure 7-9 shows the time histories of the sensor signals. the top signal is that of a
displacement probe facing the rotor and the lower one is that of a probe facing the stator.
All time histories presented use the same scaling to enable quantitative comparisons.

rotor

sensor signal

Stator

O 1 0 20 2ndcritd.raw/(1:7500,(1,3]) 30
time [sec]

Figure 7-9: Rotor and stator response at 2ND critical speed

The sensor signals as functions of time clearly show the moment of first impact. The rotor
starts with afew periods of a low-frequency vibration but changes quickly into vibrations
with a higher frequency. The amplitudes of both rotor and stator remain fairly constant
after the first impact. Some pulsations are visible in the rotor signal at 6 sand 16 s. Other
than that, the interpretation of the sensor signals in the time domain is limited as the
absolute magnitudes of the displacement of the structures cannot be recovered from the
sensor signals due to the necessary filtering described above.

The filtering and the structural nonlinearities, such as contacting the sensor protec-
tion, prevent the recorded signals from showing the growth of the displacements of the
structures beyond all limits as predicted for an instability from linear theory. The indica-
tions of instability used for the experiments are the maintained high level of vibration and
the frequency content of the signals: If the response levels remain constant and the
dominant frequency present in the signal is that computed from the travelling-wave-speed



7 EXPERIMENTAL RESULTS 139

coincidence, then it is assumed that the response would be unstable and would grow
exponentially for atruly linear structure.

7.4.2.2 Spectrogram of the rotor signal

For further analysis, the data in Figure 7-9 were transformed into the frequency domain.
Figure 7-10 shows the evolution of the spectrum of the signal with time of the rotor and
Figure 7-11 that of the stator. Each vertical line in these spectrograms is a short-time,
discrete, Fourier transform of part of the signal. The abscissa indicates the starting time of
the particular time sample while the record Iength follows from the frequency resolution.
By presenting the transforms in order of increasing starting time of the signal sample, the
time variation of the spectra with time is visualised. In order to obtain visually smooth
diagrams along the time axis, the analysed time records overlap.
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Figure 7-10: Rotor spectrogram at the 2ND critical speed

Dark shades of grey in the spectrograms indicate large amplitudes and light shades small
amplitudes in the spectrograms. All spectrograms presented use the same colour scaling
from white to dark grey so that results can be compared quantitatively.

It can been that before the impact is applied at about 0.5 s, the rotor is vibrating
mainly at the engine-order frequencies, 2,49, 22,11, COrresponding to 43 Hz and 86 Hz
respectively. The frequencies are caused by the static deflection of the disc.

Also visible in the time traces, Figure 7-9 is that for about the first second after
impact, the rotor vibrates at 3 Hz, which is the natural frequency of the counter-rotating
IND wave. Thisis an indication that the initial impact was not symmetric and caused a
IND response. After the first second, the response is dominated by the 16 Hz frequency
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component which corresponds to the natural frequency of the 2ND mode. The speed was
set to have the rotor and stator 2ND waves progress at the same velocity, and hence the
contact forces were driving the structures in resonance as detailed in Chapter 3.

Clearly visible are the dight pulsations of the 20 Hz line at about 6 s and 16 s in
Figure 7-10, that could barely been seen in the time-domain diagram, Figure 7-9. They
are most probably caused by a deviation of the speed away from the critical speed.

When interpreting the spectrograms of the rotor, it should be remembered that the
signals were recorded in the stationary frame of reference and the rotor frequencies were
the apparent natural frequencies modulated by the speed of rotation.

7.4.2.3 Spectrogram of the stator signal
The frequency coincidence becomes clearer when looking at the spectrogram of the
stator, Figure 7-11.
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Figure 7-11: Stator spectrogram at the 2ND critical speed

The stator is at rest until the impact starts the interaction at 0.5s. Immediately after
impact, the stator response is dominated by the 16 Hz frequency component, the natural
frequency of the 2ND forward wave. The second strongest component is found at the
natural frequency of the 2ND mode of the second family, 32 Hz. All other frequencies
can matched to further natural frequencies of the stator, tabulated in the Appendix.

The information extracted from the spectrograms documents the instability at the
coincidence of the wave velocities according to the requirements given above: maintained
vibration level and dominant frequency of the travelling waves driven in resonance. This
experiment demonstrated the travelling-wave-speed instability and proved the theoretical
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and numerical results of the preceding chapters. With this experimental proof of the
existence of the travelling-wave-speed instability, the main goal of this thesis has been
achieved.

Further tests were carried out at the same speed to show the insensitivity of the
instability to the initial conditions. The test provided results with little visual differenceto
the presented test, one further set is presented in the Appendix.

7.4.3 Test at subcritical speed of rotation (Test 2)
The instability is expected only for the coincidence of the travelling-wave velocities
according to the theory developed in Chapter 3. Away from the critical speed, both for
higher speeds and lower speeds of rotation, the system’s behaviour is expected to be
stable.

For the subcritical run, the speed was set to 2390 rev/min, 200 rev/min below the
critical speed, marked Test 2 in Figure 7-8. The resulting time histories and spectrograms
are presented in Figure 7-12 to Figure 7-14:

rotor

sensor signal

Stator

0 5 10 15 20 25 30 35

time [sec]
Figure 7-12: Sensor signals at 2ND subcritical speed

The sensor signals are plotted to the same scale as before and it can been seen that the
are of equal amplitude compared with those of the critical-speed run, Figure 7-9, but the
important feature is that the contact breaks after about 28 s. Also, they are very irregular
compared with the compact, dense, signals from the critical-speed run, Figure 7-9.
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Figure 7-13: Rotor spectrogram at a 2ND subcritical speed

The spectrograms reveal that the 2ND wave component is still the dominant in the signal,
as expected, but the average response level is lower than before as the speed of rotation is
not the critical speed, and hence the energy input due to the contact is not sufficient to
maintain contact between the structures as the blade contacts are not timed correctly.
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Figure 7-14: Stator spectrogram at a 2ND subcritical speed
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The spectrograms show the familiar features and, once the contact has vanished, one can
identify the engine-order lines in the rotor spectrogram, Figure 7-13, and the first family

modes in the frequency range between 10 and 30 Hz in the stator spectrogram, Figure 7-
14.

7.4.4 Test at supercritical speed of rotation (Test 3)
The experiment of the previous paragraphs was repeated for a speed of 2800 rev/min,
which is 210 rev/min above the critical speed of the 2ND waves, Test 3 in Figure 7-8.

The data are presented in the same format as before, Figure 7-15 to Figure 7-17,
below.

rotor

sensor signal

Stator

0 10 20 30 40 2w 50
time [sec]

Figure 7-15: Sensor signals at 2ND supercritical speed

Again, asfor the subcritical run, the major feature of the time histories is the separation of
the two structures, this time approximately 35 s after the initial contact. The time of
separation is of the same order as for the subcritical speed. This suggests that the absolute
speed of rotation does not enter the energy balance, only the distance from the critical
Speed isimportant.
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Figure 7-16: Rotor at 2ND supercritical speed

The spectrograms show again how the structures remain in contact for a limited period of
time only. The contact is not maintained as the structures’ travelling waves are not
progressing synchronously.
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Figure 7-17: Stator at 2ND supercritical speed

After separation, the engine orders and natural frequencies become quickly dominant.
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7.4.5 Test of mistuned system at critical speed of rotation (Test 1m to 3m)
The effects of mistuning on the establishment of the travelling-wave-speed instability are
discussed in Chapter 3. The simulation results in Chapter 5 suggest that the effect was
indeed correctly predicted and that the instability would not occur for a mistuned system.

The experimental set-up was modified to introduce mistuning to the stator by
attaching masses to it. Four masses of 65 g were attached at the outer perimeter 90° apart.
The masses lower the natural frequencies of all modes that do not have a nodal line at the
attachment locations, but split the double modes with an even number of nodal diameters
only in accordance with Figure 2-11, Table 7-2.

N 2 3 4 5
Q [rev/imin] 2520/2590 1970 1890/1900 1940

crit,n
Table 7-2: Critical speeds of the mistuned system
The split introduced to the 2ND mode was 0.5% of the frequency of the tuned stator’s

2ND double mode. The wave-velocity-speed and frequency-speed diagrams, Figure 7-1
and Figure 7-2 change accordingly, as shown in Figure 7-18 and Figure 7-19.

20r . : . . |
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Figure 7-18: Interaction diagram for test rig, mistuned condition
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Figure 7-19: Interaction diagram for test rig, frequencies, mistuned condition

The experimental investigation of the mistuning concentrated on the two-nodal -diameter-
wave coincidence because of the clustering of the coincidence speeds of the other wave
patterns and the small split in critical speeds of the 4AND waves of 10 rev/min only.

The first test of the system with the mistuned stator was conducted at 2555 rev/min,
the mean of the critical speeds of the 2ND modes, Table 7-2, Figure 7-19: Test 1m.

O 1 O 2 O 2nxcrit2.raw/(1:8000,[1,3]) 3 O
time

Figure 7-20: Mistuned system, sensor signals at 2ND mean critical speed
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The time histories show the separation of the two structures after about 18s. The
envelopes of the signals are again irregular, as it is the case for the tests of the tuned
system away from the critical speed. Again, it can be argued that this indicates that the
energy input was not sufficient to maintain contact in the presence of energy dissipation.
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Figure 7-21: Rotor spectrogram, mistuned system, at the 2ND ‘mean-critical’ speed
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Figure 7-22: Stator spectrogram, mistuned system, at 2ND ‘mean-critical’ speed

After separation, the first and second engine order frequencies at 35 and 70 Hz become
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dominant in the rotor spectrogram, Figure 7-21. The single frequency line of the 2ND
modes at about 16 Hz of the tuned system splits into a double line for the mistuned
system, Figure 7-22.

For the lower critical speed of the two modes, 2520 rev/min, Figure 7-19: Test 2m,
the time traces separate after short ‘light’ contact, Figure 7-23.

sensor signals

0 5 1 0 2nxsub2.raw/(1:4250,[1,3]) l 5
time [sec]
Figure 7-23: Mistuned system, sensor signals, at the lower 2ND critical speed

The same behaviour is observed for the rotor spinning at the critical speed of the higher
of the two modes, 2590 rev/min, (Figure 7-19: Test 3), Figure 7-24.

sensor signals

Stator

0 5 l 0 2nxsupl.raw/(1:4250,[1,3]) 1 5
time [sec]

Figure 7-24: Mistuned system, sensor signals, at the higher 2ND critical speed



7 EXPERIMENTAL RESULTS 149

The system was mistuned by 0.5%, i.e., the frequency split introduced by the masses was
0.5% of the mean of the natural frequencies of the 2ND modes, Equation (3-42):

mistuning = 1())2;% = 05% 2

5 (wy +wy)

The results for the three tests of the mistuned system at the ‘mean-critical’ speed of the
split 2ND modes and the critical speeds of the two separate modes show that the
mistuned system does not become unstable. This puts further weight to the analysis and
simulation of the travelling-wave-speed instability, Chapters 3, 4, and 5, which predict

analytically and numerically that the mistuned system will not exhibit the travelling-
wave-speed instability.

7.5 Test of Higher ND Wave-Speed Coincidences

The speed coincidences of the three, four, and five-nodal-diameter waves almost
coincide, Table 7-1, and were analysed together. Due to the strong 2ND component of the
initial deflection in the disc, the travelling-wave-speed instability could not be clearly
identified. Representative spectrograms for all runs, whether at a critical speed for any of
the waves or away from it, are those of the test at 1900 rev/min, the critical speed of the
4ND wave.

120 1
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frequency [Hz]
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Figure 7-25: Stator at 4ND critical speed

The 2ND frequency line at 16 Hz is still pronounced but the 3ND, 4ND, and 5ND
frequency lines at about 21 Hz, 23 Hz, and 25 Hz respectively, now appear much stronger
than in the previous runs, as they all are excited close to their resonances.
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The experimental data from the travelling-wave-speed coincidences of the higher-
nodal-diameter modes remain inconclusive with respect to the establishment of the
travelling-wave-speed coincidence because of the practical imperfections of the rotor disc
that could not be reduced to the required levels.

7.6 Conclusions
The main objective of this investigation described in this thesis has been achieved by
experimental proof of existence of the instability at travelling-wave-speed coincidence.

A detailed test program for the two-nodal-diameter wave was carried out and showed
the expected behaviour of the rotor-stator system. As predicted by theory and numerical
simulation, the response of the system driven at a speed different from the critical speed
remained stable in the experiments, from which it was concluded that the transfer of
energy from the rotational kinetic energy of the rotor into vibratory energy of the rotor-
stator system was less than the energy dissipation through damping. At or close to a
critical speed, the responses of rotor and stator became unstable, but were bounded in the
experiment due to structural nonlinearities.

Additional experiments were carried out with deliberate asymmetric mass-distribution
or mistuning applied to the stator. This had a stabilising effect on the coupled-system
dynamics as predicted by the theoretical development in Chapter 3. The structures were
vibrating at their resonance frequencies, but the rotor and stator separated after initial
contact. It was argued that mistuning reduced the energy transfer below the level of
energy dissipation.

In addition, atest for the 3ND, 4ND, and 5SND modes was carried out, but due to the
relatively large static deflection of the disc, the travelling-wave-speed instability did not
manifest itself. The spectra of the data from the test run showed pronounced responses at
the natural frequencies of the higher-nodal-diameter modes, but the dominance of the
2ND response, caused by the static deflection of the rotor, hindered the establishment of
the travelling-wave-speed instability for these modes, which, potentialy, are aso
susceptible to the instability as observed for the 2ND mode.



Chapter 8: Conclusions

In this research we have studied the travelling-wave-speed instability, which can occur
between two elastic structures which move relative to each other. The work reported is
analytical, numerical, and experimental in nature. The purpose of this chapter is to
summarise the achievements and to list the conclusions drawn.

8.1 Achievements

The work reported in this thesis shows that the travelling-wave-speed coincidence can
lead to instability. Although postulated, this had not been demonstrated previously. The
experimental results are supported by an anaytica explanation and numerical
simulations.

8.1.1 Theoretical background

A literature survey was carried out and indicated that researchers had previously limited
their analyses to one elastic structure in contact with arigid structure, and had not treated
the problem of an elastic rotor in contact with an elastic stator. The need for research into
the description of the dynamic behaviour of two elastic structures in contact was
established. The following areas were identified to be necessary for further studies:
structural  dynamics to describe the individua structures and friction contact to
characterise the contact between the two structures.

The essential theory of structural dynamics was presented here with details provided
particular to rotationally-periodic and axisymmetric structures like the bladed disc
representing the stator in this study, or a rotating disc of uniform thickness representing
the rotor. From comparison with experimental data, it was found sufficiently accurate to
describe the behaviour of the individual structures by their linear dynamics. Different
modelling approaches to obtain the eigensolution were presented and the difficulties
associated with each were explained. The finite-element method was chosen to obtain the
natural frequencies and the modeshapes for its capability of modelling axisymmetric as
well as asymmetric, mistuned, structures. The detail of the discretisation was selected to
provide accurate data in the frequency range of interest.

The effect of rotation on the dynamics of the rotor was shown and an algorithm
presented to compute the speed-dependent natural frequencies for a given geometry. The
theoretical predictions and the numerical approximations were validated against
published cases and measurements. For the rotor of this study, considering the
centrifugal stiffening was important as it changed the natural frequencies of the rotor
considerably and thus moved the travelling-wave-speed coincidences towards higher
speeds of rotation.

Once the effect of rotation on the natural frequencies of the rotor was determined, it
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was possible to draw the wave-velocity-speed diagram and to determine the travelling-
wave-speed coincidences. The speeds were called critical speeds for their potential to
cause, in malign conjunction with other parameters, the travelling-wave-speed instability.

The necessary conditions for the occurrence of the travelling-wave-speed instability at
the critical speeds were derived from the equations of motion and an energy balance.
Vibration patterns were identified that fulfil the necessary conditions. The analysis was
focused on these vibration patterns, the travelling waves.

The concept of travelling waves, their direction and their spatia interpretation was
developed further in this work. In the context of waves, ‘negative frequencies’ can be
interpreted as frequencies of backward-travelling or counter-rotating waves, depending on
the reference frame. This decomposition is also important if a transformation between
frames of reference is to be performed, as the frequencies of waves of different nodal
diameters transform differently. The notion of travelling waves made the study of the
travelling-wave-speed instability much clearer: the wave notation helped to identify the
critical speeds and was an important means to derive a clear understanding of the
investigated problem.

8.1.2 Simulation

A mathematical model was developed to simulate numerically the contact between rotor
and stator. The rotor and the stator components were each modelled by the finite-element
method and the solution of the eigenproblem obtained was used to integrate the nonlinear
differential equations describing the rotor and stator dynamics with intermittent contact.
The input data to the simulation are the modal data of the individual structures (which for
the rotor, are speed-dependent), the damping, and the interface parameters which depend
on the contact model chosen. Starting from arbitrary initial conditions, the simulation
provided as output sampled time histories of the principal coordinates from which all
other responses, such as physical displacements or velocities, were determined.

The results from the simulation demonstrated the analytically-predicted travelling-
wave-speed instability numerically and indicated that the instability cannot be controlled
by damping in the structures, as was already indicated in the theoretical derivation. This
was tested for damping levels realistic for engineering structures.

Mistuning was shown to be a key element in the interaction between the rotor and
stator. It was argued that an asymmetric mass distribution reduced the travelling wave
component of the response, and, by bringing into existence a standing wave component,
made the synchronisation of travelling waves more difficult or even impossible, and
hence reduced the energy input into the vibration below a level where damping could
control the instability.

It has to be kept in mind that the numerical simulation cannot be used by itself alone
to validate the analytical results as the simulation is based on many simplifying
assumptions and needs validation from an experiment itself.
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8.1.3 Experiment

To support the theory and the simulation of the travelling-wave-speed instability, an
experimental test rig was designed and built. Experiments on the rig demonstrated the
occurrence of the travelling-wave-speed instability by the conditions forecast by the
anaysis (and not elsewhere). This proof of existence was a maor objective of this
research.

Further experimental work carried out confirmed the anaytical predictions and
showed the validity of the simulation results. Most of the numerically-investigated
parameter dependencies could be demonstrated experimentally, such as the effect of
different speeds of rotation and the effect of mistuning on the travelling-wave-speed
instability, while damping could not be changed in the experimental set up.

In order to take measurements of displacements on the rotor and stator, and of the
speed of rotation, a high-speed, multi-channel data-acquisition system controlled from
MATLAB running on a PC was developed. Hardware circuits were designed to provide an
emergency shut-down capability and to integrate the signal from the incremental encoder
to provide the absolute angle from the motor, which is an important item of information
in the analysis of rotating structures.

8.1.4 Post-processing

To analyse the data from the simulation and the test rig, special post-processing software
was written. For the analysis of rotating machinery, the spatial information can be very
important and so tools were devised to extract this information as well as the usual time
and frequency data.

The advantage of using a PC with software instead of a dedicated analyser is the
significant gain in flexibility of the analysis routines employed. An open software
solution can accommodate effects as they occur in the analysis of rotating machines and
simplify the development of further algorithms.

8.1.5 Software

Today's computers allow the designer to analyse very complex problems with many
thousands of degrees of freedom. The programs developed and used in this study are
summarised in the next paragraphs:

8.1.5.1 Analytical solution

For simple shapes such as circular discs of uniform thickness numerical approximations
of analytical solutions can be used to compute the modal properties efficiently. The
rotation introduces a further term in the energy balance, making the natural frequencies
functions of the speed of rotation for which analytical solutions do not exist. A numerical
method was implemented in a program, presented in the Appendix.
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8.1.5.2 FE program

For reasons of flexibility and convenience, the MATLAB-based code MATFEM was chosen
for the FE analysis. The advantage of this program was the full access to the code,
including the eigensolver and the post-processor. This way, it was possible to add an
efficient subspace eigensolver to the program and to modify the post-processor to display
results in the cylindrical coordinate system, natural to the analysis of the bladed disc and
other rotationally-periodic structures.

8.1.5.3 Numerical simulation

For the integration of the medium-size set of ordinary differentia equations, resulting
from the discretisation of the continuous structures, the ODE suite from MATLAB was
used for its ease of use and its capabilities.

The simulation used the modal data obtained from the FE program to integrate the
equations of motion and returned time histories of the displacements and velocities of the
interface points and the contact forces. The computations of the displacements, interfer-
ences and contact forces were programmed in a modular fashion and could be changed
easily for specific requirements. The main programs are presented in the Appendix.

Current simulation packages allow the engineer to focus on the problem at hand
without having to spend time on integration algorithms or graphical display of the data.

8.1.5.4 Modal Analysis

In order to compare the predictions with measured data, modal tests were conducted and
the data analysed using the Structural Toolbox of MATLAB. Following the tests, the FE
model was modified by adjusting the blade lengths so that predicted and measured natural
frequencies matched.

8.1.5.5 Measurement

For the measurements, various programs were written: low-level drivers to access the
data-acquisition hardware directly, functions to perform data-acquisition task, and high-
level programs to perform operations like conducting a modal test, exciting travelling
waves in stationary structures or driving an interaction experiment. The modular design
of the measurement software made it possible to accommodate easily for new hardware
components or other changing elements in the measurement chain.
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8.2 Summary of Conclusions
The main conclusion that can be drawn from the research reported in this thesisis that the
travelling-wave-speed instability exists.

The conditions that lead to the travelling-wave-speed instability depend on the

structural parameters of the contacting structures, the contact type, and the speed of
rotation. In detal, the following list of qualitative parameter dependencies was
established.

A necessary requirement for the occurrence of the travelling-wave-speed instability is
that the structures are rotationally periodic or cyclically-symmetric, so that a pair of
modes with identical natural frequencies and similar modeshapes exist in each
structure that can be cast into pure travelling waves.

In order for the travelling-wave-speed instability to occur, the vibratory motion of at
least one structure must be coupled in at least two spatial dimensions, such as the
axial and tangential motionsin the case of the stator in this study.

As the forward-travelling wave of the stator has a positive wave velocity, it can be
concluded that the critical speed for the travelling-wave-speed coincidence of the
mode with n noda diameters is always higher than the nth engine-order speed, at
which speed the counter-rotating wave of the rotor crossesthe OHz line.

The experiments indicate that only the absolute value of the difference between speed
of rotation and critical speed enters the equation of motion.

Centrifugal stiffening moves the critical speeds towards higher speeds of rotation. For
modes where the effect of centrifugal stiffening is dominant at the critical speeds
compared with the natural frequency at rest, the absolute difference in wave velocities
is amore appropriate measure than the difference in rotation speed.

Results from numerical simulations show that the lower the levels of damping, the
larger the speed range where the instability occurs.

Any initial contact at the critical speeds will most certainly start an instability of the
tuned system. The requirement of having a non-zero spatial component of the initial
contact similar to the wave form is generally fulfilled for finite numbers of blades and
realistic initial conditions, e. g. stemming from flight manoeuvres or bird strikes, or
any impact in both temporal and spatia senses. Spatial components with other
numbers of nodal diameters will eventually decrease due to energy dissipation.

The required amplitude of the initial conditions must be such as to overcome the
clearance between rotor and stator.

From experiments with a mistuned stator, it can be concluded that mistuning impedes
the mechanism that leads to the instability, as the existence of stationary waves (fixed
in the structure) makes the energy transfer between kinetic rotational energy of the
rotor and the vibration of the coupled system inefficient.
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8.3 Outlook
Recent reports, (e.g., Aviation Week and Space Technology, 1996), suggest that the
interactions between fans and flexible casings are still at the focus of attention of large
aircraft-engine manufacturers. Economic considerations require researchers to investigate
every possibility to reduce the clearances between rotors and their casings, while the
uncertainty in the dynamics and the structural loads demand larger clearances. The work
undertaken in this project was aimed at increasing the fundamental understanding of the
interaction dynamics. Further studies beyond the presented research could deepen the
understanding and yield further insight into the problem that would allow for a reduction
of the clearance.

In the thesis, a mathematical model is presented that can predict the dynamics of the
rotor-stator system, within the limits and uncertainties of the algorithm and the input data.
The uncertainties in the contact friction model, probably the least certain of the many
design factors, suffice to explain the quantitative difference between simulated and
experimental data. A better understanding of the local, contact friction dynamics would
make the overall model more reliable in predicting the behaviour of engineering
structures. Reliable data has to accompany any more sophisticated friction models, as
otherwise the overall uncertainty of the models remains and the increased modelling
effort was spent in vain.

The parameter set can be further extended to include parameters like wear at the
interface or temperature dependencies of the contact. Of interest is also, whether, by a
change of speed of rotation, stable conditions can be reached once the instability has
started.

The mathematical model could be extended further to include the dynamics of the
shaft, so that rotor and stator have non-zero boundary conditions at the clamped shaft
interface. In addition to the generally more accurate description of the boundary
conditions, this would lead naturally to an investigation of the problem of ‘windmilling’,
where the dynamics of an aircraft engine after a blade-off event are investigated: the large
unbalance created by the loss of a blade causes large synchronous forces. Together with
the likely damage to the bearings and their support, e. g. by fusing, off-centre contact
between rotor and stator is highly possible.

In all analyses, the investigations of fundamental aspects with their far-reaching
advantages and long-term benefits should be given priority over specialised solutions for
particular configurations with possibly immediate, but only short-term, benefits.
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Appendices

The appendices provide information and data supplementary to the main text. The data
are not critical for the main work.

Appendix 1: Eigenanalysis

A.1.1 Eigenproblem derivation
The traditional form of the eigenproblem results from the solution of the homogeneous
equation of motion for a discretised structure:

[M]{ii} + [Kl{u} = {0} (A-1)

Making an assumption for the solution, the classical harmonic trial solution, a special
Bernoulli separation with possibly complex amplitude, {4}, , and frequency, w,:

{u} = (@}, "' (A-2)

and substituting {u} into the equation of motion, Equation (A-1) yields the standard
eigenproblem:

(—w2M] + [K]) (@}, = {0} (A-3)

For the non-trivial solution, {4}, #+ {0}, and so the determinant of the matrix expression
must vanish. The resulting equation is called the characteristic equation and its roots are
the natural frequencies, w,. The amplitude vector follows from solving the now singular
vector equation, Equation (A-3). The solution is the eigenvector associated with that
particular eigenvalue: {a}, = {1}, . The matrix is rank deficient and the eigenvector can
be scaled by an arbitrary constant. Further details on the numerical and computational
aspects are given above in the main text.

A.1.2 Lagrange’s method of obtaining the equations of motion
According to, e.g., Meirovitch, (1980), the kinetic energy of a system can be written in
the form:

T="1Ty+1, +15 (A-4)
The first term usually stems from centrifugal forces, the second one from Coriolis forces
and the last one typically from inertiaforces:

1 ..
T2 - Ezzmmusur (A-S)

Tl = Zfrar (A'G)

T, does not depend on the generalised velocities but only on the generalised
displacements and will vanish in the subsequent analysis.

165
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The potential energy can be expressed as.
U= %szrsusur (A'7)

From the kinetic and potential energies, the Lagrangian of the system can be formed:
L=T-U (A-8)

In order to treat non-conservative systems within this framework, Rayleigh’s dissipation
function is introduced:

D= %ZZCTSUSUT (A'g)

If external forces act upon the system, generalised forces can be derived from the
projection of the forces onto the generalised coordinates. The equations of motion can be
computed from
d (oL oL 4 oD
dt\ ou, ou,  Ou,

=Q, (A-10)

For a simple one-dimensional mass-spring-damper system, the kinetic and potential
energies around the static equilibrium position and the dissipation function can be
expressed as:

L9

=t v=1r2 p=Lle (A-11)
2 2 2

u is in this one-degree-of-freedom case a principal coordinate and so the Lagrangian is
given by:
1 9 1, 9
L=T—-U=—-mu ——ku (A-12)
2 2
Applying Lagrange’s principle, Equation (A-10), results in the equation of motion of the
mass:

mii 4+ ct + ku = 0 (A-13)
A.1.3 ExampleA.1-1: Modal solution of a discrete system

Consider the one-dimensional two-degree-of-freedom system of two bodies each of mass
m connected by a spririg

w AR

Figure A-1: Two-mass-spring system
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The equations of motion for this system can be derived from its kinetic and potential
energies, T'and U respectively, following Section A.1.2, given by:

1 1
T = 5m(uf + 43) U= 5/f(u% + ud) (A-14)

from which, by application of Lagrange’s principi&)M(u) follows:

mily — k(uy —uy) =0 (A-15)

or as a vector equation:

m 0 ||, ko —k{ju | |0
{0 m}{@}{_k k}{w}_{o} (A-16)
IMI{a} + [K]{u) = {0}

The equations are coupled through the off-diagonal terms of the stiffness fdtrbhe
eigensolution of this problem can be computed to:

M:F w%HO ] W=l t=|{] {_1}} 17

The first mode, which has a natural frequency of 0 Hz, is the rigid-body mode of the
system. In this one dimensional example there is only one such rigid body mode, but
generally there are as many rigid-body modes as there are coordinate directions (in two
dimensions there are three rigid-body modes — two translations and one rotation, in three
dimensions there exist six possible rigid body modes) minus the number of constraints
constraining the body in the reference frame.

The orthogonality conditions for the mass and stiffness matrices hold:

AT G N R G (a1

decoupling the equations of motion by using coordinatestead of., yieldsEOM(p):

Fm 2m}{2}+[0 4/<;H2}: to} (A-19)

Mass-normalisation leads to, after simplification:
Py 0 Py
bt = {0} (A-20)
{P2 } { 2k/ mez}

A.1.4 ExampleA.1-2: Modal solution of a discretised system: FE analysis

As an example of an FE analysis, the analysis of a beam is presented. For simplicity of
the example and comparison of methods, a shape is chosen that could be solved
analytically. The element matrices can be derived from variational principles using shape
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functions, (Gasch and Knothe, 1989). These ‘element modeshapes’ are linear or quadratic
functions in the dimensions describing the assumed distributions of quantities like
displacement or stresses. For the simple Euler-Bernoulli beam, which neglects rotary
inertia, the degrees of freedom are the deflection and slope at each end. The mass and
stiffness matrices are given by

156 221 54 131 6 -31 -6 -3I
[ | pAL| 22 AP 131 =31 K] 2BI|-8 2 3 I
beam’ ™ 1o0| 54 -131 156 221 beam® ™3\ 6 31 6 3l
131 -3 220 4P 31 P 31 2P

(A-21)

whereF, I, p, A, andl have their usually meaning. Assuming a clamped end, the matrices
can be reduced to the degrees of freedom at the free end:

0AI[156 221 oBI[6 31
M = K | = — A-22
My 420{221 A2 Kicanh B3l 2 (A-22)

Solving the eigenproblem gives the spatial eigenvalues which are compared to the exact
values from an analytic solution, (Gasch and Knothe, 1989):

FE;: 1.88 5.90
analytic: 1.875 4.69

Table A-1: FE prediction with 1 element and analytical results

The lower mode is already well approximated, but the difference in the higher mode is
26% over-estimated.

In order to increase the accuracy, two elements of half length can be coupled. Each
element has four degrees of freedom, two of which coincide at the connection point
between the elements and two are deleted due to the boundary condition, so that the
resulting eigenproblem is of order four:

1248 0 216 26l 48 0 24 -6l
2 2 2 2
pA | 0 82 261 -30 Bl 0 4P 6l 1
M __pA K _ 2 A-23
Mearn 33601| 216 261 624 441 Kicam b Pl24 61 24 6l (A-23)

261 -31° 441 4P 6l 2 6l 2P

The spatial eigenvalues follow to

FE, 1.875 4.71 8.67 14.8
analytic 1.875 4.69 7.85 11.0

Table A-2: FE prediction with 2 elements and analytical results

Now the second mode is well approximated to within 0.5%, while the next higher mode,
that can not be predicted by the single-element model at all, has an error of 12%, and the
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highest mode has an even larger error. In accordance with a rule of thumb, about 50% to
70% of the eigenvalues are predicted accurately by the FE solution.

A.1.5 ExampleA.1-3: Modal solution of a continuous system

As an example of a continuous system consider the bending vibration of afree-free Euler-
Bernoulli beam with constant properties along the axis for which the EOM(u) can be
written as, (Gasch and Knothe, 1989):

tu(z,t) oA d*u(x,t)

o el (A-24)

or
subject to four boundary conditions. Using a Bernoulli-separation:
w(w,t) = (2)p(t) (A-25)

this equation simplifiesto two ordinary differential equations:

d*
L
;” (A-26)
dp o 1 pA o
- + — , -
2 0P T

with four spatial eigenvalues and two temporal natural frequencies. The general solution
for the spatial, fourth-order ordinary differential equation can be written as:

P(z) = A cosh(Bx) + A, cos(Bx) + Ag sinh(3z) + A, sin(Bx) (A-27)

where the four coefficients A; are determined by the four spatial boundary conditions.
The determinant of the coefficient matrix must be zero, which leads to a transcendental
equation with an infinite number of solutions for the spatial eigenvalue. The temporal
eigenvalue is then computed from Equation (A-26).

A.1.6 Orthogonality condition for eigenfunctions of continuous structures
Continuous systems, where the dynamics are described by partial differential equations,
have an infinite number of modes and the modeshapes are continuous functions over the
whole structure, called eigenfunctions. The orthogonality condition holds for the eigen-
functions of continuous systems, {1\)} where it can be stated as, (Szab6, 1956):

r#s

0
oy P00 = {Jbody pli, (01 = (28)

The integral has to be taken over the whole body and the star denotes the complex
conjugatep denotes the, possibly spatially-varying, mass density. Complex modes occur
commonly in rotating machinery but also in systems with non-proportional damping,
(Ewins, 1984). Mass-normalisation changes Equation (A-28) accordingly to:
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oy PO} 0}, =6y = {O r#e (A-29)

1 r==:

where$ isthe Kronecker Delta.
Appendix 2: Physical Data of Rotor and Stator

A.2.1 Material properties

Schmiechen, (1996), attempted to obtain material properties from measured wave
velocities, but due to the unfavourable geometry, (Krautkramer, 1983), the ultrasonic
measurements were only accurate to within standard textbook values, (Beitz and Kuttner,
1985). The values used in all calculations are:

E =211-10° Nm 2
p=7850kgm (A-30)
v =029

A.2.2 Geometry of the structures

A.2.2.1 Rotor
The rotor is a disc made from sheet metal with the following dimensions and boundary
conditions:

r; = 20mm clamped
r, = 250mm free (A-31)
h = 0.8mm

Due to the slenderness of the disc and the necessary machining, there is always a bend in
the rotor. The centrifugal force reduces it, but it never vanishes and makes itself visible as
strong engine-order lines in the experimental data.

A.2.2.2 Stator
The stator is build from a metal disc with the following geometry

r; = 20mm clamped
r, = 250mm free (A-32)
h = 1mm

to which Ny;,4.s = 20 blades with the following geometric data:

[ =175mm 10mm radius at free end
w = 20mm (A-33)
h =1mm

are attached by means of clamps or roots:
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[ =254mm
w = 20mm (A-34)
h = 9.5mm

Appendix 3: Modal tests

A.3.1 Tuned stator
An example of an estimated frequency response function from a modal test of the bladed
disc and the corresponding fitted, identified, FRF is shown in Figure A-2.

1st family 2nd family + 3rd family
102 34..12 3 04 15 2 6 3
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~
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0 10 20 30 40 50 60 70 80 90 100
2000
~
% 0 fre——=d=em—i
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<} N ] bl [E—
-4000 | | | | | | | | | |
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frequency [Hz]

Figure A-2: Estimated and identified FRF

The difficulties of analysing arotationally periodic structure like the bladed disc lie in the
existence of double modes and the high modal density in the vicinity of the blade
cantilever frequency, in Figure A-2 around 27 Hz. The identified model shows some
deviation, especialy in the phase, as some mode are not identified, for example in the
region between 50 and 60 Hz. The modes may be spurious modes, most certainly the one
at exactly 50 Hz.

Assumed that more than one measurements are made, the analysis is smplified if the
gpatial information is taken into account by analysing all measurements simultaneously.
The identified modeshapes can then be matched reliably to the predictions by the number
of nodal diameters, indicated by the numbers and the family number inFigure A-2.
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frequency [HZ] ND family

12.3/12.6
14.2

16.1/16.3
21.1
23.0
24.9
25.1
26.6
28.0
30.6
314
42.3
59.3
62.2
67.0
76.0
83.3
92.6

oONUTRROWNNREBOODUOAWNOLR
WNWNWNNNNRRRRRRRPR

N

Table A-3: Identified natural frequencies and nodal patterns

A.3.2 Mistuned stator
The system is mistuned for some of the tests by attaching four masses of 65 g each at the
perimeter of the stator disc, 90° apart.

The natural frequencies of the first family are given in Table A-4.

frequency [Hz] ND family

11.7/12.0 1 1
13.3 0 1
15.4/16.1 2 1
20.8 3 1
22.8/23.3 4 1
24.0 5 1

Table A-4: Natural frequencies and nodal patterns, mistuned stator

Clearly visible are the splits of the 2ND and 4ND modes, while the natural frequencies of
all modes are lowered.

A.3.3 Rotor

The modal test of the rotor reveals that the natural frequencies of the zero-nodal-circle
mode family is predicted accurately. Larger errors exist in the predictions of the one-
nodal-circle family which is over-estimated by about 15%.



A APPENDICES 173

100 T T T T
80} .
@]
N @]
I, 60} .
>
I
()
S 40
g B O
20t © -
Q FE-computation
P O modal test
O 1 1 1 1
0 1 2 3 4 5
nodal diameter

Figure A-3: Rotor natural frequencies: measured and predicted

Appendix 4. Natural Frequencies of a Rotating Disc

The expressions J,/J,, and J/J, are computed using the method presented in the main
text by limit computations of the variational parameter €. The geometric data are adjusted
to produce the experimentally obtained frequencies, (Weber, 1996).

n o 1 2 3 4 5 6 7 8 9 10
J,)J, 178 128 292 144 449 105 211 389 665 1069 1635
Jo/J, 065 100 239 414 631 908 125 165 211 263 322

Table A-5: Eigenvalue coefficients

These values are in good agreement with the analytical predictions from Lamb and
Southwell, (1921), and Tobias (1957), Table A-6.

n 0 1 2 3 4 5 6 7 8 9 10
By - — 267 145 452 108 218 394 661 1042 1566
Bq - - 236 406 6.13 855 113 145 179 218 26.0

Table A-6: Eigenvalue coefficients from literature

The differences can be explained by the fact that the previous researchers considered a
circular disc, whereas in this study the coefficients for an annular disc are computed.
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Appendix 5: Data of the Test Rig

A.5.1 Motor and controller
The motor is a2 kW brushless DC motor which is an AC motor with a controller making
the interface identical to that of an DC motor.

Due to the high power rating it is sufficient to assume constant speed during the
analysis and simulation and neglect the torsional dynamics of the system. If the motor
does not provide an ‘infinite’ torque so that the moments caused by the tangential forces
are large enough to change the speed of rotation, then the model would need to be
extended to include this torsional dynamics. In most cases this would cause a much more
intricate situation as the wave velocity of the rotor observed in the stationary frame of
reference would not remain constant any more, and the equality of the wave velocities
would only hold for the average velocities, possibly invalidating the further analysis.

A.5.2 Controller

The experiment is controlled from a standard PC runnimgB version 4.2b. From
within this environment the whole rig can be operated: the motor, the data-acquisition
system, and the filter. From a user point of view, the system istTaAd environment

with added procedures to add the functionality required to conduct vibration tests. Low-
level driver routines are written in a procedural language for which the software interface
is provided by the hardware manufacturers.

A.5.3 Anti-aliasing filters

Anti-aliasing filters are used for all response measurements. The signals are AC coupled
to filter out the static, DC, component and to increase the resolution of the dynamic signal
component. The filter used are 8-pole elliptic filters with two settings for highest
attenuation or best phase linearity.

A.5.4 Data acquisition system

The data-acquisition system uses a 16 bit-resolution-16 channel interface card. The
combined maximum sampling rate of 72 kHz can be maintained over minutes by
streaming the data to the harddisc. The measurements can be synchronised with the shaft
rotation by an incremental shaft encoder or the measurements can be triggered by an
event, such as a once-per-revolution signal.
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A.5.5 Displacement sensors

The proximity probes used are Bently Nevada 25 mm, 11 mm and 8 mm probes with
linear measurement ranges 12.7 mm, 10 mm, and 4 mm respectively. The quoted
measurement resolution of 789 mV/mm (20 V/inch) has been confirmed in a test.

A.5.6 Design sketch
This sketch shows the main elements of the test rig:

/—\W Motor

Helical coupling

\ | Balancing plane

@ @ Non-locating

bearing

Shaft (simplified)

@ @ Locating bearing

\ \ Balancing plane

%% Rotor
Belleville springs

100mm
<+—>

/D Blades

. e ] I Roots
Displacement FDH%
sensors ‘ ‘
Exciters
Stator post
A
< ator suppor
Pl Stat t
iva

] ]

Figure A-4: Schematic of thetest rig
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Appendix 6: Interaction Experiments

The following figures show a second set of spectrograms of rotor and stator at the critical

speed. The similarity of the figures to Figures 7-10 and 7-11 shows that the response is
indifferent to the initial conditions, as the impact is not controlled.

120F '

frequency [Hz]

40

20

15
time [sec]

Figure A-5: Rotor response at critical speed
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100t

|

frequency [HZ]

0 - 5 1 2ndcritl.raw/(750:5000,3) 1 5
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Figure A-6: Stator response at critical speed
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Appendix 7: Programs

This appendix presents the program to compute the natural frequencies of the rotor as
function of the speed of rotation and the main programs of the simulation package with
the main functional dependencies highlighted.

A.7.1 Natural frequencies of therotor asfunction of the speed of rotation

Natural Frequencies of a Spinning Disc with Centrifugal Forces

Mass of blades on rim can be considered.

Equation numbers Biezeno/Grammel Il.

Varying thickness prepared, but not used, watch for modeshape approximations!
Dimensional equations, integrals run fromr tor,.

Material Properties:
p =7850kgm > E:=20510>N-mm? v:=029 W =6000-rpm
Geometry of the disc:
rj =20-mm lo'=250-mm  dr=rg-r; i 1:0..l riI:ri+i-mm h; =0.75-mm
mm

Geometry of added masses (assumed in the middle of the disc), currently not used

he=0mm r.i=ry+0-mm h, =h. (equivalent height)
2 .
my, '=2420mm~hp o '=15deg h(r) 1:|f<r§r0,hi,hc>
Stresses
Equivalent centrifugal stress on the outer rim of the disc
2
m .r .
o wW(W) = wo o wW(W) =0+N-mm 2
roah;
Stresses in the disc at running speed £q. 5.6
Auxiliary quantities: ag= 3+v ap= 1+3v
8 8
i P 2,2
‘, 0 2( 2 2) ‘, o | 2 2. 2
A (W) ‘—GW(W)-ﬁﬂil-p-W o T A o(W) ‘——GW(W)-ﬁ— appWorgor
o = Ti o = Ti
The stress distribution over the disc Eq. 23.2a
A (W) 2 2 A o(W) 2 2
O o1, W) =A (W) + 5 —aqpWor cr¢0(r,W) =A (W) - —aypWor

r r

The stress distribution over the disc and the rim (blades)

rc*r\

fe=Tol

. . _2
o (r,W) =if réro,oro(r,W),om(ro,W)- 0 (1 W) =if[r<r,0 (1, W), 0-N-mm
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Eigenfrequencies

2 2
Rayleigh quotient: Jp(k,eps)-B~+ I (k,eps,W)-W
A max(K,eps) <
J(eps)

The eigenvalue of the spinning disc is smaller than the sum of the eigenvalue of a disc at rest and
that of a spinning membrane.

Assumed mode-shape (only zero nodal diameter modes are of interest)

) e

Z(r,e) =~ 1+e

o \ ro/

Support computation by calculating the derivates beforehand (not strictly necessary):

Eq. 29.30

<2-r0+ 3-e-r—3-e-ri> [ro+3er- 3-e-ri>

zr(r,e) 1:<r7ri>- , zri(r,e) =2 ,
"o "o
The integral expressions
e
Ji(e) = h(r)-Z(r,e)z-rdr
r "kinetic integral”
"o X
Jp(k,e) = 1 h(r)3- Zrr(r,€e) +E-Zr(r,e) - K M\ rar ..
12- <1— v2> r *
Fi
' 2 2
+- 72'(/17 V)\- h(r)3 l-er(r,e)-/Zr(r,e) - kz_Z(r,e)) - k'<zr(f,e) - Z(r,e)) ]-rdr
12 \1 - V2/ r \ r r2 r
Fi
3 [r
h ¢ 2
+— Zrr(r,e)rdr
12 |,
0
r r "elastic integral”
¢ o (r,W) ° o 4(r,W) 2
(ke W) = h(n— . zr(r,e)%rdr + K> h(r)— 2 28
p'W2 pW2 r
Fi Fi
“centrifugal integral”
2
B - E |32 —2611:107 «M- Speed of transversal waves Eq. 36.5

p & B different from 36.5 because h and r are left in the integrals
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Rayleigh-Ritz quotient to be minimised by eps

Jb(k,eps)-B2+ JW(k,eps,W)-W2
Ak, eps,W) = Eqg. 35.9
J(eps)

Given

Ak, eps, W)=0-s’2

€pS min(k, W) :=MinErr(eps)

Solve: k:=2 W :=3000-rpm €PS 11y '~ €PS mpin(k, W)
_1 \ 2 _
kaf;T- (K eps W) flw =79.115
Plot the result to check local minimum eps, =-0.322

eps = eps,— 0.2,eps,~ 0.15..eps, + 0.2

80

LNk, eps, W) 2 795
2-T

79
—0.6

A.7.2 Driver program of the ssmulation

USTARTI NT - d obal settings for the integration
%

UREVI SI ON PS9606251700: general layout fixed
9YREVI SI ON PS9610201700: nore variabl e control

%

%COPYRI GHT 1996 P. Schm echen

%3LOBAL VARI ABLES

% DEBUG governs anount of output:
gl obal DEBUG

DEBUG= 1;

% Hi ghest natural frequency considered in Hz:
gl obal WWAX
WWAX= 2* pi *50;

% M ni mum sanpl i ng frequency
gl obal FSM N % conput ed from hi ghest natural frequency
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% Cont act par aneter
gl obal RCONTACT % radius conmputed from nodal data in nodparns
gl obal RSK RSGAP RSMJE RSD

gl obal d

RSK = 1e8; %infinite stiffness

RSGAP= 2e- 3; % gap in neters

RSMUE= 0. 2; % coefficient of friction (Coul onb), Szabo I, 284
RSD = 0.001; % i npact danping -> loss (0.0001 works), Rabinow cz
% | nvesti gated nodal diameter and distance to critical speed in Hz

d = 0.01; % nmodal danping for all nodes

t heND= 2; % i nvesti gated nodal dianeter

f away= 3; % runni ng speed away fromcritical

fsplit=0.00; % frequency split for detuning

% No nore user input necessary No nore user input necessary %880880880806

% Modal paraneters at O rpm from MATFEM

nodal di r =" nodal dat/ 200’ ;

nodel r =" di sc’; nodel s=" bl addi sc’ ;

[ Phir, W, Mier, NDr, Phi s, W, Mues, NDs] =nodpar ns( nodel r, nodel s, nodal dir) ;

% Sel ect Speed

nmoder = m n(fi nd( NDr==t heND));

nmodes= m n(fi nd(NDs==t heND) ) ;

Onega= onegacrt (W (noder), W( nodes) +f away*2*pi , t heND) ; % TW coi nci dence

W Onega= cfonmega(Orega, W, NDr)’'; % correct natural frequencies

% I ntroduce frequency split in rotor
W Onega(noder) = (1-0.5*fsplit)*W Orega(noder);
W Onega( noder +1) = (1+0. 5*f split)*W Orega( noder +1) ;

% Reduce rotor data

% Fi nd frequenci es bel ow wrax

fir= find(WQOrega+NDr * Onega<=\WWAX | abs(W Orega- NDr * Orega) <=\WAX) ;
% fix nmodes according to participation

fir=11,2:7,9:10, 13:14]’;

wr= WOrega(fir); phir= Phir(:,fir); nmuer= Muer(fir); ndr=NDr(fir);
wr max= max(abs(w +ndr*Onega) ) ;

% Reduce stator data

% det erm ni ng frequency is the highest rotor frequency needed:
fis= find(Ws<=wr max);

% sel ect nodes according to participation
fis=1[1:2,3,4:20,21]"; % include torsional node, may help

ws= Ws(fis); phis= Phis(:,fis); nues= Mues(fis); nds=NDs(fis);

% Determ ne sanpling rate from hi ghest natural frequency
FSM N= 1. 2*wr max/ 2/ pi *2; % 20% over sanpl i ng

inis= iniconds(’'rand’ ,[0.001 0 0 O])+ ...
i ni conds(’ wave’,[-theND, 0. 0015, 10*pi/180]);

% integrati on options

op= odeset (' outfun’,’ rsodeplt’, rtol’, le-4,"atol’,1le-4,' minstep’, le-12);
tic, [t,y]= ode45(  deriv’,[0:1/FSSIM 4],inis,op); TOC=toc;

di sp([’ Total integration time: ', nun2str(TOC/ 60), mn."]);

eval (['save ' fname ' y t Orega d RSD RSK RSMJE t heND faway fsplit’']);
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A.7.3 Critical speed and engine-order speed

functi on Orega=onegacrt(w,ws, ND);
%OVEGACRT - critical speed for a given nodal diamater pattern
%

9% NPUT:

% wr,ws natural frequencies of rotor and stator node at 0 rpm
% ND the nodal dianeter pattern of the rotor

%

YOUTPUT:

% Qrega critical speed

%

YEXAMPLE:

% Onega= onegacrt (W (4),W(4), 2);

YCOPYRI GHT (c) 1996, P. Schm echen, PS9606261300

a2= jw k(ND);

Orega= 1./(ND."2-a2).*(ND. *ws+sqrt(a2.*ws."2+(ND. "2-a2).*wr."2));

ze= find(ND==0 | ND==1);
if ~isenmpty(ze),

Onrega(ze) = i nf*ones(size(ze)); % No critical speeds for OND and 1ND

end;

A.7.4 Speed adjustment of modal data

functi on w= cfonega(Omega, W, NDr) ;

UCFOVEGA - rotor natural frequencies for a given speed
% wr= cformega(Orega, W, NDr);

%

9% NPUT:

% Qrega: speed of rotation in rad/s = 2*pi*rpm 60 = 2*pi *Hz
% W: if specified: the natural frequencies at O rpm

% NDr: the nodal diameter pattern of the rotor

%

YOUTPUT:

% wr: corrected natural frequencies

%

YNOTE:

% W can be left unspecified
% If W and Qrega are vectors then a matrix
% is returned with length(w) colums

YUCOPYRI GHT (c) 1996, P. Schmi echen, PS9606261300

% Material constants, if w0 not supplied
E= 211e9; rho= 7850; h= 0.75e-3; ro= 0.250; %strictly metric
beta2= E/rho;

if W==[], % use fornul a
wr =sgrt (ones(size(Orega)) *beta2*jbj k(NDr)’ *(h/ro”2)"2+. ..
Orega. "2*jw k(NDr) ") ;
el se % use wO from experiment or FEM
wr =sgrt (ones(size(Orega) ) *W' . "2+Onega. *2*jw kK(NDr) ') ;
end;

181



A APPENDICES 182

A.7.5 Dynamicsof the state vector

function yt= deriv(t,y)
YOERI V - returns the derivative of the state vector y
% yt=deriv(t,y)

YUCOPYRI GHT (c) 1996 P. Schm echen, PS9606201800

% st at or
xsS= phis*y(psi);
xst S= phi s*y(psti);
% theta at blade tips: geometric position + deflection fromthetadof
thetasS= (all bl ades-1)’/ NBLADES*2*pi + . ..
at an(xsS(t het adof +onedof s) / RCONTACT) ;

% r ot or
xrR= phir*y(pri); %rotor deflections in rotating reference frane
XrtR= phir*y(prti); % vel ocities

% theta of nodes: geonetric position + rigid body phase
thetar S= (al I nodes- 1)’/ NNODES* 2* pi +Orega*t ;

%rS and xrtS only at the NBLADES positions of the blade tips
[xrS, xrtS, cnodes, fwei ghts] =defl cont (thetasS, thetarS, xrR xrtR);
[dxz, dxtSn]=interfer(xrS, xrtS, xsS, xstS);

dxz= (dxz>0).*dxz;

[ Fer R, FcsS] = forcec(dxz, dxt Sn, xr S, cnodes, fwei ghts) ;

PrR= phir’ *FcrR;
PsS= phi s’ *FcsS;

yt= | _
y(prti)
y(psti)
(-wr.*wr.*y(pri)-d.*w.*y(prti)+PrR)
(-ws. *ws. *y(psi)-d. *ws. *y(psti)+PsS)];

A.7.6 Displacement at possible contact points

function [xrS, xrtS, cnodes, fwei ghts] =defl cont (thetasS,thetarS, xrR xrtR);
UDOEFLCONT - deflections and angles of the rotor at thetasS

% [ Xxr S, xrt S, cnodes, fwei ght s] =def | cont (thetasS,thetarS, xrR xrtR);

%

9% NPUT:

% thetasS, thetarS: stator and rotor angles in stat. franme

% xrR. rotor displacenent in rot. frame

% xrtR rotor velocity in rot. frame

%

YOUTPUT:

% XrS defl ection of rotor at blade positions (ndof*NBLADES, 1)
% xrtS velocity of rotor at blade positions (ndof*NBLADES, 1)

% cnodes adj acent nodes of contact (NBLADES, 2)

% f wei ght s f orce-wei ghti ngs (NBLADES, 2)

%

YASSUMPTI ON:

% Angl e thetarS positive and nonot onuously increasing!

% thetasS as conputed by thetaBl ades+angdefl ect (tang. deflection)

% thetarR = node location (assumng small xrRzz)
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NBLADES=I| engt h(t het asS);
NNODES=I engt h(t hetar S) ;
dt het ar =2* pi / NNODES; % angl e bet ween nodes

% Map to [-pi, 3*pi+]

i f thetar S(NNODES) >1. 5*(2*pi ),
thetar S=thet ar S-round(thetar S(1)/2/pi)*2*pi;

end;

% Expand span to nake life easier

thetarS=[thetarS- 2*pi; thetarS; thetarS+2*pi];

if thetarS(1l)>thetasS(1l) | thetarS(length(thetarS))<thetasS(NBLADES),
error(’thetarS does not cover the range of thetasS conpletely!’);

end;

cnodes=zer os( NBLADES, 2) ;
f wei ght s=zer os( NBLADES, 2) ;

xr S=zer os(ndof *NBLADES, 1); % all displacenents
xrt S=zer os(ndof *NBLADES, 1); % all velocities

for bl ade=1: NBLADES,
| ef t node=max(fi nd(thetarS<=thetasS(blade))); % do not wap here
i f DEBUG>3,
[leftnode, min(thetarS), max(thetarS), thetasS(bl ade)]
end;

leftl ever= (thetasS(bl ade)-thetarS(leftnode));
rightlever= dthetar-leftlever;

fweight= 1-[leftlever rightlever]/dthetar;
fwei ght s(bl ade, : )= fwei ght;

| ef t node= ren(l ef t node- 1, NNODES) +1;
ri ght node= ren{l| ef t node, NNCDES) +1;

nodes= [l eft node, rightnode];
cnodes(bl ade, : )= nodes; %l eft and right node on rotor

% thetadof: only for velocities
xrt S(ndof *( bl ade- 1) +t het adof ) =xrt S( ndof * (bl ade- 1) +t het adof ) +. . .
f wei ght *xrt R( ndof * (nodes- 1) +t het adof ) ;

%rrdof: only rotation
xr S( ndof *( bl ade- 1) +rr dof ) =xr S( ndof * (bl ade- 1) +rrdof) +. ..
f wei ght *xr R( ndof * ( nodes- 1) +rr dof) ;

% zdof: interpol ate parabolically, NEEDS rrdof!
% nmean sl ope between |l eft node and tip position
nmeans!| ope= (xr R(ndof * (| ef t node- 1) +rr dof ) +xr S( ndof * (bl ade- 1) +rrdof))/ 2;
xr S( ndof *( bl ade- 1) +zdof ) =xr S( ndof *( bl ade- 1) +zdof ) +. . .

xr R(ndof * (| ef t node- 1) +zdof ) +neansl| ope*l ef t | ever;
xrt S(ndof *( bl ade- 1) +zdof ) =xrt S( ndof *( bl ade- 1) +zdof ) +. . .

xrt R(ndof * (I ef t node- 1) +zdof ) +meansl| ope*| ef t| ever;

end;
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A.7.7 Interference

function [dxz,dxtSn]=interfer(xrS, xrtS, xsS, xstS);

% NTERFER - conputes interferences at blade tips and tinme derivatives
% [dxz,dxtSn]=interfer(xrS, xrtS, xsS, xstS);

%

% Distance at blade tips and nornal velocity (for inpact)

%

9% NPUT:

% i nput from defl cont

%

YOUTPUT:

% dxSz di stance at | ocations of blade tips (interference positive)
% dxt Sn normal conponent of relative velocity (to rotor surface)

% di stance in z-direction, positive is interference
dxz=(xsS( zdof +onedof s) - RSGAP) - xr S( zdof +onedof s) ;

% the angl e
xrSrr= xrS(rrdof +onedofs); % NBLADES positions
i f any(abs(xrSrr)>0.9*pi/2),
di sp(xrSrr’)
error(’xrSrr > 0.9*pi/2 unrealistically large.’);
end;

% | npact loss: velocity in normal direction for inpact
%[n] =] cos -sin]l*[z ]

%[t] =] sin cos] [Rftheta]

XrtSn= cos(xrSrr).*xrt S(zdof +onedof s) -
sin(xrSrr).*xrtS(thetadof +onedofs);

XrtSt= sin(xrSrr).*xrt S(zdof +onedof s) +cos(xrSrr).*...

(xrt S(t het adof +onedof s) +RCONTACT* Orega* ones( NBLADES, 1) ) ;

Xst Sn= cos(xrSrr). *xst S(zdof +onedof s) -

sin(xrSrr).*xstS(thetadof +onedofs);

xst St =

sin(xrSrr).*xstS(zdof +onedof s) +cos(xr Srr) . *xst S(t het adof +onedof s) ;

%relative velocities:
dxt Sn= xrt Sn- xst Sn;
dxt St= xrtSt-xstSt;
i f any(dxt St<0),
error(’ contact velocity changed direction! dx/dt>RCONTACT*QOrega’);
end;

A.7.8 Contact forces

function [FcrR, FcsS] =f or cec(dxz, dxt Sn, xr S, cnodes, fwei ght s) ;

%ORCEC - contact forces

% [FcrR FcsS]=forcec(dxz, dxt Sn, xr S, cnodes, f wei ghts) ;

%

9% NPUT:

% i nput fromdeflcont and interfer

%

YOUTPUT:

% FcrR contact forces acting on the rotor in rotating coordinates
% FcsS contact force acting on the stator in stationary coordinates
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%

YNOTE:

% The axial force is computed froman assuned interface stiffness RSK
% and the tangential force is computed from Coul onb’s | aw wi th RSMJE
% Some |loss is introduced, see rsk.m

% I nterference
dxz= (dxz>0).*dxz; % penetration

if any(dxz), % for speed
% Magni t ude of axial force
Fz= -rsf (RSK, dxz, RSD, dxt Sn, 1e-4); % - k*dx- d*dxt

% Magni t ude of azi muthal force

% Ft heta = -mue*Fn*si gn(vt)

%

% Fz = const [ cos sin] Fn
% Ftheta = [-sin cos] Ft

%
% Ft =RSMUE* Fn

i f RSMUE~=0,

% the angl e

xrSrr= xrS(rrdof +onedofs); % at NBLADES bl ade tips

Ft heta= -Fz. *abs((RSMJE-tan(xrSrr))./ (1+RSMJE*tan(xrSrr)));
el se

Ft het a= 0. O*ones( NBLADES, 1) ;
end;

%stator force acts on bl ade-tips
FcsS= kron(Fz,[0 0 1 0 0 0]’) + kron(Ftheta,[0 1 0 0 0 0]");
% al ternatively: FcsS=zeros(ndof *NBLADES, 1); FcsS(zdof +onedof) =Fz; . ..
if any(Fz>0) | any(Ftheta<0) | DEBUG2,
di sp(’ FORCEC: [Fz?<0 Ftheta?>0]"" [kN:");
di sp([Fz Ftheta]’/1000);
end;

%ot or force needs sone sorting to the nodes
% cnodes i ncludes the coordi nate back-transfornation

Qz= zer oS( NNODES, 1) ;
Qtheta= zer os(NNCDES, 1) ;
for i= 1: NBLADES, % hat many contact points, exactly!
Q@ z(cnodes(i,:))= Q@ z(cnodes(i,:)) -Fz(i) *fweights(i,:)’;

Qtheta(cnodes(i,:))= Qtheta(cnodes(i,:))-Ftheta(i)*fweights(i,:)’;
end;
if any(Qz<0) | any(Qtheta>0) | DEBUG2,
di sp(’ FORCCONT: [@z?>0 Qtheta?<0]'’ [kN:");
disp([@z Qtheta]’/1000);
end;
FcrR= kron(Qz,[0 0 1 000]") + kron(Qtheta,[0 100 0 0]");
el se
FcsS= zer os( NBLADES* ndof , 1) ;
Fcr R= zer os( NNODES* ndof , 1) ;
end;
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A.7.9 Normal Force

function f=rsf(k,x,d, xt, x0);

URSF - interface force f=f(x,dx/dt)

% f= rsf(k,x,xt, x0);

%

% The interface force with a continuous sl ope at d=0
% and velocity hysteresis

%

9% NPUT:

% k Iinear stiffness

% X interference (positive)

% d danpi ng of inpact, relates to |oss
% xt relative velocity

% [ x0] changeover to linear regine [10e-6]
%

YOUTPUT:

% f interface force

YCOPYRI GHT 1996 P. Schmi echen

i f nargin<5,
x0= 10e- 6;
el sei f x0<=0. 0,
error('If you want a linear spring, set x0=le-9 but not 0!’")
end;
if size(x)~=size(xt),
error(’ Vectors x and xt nust be the sane size.’)
end;

xg= x0/ 2; % change- over poi nt
k2= k/ 2/ x0; % "stiffness" in square reginme

f= zeros(size(x));

fi= find(x<=x0); % points in square reginme
f(fi)= k2*x(fi)."2;
gi = find(x>x0); % points in linear reginme

f(gi)= k*(x(gi)-xg);
f=f.*exp(-1000*d*xt);

YEXPLANATI ON:
% f(x0)=g(x0) © k2*x072=k* (x0- xQg)
% df/dx=dg/dx (x=x0) : 2*k2*x0=k

9% OCAL STI FFNESS:
% square regi me: ksquare= 2*k2*x = k/x0*x
% linear reginme: klinear= k
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Appendix 8: Terminology
Because of the complexity of the dynamics of rotating machinery, a clear definition and
description of the quantities used is essential. Some of the following discussion on
terminology applies to non-rotating structures as well, but most of the comments will be
of concern to engineers analysing rotating machinery.

All terms are introduced in the main body of the thesis, but this glossary is intended to
provide the reader with a concise description of each concept or term.

A.8.1 Description

Seeking to describe a matter or situation makes it necessary to expressit in alogical way
by words and sentences or mathematical symbols and equations. The expressions and
descriptions are non-unique but depend on the context while the described matter, for
example the dynamics of an elastic body, is governed by underlying principles, the laws
of physicsin our case.

A.8.2 Frame of reference

A frame of reference is an aid to describing the position of objects in a space of arbitrary
dimensions. Each frame of reference is related to other reference frames by a time-
varying transformation. If the transformation between the frames of reference is not time-
varying, it means that one frame of reference is sufficient to describe the position of any
object and the further frames of reference are introduced either because of lack of
knowledge of the system or because of convenience. According to Kane and Levinson,
(1985), frames of reference are equivalent to rigid bodies.

So, for a system consisting of two structures able to move with respect to each other,
like the rotor and the stator in this study, two reference frames must be introduced. If, in
addition, the two bodies move with respect to a fixed reference, a further reference frame
must used to define the dynamics of the two structures.

A.8.3 Coordinate systems

Many frames of reference can be attached to arigid body as mentioned above. Asthey are
all attached to the same rigid body, the position of any point on the body can be expressed
in any frame. They are introduced for convenience of description solely, and are related to
each other by atime-invariant transformation, making them coordinate systems.

The global coordinate systems used in the analysis of the rotor-stator system are the
Cartesian coordinates (z,y,z), used in FE programs, and the cylindrical coordinates
(r,0,2), used throughout the rest of the analysis, Figure A-7, where only the distinct
coordinates are given different symbols.
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Figure A-7: Global coordinate systems

Local Cartesian coordinate systems, normal and tangential (and bi-tangential) direction,
attached to each of the contact points, (n,t,b),, are used in the computation of the contact
forces.

All coordinate systems presented, Cartesian and cylindrical, are defined as right-
handed, orthogonal coordinate systems. For the unit vectors {¢e}, the following right-hand
rule for the cross-product holds:

{e}) X {e}y ={e}s (A-35)

and all permutations thereof.

A.8.4 Axisof rotation

The z-axis of both rotating and stationary reference frame are supposed to coincide and,
for constant speed of rotation around this axis, the tangential coordinates in the rotating
and stationary frame of reference are related by:

0p =05 — Q1 (A-36)

In the present analysis, the axis of rotation is assumed to be the z-axis of the global
coordinate system, Figure A-7. In rotordynamics, as opposed to bladed disc analysis, the
axis of rotation is often assigned the x-axis.

A.8.5 Direction

Directions are defined in terms of the coordinates. A positive rotation causes an increase
in the tangential direction. This can be determined conveniently by the cross-product of
the vectors, Equation (A-35):

0 r 0
e}y X{etg =1e}; i, 10:X<0p =410 (A-37)
Q 0 0

When an elastic wave propagates through a body, its direction of travel is an important
attribute in the description of the motion. In rotationally-periodic structures the terms



A APPENDICES 189

‘forward’ and ‘backward’ are common but other combinations are used too, like
‘progressive’ and ‘retrogressive’ by Loewy and Khader, (1984). In this thesis, the terms
‘forward’ and ‘backward’ are used in the stationary reference frame, in the rotating frame
of reference, the terms ‘co-rotating’ and ‘counter-rotating’ are used. The direction and
velocity of the waves determines the sign and the magnitude of the frequency for any
reference frame. Positive frequencies indicate positive wave velocities and negative
frequencies indicate negative wave velocities, Figure A-8:

wave v v o
VelOCity nSf n.SDh
. (\Q‘ N
© Q&
© d@
W

Y

forward 15°
backward speed (?
QE On

Figure A-8: Wave velocity over speed explaining directional terms

In the context of travelling waves and rotating machinery, the notion of negative
frequencies is very useful and so the conventional simplification of neglecting the
negative roots of the eigenvalues and taking the positive roots only as the natural
frequencies, is actually not simplifying the description, but makes it, at times, more
difficult.

A.8.6 Modes- waves

Waves are phenomena of energy transport. After a wave passes through a structure, the
material points of the structure return to their original position: no transport of material
occurred, but energy was transmitted.

For some special classes of structures, e.g., rotationally-periodic and axisymmetric
structures, waves are a convenient way of describing the vibration: instead of describing
the vibrations in terms of modes, one can use wave notation. A mode pair of cosine and
sine modes transforms into a wave pair of forward and backward waves when combined
in a particular way:

cos(nd) + isin(nd) = ¢ "’.0 (A-38)
cos(nd) — isin(nd) = e 1"
A scaled, linear, combination of modes still solves the eigenproblem, and thus waves are
eigensolutions. As they are just a different description of the same physical quantities,
they can be used interchangeably and the orthogonality conditions holds for modes and

waves:
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2n/n 2n/n .
[ cos(nf) cos(nO)db = = | ™Y dp = x

27?/11 27:/0n ) ) (A-39)
[ cos(nf) sin(n)do = 0 [ e i g =0
0 0

The free response is composed of the sum of generalised coordinates, in complex wave
notation:

up = iei 7GReiw,,L _ Zei(7ﬁn+w,,t) (A-40)
r=—0o0 T
Here r runs from minus infinity to plus infinity for the backward and forward waves. In
Equation (A-40), it is understood that only the real part constitutes the response.

A.8.7 Frequency - speed - velocity

In this work, frequency is associated with vibration while speed will be used for rotation
and velocity will be used for wave motion. All three quantities have the unit [1/time] but
are very different in all other aspects. Frequency, measured in Hz is often used in the
context of angular velocity, measured exclusively in rad/s, and both quantities are related
by 2nf = w. This notion of angular velocity was devised from a different concept of
continuous repetitive motion and is different to the speed of rotation, 2, measured in
rev/min. In order to distinguish wave motion from the other two, the term wave velocity
or just velocity will be used. Its units within this thesis are rad/s. Strictly, the different
units can be interchanged arbitrarily, as they serve only to describe a physical quantity,
but in the thesis for reasons of clarity, frequency, speed, and velocity have been kept as
separate as possible.



	Notation
	Introduction
	Objective
	Efficiency
	Literature Survey
	Scope and Layout

	Dynamics Rotor/Stator
	Linearity
	Modal Superposition
	Eigenanalysis

	Dynamics Rotor+Stator
	Simulation
	Results Simulated
	Test Rig Design
	Results Experimental
	Conclusions
	References
	Appendices
	Eigenanalysis
	Physical Data
	Modal Tests
	Frequencies Rotating Dsic
	Data Test Rig
	Interaction
	Programs
	Frequencies Rotating Disc
	Integration
	Critical Speeds
	Dynamics State Vector
	Contact Forces

	Terminology


