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ABSTRACT

Despite the highly sophisticated development of finite element methods, a finite element

model for structural dynamic analysis can be inaccurate or even incorrect due to the

difficulties of correct modelling, uncertainties on the finite element input data and

geometrical oversimplification, while the modal data extracted from measurement are

supposed to be correct, even though incomplete. Therefore, model updating schemes are

developed which aim to improve or to correct the initial finite element model using modal

test results.

In this thesis, the advantages and disadvantages (or limitations) of various model

updating methods are discussed. One of the advantages of model updating using

eigensensitivity analysis is that mode expansion is not required. However, this method

requires large computational effort because of the repeated solution of the eigendynamic

problem and repeated calculation of the sensitivity matrix. A sensitivity method is

developed using arbitrarily chosen macro elements in this thesis at the error location stage

in or&r to reduce the computational time and to reduce the number of experimental modes

required By this approach, the model updating problem which is generally under-

determined can be transformed into an over-determined one and the updated analytical

model can be a physically meaningful model.

The assumption that the test results represent the true dynamic behaviour of the structure,

however, may not be correct because of various measurement errors. The errors involved

in modal parameter estimation are investigated and their effects on estimated frequency

response functions(FRFs) and on the modal parameters extracted from the FRFs are also

investigated. The resultant ‘experimental’ modal data which contain possible experiintal

errors are used to update &corresponding analytical model to check the validity of the
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updating method developed. Also, the sensitivity of the updating method to noise on the

experimental data is investigated.
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NOMENCLATURE

As this thesis embraces several different branches of dynamics, there is a certain amount

of overlap between the symbols normally employed in the different branches. Therefore,

most symbols are defined where they occur in the text, and only the most important of

these are listed below.
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f(t)

f*

f*

cross-sectional area

mass correction coefficient of the irh element

measured acceleration

modal constant of the rth mode

true acceleration

stiffness correction coefficient of the izh element

complex stiffness correction coefficient of the ith element

viscous damping coefficient

damping correction coefficient of the ith element

structural damping

diameter of a push rod (Appendix D)

structural damping matrix of the ith element

updated structural damping matrix

superscript for element matrix

Young’s modulus

sensitivity coefficient

actual force applied to the structure

natural frequency of the first axial mode

analytical natural frequency
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fb natural frequency of the first bending mode

fm upper limit of measured frequency range

fx experimental natuml frequency

G, (o ) autespectmm of measured acceleration a(t)

G,(U) cross-spectrum between measured force f(t) and measured acceleration a(t)

GAO) autcqectrum of measured force f(t)

H(o) frequency response function

H 1 ,Hz FRF estimates

i imaginary unit (= 47)

I area moment of inertia

n identity matrix

k stiffness

k, axial stiffness of a push rod

kb bending stiffness of a push rod

[Kl stiffness matrix

[I<,1 analytical stiffness matrix

IKali axial stiffness matrix of the irh element

[KbIi bending stiffness matrix of the ith element

[KTi stiffness matrix of the ith element

[Kli stiffness matrix of the ith txncm element

&II updated analytical stiffness matrix

[K*] complex stiffness matrix

[AK] stiffness error matrix

1 number of selected elements

L number of macro elements

length (Appendix B and Appendix D)

m effective mass of that part of the structure to which the accelerometer is mounted

m number of measured modes

ma accelerometermass
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M

shaker mass

minimum number of measured modes

mass matrix

analytical mass matrix

mass matrix of the ith element

mass matrix of the ith macro element

updatedanalyticalmassmati

maSSt?IIWIlXUliX

number of measured coordinates

number of elements in the irh macro element

number of DoFs of a analytical model

number of averages

number of modes us& for calculation of eigenvector sensitivity

null matrix

output force from the shaker

correction coefficient vector

difference vector of correction coefficients (whole elements)

difference vector of correction coefficients (selected elements)

balanced sensitivity matrix (whole elements)

unbalanced sensitivity matrix (whole elements)

balanced sensitivity matrix (selected elements)

time

recod length

subscript for updated data

rectangular window

displacements in x direction

left singular vector matrix

displacements in y direction

right sing@ar vector matrix
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Harming window

window spectrum

horizontalaxis

subscript for experimental data

vertical  axis

=Wtance

coherence function

difference vector between experimental and analytical modal parameters

phase angle

mass normalised eigenvector of the rth mode

mass normalised eigenvector of the rth experimental mode

difference between experimental and analytical eigenvectors of the rth mode

mass normal&d mode shape matrix

arbitrary value between zero and the first non-zero eigenvalue

Lagrange multiplier

eigenvalue for the nh

eigenvalue for the rth

mode

mode

difference between experimental and analytical eigenvalues of the rrh mode

eigenvalue matrix

experimental eigenvalue matrix

shape functions

random error of [ ]

singular value of sensitivity matrix

singular value matrix

function to be minim&I

normal&d random error of [ ]

density

modal damping of the rfh mode

measured resonance frequency



s..

VlXl

% maximum frequency

6h2 eigenvalue of the rzh mode

4 true resonance frequency

[o.$J eigenvalueof thetih mode

WI

00

Ret 1

r lH
r IT
[ I-'

r 1+
I I

II II

*

*

A
.

,

Operators and Symbols

imaginary part of a complex value

order of a value

real part of a complex value

Hermitian (complex conjugate + transpose) of a complex matrix

transposeofamatrix

inverse of a matrix

Moore-Penrose general&d inverse of a rectangular matrix

modulus

Euclidian norm of a matrix

complex conjugate

cunvolution  (Chapter 5)

estimated value

derivative with respect to time

derivative with respect to displacement

Abbreviations

DFl- discrete Fourier transform

DOF degree-of-freedom

Eh4M errormatrixmethod

FE finite element
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fast Fourier transform

FRF frequency response function

inverse eigensensitivity method

M A C  modalassuxancecriterion

SDOF single degree-of-freedom

SVD singular value decomposition
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CHAPTER 1

INTRODUCTION

/
1.1 STRUCTURAL DYNAMICS ANALYSIS

Due to increasing demands for better performance and the use of lighter structures in

modem machinery, vibration engineers must have better testing and analysis tools than in

the past. In the automotive industry, for example, weight reduction of a vehicle has been

pursued for better fuel economy and vehicle speeds have become higher as engine

performance has been improved, both of which result in various vibration and noise

problems at high speed conditions. Yet, at the same time, requirements for reduction of

vibration and noise are also increasing.

To solve vibration and noise problems in a structure, the dynamic behaviour of the

structure needs to be understood and, subsequently, an accurate dynamic model needs to

be developed. Analyses (or predictions) of the dynamic behaviour of the structure with

such a model can reduce development cost and test effort. For example, the natural

frequencies, at which the structure can be excited into resonance motion and may cause

vibration and noise problems, calculated using the model can be used to modify the

structural design in order to reduce vibration and noise by removing the natural

frequencies outside the operating range. There are two ways of achieving a suitable

t.
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dynamic model of a structure: by theoretical prediction and by experimental measurement,

respectively.

1.2 ANALYTICAL MODELLING - FE ANALYSIS

If the structure has a simple geometric shape and its physical properties are more or less

uniform throughout, then a partial differential equation of motion of the form known as

the ‘wave equation’ can be used to describe its dynamics. There are well-known solutions

to the wave equation for simple structures such as beams, shafts, shells and plates. For

complicated structures such as a vehicle body, however, these analytical approaches are

often impractical because the approximations required are too restrictive to adequately

describe their dynamics.

The requirement for a more generalised method of modelling the dynamics of large,

complicated structures with nonhomogeneous physical properties has brought about the

development of the finite element (FE) analysis. Due to advances in numerical methods

and the availability of powerful computing facilities, FE analysis has become the most

popular technique in structural dynamic analysis.

The fundamental principle of the FE method is to divide a complicated structure into many

small elements such as plates, beams, shells, etc. The mass and stiffness matrices of an

individual element, which is a simple, homogeneous element, can be obtained easily. The

global mass and stiffness matrices of the structure can be assembled using these element

matrices by considering connectivity and all the boundary conditions. Once the

mathematical model has been built (or the mass and stiffness matrices have been

constructed), the equations of motion can be solved by using various algorithms to obtain

a description of the dynamic behaviour of the structure.
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An FE model can be used to perform several types of analysis such as response

prediction, structural coupling, stress analysis, life time prediction, structural dynamic

modification, etc. Long before the construction of a real structure, it is possible to

investigate its dynamic behaviour using the FE model so that any deficiencies in the

design can be spotted early in the design stage where changes may cost much less than in

the later stages.

FE models, however, can be inaccurate or even incorrect due to insuffkient or inadequate

modelling detail, geometrical over-simplification and uncertainties on the finite element

input data. A survey which was carried out to assess the reliability of structural dynamic

analysis capabilities [l] showed that numerical predictions (or FE analysis) of structural

dynamic properties are not always as reliable as they are generally believed to be. This

points to a need for vibration tests on the structure in order to confirm the validity of the

FE model before it is used for detailed design analysis.

1.3

APart

EXPERIMENTAL

from the aforementioned

MODELLING - MODAL TESTING

analytical approach to develop a dynamic model for a

mechanical structure, another approach is to establish

structure by performing vibration tests and subsequent

This process is known as ‘Modal Testing’. During the

an experimental model for the

analysis on the measured data.

last two decades or so, modal

testing has developed both in theory and in practice. Many techniques have been

developed in order to extract more reliable modal parameters of structures from the test

data. These techniques have been fruitful due largely to the introduction of the fast

Fourier transform (FFT) algorithm and also to the development in recent years of

powerful multi-channel FFT analysers and to fast data acquisition equipment. The

availability of computer-controlled measurement equipment and special-purpose analysis
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software has reduced the measurement time and human effort, and improved the

reliability and accuracy of measured data and the modal properties extracted from them.

The principle of modal testing is to vibrate a structure with a known excitation so that

natural frequencies, damping and mode shapes can be identified. There are two main

excitation methods. These are referred to as single-point excitation and multi-point

excitation (or normal mode method). The original multi-point excitation, which is the

more traditional of the two and has been used in the aerospace industry to test large

structures, attempts to excite the undamped (or normal) modes of a structure, one at a

time, while the single-point excitation approach excites the structure to vibrate in several

(all) of its modes simultaneously. There are many problems which make the multi-point

excitation method difficult, time consuming and expensive to implement. The single-point

excitation has gained much popularity in recent years because it is faster and easier to

perform and is much cheaper to implement than multi-point excitation and is being used

by many manufacturing industries, including the automotive industry. The single-point

excitation method excites a structure at one coordinate and measures the consequent

responses at all the coordinates of interest. A set of frequency response functions (FRFs)

are obtained by dividing the Fourier transforms of the response signals by the transform

of the input force. Modal parameters can be identified by performing further analysis (or

curve-fitting) on this set of FRFs.

Not only is modal testing necessary to validate an FE model, it can be applied to various

aspects. Modal testing can be used for troubleshooting vibration and noise problems in

existing mechanical structures, which might be caused either by error in the design or

construction of the structure or by wear, failure or malfunction in some of its

components. Modal testing can also be used to construct dynamic models for components

of a structure which are too difficult to model analytically.

.- . .-
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1.4 LINKING FE ANALYSIS AND MODAL TESTING

At the design stage, an analytical model - especially an FE model - can be used to predict

the vibration behaviour of a future structure and to modify the design of that structure if

any deficiencies in the design are found before the structure is constructed. At later stage,

when the structure has been constructed, modal testing can be performed to validate the

FE model. Once the model is shown to predict measured behaviour with an acceptable

accuracy, then it can be used for further analysis such as response prediction, structural

coupling, stress analysis, life time prediction, etc.. However, test results are seldom in

perfect agreement with the predictions of the FE model. Therefore the analyst and the

experimentalist are faced with the problem of reconciling two modal databases for the

same structure. Neither of these can be assumed to be perfect, but both have features

which can be combined to give a more accurate description of the dynamics of the

structure.

Because of the different limitations and assumptions implicit in the two approaches, the

FE model and experimental modal model have different characteristics and different

advantages and drawbacks. The FE model generally has a large number of coordinates so

that the vibration characteristics can be described in detail and can cover a comparatively

wide frequency range. However, due to insufficient  or incorrect modelling, geometrical

over-simplification and uncertainties on the element properties (especially the properties

of joints which have not been fully explored), the FE model may well be inaccurate or

even incorrect. In contrast, the experimental data or experimentally-derived modal

properties are generally considered to be ‘correct’ or at least close to the true

representation of the structure, because modal testing deals with the actual structure rather

than an idealisation. However, due to the limited number of coordinates and modes which

can be included (because of various restrictions in measurement), the information thus

D
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obtained is available primarily as selected modal parameters, rather than the full spatial

properties as provided by the FE model.

The principle of correlating the models derived from these two different approaches is to

make use of the advantages of both and to overcome their disadvantages. Basically, it is

believed that more confidence can be placed in the experimental modal data than in the FE

model. Therefore, model updating schemes have been developed which aim to improve

or to correct the initial FE model using modal test results.

1.5 DISCUSSION OF RELATED RESEARCH

Historically, model updating has been accomplished by a “trial-and-error” approach

which was mainly dependent on the individual’s experience and intuition. With increasing

complexity of the structures involved, model updating by this means becomes more

difficult and systematic approaches are necessary. In recent years, a significant number of

methods for updating an analytical model have been developed which use test data to

identify or to improve an analytical model of a structure. One of the earliest publications is

by Rodden [2] who used test data to identify directly structural influence coefficients.

Berman et. al. [3] introduced a systematic approach in model updating: they improved an

analytical mass matrix by finding the smallest changes which make a set of measured

modes orthogonal and identified an ‘incomplete’ stiffness matrix by summing the

contributions of the measured modes and with the use of the improved mass matrix. The

stiffness matrix, however, does not resemble a true stiffness matrix. Baruch et. al. [4,5]

formulated a procedure using Lagrange multipliers for minimising changes in matrices to

satisfy specific constraints to update an analytical stiffness matrix under the assumption

that the analytical mass matrix is correct. Later, having concluded that the assumption of a

correct mass matrix is questionable, especially for a dynamic model which is often an

approximate reduced version of a much larger model [6], Berman et. al. developed a

L
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similar method for updating both the analytical mass and stiffness matrices [7] and

applied the method to a practical structure [8]. Variations of these methods have been

developed and investigated by Wei [9] and Caesar [lo]. The aforementioned methods do

not require iteration or eigenanalysis and the updated model possesses the ‘correct’

eigenvalues and eigenvectors. However, the modal parameters of the updated model

outside the frequency range of the experimental data remain questionable and may become

even worse than those of the original analytical model because the updated model does

not seek to preserve the connectivity of the structure [ 11,121. Another problem of those

methods is that mode expansion is essential to overcome the inevitable incompatibility

between the analytical model and the measured modes, and this may be an erroneous

procedure, thus jeopardising model updating. Ibrahim [13] developed a method which

used submatrices of system matrices as variables under the eigendynamic constraint.

Thus, the physical connectivity of the analytical model can be preserved during the

updating procedure. However, the updated model is not unique in the sense that it can be

scaled by an arbitrary factor. Later, To [12] modified Ibrahim’s meth& by using the

mass normalisation properties as another constraint to resolve the problem of uniqueness.

These two methods, however, still require mode expansion to overcome the inevitable

incompatibility between the analytical model and the measured modes.

Apart from these direct updating methods, Collins et. al. [ 141 introduced the concept of

an inverse eigensensitivity method (IEM) in an iterative procedure to update an analytical

model. Their method requires large computational effort because of the need for repeated

solution of the eigendynamic problem and repeated calculation of the sensitivity matrix (or

Jacobian matrix), especially for complicated structures with a large number of degrees of

freedom. Later, Chen et. al. [15] introduced matrix perturbation theory to calculate the

sensitivity matrix and to compute the new eigenvalues and eigenvectors. These iterative

methods do not require mode expansion and the updated model preserves the physical

connectivity. However, they do require large computational effort, and convergence is

not guaranteed if the modelling errors are not small.

c dL .
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In addition to the methods summarised above, another approach to model updating has

been developed under the assumption that the major errors in the analytical model are

often isolated rather than distributed and thus that any attempt to update the whole

analytical model is conceptually insufficient and practically unrealistic. Sidhu et. al. [ 16)

developed the error matrix method (EMM) which aimed to locating major modelling

errors in an analytical model rather than attempting to update the whole analytical model.

Despite some advantages, this method does not succeed in locating mismodelled  regions

if the number of measured modes is insufficient. And when modelling errors are not

small, this method cannot be applied because of the assumption that second- and higher-

order terms in an expansion of [K]-l-and [Ml-l can be ignored. An alternative method was

developed by He [17] to locate the modelling errors using a few measured modes

available. Unlike the case of the EMM, there is no assumption that modelling errors are

small, and error location is possible even with a very limited number of measured modes.

Similar efforts for error location are also reported in Ref. [ 181 where the method is called

‘force balance method’. The aforementioned error location methods require complete

measured coordinates, which is not practical, or mode expansion to overcome the

incompatibility between measured modes and analytical model, which, as mentioned

before, may be an erroneous procedure thus jeopardising a successful location of the

errors.

Zhang et. al. [19] employed the IEM to localise dominant error regions in an analytical

model using real eigensolutions and then updated the model by correcting the selected

parameters in an iterative calculation. As mentioned before, the IEM does not require

mode expansion and its computational time will be reduced by locating error regions first

and updating the analytical model using only the elements which are selected in error

location procedure. However, the methods suggested by Zhang have been found to be

unreliable.
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1.6 PREVIEW OF THE THESIS

The objectives of this research are to develop a reliable, sensitive and systematic method

for locating modelling errors in an analytical model using modal testing results and to

develop an updating method which can produce an improved analytical model which can

not only provide exact modal parameters measured in test but also predict correctly those

modes outside frequency range of the experimental data and at the same time can reduce

the number of experimental modes required as well as the computational time for

updating.

Various methods to correct an analytical model using modal testing results are reviewed

and their advantages and disadvantages (or limitations) are discussed in Chapter 2. All

direct methods need a mode expansion procedure to overcome the incompatibility in the

dimensions of the measured modes and the analytical model. The IEM, which is one of

iterative methods, has an advantage over direct updating methods in the sense that it does

not require a mode expansion procedure to be applied. However, convergence is not

guaranteed if the modelling errors are not small. The convergence might be improved by

locating error regions first and by correcting only the selected parameters by an iterative

calculation. In Chapter 3, a version of the IEM using arbitrarily chosen macro elements is

proposed at the error location stage in order to reduce the computational time and to

reduce the number of experimental modes required. By this approach, the model updating

problem which is generally underdetermined can be transformed into an over-determined

one. The proposed method is applied to the GARTEUR structure which is used to

represent a practical structure and to constitute a realistic problem in respect of the

incompleteness of both measured modes and coordinates.

Even though many methods have been developed in recent years for updating analytical

models for the dynamic analysis of a structure, and some of them have been proven to be

quite successful, the methods are generally based on the assumption that the test data are
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perfect or noise-free. For any updating method to be useful for application to practical

structures, the sensitivity of the method to noise on the test data needs to be established.

In Chapter 4, typical measurement errors are introduced by contaminating the modal

parameters of the correct or modified structure with random noise of different levels and

the method proposed in Chapter 3 is applied to a bay structure for which “experimental”

data are noisy and incomplete.

The characteristics of real measurement errors might not result in random variations in the

modal parameters. For the updating method to be useful in practical application, various

error sources in testing should be considered in detail and more realistic en-or-s rather than

random noise should be introduced into the “experimental” data. In Chapter 5, various

errors involved in modal parameter estimation are examined, and their effects on

estimated FRFs and on the modal parameters extracted from the FRFs are also

investigated. The resultant “experimental” modal data which contain representative

experimental errors are used to update the corresponding analytical beam model to check

the validity of the IEM.

Measured modal data are often complex because of inherent damping in real structures

which can not be modelled by proportional damping, whereas the modal parameters of

the corresponding analytical model are real. Updating methods developed so far generally

assume that the experimental modal data are real, or postulate that the measured complex

data have successfully been converted to real data. However, the deduced real modes may

be erroneous because the experimentally-identified complex modes are : incomplete and

the deduction itself relies on the analytical model which is erroneous. In Chapter 6, a

modified version of the method suggested in Chapter 3 is developed to locate and to

update damping elements together with mass and stiffness elements in analytical model

using measured complex modal data. The proposed method is applied to the free-free bay

structure which may constitute a realistic problem in respect of the incompleteness of both

measurti modes and coordinates.
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Finally, all the new developments in this thesis are reviewed in Chapter 7 together with

suggestions for further research.
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CHAPTER 2

MODEL UPDATING METHODS - A REVIEW

2.1 INTRODUCTION

One of the most important applications of modal testing is the validation of the

mathematical model for the dynamic analysis of a structure - especially a finite element

model - by comparing experimentallydetermined modal parameters with those obtained

from the analytical model. Once the analytical model is shown to predict the measured

behaviour, then it can be used with confidence for further analysis such as response

prediction, structural coupling, stress analysis, life time prediction, etc. However. due to

the difficulties of correct modelling, geometrical oversimplification and uncertainties on

the finite element input data, the analytical model could be inaccurate or even incorrect. In

contrast, modal testing is supposed to be capable of identifyimg the true modal parameters

because it deals with real structures. Therefore, model updating schemes are developed

which aim to improve or to correct the initial finite element model using modal test

results.

Historically, model updating has been accomplished by a “trial-and-error” approach

which was mainly dependent on the individual’s experience and intuition. With increasing
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complexity of the structures involved, model updating becomes more difficult and

systematic approaches are necessary.

2.2 MODEL UPDATING METHODS

In recent years, a significant number of methods for updating an analytical model have

been developed, and these can be divided into direct methods and iterative methods.

Direct methods usually require low computational effort, but the updated models do not

always constitute physically meaningful models [ 111. They tend to transform the

physically meaningful models into-representative models. On the other hand, Lerative

methods require larger computational effort because of repeated solution of the

eigendynamic problem and the pseudo-inversion of large matrices, though only some of

these will always constitute physically meaningful models if they converge [20].

In the following sxtions,  the advantages and disadvantages (or limitations) of various

updating meth& will be xeviewed/summarised.

2.2.1 DIRECT METHODS

Direct  updating methods seek to update a given mass matrix MA] and/or stiffness matrix

[KA] using measured eigenvalues [Ax] and eigenvectors [ax] under the equality

constraints such as eigendynamic and orthogonality properties. These methods can

themselves be categorised into two groups by the types of variables to be updated. The

first group is to use individual elements of the system matrices as variables. Another

group uses correction coefficients of element matrices as variables.

i
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2.2.1.1 Berman’s Method

A method for updating an analytical stiffness matrix was developed by Baruch under the

assumption that the analytical mass matrix is correct [S]. Later, Berman et. al. developed

a similar method for updating both the analytical mass and stiffness matrices [8].

Variations of these methods are given in Ref.[ lo]. The basic idea of the direct methods is

to minimise the weighted Euclidian norm between the original incorrect matrices and the

updated ones under the equality constraints.

In Berman’s method [8], an anaIytica.l mass matrix is updated first and then, based on this

updated mass matrix, the analytical stiffness matrix is updated. In his method, the

objective function to be minim&d for updating the mass matrix is

E = II mA]-lR ( [MU] - [MA] ) [MA]-‘n II

under the constraints

FI,l = MJI~ w&IT Frul Pxl = [ II

(2.1)

(2.2)

This minimisation problem can be easily solved using the method of Lagrange

multipliers. Using Lagrange multipliers, a function to be minimised may be written

Y = E + ~ ~ Xij ([~XIT [MUI [~,I - m>
i=l j=l

(2.3)

Equation (2.3) is differentiated with respect to each element of l?$] and set to zero. Then

using equation (2.2) to evaluate klj yields the updated mass matrix which minimises E and

satisfies equation (2.2):

mu] = [MA]  + [MA] [a,] [ma]-’ ( m - [maI ) [ma]-’ [@JT [ MA] (2.4)

L



q  Model Updating Methods - A Review 17

where [ ma1 = [@,lT [ M,J [@,I

Similarly, for updating a stiftkss matrix, the objective function to be minim&d can be

definedas

e = 11 WV]-‘” ( C&l - l&l 1 [ WJI-~ 11

under the constraints

l-&II [@,I = Frul [@,I E ax2 1 9

P,lT r&J1 [@,,I = [ q2 I

l-w = [XulT

(2.5)

(2.6)

Then the updated stiffness matrix becomes:

IKul = [KAI+([AI+[AI~) (2.7)

where [A] = ; [MU][@,]([cPXJTIK,]  [@,,I + [ q2 ] ) P,lTWul - WA] [@,I [@xlTIMu]

This method does not require iteration or eigenanalysis and the updated model possesses

the ‘correct’ eigenvectors and eigenvalues. However, the updated mass matrix using

Berman’s method cannot preserve the co~ectivity  of the structure as shown in Refs [ 11,

121 because a connectivity constraint is not imposed. The updated stiffness matrix using

the updated mass matrix, which is not correct, also cannot be correct. As a result, the

updated model is not physically meaningful but is a representative model. Thus, the

modal parameters of the updated model outside the range of the experimental data remain

questionable and may become even worse than those of the original model. In general, an

updated model should be able to be used for further analyses. A designer is not only

interested in the correct representation of the dynamic characteristics of a structure but

often he wants to use this model for stress analysis, life time prediction, etc. Another
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problem of this method is that mode expansion is essential to overcome the inevitable

incompatibility between the analytical model and the measured modes. Various expansion

methods were investigated in Refs [21-231  but, so far, there is no expansion method

which is satisfactory for all cases.

2.2.1.2 Eigendynamic Constraint Method

As mentioned before, the physical connectivity of the analytical models should be

preserved during the updating process, and so the updated model should have the same

connectivity as that of the original model. By using correction coefficients of submatrices

of system matrices as variables instead of individual elements of system matrices, the

connectivity constraint can be easily imposed. Ibrahim [13] developed a method which

used submatrices of a system matrices as variables under the eigendynamic constraint.

However, the updated model is not unique in the sense that it can be scaled by an

arbitrary factor. The eigendynamic constraint method described below is similar to

Ibrahim’s method. However, the problem of uniqueness of the updated model was

resolved by using the mass normalisation properties of measured modes as another

constraint.

The method is formulated based on the eigendynamic equation and the mass

normalisation relationship. For the rth mode

- & [MU1 IQ,),+ [h~l~@x~r=  to)
~4QTMJl (~A = 1

The updated mass and stiffness matrices can be written as

(2J9

(2.9)
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Flu1 =,$ aj I”lj &] = 2 bj WIj
j=l

(2.10)

where 3 a.nd bj are COIT&OII  factors to be determined and mlj and [KJj m submatrices

of system matrices such as

1) sub element matrices

2) Cnite element matrices

3) macro element matrices.

Substituting equation (2.10) into (2.8) results in a set of N linear algebraic equations:

[-~&I, MxL .a- -X,,[M]L,($x)r [Kl,(@,), -** [K]~z(@x)rl

(2.119

Similarly, equation (2.9) becomes

1 Combining equation (2.11) and (2.12) yields:
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'0

.

.

.

0

1,

(2.13)

When there are m modes available, we can have m(N+l) linear algebraic equations:

(2.14)

If m(N+l) is greater than number of unknowns, Ll+L2, the problem becomes

overdetermined and the SVD technique can be used to solve for the unknown vector (P)

whose elements are the correction coefficients of system matrices.

This method does not require iteration or eigenanalysis and the updated model preserves

the co~ectivity  of the structure. However, like other direct methods, mode expansion is

essential because of the large difference in the dimension between the measured modes

and the analytical model. The number of coordinates measured is usually one or two
I orders of magnitude smaller than that in an analytical model. As can be seen in Refs [21-

23], there is no effective expansion method so far.
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2.2.2 COMPATIBILITY BETWEEN MEASURED MODES AND

ANALYTICAL MODEL

One of the main problems of model updating is that experimental modal parameters are

not directly compatible with those fkom the analytical model because:

1) the number of modes available f&n measurement (m) is usually very limited

(mea) and

2) the number of measured coordinates (n) is less than the number of coordinates

(or the number of degrees of freedom) of the analytical model (n<N).

It is practically impossible to measure all the modes because of the limitation due to the

characteristics of the experimental instruments such as accelerometers, force transducers,

signal analyser,  exciter, etc. The second restriction results from the fact that vibration

measurements are too expensive to measure many coordinates and, some coordinates may

be either technically difficult to measure, such as rotations, or physically inaccessible,

such as the coordinates inside the structure.

The first restriction - incompleteness in the number of measured modes - can be resolved

by using the corresponding modes from the analytical model and omitting the unmeasured

modes which are usually the higher modes in practical situations. Therefore, there

remains the problem of the large difference in the number of coordinates between the

analytical model and measured modes. There are two possible solutions to this restriction:

1)

2)

expand the measured modes to include the unmeasured coc~dinates using an

expansion method, or

use corresponding coordinates from the analytical model and omitting the

unmeasured coordinates in model updating.
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Until recently, model reduction techniques such as that suggested by Guyan [24] or the

dynamic reduction technique [25] have been used to overcome the incompatibility.

However, because the eigenproperties are not exactly preserved in a reduced model and

the co~eztivity  of the reduced model does not reflect the physical properties of the

complete analytical model, modelling errors spread into neighbouring regions [21], which

makes model updating very difficult.

The alternative to reducing the analytical model is to expand the measured mode shapes.

If mode expansion can be achieved successfully, the updating result can indicate

mismodelled elements more precisely than the approximate error regions found when

model reduction is used. Various mode expansion methods have been developed, and

comparisons between various expansion methods can be found in Refs.[22, 231. But

until now, no expansion technique can interpolate the unmeasured coordinates

satisfactorily.

The alternative approach to coping with the large difference in the number of coordinates

between the analytical model and the measured modes is to use only the corresponding

coordinates from the analytical model, omitting the unmeasured coordinates in model

updating. As can be found in updating equations (equations (2.4), (2.7), (2.13)), this

approach can not be applied to the direct methods because these methods require

compatibility of all degrees of freedom between analysis and test. One of the most

important advantages of an inverse eigensensitivity method (IEM), which will be

explained later, is that it does not require mode expansion or model reduction because it is

possible to use corresponding coordinates only.



q  Model Updating Methods - A Review 23

2.2.3 ITERATION METHOD - INVERSE EIGENSENSITIVITY

METHOD (IEM)

When the measured coordinates are incomplete, measured modes must be expanded for

any direct method to be applied, which may be an erroneous procedure whichjeopardises

updating. The use of mode expansion can be avoided by using an IEM (or similar

method) where only the coordinates which have been measured in the test are used for

Updating.

Collins et. al. [14] first introduced the IEM for model updating. Later, Chen et. al. [15]

modified Collins’ method by proposing a matrix perturbation method to calculate the

sensitivity matrix and to compute the new modal parameters for the parameter estimation

The IEM uses modal parameters of an analytical model as initial values and the parameters

are updated iteratively based on the differences between the analytical and measured

values. Consider mathematically well-behaved functions fc (i=1,2,...,m) of L variables

pj, j=1,2,...,L. If we denote p as the entire vector of values pj, then in the neighbourhood

of po, the functions can be expanded in a Taylor series:

By neglecting terms of order A$ and higher, equation (2.15) can be approximated as:

L afi
fdP) - fi(PJ = ,: ap. *Pj

J

Inmanixform

(2.16)
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1 h(P) - fdP,)

.

.

fin(P) - LAP,)

API
AP2

.

.

.

APL

(2.17)

For a structure under study, the parameters p are to be identified and p,, are the

corresponding values used in the initial analysis. If the updated mass and stiffness

matrices are written as in equation (2.10), the number of unknowns becomes Lt+L2.

Functions fc(p) represent the measured modal parameters and fc(p,) are the

corresponding modal parameters obtained from the initial model. Equation (2.17) can be
I written as:

*x1
(*‘+)I

.

*L
:*‘t’),

or

(A) m(n+l)xl = [sJm(n+l)x(LI+I?)  (AP)(L,+&)xl

’ Aal ’
.
.
.

&Ll
Ah

.

.

.
bbL2’

(2.18)

(2.19)

The elements of the sensitivity matrix [S] can be expressed as [see Appendix A]

(2.20)

k,, . _. _.._..,.  i,  .., ,_  _  ..;i ,, __  _
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!y = c c;j(q)j
i j - l

(2.2 1)

WjT ag- k*?-
Cjj =

i ( X,-  5

(r4 1

- ‘zcol~a~ Ml, (r=j 1

If the number of measurd modes m is greater than (*), equation (2.19) becomes

overdetermined and the unknown vector (Ap} can be calculated by premultiplying

equation (2.19) by [S]+

(API =  PI+ (A) (2.22)

wheretis  the Moore-Penrose genera&d inverse. The corrections are then added to the

solution vector

IPInew = {yield + (ApI (2.23)

and the process is

formulated based on

be seen in Fig.2.1.

repeated iteratively to convergence because equation (2.18) is

first-order approximation. The flowchart of the whole procedure can

As explained previously, this method does not require mode expansion. In formulating

equation (2.18), it is possible to use corresponding coordinates from the analytical mode

shapes and to omit the unmeasured coordinates. The updated model will be physically

meaningful model if it converges because physical co~ectivity  is preserved. However,

this method requires large computational effort because of repeated solution of the
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ia

i

Solve eigendynamic equation to ge-t

A** (+*I, I

Solve the equation

(A PI = [Sl+ IAl

Update solution vector

(PLew= (PI&+ (API

I Calculate new mass and stiffhess  matrices I

I Solve eigendynamic equation to get
new modal parameters

I

N

Fig.2.1 Flowchart of the EM

L
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cigendynamic problem and repeated calculation of the sensitivity matrix. Also,

convergence is not guaranteed ifmodelling CrzMs are not small.

2.3 ERROR LOCATION METHODS

In addition to the methods summari sed above, another aspect of model updating is the

location of mismodelled regions before an attempt is made to improve the analytical

model. If this location is successful, then the model can be improved locally and this will

be more efficient. Any attempt to update every element in the analytical model using only

the limited information fi-om the tesi results may not be physically realistic.

2.3.1 ERROR MATRIX METHOD (EMM)

The EMM [16] aims at locating major mode&g errors in an analytical model rather than

attempting to correct the whole analytical model. The difference between correct and an

analytical stiffness matrices is defmed as stiffness error matrix [AKj

WI = [XXI - EK*l (2.24)

If [AK] is second-order in

approximated as equation

expansion of [KJl

the sense of the Euclidean

(2.25) by ignoring second

norm, theerror matrix can

and higher order terms in

- &I-9 PAI (2.25)

be

an

[Kx]-l and [KJ’can in turn be approximated using

analytical modes such that equation (2.25) becomes:

m measured and the corresponding

. ,,.
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[AK] z [K*] ( [@*I [ q-1 [qJT  - P&l 1 kxl-’ mclT) w (2.26)

whex [@,J and [4,J are Nxm matrices  and [ X,J and [ Ix] are mxm matrices.

Similarly, a mass error matrix can be expressed as:

[AM-I  = lM*l ( PA] [@*IT - [%I PXF ) lxd (2.27)

This method does not require the assumption that [MA] is correct for locating stiffness

modelling errors nor does it squire the assumption that [K,J is correct for locating mass

modelling errors. Another advantage of the EMM is that it locates stiffness modelling

errors using flexibility data where lower modes dominate. This accords with the fact that,

in practical measurement, only the lower modes are readily available.

Despite these advantages, the ZMM has some drawbacks. As shown in Ref.[l6], if the

number of measured modes is insufficient, this method does not succeed in locating

mismodelled regions. And when [AM] or [AK] is not small, this method cannot be

applied because equation (2.25) and equation (2.27) are based on the assumption that

second- and higher-order terms in an expansion of [KJ-1 and [Ml-l can be ignored,

respectively. Furthermore, this method requires mode expansion to overcome any

incompatibility between the analytical model and measured modes.



q  Model Updating Methods - A Review 29

23.2 MODIFIED EMM

In consideration of the limited number of measured modes available and inconclusive

error location results, an alternative method [17] was developed to locate the modelling

errors using a few measured modes available. This method uses the product of the error

matrixandalmownmatrix:

(2.28)

Post-multiplying both sides of this equation by [%]T yields:

[ml <[qJ rqgl - VW <r@d  r&l r@xn

= IMAI ([@xl Fbd [%IT) - IL1 <[@xl [%JT, (2.29)

Although error matrices cannot be obtained directly from this equation, the mismodelled

regions can be revealed explicitly by estimating the right hand side of the equation which

consists of known information. Similar efforts for error location are also reported in Ref.

[ 181  where the method is called ‘force balance method’.

Unlike the case of the EMM, there is no assumption about [W or [AK] and error location

is possible even with a very limited number of measured modes. However, this method

also requires complete measured coordinates, which is not practical, or mode expansion

to overcome the incompatibility between measured modes and analytical model, which

may be ertoneous procedure thus jeopardising exact locating, as explained before.

‘. il.,‘..,,  .j  / . ,l_ .: ,. .- -
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2.3.3 IEM

Zhang et. al. [ 191 used the IEM to local& dominant error regions in an analytical model

using real eigensolutions and then updated the model by correcting the selected

parameters by an iterative calculation. To improve the condition of the sensitivity ma&ix

in equation (2.18), the differences in eigenvalues and corresponding rows of the

sensitivity matrix are divided by corresponding eigenvalues. Instead of solving equation

(2.22) iteratively, they suggested two erzw location methods.

A large element of the vector (Ap) represents either a dominant error region or a low

sensitivity of the corresponding element. To distinguish the former from the latter, a

sensitivity coefficient ej is introduced to represent the sensitivity of the jth element:

ej =
II(A
ll(A)ll

(2.30)

where (Aj ) = { Sj) Apj , (Sj) = the jrh CO~UIXM  of the sensitivity matrix. If both Apj

and ej are large, the corresponding element represents dominant errors, while the

element which has large Apj but small ej is not considered as a mismodelled element.

A second method is to search for the best approximating subspace of a given

dimension 6 which minimises the error
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E = II (A) - [S]6(Ap]611 (2.3 1)

where [S]& is a submatrix of [S] and (Ap)” is the corresponding subvector of (Ap).

An analysis of the errors obtained with subspaces of increasing dimension permits

the selection of the most probable dominant errors.

As mentioned before, the IEM does not require mode expansion and computational time

wiIl be saved by locating error regions first and updating the analytical model using only

those elements which are selected in error location procedure. However, the suggested

methods have some problems. The sensitivity coefficient is independent of mismodelled

regions. In other words, if an analytical model is given&e sensitivity coefficient of each

element is constant irrespective of mismodelled regions. If mismcxlelled regions have low

sensitivity, the first method cannot locate the error regions.

To illustrate this problem, the method has been applied to a bay structure shown in

Fig.2.2, which is a part of the GARTEUR test case. The structure is modelled by 31

beam elements, and 3 DoFs are considered at each node, so that the total number of DoFs

(N) is 90. Experimental data are obtained at 15 points as shown in Fig.2.2 in translational

coordinates only (i.e. n = 30). The first 10 experimental modes were used (i.e. m = 10).

Two cases has been considered for comparison. In the first case, stiffness modelling

errors are introduced by overestimating the stiffness matrices of the 12th,  13th and 31st

elements by 100 %, as shown iu Fig.2.3. The first 10 ‘experimental’ and initial analytical

natural frequencies are shown in Table 2.1.
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19 18 17 16 15 14 13

. Measurednodes

0 Unmeasured node:

Fig.2.2 Bay Structure

Table 2.1 Natural Fwencies of ‘Ex_perimentaI’ and Initial Analytical Models (Case u

The sensitivity coefficients and (Ap) are shown in Fig.2.4 and Fig.2.5 with possible

error regions. In this case, mismodelled regions which have relatively high

eigensensitivity could be located with some extra elements.
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Fig.2.5 Error Location Results (Case1 ; Stiffness Elements)
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In the second case, mass and stiffness modelling errors are introduced by overestimating

the mass matrices of the 1 lth and 12th elements by 50 95 and the stiffness matrices of the

25th. 26th and 27th elements by 100 %, as shown in Fig.2.6. The fust 10 ‘experimental’

and initial analytical natural frequencies are shown in Table 2.2.

.
mle 2.2 Natural Fregyencies of ‘J?x_~ntal’ and In’tial Analytul Models Case!1 21

i

The sensitivity coefficients and (Ap) are shown in Fig.2.7 and Fig.2.8 with possible

error regions. In this case, error location failed because some mismodelled elements have

relatively low eigensensitivity.

L..
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Fig.2.6 Modelling Errors (Case 2)
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Fig.2.8 Error Location Results (Case2 ; Stiffness Elements)

The second method has been applied to the same structure. In both cases error location

failed as shown in Tables 2.3 and 2.4 - in the first case the 13th stiffness element was

not located and in the second case the 27th stiffness element was not located.

i ,, , ,. ,, ,.._ _,,  -4% ,_,,. .:...
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.Table 2.4 Error Locwlts Case 21

s-
1-
2

2_
4

I
6

-
7

F

9

-
10

-

f

Located Elements

K25
K25 K26
K25 K26 Ml1
K25 K26 Ml1 K28
K25 K26 Ml1 K28 K9
K25 K26 Ml1 K28 K9
K30
K25 K26 Ml1 K28 K9
K30 Ml2
K25 K26 Ml1 K28 K9
K30 Ml2 K12
K25 K26 Ml1 K28 K9
K30 Ml2 K12 Ml6
K25 K26 Ml1 K28 K9
K30 Ml2 K12 Ml6 K31

IADI

0.67 0.69 0.22
0.63 0.64 0.42 0.19
0.26 1.05 0.40 0.46 0.18
0.34 0.94 0.24 0.38 -0.16
0.18
0.27 1.02 0.26 0.41 -0.13
0.38 0.11
0.30 0.97 0.21 0.39 -0.15
0.36 0.14 0.11
0.32 0.95 0.13 0.37 -0.09
0.35 0.28 -0.08 0.10
0.30 0.95 0.11 0.38 -0.10
0.35 0.27 -0.08 0.07 0.10

0.567
0.592

0.627
0.638

Emin

0.455

0.659

0.638

0.662

0.663

(cJ actual mismodelled elements; Ml 1, M12, K25, K26, K27)
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2.4 CONCLUDING REMARKS

An attempt has been made to review various updating methods which can be divided into

two groups - direct methods and iterative methods. Direct methods are usually very fast

and some methods produce exact modal parameters, but mode expansion is essential

because of the large difference in the dimension between measured modes and the

analytical model. The problem of mode expansion is that this procedure might be

erroneous, thus jeopardising model updating procedure. On the other hand, iteration

methods such as IEM do not require mode expansion procedure and the updated model

can preserve physical co~ectivity  and may become physically meaningful model - if it

converges. However, this method requires large computational effort because of repeated

solution of the eigendynamic problem and repeated calculation of the sensitivity matrix.

Also, convergence is not guaranteed if modelling errors are not small.

Any attempt to update every element in the analytical model using only the limited

information from typical test results may not be realistic. If mismodelled regions can be

located in a preliminq step, model updating can be carried out more efficiently and more

successfully. Therefore, error location is a fundamental fmt objective of the updating

process.

Recent developments in the area of error location have been investigated. The EMM can

locate mismodelled regions successfully even with a very limited number of measured

modes if complete coordinates are measured, which is not practical assumption. Again,

for the EMM to be successful, a reliable mode expansion method should be available.

The IEM does not require mode expansion and its computational time will be reduced by

locating error regions fmt and updating the analytical model using only the elements

which are selected in error location procedure. However, the methods suggested by
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Zhang have been found to be unreliable. Themfore, more reliable error location method

should be developed.

? . . _ . , -



L
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CHAPTER 3

MODEL UPDATING USING IEM

3.1 PRELIMINARIES

In the last Chapter, advantages and disadvantages (or limitations) of various model

updating methods were discussed and it was noted that all direct methods needed mode

expansion - and if this were erroneous, this might jeopardise the model updating

procedure - to overcome the incompatibility in the dimensions of the measured modes (n)

and the analytical model (N).

The IEM, which is one of iterative methods, has an advantage over direct updating

methods in the respect that it does not require a mode expansion procedure. However,

convergence is not guaranteed if modelling errors are not small. The convergence might

be improved by locating error regions fmt and by correcting only the selected parameters

by an iterative calculation. The methods suggested by Zhang [ 191  which are based on the

IEM do not seem to be reliable as shown in the case studies in the previous Chapter.

In this Chapter, a version of the IEM using arbitrarily chosen macro elements, which is

one of the iterative methods, is proposed at the error location stage in order to reduce the

computational time and to reduce the number of experimental modes required. By this
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approach, the model updating problem which is generally under-determined can be

transformed into an over-determined one.

3.2 ERROR LOCATION PROCEDURE

3.2.1 SELECTION OF SUBMATRICES

The updated mass and stiffness matrices can be expressed as functions of the analytical

ones, in the form:

&I =k ai Wli (3.1)

(3.2)

where L is the number of elements and ai and bi are correction coefficients to be

determined. If there is no error in the ith element, ai and b, should be unity, whereas a; or

bi << 1 (or >> 1) indicates a mismodelled element. [M]i and [KJi are submatrices of

system matrices and can be one of these forms:

1) subelement matrices

2) element matrices used for FE modelling

3) macro element matrices

The success of the lEM depends heavily on the choice of the submatrices [MJ, and [Kli.

If the structure under consideration is a complicated structure - most practical structures

are usually very complicate& , it might have many elements and data from experiment are

usually very limited in the respect of the number of measured modes and the number of

measured coordinates. In such a case, model updating using the lEM with element
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matrices or subelement matrices requires quite a large computational effort and the result

usually does not converge. The alternative is to use macro elements as submatrices.

The mass matrix of the im macro element Fl]i is formed as a summation of individual

element mass matrices

q

Flli zJz [M"lj (3.3)

where ni is the number of mass elements in the i* macro element and FI”lj is the element

mass matrix of the Jath element. The construction of the macro element is illustrated in

/ Appendix B.

Similarly, for the stiffness matrix

(3.4)

The influence of choice of macro elements on error location will be investigated later in

this Chapter.

3.3.2 EIGENSENSITIVITY

If we denote (p) as the vector of correction coefficients (a, % - at_ b, b, --- bJT, then

in the neighbourhood of (p,) = ( 1 l--l 1 l-1 IT, the rth eigenvalue of the updated

model can be expanded in a Taylor series:

(3.5)
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By neglecting the second- and higher-o&r terms, equation (3.5) can be approximated as:

(3.6)

Similarly, for the r* eigenvector

Inmatrixform

ax., 1
I Ad

or

(4) (n+l) x 1 = [V (n+l) x 2L h-d 2L x 1

Aal
.
.
.(1kAbl

Ai+_

(3.7)

(3.8)

(3.9)

The elements of the sensitivity matrix [S,] can be obtained by taking derivatives of the

following equations

with respect to the correction coeffkients as: [see Appendix A]
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!$f$ = i c;j($)j
i j=l

{

t4$ya~-~r~g-ycml,
ci. =

*J
X,-  3Lj

(NJ

aMI- ;NdjTJg- w, (r=j>

From equations (3.1) and (3.2), we Can obtain

arKi- = [O]aai
arK]
- = [K]iabi

Substituting equation (3.12) into equations (3.10) and (3.11) leads to

3 = t@),TlKli  ($1,
i

!* = 5 a;j(+)j
i j=l

1.- kr (@IiT [Mli IQ), (r#.i)
aij = or- ~j

- f I@)jT [Mli (01, <r=j>

(3.10)

(3.11)

(3.12)

(3. Ida)

(3.13b)

(3.14a)
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wo
* = ,$ Pjj{@lj

(Q)iT  EKli (+I,
pi. =

rJ

~~-  Xj

0

(r+j)

( r = j )

50

(3.14b)

Equation (3.14) requires N eigenvectors for the calculation of the eigenvector derivatives.

For a large system, only the lowest nl modes (q * N) can be expected to be computed

accurately. In addition, it may take long time to obtain N eigenvectors at each iteration

Lim et. al. [26] proposed a new method which could reduce the number of eigenvectors

I required for the calculation of the eigenvector derivatives. When r << nl, the denominator

of C~j  in equation (3.11) can be approximated as:

h, - 5 = 31c- 3cj for j > n1

where XC is a value between 0 and the first non-zero eigenvalue.

(3.15)

where

From the orthogonality conditions
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we get

I
or

[@I-‘[K - XC M]-1[4’]-T = ( [A] - XC [IJ )-’

Thus,

I [K - 3L, Ml-’ = [@I ( WI - al I-’ PIT

= N (@Ii (@Iic
j=l 31j-  h,

(3.16)

Substituting equation (3.16) into equation (3.15)

y = 2 c;j(Q)j - [K - c M]-l(g),+ 2 “;T:,)r  (t$)j (3.17)
i j - l j=l .-

J C

If we use equation (3.17) instead of equation (3.1 l), we need not calculate N

eigenvectors at each iteration but only n1 eigenvectors (n, << N) for the eigenvector

derivatives. If there are no rigid body modes, hC can be set to be zero:

! If m modes are measured, equation (3.9) becomes

(A) m(n+l) x 1 = [sol m(n+l)  x 2L IAP1 2L x 1 (3.18)



.
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3.2.3 COMPATIBILITY BETWEEN MEASURED MODES AND

ANALYTICAL MODEL

As mentioned in Chapter 2, modal parameters obtained from a modal test are generally

not compatible with those from the analytical model because

1) the number of modes available from measurement (m) is usually very limited

(m<cN) and

2) the number of measured coordinates (n) is in general much less than the number of

coordinates (or the number of degrees of freedom) of an analytical model (n&J).

The mismatch in the number of measured modes (m) and analytical modes (N) can easily

be overcome by using corresponding modes from the analytical model and omitting the

unmeasured modes. In the formulation of the lEM, a mode-to-mode matching between

the measured and analytical modes is essential. This matching can be performed by the

use of MAC (Mode Assurance Criterion) [27] which is defined by

(3.19)

It can be seen in the equation that the MAC values vary between zero and unity. If the

experimental and analytical mode shapes used for the MAC are from the same mode, a

value close to unity is expected, whereas if they relate to two different modes, a value

close to zero should be obtained. Given a set of mx experimental modes and a set of rn*

analytical modes, we can calculate the mx x mA MAC matrix, and use it to indicate which

test mode relates to which analytical one. The analytical modes which correspond to the

experimental modes are often not in the same sequence. The MAC matrix can sort out this

reordering. This procedure should be performed at each iteration.

: I,, . -.  ̂ I -_*  .._,.,l.. __,.‘.... _. , ,_ .:..:_., -.- I
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The coordinate mismatch can also be overcome by using corresponding coordinates from

the analytical model and omitting the unmeasured coordinates in formulating equation

(3.7).

3.2.4 BALANCING THE SENSITIVITY MATRIX

One problem in equation (3.18) is that the sensitivity matrix may be ill-conditioned

because the magnitudes of the eigenvector derivatives are usually very small compared

with the magnitudes of the eigenvalue derivatives. From equations (3.10) and (3.11)

Therefore,

So, instead of equation (3.18), we can write

(3.20)

(3.21)

(3.22)
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or

. . . . .

. . . . . .

IA) m(n+l) x 1 = PI m(n+l) x 2L IAP)2L  x 1

Aa
.
.
.

A al..
Abl

.

.

4b,

(3.23)

A necessary condition for equation (3.23) to be over-determined is:

m(n+l)>2L or rn>-$I

However, the eigenvector sensitivities are not always linearly independent. In practice,

the number of measured modes should be more than twice of the minimum number in

order to give a high probability of sufficient rank to matrix [S]. Using the SVD technique

[49], the condition of the sensitivity matrix can be checked_ The technique also can be used

to solve (Ap). If [S] is full rank, equation (3.23) can be rewritten as:

{Al m(n+l) x 1 =Wl m(n+l) x m(n+l) [‘I m(n+l) x2L [‘lT2L  x 2L IAP 1 2L x 1

(3.24)

where &Jl and [VI are orthonormal matrices and ]Z] is a matrix with elements Oij = CTi

(singular values of [S]) for i = j and Oij = 0 for i + j.
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Because lu] and [VJ are orthonormal and full rank matrices, the solution of equation

(3.24) can be written as:

WP] =  WI [El+ WIT IA] (3.25)

where + is the Moore-Penrose genera&d inverse and [Z]+ consists of the inverse values

of the non-zero Singular values ai.

The corrections are then added to the solution vector

(P] new = (~]cld + (ApI (3.26)

and the process is iterated to convergence because equation (3.25) is not the correct

answer since:

i) equations (3.6) and (3.7) are only fust-order approximations of eigenvalues and

eigenvectors, respectively, and

ii) subdomains do not necessarily auzord exactly with mismodelled regions.

The flowchart of the whole procedure can be seen in Fig.3.1.
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Solve eigendynamic  equalian to getr-- AAI’ W44

1
calculate sensitivity matrix

b [S] and (A)

I

Solve the equation

Update  solution vector

(PI,,= (P),,td+ bP)

I Calculate new mass and stiffness matrices I

I Solve eigendynamic equation to get
new modal parameters I

N

(  S T O P  )

Fig.3.1 Flowchart of Error Locating Procedure
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3.2 NUMERICAL EXAMPLES

The bay structure which had been used in Chapter 2 was used again to check the validity

of the method suggested above. Mass and stiffness modelling errors were introduced by

overestimating the mass matrices of the 25th and 26th elements by SO 96 and the stiffness

matrices of the 12th. 13th and 31st elements by 100 96, as shown in Fig.3.2.

‘Experimental’ data were obtained for 15 points in translational coordinates only and the

first 10 ‘experimental’ modes were used, exactly as for the case studies in Chapter 2. The

first 10 ‘experimental’ and initial analytical models are shown in Table 3.1.

Table 3.1 Natural Frequencies of ‘Exoerimental’ and Initial Analvtical  Models
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Fig.3.2 Modelling Errors

. ..,



q  Model Updating Using IEM

3.3.1 INFLUENCE OF CHOICE OF MACRO ELEMENTS

ON ERROR LOCATION

59

In order to investigate the influence of the choice of macro elements on ezTor location, 4

different macro element configurations - Macro 1, Macro 2, Macro 3 and Macro 4

(Fig.3.3) - were used. In each case, no macro element coincided exactly with one of the

error regions.

6(5)

6(3:

Macro3 Macro4

4(5)

e(4)

hIacro2

* Macro Element No.
(No.of Elements)

Fig.3.3 Macro Element Models
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Using Macro 1, it took 4 iterations to converge and 20 elements - 9 mass elements and 11

stiffness elements - were identified as possibly harbouring modelling errors, as shown in

Figs.3.4(a) and 3.5(a). Similar results were obtained using other macro models as shown

in Figs.3.4 and 3.5. In each case, all mismodelled regions could be located in that they

were included in the sites found by the method.

0.5

0.0

-0.5

i

fb......rm..........fi.......I
5 10 15 20 25 3 0

Element Numbers

(a) Macro 1

-0.5 ,,,,,,,....,.,.................
5 10 15 20 25 30

-0.5
5 10 15 20 25 30

Element Numbers Element Numbers

(c) Macro 3 (d) Macro 4

0.5

0.0

-0.5

i

frl.....‘.................,..,,

5 10 15 20 25 30

Element Numbers

(b) Macro 2

( * ; Selected Elements )

Fig.3.4 Error Location Results (Mass Elements)
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-0.5 ml....-...m.......w -0.5 r....m.mp
5 10 15 20 25 30 5 10 15 20 25 30

ElanauNumbcrs Elanent Numbers

(a) Macro 1 (b)Macro2

0.5 0.5

. . . .
. . . . . . .. . . .

0.0 0.0 --a”’

-0.5 -O.5rr.......~....-..,,,,.*
5 10 15 20 25 30 5 10 15 20 25 30

Element Numbers Element Numbers

(c) Macro 3 (d) Macro 4

( * ; Selected Elements )

Fig.35 Error Location Results (Stiffness Elements)

As a second case study, the same errors as the second case in Chapter 2 were used, for

which case the two methods suggested by Zhang had failed to locate the error regions.

Error location was carried out using Macro 1 model. The results are shown in Fig.3.6,

from which it can be seen that the mismodelled elements (Ml 1, Ml 2, K25, K26 and

K27) were all located.
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(a) Mass Errors
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ElementNumfm
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Fig.3.6 Error Location Results (Case 2)
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3.3.2 BALANCING EFFECT

As mentioned before, the sensitivity matrix [SO] in equation (3.18) usually becomes ill-

conditioned because the magnitudes of the eigenvector derivatives are very small

compared with those of the eigenvalue derivatives, as shown in equation (3.22). To

illustrate this problem, singular values of [SO] were calculated using SVD and were

compared with those of the balanced sensitivity matrix [S] in equation (3.23) in Table

3.2.

Table 3.2 Singular values of rS”J and fS]
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The condition number - which is defined as the ratio of the largest of the aj’S to the

smallest of Oj’s - of [SO] is 1.63 x 108, which is the indication of an ill-conditioned

matrix, whereas the condition number of [S] is 7.34.

The rank of [SO] can be calculated using SVD. If the rank of a matrix is r, then or+, will

be very small compared with the other singular values bi (i = 1,2;**,r). If we establish a

criterion for the rejection or acceptance of small singular values, we shall have an answer

concerning the value of the rank. This criterion may depend on the accuracy of the

expected results and, in practice, may be difficult to establish. A reasonable solution is to
01 02calculate the consecutive ratios of the singular values - , - *.a,  then the ratio or- will
02 03 or+1

be very high compared with F. Therefore, the first peak or
- will indicate the value of
or+1

the rank. The consecutive ratios of the singular values of [SO] are compared with those of

[S] in Fig.3.7. It can be seen from the figure that [SO] is rank deficient (the rank is 6)

whereas [S] is rank full.

Values of Api calculated based on the equation (3.18) are compared with those calculated

based on the equation (3.23) in Table 3.3. It can be seen the former are meaningless

because [SO] is rank deficient.
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I Fig.3.7 Rank of Sensitivity Matrix
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Table 3.3 Comnarison of Correction  Coefficients (1 st Iteration Results)

Mass

3.4 MODEL UPDATING PROCEDURE

After locating regions where modelling errors might exist, the model improved by the

error location procedure is refined by a modeI updating procedure. In the model updating

process, the variables to be updated are not the correction coefficients of the macro

elements but the correction coefficients of the individual elements from which the macro

elements are assembled for the preceding error location procedure. The problem to be

solved here is

@)m(n+l)  x 1 = IS’1 m(n+l)  x 1 (*P’)f x 1 (3.27)

where I is the number of the selected elements from the error location procedure.

Equation (3.27) is similar to equation (3.23). The differences are that Ap’represents the

correction coefficients of the element matrix which might have modelling errors and [S’]
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represents the sensitivity matrix of the elements selected in the error location procedure.

Equation (3.27) should be solved iteratively because it is an approximate solution.

The IEM is, in fact, a multi-variable Newton-Raphson method. In Fig.3.8, the model

updating process using IEM is illustrated graphically for the case of one variable. The

slope of the curve L = f(p) at the point A@“,kAi) corresponds to the eigenvalue

sensitivity, and a segment AC corresponds to the solution of the equation (3.9). The

process BD is equivalent to the calculation of the eigenvalue problem w] ($) = kM { $}.

When modelling errors are not small, in which case the higher-order terms in the Taylor

series of eigenvalues and eigenvectors are important, the IEM can give grossly inaccurate,

meaningless corrections as illustrated in Fig.3.9.

AP’
< >

>
P”(= 1) P’ P

Fig.3.8 Pictorial Expression of the IEM

‘-
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Fig.3.9 Unfortunate Case where the IEM Diverges

The convergence of the lEM can be improved by the following:

1) new initial guess and/or

2) setting bounds on (Ap’).

The resultant correction coefficients from the error location procedure can be considered

as “improved” new initial guesses and these usually improve the convergence because the

distance between the analytical and experimental models has been reduced by the error

location procedure. This statement is illustrated in Fig.3.10.  The second strategy to

improve the convergence of the lEM is illustrated in Fig.3.11.

The flowchart of the whole procedure of the model updating can be seen in Fig.3.12.
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0 ; Initial vahles

n ; Improved Values

>
P

Fig.3.10 Model Updating with Improved Initial Guess

>

PO P

0;OriginalValue
m;ModifiedValues

Fig.3.11 Model Updating by Setting Bound on Ap
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Read the Output of Error hating Procedure .

Solve eigendynamic equation to get

Lb (Q,

Calculate sensitivity matrix
(S’l and (A} 4

Solve the equation
(43 = P’l+ (4

Update solution vector
1 P’)lew= I P&j + b P’:

Calculate new mass and
stiffness matrices

Solve eigendynamic equation to get
new modal parameters

N

Fig.3.12 Flowchart of Model Updating Procedure
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3.5 APPLICATION TO BAY STRUCTURE

Using the error location result from the Macro 1 model of 6 3.3.1, updating has been

carried out. There were 20 elements identified which might contain modelling errors - 9

mass elements and 11 stiffness elements - as shown in Figs.3.4(a)  and 3.5(a). The

iteration results are shown in Figs.3.13 and 3.14, from which it can be seen that the final

estimates become very accurate after 5 iterations.

Natural frequencies of the updated model are compared with experimental natural

frequencies together with MAC values in Table 3.4.

Table 3.4 Natural Freuuencies of ‘Exnerimental’ and Undated Models
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(c) Fifth Iteration

Fig.3.13 Model Updating Results (Mass; Casel)
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Fig.3.14 Model Updating Results (Stiffness ; Casel)
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3.6 APPLICATION TO THE GARTEUR STRUCTURE

3.6.1 THE GARTEUR STRUCTURE

To check the validity of the aforementioned method to a practical structure, the method

has been applied to a free-free structure known as the GARTEUR structure (Fig.3.15).

The structure is modelled  by 83 beam elements. It has 78 nodes and 3 DoFs are

considered at each node, so that the number of total DoFs of the analytical model is 234.

Each element is constructed by a superposition of an axial bar element and a bending

beam element, and these pairs of elements are considered to be independent of each other.

The element mass and stiffness matrices and necessary data are given in Appendix B.

r 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26
6

5

4

3

2

1

0 measured nodes
0 unmeasured nodes

Fig.3.15 Free-Free GARTEUR Structure

Modelling errors are introduced in exactly the same way as those of GARTEUR 1

exercise - by overestimating the cross-section area of the 12*, 13*, 41st,  42”d, 59th and

60* elements by 100 %, and by underestimating the second moment of area of the 3 lst,

32d, 41s’ and 42d elements by 50 %. The exact modelling errors are shown in Fig.3.16.

h .,.
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Fig.3.16 (a) Exact Modelling Errors (Axial Elements)
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Fig.3.16 (b) Exact Modelling Errors (Bending Elements)
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36 nodes are assumed to be ‘measured in two translational directions (u and v directions)

only as shown in Fig.3.15. The first 5 modes are assumed to be measured, and these and

the corresponding analytical natural frequencies are shown in Table 3.5 together with

their MAC values.

Table 3.5 Natural Freouencies of ‘Exoerimental and initial Analvtical Models

3.6.2 EIGENSENSITIVITY

In this exercise, it is not appropriate to express the updated stiffness matrix in the form of

equation (3.2) and more independent physical design variables need to be considered.

Because the cross-section area and area moment of inertia are considered to be

independent variables, the updated stiffness matrix can be expressed as:

L

IX"1 =,z Cj P&lj  + Ik dj IKbIj
j=l

where [Kalj is the axial element stiffness matrix which is proportional to the cross-section

area and [Kblj is the bending element stiffness matrix which is proportional to the second

moment of area.

The eigensensitivities can be easily derived as:
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y = i y;j($)j
i j=l

(+I: lIK,li (01,
r;lj = Xr-  Xj

0

~$pr = g s;j($)j
i j=l

6’. =
rJ

(wi 1

(r=j>

(wj>

(r=_i>

3.6.3 ERROR LOCATION PROCEDURE

In the error location procedure, 26 macro elements were used as shown in Fig.3.17. No

macro element coincides exactly with the error regions.

1 h(4) 1X3) 14(4) 13(3) 12~4) 1 X3)

* ; Macro Element No.(No. of Elements)

Fig.3.17 Macro Elements of GARTEUR Structure

c
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The iteration results are shown in Fig.3.18 and Table 3.6. After 7 iterations, the analytical

model converged to the experimental model and it became possible to locate possible error

regions - 10 axial and 8 bending macro elements, or 32 axial and 34 bending elements.

Table 3.6 Natural Freuuencies  of ‘Exnerimental’ and Intermediate Amd~tical  Models

/ 3.6.4 MODEL UPDATING PROCEDURE

After locating possible error regions, the updating was carried out with the correction

coefficients calculated as initial values. It can be seen in Figs.3.19 and 3.20 that estimates

becomes very accurate after 8 iterations. The natural frequencies of the updated analytical

model are compared with those of the experimental model in Table 3.7 together with

MAC values.

Table 3.7 Natural Frequencies  of ‘Fxnerimental’ and Updated Analvtical Models
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Fig.3.18 (a) Error Location Results (Axial Elements ; After 7 Iterations)

‘s.
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-

Fig.3.18 (b) Error Location Results (Bending Elements ; After 7 Iterations)
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Fig.3.19 (a) Model Updating ResuIts (2nd Iteration ; Axial Elements)
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Fig.3.19 (b) Model Updating Results (4th Iteration ; Axial Elements)
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Fig.3.19 (c) Model Updating Results (6th Iteration ; Axial Elements)

c
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Fig.3.19 (d) Model Updating Results (8th Iteration ; Axial Elements)

. , .,. .
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Fig.320 (a) Model Updating Results (2nd Iteration ; Bending Elements)
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Fig.3.20 (b) Model Updating Results (4th Iteration ; Bending Elements)
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Fig.3.20 (c) Model Updating Results (6th Iteration ; Bending Elements)



r
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Fig.3.20 (d) Model Updating Results (8th Iteration ; Bending Elements)
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3.7 CONCLUDING REMARKS

One of the advantages of model updating using eigensensitivity analysis is that mode

expansion (or reduction) is not required. However, this method requires large

computational effort because of the repeated solution of the eigendynamic problem and

repeated calculation of the sensitivity matrix. In this Chapter, a sensitivity method using

arbitrarily chosen macro elements has been proposed at the error location stage to reduce

the computational time and to reduce the number of experimental modes required for

subsequent updating. By this approach, the model updating problem, which is generally

under-determined, can be transformed into an over-determined one and the updated

analytical model is not influenced by the definition of macro elements.

It has been illustrated that the IEM is a multi-variable Newton-Raphson method and the

convergence of the IEM can be improved by introducing error location procedure and by

setting bounds on { Ap).

The proposed method has been applied to the free-free GARTEUR structure which may

represent a practical structure and constitute a realistic problem in respect of the

incompleteness of both measured modes and coordinates. The updating results are quite

accurate not only in modal parameters but also in correction coefficients of physical

design variables.

The ‘experimental’ data of the case studies in this Chapter are noise-free data. However,

because of various measurement errors, the assumption that the test results represent the

’ true dynamic behaviour of the structure may not be correct - the experimental data can be

affected by several types of measurement error. Thus, the sensitivity of the updating

method itself to noise on the experimental data needs to be investigated.





q Error Sensitivity of the Inverse Eigensensitivity Method 92

1 CHAPTER 4

ERROR SENSITIVITY OF THE INVERSE
EIGENSENSITIVITY METHOD

4.1 PRELIMINARIES

One of the most important objectives of modal testing is to validate the analytical model of

a dynamic structure by comparing experimentallydetermined modal parameters - which

are supposed to be correct - with those obtained from an analytical model. However,

because of various measurement errors, the assumption that the test results represent the

true modal parameters  may not be correct.

To check the validity of a model updating method by numerical case studies,

measurement errors must be considered. Even though many methods have been

developed in recent years for updating analytical models for the dynamic analysis of a

structure, and some of them have been proven to be quite successful, the methods are

k generally based on the assumption that the test data are perfect or noise-free. For any

updating method to be useful for practical structures, the sensitivity of the method to

noise on the test data needs to be established.

L,
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In this Chapter, typical measurement errors will be introduced by contaminating the

modal parameters of the correct or modified structure with random noise of different

noise levels to check the sensitivity of the IEM to noise on the test data.

4.2 SENSITIVITY OF IEM TO NOISE ON MODAL

PARAMETERS

The IEM described in Chapter 3 has been applied to the bay structure which had been

used in Chapter 2 and Chapter 3 to check the error sensitivity of the method. Mass and

stiffness modelling errors were introduced by overestimating the mass matrices of the

‘25th  and 26th  elements by 50 96 and the stiffness matrices of the 12*, 13th and 31St

elements by 100 % as shown in Fig.3.2. Experimental data were obtained at 15 points in

translational coordinates only and the first 10 “experimental” modes were used, as the

case studies in Chapter 2 and Chapter 3.

4.2.1 ERROR LOCATION PRoCEDURE

4.2.1.1 Sensitivity to Measurement Noise

In order to investigate the sensitivity of the error location procedure to noise on the

experimental data, the simulated experimental modal parameters were contaminated by 4

different random noise levels - NLl (no noise), NL2 (0.2% in eigenvalues and 2% in

tigenvectors), NL3 (0.5% in eigenvalues and 5% in eigenvectors) and NL4 (1% in

eigenvalues and 10% in eigenvectors).

.
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The error location procedure was carried out using the Macro 1 model shown in Fig.3.3,

and the results are shown in Fig.4.1. In each case, all mismodelled regions can be

: located.

0.:

0.0

- 0 . 5

m NLl
0 NL2
lsB]I N L 3
q  NL4

2 4 6 6 10 12 14 16 18 20 22 24 26 28 30
Ekmat Numbers

(a) Mass Modelling Errors ( * ; Selected enernents)

I NLl
Cl NL2

NL3
fl NL4

-l.... . . . . . . . . . . . . . . . . . . . . . * . . . . .
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Element Numbers

(b) Stiffness Modelling Errors (*; Selected elements)

Fig.4.1  Error Location Results (Macro Model ; Macrol)

1
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4.2.1.2 Influence of Choice of Macro Elements on Error Location

In order to investigate the influence of choice of macro elements on error location, 4

different macro element configurations - Macro 1, Macro 2, Macro 3 and Macro 4

(Fig.3.3) - were used for error location. In each case, no macro element coincided exactly

with the error regions. NL3 experimental data - 0.5% random noise in eigenvalues and

5% random noise in eigenvectors - were used. The error location results are shown in

Fig.4.2, and again, all mismodekl regions have been located in each case.

4.2.2 UPDATING PROCEDURE

Using the results from the Macro 1 model and the NL3 experimental data - 0.5% random

noise in eigenvalues and 5% random noise in eigenvectors - updating has been carried

out. Natural frequencies of the “experimental” and initial analytical models are shown in

Table 4.1 together with the mode shape correlations indicated by MAC values.

Table 4.1 Natural Freuuencies of “ExDerimental” and Initial Analvtical Models

20 elements were indicated as possibly having modelhng errors - 9 mass elements and 11

stiffness elements - as shown in Fig.4.1. All the eigenvalue sensitivities were used

because eigenvalues can be measured more accurately than eigenvectors. If the number of

measured modes (m) is greater than the number of unknowns (l’), only eigenvalue

L i’
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0 . 5

I

Fi macro 1
macro 2

!!!i
macro 3
macro 4
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(b) Stiffness Modelling Errors

Fig.4.2 Error Location Results (Noise Level; NL3)

b ,”
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sensitivities need to be used for the calculation of the unknowns. If not, the eigenvector

sensitivities should be included in the sensitivity matrix so that the equation (3.27) is

overdetermined The minimum number of eigenvector sensitivity vectors to be used (m’)

can be calculated as

m + n m’> 1’

Thus,

m’ 2 1’ - m
n

, In this particular case ( m = 10, n = 30,l’ = 20 ), the minimum number of eigenvector

sensitivity vectors needed is one. Between one and ten eigenvector sensitivity vectors

were used in the case study. When one or two eigenvector sensitivity vectors were used,

the updating results failed to converge. However, the updating results did converge, and

to the correct answers, as the number of eigenvector sensitivity vectors was increased.

The results are shown in Fig.4.3 and Fig.4.4. Natural frequencies of the updated model

using 10 eigenvector sensitivity vectors are given in Table 4.2. It can be seen that

estimation has become quite accurate for this case.

Table 4.2 Natural Freouencies  of “Experimental” and &x&ted Analytical Models

k
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4.3 CONCLUSIONS

Model updating using arbitrarily chosen macro elements has been applied to a bay
1 structure for which “experimental” data are noisy and incomplete. The error location

procedure has been found to be very insensitive to the “measurement” errors - in the

presence of measurement errors of up to 1 96 in the eigenvalues and 10 % in the

eigenvectors, it succeeds in locating the mismodelled regions. The updating results are

quite accurate in terms of modal parameters and, moreover, in terms of correction factors,

when sufficient eigensensitivity terms are used. In this case study, measurement errors

were introduced by contaminating the modal parameters of the correct or modified

structure with random noise.

However, in practice, the characteristics of the measurement errors might not result in

random variations in the modal parameters. For the updating method to be useful in

practical application, various error sources in testing - such as the mass loading effect of

transducers, shaker/structure interaction, etc. - should be considered and more realistic

errors rather than random noise should be included in the “experimental” data.

.
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CHAPTER 5

ERRORS INVOLVED IN MODAL PARAMETER
ESTIMATION FROM TEST DATA

5.1 PRELIMINARIES

In Chapter 4, measurement errors were introduced by contaminating the modal

parameters of the correct or modified structure with random noise of different levels to

check the sensitivity of the IEM to noise on the test data. In practice, however, realistic

measurement errors might not be represented by random errors on the modal parameters.

For the updating method to be practical, various error sources in testing should be

considered in detail and more realistic errors should be included in the “experimental”

data. Therefore, the errors involved in modal parameter estimation from the test data will

be discussed in detail, and the resultant “experimental” modal data which contain possible

experimental errors will be used to update the corresponding analytical model to check the

validity of the IEM.
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5.2 MODAL TESTING OF SAMM STRUCTURES

5.2.1 DESCRIPTION OF TEST STRUCTURES
f

Vibration measurement was carried out with real structures called SAMM2A and 2B

structures which had been used for the project to assess the State-of-the-Art of Mobility

Measurements (SAh4M) [28] to illustrate some measurement errors. The structures can be

seen in the F&.5.1. Two substructures 2A and 2B could be bolted together at two points

by connecting adapters to form a complete structure 2C.

(a) SAMM2A

(b) SAMh42B

Fig.5.1 Test Structures
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5.2.2 MEASUREMENT

In turn, each of the structures was suspended by light elastic bands to approximate a free-
t

free condition. The highest rigid-body mode frequency was less than 10 % of that for the

lowest elastic mode of the structures.

The frequency range of interest was 0 - 2.4 kHz, and this range was divided into 3 equal

frequency ranges: 0 -

SAMM2B - which are

0.8 kHz, 0.8 - 1.6 kHz and 1.6 - 2.4 kHz. SAMM2A and

linear and lightly damped structures - were tested using three

different excitation signals: pure random, pseudo-random and impact. When the

excitation to the test structure is random or pseudo-random, it is necessary to use a push

rod to connect the exciter to the test structure. Ideally, the push rod should be infinitely

stiff for transmission of axial force, yet have zero bending stiffness to allow no moment

or lateral force transfer [29]. A practical compromise to this ideal is needed to prevent the

combination of the dynamics of the push rod - exciter system with those of the structure.

Two push rods with different lengths were used to check the validity of the data obtained.

The dimensions, properties and resonant frequencies of push rods can be seen in the

Appendix D.

FRFs obtained using different excitation techniques are presented in Fig.5.2 to Fig.5.7.

As can be seen in the plots, all the techniques gave similar results. Discrepancies between

various excitation techniques are found at the resonance frequencies of the test structures.

These discrepancies clearly indicate the leakage problem associated with light damping.

Because pseudo-random is essentially periodic, it does not suffer from leakage errors. On

’ the other hand, the nonperiodic techniques (pure random and impact) suffer from leakage

or window errors [29]. Another discrepancy - frequency shifts - can be found above 1.4

kHz (SAMM2A) and above 1.1 kHz (SAMM2B). These shifts result from the effects of

the connection of the exciter to the test structure. On the other hand, in the case of impact

testing there is no need for any connection, which means the resonance frequencies from
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impact testing are correct. The gain in quality using an exciter was not considered large

enough to justify the extra effort. In addition, the frequency shifts caused by the

dynamics of an exciter-push rod system were too considerable to be ignored in the

’ frequency range of interest.

5.3 ERRORS IN MODAL PARAMETER ESTIMATION

! The characteristics of the real errors in experimentally-measured modal parameters might

not be random, as supposed for the case in Chapter 4. For the updating method to be

practical, various error sources in testing should be considered and more realistic errors

1 should be included in the “experimental” data used for method validation.

The errors involved in modal parameter estimation can be categorised in three groups -

measurement errors, signal processing errors and analysis errors, all of which will be

discussed in detail in the following sections.

5.4 MEASUREMENT ERRORS

54.1 NONLINEARITY OF STRUCTURE

One of the fundamental assumptions of modal analysis is that the structure is linear. This

means that doubling the magnitude of the excitation force results in a doubling of the

4 response, and that if two or more excitation patterns are applied simultaneously, the

response of the structure is the sum of the individual responses to each of the forces

acting alone. For many important kinds of structure, however, this assumption is not

valid. There are many reasons for the system to be nonlinear:

1) violation of “small displacement” theory;
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i

2) rattling of loosely fastened components;

3) nonlinear stiffness; or

4) nonlinear damping

Nonlinearity in the structure may shift energy from one frequency to many new

frequencies thereby resulting in distortions in the measured FRF curves. One way to

reduce the effect of nonlinearity is to randomise these contributions by using random

excitation. Subsequent averaging will reduce these contributions in the same way as
!

random noise is reduced.

5.4.2 NONSTATIONARITY OF STRUCTURE

Another fundamental assumption of modal analysis is that the structure’s properties are

stationary. This means that the modal parameters of the structure are constant with time.

Sometimes, the behaviour of a structure may change during the measurement period

because of slipping joints or loosening bolts, etc. This kind of measurement error should

be excluded on the test site by closely-controlled experimental procedure.

5.4.3 MASS LOADING EFFECT OF TRANSDUCERS

When an accelerometer is mounted on a structure, the increase in overall mass combined

with a change in the local stiffness will inevitably alter the dynamic properties of the

structure. The acceleration of the part of the structure near the accelerometer and the
t

resonance frequencies of the structure are modified according to the following

relationship [30]:

+at*
a

(5.1)
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where h ; rrxxmrd acceleration
at; true acceleration
f, ; measured resonance frequency
ft ; true resonance frequency

m ; effective mass of that part of the sttucture to which the accelerometer is
mounted

ma; accelerometer mass

As a general rule, the accelerometer mass should be less than one tenth of the apparent

mass of the modes of the structure. When the added mass is of the same order as the

apparent mass of the modes of the structure, mass cancellation becomes essential.

54.4 ERRORS BY TRANSDUCER CHARACTERISTICS

5.4.4.1 Useful Frequency Range

The upper limit for measurements can be set to 30 % of the accelerometer’s own natural

frequency so that vibration components measured at this limit will be in error by less than

+ 10 % or to 20 % for errors of less than + 5 % if the accelerometer is properly fixed to

the test structure. It should be noted that an accelerometer’s useful frequency range is

significantly higher, i.e. to i or : of its resonance, where 3 dB linearity is acceptable.

5.4.4.2 Transverse Sensitivity

t
The transverse sensitivity of an accelerometer is its sensitivity to accelerations in a plane

perpendicular to the main transducer axis. The transverse resonance frequency is just

outside the upper frequency limit. At frequencies less than 16 % (10 %) of the main axis

resonance frequency, transverse sensitivity can be kept below 10 % (3 %). The
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transverse sensitivity can be reduced by aligning the minimum transverse sensitivity axis

in the direction of maximum transverse acceleration.

5.4.4.3 Mounting Effect

The method of attaching the accelerometer to the measurement point is one of the most

critical factors in obtaining accurate results from measurements. Poor mounting results in

a reduction in the mounted resonance frequency, which can severely limit the useful

frequency range of the accelerometer. There are various methods of attaching the

accelerometer to the test structure - such as stud mounting, cementing stud mounting,
/

wax mounting, magnet mounting, etc. The advantages/disadvantages of various methods

can be found in Refs.[29,30].

Local stiffness changes introduced by attaching the accelerometer to the structure should

also be considered when it is attached to a flexible surface [29].

5.4.5 SHAKER/STRUCTURE INTERACTION

When the excitation to the structure is a continuous signal, such as random or sinusoidal,

a shaker must be attached to the structure, usually incorporating a force transducer. So

long as the motion at the driving point of the shaker attachment remains colinear with the

shaker axis, the dynamics of the excitation system can be removed by mass cancellation

t techniques. However, if the motion at the driving point includes rotation or transverse

displacement, the resulting contamination of test data can no longer be removed. The

solution is to attach the shaker to the suucture  through a push rod, which should have

high axial stiffness for transmission of axial force but low lateral or bending stiffness to
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allow little moment transfer. Guidance on how to design the push rod can be found in

Refs.[3 1,321.

i Apart from the effect of the push rod, shaker/structure interaction causes ‘notches’ in the

input force spectrum at resonances of the structure [29,33]. Because little force is

required to produce a large response near resonances, a large amount of the force

generated in the shaker is used to excite the armature mass of the shaker. Fig.5.8 shows

shaker/structure model.

-

r
Rush Rod

X

ms -1

Shaker

Force Transducer

Fig.5.8 Shaker/Structure Interaction
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The actual force applied to the structure can be calculated as follows:

p=f+m,Y

Fourier transform of equation (5.2) becomes

P(o) = F(o) + m, H(o) F(o)

Thus

F(U) = Hi(U) P(O)

(5.2)

(5.3)

where H(o) is an inertance and

Hi(U) = 1
1 + m, H(o)

If P(o) is constant, the power spectra of input force and output response can be

expressed as

GE(O) = I Hi(O) I 2 GPP

Gpp
= (  l+msH(o))( l+msH*(o))

Gpp
= 1 + ms* [ ( Re(H(o))12  + Um(H(W) I21 + 2 ms RG-W))

(5.4)

GAA(~) =
=

1 H(o) 1 2 G&O)

I Hi(W) I 2 I H(U) 12Gpp (5.5)
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5.4.6 MEASUREMENT NOISE

lf measured signals f(t) and a(t) are contaminated by measurement noise, m(t) and n(t)

respectively, as in F&.5.9, the FRF can be expressed as [34]

HI@) = GFA(@ WN

GFF((@ = l+ri

H2W =
%A(@

GAF@)
= H(o) (1 + rO)

(5.6)

(5.7)

’ GMMwhere r; is the input noise to signal ratio, -
G_Ju'

and r, is the output noise to signal

EUiO,

u(t)
Wfl
h(t)

Fig.5.9 Single Input Single Output with Measurement Noise

f

Near resonance, where r, may become negligible, H2(0) reduces bias error, while the

reverse applies near antiresonance.

i. L. L ~. -_-
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The coherence function can be expressed as

7%) = IGFA(& HI(~)z-z
GFF(~)GM(~) H2(0) (1 + ri)‘(I + r,) (5.8)

The presence of uncorrelated  noise signals will be indicated in the coherence function.

5.5 SIGNAL PROCESSING ERRORS

5.5.1 LEAKAGE

Leakage is a phenomenon which may arise in the frequency domain description of a

signal due to the time limitation of the signal  before the DFI (Discrete Fourier Transform)

calculation is performed. The DFT algorithm assumes that the signal to be transformed is

periodic in the time window. If the periodicity assumption is not strictly valid, energy in

one frequency region leaks into adjacent frequency regions causing the peak amplitudes

to drop and the amplitudes in valleys to rise.

The finite Fourier transform of x(t) can be viewed as the transform of an unlimited time

history v(t) multiplied by a rectangular window, u(t), defined by

u(t) = 1 O<t<T

(5.9)

= 0 otherwise

It follows that the Fourier transform of x(t) is the convolution of the Fourier transforms

of u(t) and v(t), namely,
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+w

X(0) = I U(Q-o) V(Q) dR (5.10)
-00

sin(oT/2)
I where U(o) = T 0-W I

,-i oT/2

Similarly, the estimated spectrum &j(o) can be calculated by convolution of the window

spectrum W(o) and the true spectrum G(o) [35] :

&N = W(o) * G(o)
+w

=
I W(n-o) G(Q) dL2

-00

sin(oT/2)  2
where W(o) = T { oT/2 1

The shape of the window spectrum is shown in Fig.5.10.

(5.11)

0

-10

-20

30

-40

-50

- - - - - Rectangular
- Harming

0 4 6
Freq. (x UT)

Fig.5.10 Comparison of Window Spectra
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Leakage error is illustrated in Fig.5.11. Only in the case where the signal is periodic in

the time window (a), is the output spectrum correct. If the periodicity assumption is not

valid (b), the signal to be analysed has some very abrupt transitions at the ends of the

time record, and, as a result, the DFT gives an erroneous result.

Leakage error can be reduced by

1) use of truly periodic excitation;

2) increasing the frequency resolution; or

3) windowing or weighting functions

5.5.2 EFFECT OF WINDOW FUNCTIONS

By introducing a time window that tapers the signal so as to present a more gradual

entrance to and exit from the time history data to be analysed, the leakage problem can be

reduced. Correct use of weighting functions is very important because the amount of

leakage may depend on the type of weighting function used in the analysis. The Hanning

window is normally used for continuous signals produced by random or sinusoidal

excitations, while special force and exponential windows are used for impact tests.

The spectrum of a Hanning window, which is defined by

w ( t )  =  ;( l-co+ OltST

(5.12)

= 0

can be expressed as [36],

otherwise
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(a) (b)

1

Input Signals ( T, Record Length)

m Recognized Signals

Power Spectra

Fig.5.11 Sample Length and Leakage of Spectrum

. .‘_
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W(o) =  [ & +& (&2 +  &2{ 1
4

+T 2x2($_ ($ sin2(oT/a)1
(5.13)

It can be seen in Fig.510 and Table 5.3 that the Hanning window gives better results

than the rectangular window when applied to a signal which is not periodic in the time

record.

Table 5.3 Comparison of Window Functions

7

Window 3 dB Bandwidth Highest Sidelobe Sidelobe fall-off rater

Rectangular

Hanning

0.9 A f -13 dI3 20 dB/decade

1.4 Af -32 dB 60 dB/decade 4

The integration of equation (5.11) may readily be carried out numerically using

Simpson’s rule

Tf(x) dx
3

= h [ ; ft 4 f2 ++ f3 +$ f4 + **. +$ fN_2 4 fN_1 4 fN ] + O(N- 4,

(5.14)

Therefore, if a Hanning window is used, the estimated spectrum can be calculated by
:

&&{4_2~ 3 W25 (Gi+2.5  + (3~2.5) + tW1.5 (G~+I.s + G-1.5) + fW1 (G+l + Gi-1)

+ $Wo.5 (Gi+.o.s + Gi-0.5) + ~WOG~ I (5.15)
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where Wi is a value of window spectrum at i Hz

Gi is a value of hue spectrum at fHz

55.3 EFFECT OF AVERAGING

Averaging errors can be divided into two types, bias errors and random errors. Bias
1

errors are systematic errors introduced in the measurement or in the analysis, while

random errors are the standard deviations of the estimates which are due to the fact that

averaging is not performed over an infinitely long time.

5.5.3.1 FRF Estimates

When a FRF is estimated using HI(~) or HZ(U), and the signals are random, there is a

random error in both magnitude and phase. The normalised random error for the

magnitude I&o)l and random error fOr the phase angle &CO) are given by 1341

c5( &co)]  = sin-l (e[ lA(o)l J}

? where p(o) is coherence and Q is the number of averages.

(5.16)

(5.17)

? . . li ,I . -a. .,.. ,_. / _,,. __._  ..A ‘, .’ -2-e
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5.5.3.2 Coherence Function Estimates

The coherence function is estimated with only a limited accuracy from the auto and cross
,

spectra estimates

The normal&d random error is given by [34]

(5.18)

(5.19)

5.6 MODAL ANALYSIS ERRORS

Once FRFs are obtained, modal

various curve-fitting methods.

parameters can be extracted from the FRFs using one of

This phase is often called ‘modal analysis’. Whatever

methods are used, the task is the same: to find the coefficients in a theoretical expression

for the FRF which most closely matches the measured data by using a least-squares

method which can remove random errors in the FRFs.

There are many curve-fitting methods available [29] and they can be categorised  into two

groups - global or individual analysis. In global analysis, all the measured FRFs are

analysed at the same time to extract the modal parameters for a given mode or modes. On
: the other hand, in individual analysis, one FRF is analysed at a time, therefore, to get

modal parameters, all the FRFs should be analysed one by one.

* ,
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Individual FRFs tend to exhibit slightly different modal parameters (natural frequencies

and modal damping) because of:

1) mass loading effect of transducers;

2) shaker/structure interaction;

3) changes made to the structure during test;

4) nonstationarities of the structure and measurement system;

all of which will vary during the prosecution of the test. One of the main diffkulties in

individual analysis is the creation of a consistent data base from individually analysed

FRFs because of these variation.

5.6.1 CIRCLE-FIT MODAL ANALYSIS

Near the resonance under study, the effect of all the other modes - which may be either

constant or frequency-dependent - can be eliminated using an appropriate technique [29],

thus, the behaviour of the structure can be dominated by a single mode. The Nyquist plot

of FRP data for the mode can be treated as a circle [29].

The estimated FRF using a DFT analyser can be expressed as
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00

I IH( IHi(Q)12  Gpp W(Q-6.1)  dR

IH(
C0r2-fi2+i7jrC0r2

&
lHi(Q)12  GPP W(Q-U) dR

-00

(5.20)

w h e r e  Hi(Q) = 1
1 - m, a2 H(R)

(H(o) ; receptance)

If we define

00

Cl = I IH(R IHi( W(Q-CII) dR
-00

00

c2 = I Q2 IH( lHi(fi)12 W(!A-61) dR

equation (5.20) becomes

fi2w =
or2 -

kr

Cl
+ i qr or2

Similarly,

00

I IH(
0r2-Q2-i,r61r2

&*
IHi(R)12 Gpp W(Q-CII) dR

-00

I IHi(R)12  Gpp W(Q-61) dR
-00

(5.21)
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(5.22)

where C3 = IHi( Gpp W(Q-a) dR

By comparing equation (5.21) with the true FRF, it can be shown that the &(co)

estimates lie on the true modal circle but in the wrong positions around the circle. &(a)

and H(o) values are identical if 2 = o2,which  is only satisfied at very fine frequency

resolution. In contrast, it can be shown that Al(@) has the same phase angle as &(o)

but the magnitude is smaller and, as a result, always lies inside the true modal circle, by

comparing equations (5.21) and (5.22). If the frequency resolution is increased, so

reducing the leakage error, Al(w) tends to AZ(W) which, in turn, tends to H(o).

Curve-fitting concentrates on a few data points near resonance. If these data points are

polluted by noise, or the frequency resolution is not sufficient to extract an accurate circle

fit, this method may not be reliable. It also should be noted that these points (together

with data points near antiresonances) are most liable to leakage and other errors.

5.6.2 LINE-FIT MODAL ANALYSIS

This method uses the fact that the reciprocal of receptance for a SDOF system has a very

simple form when plotted as the real and imaginary part against frequency (or

’ (frequency)2).

For a SDOF system,

a-l(o) = k-m&+id and/or +ioc (5.23)
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If Re (a-*(u)) is plotted against 02, then the result is a straight line whose intercept on

the frequency axis gives the resonance frequency and whose slope gives the effective

mass. If Im (a-l(o)) is plotted against o, then the slope of the line indicates the

magnitude of the viscous damping and the intercept on the magnitude axis gives the level

of structural damping. This technique can be extended to MDOF systems by subtracting

the effects of other modes before performing the analysis.

This method is useful for modes with insufficient data for circle-fitting, and is less

sensitive to leakage errors than is circle-fitting because the data used are away from the

immediate resonance region and the leakage error becomes maximum at the region and

decreases very rapidly as the frequency moves away from resonance.

5.7 NUMERICAL CASE STUDIES

To investigate measurement errors - such as the mass loading effects of transducers,

shaker/structure interaction, signal conditioning errors, signal processing errors etc. - on

FRFs, a computer program has been written which can simulate the various measurement

errors described above (Appendix E).

The test structure used in the following examples is a beam shown in Fig.5.12. The

structure was considered to be “excited” at a free end of the beam by a shaker whose

armature mass was 20 g. Periodic random excitation was “applied” throughout these case

j studies except in the case of leakage in which case pure random was also used for

comparison. The response of the structure was “measured” using an accelerometer whose

mass was 20 g. A force transducer of 10 g was assumed to “measure” input force. A

two-channel FFI analyser which has 801 lines of frequency resolution was used to

obtain frequency response functions.The  frequency range of interest was 0 - 800 Hz.
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p,= 7800 kg/m3 p2= 1%OOk&m’ p3= 7800 kg/m’

E, = 2.(@xlO”N/m* E$= 205klO”N/m*  &= 4.18xlO”N/r11*

Fig.5.12 Beam Structure

Input and output noise was assumed to be white noise. The ratio of the noise spectrum to

the signal spectrum, r, which is defined as

where Gs is a signal spectrum, GN is a noise spectrum and Gs which is defined by

was assumed to be 10m3  for the input(force) signal and lOA for the output(response)

k? signal. The autospectra of input and output signals - noise free - and random noise are

shown in Fig.5.13.
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SO.‘
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P
“p -30.8

-79.0

-110.0
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I
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E-03

I- I- ------___. -

Fig.5.13 Autospectra of Input and Output Signals & Noise

5.7.1 MASS LOADING EFFECT

To investigate the mass loading effect of an accelerometer, the mass of the accelerometer

was increased from 20 g to 100 g. The natural frequencies of all modes decreased

(Fig.5.14). The natural frequency of the 6th mode decreased most because this mode has

the smallest apparent mass, while that of the 5th mode hardly changed because that mode

has the largest apparent mass.

i. ~ ,, I ._. _.i. ,. . . ,.
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i.

-~ei~=i
160. ate. 480. 6-8. 888.

W-RxQu- tnx,

Fig.5 14 Mass Loading Effect

5.7.2 SHAKER/STRUCTURE INTERACTION

From equation (5.4), it can be shown that the force spectrum near a resonance is given by

GFF(~) =
GPP

1 + d A?

rl:

if Ar is assumed to be real. The amplitude of the force spectrum at resonance decreases as

the armature mass of the shaker increases - approximately proportional to the inverse

square of m, - as shown in Fig.5.15. The resulting FRFs are compared in Fig.5.16. The
ti

only differences are around resonances, where the heavier armature mass makes the

coherence drop.

r .“S -. ._A’ ” _i _-



I
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I -50.0 l.J!.-03  ! 168. 1 320. 488. 640.

I rmv- tnr,

Fid .15 Force  SDectra
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I-

F?

1.00

.50

0.00

50.0

18.8

-3Q.0
a.

Fig-S. 16 (a) ShakedStmcture Interaction (m = 20 g)

Fig.5.16 (b) Shaker/Structure Interaction (ms = 100 g)
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i:

j

I.

I

I

5.7.3 RANDOM NOISE EFFECT

Usually, in modal analysis, only those FRF data near resonances are used to extract the

modal parameters. In these regions, HZ(~) reduces bias error from random noise because

r, may become negligible (equation (5.7)).

The output noise spectrum of i, = 10m4 , which may be achieved easily in random

excitation, is shown in Fig-S. 13 together with output signal spectrum. From Fig.5.17, it

can be seen that near resonances, where curve fitting is usually performed, the effects of

measurement random errors can be ignored. For example, near the 5th mode (fr = 309.8

Hz) which has maximum bias error, 304 Hz - 312 Hz, where curve fitting for the mode is

usually performed, the notmalised  bias error is less than 4 % (0.06 - 3.2 %).

”
12.9

:U

!
;:

-46.0

-1tM.O
1.

Fig.5.17 (a) Random Noise Effect (r, = 1O4)
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l.L-03 160. sac. 648. a m .

rnmumecv <WI>

Fig.5.17 (b) Random Noise Effect (m = 10e3)

5.7.4 AVERAGING EFFECT

Averaging can reduce random errors in the FRFs and coherence estimates, but cannot

reduce bias errors which may be caused by measurement noise, leakage, etc.

Random errors in FRFs and coherence estimates can be calculated using equations

(5.16). (5.17) and (5.19). The lower the coherence is the more averages have to be

performed to get a certain statistical accuracy because random errors are proportional to

r?
(nd)‘tR. Fig.5.18 shows the estimates of IH,(o)l and y*(o) for different numbers of

averages.
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1.&l- -If-

.59 --

\

4
0. tee. 400. 688. 688.

?lmQua?uY tnr,

Figs. 18 (b) Averaging Effect (nd = 100)
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5.7.5 LEAKAGE ERROR

i As discussed in sections 5.5.1 and 55.2, leakage causes deformation of the estimated
!., spectra and therefore leads to bias

analysis is too coarse, compared with

errors in FRF estimates. If the resolution in the

the bandwidth of the resonances, the coherence can

iI detect this leakage by giving a value less than one around resonances and antiresonances,

as in Fig.5.19.  The coherence therefore gives a warning of potential bias errors in the

FRF estimates. Fig.520 shows the relative error between true and estimated FRFs which
I

is affected by leakage. It can be seen that the most contaminated regions are near

resonances and antiresonances.

-50.8 !
O.Q 8Q.Q 168.8 24Q.Q 22Q.Q 4t

~"SmCY <Hz,

Fig.5.19 Leakage Effect

.
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-1RI701 - E R R O R 3
-L217&31

I, 4m.e
nnmJuDux  o(.B

Fig.5.20 (a) Relative Error (ERROR3) between True FRF (TR1701) and
Estimated FRF (L21701)

-tRl791 - ERROR3

-Liz1781 I
JB.B-

s_..-
-u.o--

Gg.5.20 (b) Relative Error (ERROR3) between True FRF (TR1701) and

Estimated FRF (L21701)
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As discussed in section 5.6.1, &(o) is less sensitive to the leakage errors than is A,(O)

because F$(o) lies on the true modal circle (but in the wrong position). However, if the

frequency resolution is insufficient for a mode to encompass some part of the modal

circle, modal parameters extracted by circle-fitting may not reliable, as shown in

Fig.5.21.

O-FIT FOR  MOPE 2
)uTUIwL URrauMcy <HZ) = 61.4.s
x DnNPxrtc ~STIWCTUML~ = -z.wse
MOD. COHST. mc (l/RI) = ,658
MOD. COUSI. m*sx (0) I -.3..42

Z WIDIUS WRIMIOH = .el

I-

Fig.5.2 1 Leakage Effect on Circle-Fit I

Fig.5.22 shows a Modified Line Fit analysis (or Bendent Method; see Appendin F) on

the 2nd mode. It can be seen that the effect of leakage is dominant only near resonance

and, therefore, has little effect on the extraction of modal parameters.



I
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L - T I T  FOR  9WDI 2
9wTURaL  FRmuMcy tnr> = ‘2.54

r: mwrm  ~sTRucTuML)  = .37?1
K)D. COMST. mc Cl/)(U) = .191

Fig.5.22 (b) Estimated FRF
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5.8 MODEL UPDATING OF BEAM STRUCTURE

The structure which featured in 0 5.7 was also used to check the validity of the IEM on a

!i practical structure which has realistic measurement errors. 20 beam elements were used to

create an analytical model of the structure and 2 DoFs - one translational and one

;, rotational DoFs - were considered at each node. Mass and stiffness modelling errors were

introduced by overestimating the density of the 1st and 2nd elements by 100 %I and the

Young’s Modulus of the 1 lth and 12th elements by 100 8, as shown in Fig.5.12.

A total of 11 points were “measured” in the vertical direction (Fig.5.23) using periodic

random excitation in the frequency range of 0 - 800 Hz with excitation applied at a free

I end of the structure. The ratio of noise to signal spectra was assumed to be 10e3 for force

and lOA for the response. An accelerometer of 20 g was moved from one location to the

next location in order to measure all FRFs. As a result, each measured FRF was expected

to have different mass loading effect.

Excitation

Fig.5.23 Measurement Points
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Fig.5.24 shows one point and several transfer FRFs. In the measurement frequency

/ range, 8 flexible modes are clearly seen.
I

I.

1

I

-DBfDlUl -DB178l -DBSSDl
__ DBHYUI -D&?3Bl -DBUBl

1.6-03 160. 320. 6M. me.
?xmux?tcv o(r>

Fig.5.24 Point FRF and Transfer FRFs

The modal parameters of an individual FRF were extracted by modified Line Fit analysis

using MODENT program [37]. All the identified modal parameters which exhibited

slightly different values (natural frequencies and modal dampings) were then collated to

obtain consistent modal parameters using MODESH [38]. The resultant parameters can be

r. seen in Table 5.4. The first 8 “experimental” and initial analytical natural frequencies are

compared in Table 5.5.

k
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Table 5.4 Modal Parameters of “ExDerirnental” Data_

Mode Min

1 22.9
2 62.2
3 126.3
4 208.6
5 308.2
6 438.1
7 567.2
8 749.0

Natural

23.0
62.8
127.1
210.2
309.8
441.2
570.6
753.4

Freq
Mean

23.0
62.6
126.8
209.7
309.2
440.2
569.3
751.7

SD

0.05
0.17
0.24
0.46
0.58
0.87
0.98
1.24

Min

0.98
0.54
0.51
0.50
0.50
0.50
0.51
0.50

1.09
0.60
0.54
0.53
0.53
0.52
0.51
0 . 5 2

Damping (so)

Mean SD

1.02 0.04
0.57 0.02
0.53 0.01
0.52 0.01
0.52 0.01
0.51 0.01
0.51 0.00
0.51 1 0.01

Table 5.5 Natural Freuuencies  of “Experimental” and Initial Analvtical M&els

In the error location procedure, 5 macro elements were used and each macro element had

4 individual elements. The error location results are shown in Fig.5.25 and Table 5.6.

After 4 iterations, it became possible to locate possible error regions - 4 mass elements

and 12 stiffness elements.
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H ; Selected Elements

-l!.... . . =. . - - =. . . . . . .
2 4 6 8 1 0 12 14

(a) Mass Error

16 18 20
Element Numbers

B ; Selected Elements

2 4 6 8 10 12 14 16 18 20
Element Numbers

(b) Stiffness Errors

Fig.5.25 Error Location Results
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Table 5.6 Natural Frequencies of “ExtXrimentai” and Intermediate Analvtical Models

After locating possible error regions, the updating was carried out with the correction

coefficients calculated as initial values. It can be seen in Figs 5.26 and 5.27 that the

estimates became quite accurate after 5 iterations. The natural frequencies of the updated

analytical model are compared with the experimental ones in Table 5.7.

Table 5.7 Natural Freuuencies  of “Experimental” and Undated Models

1 12 13 14 15 16 17 18

23.0 62.5 126.8 209.7 309.2 440.2 569.3 751.7

22.8 62.3 126.5 209.7 309.1 441.0 570.2 753.7

0.999 1.000 1.000 0.999 1.000 0.999 0.999 0.999 ‘
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1.5

0.0 I

- 1 . 5 . . . . . . . . . . . . . . . . , , . ,
2 4 6 8 10 12 14 16 18 2 0

(a) First Iteration Element Numbers

1.5

0.0

- 1 . 5 . . * . . . - - - - - = . . . . . . . . t
2 4 8 I) 10 12 14 16 18 2 0

(b) Third Iteration Element Numbers

1.5

0.0 -

- 1 . 5 . . - - . - - . = - - - - ’ - - - . . .t
2 4 6 8 10 12 14 16 18 2 0

Element Numbers
(c) Fifth Iteration

Fig.526 Model Updating Results (Mass)

L ,



q Errors Involved in Modal Parameter Estimation from Test Data 147

1.5

-1 .5 . . . . . . . . . . . . . r . . . . . .
2 4 6 a 10 12 14

(a) First Iteration
E;:ment'~um~;

-1 .5 . . . * = . - . . . . . * . . . . . . .
2 4. 8 6 10 12 14 16 16 2 0

(b) Third Iteration Element Numbers

1.5

0.0

-1 .5 . . . . . . . . r . . . . . . . . . . . \
2 4 6 6 10 12 14 16 16 2 0

(b) Fifth Iteration
Element Numbers

Fig.5.27 Model Updating Results (Stiffness)

b
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5.9 CONCLUSIONS

The characteristics of typical measurement errors might not result in random variations in

i the modal parameters which are eventually derived from the measured data. For model

updating methods to be useful in practical application, various error sources in testing -

such as the mass loading effect of transducers, shaker/structure interaction, etc. - should

be considered and more realistic errors rather than random noise should be included in the

“experimental” data

The errors involved in modal parameter estimation - such as measurement errors, signal

processing errors and errors in modal analysis - have been investigated, and their effects

I on estimated FRFs and on the modal parameters extracted from the FRFs have also been

investigated. A computer program has been written to simulate various measurement and

signal processing errors. The “experimental” FRFs calculated using this program can be

used to test the performance of different modal parameter identification programs and,

thus, of the various applications to which these modal data are put.

The resultant “experimental” modal data which contained representative experimental

errors have been used to update the corresponding analytical beam model to check the

validity of the IEM. The mismodelled regions were located successfully, and the updating

results were found to be quite accurate, not only in modal parameters but also in

correction coefficients or physical design variables.

* 1.
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1 CHAPTER 6

i, UPDATING OF DAMPED STRUCTURES

I 6.1 PRELIMINARIES

In the previous Chapters, location of mismodelled regions in an analytical model and

updating the model were carried out using corresponding experimental modal data which

were all real (i.e. for undamped systems). However, in most cases, experimental modal

data from a real structure are not real but complex, even if the structure is lightly damped.

If a structure is lightly damped, the modal data from measurement are often treated as real

modes, and the method suggested in Chapter 3 can be used to update the corresponding

analytical model. However, some practical structures are more heavily damped and the

measured modal data cannot be regarded as real, whereas the modal data from the

corresponding (undamped) analytical model are real.

There are two possible approaches to resolve this incompatibility. One approach is to

r deduce the undamped modes - real modes - from the measured complex modes

[19,39,40].  Then the method suggested in Chapter 3 can be used to update the analytical

model using the deduced real modes. However, the deduced real modes are often only a

rough approximation because the experimentally identified complex modes are incomplete

and the deduction itself relies on the analytical model which is erroneous.
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An alternative approach is to use the experimental complex modes directly to update the

analytical model. A method has been developed by He [17] to locate the damping

i. elements in an analytical model using measured complex modes. However, this method

requires a complete set of measured coordinates, which is not practical, or the use of

, mode expansion, which may be an erroneous procedure thus jeopardising exact location,

in order to overcome the incompatibility between the measured modes and the analytical

model. In this Chapter, a complex inverse eigensensitivity method will be introduced to

1 locate and to update the damping elements together with the mass and stiffness elements

which have modelling errors, using measured complex modal parameters.

6.2 COMPLEX EIGENSENSITIVITY

The updated damping matrix can be expressed as equation (6.1) in the same way as the

mass aid stiffness matrices in equation (3.1) and (3.2)

(6.1)

where L is the number of elements, ci are correction coefficients to be determined and ~1;

is a submatrix of the system damping matrix.

The governing equations of motion for a MDOF system with structural damping and no

extemai forcing can be written in matrix form as:
r

Ml(i) + [Kl(x) +i PI(x) = (0)

By assuming a solution of the form:

(6.2)

. ,
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(x) = (x }  eip'

i we can obtain a complex eigenpmblem

where (@), is normal&d such that

(6.3)

(6.4)

! The solution of this eigenproblem is in the form of two matrices containing complex

eigenvalues and complex eigenvectors in contrast with the undamped case where

eigenvalues and eigenvectors are all real.

Differentiating equation (6.3) with respect to updating variable pi gives

arD1+ i api - api
a[Ml%W - hr-api woW,+Wl +iPl -IqlMl)--gf = (0)

(6.5)

Pm-multiplying equation (6.5) by (Q)T leads to

(6.6)

The eigenvector derivatives can be expressed as linear combinations of all eigenvectors of

the system if the eigenvalues are assumed distinct, because N eigenvectors are linearly

independent and they can be used as a set of bases vectors for spanning N-dimensional

’ space. Thus,
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?* = i ajj($)j
i j-l

(6.7)

!,
’ Substituting equation (6.7) into equation (6.5) and pre-multiplying equation (6.5) by

r44:
,,

If k#r,

Thus,

ajk =
awl aux+ i api - A, api

%- hc

aA C~II be obtained by differentiating equation (6.4) with respect to pi

r Substituting equation (6.7) into equation (6.11) leads to

(6.9)

(6.10)

(6.11)

(6.12)
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From equations (3-l), (3.2) and (6. l), we get

XW
x = [Wi

arKi
-q- = lOI

a[Ml- = [O]abi

arKI
q = rKJi

Pi = m

Substituting equation (6.13) into equation (6.6) leads to

n

and substituting equation (6.13) into equations (6.10) and (6.12) leads to

?p = t ajj($)j
i j=l

i-

1, (@IiT [Mli (@I, bW
a3 = h,- hj

1
- 2 I@ljT [Mli IQ), (r=j)

{$)iT [‘Ii ($1,
pj = h,- hj

0

W.0

(r=j)

(6.13)

(6.14a)

(6.14b)

(6.14~)

(6.15a)

(6.15b)
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F = 2 y;j($)j
i j=l

y’. =
rJ

i I$liTIDli ($1,
or- ~j

(r#j >

(6.15~)

(r=j>

If we assume that the element damping matrix has the same distribution as the element

stiffness matrix, i.e.,

, (noting that this assumption is not the same as [D] = a[K], which is “proportional”

damping, since the modal parameters generally remain complex under the assumption

[D]i = a IK]i), then a complex stiffness mtxix [K*] which is defined as:

[x*] E [K]+ip] = i bi [K]; + i i ci [D]i
i=l i=l

can be expressed as:

@*] = i (bi + i a Ci) [K]i
i=l

= ~ b~[K]i
i=l

I’- wherebf=bi+iac.1

Therefore,
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Substituting equation (6.13) and (6.16) into equation (6.6), (6.10) and (6.12) leads to

y = 2 PjjC+)j
i j=l

Icp)iT  rq Ml, (r*j 1pi. =
rJ h,- 3Lj

0 (r=_i)

The first-order Taylor expansions of the modal parameters can be written as:

or

‘Aat
.
.

A aL
Ab;

.

.

.
!Ab;.

(6.16a)

(6.16b)

(6.17)

(Al m(n+l) x 1 = PI m(n+l) x 2L fAPJ2L x 1

which is very similar to equation (3.23). However, in equation (6.17), {A), [S] and

{Ap) are not real, as in equation (3.23), but complex. The real parts of ai (i = 1,2,..., L)

represent mass correction coefficients and the real parts of by (i = 1,2,..., L) represent
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stiffness correction coefficients, while the imaginary parts of bi represent damping

correction coefficients.

The correction coefficients vector (Ap) can be calculated as:

I UP)  = ([SIT PI)-' [SIT (A)

then, ( Ap) is added to the solution vector to update the vector

(PI new = {P]cta + (AP]

(6.18)

(6.19)

’ and the process is iterated until convergence is achieved.

6.3 APPLICATION TO THE BAY STRUCTURE

The structure which had been used in previous Chapters (Fig.2.2) was used again to

check the validity of the method proposed above. The structure is modelled by 31 beam

elements, and 3 DoFs are considered at each node, so that the total number of DoFs (N)

is 90. Experimental data were obtained at 15 points as shown in Fig.2.2 in translational

coordinates only (i.e. n = 30). The first 10 experimental modes were used (i.e. m = 10).

Mass and stiffness modelling errors were introduced by overestimating the mass matrices

of the 25th  and 26th elements by 50 % and the stiffness matrices of the 12*, 13th and 31st

” elements by 100 %. In addition, the lst and 2”d elements were supposed to have damping

of [Dli = 0.05 [K]; (Case 1; lightly damped case) and of [D]i = 0.3 [K]i (Case 2; more

heavily damped case).
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6.3.1 CASE 1

i
It should noted that the modal parameters of the ‘analytical’ model (undamped) are real

while those of the ‘experimental’ version are complex because this system is damped.

The modal parameters of the fust 10 ‘experimental and analytical modes are compared in

, . Table 6.1 together with MAC values. For complex modes, MAC can be expressed as:

It should be noted that the MAC values are still real even if mode shapes are complex.

, The eigenvectors of the first two ‘experimental’ and analytical modes are compared in

Tables 6.2 and 6.3.

Table 6.1 Natural Frequencies of ‘Ex_perimental’ and Analvtical  Models (Case 1)

Mode Experimental AIMlytiCd MAC

No. Nat. Freqs. Loss Factors Nat. Freqs. Values

1 343.3 0.003 342.3 0.995

2 468.1 0.002 450.6 0.97 1

3 548.2 0.012 528.5 0.948

4 577.7 0.002 557.2 0.966

5 704.4 0.007 683.4 0.960

6 850.9 0.004 833.7 0.98 1

7 917.2 0.003 902.3 0.914

8 928.9 0.000 927.0 0.814

9 1099.4 0.002 1066.6 0.862

10 1205.0 0.006 1165.3 0.927
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Table 6.2 Eigenvectors of ‘Extmirnental’ and Analytical Models (Case 1: Mode 11

Coords Exp.(xlO-‘)

1 0.723(0’)

2 0.260(0’)

7 0.355(0°)

8 0.260(0’)

13 0.134( 175O)

14 O-234(0’)

19 0.578( 180”)

20 0.193(0”)

22 0.733( 180’)

23 0. 176(O”)

28 0.717(180”)

29 D.016(-177°)

37 3.725(- 179’)

38 X243( 180’)

40 1.651(180’)

Anal.(xlO1)

0.748(0’)

0.236(0’)

0. 370(0°)

0.248(0”)

0.134( 180”)

0.233(b”)

0.593( 180”)

0.205(0’)

0.754( 180”)

0.1 92(O”)

0.742( 1 SO”)

0.019( 1.80”)

0.748( 180”)

0.236( 180”)

X585( 180”)

Coords Exp.(xlO-‘)

41 0.253( 180”)

46 0.202( 180”)

47 0.254( 1 SO”)

52 0.3 16(0”)

53 0.231(180°)

58 0.726(0’)

59 0.205( 180’)

67 0.715(0°)

68 0.080(2°)

76 0.406(- 1”)

77 0.1 54(0°)

82 0.159(-179”)

83 0.415(-178’)

88 0.648( 180”)

89 X222(  1 SO”)

Anal.(xlO-1)

0.246( 180”)

0.123(180”)

0.244( 180’)

0.380(0”)

0.220( 180”)

0.754(0”)

0.192(180°)

0.740(0”)

3.072(0’)

X398(0’)

I.121(0°1

>.138(180”)

X420( 180’)

).610(180°)

).188(180”)

. ._ ,. dL ,. :
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Table 6.3 Eieenvectors of ‘Exoerimental’ and Analytical Models (Case 1: Mode 2)

Coords. Exp.(xW)
I

Anal.(xlO-‘)

2

7

8

13

14

19

20

22

23

28

29

37

38

40

0.058(-176”) 0.008(180”)

0.046( 173’) 0.024( 180’)

0.459( 177O) 0.353( 180”)

0.047( 175’) 0.033( 180”)

0.579( 178’) 0.496( 180”)

0.102(179°) 0.097(180°)

O-342( 179’) 0.354( 180”)

0.188(180”) 0.195(180”)

0.129(-177’) 0.196(180”)

0.238(180’) 0.250( 180’)

0.043(-173’) 0.102(180°)

0.192(-179’) 0.223(180”)

0.034(-7O) 0.008( 18OO)

0.024(- 164”) 0.024( 1 SO”)

0.064(-175”) 0.195(180”)

Coords. Exp.(xlO’)
I

Anal.(xlo-1)

41

46

47

52

53

58

59

67

68

76

77

82

83

88

89

0.017(-160’)  0.020(180”)

0.389(- 178”) 0.459( 180’)

0.053(- 175’) 0.060( 180’)

O-476(- 179’) 0.459( 180’)

0.145(-179’)  0.143(180°)

0.269(180”) 0.196(180°)

0.265( 180”) 0.250( 180’)

0.117(-179°)  0.061(180”)

0.207( 179’) 0.172( 180”)

1.289(0’) 1 .220(O” j

0.786(0’) 0.738(0’)

1.410(0°) 1.520(0’)

0.850(0’) 0.926(0’)

0.387(0”) 0.669(0”)

0.206( 1”) 0.399(0”)
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The Macro 1 model (Fig.3.3) which has 8 macro elements (i.e. L = 8) was used in the

error location procedure. This means that no macro element coincided exactly with any of

the error regions. A necessary condition for the sensitivity [S], which is m(n=l) x 2L, to
i be rank full is:

> m(n+l)>2L or rn>-$l

However, the eigenvector sensitivities are not always linearly independent. In practice,

’ the number of measured modes should be more than twice of the minimum number in

order to give a high probability of sufficient rank to matrix [S]. In this case study, 10

modes were used as mentioned above.

The location process took 5 iterations to convergence and 27 elements - 9 mass elements,

11 stiffness elements and 7 damping elements - were identified as possible error regions

as shown in Fig.6.1.

The resultant natural frequencies of the ‘improved’ analytical model are compared with

those of the ‘experimental’ modes in Table 6.4.

Table 6.4 Natural Frequencies of ‘Experimental’ and Intemnediate Models (Case 11



q  Updating of Damped Structures 162

I
0.5

0.0 ,,,,lll”“‘---‘nrr”‘~n 1111

1 ; Selected Elements

- 0 . 5 *. *. . . *. * *. * *. *..  . . . . . . - *. . . . ..’
2 4 6 8 IO 12 14 16 I8 20 22 24 26 28 30

(a) Mass Modelling Errors
Element Numbers

I

0 11111 I . . . . . . . . .

1; Selected Elements

-I...........*....,..‘.‘.‘.......’
2 4 6 8 IO I2 14 16 18 20 22 24 26 28 30

(b) Stiffness Modelling Errors
Element Numbers

005-

-005.-......,......................~
2 4 6 8 lo I2 I4 I6 I8 20 22 24 26 28 30

Element Numbers

(c) Damping Modelling Errors

Fig.6.1 Error Location Results

L



q  Updating of Damped Structures 163

Using the error location results, updating was carried out by correcting the selected errors

in the original analytical model. The iteration results of this stage are shown in Figs.6.2,

6.3 and 6.4, from which it can be seen that the final estimates become very accurate after

’ 5 iterations. Natural frequencies of the updated model are compared with ‘experimental’

natural frequencies together with MAC values in Table 6.5.

Table 6.5 Natural Freuuencies  of ‘Experimental’ and Uodated Models
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Using the error location results, updating was carried out by correcting the selected errors

in the original analytical model. The iteration results of this stage are shown in Figs.6.2,

6.3 and 6.4, from which it can be seen that the final estimates become very accurate after

’ 5 iterations. Natural frequencies of the updated model are compared with ‘experimental’

natural frequencies together with MAC values in Table 6.5.

Table 6.5 Natural Freuuencies  of ‘Experimental’ and Urxiated Models

. 2..



q  Updating of Damped Structures 164

0 II I I I
I

-l...............................
2 4 6 8 10 12 14 16 18 2 0 22 24 26 28 30

(a) Mass Modelling Emrs Element Numbers

2

0 . Ill .
I

w

-2.................................
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(b) Stiffness Mdelling  Errors Element Numbers

0.1

-0.1.. * . . . . . -. - -. " - ". -. . . . -. . . ..-
2 4 6 8 10 12 14 16 18 2 0 22 24 26 28 30

Element Numbers
(c) Damping Modelling  Errors

Fig.6.2 Model Updating Results (Case 1; First Iteration)

.’ ,._ ___~



q  Updating of Damped Structures 165

l-

-l...............................
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(a) Mass Modelling  Errors Element Numbers

2

0 I

- 2 . . . m..... ..*..... .I............
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(b) Stiffness Modelling  Errors Element Numbers

0.1

0

-0.1
2 4 6 8 10 12 14 16 18 2 0 22 24 26 28 3 0

Element Numbers
(c) Damping Moclelling  Errors

Fig.6.3 Model Updating Results (Case 1; ‘IKrd Iteration) I



q  Updating of Damped Structures 166

t

0

-l......=. - -. - "' - '. ' - - '1 1 " - '-. '
2 4 6 8 10 12 14 16 18 2 0 22 24 26 28 30

(a) Mass Modelling J3rors Ekment Numbers

0

LJ

-2!.. ...~....."...“‘.,."""', 7
2 4 6 8 10 12 14 16 18 2 0 22 24 26 28 30

(b) Stiffness Modelling Errors Ekment Numbers

.

2 ,

L

2 4 6 8 10 12 14 16 18 2 0 2 2 2 4 2 6 2 8 3 0
Element Numbers

(c) Damping Modelling Errors

Fig.6.4 Model Updating Results (Case 1; Fifth Iteration)



q  Updating of Damped Structures 167

6.3.2 CASE 2

For the more heavily damped case, the damping properties in the la and 2nd elements

k were increased to 0.3 [K]i. The modal parameters of the first 10 ‘experimental’ and

analytical modes are compared in Table 6.6 together with h4AC values. The eigenvectors

] , of the first two ‘experimental’ and analytical modes  are compared in Tables 6.7 and 6.8.

/ Table 6.6 Natural Freuuencies  of ‘ExDerirnental’ and Analvtical  Models (Case 2)

mde

No.

1

2

3

4

5

6

7

8

9

10

Experimental AIldytiCd MAC

Nat. Freqs. Loss Factors Nat. Freqs. Values

344.3 0.019 342.3
c

0.992

469.2 0.013 450.6 0.967

552.1 0.07 1 528.5 0.927

578.5 0.013 557.2 0.960

704.7 0.043 683.4 0.948

852.8 0.024 833.7 0.978

918.7 0.018 902.3 0.885

928.9 0.002 927.0 0.79 1

1100.5 0.010 1066.6 0.854

1206.2 0.038 1165.3 0.890

e.’
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Table 6.7 Eieenvectors  of ‘Exmimental’ and Analvtical Models 0se 2: Mode 1)

Chords.
I

Exp.(xlO-‘)
I

Anal.(xlO’)

1 0.717(-2”)

2 0.259(2O)

7 0.379( 12’)

8 0.262( 1”)

13 O.l17(153O)

14 0.235( lo)

19 O-574( 178’)

20 0.194(1°)

22 0.735( 180”)

23 0.177(1°)

28 0.719(180°)

29 0.017(-167°)

37 0.727( 180”)

38 0.247(-177’)

40 0.653(-179”)

0.748(0’)

0.236(0”)

0. 370(0°)

0.248(0’)

0.134( 180’)

0.233(0’)

0.593( 180”)

0.205(0’)

0.754( 180’)

0.1 92(O”)

0.742( 180’)

0.019(180°)

0.748( 180”)

0.236( 180”)

0.585( 180’)

Coords Exp.(xlO’)

41

46

47

52

53

58

59

67

68

76

77

82

83

88

89

0.256(- 178’)

0.204(-178’)

0.255(-179”)

0.315(-lo)

0.231(180°)

0.730(0”)

0.203( 177”)

0.71 l$lO)

0.084(8”)

0.399(-4O)

O-153(-2’)

0.166(-172’)

0.452(-173’)

0.652(- 179’)

0.227(- 177’)

Anal.(xlO’)

0.246( 180”)

0.123(180”)

0.244( 180”)

0.380(0”)

0.220( 180’)

0.754(0”)

0.192( 180’)

0.740(0”)

0.072(0”)

0.398(O”j

0.121(0°)

0.138(180”)

0.420( 180”)

0.610(180”)

0.188(180”)

L. ,“.
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Table 6.8 Ekenvectors of ‘Exuerimental’ and AnahticaI Models K&e 2: Mode 2)
1

Coords. Exp.(xlO-‘) Anal.(xlO’) Coords. Exp.(xlO’) Anal.(xlO1)

1 0.064(-162”) O.OOS( 180’) 4 1 0.027(-l 29”) 0.020( 180”)

2 0.035( 140”) 0.024( 1 8 0 ”)  4 6 0.412(-173’) 0.459(180”)

7 0.411(163’) 0.353(180”) 4 7 0.060(-158”) 0.060( 180”)

8 0.041(154°) 0.033(180”) 5 2 0.493(-175’)  0.459( 180”)

13 0.542( 169’) 0.496( 1 SO”) 53 0.149(-175’)  0.143(180”)

14 o.100(171°) 0.097(180”) 5 8 0.270(180”) 0.196(18G”)
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The same macro model as that of Case 1 was used for error location. It took 6 iterations

to converge and 27 elements - 9 mass elements, 11 stiffness elements and 7 damping

1’ elements - were identified as possible error regions, as shown in Fig.65

The resultant natural frwluencies of the ‘improved’ analytical model are compared with

those  of the ‘experimental’ modes in Table 6.9.

Table 6.9 Natural Freuuencies of ‘ExDerimental’ and Intermediate Models (Case 2)

c
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Using the error location results, updating has been carried out. The iteration results are

shown in Figs.6.6,6.7 and 6.8, fkom which it can be seen that the final estimates become

very accmte  after4 iterations.

Natural frequencies of the updated model are compared with ‘experimental’

] frequencies together with MAC values in Table 6.10.

natural

I Table 6.10 Natural Freuuencies  of ‘ExDerimental’ and Undated Models (Case 2)

c

*.
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6.4 CONCLUSIONS

The damping properties of most vibrating structures are not distributed in a similar way to

i’ the mass or stiffness. Rather, damping often results from the joints between various

components of a structure. As a result, measured modal data are often complex, while the

modal parameters of the corresponding analytical model are real.

Updating methods developed so far generally assume that the experimental modal data are

I red,  or postulate that the measured complex data have successfully been converted to real

data. However, the deduced real modes may be erroneous because the experimentally-

identified complex modes are incomplete and the deduction itself relies on the analytical

I model which is erroneous.

A method has been developed to locate and to update damping elements together with

mass and stiffness elements in analytical model using measured complex modal data The

proposed method has been applied to the free-free bay structure which may constitute a

realistic problem in respect of the incompleteness of both measured modes and

coordinates. The updating results are quite accurate not only in modal parameters but also

in correction coefficients namely, physical design variables.



3
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i CHAPTER 7

CONCLUSIONS

’ 7.1 GENERAL CONCLUSIONS

Due to advances in numerical methods and the availability of powerful computing

facilities, FE modelling has become the most popular technique in structural dynamic

analysis. However, the dynamic responses obtained from FE analysis are seldom in

perfect agreement with modal testing results. Therefore a model updating procedure

should be introduced in order to adjust the analytical model so that the analysis and test

results agree, and so that a valid model is available for design calculations.

It should be noted that modal parameters obtained from a modal test are generally not

fully compatible with those from the analytical model because

1)

7; 2)

3)

the number of modes available from measurement (m) is usually very

limited (m-2 < N),

the number of measured coordinates (n) is in genera-l much less than the

number of coordinates (or the number of degrees of freedom) of an

analytical model (nfl) and

in most cases, experimental modal data from a real structure are not real but
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complex, even if the structure is lightly damped, while the modal parameters

of the corresponding analytical model are real.

Any incompatibilities between measured modes and the analytical model should be
,

resolved before an updating procedure is applied, or alternatively, an updating method

should be used which can handle the incompatibilities.

Various methods have been proposed to improve an analytical model of a mechanical

structure using modal test results. Review and numerical studies have revealed some
I inherent problems of those methods. One of the main problems of direct updating

methods, such as function minimisation methods and the error matrix method, is that the

updated model is a numerically-optimised one rather than a physically-meaningful model.

As a result, the modes outside frequency range of the experimental data remain

questionable or may become even worse than those of the original analytical model.

Another problem with these methods is that mode expansion is often required in order to

overcome the inevitable incompatibility between the analytical model and the measured

modes. This might itself be an erroneous procedure, thus jeopardising the subsequent

model updating. On the other hand, iteration methods such as IEM which do not require

such expansion usually do not converge if the modelling errors are not small.

Any attempt to update every element in the analytical model using only the limited

information available from typical test results may not be realistic. If mismodelled regions

can be located in a preliminary step, model updating can be carried out more efficiently

and more successfully. Therefore, error location is a fundamental first objective of the

updating process. Recent developments in the area of error location have been
i‘I; investigated. The EMM can locate mismodelled regions successfully even with a very

limited number of measured modes if complete coordinates are measured, although this is

not a very practical proposition. Again, for the EMM to be successful, a reliable mode

expansion method should be available. The IEM does not require mode expansion and its

computational time will be reduced by locating error regions first and updating the
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analytical model using only the elements which are selected in an error location

procedure. However, the IEM had been found to be unreliable from case studies in

Chapter 2, from which it was concluded that more reliable error location methods needed

1 to be developed.

The objectives of this research were decided based on these findings, and were:

1) to develop a reliable, sensitive and systematic method to locate modelling

errors in an analytica.l  model using modal testing results, and

2) to develop an updating method which can produce an improved analytical

model that can not only reproduce the exact modal parameters measured in a

test but also predict correctly those modes outside frequency range of the

experimental data and at the same time can reduce the number of experimental

modes and the computational time for updating.

An inverse eigensensitivity method using arbitrarily-chosen macro elements has been

proposed at the error location stage to reduce the computational time and to reduce the

number of experimental modes required for subsequent updating. By this approach, the

model updating problem, which is generally under-determined, can be transformed into

an over-determined one and an updated analytical model can be found which is not

influenced by the definition of the macro elements. The proposed method has been

applied to the free-free GARTEUR  structure which represents a practical structure and

constitutes a realistic problem in respect of the incompleteness of both measured modes

and coordinates. The updating results were quite accurate, not only in modal parameters

but also in correction coefficients for the physical design variables.

The assumption that the test results represent the true dynamic behaviour of a test

structure, however, may not be correct. Experimental data can be affected by several

typejof measurement error in spite of the highly-developed instrumentation and modal

parameter extraction techniques now available. Thus, the sensitivity of the updating
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method itself to noise on the experimental data needs to be investigated. The proposed

method has been applied to a Bay structure for which “experimental” data are noisy and

incomplete. The error location procedure has been found to be very insensitive to the

I “measurement” errors - in the presence of measurement errors of up to 1 % in the

eigenvalues and 10 % in the eigenvectors, it succeeded in locating the correct

mismodelled regions. The updating results were quite accurate in terms of modal

parameters and, moreover, in terms of correction factors, when sufficient eigensensitivity

terms ate used. In this case study, measurement errors were introduced by contaminating

, the modal parameters of the correct or modified structure with random noise.

In practice, the characteristics of measurement errors might not result in random

variations in the modal parameters. For the updating method to be useful in practical

application, various error sources in testing - such as the mass loading effect of

transducers, shaker/structure interaction, etc. - should be considered and more realistic

errors rather than random noise should be included in the “experimental” data. The errors

involved in modal parameter estimation - such as measurement errors, signal processing

errors and errors in modal analysis - have been considered in detail, and their effects on

estimated FRFs and on the modal parameters extracted from the FRFs have also been

investigated. A computer program has been written to simulate various measurement and

signal processing errors. The “experimental” FRFs generated using this program can be

used to test the performance of different modal parameter identification programs and,

thus, of the various applications to which these modal data are put.

The resultant “experimental” modal data which contained representative experimental

7; errors have been used to update the corresponding analytical beam mtiel to check the

validity of the IEM. The mismodelled regions were located successfully, and the updating

results were found to be quite accurate, not only in the modal parameters themselves but

also in correction coefficients for the physical design variables.

: I,._,“,d* ._I.,,.. _...- ..__ , .,_ .:..._.. ,, -._ ._
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The damping properties of most vibrating structures are not distributed in a similar way to

the mass or stiffness. Rather, damping often results from the joints between various

components of a structure and, as a result, measured modal data often are complex, while

!. the modal parameters of the corresponding analytical model are real. Updating methods

developed so far assume that the experimental modal data are real, or postulate that the

measured complex data have successfully been converted to real data. However, the

deduced real modes may be erroneous because the experimentally identified complex

modes are incompatible and the deduction itself relies on the analytical model which is

1 erroneous.

A method has been developed to locate and to update damping elements together with the

mass and stiffness elements in an analytical model using measured complex modal data.

The proposed method has been applied to the free-free Bay structure, constituting a

realistic problem in respect of the incompleteness of both measured modes and

coordinates. The updating results were quite accurate, not only in modal parameters but

also in correction coefficients namely, physical design variables, which means that this

method can handle all the inherent incompatibilities between measured modes and an the

analytical model.
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7.2 CONTRIBUTIONS OF THE PRESENT RESEARCH

As a final review, the contributions of this research are listed chapter by chapter so that it

! becomes clear which parts of the work constitute new developments to the subject.

,

Chapter 2 - Model Updating Methods - A Review

I l

.

.

review of various updating methods and critical discussion on their advantages and

disadvantages/limitations.

discussion on incompatibility between measured modes and an analytical model

and, on the solutions to their problems

review of various error location methods and critical discussion on their advantages

and disadvantages/limitations, especially on the IEM based on some numerical case

studies

Chapter 3 - Model Updating Using IEM

9 development of a mod&d IEM which can locate modelling errors successfully and

can produce an updated analytical model which preserves physical co~ectivity  and

predicts unmeasured modes correctly.

l investigation of the effect of balancing of the sensitivity matrix for error location

procedure using the SVD technique

l._ a detailed explanation of the IEM and suggestions for improving the convergence of

the IEM and graphical explanation of the methods
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Chapter 4 - Error Sensitivity of the Inverse Eigensensitivity Method

l investigation of the sensitivity of the method proposed in Chapter 3 to noise on the

1 experimental data based on a bay structure

Chapter 5 - Errors Involved in Modal Parameter Estimation from Test

Data

. investigation of errors involved in modal parameter estimation and their effect on

estimated FRFs and on the modal parameters

l development of a computer program which can be used to simulate various

measurement and signal processing errors

. exploitation of the capability of the IEM in model updating with consideration of the

problems of modal and coordinate incompleteness, and of representative

experimental errors

Chapter 6 - Updating of Damped Structures

. extension of the method proposed in Chapter 3 to damped systems, which means

the proposed method can handle the last (or the most fundamental) incompatibility

between measured modes and the analytical model - real analytical modes and

complex experimental modes.

-.. .
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7.3 SUGGESTIONS FOR FURTHER WORK

The study undertaken in this thesis has revealed that some further investigations and

developments may be necessary or interesting in future work.

In this study, the application is made only to a numerical study and a comparatively

simple structure due to the limited period of time available. Even though updating results

are shown to be quite accurate in the case studies undertaken, the proposed method

should be applied to more complicated structures with more complicated elements such as

shell and/or plate elements which might be more commonly used than beam elements in

FE analysis of mechanical structures, in order to check the wider validity of the method.

In the investigation of the errors involved in modal parameter estimation from test results,

various measurement and signal processing errors and errors in modal analysis have been

included. However, the effect of a push rod (or a stinger), which is essential to connect

an exciter to a test structure when random or sinusoidal excitation is used, on the test

results has not been included The push red effect should be investigated and included in

the computer program for simulating experimental data

The proposed updating method requires mass and stiffness matrices of the each element

of an analytical model of a structure to calculate a sensitivity matrix, and eigenproblem

should be solved in every iteration. For the method to be more practical or more flexible,

interfacing the updating program with existing FE package is necessary.

L’, ,.,._,., :.+.. ..,,.. L. :.. .
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1. APPENDIX A

DERIVATION OF EIGENVALUE AND
EIGENVECTOR DERIVATIVES

Sensitivity analysis has widely been used in many engineering fields such as system

dynamics modification [41,42] and identification of dynamic systems or model updating

[ 14,19,43-451.  In these applications, eigenvector and eigenvalue derivatives with respect

to design parameters are required. Wittrick  [46] obtained the first derivatives of

eigenvalues for real symmetric systems, while Fox et. al. [471 extended these results to

include the first derivatives of eigenvectors. The process in this Appendix follows closely

the one given in Ref. [471.

The eigenvalue problem of a mechanical system can be expressed as:

( WI - & WI ) (44, = (0) (A.1)

w,TMl w, = 1 (-4.2)

::

Differentiating (A.l) with respect to an updating variable pr gives
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Pm-multiplying  (A-3) by {o),’ leads to

(A-4)

. Note that the equation (A.4) includes only the eigenvalue and eigenvector under

consideration, therefore a complete solution of eigenproblem is not needed to obtain these

derivatives.

The eigenvector derivatives can be expressed as linear combinations of all eigenvectors of

the system if the eigenvalues are assumed distinct, because N eigenvectors are linearly

independent and they can be used as a set of basis vectors for spanning N-dimensional

space. Thus,

-y = 2 cJj{@)j
1 j=l

(A.3

Substituting (AS) into (A.3) and pre-multiplying (A.3) by ($1,’

Thus,

(A.7)
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2 Ci can be obtained by differentiating (A.2) with respect to pi

Substituting (A-5) into (A.9) leads to

Thus,

(r=j>

(A.8)

(A.9)

(A.lO)

(A.1 1)
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I APPENDIX B

ELEMENT AND MACRO-ELEMENT MATRICES

B.l MASS AND STIFFNESS MATRICES OF FE MODEL

Each beam element used in this thesis is the superposition of an axial bar element and a

Bernoulli-Euler beam. The coordinates of the beam element are shown in Fig.B. 1.

::

Fig-B.1 Two-Dimensional Beam Element

_. , ,A* . . . ,I 1 __,.‘.._._ / .,,-._ ._,.  ‘__.  ‘, -_ .’ _
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Axial Motion

The simplest approximation of axial displacement within the element employs the

displacement at the two ends and is given by

U(x,t) = w, (4 u, (0 + v,(x) u,(t)

The shape functions can be derived by considering axial deformation under static loads

which satisfy boundary conditions

ww = u,(t) Ws) = $0)

such as:

v,(x) = 1-t w*(x) = ;

Stiffness coefficients kij and mass coefficients mij are given by [48]

L

kij = I BA\yl,%dx
0

03.1)

L

lllij = I PA\y,Vjdx

0

Substituting equation (B.l) into (B.2a) and (B.2b) gives the following stiffness and

mass matrices for a uniform element
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Axial Motion

The simplest approximation of axial displacement within the element employs the

displacement at the two ends and is given by

U(x,t) = v,(x) u,(t) + Yqx) u,(t)

The shape functions can be derived by considering axial deformation under static loads

g(AEg) = 0

which satisfy boundary conditions

ww = u,(t) u-w = $0)

such as:

y,(x) = 1-t yf*(x) = ;

Stiffness coefficients kij and mass coefficients mij are given by [48]

L

kij = I EA\yl,$dx
0

03.1)

L

Illij = I PA\Y,Vjdx

0

Substituting equation (B.l) into (B.2a) and (B.2b) gives the following stiffness and

mass matrices for a uniform element
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(B.W

(B.3b)

Transverse Motion

Let the displacement coordinates for transverse motion be the end displacements and

slopes as

4

V(x,t) = c Vi(‘) vi(t)
i=l

The shape functions can be derived by considering the equilibrium equation for a beam

loaded only at its ends

which satisfy boundary conditions

Ws) = v,(t)

WJ) = v,(t)
. .

such as:

v’K4t) = v,(t)

WJ) = v,(t)
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(B.W

(B.3b)

Transverse Motion

Let the displacement coordinates for transverse motion be the end displacements and

slopes as

4

V(x,t) = c Vi(‘) vi(t)
i=l

The shape functions can be derived by considering the equilibrium equation for a beam

loaded only at its ends

which satisfy boundary conditions

vat) = v,(t)

WJ) = v,(t)

such as:

v’(O,t) = v,(t)

WJ) = v,(t)
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yqx) = 1 - 3 @‘+ 2 @’

v,(x) = x - 2L Q2 + L Q3 (B.4)

w,(x) = 3 @’ - 2 Q3

w,(x) = - L Q2 + L (i)’

Stiffness coefficients kij and mass coefficients mij are @en by 1481

L

kij = I
0

EIyQQlx (B.W

(BSb)

Substituting equation (13.4) into (BSa) and (BSb) gives the following stiffness and

mass matrices for a uniform element

[Ka = 5

[ 12 6L

4L2 - 6 L  2L2

-I2 12 -6L 6L

symm. 4L2

- -

[ 156 22L 4L2 156 13L 54 -22L -13L -3L2sYmm. 4L2 1
(B.W

(B.6b)

The stiffness and mass matrices of the beam element, which is the superposition of an

axial and a Bernoulli-Euler beam, can be expressed as:



EA EAr 0 0-r

12EI 6EI o
FF

0 0

12EI
-F

6EI
L2

6EI 2EI- -
L2 L

0 0

12EI
L3

6EI- -
L2

4EI
--IT
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140 0 0 70 0 0156 22L 0 54 - 13L 1
4L2 0 13L -3L2

140 0 0

156 - 22L

4L2 1

B.2 CONSTRUCTION OF MACRO ELEMENTS

The mass (or stiffness) matrix of the ith macro element is formed by a summation of

individual mass (or stiffness) matrices

[Ml, = Ji [M"lj

n,
IKli =g K"lj

_- The construction of the macro element matrices will be illustrated by using a simple

structure. If there are three individual elements in the ith macro element and each node

has 2 DoFs. as shown in Fig.B.2, then the mass matrix of the ith macro element, which

is a summation of the three element mass matrices
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_ p-4, lm12 ,m13 PI4

9% IF?2  I%3 1%

111131  P32 P33  1%

’ lm41 lm42  Im43  lm44

3 4 5 6
‘m2 11 2m12 2m13 2m14

2%1  2 %  2%3  2%

2m31 Zm32  2m33 2m34

- 2m41 2m42  Zm43  2m44

5 6 I 8
‘m3 11 912 3m13 3m14

P-t21  3 %  3-3  3%

3m41 3m42  3m43 3m44

I
1
1

can be constructed as:

Frli =

1 2

Pll Pl2

P22

3 4 5 6 7 8

F13 PI4 0 0 0 0

lm23 1m24 0 0 0 0

lm33+Zml 1 1 m34+2m12 2m13 2m14 0 0

1m‘l4+2m22 2%3 2% 0 0

2m33+3ml  1 2m34+3m12 3m13 3m14

s y m m . Zm44+3q2  3 %  3 %

3m33 3%4



Appendix @ Element and Macro Matrices 196

ii? (1) fh (2) fk (3) fk

I 1 I 1

Fig.B.2 The ith Macro Element and its Coordinates

B.3 NUMERICAL DATA OF BAY AND GARTEUR STRUCTURES

Elements II Horizontal Vertical Diagonal
5 3

L - m7 - m5 am
7

A 4.00 x 10” m2 1 6.00 x 10m3 m2 1 3.00 x 10e3 m2
II

I E i 7 50 x lO*O Pa.

I I 7.56 x 10m2 m4

I P 2.80 x 103 kg/m3

L
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APPENDIX C

THE SINGULAR VALUE DECOMPOSITION

The purpose of this appendix is not to present a detailed explanationof the SVD with a full

and rigourous mathematical description, but to give a simple introduction with a view to

its applications to the determination of the rank of a matrix and to the solution of a set of

overdetermined linear systems of equations.

C.l SINGULAR VALUE DECOMPOSITION (SVD)

The SVD is based on the following theorem of linear algebra, whose proof [Ref.491 is

beyond our scope:

Any MxN real matrix [A] whose number of rows M is greater than or equal to its

number of columns N, can be written as the product of an MxM orthonormal matrix

[VI, an MxN [C] with positive or zero elements, and the transpose of an NxN

orthonormal matrix [VI. i.e.,

(C.1)
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where [Z] is a real IX&X with elements Oij = bi for i = j and Oij = 0 for i # j.

Because yul and M are orbnormal matrices,

f . IU]= = m-1 [VI= = [vp

and

Wl=Wl = WlWl= = M=M = MM’ = El

(C.2)

(C-3)

The values ai are called the singular values of the matrix [A]. Without loss of generality,

the singular values can be ordered in descending order

Thus,

Similarly, the SVD of a complex matrix results in the following:
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where [V],H, is the complex conjugate transpose of [VI and W] and [VI are unitary

matrices, i.e.,

MHM = MMH = l-4

and

pU]H  = WI-1  MH = M-1

The singular values are the non-negative square roots of the eigenvalues of the matrix

INTEAl,  if [Al is real, and of [AIHIA], if [A] is complex. Because [AITIA] is symmetric

and [AIHIA] is Hermitian, the eigenvalues are always real and non-negative [49] and,

therefore, singular values are always real and non-negative.

For simplicity, [A] will be assumed to be real from now on. Usually, the SVD

computation is performed in two stages: first, a reduction of [A] to a tridiagonal form

using the Householder transformation [49] and second, a reduction of the superdiagonal

elements to a negligible size, using the QR algorithm [49], resulting in a diagonal foxm.

h ,.. , _ _. ‘,i. ‘_ , L ,.
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C.2 RANK OF A MATRIX

In some applications it is necessary to determine the rank of a matrix, particularly to

determine if the matrix is of less than full rank. The rank of [A] is the largest number of

columns (or rows) of [A] which constitute a linearly independent set. An MxN matrix

with IvPN is said to be of full rank if its rank equals N, but rank-deficient if its rank is

less than N.

To calculate the rank of a matrix, an algorithm such as Gaussian elimination may be

applied and the rank decided from the final reduced form. In practice, the situation is not

so simple. In the first place, the elements of a matrix are seldom given exactly and, even

if the original matrix is rank-deficient, it is unlikely that its approximation will also be.

Thus, instead of asking if the given matrix is rank-deficient, we must ask if it is nearly

rank-deficient. In the second place, the transformations of, say, Gaussian elimination

may take a matrix which is very nearly deficient in rank and turn it into one which is

clearly of full rank. Finally, it is not always easy to recognise  when even a triangular

matrix, which is the end product of Gaussian elimination, is nearly deficient in rank.

The relationship between the SVD and the rank of a matrix is that the value of the rank is

equal to the number of non-zero singular values. The advantage of using the SVD to

calculate the rank is that if r rows of an NxN matrix are not totally linearly dependent, we

shall obtain a small value for ~~_r+~, instead of zero, and we have only to compare this

small value with other singular values. If we establish a criterion for the rejection and

acceptance of small singular values, we shall have ananswer  concerning thevalue of the

rank. This criterion may depend on the accuracy of the expected results and, in practice,

may be difficult to establish. A reasonable solution is to calculate the consecutive ratios of

ON-1the singular values, :, O<, , . . -.
ON

Representing the ratios graphically, the first peak

will indicate the value of the rank. For instance, if the rank of a matrix is r, then or,, will
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be very small and the ratio 2 will be very high compared with %, which indicates the
I

rank of the matrix.

C.3 THE LEAST-SQUARES PROBLEM

Very often, we have to solve least-squares problems. These happen when we have an

, over-specified set of equations with relation to the unknowns, i.e., we have more

information than we need to solve the problem. Once it has been established that a

coefficient matrix [A] is of full rank, the least-squares solution t0.a.n overdetermined set

of linear equations

can be obtained from

(x] = [Al;xM @I

where M > N, and [A&& is the Moore-Penrose genera&d inverse, ([A]‘[A])-‘[A]‘.

The generalised inverse [A]‘can  easily be computed efficiently by using the SVD. From

equation (C.l), we obtain

[Al;, = [VI Gx, PI 1;=M WI ,‘,,

Substituting equation (C.3) into equation (C.4) leads to

[Al’ = WI El’ WIT

(C.4)
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where [Cl’ is given by

I
-1

01

[Cl’ =

Each element of [Zj’ can be easily calculated as

N
6 = c ‘iklik

k=l

where vik and ujk are the corresponding elements of Iv] and [VJ.
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APPENDIX D

DYNAMIC CHARACTERISTICS OF PUSH ROD

When modal testing is performed using a continuous excitation signal, such as random or

sinusoidal, it is necessary to use an exciter connected via a push rod which should have

high axial stiffness for transmission of axial force but low lateral or bending stiffness to

allow little moment transfer. In order for the push rod not to contaminate test results, the

natural frequencies  of the push rod should lie well outside the test frequency range.

Dimensions and material properties of push rods which were used for the experiment in

Chapter 5 are shown in Table D.l.

Table D. 1 Dimensions and Material Pronerties  of Push rods

t I I I 1 1

Long push rod
Short push rod

d
1.5 mm
1.5 mm

L
67.0 mm
13.0 mm

E P
2.07 ~10” N/m* 7850 kg/ma
2.07 x1Otr N/m2 7850 kg/n+
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D.l FIRST BENDING MODE

The first bending mode of a push rod can be calculated by considering fixed-futed

’ boundary condition as follows [32]:

fb = 1-
II

kb
2K m

@.l)

where m is the mass of the push rod and kb is bending stiffness of the push rod which is

given by

192 EI
kb = ~3

192E xd4‘ E d4
=y3- (jLj = 9.42 L3

Substituting equation (D-2) into equation (D.1) leads to

D.l.l LONG PUSH ROD

fb =

= (0.883) (1.5~10-~) 2.07~10”
(67x 1 O-3)2 7850

= 1,515 (Hz)

@.a

P-3)
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D.1.2 SHORT PUSH ROD

fb = (0.883) (1.5~10-~)
(13x10-3)2

= 40,244 (Hz)

/ D.2 AXIAL MODE

In this case, the push rod assembly acts as a spring loaded by the mass of an exciter

armature. Thus,

@.49

where rq,, is the mass of the exciter mature and k, is the axial stiffness of the push rod

which is given by

D.2.2 LONG PUSH ROD

k, =
(x/4) (1.5x1O-3)2(2.O7xlO11)

(67~10-~)

= 5.460 x 106 (N/m)

05)

c
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f, = $ 5.460 x 106
0.02

= 2,630 (Hz)

D.2.2 SHORT PUSH ROD

k, = (X/4) (1.~x10-3)2(2.07X10’1)

(13x10-3)

= 2.815x lo7 (N/m)

2.815~10~
0.02

= 5,917 (Hz)
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APPENDIX E

GENFRF USER’S GUIDE

E.l OVERVIEW

GENFRF is a FORTRAN program designed to run on an IBM PC-AT or PS2.

generate frequency response functions (FRFs) which have various measurement

such as:

1) mass loading effects of force transducer and accelerometer,

2) error by shaker/structure interaction;

3) input and output random noise;

4) signal processing error (leakage)

A flowchart of the program is given in Fig.E.l.

It can

errors

Generated FRFs can be directly used as input files of MODENT [37] for modal

analysis.
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4ssemble to make global mass and stiffness matrices Eigenvdue solution
CALL,ELMKFl&GLOBAL

[AlA WA

and frequency range from data iYe
I
t

Introduce mismodelled regions
CALLdExMK

N

Read excitation point and response points
hm data file

I
t

I

Mass loading effect of force trasnsducer
CALLMIDADF I

Mass loading effect of accelerometer
CALLMILXDA A3

Fig.E. 1 (a) Flowchart of FRF Generation Program
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Shaker/structure interaction
CALLFRFCAL&INTA~

Calculate noise-free FRFs

CALLFRFCAL

Store output in
* TR****.FFW

Calculate auto ancj cross spectra of signals and noise autospectra
and add noises to signals

Choose window function
CALLdWlNDOW

Calculate FRF & coherence

Calculate random errors of FRF & coherence

Store output in
DB****.FRF

Move to next point

Fig.E. 1 (b) Flowchart of FRF Generation Program
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1Q
Read response point and excitation points

fi-omdatafile

I Mass loading effect of accelerometer
CAILMLOADA I

t
1 Hammer/strucm  interaction

Calculate auto and cross spectra of signals and noise autospectra
and add noises to signals

I

t

Calculate FRF & coherence

I Calculate random errors of FRF & coherent e(

Move to next point

Fig.E. 1 (c) Flowchart of FRF Generation Program

c
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E.2 INPUT FILE

To run the program, an input file GENFRF.DAT is necessary. Its format is @en in

Table E. 1.

Table E. 1 Format of GENFRF.DAT

RecordV a r i a b l e  Name

3 IFTYPE INT

FRF Type (1 =Receptance, 2=Mobility, 3=Inertance)

5 AMS, FTMS, EXMS REAL

Masses of accelerometer, force transducer, mature (kg)

7 GMM, GNN, NAV REAL,REAL,I.NT

Input noise level, Output noise level, No of average

9 FST, FED REAL

S&g freq (Hz), Ending freq (Hz)

11 ICOH INT

0 = No coherence data, 1 = Coherence data available

13 IEX INT

15

17

19

Global excitation coordinate number

IRS1,1RS2....IRS,,

n Global response coordinate numbers

TITLE

First two characters of output file names

HEAD

Title for FRFs

INT

CHAR*2

CHAR*80

L
.,. . :
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1) Other records are only used for descriptions of following variables.

2) All data to be read in FORTRAN77 free format using the appropriate variable type

except TITLE (Record 17).

E.3 RUNNING GENFRF

1) When you see C:>, change to subdirectory WAG\ by typing

CD NAG

2) Run GENFRF by typing

GENFRF

3) After several messages, you will be asked:

IS SHAKER USED? ( YES = 0 , NO = 1 )

Type 0 for shaker excitation (Hammer excitation is not available, if type 1, the

program will be terminated.)

4) After a while, the computer will give a message

** CALCULATING FREQUENCY RESPONSE FUNCTIONS **

followed by calculated FRF file names.

E.4 GENFRF OUTPUT FILES

The output files of GENFRF are as follows:

1) Exact modal data ANAL.DAT

2) n (no of measurement coordinates) error-free FRF data files (TRNlN2.FRF)  and

n noisy FRF data files (DBNlN2.FRF) where

N 1; Response coordinate (2 digit)

N2; Excitation coordinate (2 digit)
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Data format of these files is given in Appendix C of MODENT Reference Marx.&

3) Combined Response Data file (BEAMSRD). This data file contains the names of

individual FRF files to be analysed  globally. Data format is given in Appendix C of

MODENT Reference Manual.

ES MODIFYING PROGRAM

GENFRF program uses one of NAG routines, F02AEF, for eigenvalue solution which

is stored in subdirectory NAG. If you want to modify the program

1) Change to subdirectory WAGj and modify GENFRF.FOR.

2) After editing, type

FL /AH /Opx  /FPc genfrf . for  /link wlms3+wlms4+wlms5+wlms6+wlms7

for compiling and linking because NAG routines were compiled with the options.

3) Type

GENFRF

to run the modified program.
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E.6 COMPUTER PROGRAM

c*******************************************************************c

c*******************************************************************c

c***** *****c

c***** PROGRAM FOR SIMULATING EXPERIMENTAL DATA *****c
c***** *****c
C****************************************************~**************C
C***********************************************~*******************C

PROGRAM SIMULATION
c*******************************************************************c
c***** *****c
c***** FREE-FREE BEAM STRUCTURE *****c
c***** *****c
c*******************************************************************c

PARAMETER(NEL=20,N=42,M=l  O,NFP=40 1 ,NF2=801)
c*******************************************************************c

C***** VARIABLES *****c

C***** N ; NO-OF DOF OF SYSTEM *****c

C***** M ; NO.OF MEASURED MODES *****c

C***** NFP ; NO.OF FREQUENCY POINTS *****c

c***** NF2 ; @m-1)*2+1 *****c

c********************************************************************c

DOUBLE PRECISION EVAL,EVEC,DUMM,DUMK,DL,E
DIMENSION DEM(4,4),DEK(4,4)
DIMENSION DL(N),E(N)
DIMENSION DUMM(N,N),DUMK(N,N)
DIMENSION FREQ( lO),COH(NFP)
DIMENSION GFF(NF2),GXX(NF2)
CHARACTER TITLE*2,FLNM*lO,EX*2,RSP*2
CHAIbJCIER HEAD*80
COMPLEX CFRF,GXF(NF2)
COMMON /CB l/FMF(N,N),FKF(N,N)
COMMON /CB2/DMM(N,N)
COMMON /CB3/DM(N,N),DK(N,N)
COMMON /CB4/EVAL(N),EVEC(N,N)
COMMON /CBS/CFRF(NF2),FSM(NF2)

C
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C**** ASSEMBLE GLOBAL MASS AND STIFFNESS MATRICES
c

C

20
C

30
c

-(*,*I
WRlTE(*,*)‘**  ASSEMBLING MASS AND STIFFNESS MATRICES **’

mlTlx*,*)

DO 20 I=l,N
DO 20 J=l,N
DM(I,J)=O.
DK(I,J)=O.
CONTINUE

DO30K= 1;NEL
CALL ELMKFl (DEM,DEK,K)
DO 30 I=l,N
DO 30 J=l,N
DK(I,J)=DK(I,J)+FKF(I,J)
DM(I,J)=DM(I,J)+FMF(I,J)
CONTINUE

C**** CALCULATE ANALYTICAL NATURAL FREQUENCIES &
C**** MODE SHAPES
C

DO 40 I=l,N
DO 40 J=l,N
DUMM(I,J)=DM(T,J)
DUMK(I,J)=DK(I,J)

40 mNTINuE
C

IFAIL=O
C

CALL FO2AEF@UMK,N,DUMM,N,N,EVAL,EVEC,N,DL,E,IFAIL)
C
C?*** INTRODUCE MISMODELLED REGIONS
C

CALLEXMK
C
C**** READ INPUT FILE (FRF+ IS INERTAWE)
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C

C

C

C

C

C

C

I
C

C

OPEN(9,FILE=‘LEAK2.DAT,STATUS=‘OLD’)

I=w9,*)
-(9**)
RE%D(S,*)  IFTYPE
R=w9,*)
READ(9,*) AM$FrM$EXMS
I=w9,*)
READ(9,*) GMM,GNN,NAV
=(9,*)
READ(9,*)  FST,FED
I=w9,*)
READ(9,*) ICOH
I=w9,*>
I=w9,*> IEX
I=w9**>
READ(9,*)  IRS
=AD(9,*)
READ(9,9950) TITLE
I=w9,*)
READ(9,9960) HEAD
CLOSE(g)

IF(IEX.LT. 10) THEN

wFuTE(Ex,9cm) IEX

ELSE

wRITE(Ex,9  loo) IEX

ENDIF

FR=(FED-FST)/(NFP-1)

C**** CALCULATE EXACI. NATURAL FREQUENCIES & MODE SHAPES
C
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DO 70 I=l,N
DO 70 J=l,N
DUMM(I,J)=DM(I,J)
DUMK(I,J)=DK(I,J)

7 0  C O N T I N U E
C

IFAIL=
C

CALL Fo2AEF@UMK,NPUMM~~~V~,EVEC,NPL,E,IFAIL)
C
C**** MASS LOADING E%ECIS OF FORCE TRANSDUCER
C

CALLMLOADF(IEX,FI’MS)
C

/ C
C**** OPEN COMBINED RESPONSE DATA FILE
C

C

C

C

C

C

C

1 c
C
C

C

IDuM=o

mIJw*,*)
WRI’TE(*,*) ‘*** CALC’ULATING FRF ***’

mm(*,*)

IF(IRS.LT. 10) THEN

WRITE(RSP,9000)  IRS

ELSE

WRITE(RSP,9 100) IRS

ENTXF

MASS LOADING EFFECTS OF ACCELEROMETER

CALLMLOA.DA(IRS~S)

C**** CALCULATE NATURAL FREQUENCIES & MODE SHAPES
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C
DO 110 I=l,N
DO 110 J=l,N

DUMW.&J)=DMW&J)
DUMK(I,J)=DK(I,J)

110 CONTINUE
C

IFAIL=
C

CALL Fo2An;@U~NPUMM~~~V~,E~C~PL,E~~)
C
C**** SHAKER/STRUCIURE INTERACYION
C

CALL FRFCAL(FST,FED,IEX,IEX)
C

CALLINTACT(EXMS)
C
C DEFINE EXCITATION NODE(lEN) AND DIRECl-ION(lED)
C

IEN=l
IED=

C
C CALCULATE RESPONSE NODE(IRN) AND DIRECTION(IRD)
C

IRN=5
IRD=2

C
C**** CALCULATE NOISE-FREE FRF H(IRS,IEX)
C

CALL FRFCAL(FST,FED,IEX,IRS)
C

FLNM=‘TR’//RSP//EX/l.FRF
C

OPEN (UNIT=lO,FILE=FLNM,STATUS=‘UNKNOWN’)
C

wRtTE(10,9960)  HEAD
WRITE(lO,*)  IFIYPE
WRITE(  10,94OO) NFP,FST,FR

-_
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wRITE( lo,*) ‘0’
WRITE( lo,*) IEN,IED,IRN,IRD,IDUM
wRITE(lo,*)  ’ 00000

wRlTE(  lo,*) IEX,IRS
wRITE( 10,950O) pRF(I*2- l),I=l &FP)

C
FIN=FST

C
DO 111 J=l,(NFP+9)/10
Do 112 I=l,lO
FREQ(I)=FIN+(I-l)*FR

112 CONTINUE
WRITE(10,9700)  (FREQ(I),I=l,lO)
FIN=FREQ( 1 O)+FR

1 1 1  mNTINUE
C
C**** CALCULATE AU-IO AND CROSS SPECI’RA
C
C CALCULATE NOISE-FREE AUTO AND CROSS SPECTRA
C

GPP=l.O
C

Do 125 I=l,NF2
GFF(I)=FSM(I)*GPP
GXX(I)=(REAL(CFRF(I))**2+AIMAG(CFRF(I))**2)*GFF(I)
GXF(I)=GXX(I)/CFRF(I)

125 CONTINUE
C
C ADD NOISE To SPECTRA
C

Do 130 I=l,NF2
GFF(I)=GFF(I)+GMM
GXX(I)=GXX(I)ffiNN

1 3 0  CmmNuE
C
C**** LEAKAGE EFFECT
C

Do 140 I=l,NF2
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140
c

C

150
C

160
C

CI

170
C

C

CFRF(I)=CMPLX(GFF(I),O.)
CONTINUE

CALLLEAK(CFRFJ;R)

Do 150 I=l,NFP
GFF(I*2-l)=REAL(CFRF(I*2-1))
CONTINUE

DO 160 I=l,NF2
CFRF(I)=CMPLX(GXX(I),O.)
CONTINUE

CALL LEAK(CFRF,FR)

DO 170 I=l,NFP
GXX(I*2- l)=REAL(CFRF(I*2-1))
CONTINUE

CALL LEAK(GXF,FR)

C**** CALCULATE FREQENCY RESPONSE FUNCTION H2
C

DO 180 I=l,NFP
CFRF(I*2-l)=GXX(I*2-l)/GXF(I*2-1)

180 CONTINUE
C
C**** CALCULATE COHERENCE FUNCI’ION
C

DO 190 I=l,NFP
COH(I)=CABS(GXF(I*2-1))**2/(GFF(I*2-1)*GXX(I*2-1))
IF(COH(I).GT. 1 .O) COH(I)=l .O

I 190 CONTINuE
C
C**** CALCULATE RANDOM ERROR OF H2
C

DO 200 I=l,NFP
ERH=SQRT(( l.-COH(I))/(COH(I)*2. *NAV))
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IR1=987*I*IRN+l
IR2=789*I*IRN+l
RAND1=2.0*(RAN3(IRl)-0.5)
RAND2=2.0*(RAN3(IR2)-0.5)
REH =( 1 .otERH*RAN-D  l)*REAL(CFRF(I*2- 1))
AIMH=(  l.O+ERH*RAND2)*AIMAG(CFRF(I*2- 1))
CFRF(I*2-  l)=CyPLx@EH&MH)

2 0 0  CONTINUE
C
c**** CALCULATE RANDOM ERROR OF COHERENCE
C

C

210
C

C

220
C

C

C

C

IF(NAV.EQ.  1) THEN

Do 210 I=l,NFP
COH(I)=l.O
CmTINUE

ELSE

Do 220 I=l,NFP
ERG=(SQRT(2.)*(1.-COH(I)))/ISQRT(COH(I)*NAV)
IRR=897*I*IRN+l
RAND3=2.0*(RAN3(IRR)-0.5)
CoH(I)=( 1 .O+ERG*RAND3)*COH(I)
CoNTINUE

ENDIF

FLNM=TITLE//RSP//EX/r.FRF

OPEN (UNIT=lO,FILE=FLNM,STATUS=‘UNKNOWN’)

WRITE( 10,996O) HEAD
WRITE(lO,*) IFIYPE
WRITE( 10,940O) NFP,FST,FR
WRITE(lO,*) ICOH
WRITE( lo,*) IEN,IED,IRN,IRD,IDUM
WRITE(lo,*)  ’ 00000

t. .,x I.
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C

C

310

300
C

C

9100
9200
9300
9400
9500
9600
9700
9800

9950
9960
C

C

WRITE( lo,*) IEX,IRS
WRxTE(  10,950O) (CFRF(I*2- l),I=l ,NFP)
WRITE( 10,960O) (COH(I),I=l  ,NFP)

FIN=FST

DO 300 J=l,(NFP+9)/10
DO 310 I=l,lO
FREQ(I)=FIN+(I- l)*FR
CONTINUE
WRlTE(10,9700) (FREQo~=l,lO)
FIN=FREQ(  1 O)+FR
CONTINuE

CLOSE( 10)

FORMAT( lHO,I 1)
FORMAT(l2)
FORMAT(2X,I3,Fl5.2)
FORMAT(F7.1,7X,2G 10.3)
FORMAT(7X,I5,2F10.3)
FORMAT(8E10.3)
FORMAT(lX,lOF7.3)
FORMAT(lX,lOF7.1)
FORMAT(2E15.7)
FORMAT( 1015)
FORMAT( lX,A2)
FORMAT(A70)

STOP
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c*************************************************~~****************c

c***** *****c

c***** SUBROUTINES *****c
c***** *****c
c*******************************************************************c

C
c*******************************************************************c
c***** SUBROUTINE EXMK *****c
c*******************************************************************c

SUBROUTINE EXMK
PARAMETER(N=42)
DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB l/FMF(N,N),FKF(N,N)
COMMON /CB3/DM(N,N),DK(N,N)

C
C**** MASS MODIFICATIONS
C

CALL ELMKFl@EM,DEK,l)
C

DO 10 I=l,N
DO 10 J=l,N
DM(I,J)=DM(I,J)+l .O*FMF(I,J)

10 CONTINUE
C

CALL ELMKFl(DEM,DEK,2)
C

DO 20 I=l,N
DO 20 J=l,N
DM(I,J)=DM(I,J)+l .O*FMF(I,J)

20 CONTINuE
C
C**** STIFFNESS MODIFICATIONS
C

CALLELMKFl@EM,DEK,ll)
C

DO 110 I=l,N
DO 110 J=l,N

C DMK(I,J)=DK(I,J)+l .O*FKF(I,J)
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110
C

C

C

120
C

C

4 C

DK(I,J)=DK(I,J)+l .O*FKF(IJ)

CONTINUE

CALLELMKFl@EM,DEK,12)

DO 120 I=l,N
DO 120 J=l,N
DMK(I,J)=DMK(I,J)+l .O*FKF(I,J)
DK(I,J)=DK(I,J)+l .O*FKF(I,J)

CONTINUE

RETURN

c**********************************************************~********c

c***** SUBROUTINE INTACI’ *****c

C***************************************************~****************C

SUBROUTINE INTACI’(EXMS)
PARAMETER(NF2=801)
COMPLEXCFRF
COMMON /CBXFRF(NF2),FSM(NF2)

C
C**** SHAKER/STRUCI’URE INTERACl-ION
C
C FORCE SPECTRUM  MODIFICATION FACI-OR
C

C  Gff(I)*pp(I)/((l+EXMS*H(I))*(l+EXMS*H*(I)))
C

DO 10 I=l,NF2
HMS=REAL(CFRF(I))**2+AIMAG(CFRF(I))**2
FSM(I)=l./(l.+EXMS**2*HMS+2.*EXMS*REALQRF(I)))

10 mNTINuE
C

RETURN

C
C
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c********************************************************#**********c
c***** SUBROUTINE MLOADF *****c
C****************************************~***************************C

SUBROUTINE MLxIADF(TRS,A.MS)
PARfamzR(N42)

COMMON /CB3/DM(N,N)PK(N,N)
C
C**** MASS LOADING EFFEClT OF FORCE TRANSDUCER
C

DM(IRS,lRS) =  DM(IRS,IRS)+AMS

C
RETURN

C
I c*******************************************************************c

c***** SUBROUTlNE WADA *****c

c*******************************************************************c

SUBROUTINE MLOADA(IRS,AMS)
PARAMETER(N42)
COMMON /CB2/DMM(N,N)
COMMON /CB3/DM(N,N),DK(-N,N)
DO 10 I=l,N
DO 10 J=l,N
DMM(I,J)=DM(I,J)

1 0  C O N T I N U E
C
C**** MASS LOADING EFFE(JTS OF ACCELEROMETER
C

DMM(IRS,IRS) = DM(IRS ,IRS)+AMS

C
RETURN

C

*. ,
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c****************************************************************~**c

c***** SUBROUTINE FRFCAL *****c
C*********************************************~*********************C

SUBROUTINE FRFCAL(-FST,FED,IEX,IRS)
PARAMETER(N=42,NF2=801)
DOUBLE PRECISION EVAL,EVEC
COMPLExCFRFpNT
CoMMON/CIWEVALoWEC(N,N)
COMMON /CBS/CFRF(NF2),FSM(NF2)

C
C**** FRF(INERTANCE) CALCULATION
C

FRSL=(FED-FST)/(NF2-  1)
C

DO 10 IFQ=l,NF2
FREQ=FST+(IFQ-  l)*FRSL
SOMGA=(2.*3.1415927*FREQ)**2
CFRF(IFQ)=(O.,O.)

C
DO 20 IMD=l,N

C
C DEFINE LOSS FAtXORS (DAMPING IS PROPORTIONAL)
C

ETA=lOO.JEVAL@MD)+O.O05
C

DRE=SOMGA-EVAL(IMD)
DIM=EI’A*EVAL(IMD)
DNT=CMPLX@RE,DIM)
CFRF(IFQ)-XFRF(IFQ)+EVEC(IRS,IMD)*EVEC(IEX,IMD)*SOMGA/DNT

C
20 CONTINUE
C
10 CONTINUE
C

IF(CABS(CFRF( l)).EQ.O.) THEN
C

RECl= (2.*REAL(CFRF(2))-  REAL(CFRF(3))) *REAL(CFRF(2))
AICl=(2.*AIMAG(CFRF(2))-AIMAG(CFRF(3)))*AIMAG(CFRF(2))
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CFRF(l)=cMPLx(REcl~Icl)
C

ENDIF
C

RETURN

C
c*******************************************************************c

C**** FUNCTION RAN3 ****c
c*******************************************************************c

FUNCI’ION  RAN3(IDUM)
IMPLICIT REAL*4(M)
PARAMETER (MBIG=WKWO.,MSEED=1618033.,MZ=O.,FAC=2.5E-7)
DIMENSION MA(55)

C
DATA IFF/o/

C
IF(IDUM.LT.O.OR.IFF.EQ.0)  THEN

C
IFF= 1
MJ=MSEED-IABS(IDUM)
MJ=MOD(MJ,MBIG)
MA(55)=MJ
MK=l

C
DO 11 1=1,54
II=MOD(21*1,55)
MA@)=MK
MK=MJ-MK
IF(MK.LT.MZ) MK=MK+MBIG
MJ=MA@I)

11 CONTINUE
! C

DO 13 K=1,4
DO 12 1=1,55
MA(I)=MA(I)-MA(  l+MOD(I+30,55))
IF(MA(I).LT.MZ)MA(I)=MAO+MBIG

12 CcmTrNUE

L ,._, ., , _, , .- ir, . ,_, . _., .,.  .:  ”
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1 3  C O N T I N U E
C

INExT=
INExTP=3 1
IDUM=l

C
ENDIF

C
rNExT=INJzT+l
IF(INEXT.EQ.56) IN-EXT=l
mJExTP=INExTP+l
IF(INEXTP.EQ.56) JNEXTP=l
MJ=MA(INExT)-MA(INEm-P)
IF(MJ.LT.MZ)  MJ=MJ+MEHG
MA(INExT)=MJ .

RAN3=MJ*FAC
C

RETURN

C
C
c*******************************************************************c
c***** SUBROUTTNE.EMASS *****c
c*********************************************************************c

SUJ3ROUTINE EMASS@EM,ICLASS)
DIMENSION DEM(4.4)

C
DENS=7800.

C
IF(ICIASS .EQ. 1) THEN
EIiO.075
AREA=S.OE-4
GOT010

C
ELSEIF(ICLASS  .EQ. 2) THEN
EL=SQRT( 1.93)/6.
AREA=l.2SE-4

GOT0 10
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C
ELSEIF(ICLASS .EQ. 3) THEN
ELF0.175
AREA=lSE-4
GOT010

C
ENDIF

C
1 0  CONTINUE
C

FAC=DENS*AREW*W420.
C
C**** UPPER TRIANGULAR ELEMENTS OF ELEMENT MASS MATRIX
C

DEM(l,l)=156.
DEM( 1,2)=22.*EL
DEM( 1,3)=54.
DEM(1,4)=-13.*EL
DEM(2,2)=4.*EL**2
DEM(2,3)=13.*EL
DEM(2,4)=-3.*EL**2
DEM(3,3)=156.
DEM(3,4)=-22.*EL
DEM(4,4)=4.*EL**2

C
DO 15 1=1,4
DO 15 J=I,4
DEM(I,J)=FAC*DEM(I,J)

15 CONTINUE
C
c**** mom MASS MAW **************c

C
DO 20 1=2,4
DO 20 J=l,I-1
DEM(I,J)=DEM(J,I)

20 CONTINUE
C

RETURN

.
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c***** SUBROUTINE ESTIFF *****c
c*******************************************************************c

C

I

C

i
/

C

C

C

10
C

C

SUBROUTINE ESTIFF@EK,ICLASS)
DIMENSION DEK(4,4)
E=209.E9

lF(ICLASS  EQ. 1) THEN
EL=O.O75
AMkOA1667E-8
GOT0 10

ELSEIF(ICLASS .EQ. 2) THEN
EL=SQRT( 1.93)/6.
AMI=l.O417E-11
GOT010

ELSEIF(ICLASS .EQ. 3) THEN
EL=O.  175
AMI=1.25E-11
GOT010

ENDIF

CONTINUE

FAC2=E*AMI/EL**3

c****  SJp-FNFSS mm  ********c

C
D&(l,l)=FAC2*12.
DEK( 1,2)=FAC2*6.*EL
DEK( 1,3)=-DEK(  1,l)
DEK( 1,4)=DEK( 1,2)
DEK(2,2)=FAC2*4.*EL**2
DEK(2,3)=-DEK( 1,2)



Appendix q  GENFRF User’s Guide 230

C
c*************************************************~******************~
c***** SUBROUTINE ESTIFF *****e
c*******************************************************************~

C

C

C

C

C
10
C

C

SUBROUTINE ESTIFF@EK,ICLASS)
DIMENSION DEK(4,4)
E=209.E9

lF(ICLASS .EQ. 1) THEN
EL=O.075
AMI=O.41667E-8
GOT010

ELSEIF(ICLASS .EQ. 2) THEN
EL=SQRT( 1.93)/6.
AMI=l.O417E-11
GOT010

ELSEIF(ICLASS  .EQ. 3) THEN
EM.175
AM_I=1.25E-11
GOT010

ENDIF

CONTINUE

FAC2=E*AMI/EL**3

c****  smss mm  ********c

C
DEK(l,l)=FAC2*12.
DEK( 1,2)=FAC2*6.*EL
DEK( 1,3)=-DEK(  1,l)
DEK( 1,4)=DEK( 1,2)
DEK(2,2)=FAC2*4.*EL**2
DEK(2,3)=-DEK(  1,2)
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DEK(2,4)=DEK(2,2)/2.
DEK(3,3)=DEK(  1 ,l)
DEK(3,4)=DEK(2,3)
DEK(4,4)=DEK(2,2)

c

DO 20 1=2,4
DO 20 J=l,I-1
DEK(I,J)=DEK(J,I)

20  CONTINUE
RETURN

C
c*******************************************************************c
c***** SUBROUTINE ELMKFl *****c
r***************************************************~***************C
L

C

10
C

C

C

C

C

C

SUBROUTINE ELMKFl@EM,DEK,K)
PARAME’IER(N=42)
DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB l/FMF(N,N),FKF(N,N)

DO 10 I=l,N
DO 10 J=l,N
FMF(I,J)=O.
FKF(I,J)=O.
CONTINUE

IF(K.GE.l .AND. K.LE.21) THEN

CALLEMASS(DEM,l)
CALL ESTIFF(DEK,  1)

ELSE

WRIT&*,*) ‘*** ASSEMBLING ERROR !! ***’
STOP

ENDlF

_.’ ..,
I .._. _I ..‘F-r .._ ,,.. _. < ,... I. . . ~
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C

20
C

C

C

C

C

IF(K.GE.1 .AND. K.LE.21) THEN

DO 20 1=1,4
DO 20 J=1,4

FMF((K-1)*2+1&1)*2+J)=DEM(I,J)
FKF((K- 1)*2+I,(K- 1)*2+J-)=DEK(I,J)

cxmTmuE

ELSE

WRITE(*,*)  ‘*** ASSEMBLING ERROR !! ***’

STOP

c*******************************************************************c

c***** SUBROUTINE GLOBAL *****c

r*******************************************************************c
L

SUBROUTINE GLOBAL(NI,NJ,DEM,DEK)
PARAMETER(N=42)
DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB l/FMF(N,N),FKF(N,N)

C

20

30
10
C
C

DO 10 I=12
DO20 J=1,2
FMF((NI- 1)*2+I,(NI- 1)*2+J)=DEM(I,J)
FKF((NI-1)*2+I,(NI-1)*2+J)=DEK(I,J)
CONTINUE
DO 30 J=3,4
FMF((NI-1)*2+I,(NJ_2)*2+J)=DEM(I,J)
FIF((NI-1)*2+I,(NJ_2)*2+J)=DEK(I,J)
CONTINUE
CcwTINUE

L
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DO 40 1=3,4
DO 50 J=1,2
FMF((NJ-2)*2+I,(NI-1)*2+J)=DEM(I,J)
FKF((NJ-2)*2+I,(NI-1)*2+J)=DEK(I,J)

50 CONTINUE
DO 60 J=3,4
FMF((NJ-2)*2+I,(NJ_2)*2+J)=DEM(I,J)
FKF((NJ-2)*2+I,(NJ_2)*2+J)=DEK(I,J)

%O CONTINUE
40 CONlTNm
.C

RETURN

C
C******************************************************~************C
c***** SUBROUTINE LEAK *****c

C*********************************************~*********************C

C

C

C

C

C

1
2
3
4

C

C

SUBROUTINE LEAK(GXYfl)
PARAMETER(NF2=801)
COMPLEX GXY(NF2),GD(NF2)

Do 10 I=l,NF2,2

IF(I.LE.5 .OR. I.GE.NFZ5) THEN

GD(I)=GXY(I)*3./FR

ELSE

GD(I)=2.*GHAN(FR,2S*FR)*(GXY(I_S)+GXY(I+S))
+2.*GHAN(FR,l.5*FR)*(GXY(I-3)+GXY(I+3))
+GHAN(FR,FR)*(GXY&2)ffiXY(I+2))
+2.*GHAN(FR,O.5*FR)*(GXY(I-l)+GXY(I+l))
+GHAN(FR,O.)*GXY(I)

ENDIF

GD(I)=GD(I)*FW3.



C
C*****************************************~~************************C

c***** FUNClJON GHAN *****c
r*******************************************~*******************~****C
L

C

C

C

C

C

C

FUNCTION GHAN(FR,FX)

IF(FX.EQ.0) T H E N  .

GHAN=2./(3.*FR)

ELSEIF(FX.EQ.FR)  THEN

GHAN=1./(6.*FR)

ELSE

CST=FR/3.1415927**2
T1=2./(3.*FX**2)
T2=1./6.*(1./(FX+FR)**2+1./(F=W**2)
T3=1./(FR**2-FX**2)
X=(3.1415927*FX)/FR
GHAN=CST*(Tl+T2+T3)*SIN(X)**2

C

C

C

ENDIF

RETURN
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1 0  C O N T I N U E
C

Do 20 I=l,NF2
GXW)=GW)

2 0  cmam-uE
C

RETURN

*
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E.7 DATA FILE

FREE-FREE BEAM DATA (PROP. STRUCIVRAL DAMPING)
FRF TYPE (INERTANCE=3)
3

MASSES (ACCELEROMETER, FORCE TRANSDUCER & SHAKER)
0.02 0.01 0.02

NOISE SPECTRA LEVELS (INPUT & OUTPUT) AND NO. OF AVERAGE
l.OE-2 l.OE-3 100

STARTING FREQ. AND END FREQ.
0. 800.

COHERENCE FLAG
1

EXCITATION COORDINATE

RESPONSE COORDINATES
1 5 9 13 17 21 25 29

41
33 37
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APPENDIX F

BENDENT METHOD

Even though the Inverse method for SDOF identification of a FRF has some advantages

over the Circle-fit method as discussed in Chapter 5, the Inverse method. has some

drawbacks such that:

1) it is difficult to apply the Line-fit method to complex modes, and

2) the extraction of the residual effects of other modes is a pre-requsite for an accurate

analysis.

A new SDOF method, which is a modified version of the Inverse Method , has been

developed by Dobson [51]. This method retains many of the advantages of the Inverse

method and can calculate modal parameters of complex modes.

The receptance FRF near resonance can be express as

a(o) = Ar
co,* - co* + i qr Or*

+ Rr (Fl)

where A, and R, are complex. The effect of Rr can be eliminated by taking the difference

between two measured FRF data.

; .- , ~. -.^ , .-“G ._‘i_, _.. j _ ..,, .: ,.
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I&t
02-R2

a’(@ = a(o) - a(Q) and A(o) -
a’(W

where R is a reference frequency. Then,

A(m) = (or2 - 612+ i lJr Or’) (CO,‘- f2’ + i Tjr 0,‘)
A,

= Re (A) + Im (A)

(F2)

(F3)

where Re (A) = mR 61? + cR and Im (A) = mI 02 + CI

and  mR=
- a, (CO,’ - Q2) - br (rlr 6%‘)

I Ar 1’

np =
b, (61, - n2) - a, (qr 6%‘)

I Ar 1’

A, = a,+ib,

The slopes of the real and imaginary components of A are linear functions of R2 such

that:

mR =  n&‘+dR and

where the slopes and intercepts are:

nR =
a,

I A, I2

dR = -aror‘- brqr or2
I A, I2

nI = - br
I A, I2

(F4)

Wa)

t-b)

WC)



Appendix m Bendent  Method 238

dI = - a,rjr or2 + b,mr2
I A, I2

This set of equations can be used to extract the modal properties. From equations @a)

and (F5c)

b,=-2%

where p = 2

From equations (F5b) and (F5d)

d1where q = -
dR

From equations (F5a) and (F5b)

(-J&2 = - dR

nR(l-Pqr)
and

a, = 0r2(Ptlrv1)
dR(l+P2)

therefore b, can be calculated from equation (F6).

For real modes (b, = 0), p = nI = 0, therefore,

- dR(42 = -
"R

033

039

0-3
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The  analysis is in two parts.

1) For the selected FRF data range one point is selected as the reference point R. All

possible values of A(o) are calculated using the reminder of the selected data. The best

straight line is then calculated for each of the real and imaginary parts of equation (F3)

to determine the values of mR and rq for that value of R. The process is repeated using

each of the data points in turn as a reference point, and a series of lots made, showing

the values for Re (A) and Im (A) against ~2.

2) The slopes of the best fit straight lines for each in part 1 are plotted against the

reference frequency R. The resulting two plots may either be analysed using a straight

line fit over the whole range or over the selected range.
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