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ABSTRACT

Despite the highly sophisticated development of finite element methods, a finite element
model for structural dynamic analysis can be inaccurate or even incorrect due to the
difficulties of correct modelling, uncertainties on the finite element input data and
geometrical oversimplification, while the modal data extracted from measurement are
supposed to be correct, even though incomplete. Therefore, model updating schemes are

developed which aim to improve or to correct the initia finite element model using modal

test results.

In this thesis, the advantages and disadvantages (or limitations) of various model
updating methods are discussed. One of the advantages of model updating using
eigensensitivity analysis is that mode expansion is not required. However, this method
requires large computational effort because of the repeated solution of the eigendynamic
problem and repeated calculation of the sensitivity matrix. A sensitivity method is
developed using arbitrarily chosen macro elementsin thisthesis at the error location stage
in order to reduce the computational time and to reduce the number of experimental modes
required By this approach, the model updating problem which is generaly under-
determined can be transformed into an over-determined one and the updated analytical

model can be a physically meaningful model.

The assumption that the test results represent the true dynamic behaviour of the structure,
however, may not be correct because of various measurement errors. The errors involved
in moda parameter estimation are investigated and their effects on estimated frequency
response functions(FRFs) and on the modal parameters extracted from the FRFs are also
investigated. The resultant ‘experimental’ modal data which contain possible experimental

errors are used to update & corresponding analytical model to check the validity of the




updating method developed. Also, the sensitivity of the updating method to noise on the
experimental data is investigated.




iii

ACKNOWLEDGMENTS

The author is most grateful to his supervisor, Prof. D.J. Ewins, for his sustained

stimulus and guidance throughout the duration of this research and for his sustained

advice in the preparation of the manuscript.

Many members of the Dynamic Section have helped with practical advice and discussion
of experimental and computing problems. Special thanks are due in this regard to Mr.

D.A. Robb and Dr. M. Imregun.

For their friendly cooperation and useful discussions throughout the duration of this
work, the author also wishes to express his gratitude to many former and present

colleagues in the Dynamic Section, especially to R. Lin, A. Nobari and Y. Ren.

Finally, the author is indebted to Kia Motors Corporation for providing the financial

support throughout the whole period of thiswork.




1v

NOMENCLATURE

As this thesis embraces several different branches of dynamics, there is a certain amount
of overlap between the symbols normally employed in the different branches. Therefore,

most symbols are defined where they occur in the text, and only the most important of

these are listed below.

A cross-sectional area
aj mass correction coefficient of the ith element
a, measured acceleration

A; modal constant of the rth mode

a, true acceleration

bj stiffness correction coefficient of the ith element

b; complex stiffness correction coefficient of the ith element
c viscous damping coefficient

damping correction coefficient of the ith element

d structural damping
diameter of a push rod (Appendix D)
[D]; structural damping matrix of the ith element

Dyl updated structural damping matrix

e superscript for element matrix
E Young's modulus
€j sengitivity coefficient

f(t) actual force applied to the structure
natural frequency of the first axial mode

f, analytical natural frequency




[Kbv);
[K;
[K];

[Ky]
[K*]
[AK]

ma

natural frequency of the first bending mode
upper limit of measured frequency range
experimental natural frequency
auto-spectrum Of measured acceleration a(t)
cross-spectrum between measured force f(t) and measured acceleration a(t)
auto-spectrum of measured force f(t)
frequency response function

FRF estimates

imaginary unit (=v -1 )

area moment of inertia

identity matrix

stiffness

axial stiffness of apush rod

bending stiffness of a push rod

stiffness matrix

analytical stiffness matrix

axial stiffness matrix of the ith element
bending stiffness matrix of theith element
stiffness matrix of theith element

stiffness matrix of the ith macro element
updated anaytical stiffness matrix

complex stiffness matrix

stiffness error matrix

number of selected elements

number of macro elements

length (Appendix B and Appendix D)

effective mass of that part of the structure to which the accelerometer is mounted

number of measured modes

accelerometer mass



(O]

{p}
{Ap}
{Ap')
[S]
[S°]
[S']

u(t)
u;(t)
[U]
vi(t)

Vi

shaker mass
minimum number of measured modes
mass matrix

analytical mass matrix

mass matrix of the ith element

mass matrix of the ith macro element
updated analytical mass matrix

mass error matrix

number of measured coordinates

number of elementsin theith macro element
number of DoFs of a analytical model
number of averages

number of modes used for calculation of eigenvector sensitivity
null matrix

output force from the shaker

correction coefficient vector
difference vector of correction coefficients (whole elements)

difference vector of correction coefficients (selected elements)
balanced sensitivity matrix (whole elements)
unbalanced sensitivity matrix (whole elements)
balanced sensitivity matrix (selected elements)
time

record length

subscript for updated data

rectangular window

displacements in x direction

left singular vector matrix

displacements in y direction

right singular vector matrix




w(t)
W(w)

(A]
[(Ay]
Vi(x)

Vii

Hanning window

window spectrum

horizontalaxis

subscript for experimental data

vertical axis

receptance

coherence function

difference vector between experimental and analytical modal parameters
phase angle

mass normalised el genvector of the rth mode

mass normalised eigenvector of the rth experimental mode

difference between experimental and analytical eigenvectors of the rth mode
mass normalised mode shape matrix

arbitrary value between zero and the first non-zero eigenvalue

Lagrange multiplier

eigenvaluefor therth mode

eigenvaluefor therth mode

difference between experimental and analytical eigenvalues of the rth mode
elgenvalue matrix

experimental eigenvalue matrix

shape functions

random error of [ ]

singular value of sensitivity matrix

singular value matrix

function to be minimised

normalised random error of [ ]

density

modal damping of therth mode

measured resonance frequency




Wy
®?2
o,

maximum frequency
eigenvaue of the rth mode

true resonance frequency

[wy2] eigenvalueof the rth mode

Operators and Symbols

Im()
Oo()
Re()
[
[
[ 1!
(1

imaginary part of acomplex value

order of avalue

real part of acomplex value

Hermitian (complex conjugate + transpose) of a complex matrix
transposeofamatrix

inverse of a matrix

Moore-Penrose generalised inverse of arectangular matrix
modulus

Euclidian norm of a matrix

complex conjugate

convolution (Chapter 5)

estimated value

derivative with respect to time

derivative with respect to displacement

Abbreviations

DFT
DoF

discrete Fourier transform

degree-of-freedom

EMM errormatrixmethod

FE

finito alamant

viii



FFT  fast Fourier transform

FRF  freguency response function
IEM  inverse eigensensitivity method
M A C modal assurance criterion
SDOF single degree-of-freedom

SVD  singular value decomposition
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CHAPTER 1

INTRODUCTION

1.1 STRUCTURAL DYNAMICS ANALYSIS

Due to increasing demands for better performance and the use of lighter structures in
modem machinery, vibration engineers must have better testing and analysis tools than in
the past. In the automotive industry, for example, weight reduction of a vehicle has been
pursued for better fuel economy and vehicle speeds have become higher as engine
performance has been improved, both of which result in various vibration and noise
problems at high speed conditions. Yet, at the same time, requirements for reduction of

vibration and noise are also increasing.

To solve vibration and noise problems in a structure, the dynamic behaviour of the
structure needs to be understood and, subsequently, an accurate dynamic model needs to
be developed. Analyses (or predictions) of the dynamic behaviour of the structure with
such a model can reduce development cost and test effort. For example, the natural
frequencies, at which the structure can be excited into resonance motion and may cause
vibration and noise problems, calculated using the model can be used to modify the
structural design in order to reduce vibration and noise by removing the natura

frequencies outside the operating range. There are two ways of achieving a suitable
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dynamic model of a structure: by theoretical prediction and by experimental measurement,

respectively.

1.2 ANALYTICAL MODELLING - FE ANALYSIS

If the structure has a ssimple geometric shape and its physical properties are more or less
uniform throughout, then a partial differential equation of motion of the form known as
the ‘wave equation’ can be used to describe its dynamics. There are well-known solutions
to the wave equation for simple structures such as beams, shafts, shells and plates. For
complicated structures such as a vehicle body, however, these analytical approaches are

often impractical because the approximations required are too restrictive to adequately

describe their dynamics.

The requirement for a more generalised method of modelling the dynamics of large,
complicated structures with nonhomogeneous physical properties has brought about the
development of the finite element (FE) analysis. Due to advances in numerical methods

and the availability of powerful computing facilities, FE analysis has become the most

popular technique in structural dynamic analysis.

The fundamental principle of the FE method is to divide a complicated structure into many
small elements such as plates, beams, shells, etc. The mass and stiffness matrices of an
individual element, which is a simple, homogeneous element, can be obtained easily. The
global mass and stiffness matrices of the structure can be assembled using these element
matrices by considering connectivity and all the boundary conditions. Once the
mathematical model has been built (or the mass and tiffness matrices have been
constructed), the equations of motion can be solved by using various algorithms to obtain

a description of the dynamic behaviour of the structure.
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An FE mode can be used to perform severa types of analysis such as response
prediction, structural coupling, stress analysis, life time prediction, structural dynamic
modification, etc. Long before the construction of a real structure, it is possible to
investigate its dynamic behaviour using the FE model so that any deficiencies in the

design can be spotted early in the design stage where changes may cost much less than in

the later stages.

FE models, however, can be inaccurate or even incorrect due to insuffkient or inadequate
modelling detail, geometrical over-simplification and uncertainties on the finite element
input data. A survey which was carried out to assess the reliability of structural dynamic
analysis capabilities [1] showed that numerical predictions (or FE analysis) of structura
dynamic properties are not always as reliable as they are generally believed to be. This
points to a need for vibration tests on the structure in order to confirm the validity of the

FE model beforeit is used for detailed design analysis.

1.3 EXPERIMENTAL MODELLING - MODAL TESTING

Apart from the aforementioned analytical approach to develop a dynamic model for a
mechanical structure, another approach is to establish an experimental mode! for the
structure by performing vibration tests and subsequent analysis on the measured data.
This process is known as ‘Modal Testing'. During the last two decades or so, modal
testing has developed both in theory and in practice. Many techniques have been
developed in order to extract more reliable modal parameters of structures from the test
data. These techniques have been fruitful due largely to the introduction of the fast
Fourier transform (FFT) agorithm and also to the development in recent years of
powerful multi-channel FFT analysers and to fast data acquisition equipment. The

availability of computer-controlled measurement equipment and special-purpose analysis
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software has reduced the measurement time and human effort, and improved the

reliability and accuracy of measured data and the modal properties extracted from them.

The principle of modal testing is to vibrate a structure with a known excitation so that
natural frequencies, damping and mode shapes can be identified. There are two main
excitation methods. These are referred to as single-point excitation and multi-point
excitation (or norma mode method). The original multi-point excitation, which is the
more traditional of the two and has been used in the aerospace industry to test large
structures, attempts to excite the undamped (or normal) modes of a structure, one at a
time, while the single-point excitation approach excites the structure to vibrate in several
(al) of its modes simultaneously. There are many problems which make the multi-point
excitation method difficult, time consuming and expensive to implement. The single-point
excitation has gained much popularity in recent years because it is faster and easier to
perform and is much cheaper to implement than multi-point excitation and is being used
by many manufacturing industries, including the automotive industry. The single-point
excitation method excites a structure at one coordinate and measures the consequent
responses a al the coordinates of interest. A set of frequency response functions (FRFs)
are obtained by dividing the Fourier transforms of the response signals by the transform

of the input force. Modal parameters can be identified by performing further analysis (or

curve-fitting) on this set of FRFs.

Not only is modal testing necessary to validate an FE model, it can be applied to various
aspects. Modal testing can be used for troubleshooting vibration and noise problems in
existing mechanical structures, which might be caused either by error in the design or
construction of the structure or by wear, failure or malfunction in some of its

components. Modal testing can also be used to construct dynamic models for components

of a structure which are too difficult to model analyticaly.
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1.4 LINKING FE ANALYSIS AND MODAL TESTING

At the design stage, an analytical model - especially an FE model - can be used to predict
the vibration behaviour of a future structure and to modify the design of that structure if
any deficiencies in the design are found before the structure is constructed. At later stage,
when the structure has been constructed, modal testing can be performed to validate the
FE model. Once the model is shown to predict measured behaviour with an acceptable
accuracy, then it can be used for further analysis such as response prediction, structural
coupling, stress analysis, life time prediction, etc.. However, test results are seldom in
perfect agreement with the predictions of the FE model. Therefore the analyst and the
experimentalist are faced with the problem of reconciling two modal databases for the
same structure. Neither of these can be assumed to be perfect, but both have features

which can be combined to give a more accurate description of the dynamics of the

Sstructure.

Because of the different limitations and assumptions implicit in the two approaches, the
FE modd and experimental modal model have different characteristics and different
advantages and drawbacks. The FE model generally has alarge number of coordinates so
that the vibration characteristics can be described in detail and can cover a comparatively
wide frequency range. However, due to insufficient or incorrect modelling, geometrical
over-simplification and uncertainties on the element properties (especially the properties
of joints which have not been fully explored), the FE model may well be inaccurate or
even incorrect. In contrast, the experimental data or experimentally-derived modal
properties are generally considered to be ‘correct’ or at least close to the true
representation of the structure, because modal testing deals with the actual structure rather
than an idealisation. However, due to the limited number of coordinates and modes which

can be included (because of various restrictions in measurement), the information thus
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obtained is available primarily as selected modal parameters, rather than the full spatial

properties as provided by the FE model.

The principle of correlating the models derived from these two different approachesis to
make use of the advantages of both and to overcome their disadvantages. Basically, it is
believed that more confidence can be placed in the experimental modal data than in the FE
model. Therefore, model updating schemes have been developed which aim to improve

or to correct the initial FE model using modal test results.

1.5 DISCUSSION OF RELATED RESEARCH

Historically, model updating has been accomplished by a “trial-and-error” approach
which was mainly dependent on the individual’s experience and intuition. With increasing
complexity of the structures involved, model updating by this means becomes more
difficult and systematic approaches are necessary. In recent years, a significant number of
methods for updating an analytical model have been developed which use test data to
identify or to improve an analytical model of a structure. One of the earliest publications is
by Rodden [2] who used test data to identify directly structura influence coefficients.
Berman et. a. [3] introduced a systematic approach in model updating: they improved an
analytical mass matrix by finding the smallest changes which make a set of measured
modes orthogonal and identified an ‘incomplete’ stiffness matrix by summing the
contributions of the measured modes and with the use of the improved mass matrix. The
stiffness matrix, however, does not resemble a true stiffness matrix. Baruch et. al. [4,5]
formulated a procedure using Lagrange multipliers for minimising changes in matrices to
satisfy specific constraints to update an analytical stiffness matrix under the assumption
that the analytical mass matrix is correct. Later, having concluded that the assumption of a
correct mass matrix is questionable, especially for a dynamic model which is often an

approximate reduced version of a much larger model [6], Berman et. a. developed a
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similar method for updating both the analytical mass and stiffness matrices {7] and
applied the method to a practical structure [8]. Variations of these methods have been
developed and investigated by Wei [9] and Caesar [10]. The aforementioned methods do
not require iteration or eigenanalysis and the updated model possesses the ‘correct’
eigenvalues and eigenvectors. However, the moda parameters of the updated model
outside the frequency range of the experimental data remain questionable and may become
even worse than those of the original analytical model because the updated model does
not seek to preserve the connectivity of the structure [ 11,121. Another problem of those
methods is that mode expansion is essential to overcome the inevitable incompatibility
between the analytical model and the measured modes, and this may be an erroneous
procedure, thus jeopardising model updating. Ibrahim [13] developed a method which
used submatrices of system matrices as variables under the eigendynamic constraint.
Thus, the physical connectivity of the analytical model can be preserved during the
updating procedure. However, the updated model is not unique in the sense that it can be
scaled by an arbitrary factor. Later, To [12] modified Ibrahim’s method by using the
mass normalisation properties as another constraint to resolve the problem of uniqueness.
These two methods, however, still require mode expansion to overcome the inevitable

incompatibility between the analytical model and the measured modes.

Apart from these direct updating methods, Collins et. al. [ 14] introduced the concept of
an inverse eigensensitivity method (IEM) in an iterative procedure to update an analytical
model. Their method requires large computational effort because of the need for repeated
solution of the eigendynamic problem and repeated calculation of the sensitivity matrix (or
Jacobian matrix), especially for complicated structures with a large number of degrees of
freedom. Later, Chen et. al. [15] introduced matrix perturbation theory to calculate the
sensitivity matrix and to compute the new eigenvalues and eigenvectors. These iterative
methods do not require mode expansion and the updated model preserves the physical
connectivity. However, they do require large computational effort, and convergence is

not guaranteed if the modelling errors are not small.
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In addition to the methods summarised above, another approach to model updating has
been developed under the assumption that the major errors in the analytical model are
often isolated rather than distributed and thus that any attempt to update the whole
analytical model is conceptually insufficient and practically unrealistic. Sidhu €t. a. [ 16)
developed the error matrix method (EMM) which aimed to locating major modelling
errorsin an analytical model rather than attempting to update the whole analytical model.
Despite some advantages, this method does not succeed in locating mismodelled regions
if the number of measured modes is insufficient. And when modelling errors are not
small, this method cannot be applied because of the assumption that second- and higher-
order termsin an expansion of [K}--and [M]-! can be ignored. An aternative method was
developed by He [17] to locate the modelling errors using a few measured modes
available. Unlike the case of the EMM, there is no assumption that modelling errors are
small, and error location is possible even with avery limited number of measured modes.
Similar efforts for error location are also reported in Ref. [ 18] where the method is called
‘force balance method’. The aforementioned error location methods require complete
measured coordinates, which is not practical, or mode expansion to overcome the
incompatibility between measured modes and analytical model, which, as mentioned

before, may be an erroneous procedure thus jeopardising a successful location of the

errors.

Zhang et. a. [19] employed the IEM to localise dominant error regions in an analytical
model using real eigensolutions and then updated the model by correcting the selected
parameters in an iterative calculation. As mentioned before, the IEM does not require
mode expansion and its computational time will be reduced by locating error regions first
and updating the analytical model using only the elements which are selected in error

location procedure. However, the methods suggested by Zhang have been found to be

unreliable.
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1.6 PREVIEW OF THE THESIS

The objectives of this research are to develop areliable, sensitive and systematic method
for locating modelling errors in an analytica model using modal testing results and to
develop an updating method which can produce an improved analytical model which can
not only provide exact modal parameters measured in test but also predict correctly those
modes outside frequency range of the experimental data and at the same time can reduce

the number of experimental modes required as well as the computational time for

updating.

Various methods to correct an analytical model using modal testing results are reviewed
and their advantages and disadvantages (or limitations) are discussed in Chapter 2. All
direct methods need a mode expansion procedure to overcome the incompatibility in the
dimensions of the measured modes and the analytical model. The IEM, which is one of
iterative methods, has an advantage over direct updating methods in the sense that it does
not require a mode expansion procedure to be applied. However, convergence is not
guaranteed if the modelling errors are not small. The convergence might be improved by
locating error regions first and by correcting only the selected parameters by an iterative
calculation. In Chapter 3, aversion of the IEM using arbitrarily chosen macro e ementsis
proposed at the error location stage in order to reduce the computational time and to
reduce the number of experimental modes required. By this approach, the model updating
problem which is generally underdetermined can be transformed into an over-determined
one. The proposed method is applied to the GARTEUR structure which is used to
represent a practical structure and to constitute a realistic problem in respect of the

incompleteness of both measured modes and coordinates.

Even though many methods have been developed in recent years for updating analytical
models for the dynamic analysis of a structure, and some of them have been proven to be

quite successful, the methods are generally based on the assumption that the test data are
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perfect or noise-free. For any updating method to be useful for application to practical
structures, the sengitivity of the method to noise on the test data needs to be established.
In Chapter 4, typical measurement errors are introduced by contaminating the modal
parameters of the correct or modified structure with random noise of different levels and
the method proposed in Chapter 3 is applied to a bay structure for which “experimental”

data are noisy and incomplete.

The characteristics of real measurement errors might not result in random variations in the
modal parameters. For the updating method to be useful in practical application, various
error sources in testing should be considered in detail and more realistic errors rather than
random noise should be introduced into the “experimental” data. In Chapter 5, various
errors involved in modal parameter estimation are examined, and their effects on
estimated FRFs and on the modal parameters extracted from the FRFs are aso
investigated. The resultant “experimental” modal data which contain representative

experimental errors are used to update the corresponding analytical beam model to check

the validity of the IEM.

Measured modal data are often complex because of inherent damping in real structures
which can not be modelled by proportional damping, whereas the modal parameters of
the corresponding analytical model are real. Updating methods developed so far generally
assume that the experimental modal data are real, or postulate that the measured complex
data have successfully been converted to real data. However, the deduced real modes may
be erroneous because the experimentally-identified complex modes are : incomplete and
the deduction itself relies on the analytical model which is erroneous. In Chapter 6, a
modified version of the method suggested in Chapter 3 is developed to locate and to
update damping e ements together with mass and stiffness elements in analytical model
using measured complex modal data. The proposed method is applied to the free-free bay

structure which may constitute a realistic problem in respect of the incompleteness of both

INCASUIrcd mnroc anAd ~rAnrdinatac
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Finally, al the new developments in this thesis are reviewed in Chapter 7 together with

suggestions for further research.
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CHAPTER 2

MODEL UPDATING METHODS - A REVIEW

2.1 INTRODUCTION

One of the most important applications of modal testing is the validation of the
mathematical model for the dynamic analysis of a structure - especialy a finite element
model - by comparing experimentallydetermined modal parameters with those obtained
from the analytical model. Once the analytical model is shown to predict the measured
behaviour, then it can be used with confidence for further analysis such as response
prediction, structural coupling, stress analysis, life time prediction, etc. However. due to
the difficulties of correct modelling, geometrical oversimplification and uncertainties on
the finite element input data, the analytical model could be inaccurate or even incorrect. In
contrast, modal testing is supposed to be capable of identifyimg the true modal parameters
because it deals with rea structures. Therefore, model updating schemes are developed

which aim to improve or to correct the initial finite element model using modal test

results.

Historically, model updating has been accomplished by a “trial-and-error” approach

which was mainly dependent on the individual’ s experience and intuition. With increasing
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complexity of the structures involved, model updating becomes more difficult and

systematic approaches are necessary.

2.2 MODEL UPDATING METHODS

In recent years, a significant number of methods for updating an analytical model have
been developed, and these can be divided into direct methods and iterative methods.
Direct methods usually require low computational effort, but the updated models do not
aways constitute physically meaningful models [ 11]. They tend to transform the
physically meaningful models into-representative models. On the other hand, iierative
methods require larger computational effort because of repeated solution of the
eigendynamic problem and the pseudo-inversion of large matrices, though only some of

these will always constitute physically meaningful modelsif they converge [20].

In the following sevtions, the advantages and disadvantages (or limitations) of various

updating methods will be reviewed/summarised.

2.2.1 DIRECT METHODS

Direct updating methods seek to update a given mass matrix [M4] and/or stiffness matrix
[KA] using measured eigenvalues [Ax] and eigenvectors [®x] under the equality
congtraints such as eigendynamic and orthogonality properties. These methods can
themselves be categorised into two groups by the types of variables to be updated. The
first group is to use individual elements of the system matrices as variables. Another

group uses correction coefficients of element matrices as variables.
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2.2.1.1 Berman* Method

A method for updating an analytical stiffness matrix was developed by Baruch under the
assumption that the analytical mass matrix is correct [5]. Later, Berman et. a. developed
a smilar method for updating both the analytica mass and stiffness matrices [8].
Variations of these methods are given in Ref.[ 10]. The basic idea of the direct methods is

to minimise the weighted Euclidian norm between the original incorrect matrices and the

updated ones under the equality constraints.

In Berman’s method [8], an analytical mass matrix is updated first and then, based on this
updated mass matrix, the anaytical stiffness matrix is updated. In his method, the

objective function to be minimised for updating the mass matrix is
€=l [Mpa1'2 ([My] - [Ma]) IMaT12 11 (2.1)

under the constraints
My] = [My)T [OIT Myl [P ] =[1] (2.2)

This minimisation problem can be easily solved using the method of Lagrange

multipliers. Using Lagrange multipliers, a function to be minimised may be written

m

Ay ([T Myl [@4] - (1D (2.3)
j=1

Ms

¥ =g+
i=1

Equation (2.3) is differentiated with respect to each element of [My] and set to zero. Then

using equation (2.2) to evaluate L,j yields the updated mass matrix which minimises € and

satisfies equation (2.2):

[My] =[Ma]+ [Ma] [®y] [mgl! ( 1] - [my] ) [mg] ! [P]T [My] 2.4)
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where [ my] = [,]T [ M,] [®,]

Similarly, for updating astiffness matrix, the objective function to be minimised can be

defined as

€ =l [Myl'12 ([Kyl - [Ka)) [ Myl 2 i (2.5)

under the constraints

Kyl [P,] =Myl @[ 02 1,
[@,T Kyl [@,] = [ w2 | (2.6)
Kyl = [KylT

Then the updated stiffness matrixbecomes:

Kyl = [Ka]+([A]+[A]T) 2.7)

where[A] = %[MU][%]([(D,]T[KA] [@,] + [@,2]) [@,]T[My] - [Kal [9,] [D:]T[My]

This method does not require iteration or eigenanalysis and the updated model possesses
the ‘correct’ eigenvectors and eigenvalues. However, the updated mass matrix using
Berman’s method cannot preserve the connectivity of the structure as shown in Refs| 11,
12] because a connectivity constraint is not imposed. The updated stiffness matrix using
the updated mass matrix, which is not correct, also cannot be correct. As a result, the
updated model is not physically meaningful but is a representative model. Thus, the
modal parameters of the updated model outside the range of the experimental dataremain
guestionable and may become even worse than those of the original model. In general, an
updated model should be able to be used for further analyses. A designer is not only
interested in the correct representation of the dynamic characteristics of a structure but

often he wants to use this model for stress anaysis, life time prediction, etc. Another
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problem of this method is that mode expansion is essential to overcome the inevitable
incompatibility between the analytical model and the measured modes. Various expansion
methods were investigated in Refs [21-23] but, so far, there is no expansion method

which is satisfactory for all cases.

2.2.1.2 Eigendynamic Constraint Method

As mentioned before, the physical connectivity of the analytical models should be
preserved during the updating process, and so the updated model should have the same
connectivity asthat of the original model. By using correction coefficients of submatrices
of system matrices as variables instead of individual elements of system matrices, the
connectivity constraint can be easily imposed. Ibrahim [13] developed a method which
used submatrices of a system matrices as variables under the eigendynamic constraint.
However, the updated model is not unique in the sense that it can be scaled by an
arbitrary factor. The eigendynamic constraint method described below is similar to
Ibrahim’s method. However, the problem of uniqueness of the updated model was

resolved by using the mass normalisation properties of measured modes as another

constraint.

The method is formulated based on the eigendynamic equation and the mass

normalisation relationship. For the th mode

- e My {8} + (Kl {9y}, = (0} (2.8)
{¢X}I[MU] {¢x}r = 1 (29)

The updated mass and stiffness matrices can be written as
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L L,
Myl =D 5M];  [Kyl= X b[K] (2.10)
. Z

=

where a; and b; are correction factors to be determined and {M]; and [K}; are submatrices
of system matrices such as

1) sub element matrices

2) finite element matrices

3) macro element matrices.

Substituting equation (2.10) into (2.8) results in a set of N linear algebraic equations.

0N
4
[-AgIMI; (0] -+ A [MIL, (0,), (K11 {8y} - [KILo(0x).] 2‘;‘ =<.p
\ 0/
(2.11)
Similarly, equation (2.9) becomes
4
[{¢x}'¥[M]1{¢x}r {¢X}I[M]Ll{¢x}r 0. O] ?){: =1 (212)

Combining equation (2.11) and (2.12) yields:
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("0
4,
[-MMLM,}, e ML, (0,), [K]1{¢x}x"'[K]u{¢x}r:| N |
=4 }
b,
(6)TIM]; (05, (0)TIMIL (8}, O - O |
0
le
ie.,
[Ad vy Pl = (G e (2.13)
When there are m modes available, we can havem(N+1) linear algebraic equations:
[ [A1]7] {C1)
[A2] {C2)
"l p) = : (2.14)
—[Am]- (Cm}

If m(N+1) is greater than number of unknowns, L1+L», the problem becomes
overdetermined and the SVD technique can be used to solve for the unknown vector (P)

whose elements are the correction coefficients of system matrices.

This method does not require iteration or eigenanaysis and the updated model preserves
the connectivity of the structure. However, like other direct methods, mode expansion is
essential because of the large difference in the dimension between the measured modes
and the analytical model. The number of coordinates measured is usually one or two
orders of magnitude smaller than that in an analytical model. As can be seenin Refs[21-

23], there is no effective expansion method so far.
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2.2.2 COMPATIBILITY BETWEEN MEASURED MODES AND

ANALYTICAL MODEL

One of the main problems of model updating is that experimental modal parameters are

not directly compatible with those from the analytical model because:

1) the number of modes available from measurement (m) is usually very limited
(m<<N) and
2) the number of measured coordinates (n) is less than the number of coordinates

(or the number of degrees of freedom) of the analytical model (n<N).

It is practically impossible to measure all the modes because of the limitation due to the
characteristics of the experimental instruments such as accelerometers, force transducers,
signa analyser, exciter, etc. The second restriction results from the fact that vibration
measurements are too expensive to measure many coordinates and, some coordinates may
be either technically difficult to measure, such as rotations, or physically inaccessible,

such as the coordinates inside the structure.

The first restriction - incompl eteness in the number of measured modes - can be resolved
by using the corresponding modes from the analytical model and omitting the unmeasured
modes which are usually the higher modes in practical situations. Therefore, there
remains the problem of the large difference in the number of coordinates betwzen the

analytical model and measured modes. There are two possible solutions to this restriction:

1) expand the measured modes to include the unmeasured coordinates using an

expansion method, or
2) use corresponding coordinatesfrom the analytical model and omitting the

unmeasured coordinatesin model updating.
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Until recently, model reduction techniques such as that suggested by Guyan [24] or the
dynamic reduction technique [25] have been used to overcome the incompatibility.
However, because the eigenproperties are not exactly preserved in a reduced model and
the connectivity of the reduced model does not reflect the physical properties of the
complete anaytical model, modelling errors spread into neighbouring regionsf21], which
makes model updating very difficult.

The alternative to reducing the analytical model is to expand the measured mode shapes.
If mode expansion can be achieved successfully, the updating result can indicate
mismodelled elements more precisely than the approximate error regions found when
model reduction is used. Various mode expansion methods have been developed, and
comparisons between various expansion methods can be found in Refs.[22,23]. But

until now, no expansion technique can interpolate the unmeasured coordinates

satisfactorily.

The aternative approach to coping with the large difference in the number of coordinates
between the analytical model and the measured modes is to use only the corresponding
coordinates from the analytica model, omitting the unmeasured coordinates in model
updating. As can be found in updating equations (equations (2.4), (2.7), (2.13)), this
approach can not be applied to the direct methods because these methods require
compatibility of all degrees of freedom between analysis and test. One of the most
important advantages of an inverse eigensensitivity method (IEM), which will be

explained later, is that it does not require mode expansion or model reduction because it is

possible to use corresponding coordinates only.
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2.2.3 ITERATION METHOD - INVERSE EIGENSENSITIVITY
METHOD (IEM)

When the measured coordinates are incomplete, measured modes must be expanded for
any direct method to be applied, which may be an erroneous procedure whichjeopardises
updating. The use of mode expansion can be avoided by using an IEM (or similar

method) where only the coordinates which have been measured in the test are used for

updating.

Collins et. al.[14] first introduced theIEM for model updating. Later, Chen et. a.[15]
modified Collins' method by proposing a matrix perturbation method to calcul ate the

sensitivity matrix and to compute the new modal parameters for the parameter estimation

procedure.

The IEM uses moda parameters of an anaytical model as initia values and the parameters
are updated iteratively based on the differences between the analytical and measured
values. Consider mathematically well-behaved functions f; (i=1,2,-+,m) of L variables
pj j=1.2....L. If we denote p as the entire vector of valuesp;, then in the neighbourhood

of p,,» the functions can be expanded in a Taylor series:

L
of; 2f:
fip) = filp + 2, 'a% Ap; + 2 2 P,a;k ApjApy + - (2.15)

j=1

By neglecting terms of order Ap? and higher, equation (2.15) can be approximated as:
e
fu®) - fitpo) = 2 . 40 (216)

I nmanixform
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([ £1(P) - f1(py) rg&g%:...%— ”ig;
) . = 7 3 (2.17)
k_fm(p)-j'm(po) _gpLngﬁf%_ L app

For a structure under study, the parameters p are to be identified and p, are the

corresponding values used in the initial analysis. If the updated mass and stiffness

matrices are written as in equation (2.10), the number of unknowns becomes L;+L,.

Functions fi(p) represent the measured modal parameters and fi(p,) are the

corresponding modal parameters obtained from the initial model. Equation (2.17) can be

written as.
) oAy A oA
Al ... Z2AL Al ... %A
A)\'l aal aaLl _ﬁ)—ll abLz .Aal .
(a0}, {d.}, d{da}; {da)y . o{d. }4
aal —gaLl abl abL2 )
Aap
B . .. . . . Abxl (218)
oA, OAn, OAn . dA
A da, ~~ da,; ob  9by A
L2°
Ad) 9{, ) O{dalm 3{Pa)p {dalp
or
(2.19

(B mmenx1 = [Shnenx@+Ly) (AP} +Lxi

The elements of the sensitivity matrix [S] can be expressed as [see Appendix A]

JdM]

AL (0), -3, (00T T (@),

1N
5. = (97 Dp,

i 1

(2.20)

e e Gliay O . PO
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oY, < .
. = j_g;c‘imi (221)
d[K a[M]
() {.;1 A, (0,
( o, ) (r#j)
M
: zwﬂ%p—]m (r=j)

If the number of measured modes m is greater than ( Nl ) equation (2.19) becomes

rj

overdetermined and the unknown vector (Ap} can be caculated by premultiplying

equation (2.19) by [S1*
{Ap} = I[SI* {A) (2.22)

where tis the Moore-Penrose generalised inverse. The corrections are then added to the

solution vector

{Plpew ={Ploia + (AP} (2.23)

and the process is repeated iteratively to convergence because equation (2.18) is

formulated based on first-order approximation. The flowchart of the whole procedure can

be seen in Fig.2.1.

As explained previoudy, this method does not require mode expansion. In formulating
eguation (2.18), it is possible to use corresponding coordinates from the analytica mode
shapes and to omit the unmeasured coordinates. The updated model will be physicaly
meaningful model if it converges because physical connectivity is preserved. However,

this method requires large computational effort because of repeated solution of the
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Fig.2.1 Fowchart of the IEM
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cigendynamic problem and repeated calculation of the sensitivity matrix. Also,

convergence is not guaranteed ifmodelling errors are not small.

2.3 ERROR LOCATION METHODS

In addition to the methods summari sed above, another aspect of model updating is the
location of mismodelled regions before an attempt is made to improve the analytical
model. If thislocation is successful, then the model can be improved locally and this will
be more efficient. Any attempt to update every element in the analytical model using only

the limited information from the tesi results may not be physicaly redlistic.

2.3.1 ERROR MATRIX METHOD (EMM)

The EMM [16] aims at locating major modelling errors in an analytical model rather than
attempting to correct the whole analytical model. The difference between correct and an

analytica stiffness matrices is defined asstiffness error matrix [AK]

[AK] = [Ky] - (K] (2.24)

If [AK] is second-order in the sense of the Euclidean norm, the .error matrix can be
approximated as equation (2.25) by ignoring second and higher order termsin an

expansion of [K,]J*
[AK] = [K,] ([KA)! - [Kx] 1) [Kal (2.25)

[Kx]-! and [K,]-! can in turn be approximated using m measured and the corresponding

analytical modes such that equation (2.25) becomes:
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[AK] = [Kp) ([PA] 1AL [@AIT - [@x] [ Ax]! [DXIT) [Kal (2.26)
where [®,] and [®y] are Nxm matrices and [ A,] and [ Ax] are mxm matrices.
Similarly, amass error matrix can be expressed as:

[AM] = [M,] ([@4] [DA]T - [@x] [Px]T ) [MA] (2.27)

This method does not require the assumption that [M,] is correct for locating stiffness
modelling errors nor does it require the assumption that [K,] is correct for locating mass
modelling errors. Another advantage of the EMM isthat it locates stiffness modelling
errors using flexibility data where lower modes dominate. This accords with the fact that,

in practica measurement, only the lower modes are readily available.

Degspite these advantages, theEMM has some drawbacks. As shown inRef.[16], if the
number of measured modes is insufficient, this method does not succeed in locating
mismodelled regions. And when [AM] or [AK] is not small, this method cannot be
applied because equation (2.25) and equation (2.27) are based on the assumption that
second- and higher-order termsin an expansion of [K]-! and [M]-! can be ignored,
respectively. Furthermore, this method requires mode expansion to overcome any

incompatibility between the analytical model and measured modes.
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23.2 MODIFIED EMM

In consideration of the limited number of measured modes available and inconclusive
error location results, an aternative method [17] was developed to locate the modelling

errors using a few measured modes available. This method uses the product of the error

matrix and a known matrix:

[AK] [®x] = [Kx] [@x] - [Kp) [Px]
= [Mx] [@x] [Ax] - [Kal [®x]
= ([Mp] + [AMD[@x] [Ax] - [K,] [Px] (2.28)

Post-multiplying both sides of this equation by [®x]T yields:

[AK] ([@x] [Px]T) - [AM] ([Dx] [Ax] [Px]T)
= [Ma] (D] [Ax] [@XTT) - (KAl ({Px] [x]T) (2.29)

Although error matrices cannot be obtained directly from this equation, the mismodelled
regions can be reveaed explicitly by estimating the right hand side of the equation which

consists of known information. Similar efforts for error location are also reported in Ref.

[ 18] where the method is called ‘force balance method’.

Unlike the case of the EMM, there is no assumption about [AM] or [AK] and error location
is possible even with a very limited number of measured modes. However, this method
also requires complete measured coordinates, which is not practical, or mode expansion
to overcome the incompatibility between measured modes and analytica model, which

may be erroneous procedure thus jeopardising exact locating, as explained before.



D Model Updating Methods - A Review 30

2.3.3 IEM

Zhang et. al. [ 19] used the IEM to localise dominant error regions in an analytical model
using real eigensolutions and then updated the model by correcting the selected
parameters by an iterative calculation. To improve the condition of the sensitivity matrix
in equation (2.18), the differences in eigenvalues and corresponding rows of the
sensitivity matrix are divided by corresponding eigenvalues. Instead of solving equation

(2.22) iteratively, they suggested two error |ocation methods.

Method 1

A large element of the vector (Ap) represents either adominant error region or alow
sensitivity of the corresponding element. To distinguish the former from the latter, a

sensitivity coefficient e; is introduced to represent the sensitivity of the jth element:

AN (2.30

oA

where (A;}={S,;} Ap,, {S;} = the jthcolumn of the sensitivity matrix. If both Ap,
and e; are large, the corresponding element represents dominant errors, while the

element which has large Ap; but small ¢; is not considered as amismodelled element.

Method 2

A second method is to search for the best approximating subspace of a given

dimension & which minimises the error
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E =11 (A) -[S]3(ap)3I (2.31)

where [S]8 is a submatrix of [S] and {Ap}8 is the corresponding subvector of (Ap).
An analysis of the errors obtained with subspaces of increasing dimension permits

the selection of the most probable dominant errors.

As mentioned before, the IEM does not require mode expansion and computational time
will be saved by locating error regions first and updating the analytical model using only
those elements which are selected in error location procedure. However, the suggested
methods have some problems. The sensitivity coefficient is independent of mismodelled
regions. In other words, if an analytical model is given,the sensitivity coefficient of each
element is constant irrespective of mismodelled regions. If mismodelled regions have low

sengitivity, the first method cannot locate the error regions.

To illustrate this problem, the method has been applied to a bay structure shown in
Fig.2.2, which is a part of the GARTEUR test case. The structure is modelled by 31
beam elements, and 3 DoFs are considered at each node, so that the total number of DoFs
(N) is 90. Experimental data are obtained at 15 points as shown in Fig.2.2 in trandational

coordinates only (i.e. n = 30). Thefirst 10 experimental modes were used (i.e. m = 10).

Two cases has been considered for comparison. In the first case, stiffness modelling
errors are introduced by overestimating the stiffness matrices of the 12th) 13th and 31t

elements by 100 %, as shown in Fig.2.3. The first 10 ‘experimental’ and initial analytical

natural frequencies are shown in Table 2.1.
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M easurednodes

0  Unmeasured node:

Fig.2.2 Bay Structure

Table 2.1 Natural F ncies of 'Experimental’ and Initial Analytical Models (Case

Mode | 1 | 2 [ 3 [ 4[5 [ 6|7 [8 ]9 |10

fx(Hz) §348.1]482.2 | 548.9 | 584.5 | 707.9 | 862.1 [ 920.7 | 994.7 [ 1101.1[1215.6
f,(Hz) 8 342.31450.6 | 528.5 | 557.2 | 683.4 | 833.7 [ 903.2 | 927.0 | 1066.6 | 1165.3
MAC ]0.9960.975 |0.960 | 0.985 | 0.965 | 0.987 ] 0.967 | 0.916 | 0.875 | 0.932

The sensitivity coefficients and (Ap) are shown in Fig.2.4 and Fig.2.5 with possible
error regions. In this case, mismodelled regions which have relatively high

eigensensitivity could be located with some extra elements.
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Fig.2.5 Error Location Results (Casel ; Stiffness Elements)
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In the second case, mass and stiffness modelling errors are introduced by overestimating
the mass matrices of the 1 1th and 12th elements by 50 % and the stiffness matrices of the

25th, 26th and 27th elements by 100 %, as shown in Fig.2.6. The first 10 ‘experimental’

and initial analytical natural frequencies are shown in Table 2.2.

Mode] 1 | 2 | 3| a4l s | 6] 7| s 9 | 10

£ || 341.4] 514.1| 526.6[ 577.9] 690.2| 843.9] 909.6 | 1014.1] 1037.3[ 1153.5

fA(HZ)"342.3 450.6] 528.5] 557.21 683.4 | 833.7 1 903.2| 927.0 | 1066.6] 1165.3

MAC"O.973 0.931] 0.964 | 0.987}0.953] 0.94710.986} 0.898 | 0.925 | 0.813

The sensitivity coefficients and (Ap) are shown in Fig.2.7 and Fig.2.8 with possible

error regions. In this case, error location failed because some mismodelled e ements have

relatively low eigensensitivity.
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Fig.2.6 Modelling Errors (Case 2)
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Fig.2.8 Error Location Results (Case?2 ; Stiffness Elements)

The second method has been applied to the same structure. In both cases error location
failed as shown in Tables 2.3 and 2.4 - in the first case the 13th tiffness element was

not located and in the second case the 27th stiffness element was not |ocated.
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Table 2.3 Error Location Results (Case 1)
o Located Elements {Ap)
1 | k31 0.55
2 | K31 K12 0.56_-0.06
3 | k31 K12 M4 0.59 023 -0.01
4 | K31 K12 M4 M26 0.56 024 043 -0.11
s | K31 K12 M4 M26 MI | 048 023 045 026 -0.06
6 [ K31 K12 M4 M26 M1 | 044 025 041 029 046 Jo.534
M8 0.14
7 k31 k12 M4 M26 M1 | 043 020 042 030 047 J0.534
Mz m23 | -045 013
8 [ k31 K12 M4 M26 M1 | 044 0.18 042 027 033 Jo.512
_IM8 M23 Ms 0.08 0.19 -0.13
o [ k31 K12 M4 M26 M1 | 042 014 020 032 020 Jo.528
_Ims M3 M5 M3 0.05 034 0.25-0.12
0o K31 K12 M4 M26 M1 | 041 014 013 034 009 Jo.539
M8 M23 M5 M3 0.02 040 022 0.1 -0.12

(¢f. actual mismodelled element s; K12, K13, K31)
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Table 2.4 Error Location Results (Case 2)
3 l Located Elements ;q {Ap) Emin |
| kos 0.17 0.455
2 | K25 K26 097 0.20 0.567
_3_ K25 K26 MI1 0.67 0.69 0.22 0.592
4 | K25 K26 MI1 K28 0.63 0.64 0.42 0.19 0.606
| K25 K26 MI1l K28 K9 0.26 1.05 0.40 0.46 0.18 j0.627
6 | K25 K26 MI1 K28 K9 0.34 0.94 0.24 0.38 -0.16 §0.638
L ka0 0.18
7 1 K25 K26 MI1 K28 K9 0.27 1.02 0.26 0.41 -0.13 J0.659
__ K30 MI2 0.38 0.11
8§ | K25 K26 MI1 K28 K9 0.30 0.97 0.21 0.39 -0.15 J0.638
__ K30 MIZ K12 0.36 0.14 0.11
9 | K25 K26 MI1 K28 K9 0.32 0.95 0.13 0.37 -0.09 f0.662
__J K30 MI2 K12 MI6 0.35 0.28 -0.08 0.10
10 K25 K26 MI1 K28 K9 0.30 0.95 0.11 0.38 -0.10 jo0.663
_]K3O MI2 K12 MI6 K31] 0.35 0.27 -0.08 0.07 0.10

(¢f. actual mismodelled elements; Ml 1, M12, K25, K26, K27)
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24 CONCLUDING REMARKS

An attempt has been made to review various updating methods which can be divided into
two groups - direct methods and iterative methods. Direct methods are usualy very fast
and some methods produce exact modal parameters, but mode expansion is essential
because of the large difference in the dimension between measured modes and the
analytica model. The problem of mode expansion is that this procedure might be
erroneous, thus jeopardising model updating procedure. On the other hand, iteration
methods such as IEM do not require mode expansion procedure and the updated model
can preserve physical connectivity and may become physically meaningful model - if it
converges. However, this method requires large computational effort because of repeated
solution of the eigendynamic problem and repeated calculation of the sensitivity matrix.

Also, convergence is not guaranteed if modelling errors are not small.

Any attempt to update every element in the analytical model using only the limited
information from typical test results may not be redlistic. If mismodelled regions can be
located in a preliminary step, model updating can be carried out more efficiently and more

successfully. Therefore, error location is a fundamental first objective of the updating

process.

Recent developments in the area of error location have been investigated. The EMM can
locate mismodelled regions successfully even with a very limited number of measured
modes if complete coordinates are measured, which is not practical assumption. Again,

for the EMM to be successful, a reliable mode expansion method should be available.

The IEM does not require mode expansion and its computational time will be reduced by
locating error regions first and updating the analytical model using only the elements

which are selected in error location procedure. However, the methods suggested by
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Zhang have been found to be unreliable. Therefore, more reliable error location method

should be devel oped.
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CHAPTER 3

MODEL UPDATING USING IEM

3.1 PRELIMINARIES

In the last Chapter, advantages and disadvantages (or limitations) of various model
updating methods were discussed and it was noted that all direct methods needed mode
expansion - and if this were erroneous, this might jeopardise the model updating

procedure - to overcome the incompatibility in the dimensions of the measured modes (n)

and the analytical model (N).

The IEM, which is one of iterative methods, has an advantage over direct updating
methods in the respect that it does not require a mode expansion procedure. However,
convergence is not guaranteed if modelling errors are not small. The convergence might
be improved by locating error regions first and by correcting only the selected parameters
by an iterative calculation. The methods suggested by Zhang [ 19] which are based on the

IEM do not seem to be reliable as shown in the case studies in the previous Chapter.

In this Chapter, a version of the IEM using arbitrarily chosen macro elements, which is
one of the iterative methods, is proposed at the error location stage in order to reduce the

computational time and to reduce the number of experimental modes required. By this
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approach, the model updating problem which is generally under-determined can be

transformed into an over-determined one.

3.2 ERROR LOCATION PROCEDURE

3.2.1 SELECTION OF SUBMATRICES

The updated mass and stiffness matrices can be expressed as functions of the analytical

ones, in the form:

L

Myl = ; a; [M]; (3.1)
L

(K] = Zl b, [K]; (32)

where L is the number of elements and a; and b; are correction coefficients to be
determined. If there is no error in the ith element, a, and b; should be unity, whereas &; or

b,<< 1 (or >> 1) indicates a mismodelled element. [M]; and [K]; are submatrices of

system matrices and can be one of these forms:
1) subelement matrices
2) element matrices used for FE modelling

3) macro element matrices

The success of the IEM depends heavily on the choice of the submatrices [M]; and [K];.
If the structure under consideration is a complicated structure - most practical structures
are usualy very complicate& , it might have many elements and data from experiment are
usually very limited in the respect of the number of measured modes and the number of

measured coordinates. In such a case, model updating using the IEM with element
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matrices or subelement matrices requires quite alarge computational effort and the result

usually does not converge. The alternative isto use macro elements as submatrices.

The mass matrix of the ith macro element [M]; is formed as a summation of individual

eement mass matrices
n
i = 2 M (3.3)
j=1

where n; is the number of mass elementsin the ith macro element and [M¢] ; isthe element
mass matrix of the #th element. The construction of the macro element is illustrated in

Appendix B.
Similarly, for the stiffness matrix

[Ke] 3.4)

M.:s

[K); =

.
[}
—

The influence of choice of macro elements on error location will be investigated later in

this Chapter.

3.3.2 EIGENSENSITIVITY

If we denote (p) as the vector of correction coefficients (a, a, --a; b; b, --- bL}T, then

in the neighbourhood of (p,) = {11--111--1}T, the rth eigenvalue of the updated

model can be expanded in a Taylor series:

2L 2L
aA

2L
Mo = hat X gt en v 2 2, a—g—Ap,Apk e (3.5)

=1
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By neglecting the second- and higher-o&r terms, equation (3.5) can be approximated as.

A

=1 9Pj

g)
>
4
1l
&
i
Me
%

Similarly, for the rth eigenvector

J

I nmatrixform

My, Oy Ay Oa
S| | F@ 7 T 3 T W

=

(0] | 200k)  3(0a); 2(0a)y _ (a)y

aal ) aaL abl o abL

or

(A7) (n+) x 1 =[S,] (n+1) x 2L {Ap) o x1

(Aaﬂ

Aby

. AbLJ

(3.6)

(3.7)

(3.8)

(3.9)

The elements of the sensitivity matrix [S,] can be obtained by taking derivatives of the

following equations

([K1-2, [M]) (¢}, = (0)
(6}, M1 (9}, =

with respect to the correction coeffkients as. [see Appendix A]
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oA J[K d
L ENUAE N ONENTLE - O} (310)
AL N
o =j§0,j{¢}j (3.10)
d[K Jd[M
(07 ( %l 5 e,
i (r#)
er = ll'- Aj
oV
R ION “a_lpiJ (01, (r=j)

From equations (3.1) and (3.2), we Can obtain

oM] oM]

02, = MJ; b, = (0]
3 (3.12)
J[K K
"c"[_aT] = [0] 751,—] = [K];
Substituting equation (3.12) into equations (3.10) and (3.11) leads to
oA
T = - A (6),T M (0}, (3.13a)
oA
a5 = (9),T[K]; (¢}, (3.13b)
P N
‘5%}' = ;a:j{‘bh (3.142)
T J=

A (0)7IMI; (9),
A A,

(r#j)

rj ~

- e)TMy; (), (=)
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3 N
{;1:.}r _ 21 Bi(6); (3.14b)
1 J=
T [K].
. (¢)," [K];{9]), (r#j)
x'j = xr’Lj
0 (r=j)

Equation (3.14) requires N eigenvectors for the calculation of the eigenvector derivatives.

For a large system, only the lowest n; modes (n, « N) can be expected to be computed
accurately. In addition, it may take long time to obtain N eigenvectors at each iteration
Lim et. a. [26] proposed a new method which could reduce the number of eigenvectors
required for the calculation of the eigenvector derivatives. When r «n;, the denominator
of cij in equation (3.11) can be approximated as:

A=A A for j >n

where A is avalue between 0 and the first non-zero eigenvalue.

Thus,
e}, _ i o).+ 2 (0),7 (8], (o),
ii ) j=1 o j g+l x x
I N T ! T
~ 2 cilo)+ X —l'—{g—m YL L A CED)
=1 j=1 - 1 Ay
where

d[K d[{M]
(e~ (“op,. - e op, ) (@),

From the orthogonality conditions
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[@TTIK](D] = [A]
[@"M][®] = 1]

we get
[®)T[K - A M] [®] = [A]-A (1]

or

[P1K - A MI@)T = ([A] -2 (1))
Thus,

[K -AMJ1 = [®] ([A]- A (1)) [®)T

N
- 2 (0); (0); (3.16)

Substituting equation (3.16) into equation (3.15)

AP, < . . & (o) (g),
ﬁ;=§ﬁwym-&mw%+g—iﬁjwh (317)

If we use equation (3.17) instead of equation (3.1 1), we need not calculate N
eigenvectors at each iteration but only n; eigenvectors (nj« N) for the eigenvector

derivatives. If there are no rigid body modes, A, can be set to be zero.

If m modes are measured, equation (3.9) becomes

(A} m(n+1) x 1 =[5°] m(n+1) x 2L {AP} 2L x 1 (3.18)
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3.2.3 COMPATIBILITY BETWEEN MEASURED MODES AND
ANALYTICAL MODEL

As mentioned in Chapter 2, modal parameters obtained from a modal test are generally

not compatible with those from the analytical model because

1) the number of modes available from measurement (m) is usualy very limited
(m<<N) and
2) the number of measured coordinates (n) is in general much less than the number of

coordinates (or the number of degrees of freedom) of an analytical model (n<N).

The mismatch in the number of measured modes (m) and analytical modes (N) can easily
be overcome by using corresponding modes from the analytica model and omitting the
unmeasured modes. In the formulation of the IEM, a mode-to-mode matching between
the measured and analytical modes is essential. This matching can be performed by the

use of MAC (Mode Assurance Criterion) [27] which is defined by

| (0,17 {0, (3.19)
| (0007 (0,01 ] | (0x)] (0x)j |

MAC(A;X)) =

It can be seen in the equation that the MAC values vary between zero and unity. If the
experimental and analytica mode shapes used for the MAC are from the same mode, a
value close to unity is expected, whereas if they relate to two different modes, a value
close to zero should be obtained. Given a set of m, experimental modes and a set of m,
analytical modes, we can calculate the my, x m, MAC matrix, and use it to indicate which
test mode relates to which analytical one. The analytica modes which correspond to the
experimental modes are often not in the same sequence. The MAC matrix can sort out this

reordering. This procedure should be performed at each iteration.
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The coordinate mismatch can aso be overcome by using corresponding coordinates from

the analytical model and omitting the unmeasured coordinates in formulating equation

(3.7).
3.2.4 BALANCING THE SENSITIVITY MATRIX
One problem in equation (3.18) is that the sensitivity matrix may be ill-conditioned

because the magnitudes of the eigenvector derivatives are usually very small compared

with the magnitudes of the eigenvalue derivatives. From equations (3.10) and (3.11)

£y J

12] - 06,0720 (01,) (3:20)

” ” —0({¢}T = (0),) (3.21)
Therefore,

] -w [l

So, instead of equation (3.18), we can write




D Model Updating Using IEM

54
ah ", My [, s My [
{a0) d(9a) d{da); 9{9a) d(¢a)
’ ~oar~ " “oa ob, . " ob .
_ . AaL
- . . Ab,
Mar M [ Mamy M
Y. Day e e A o Am o o A Y
Am ~ADL
3oy . oy oy (0w
(A0} - da; day_ ob, ob, .
or
B+ x1 = IS gy x 2 {8PaL x1 (3.23)

A necessary condition for equation (3.23) to be over-determined is:

2L
m(n+1)>2L or m >0t

However, the eigenvector sensitivities are not always linearly independent. In practice,
the number of measured modes should be more than twice of the minimum number in
order to give a high probability of sufficient rank to matrix [S]. Using the SVD technique

[49], the condition of the sensitivity matrix can be checked The technique also can be used

to solve {Ap}. If [§] is full rank, equation (3.23) can be rewritten as:

{A}m(n+l) x1 = [U] m(n+1) x m(n+1) (2] m(n+1) x2L [V]TzL x 2L (8P} 2L x1

(3.24)

where [U] and [V] are orthonormal matrices and [X] is a matrix with elements G;; = Oj

(singular values of [S]) for i = j and Gj;= Ofori#j.
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Because [U] and [V] are orthonorma and full rank matrices, the solution of equation

(3.24) can be written as:
(Ap} = [VI[Z)* [UIT (A) (3.25)

where * is the Moore-Penrose generalised inverse and [Z]* consists of the inverse values

of the non-zero Singular values ;.

The corrections are then added to the solution vector

{PYnew ={Ploiq + (AP} (3.26)

and the process is iterated to convergence because equation (3.25) is not the correct

answer since:

i) equations (3.6) and (3.7) are only first-order approximations of eigenvalues and

eigenvectors, respectively, and

ii) subdomains do not necessarily accord exactly with mismodelled regions.

The flowchart of the whole procedure can be seen in Fig.3.1.
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[Read Ay, am (0, Construct M,J, K]

!

Solve eigendynamic equation to get
AArs (¢A}t

)

Calculate sensitivity matrix

[S] and (A)

'

Solve the equation
(ap) = [S' ()

!

Update solution vector

{P)ew= (P)yat (2P}

l

l Calculate new mass and stiffness matrices I

!

Solve eigendynamic equation to get
new modal parameters

{Ap}ll < €

Y

( STOP )

Fig.3.1 Flowchart of Error Locating Procedure

S e
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3.2 NUMERICAL EXAMPLES

The bay structure which had been used in Chapter 2 was used again to check the validity
of the method suggested above. Mass and stiffness modelling errors were introduced by
overestimating the mass matrices of the 25t and 26t elements by 50 % and the stiffness

matrices of the 12th, 13th and 318t elements by 100 %, as shown in Fig.3.2.
‘Experimental’ data were obtained for 15 points in trandational coordinates only and the

first 10 ‘experimental’ modes were used, exactly as for the case studiesin Chapter 2. The

first 10 ‘experimental’ and initial analytical models are shown in Table 3.1.

Table 3.1 Natural Frequencies of Experimental’ and Initial Analvtical Models

Modef 1 2 3 4 S5 6 7 8 9 10

fy Ml 343.3]|468.1 | 548.0 { 577.7 1704.4 | 850.8 | 917.2 {928.9 |1099.3 |1205.0

f 2 342.3]450.6 |528.5]557.2 | 683.4 [ 833.7 [ 903.2 | 927.0 | 1066.6 [1165.3

MAC [ 0.995[0.971 | 0.948 | 0.966 | 0.960 { 0.981 | 0.916 | 0.816 | 0.862 | 0.928
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1
0
-1
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6 6 10 12 14 1€ 16 20 22 24 26 28 30
Element Numbers
(a) Mass Errors
2
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0
-1
-2
6 8 10 12 14 16 18 20 22 24 26 28 30

(b) Stiffness Errors

Element Numbers

Fig.3.2 Modelling Errors
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3.3.1 INFLUENCE OF CHOICE OF MACRO ELEMENTS

ON ERROR LOCATION

In order to investigate the influence of the choice of macro elements on error location, 4
different macro element configurations - Macro 1, Macro 2, Macro 3 and Macro 4

(Fig.3.3) - were used. In each case, no macro e ement coincided exactly with one of the

error regions.
5(4) 4(3) 3N
L 4 @ ,
57
ORI v 20)
o
14)* A 2(3) o 1(7)
Macro 1 Macro 2
4(5) 5(4) 4(4)
@
3(4)
6(4)
1(4) e 2(4)
Macro4

Macro3

* Macro Element No.
(No.of Elements)

Fig.3.3 Macro Element Models
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Using Macro 1, it took 4 iterations to converge and 20 elements - 9 mass elements and 11

stiffness elements - were identified as possibly harbouring modelling errors, as shown in

Figs.3.4(a) and 3.5(a). Similar results were obtained using other macro models as shown

in Figs.3.4 and 3.5. In each case, all mismodelled regions could be located in that they

wereincluded in the sites found by the method.

-0.5 +rrrrrrrroyrrrrrrrrrrTTTTYYTYYTYTY

5 10 15 20 25 30

Element Numbers

(&) Macro 1
0.5
-0.5 +rrrrrrrrrrere e

Element Numbers

(c) Macro 3

0.5
e i
-0.5 =TT T T YT T T T T
5 10 15 20 25 30
Element Numbers
(b) Macro 2
0.5
R IR 1 11111

L~

5 10 15 20 25 30

Element Numbers

(d) Macro 4

(*; Selected Elements)

Fig.3.4 Error Location Results (Mass Elements)
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0.5

il

-0 . ST T T T T T
5 10 15 20 25 30 5 10 15 20 25 30
Element Numbers Elanent Numbers
(a) Macro 1 (b) Macro 2
0.5

-0.5 4+rrrrrrrerrrrrTrrTTTTYTYTYTTTITY -0.5 +rrrrrrrrrrerTrTTTTTeRTTTTTYTITITIYTY
5 10 15 20 25 30 5 10 15 20 25 30
Element Numbers Element Numbers

(c) Macro 3 (d) Macro 4

(*; Selected Elements)

Fig.35 Error Location Results (Stiffness Elements)

As a second case study, the same errors as the second case in Chapter 2 were used, for
which case the two methods suggested by Zhang had failed to locate the error regions.
Error location was carried out using Macro 1 model. The results are shown in Fig.3.6,
from which it can be seen that the mismodelled elements (Ml 1, Ml 2, K25, K26 and
K27) were al located.
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05

0.0 1

Q ;Selected Elements

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

() Mass Errors

Q Selected Elements

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

(b) Stiffness Errors

Fig.3.6 Error Location Results (Case 2)
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3.3.2 BALANCING EFFECT

As mentioned before, the sensitivity matrix [S°] in equation (3.18) usually becomes ill-
conditioned because the magnitudes of the eigenvector derivatives are very small
compared with those of the eigenvalue derivatives, as shown in equation (3.22). To
illustrate this problem, singular values of [S°] were calculated using SVD and were

compared with those of the balanced sensitivity matrix [S] in equation (3.23) in Table

3.2.

Table 3.2 Singular values of [S°] and [S]

i | [s°] [S]

1 I 1.942 x 107 5.724 x 10!
2 | 1.938 x 107 5722 x 10°!
;3 | 7.395 x 105 5722 x 10'}
4 | 2,052 x 106 5.674 x 10°!
5 l 1309 x 105 5.623 x 107!
6 6.203 x 10° 2.033 x 107}
7 | 3722 x 102 1.801 x 10!
g | 1.800 x 102 1.801 x 10°!
9 ﬂ 2,962 x 10! 1798 x 10°1
10 2.931 x 10°! 1.200 x 107!
11| 2.509 x 10"} 1187 x 10!
2 ! 2,202 x 10"} 1.138 x 10!
13 | 1.269 x 10°! 1.135 x 107}
14 | 1.267 x 10°! 8.557 x 102
15 | 1.267 x 10'! 7.993 x 102
16 | 1.197 x 10'! 7789 x 10°2
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The condition number - which is defined as the ratio of the largest of the cj's to the

smallest of oj's- of [S°] is 1.63 x 108, which is the indication of an ill-conditioned

matrixX, whereas the condition number of [S]is 7.34.

The rank of [S°] can be calculated using SVD. If the rank of a matrix isr, then o, ; will
be very small compared with the other singular values o; (i = 1,2,--+,1). If we establish a
criterion for the regjection or acceptance of small singular values, we shall have an answer
concerning the value of the rank. This criterion may depend on the accuracy of the

expected results and, in practice, may be difficult to establish. A reasonable solution isto

Or

. : : Cp © . :
calculate the consecutive ratios of the singular values L -2 -++, then the ratio will
G2 O3 Or+1
. , . . Or .\
be very high compared with G . Therefore, the first peak S ~ will indicate the value of
Cr r+1

the rank. The consecutive ratios of the singular values of [S°] are compared with those of

[S] in Fig.3.7. It can be seen from the figure that [S°] is rank deficient (the rank is 6)

whereas [§] is rank full.

Values of Ap; calculated based on the equation (3.18) are compared with those cal culated
based on the equation (3.23) in Table 3.3. It can be seen the former are meaningless

because [S°] is rank deficient.
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(b) [S]

Fig.3.7 Rank of Sensitivity Matrix
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Tabl m n_of n ficients (1 st lteration Result
Mass l Stiffness

Macro From From Macro From From

Element| Eq.(3.18) | Eq.(3.23) |Element| Eq.(3.18) | Eq.(3.23)
1 | -37x103 006 | 1 2.8 x 107 -0.04
2 | 28x103 005 | 2 | 28x103 0.08
3 1.8 x 104 0.35 ! 3 | 20x10¢ 0.16
4 9.2 x 103 0.07 4 2.8x 103 0.15
5 4.3 x 103 0.12 5 -2.8 x 103 0.02
6 -3.5x 104 -0.02 6 2.0 x 104 0.01
7 2.7 x 104 -0.05 7 -2.2x 10} 0.42
8 1.4 x 10¢ 0.29 8 4.6 x 10’} 0.35

3.4 MODEL UPDATING PROCEDURE

After locating regions where modelling errors might exist, the model improved by the
error location procedure is refined by a model updating procedure. In the model updating
process, the variables to be updated are not the correction coefficients of the macro
elements but the correction coefficients of the individual elements from which the macro

elements are assembled for the preceding error location procedure. The problem to be

solved hereis

{A}m(n+1) x1 = [8Tmm+1) x 1 {(ap'}1 x 1 (3.27)

where I is the number of the selected elements from the error location procedure.

Equation (3.27) is similar to equation (3.23). The differences are that Ap' represents the

correction coefficients of the element matrix which might have modelling errors and [S']
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represents the sensitivity matrix of the elements selected in the error location procedure.

Equation (3.27) should be solved iteratively because it is an approximate solution.

The IEM is, in fact, a multi-variable Newton-Raphson method. In Fig.3.8, the model
updating process using IEM isillustrated graphically for the case of one variable. The
sope of the curve A = f(p) at the point A(p°,A,,) corresponds to the eigenvalue
sensitivity, and a segment AC corresponds to the solution of the equation (3.9). The
process BD is equivalent to the calculation of the eigenvalue problem [K1{¢)=AM]{¢}.

When modelling errors are not small, in which case the higher-order terms in the Taylor
series of eigenvalues and eigenvectors are important, the IEM can give grossly inaccurate,

meaningless corrections as illustrated in Fig.3.9.

A D

, Eigensolution

< >

>
p°(=1) P! P

tan@’ = %%‘ ; Eigensensitivity
p=1

Fig.3.8 Pictorial Expression of the IEM
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7

P2
Ax =
[
M
J——

Fig.3.9 Unfortunate Case where the IEM Diverges

The convergence of the IEM can be improved by the following:
1) new initial guess and/or

2) setting bounds on {Ap'}.

The resultant correction coefficients from the error location procedure can be considered
as“improved”’ new initial guesses and these usually improve the convergence because the
distance between the analytica and experimental models has been reduced by the error
location procedure. This statement is illustrated in Fig.3.10. The second strategy to

improve the convergence of the IEM isillustrated in Fig.3.11.

The flowchart of the whole procedure of the model updating can be seen in Fig.3.12.
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Fig.3.10 Model Updating with Improved Initial Guess
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Fig.3.11 Model Updating by Setting Bound on Ap
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Read the Output of Error Locating Procedure .

'

Construct [Ml?] . [Kg)]

'

Solve eigendynamic equation to get
Aar, (94

'

Calculate sensitivity matrix

[S7 and (A}

J

Solve the equation
{4p} = [ST* {A)

'

Update solution vector
(Plew={Pla + AP

¢

Calculate new mass and
stiffness matrices

'

Solve eigendynamic equation to get
new modal parameters

Fig.3.12 Flowchart of Model Updating Procedure
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3.5 APPLICATION TO BAY STRUCTURE

Using the error location result from the Macro 1 model of § 3.3.1, updating has been
carried out. There were 20 elements identified which might contain modelling errors - 9
mass elements and 11 stiffness elements - as shown in Figs.3.4(a) and 3.5(a). The

iteration results are shown in Figs.3.13 and 3.14, from which it can be seen that the final

estimates become very accurate after 5 iterations.

Natural frequencies of the updated model are compared with experimental natural
frequencies together with MAC values in Table 3.4.

Table 3.4 Natural Frequencies of 'Experimental’ n M

Modef 1 2 3 4 5 6 7 8 9 10

fx H2)] 343.3|468.1 | 548.0 | 577.7 | 704.4 | 850.8 | 917.2 [ 928.9 [ 1099.3 [ 1205.0
f.H2) ) 343.3]468.1 | 548.0 | 577.5 ] 704.4 | 850.6 | 917.1 | 928.9 [1099.2|1204.7
MAC }1.000}1.000 | 1.000 ] 1.000 ] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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(a) First Iteration

10 12 14 16 16 20 22 24 26 26 30

Element

Number!
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(c) Fifth Iteration

i Element Numbers
(b) Third Iteration
1
d
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

Fig.3.13 Model Updating Results (Mass, Casel)
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(a) First Iteration
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Fig.3.14 Model Updating Results (Stiffness ; Casel)
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3.6 APPLICATION TO THE GARTEUR STRUCTURE

3.6.1 THE GARTEUR STRUCTURE

To check the validity of the aforementioned method to a practical structure, the method
has been applied to a free-free structure known as the GARTEUR structure (Fig.3.15).
The structure is modelled by 83 beam elements. It has 78 nodes and 3 DoFs are
considered at each node, so that the number of total DoFs of the analytical model is 234.
Each element is constructed by a superposition of an axia bar element and a bending
beam element, and these pairs of elements are considered to be independent of each other.

The element mass and stiffness matrices and necessary data are given in Appendix B.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26

52 51 50 49 48 47 46 4544 43 42 41 40 39 38 37 36 35 34 33
15000 mm

v @ neasured nodes
u O unmeasured nodes

Fig.3.15 Free-Free GARTEUR Structure

Modelling errors are introduced in exactly the same way as those of GARTEUR 1
exercise - by overestimating the cross-section area of the 12th,13th, 41st, 42nd, 59th gng
60t elements by 100 %, and by underestimating the second moment of area of the 3 18t

32nd, 415t and 42nd elements by 50 %. The exact modelling errors are shown in Fig.3.16.




d

Model Updating Using IEM

75

"’¢ ‘e
“ < L
. 3
o | X - “o
e® o e Ce®
j® . e
olUe -

Fig.3.16 (a) Exact Modelling Errors (Axial Elements)




Model Updating Using IEM

76

M
IS X
e® e o
“ L 3
F : -*®
e® . e®
e * - ‘::’
‘¢{O * U -
e \g " A "
e . o
5 v oe°
v e
e

Fig.3.16 (b) Exact Modelling Errors (Bending Elements)




m Model Updating Using IEM 77

36 nodes are assumed to be ‘measured in two trandationa directions (u and v directions)
only as shown in Fig.3.15. The first 5 modes are assumed to be measured, and these and

the corresponding analytical natural frequencies are shown in Table 3.5 together with

their MAC values.

Table 3.5 Natural Frequencies of 'Experimental’ and Initial Analytical Models

Mode 1 2 3 4 5
Experimental (Hz) | 149.9 230.4 287.4 | 403.1 432.5
Analytical Hz) | 145.4 226.8 284.0 | 397.2 427.0
MAC 0.999 0.999 0.997 0994 | 0.787

3.6.2 EIGENSENSITIVITY

In this exercisg, it is not appropriate to express the updated stiffness matrix in the form of
equation (3.2) and more independent physical design variables need to be considered.
Because the cross-section area and area moment of inertia are considered to be

independent variables, the updated stiffness matrix can be expressed as.
L L
Kyl = Zl ¢ [Kal; + 21 d; [Kp;
j= =

where [Ka]; isthe axial element stiffness matrix which is proportional to the cross-section

area and [Ky,]. is the bending element stiffness matrix which is proportional to the second
blj

moment of area.

The eigensenditivities can be easily derived as:

oA
S = ()T Ky (0,

1
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oA
s = (0),TKp); (),
10 T
Bci = = 'Yrj{q’}j
T
. {¢0})," [Ky]; {9), (r2j)
T = A d
0 (r=j})
Mo X g
adi = j;. Srj{(b}j
T .
_ {¢0}," [Kp); (0], (r#j)
5l = Ay A
0 (r=j)

3.6.3 ERROR LOCATION PROCEDURE

In the error location procedure, 26 macro el ements were used as shown in Fig.3.17. No

macro element coincides exactly with the error regions.

JON 4(3) 5(4) 6(3) 7(4) 8(3)

2(3

1(2

16(4) 15(3) 144)  1303) 124 — 1@3)

*; Macro Element No.(No. of Elements)

Fig.3.17 Macro Elements of GARTEUR Structure
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The iteration results are shown in Fig.3.18 and Table 3.6. After 7 iterations, the analytical
model converged to the experimental model and it became possible to locate possible error

regions- 10 axial and 8 bending macro elements, or 32 axial and 34 bending elements.

Mode 1 2 3 4 5
Experimental (Hz)f 149.9 230.4 287.4 403.1 432.5
Analytical (Hz) 149.8 230.3 287.4 403.1 432.5
MAC 1.000 1.000 0.999 0.999 0.999

3.6.4 MODEL UPDATING PROCEDURE

After locating possible error regions, the updating was carried out with the correction
coefficients calculated as initial values. It can be seen in Figs.3.19 and 3.20 that estimates
becomes very accurate after 8 iterations. The natural frequencies of the updated analytical

model are compared with those of the experimental model in Table 3.7 together with

MAC vaues.
Table 3.7 Natur uencies of 'Experimental’ Analvtical M
1 2 3 4 5
Experimental (Hz) 149.9 230.4 287.4 403.1 432.5
Analytical (Hz) 149.9 230.4 287.4 403.1 432.5
MAC 1.000 1.000 1.000 1.000 1.000
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Fig.3.18 (a) Error Location Results (Axial Elements ; After 7 Iterations)
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Fig.3.18 (b) Error Location Results (Bending Elements ; After 7 lterations)
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Fig.3.19 (a) Model Updating Results (2nd Iteration
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Fig.3.19 (b) Model Updating Results (4th Iteration ; Axial Elements)
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Fig.3.19 (c) Model Updating Results (6th Iteration ; Axial Elements)
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Fig.3.19 (d) Model Updating Results (8th Iteration ; Axial Elements)
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Fig.320 (a) Moddl Updating Results (2nd Iteration ; Bending Elements)
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Fig.3.20 (b) Model Updating Results (4th Iteration ; Bending Elements)
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Fig.3.20 (c) Model Updating Results (6th Iteration ; Bending Elements)
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3.7 CONCLUDING REMARKS

One of the advantages of model updating using eigensensitivity analysis is that mode
expansion (or reduction) is not required. However, this method requires large
computational effort because of the repeated solution of the eigendynamic problem and
repeated calculation of the sengitivity matrix. In this Chapter, a sensitivity method using
arbitrarily chosen macro elements has been proposed at the error location stage to reduce
the computational time and to reduce the number of experimental modes required for
subsequent updating. By this approach, the model updating problem, which is generally
under-determined, can be transformed into an over-determined one and the updated

analytical model is not influenced by the definition of macro elements.

It has been illustrated that the IEM is a multi-variable Newton-Raphson method and the
convergence of the IEM can be improved by introducing error location procedure and by

setting bounds on { Ap}.

The proposed method has been applied to the free-free GARTEUR structure which may
represent a practical structure and constitute a realistic problem in respect of the
incompl eteness of both measured modes and coordinates. The updating results are quite

accurate not only in moda parameters but also in correction coefficients of physical

design variables.

The ‘experimental’ data of the case studies in this Chapter are noise-free data. However,
because of various measurement errors, the assumption that the test results represent the
true dynamic behaviour of the structure may not be correct - the experimental data can be
affected by several types of measurement error. Thus, the sensitivity of the updating

method itself to noise on the experimental data needs to be investigated.

e i
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- CHAPTER 4

ERROR SENSITIVITY OF THE INVERSE
EIGENSENSITIVITY METHOD

4.1 PRELIMINARIES

One of the most important objectives of modal testing is to validate the analytical model of
a dynamic structure by comparing experimentallydetermined modal parameters - which
are supposed to be correct - with those obtained from an analytical model. However,
because of various measurement errors, the assumption that the test results represent the

true modal parameters may not be correct.

To check the validity of a model updating method by numerical case studies,
measurement errors must be considered. Even though many methods have been
developed in recent years for updating analytical models for the dynamic analysis of a
structure, and some of them have been proven to be quite successful, the methods are
generaly based on the assumption that the test data are perfect or noise-free. For any
updating method to be useful for practical structures, the sensitivity of the method to

noise on the test data needs to be established.
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In this Chapter, typical measurement errors will be introduced by contaminating the
modal parameters of the correct or modified structure with random noise of different

noise levels to check the sensitivity of the IEM to noise on the test data

4.2 SENSITIVITY OF IEM TO NOISE ON MODAL
PARAMETERS

The IEM described in Chapter 3 has been applied to the bay structure which had been
used in Chapter 2 and Chapter 3 to check the error sensitivity of the method. Mass and
stiffness modelling errors were introduced by overestimating the mass matrices of the
25th and 26th elements by 50 % and the stiffness matrices of the 12th, 13th and 31st
elements by 100 % as shown in Fig.3.2. Experimental data were obtained at 15 pointsin

trandational coordinates only and the first 10 “experimental” modes were used, as the

case studiesin Chapter 2 and Chapter 3.

4.2.1 ERROR LOCATION PROCEDURE
4.2.1.1 Sensitivity to Measurement Noise

In order to investigate the sensitivity of the error location procedure to noise on the
experimental data, the smulated experimental modal parameters were contaminated by 4
different random noise levels - NL1 (no noise), NL2 (0.2% in eigenvalues and 2% in

tigenvectors), NL3 (0.5% in eigenvalues and 5% in eigenvectors) and NL4 (1% in

eigenvalues and 10% in eigenvectors).
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The error location procedure was carried out using the Macro 1 model shown in Fig.3.3,
and the results are shown in Fig.4.1. In each case, al mismodelled regions can be

. located.

0.5

0.0

-0.5

2 4 6 6 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

(a) Mass Modelling Errors( * ; Selected enernents)

DEON

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

(b) Stiffness Modelling Errors (*; Selected elements)

Fig.4.1 Error Location Results (Macro Moddl ; Macrol)
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4.2.1.2 Influence of Choice of Macro Elements on Error Location

In order to investigate the influence of choice of macro elements on error location, 4
different macro eement configurations - Macro 1, Macro 2, Macro 3 and Macro 4
(Fig.3.3) - were used for error location. In each case, no macro element coincided exactly
with the error regions. NL 3 experimental data - 0.5% random noise in eigenvalues and
5% random noise in eigenvectors - were used. The error location results are shown in

Fig.4.2, and again, all mismodelled regions have been located in each case.

4.2.2 UPDATING PROCEDURE

Using the results from the Macro 1 model and the NL 3 experimental data - 0.5% random
noise in eigenvalues and 5% random noise in eigenvectors - updating has been carried
out. Natural frequencies of the “experimental” and initial analytical models are shown in

Table 4.1 together with the mode shape correlations indicated by MAC values.

Table 4.1 Natural uencies of "Experimental” and Initial Analytical Models

Modef 1 2 3 4 5 6 7 8 9 10

fx M2)} 342.8|467.7 [ 548.1[578.3]705.7 | 848.9 | 915.9 [ 928.5 | 1099.8 | 1206.6
f. M) ] 342.3|450.6 | 528.5 | 557.2 | 683.4 | 833.7 | 903.2 | 927.0 | 1066.6 [ 1165.3
MAC } 0.995]0.970 [ 0.944 [ 0.966 ] 0.960 | 0.982 ] 0.914 | 0.821 | 0.868 | 0.927

20 elements were indicated as possibly having modelling errors - 9 mass elementsand 11
stiffness elements - as shown in Fig.4.1. All the eigenvalue sensitivities were used
because eigenvalues can be measured more accurately than eigenvectors. If the number of

measured modes (M) is greater than the number of unknowns (I'), only eigenvalue
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0.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

(a) Mass Modelling Errors

B macro 1
O macro 2
B macro 3
B macro 4

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Element Numbers

(b) Stiffness Modelling Errors

Fig.4.2 Error Location Results (Noise Level; NL3)
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sensitivities need to be used for the calculation of the unknowns. If not, the eigenvector
sensitivities should be included in the sensitivity matrix so that the equation (3.27) is

overdetermined The minimum number of eigenvector sensitivity vectors to be used (m’)

can be calculated as
m+nm'21

Thus,

In this particular case ( m = 10, n = 30, I' = 20 ), the minimum number of eigenvector
sensitivity vectors needed is one. Between one and ten eigenvector sensitivity vectors
were used in the case study. When one or two eigenvector sensitivity vectors were used,
the updating results failed to converge. However, the updating results did converge, and
to the correct answers, as the number of eigenvector sensitivity vectors was increased.
The results are shown in Fig.4.3 and Fig.4.4. Natural frequencies of the updated model
using 10 eigenvector sensitivity vectors are given in Table 4.2. It can be seen that

estimation has become quite accurate for this case.

Table 4.2 Natural Frequencies of “Experimental” and Updated Analytical Models

Modef 1 2 3 4 S 6 7 8 9 10

f, M2)§ 342.8 [ 467.7 { 548.1 | 578.3 1 705.7 | 848.9 | 915.9 [ 928.5 [1099.8 | 1206.6

f.62)] 343.1|467.4 | 548.2 | 578.4 | 704.7 | 850.6 | 916.7 | 928.9 | 1099.4 | 1206.0

MAC } 0.999 ] 1.000 | 0.999 ] 0.999 { 0.999 [ 0.999 | 0.999 ] 0.999 | 0.999 | 0.999

gt
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4.3 CONCLUSIONS

Model updating using arbitrarily chosen macro elements has been applied to a bay
structure for which “experimental” data are noisy and incomplete. The error location
procedure has been found to be very insensitive to the “ measurement” errors - in the
presence of measurement errors of up to 1 % in the eigenvalues and 10 % in the
eigenvectors, it succeeds in locating the mismodelled regions. The updating results are
quite accurate in terms of modal parameters and, moreover, in terms of correction factors,
when sufficient eigensensitivity terms are used. In this case study, measurement errors

were introduced by contaminating the modal parameters of the correct or modified

structure with random noise.

However, in practice, the characteristics of the measurement errors might not result in
random variations in the modal parameters. For the updating method to be useful in
practical application, various error sources in testing - such as the mass loading effect of
transducers, shaker/structure interaction, etc. - should be considered and more realistic

errors rather than random noise should be included in the “experimental” data.




CHAPTER 5
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CHAPTER 5

ERRORS INVOLVED IN MODAL PARAMETER
ESTIMATION FROM TEST DATA

5.1 PRELIMINARIES

In Chapter 4, measurement errors were introduced by contaminating the modal
parameters of the correct or modified structure with random noise of different levels to
check the sensitivity of the IEM to noise on the test data. In practice, however, redlistic
measurement errors might not be represented by random errors on the modal parameters.
For the updating method to be practical, various error sources in testing should be
considered in detail and more realistic errors should be included in the “experimental”
data. Therefore, the errors involved in modal parameter estimation from the test data will
be discussed in detail, and the resultant “experimental” modal data which contain possible

experimental errors will be used to update the corresponding analytical model to check the

validity of the IEM.
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5.2 MODAL TESTING OF SAMM STRUCTURES

5.2.1 DESCRIPTION OF TEST STRUCTURES

1
i

Vibration measurement was carried out with real structures called SAMM2A and 2B
structures which had been used for the project to assess the State-of-the-Art of Mobility
Measurements (SAMM) [28] to illustrate some measurement errors. The structures can be
seen in the Fig.5.1. Two substructures 2A and 2B could be bolted together at two points

by connecting adapters to form a complete structure 2C.

]

o

(@ SAMM2A

)
IS

(b) SAMM2B

Fig.5.1 Test Structures
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5.2.2 MEASUREMENT

In turn, each of the structures was suspended by light elastic bands to approximate a free-
free condition. The highest rigid-body mode frequency was less than 10 % of that for the

lowest €lastic mode of the structures.

The frequency range of interest was O - 2.4 kHz, and this range was divided into 3 equal
frequency ranges: 0 - 0.8 kHz, 0.8 - 1.6 kHz and 1.6 - 24 kHz. SAMM2A and
SAMM2B - which are linear and lightly damped structures - were tested using three
different excitation signals. pure random, pseudo-random and impact. When the
excitation to the test structure is random or pseudo-random, it is necessary to use a push
rod to connect the exciter to the test structure. Ideally, the push rod should be infinitely
stiff for transmission of axial force, yet have zero bending stiffness to allow no moment
or lateral force transfer [29]. A practical compromise to thisideal is needed to prevent the
combination of the dynamics of the push rod - exciter system with those of the structure.
Two push rods with different lengths were used to check the validity of the data obtained.
The dimensions, properties and resonant frequencies of push rods can be seen in the

Appendix D.

FRFs obtained using different excitation techniques are presented in Fig.5.2 to Fig.5.7.
As can be seen in the plots, al the techniques gave similar results. Discrepancies between
various excitation techniques are found at the resonance frequencies of the test structures.
These discrepancies clearly indicate the leakage problem associated with light damping.
Because pseudo-random is essentially periodic, it does not suffer from leakage errors. On
' the other hand, the nonperiodic techniques (pure random and impact) suffer from leakage
or window errors [29]. Another discrepancy - frequency shifts - can be found above 1.4
kHz (SAMMZ2A) and above 1.1 kHz (SAMM2B). These shifts result from the effects of
the connection of the exciter to the test structure. On the other hand, in the case of impact

testing there is no need for any connection, which means the resonance frequencies from
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impact testing are correct. The gain in quality using an exciter was not considered large
enough to justify the extra effort. In addition, the frequency shifts caused by the

dynamics of an exciter-push rod system were too considerable to be ignored in the

* frequency range of interest.

5.3 ERRORS IN MODAL PARAMETER ESTIMATION

The characteristics of the real errorsin experimentally-measured modal parameters might
not be random, as supposed for the case in Chapter 4. For the updating method to be
practical, various error sources in testing should be considered and more redlistic errors

should be included in the “experimental” data used for method validation.

The errors involved in modal parameter estimation can be categorised in three groups -

measurement errors, signal processing errors and analysis errors, al of which will be

discussed in detail in the following sections.

5.4 MEASUREMENT ERRORS

54.1 NONLINEARITY OF STRUCTURE

One of the fundamental assumptions of modal analysisis that the structureislinear. This
means that doubling the magnitude of the excitation force results in a doubling of the
response, and that if two or more excitation patterns are applied simultaneoudy, the
response of the structure is the sum of the individual responses to each of the forces
acting alone. For many important kinds of structure, however, this assumption is not
valid. There are many reasons for the system to be nonlinear:

1) violation of “small displacement” theory;
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2) rattling of loosely fastened components,
3) nonlinear stiffness; or

4) nonlinear damping

Nonlinearity in the structure may shift energy from one frequency to many new
frequencies thereby resulting in distortions in the measured FRF curves. One way to
reduce the effect of nonlinearity is to randomise these contributions by using random

excitation. Subsequent averaging will reduce these contributions in the same way as

random noise is reduced.

5.4.2 NONSTATIONARITY OF STRUCTURE

Another fundamental assumption of modal analysis is that the structure’s properties are
stationary. This means that the modal parameters of the structure are constant with time.
Sometimes, the behaviour of a structure may change during the measurement period
because of dipping joints or loosening bolts, etc. This kind of measurement error should

be excluded on the test site by closely-controlled experimental procedure.

5.4.3 MASS LOADING EFFECT OF TRANSDUCERS

When an accelerometer is mounted on a structure, the increase in overall mass combined
with a change in the local stiffness will inevitably alter the dynamic properties of the
structure. The acceleration of the part of the structure near the accelerometer and the

resonance frequencies of the structure are modified according to the following

relationship [30]:

f =f m (5.1)

~a
am ! m+m,
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where a_; measured acceleration
at; true acceleration
f, ; measured resonance frequency
ft ; true resonance frequency
m ; effective mass of that part of the structure to which the accelerometer is

mounted
ma; accelerometer mass

As a generd rule, the accelerometer mass should be less than one tenth of the apparent
mass of the modes of the structure. When the added mass is of the same order as the

apparent mass of the modes of the structure, mass cancellation becomes essential.

544 ERRORS BY TRANSDUCER CHARACTERISTICS

5.4.4.1 Useful Frequency Range

The upper limit for measurements can be set to 30 % of the accelerometer’s own natural
frequency so that vibration components measured at this limit will be in error by less than
+ 10 % or to 20 % for errors of lessthan + 5 % if the accelerometer is properly fixed to

the test structure. It should be noted that an accelerometer’s useful frequency range is
significantly higher, i.e. to % or % of its resonance, where 3 dB linearity is acceptable.

5.4.4.2 Transverse Sensitivity

The transverse sengitivity of an accelerometer is its sengitivity to accelerations in a plane
perpendicular to the main transducer axis. The transverse resonance frequency is just
outside the upper frequency limit. At frequencies less than 16 % (10 %) of the main axis

resonance frequency, transverse sensitivity can be kept below 10 % (3 %). The
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transverse sensitivity can be reduced by aligning the minimum transverse senditivity axis

in the direction of maximum transverse acceleration.

5.4.4.3 Mounting Effect

The method of attaching the accelerometer to the measurement point is one of the most
critical factors in obtaining accurate results from measurements. Poor mounting resultsin
a reduction in the mounted resonance frequency, which can severely limit the useful
frequency range of the accelerometer. There are various methods of attaching the
accelerometer to the test structure - such as stud mounting, cementing stud mounting,

wax mounting, magnet mounting, etc. The advantages/disadvantages of various methods

can be found in Refs.[29,30].

Local stiffness changes introduced by attaching the accelerometer to the structure should

also be considered when it is attached to a flexible surface [29].

5.45 SHAKER/STRUCTURE INTERACTION

When the excitation to the structure is a continuous signal, such as random or sinusoidal,
a shaker must be attached to the structure, usually incorporating a force transducer. So
long as the motion at the driving point of the shaker attachment remains colinear with the
shaker axis, the dynamics of the excitation system can be removed by mass cancellation
techniques. However, if the motion at the driving point includes rotation or transverse
displacement, the resulting contamination of test data can no longer be removed. The
solution is to attach the shaker to the structure through a push rod, which should have

high axial stiffness for transmission of axial force but low lateral or bending stiffness to
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alow little moment transfer. Guidance on how to design the push rod can be found in

Refs.[3 1,321.

Apart from the effect of the push rod, shaker/structure interaction causes ‘notches' in the
input force spectrum at resonances of the structure [29,33]. Because little force is
required to produce a large response near resonances, a large amount of the force
generated in the shaker is used to excite the armature mass of the shaker. Fig.5.8 shows

shaker/structure model.

Y/

\k | Force Transducer

Rush Rod

M-

Tp Shaker
k

S

2L

Fig.5.8 Shaker/Structure Interaction
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The actual force applied to the structure can be calculated as follows:

p=f+mgx (5.2)

Fourier transform of equation (5.2) becomes

P(0o) = F(0) + mg H(0) F(w)

Thus

F(w) = Hi(w) P(0) (53

where H(0) is an inertance and

1
1 + mg H(0)

Hj(w) =

If P(0) is constant, the power spectra of input force and output response can be
expressed as
Grr(o) = | H;(w) | 2 Gpp

Gpp
(1+mgH(w))(1+msH"(w))

Gpp
1+ mg2[{Re(H(w))}2 + {Im(H(0)) }2] + 2 ms Re(H(w))

(5.4)

| H(o) |2 Grp(w)
I Hi(W) | 21 H(w) | 2 Gpp (5.5)

Gaa(w)
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5.4.6 MEASUREMENT NOISE

If measured signals f(t) and a(t) are contaminated by measurement noise, m(t) and n(t)

respectively, asin Fig.5.9, the FRF can be expressed as [34]

Gra(w) H(w)

Hij(w) = = 5.6
l Grr(w) L+ 50
Gaa(w)
Hy(w) = ————"— = H() (1 +10) (5.7)
GAF(®) ’
G . : .
' where r; is the input noise to signal ratio, —G—?}UM and r,, is the output noise to signal
. GNN
ratio, & = -
H(f)
u(t) 1 — h(t) v(1)
m(t) > > (1) n(t) > a(t)
Fig.5.9 Single Input Single Output with Measurement Noise

Near resonance, where r, may become negligible, H2(w) reduces bias error, while the

reverse applies near antiresonance.
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The coherence function can be expressed as

2
IGEA(®)! _ Hi(w) _ 1 (5.8)

) = Grr(®) Gaa(®@) Hyw) (@ +m)d+7T)

The presence of uncorrelated noise signals will be indicated in the coherence function.

5.5 SIGNAL PROCESSING ERRORS
5.5.1 LEAKAGE

Leakage is a phenomenon which may arise in the frequency domain description of a
signa due to the time limitation of the signal before the DFT (Discrete Fourier Transform)
calculation is performed. The DFT algorithm assumes that the signal to be transformed is
periodic in the time window. If the periodicity assumption is not strictly valid, energy in
one frequency region leaks into adjacent frequency regions causing the peak amplitudes

to drop and the amplitudes in valleys to rise.

The finite Fourier transform of x(t) can be viewed as the transform of an unlimited time

history v(t) multiplied by a rectangular window, u(t), defined by

u®) = 1 0<tsT
(5.9

0 otherwise

It follows that the Fourier transform of x(t) is the convolution of the Fourier transforms

of u(t) and v(t), namely,
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+00

X(0) = f U(Q-0) V(Q) dQ (5.10)

sin(wT/2) )
where U(0) = T { T2 et 0T2

Similarly, the estimated spectrum G(w) can be calculated by convolution of the window

spectrum W(0) and the true spectrum G(o) [35]:

Gw) = wW(o) * G(0)

+o0

= | W(@Q-) GQ dQ (5.11)

-00

in(wT/2)4 2
where W(0) = T T2

The shape of the window spectrum is shown in Fig.5.10.

0
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s 30 'y ) L v/ v o] \
< by I Uy 1y v | \
Ly 1 [ 1 !
by Ly iy 1 !
by 1y 1y v !
-40 1, [ Vg 1 '
Ly by [ 1 !
' by 1y 1 !
i :l H 1 :
_50 'l . " 'l /_\ |'l
0 2 6
Freq. (x 1/T)
Fig.5.10 Comparison of Window Spectra
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Leakage error is illustrated in Fig.5.11. Only in the case where the signal is periodic in
the time window (a), is the output spectrum correct. If the periodicity assumption is not
valid (b), the signal to be analysed has some very abrupt transitions at the ends of the

time record, and, as aresult, the DFT gives an erroneous resullt.

Leakage error can be reduced by
1) use of truly periodic excitation,;
2) increasing the frequency resolution; or

3) windowing or weighting functions

552 EFFECT OF WINDOW FUNCTIONS

By introducing a time window that tapers the signal so as to present a more gradua
entrance to and exit from the time history data to be analysed, the |leakage problem can be
reduced. Correct use of weighting functions is very important because the amount of
leakage may depend on the type of weighting function used in the analysis. The Hanning
window is normally used for continuous signals produced by random or sinusoida

excitations, while special force and exponential windows are used for impact tests.
The spectrum of a Hanning window, which is defined by
1 2nt
w(t) = i( 1 -COST) 0<t<T
(5.12)

= 0 otherwise

can be expressed as {36],
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(a) (b)
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Fig.5.11 Sample Length and Leakage of Spectrum
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21 sin2(wT/2)

W(co)_[3m2,r 31{( )2+( 21:2} T(2n)2

(5.13)
It can be seen in Fig.510 and Table 5.3 that the Hanning window gives better results

than the rectangular window when applied to a signal which is not periodic in the time

record.

Table 5.3 Comparison of Window Function:

Window 3dB Bandwidth] Highest Sidelobe| Sidelobe fall-off rate

Rectangular 09 Af -13dB 20 dB/decade

Hanning 14 Af -32dB 60 dB/decade___

The integration of equation (5.11) may readily be carried out numerically using

Simpson’srule

X
[fx)dx = h[%f;%fﬂ%ﬁ%ﬁi+---+%fN,2+§fN-l+%fN] + O(N- 4)

X

(5.14)

Therefore, if aHanning window is used, the estimated spectrum can be calculated by

Gi = 'Z'IT {% Was (Gisas + Gi2s) + %WI.S (Gins + Gias) + §W1 (G + Giy)

+ §W05 (Giwos + Gios) + %WOGi } (5.15)
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where W, is avalue of window spectrum at '; Hz

G, isavalueof hue spectrum at -',I: Hz

5.5.3 EFFECT OF AVERAGING

Averaging errors can be divided into two types, bias errors and random errors. Bias
' errors are systematic errors introduced in the measurement or in the anaysis, while

random errors are the standard deviations of the estimates which are due to the fact that

averaging is not performed over an infinitely long time.

5.5.3.1 FRF Estimates

When a FRF is estimated using Hj(®) or H2(®), and the signals are random, there is a
random error in both magnitude and phase. The normalised random error for the

magnitude Ii(w)! and random error for the phase angle &(w) are given by [34]

1-7y2(w)

Hw) 1= 1 5.16

e[ H(w)t ] \/72(w)2nd (5.16)

of $(w)] = sin" (g, IA(w) 1} (5.17)

., Wherey2(w) is coherence and ng is the number of averages.
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5.5.3.2 Coherence Function Estimates

The coherence function is estimated with only alimited accuracy from the auto and cross

spectra estimates

| Gea(w)l 2
5.18
Ger(w) Gaa(w) (518)

Po) =

The normalised random error is given by [34]

V2 (1 - y2(®)) (5.19)

e P(w) ] =
V 72(®) ng

5.6 MODAL ANALYSIS ERRORS

Once FRFs are obtained, modal parameters can be extracted from the FRFs using one of
various curve-fitting methods. This phase is often caled ‘moda analysis. Whatever
methods are used, the task is the same: to find the coefficients in a theoretical expression
for the FRF which most closely matches the measured data by using a least-squares

method which can remove random errors in the FRFs.

There are many curve-fitting methods available [29] and they can be categorised into two
groups - globa or individua analysis. In global analysis, al the measured FRFs are
analysed at the same time to extract the modal parameters for a given mode or modes. On

the other hand, in individual analysis, one FRF is anaysed at a time, therefore, to get

modal parameters, all the FRFs should be analysed one by one.
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Individual FRFs tend to exhibit dlightly different modal parameters (natural frequencies

and modal damping) because of:

1) mass loading effect of transducers,
2) shaker/structure interaction;
3) changes made to the structure during test;

4) nonstationarities of the structure and measurement system,

al of which will vary during the prosecution of the test. One of the main difficulties in

individual analysis is the creation of a consistent data base from individually analysed

FRFs because of these variation.

5.6.1 CIRCLE-FIT MODAL ANALYSIS

Near the resonance under study, the effect of all the other modes - which may be either
constant or frequency-dependent - can be eliminated using an appropriate technique [29],
thus, the behaviour of the structure can be dominated by a single mode. The Nyquist plot

of FRF data for the mode can be treated as a circle [29].

The estimated FRF using a DFT analyser can be expressed as

o

5 [ Gxx(@ W(Q-0) d@
Ba@) = o ™
X

[ 6xr@) W(Q-0) d@




[5] Errors Involved in Modal Parameter Estimation fi-om Test Data

126

o0

[ IH@Q)? IH;(Q)12 Gpp W(Q-0) dQ

o0

02-Q2+in; 02

_O‘IIH(Q)ﬂ A

1
1-mgQ2 H(R)

where H;(Q2) =

If we define

(= =)

Ci = [IH@QRIH(Q)2 W(Q-0)dQ

(=~

[ @2 @) IH;©@)12 W(Q-0) dQ

C

equation (5.20) becomes

Ay

C .
02 - ’C‘%"‘ i N2

A (w) -

Similarly,

Grx(w)

ﬁ =
1(w) Eer(®)

o0

JIH(Q)P @ -

-0

A

(H(o) ;

IH;(Q)12 Gpp W(Q-00) dQ

(5.20)

receptance)

(5.21)

2_; 2
2% - 100 O 1 0)12 Gpp W(Q-0) dQ

o0

[ IHj(Q)12 Gpp W(Q-00) dQ
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2
- Wlf g—; {(mrz-g—;) + 12 m,4} () (5.22)

©0O

where C3 = j lHi(Q)l2 Gpp W(Q-w) dQ2

By comparing equation (5.21) with the true FRF, it can be shown that the Hy(w)

estimates lie on the true modal circle but in the wrong positions around the circle. ﬁz(co)
and H(o) values are identica if %- = w2,which is only satisfied at very fine frequency

1

resolution. In contrast, it can be shown that A;(®) has the same phase angle as f,(w)
but the magnitude is smaller and, as a result, aways lies inside the true modal circle, by
comparing equations (5.21) and (5.22). If the frequency resolution is increased, so
reducing the leakage error, f1;(w) tends to A,(w) which, in turn, tends to H(o).

Curve-fitting concentrates on a few data points near resonance. If these data points are
polluted by noise, or the frequency resolution is not sufficient to extract an accurate circle
fit, this method may not be reliable. It aso should be noted that these points (together

with data points near antiresonances) are most liable to leakage and other errors.

5.6.2 LINE-FIT MODAL ANALYSIS

This method uses the fact that the reciprocal of receptance for a SDOF system has a very

simple form when plotted as the real and imaginary part against frequency (or

(frequency)?).
For a SDOF system,

a-l(0) = k-mw?+id and/or +iwc (5.23)
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If Re (a-l(w)) is plotted against w2, then the result is a straight line whose intercept on

the frequency axis gives the resonance frequency and whose slope gives the effective

mass. If | m (a-1(0)) is plotted against w, then the slope of the line indicates the
magnitude of the viscous damping and the intercept on the magnitude axis gives the level
of structural damping. This technique can be extended to MDOF systems by subtracting

the effects of other modes before performing the analysis.

This method is useful for modes with insufficient data for circle-fitting, and is less
sengitive to leakage errors than is circle-fitting because the data used are away from the
immediate resonance region and the leakage error becomes maximum at the region and

decreases very rapidly as the frequency moves away from resonance.

5.7 NUMERICAL CASE STUDIES

To investigate measurement errors - such as the mass loading effects of transducers,
shaker/structure interaction, signal conditioning errors, signal processing errors etc. - on

FRFs, a computer program has been written which can simulate the various measurement

errors described above (Appendix E).

The test structure used in the following examples is a beam shown in Fig.5.12. The
structure was considered to be “excited” at a free end of the beam by a shaker whose
armature mass was 20 g. Periodic random excitation was “applied” throughout these case
¥ studies except in the case of leakage in which case pure random was also used for
comparison. The response of the structure was “ measured” using an accel erometer whose
mass was 20 g. A force transducer of 10 g was assumed to “measure’ input force. A
two-channel FFT analyser which has 801 lines of frequency resolution was used to

obtain frequency response functions.The frequency range of interest was O - 800 Hz.
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! E, = 2.09x10''N/m? E;= 2.09x10''N/m? Ey= 4.18x10''N/m?

Fig.5.12 Beam Structure

Input and output noise was assumed to be white noise. The ratio of the noise spectrum to

the signal spectrum, r, which is defined as
r = Gn/Gg

where Gg isasignal spectrum, Gy is a noise spectrum and Gs which is defined by

J"”“ Gs(o) do
0

Gs =

Oy

was assumed to be 10-3 for the input(force) signal and 10 for the output(response)
® signal. The autospectra of input and output signals - noise free - and random noise are

shown in Fig.5.13.
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Fig.5.13 Autospectra of Input and Output Signals & Noise

5.7.1 MASS LOADING EFFECT

To investigate the mass loading effect of an accelerometer, the mass of the accelerometer
was increased from 20 g to 100 g. The natural frequencies of all modes decreased
(Fig.5.14). The natural frequency of the 6th mode decreased most because this mode has

the smallest apparent mass, while that of the 5th mode hardly changed because that mode

has the largest apparent mass.
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Fig.5 14 Mass Loading Effect

5.7.2 SHAKER/STRUCTURE INTERACTION

From equation (5.4), it can be shown that the force spectrum near aresonance is given by

Gpp

Grr(w) =

n?

2 2
1 + My 1‘\r

if Ar is assumed to be real. The amplitude of the force spectrum at resonance decreases as

the armature mass of the shaker increases - approximately proportiona to the inverse

sguare of mg - as shown in Fig.5.15. The resulting FRFs are compared in Fig.5.16. The

only differences are around resonances, where the heavier armature mass makes the

coherence drop.




Errors Involved in Modal Parameter Estimation from Test Data

132

——CFF(aoc)>
—— GFF(108G

Je.e

10.0 +

Wi NCrcooXx

-10.0 +

-20.9 4

~30.01.X-83

168. 1 3ze. 488. 640. 868,
FREQUENCY (Hx)

Fid.15 Force Spectra




[5] ErrorsInvolved in Modal Parameter Estimation from Test Data 133
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5.7.3 RANDOM NOISE EFFECT

Usudly, in modal analysis, only those FRF data near resonances are used to extract the

modal parameters. In these regions, H,(w) reduces bias error from random noise because

1, may become negligible (equation (5.7)).

The output noise spectrum of T, =10, which may be achieved easily in random
excitation, is shown in Fig.5. 13 together with output signal spectrum. From Fig.5.17, it
can be seen that near resonances, where curve fitting is usually performed, the effects of
measurement random errors can be ignored. For example, near the 5th mode (f, = 309.8
Hz) which has maximum bias error, 304 Hz - 312 Hz, where curve fitting for the mode is

usually performed, the normalised bias error islessthan 4 % (0.06 - 3.2 %).

H1701 ERROR1

~———- RE1701

78.8

" 12.0 + /\

:

L

H

4 -%.0 1 - k] !

B i (1 ]m{w
1

-104.0 see

Fig.5.17 (a) Random Noise Effect (t,=10%)
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Fig.5.17 (b) Random Noise Effect (T.=103)

574 AVERAGING EFFECT

Averaging can reduce random errors in the FRFs and coherence estimates, but cannot

reduce bias errors which may be caused by measurement noise, leakage, etc.

Random errors in FRFs and coherence estimates can be calculated using equations
(5.16). (5.17) and (5.19). The lower the coherence is the more averages have to be
performed to get a certain statistical accuracy because random errors are proportional to

(ng)'?. Fig.5.18 shows the estimates of IH,(w)! and y*(w) for different numbers of

averages.
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5.7.5 LEAKAGE ERROR

As discussed in sections 5.5.1 and 5.5.2, leakage causes deformation of the estimated
spectra and therefore leads to bias errors in FRF estimates. If the resolution in the
analysis is too coarse, compared with the bandwidth of the resonances, the coherence can
detect this leakage by giving a value less than one around resonances and antiresonances,
asin Fig.5.19. The coherence therefore gives a warning of potential bias errors in the
FRF estimates. Fig.520 shows the relative error between true and estimated FRFs which

is affected by leakage. It can be seen that the most contaminated regions are near

resonances and antiresonances.
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Fig.5.19 Leskage Effect
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As discussed in section 5.6.1, A, (w) is less sensitive to the leakage errors than is A, (w)
because H,(w) lies on the true modal circle (but in the wrong position). However, if the
frequency resolution is insufficient for a mode to encompass some part of the modal
circle, modal parameters extracted by circle-fitting may not reliable, as shown in

Fig.5.21.

FO DF X AXIS Y AXIS INDEX
1.8

FILE MAME |[TITLE T |E |R [NOF]
LZIIm _FRF LXB2, Mu-188, ha-B pJ 1

4

nODE 2

REEErELE D
e wvorcooa

L PREEKY (N>

EE T ™

L
L O-FIT FOR MODE 2
T NATURAL FREQUENCY (Hz) = €3.40
7. DAMPING (STRUCTURAL) = -Z.0038

BEF

\:::“-"‘.l' MOD. COMST.MAG (1/Kg> =  .658
‘—““._‘;_?:a.!i' MOD. CONST. PHASK (o) = -43.442
=S % RADIUS VARIATION = .84

¥ BAMPINC UARIATION = &66.70

Fig.5.2 1 Leakage Effect on Circle-Fit ]

Fig.5.22 shows a Modified Line Fit analysis (or Bendent Method; see Appendi« F) on
the 2nd mode. It can be seen that the effect of leakage is dominant only near resonance

and, therefore, has little effect on the extraction of modal parameters.
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5.8 MODEL UPDATING OF BEAM STRUCTURE

The structure which featured in § 5.7 was a so used to check the validity of the IEM on a
practical structure which has realistic measurement errors. 20 beam elements were used to
create an anaytica model of the structure and 2 DoFs- one trandational and one
rotational DoFs - were considered at each node. Mass and stiffness modelling errors were
introduced by overestimating the density of the 1st and 2nd elements by 100 % and the
Young's Modulus of the 1 1th and 12th elements by 100 %, as shown in Fig.5.12.

A total of 11 points were “ measured” in the vertical direction (Fig.5.23) using periodic
random excitation in the frequency range of 0 - 800 Hz with excitation applied at a free
end of the structure. The ratio of noise to signal spectra was assumed to be 10-3 for force
and 10 for the response. An accelerometer of 20 g was moved from one location to the
next location in order to measure all FRFs. As aresult, each measured FRF was expected

to have different mass |loading effect.

/ /
1 2 3 4 5 6 7 8 9 10 11
) ® ® ® ® ® ® ® 0 0 ¢
T Excitation
Fig.5.23 Measurement Points




[5] Errors Involved in Modal Parameter Estimation from Test Data 142

Fig.5.24 shows one point and severa transfer FRFs. In the measurement frequency

i‘ range, 8 flexible modes are clearly seen.

—PBO181 pB17@1 DPB33G1
-——DBuyyl -——PB23681 -——DB4181 !

TR N CUYoxX

-40.0 t t t t
1.E-83 168. 3ze. 488. 640. 808,

FREQUENCY (Hzx)

Fig.5.24 Point FRF and Transfer FRFs

The modal parameters of an individual FRF were extracted by modified Line Fit analysis
using MODENT program [37]. All the identified modal parameters which exhibited
dightly different values (natural frequencies and modal dampings) were then collated to
obtain consistent modal parameters using MODESH [38]. The resultant parameters can be
p seen in Table 5.4. The first 8 “experimental” and initial analytical natural frequencies are

compared in Table 5.5.
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Table 5.4 Modal Parameters of "Experimental” Data

Natural Freq (Hz) Modal Damping (%)
Mode| Min Max Mean SD Min Max Mean SD
1 229 23.0 23.0 0.05 | 0.98 1.09 1.02 0.04
2 62.2 62.8 62.6 0.17 0.%4 0.60 0.57 0.02
3 126.3 | 127.1 126.8 | 0.24 | 051 0.54 0.53 0.01
4 208.6 | 210.2 209.7 0.46 0.50 0.53 0.52 0.01
5 308.2 | 309.8 309.2 | 058 [ 050 | 0.53 0.52 0.01
6 438.1 441.2 440.2 0.87 0.50 0.52 0.51 0.01
7 567.2 | 570.6 569.3 | 098 | 051 0.51 0.51 0.00
8 749.0 | 7534 751.7 1.24 0.50 0.52] 051 I 0.01

Table 5.5 Natural Frequencies of “Experimental” and Initial Analvtical Models

Mode 1 2 3 4 5 6 =7 8
LMD 23,0 | 62.5 | 126.8 | 209.7 | 309.2 | 440.2 | 569.3 | 751.7
f\H2)|l 23.6 | 652 | 127.8 | 211.3 | 315.7 | 441.1 | 587.5 | 755.2
MAC [ 0.959 | 0.952 | 0.962 | 0.956 | 0.962 | 0.928 | 0.931 { 0.904

In the error location procedure, 5 macro elements were used and each macro element had

4 individua elements. The error location results are shown in Fig.5.25 and Table 5.6.

After 4 iterations, it became possible to locate possible error regions - 4 mass el ements

and 12 stiffness elements.
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Fig.5.25 Error Location Results
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Mode 1 2 3 4 5 6 7 8
SxH2)H 23.0 | 62.5 | 126.8 | 209.7 | 309.2 | 440.2 | 569.3 | 751.7
fuH2) R 23.1 | 61.7 | 126.7 | 205.8 | 313.9 | 440.0 | 578.1 | 748.6

MAC § 1.000 | 0.995 | 0.987 | 0.988 | 0.980 | 0.993 | 0.994 | 0.988

After locating possible error regions, the updating was carried out with the correction
coefficients calculated as initial values. It can be seen in Figs 5.26 and 5.27 that the
estimates became quite accurate after 5 iterations. The natural frequencies of the updated

analytical model are compared with the experimental ones in Table 5.7.

Table 5.7 Natural Frequencies of “Experimental” and Undated Models

Mode 1 2 3 4 5 6 7 8
SxH2) [ 230 | 625 | 126.8 | 209.7 | 309.2 | 440.2 | 569.3 | 751.7
LH) | 228 | 62.3 | 1265 [ 209.7 | 309.1 | 441.0 | 570.2 | 753.7

MAC | 0.999 | 1.000 | 1.000 { 0.999 | 1.000 { 0.999 [ 0.999 | 0.999
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5.9 CONCLUSIONS

The characteristics of typical measurement errors might not result in random variationsin
the modal parameters which are eventually derived from the measured data. For model
updating methods to be useful in practical application, various error sources in testing -
such as the mass loading effect of transducers, shaker/structure interaction, etc. - should

be considered and more realistic errors rather than random noise should be included in the

“experimental” data

The errors involved in modal parameter estimation - such as measurement errors, signa
processing errors and errors in modal analysis - have been investigated, and their effects
on estimated FRFs and on the modal parameters extracted from the FRFs have also been
investigated. A computer program has been written to simulate various measurement and
signa processing errors. The “experimental” FRFs calculated using this program can be
used to test the performance of different modal parameter identification programs and,

thus, of the various applications to which these modal data are put.

The resultant “experimental” modal data which contained representative experimental
errors have been used to update the corresponding analytical beam model to check the
validity of the IEM. The mismodelled regions were |ocated successfully, and the updating
results were found to be quite accurate, not only in moda parameters but aso in

correction coefficients or physical design variables.
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CHAPTER 6

. UPDATING OF DAMPED STRUCTURES

6.1 PRELIMINARIES

In the previous Chapters, location of mismodelled regions in an analytical model and
updating the model were carried out using corresponding experimental modal data which
were al red (i.e. for undamped systems). However, in most cases, experimental modal
datafrom areal structure are not real but complex, even if the structure is lightly damped.
If astructureislightly damped, the modal data from measurement are often treated as real
modes, and the method suggested in Chapter 3 can be used to update the corresponding
analytical model. However, some practical structures are more heavily damped and the
measured moda data cannot be regarded as real, whereas the modal data from the

corresponding (undamped) analytical model are real.

There are two possible approaches to resolve this incompatibility. One approach is to
deduce the undamped modes - real modes - from the measured complex modes
[19,39,40]. Then the method suggested in Chapter 3 can be used to update the analytical
model using the deduced real modes. However, the deduced real modes are often only a
rough approximation because the experimentally identified complex modes are incomplete

and the deduction itself relies on the analytical model which is erroneous.
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An dternative approach is to use the experimental complex modes directly to update the
analytica model. A method has been developed by He [17] to locate the damping
elements in an analytical model using measured complex modes. However, this method
requires a complete set of measured coordinates, which is not practical, or the use of
mode expansion, which may be an erroneous procedure thus jeopardising exact location,
in order to overcome the incompatibility between the measured modes and the analytical
model. In this Chapter, a complex inverse eigensensitivity method will be introduced to
locate and to update the damping elements together with the mass and stiffness elements

which have modelling errors, using measured complex modal parameters.

6.2 COMPLEX EIGENSENSITIVITY

The updated damping matrix can be expressed as equation (6.1) in the same way as the

mass and stiffness matrices in equation (3.1) and (3.2)
L
Dyl = 2, ¢, DI, 6.1)
i=1

where L is the number of elements, ¢; are correction coefficients to be determined and [D];

isasubmatrix of the system damping matrix.

The governing equations of motion for a MDOF system with structural damping and no

external forcing can be written in matrix form as:
IMI{x) + [K]{x} +i [D}{x} = {0} (6.2)

By assuming a solution of the form:
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(x) = (x} e
' e can obtain a complex eigenproblem

([K]+i[D] - A, [M]) (¢}, = {0} (! =21) (6.3)

where {¢}, isnormalised such that

{(0)TM] (9}, = 1 (6.4)

The solution of this eigenproblem is in the form of two matrices containing complex
eigenvalues and complex eigenvectors in contrast with the undamped case where

eigenvalues and eigenvectors are all real.

Differentiating equa:ion (6.3) with respect to updating variable p; gives

K d[D] oA o[M 3
_}Tpi_]— + 1 %m—g] - 5p. (M1 - Ay “E)Ei‘]){¢},+([K]+i[D]-x*[M])_(,§_§h — (0)
(6.5)
Pm-multiplying equation (6.5) by (¢)7 leadsto
o, - ‘W(?[p_i]“ %ﬁil ){‘“r A 9} 5p, (0); (6.6)

The eigenvector derivatives can be expressed as linear combinations of all eigenvectors of
the system if the eigenvalues are assumed distinct, because N eigenvectors are linearly

independent and they can be used as a set of bases vectors for spanning N-dimensional

- gpace. Thus,
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N

3 .
—%% = 2 ool 6.7)

fj=1

Substituting equation (6.7) into equation (6.5) and pre-multiplying equation (6.5) by
(6}

K a D] A, o[M
{«MT(3 K, el ;] L[M] - A %—]){¢1 + {¢)T (K] +i [D] - A, M)

ap;
i le ai{0);=0 6.8)
If k1,
{¢}T(3[K]+135§] A a[ap ){¢},+ ol (A-2) =0 (6.9)
Thus,
o = O (“ap, + o 2o )10, 6.0

lr' 7t'k

ol can be obtained by differentiating equation (6.4) with respect to p;

d
2{¢}?[MJ—§%} + f¢}"f ap {6}, (6.12)

" Substituti ng equation (6.7) into equation (6.11) leadsto

M]

8
o = 51075 (9), (6.12)
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From equations (3.1), (3.2) and (6. 1), we get
o) d
Qa‘a[M]F[ML S, = [0 - o
J[K d[K]
%%(i—] _ (0] —a[b—i] = K], % = [0 (6.13)
) d[D]
=10 - o %, = D)
Substituting equation (6.13) into equation (6.6) leads to
oA
3o = - A 01T M, (0], (6.142)
oA
5% = (0)TIK (o), (6.140)
oA
== =i(0)," D], (¢}, (6.14c)
and substituting equation (6.13) into equations (6.10) and (6.12) leads to
o0}, _ ﬁi i (0], (6.15a)
aai =1 T} J
A (0T IM; (0} (1)
i lr' )'j
oy =
1 s
) {¢)jT [M], {¢},— (r=])
3 N
_é%h _ ;% Bi(6), (6.15b)
1 )=
{¢]iT [K]1{¢]r (I'#j)
Br', = A- lj

0 (r=j)
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Ao = .
gi% = ,-?13 () (6.15¢)

i{¢});T (D]; {9},
| Vi = AR
0 (r=j)

(r#})

If we assume that the element damping matrix has the same distribution as the element

stiffness matrix, i.e.,
[D]i =Q [K],
(noting that this assumption is not the same as [D] = a[K], which is “proportional”

damping, since the modal parameters generally remain complex under the assumption

[D]; = a[K],), then acomplex stiffness matrix [K*] which is defined as:

L L
[K¥]= [K]+i[D] = 3 b, (K], +i 2 c;[D]
i=l i=Il

can be expressed as.
L
K* = Z-.(b‘ +i ac) K]

L
= 2 b}IK],
i=l
where bl = b, +i a c;

Therefore,

obt T

1

d[K*
IAKY _ Kk
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Substituting equation (6.13) and (6.16) into equation (6.6), (6.10) and (6.12) leads to

' oA
| e SR T
| ab}‘ = {¢}," [K], {9},

)
—“%}‘ E B.i(6);

(0).T [K]; (¢}, .

i, = A, (r#1)

0 (r:_i)

The first-order Taylor expansions of the modal parameters can be written as:

(A " oA N M N
|| F e e S S
{Aq)}l a{¢A}1 a{¢A}1 a{¢A}1 a{¢A}1
da, day, ab} ab;
4 =
axm oA Mary
8y da [*m aaAL / Ao ab T
Xm a{¢A}m e a{q)A}m a{q)A}m . a{¢A}m
{40} . Oa dag, ab} ab,

or
(Blmm+y x 1 = ISV mn+1) x 2L (BPlar x 1

(6.16a)

(6.16b)

(Aa; )

Agy
Ab;

~

\Ab[/

(6.17)

which is very similar to equation (3.23). However, in equation (6.17), {A), [S] and

{Ap) are not red, as in equation (3.23), but complex. The real parts of a; (i =1,2,...,L)

represent mass correction coefficients and the real parts of b; (i=1,2,..., L) represent
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stiffness correction coefficients, while the imaginary parts of b; represent damping

correction coefficients.

The correction coefficients vector (Ap) can be calculated as:
(Ap)= (ST [SH! ST (A} (6.18)

then, { Ap) is added to the solution vector to update the vector

{P}rew ={Ploa + (AP} (6.19)

and the process is iterated until convergence is achieved.

6.3 APPLICATION TO THE BAY STRUCTURE

The structure which had been used in previous Chapters (Fig.2.2) was used again to
check the validity of the method proposed above. The structure is modelled by 31 beam
elements, and 3 DoFs are considered at each node, so that the total number of DoFs (N)
is 90. Experimental data were obtained at 15 points as shown in Fig.2.2 in trandational

coordinates only (i.e. n = 30). Thefirst 10 experimental modes were used (i.e. m = 10).

Mass and stiffness modelling errors were introduced by overestimating the mass matrices
of the 25 and 26t elements by 50 % and the stiffness matrices of the 12th, 13th and 31st
* dlements by 100 %. In addition, the 15t and 2™ elements were supposed to have damping

of [D];= 0.05 [K]; (Case 1; lightly damped case) and of [D]; = 0.3 [K]; (Case 2; more

heavily damped case).
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6.3.1 CASE 1

It should noted that the modal parameters of the ‘analytical’ model (undamped) are redl
while those of the ‘experimental’ version are complex because this system is damped.
The modal parameters of the first 10 ‘experimental and analytical modes are compared in

Table 6.1 together with MAC values. For complex modes, MAC can be expressed as.

| (6,)7 (9,)] |
| (0,37 (0,37 | (6x}] (04)]

MAC(A; X)) =

It should be noted that the MAC values are still real even if mode shapes are complex.

The eigenvectors of the first two ‘experimental’ and analytical modes are compared in

Tables 6.2 and 6.3.

Table 6.1 Natural Frequencies of 'Experimental’ and Analvtical Models (Case 1)

Mode Experimenta Analytical MAC

No. Nat. Freos. Loss Factors Nat. Fregs. Vaues
1 343.3 0.003 342.3 0.995
2 468.1 0.002 450.6 0971
3 548.2 0.012 528.5 0.948
4 577.7 0.002 557.2 0.966
5 704.4 0.007 683.4 0.960
6 850.9 0.004 833.7 0981
7 917.2 0.003 902.3 0.914
8 928.9 0.000 927.0 0.814
9 1099.4 0.002 1066.6 0.862
10 1205.0 0.006 1165.3 0.927
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Table 6.2 Eigenvectors of 'Experimental' and Analytical Models (Case 1: Mode1)

Coords | Exp.(x107) Anal.(x10?") |} Coords | Exp.(x101) Anal.(x10%)
| 0.723(0°) 0.748(0°) 41 0.253(180™) | 0.246( 1807
2 0.260(0°) 0.236(0°) 46 0.202( 180" | 0.123(180°)
7 0.355(0°) 0. 370(0°) 47 0.254(1S0") | 0.244(180°)
8 0.260(0°) 0.248(0°) 52 0.316(0°) 0.380(0°)
13 0.134(175°) | 0.134( 1807 53 0.231(180°) | 0.220( 1807
14 0.234(0°) 0.233(6°) 58 0.726(0°) 0.754(0°)
19 0.578(180™) | 0.593( 180" 59 0.205(180°) | 0.192(180°)
20 0.193(0°) 0.205(0°) 67 0.715(0°) 0.740(0°)
22 0.733(180°) | 0.754( 1807 68 0.080(2°) 0.072(0°)
23 0.176(0°) 0.192(0°) 76 0.406(- 17 1.398(0°)
28 0.717(180°) | 0.742(1SO" 77 0.1 54(0°) ).121(0*)
29 0.016(-177°) | 0.019( 1.807 82 0.159(-179°) | ).138(180°)
37 0.725(-179°) | 0.748(180°) 83 0.415(-178°) | ).420(180°)
38 ).243(180°) [ 0.236(180°) 88 0.648(180™) | ).610(180°)
40 ).651(180°) | D.585(180°) 89 0.222(1S0™ | ).188(180°)
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Table 6.3 Eieenvectors of 'Experimental’ and Analytical Models (Case 1: Mode?2
Coords. | Exp.(x10") Anal.(x10") |} Coords. | Exp.(x101) Anal.(x107)
1 0.058(-176°)| 0.008(180°) 41 0.017(-160°) | 0.020(180°)
2 0.046(173°) | 0.024(180°) 46 0.389(- 178”) | 0.459(180°)
7 0.459(177°) | 0.353(180%) 47 0.053(-175°) | 0.060(180°)
8 0.047(175°) | 0.033(1807) 52 0.476(-179°) | 0.459(180°)
13 0.579(178°) | 0.496( 1807 53 0.145(-179°) | 0.143(180°)
14 0.102(179°) | 0.097(180°) 58 0.269(180°) | 0.196(180°)
19 0.342(179°) | 0.354( 180" 59 0.265(180%) | 0.250(180°)
20 0.188(180°) | 0.195(180°) 67 0.117(-179°) | 0.061(180°)
22 0.129(-177°) | 0.196(180°) 68 0.207(179°) | 0.172(180%)
23 0.238(180°) | 0.250(180°) 76 1.289(0°) 1.220(0°]
28 0.043(-173°) | 0.102(180°) 77 0.786(0°) 0.738(0°)
29 0.192(-179°) | 0.223(180°) 82 1.410(0°) 1.520(0°)
37 0.034(-7°) 0.008(180°) 83 0.850(0°) 0.926(0°)
38 0.024(-164°) | 0.024( 180°) 88 0.387(0°) 0.669(0°)
40 0.064(-175°) 10.195(180°) 89 0.206(1°) 0.399(0°)
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The Macro 1 model (Fig.3.3) which has 8 macro elements (i.e. L = 8) was used in the
error location procedure. This means that no macro element coincided exactly with any of

the error regions. A necessary condition for the sensitivity [S], which is m(n=l) x 2L, to

be rank full is:

2L
m(n+1)>2L or m> nrl

However, the eigenvector sensitivities are not always linearly independent. In practice,
the number of measured modes should be more than twice of the minimum number in

order to give a high probability of sufficient rank to matrix [S]. In this case study, 10

modes were used as mentioned above.

The location process took 5 iterations to convergence and 27 elements - 9 mass elements,

11 stiffness elements and 7 damping elements - were identified as possible error regions

as shown in Fig.6.1.

The resultant natural frequencies of the ‘improved’ analytical model are compared with

those of the ‘experimental’ modes in Table 6.4.

Table 6.4 Natural Freguencies of ‘Experimental’ and Intermediate Models (Case 1)

Modefi 1 2 3 4 5 6 7 8 9 10

fy H2)[l 343.3468.1 [ 548.2 |577.7 | 704.4 | 850.9 | 917.2 | 928.9 | 1099.4 { 1205.0
f.Hz)[347.91462.9 | 545.1 [ 586.7 | 705.1 | 858.6 | 921.6 { 928.5 | 1082.911192.9
MAC J 0.992]0.986 [ 0.976 | 0.979 ] 0.982 ] 0.984 [ 0.991 | 0.979 | 0.989 | 0.982
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Using the error location results, updating was carried out by correcting the selected errors
in the original analytical model. The iteration results of this stage are shown in Figs.6.2,
6.3 and 6.4, from which it can be seen that the final estimates become very accurate after
"5 iterations. Natural frequencies of the updated model are compared with ‘experimental’

natural frequencies together with MAC values in Table 6.5.

Table 6.5 Natural Frequencies of ‘ Experimental’ and Updated Models

Mode| 1 2 3 4 5 6 7 8 9 10

fx H2)fi 343.3]468.1 | 548.2 | 577.7 | 704.4 | 850.9 [917.2 | 928.9 | 1099.4 | 1205.0
.2 [1343.31468.1 | 548.2 [ 577.7 | 704.4 | 850.9 ] 917.2 | 928.9 | 1099.4 | 1204.9
"|MAC§ 1.000] 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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Using the error location results, updating was carried out by correcting the selected errors
in the original analytical model. The iteration results of this stage are shown in Figs.6.2,
6.3 and 6.4, from which it can be seen that the final estimates become very accurate after

'5 iterations. Natural frequencies of the updated model are compared with ‘ experimental’

natural frequencies together with MAC values in Table 6.5.

Table 6.5 Natural Frequencies of ‘ Experimental’ and Updated Models

Mode| 1 2 3 4 5 6 7 8 9 10
fx H2)fi 343.3]468.1 | 548.2 | 577.7 | 704.4 | 850.9 [ 917.2 | 928.9 | 1099.4 | 1205.0
f,H2)[1343.31468.1 | 548.2 [ 577.7 | 704.4 | 850.9 | 917.2 | 928.9 | 1099.4 | 1204.9

"|IMAC§ 1.000] 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000
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Fig.6.2 Model Updating Results (Case 1; First Iteration)
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Fig.6.4 Model Updating Results (Case 1; Fifth Iteration)
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6.3.2 CASE 2

For the more heavily damped case, the damping properties in the 15t and 2™ elements

were increased to 0.3 [K],. The modal parameters of the first 10 ‘experimenta’ and

analytical modes are compared in Table 6.6 together with MAC values. The eigenvectors

of the first two txperimental’and analytical modes are compared in Tables 6.7 and 6.8.

Table 6.6 Natural Frequencies of 'Experimental’ and Analvtical Models (Case 2)

Viode Experimental Analytical MAC
No. Nat. Fregs. Loss Factors Nat. Fregs. Values
1 344.3 0.019 w 342.3 0.992
2 469.2 0.013 450.6 0.967
3 552.1 0.071 528.5 0.927
4 578.5 0.013 557.2 0.960
5 704.7 0.043 683.4 0.948
6 852.8 0.024 833.7 0.978
7 918.7 0.018 902.3 0.885
8 928.9 0.002 927.0 0.791
9 1100.5 0.010 1066.6 0.854
10 1206.2 0.038 1165.3 0.890
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Table 6.7 Eigenv of "Experimental' and Analvtical Models 2: Mode 1
Coords. | Exp.(x101) Anal.(x10") | Coords | Exp.(x107) Anal.(x101)
1 0.717(-2°) 0.748(0°) 41 0.256(-178°) | 0.246( 180"
2 0.259(2°) 0.236(0°) 46 0.204(-178°) | 0.123(180°)
7 0.379(12°) 0. 370(0°) 47 0.255(-179°) | 0.244( 1807
8 0.262(1" 0.248(0°) 52 0.315(-1°) 0.380(0°)
13 0.117(153°) | 0.134(180°) 53 0.231(180°) | 0.220(180°)
14 0.235(1°) 0.233(0°) 58 0.730(0°) 0.754(0°)
19 0.574(178°) | 0.593( 180" 59 0.203(177) | 0.192(180°)
20 0.194(1°) 0.205(0°) 67 0.71 l\Z-Jl°) 0.740(0°)
22 0.735(180™ | 0.754(180°) 68 0.084(8°) 0.072(0°)
23 0.177(1°) 0.1 92(0%) 76 0.399(-4°) 0.398(0°)
28 0.719(180°) | 0.742(180°) 77 0.153(-2°) 0.121(0°)
29 0.017(-167°) | 0.019(180°) 82 0.166(-172°) | 0.138(180°)
37 0.727(180™) | 0.748( 180" 83 0.452(-173°) | 0.420( 180"
38 0.247(-177°) | 0.236(180°) 88 0.652(-179°) | 0.610(180°)
40 0.653(-179°) | 0.585(180°) 89 0.227(-177°) | 0.188(180°)
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Coords. | Exp.(x107) Anal.(x10") | Coords. | Exp.(x10') | Anal.(x107)
1 0.064(-162°) |0.008( 180°) | 4 1 0.027(-1297) | 0.020( 180"
2 0.035( 140y | 0.024( 180T 46 0.412(-173°) | 0.459(180°)
7 0.411(163°) 0.353(180°) |4 7 0.060(-158°) 0.060( 1807
8 0.041(154°) 0.033(180°) |5 2 0.493(-175°) 0.459( 1807
13 0.542(169°) 0.496( 1 80°) 53 0.149(-175°) | 0.143(180°)
14 0.100(171°) | 0.097(180°) |5 8 0.270(180°) | 0.196(180°)
19 0.337(177°) | 0.354(180°) 59 0.265(180°) [ 0.250(180°)
20 0.190(178°) | 0.195(180°) 67 0.121(-175°) | 0.061(180°)
22 0.142(-168°) | 0.196(180°) <68 0.199(173°) | 0.172(180°)
23 0.242(179°) | 0.250(180°) 76 1.299(1°) 1.220(0°)
28 0.055(-154°) { 0.102(180°) 77 0.800(2°) 0.738(0°)
29 0.205(-174°) | 0.223(180°) 82 1.419(1°) 1.520(0°)
37 0.026(-38°) | 0.008(180°) 83 0.856(0°) 0.926(0°)
38 0.036(-134°) | 0.024(180°) 88 0.381(-2°) 0.669(0°)
40 0.076(-158°) | 0.195(180°) 89 0.198(-8°) 0.399(0°)




D Updating of Damped Structures

170

The same macro model as that of Case 1 was used for error location. It took 6 iterations

to converge and 27 elements - 9 mass elements, 11 stiffness elements and 7 damping

! dements - were identified as possible error regions, as shown in Fig.65

The resultant natural frequencies of the ‘improved’ analytical model are compared with

those of the ‘experimental’ modesin Table 6.9.

Table 6.9 Natural Frequencies of 'Experimental’ and [ntermediate Models (Case 2)

Mode

10

f H2)} 3443

469.2

552.1

578.5

704.7

852.8

918.7 1928.9 |1100.5

1206.1

f, ()} 348.5

463.7 | 547.6

586.7

706.7

860.5

923.4 1929.3 11084.9

1193.6

MAC § 0.992

0.986

0.967

0.975

0.977

0.984

0.989 1 0.980

0.985

0.982
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Fig.6.5 Error Location Results (Case 2)
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Using the error location results, updating has been carried out. The iteration results are

shown in Figs.6.6, 6.7 and 6.8, from which it can be seen that the final estimates become

very accurate after 4 iterations.

Natura frequencies of the updated model are compared with ‘experimental’ natural

frequencies together with MAC valuesin Table 6.10.

Table 6.10 Natural Freaquencies of 'TExperimental' and Updated Models (Case 2)

Modef 1 2 3 4 5 6 7 8 9 10

fx M2)| 344.3]469.2 | 552.1|578.5 | 704.7 | 852.8 | 918.7 | 928.9 | 1100.5 [ 1206.1
f, (H2) 344.31469.2 | 552.1|578.5 | 704.7 | 852.8 | 918.7 | 928.9 | 1100.5 [ 1206.1
MAC § 1.000]1.000 | 1.000 } 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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6.4 CONCLUSIONS

The damping properties of most vibrating structures are not distributed in asimilar way to
the mass or stiffness. Rather, damping often results from the joints between various
components of a structure. As aresult, measured modal data are often complex, while the

modal parameters of the corresponding analytical model are redl.

Updating methods developed so far generally assume that the experimental modal data are
real, or postulate that the measured complex data have successfully been converted to real
data. However, the deduced real modes may be erroneous because the experimentally-

identified complex modes are incomplete and the deduction itself relies on the analytical

model which is erroneous.

A method has been developed to locate and to update damping elements together with
mass and stiffness elements in analytical model using measured complex modal data The
proposed method has been applied to the free-free bay structure which may constitute a
realistic problem in respect of the incompleteness of both measured modes and
coordinates. The updating results are quite accurate not only in modal parameters but also

in correction coefficients namely, physical design variables.
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 CHAPTER 7

CONCLUSIONS

" 7.1 GENERAL CONCLUSIONS

Due to advances in numerical methods and the availability of powerful computing
facilities, FE modelling has become the most popular technique in structural dynamic
analysis. However, the dynamic responses obtained from FE analysis are seldom in
perfect agreement with modal testing results. Therefore a model updating procedure
should be introduced in order to adjust the analytical model so that the analysis and test

results agree, and so that avalid model is available for design calculations.

It should be noted that modal parameters obtained from a modal test are generally not
fully compatible with those from the analytical model because
1) the number of modes available from measurement (m) is usualy very
limited (m2< N),
2) the number of measured coordinates (n) is in genera-l much less than the
number of coordinates (or the number of degrees of freedom) of an

analytical model (n<N) and

3) in most cases, experimental modal data from areal structure are not real but




[7] Conclusions 179

complex, even if the structure is lightly damped, while the modal parameters

of the corresponding analytical model are redl.
Any incompatibilities between measured modes and  the anaytical model should be
resolved before an updating procedure is applied, or aternatively, an updating method

should be used which can handle the incompatibilities.

Various methods have been proposed to improve an analytical model of a mechanica
structure using modal test results. Review and numerical studies have reveaded some
inherent problems of those methods. One of the main problems of direct updating
methods, such as function minimisation methods and the error matrix method, is that the
updated model is a numerically-optimised one rather than a physically-meaningful model.
As a result, the modes outside frequency range of the experimenta data remain
guestionable or may become even worse than those of the original anaytical model.
Another problem with these methods is that mode expansion is often required in order to
overcome the inevitable incompatibility between the analytical model and the measured
modes. This might itself be an erroneous procedure, thus jeopardising the subsequent
model updating. On the other hand, iteration methods such as IEM which do not require

such expansion usually do not converge if the modelling errors are not small.

Any attempt to update every element in the analytical model using only the limited
information available from typical test results may not be realistic. If mismodelled regions
can be located in a preliminary step, model updating can be carried out more efficiently
and more successfully. Therefore, error location is a fundamental first objective of the
updating process. Recent developments in the area of error location have been
investigated. The EMM can locate mismodelled regions successfully even with a very
limited number of measured modes if complete coordinates are measured, although this is
not a very practical proposition. Again, for the EMM to be successful, a reliable mode

expansion method should be available. The IEM does not require mode expansion and its

Ararmnr tatinanal fima awnll kA radiicrAad vy lAacatinAa ArvrAar raniiAane fivet AanAd ninAdAatiinAa tha
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analytica moded using only the elements which are selected in an error location
procedure. However, the IEM had been found to be unreliable from case studies in

Chapter 2, from which it was concluded that more reliable error |ocation methods needed

! to be developed.

The objectives of this research were decided based on these findings, and were:
1) to develop a reliable, sensitive and systematic method to locate modelling
errorsin an analytical model using modal testing results, and
2) to develop an updating method which can produce an improved analytical
model that can not only reproduce the exact modal parameters measured in a
test but also predict correctly those modes outside frequency range of the
experimental data and at the same time can reduce the number of experimental

modes and the computational time for updating.

An inverse eigensensitivity method using arbitrarily-chosen macro elements has been
proposed at the error location stage to reduce the computational time and to reduce the
number of experimental modes required for subsequent updating. By this approach, the
model updating problem, which is generally under-determined, can be transformed into
an over-determined one and an updated anaytical model can be found which is not
influenced by the definition of the macro elements. The proposed method has been
applied to the free-free GARTEUR structure which represents a practical structure and
constitutes a realistic problem in respect of the incompleteness of both measured modes
and coordinates. The updating results were quite accurate, not only in modal parameters

but also in correction coefficients for the physical design variables.

The assumption that the test results represent the true dynamic behaviour of a test
structure, however, may not be correct. Experimental data can be affected by severa
typc§ of measurement error in spite of the highly-developed instrumentation and modal

parameter extraction techniques now available. Thus, the sensitivity of the updating
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method itself to noise on the experimental data needs to be investigated. The proposed
method has been applied to a Bay structure for which “experimental” data are noisy and
incomplete. The error location procedure has been found to be very insensitive to the
1 “measurement” errors - in the presence of measurement errors of up to 1 % in the
eigenvalues and 10 % in the eigenvectors, it succeeded in locating the correct
mismodelled regions. The updating results were quite accurate in terms of modal
parameters and, moreover, in terms of correction factors, when sufficient eigensensitivity
terms are used. In this case study, measurement errors were introduced by contaminating

the modal parameters of the correct or modified structure with random noise.

In practice, the characteristics of measurement errors might not result in random
variations in the modal parameters. For the updating method to be useful in practical
application, various error sources in testing - such as the mass loading effect of
transducers, shaker/structure interaction, etc. - should be considered and more realistic
errors rather than random noise should be included in the “experimenta” data. The errors
involved in modal parameter estimation - such as measurement errors, signal processing
errors and errors in modal analysis - have been considered in detail, and their effects on
estimated FRFs and on the modal parameters extracted from the FRFs have also been
investigated. A computer program has been written to simulate various measurement and
signal processing errors. The “experimental” FRFs generated using this program can be
used to test the performance of different modal parameter identification programs and,

thus, of the various applications to which these modal data are pui.

The resultant “experimental” modal data which contained representative experimental
errors have been used to update the corresponding anaytical beam model to check the
validity of the IEM. The mismodelled regions were located successfully, and the updating
results were found to be quite accurate, not only in the modal parameters themselves but

also in correction coefficients for the physical design variables.
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The damping properties of most vibrating structures are not distributed in asimilar way to
the mass or stiffness. Rather, damping often results from the joints between various
components of a structure and, as a result, measured modal data often are complex, while
!~ the modal parameters of the corresponding analytical model are real. Updating methods
developed so far assume that the experimental modal data are real, or postulate that the
measured complex data have successfully been converted to real data. However, the
deduced real modes may be erroneous because the experimentally identified complex

modes are incompatible and the deduction itself relies on the analytical model which is

1 erroneous.

A method has been developed to locate and to update damping elements together with the
mass and stiffness elements in an analytical model using measured complex modal data.
The proposed method has been applied to the free-free Bay structure, congtituting a
realistic problem in respect of the incompleteness of both measured modes and
coordinates. The updating results were quite accurate, not only in modal parameters but
also in correction coefficients namely, physical design variables, which means that this

method can handle all the inherent incompatibilities between measured modes and an the

analytical model.
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7.2 CONTRIBUTIONS OF THE PRESENT RESEARCH

As afina review, the contributions of this research are listed chapter by chapter so that it

becomes clear which parts of the work constitute new developments to the subject.

Chapter 2 - Model Updating Methods - A Review

review of various updating methods and critical discussion on their advantages and

disadvantaged/limitations.

« discussion on incompatibility between measured modes and an anaytical model

and, on the solutions to their problems

 review of various error location methods and critical discussion on their advantages
and disadvantages/limitations, especially on the IEM based on some numerical case

studies

Chapter 3 - Modd Updating Using IEM

e development of a modified IEM which can locate modelling errors successfully and
can produce an updated analytical model which preserves physical connectivity and

predicts unmeasured modes correctly.

investigation of the effect of balancing of the sensitivity matrix for error location

procedure using the SVD technique

adetailed explanation of the IEM and suggestions for improving the convergence of

the IEM and graphical explanation of the methods
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Chapter 4 - Error Senditivity of the Inverse Eigensensitivity Method

. investigation of the sensitivity of the method proposed in Chapter 3 to noise on the

experimental data based on a bay structure

Chapter 5- Errorsinvolved in Modal Parameter Estimation from Test

Data

 investigation of errors involved in modal parameter estimation and their effect on

estimated FRFs and on the modal parameters

. development of a computer program which can be used to simulate various

measurement and signal processing errors

exploitation of the capability of the IEM in model updating with consideration of the
problems of modal and coordinate incompleteness, and of representative

experimental errors

Chapter 6 - Updating of Damped Structures

» extension of the method proposed in Chapter 3 to damped systems, which means

the proposed method can handle the last (or the most fundamental) incompatibility
between measured modes and  the analytical model - real anaytica modes and

complex experimental modes.
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7.3 SUGGESTIONS FOR FURTHER WORK

The study undertaken in this thesis has reveadled that some further investigations and

developments may be necessary or interesting in future work.

In this study, the application is made only to a numerical study and a comparatively
simple structure due to the limited period of time available. Even though updating results
are shown to be quite accurate in the case studies undertaken, the proposed method
should be applied to more complicated structures with more complicated elements such as
shell and/or plate e ements which might be more commonly used than beam elementsin

FE analysis of mechanical structures, in order to check the wider validity of the method.

In the investigation of the errorsinvolved in modal parameter estimation from test results,
various measurement and signal processing errors and errors in modal analysis have been
included. However, the effect of a push rod (or a stinger), which is essential to connect
an exciter to a test structure when random or sinusoidal excitation is used, on the test
results has not been included The push rod effect should be investigated and included in

the computer program for simulating experimental data

The proposed updating method requires mass and stiffness matrices of the each element
of an analytical model of a structure to calculate a sensitivity matrix, and eigenproblem
should be solved in every iteration. For the method to be more practical or more flexible,

interfacing the updating program with existing FE package is necessary.
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APPENDIX A

DERIVATION OF EIGENVALUE AND
EIGENVECTOR DERIVATIVES

Sensitivity analysis has widely been used in many engineering fields such as system
dynamics modification {41,42] and identification of dynamic systems or model updating
[14,19,43-45]. In these applications, eigenvector and eigenvalue derivatives with respect
to design parameters are required. Wittrick [46] obtained the first derivatives of
eigenvalues for rea symmetric systems, while Fox et. a. [47] extended these results to

include the first derivatives of eigenvectors. The process in this Appendix follows closely

the one given in Ref. [47].
The eigenvalue problem of a mechanical system can be expressed as:

([K]- A, M]) (¢}, = {0} (A.1)
{0}, TM] {9}, =1 (A.2)

Differentiating (A.l) with respect to an updating variable p, gives

K] dA d[M d
‘a[p—i]- op. [MI - 4, '[ggil ){¢},+([K]-MM])—({,%}' = {0) (A3
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Pre-multiplying (A.3) by {¢},T leads to

oA a
=@ 0, A7 B o), (A4

Note that the equation (A.4) includes only the eigenvalue and eigenvector under

consideration, therefore a complete solution of eigenproblem is not needed to obtain these

derivatives.

The elgenvector derivatives can be expressed as linear combinations of all eigenvectors of
the system if the eigenvalues are assumed distinct, because N eigenvectors are linearly

independent and they can be used as a set of basis vectors for spanning N-dimensional

space. Thus,

= 2 ci{0); (A.5)

=1
Substituting (AS) into (A.3) and pre-multiplying (A.3) by {q)}kT
(0),T (%— E[M] -4, ;T,—){m + (), T (K1 - A, [M]) Z cii(0); =0

(A.6)

If k=r,

d[K d[M
(O07 (o - %, "5y ) @)+ e yed,) = 0 ™

Thus,
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Jd[K d[M]
e (A T ),
Cy = (A.8)
A-Ay
crir can be obtained by differentiating (A.2) with respect to p;
200170 5+ (0,TH0 (0), = 0 A9
Substituting (A.5) into (A.9) leads to
. d
cy = -%{Mf%‘g—] (0), (AIO)
Thus,
) L
{¢}r 21 Crlj{(b}j (A1l
il Jj=
d[K] d[M]
(¢),T(:;g-7», ‘a?)w}, _
. (r#j)
Cj = A A,
d[M]

ST % (), (r=)
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APPENDIX B

ELEMENT AND MACRO-ELEMENT MATRICES

B.l MASS AND STIFFNESS MATRICES OF FE MODEL

Each beam element used in this thesis is the superposition of an axial bar element and a

Bernoulli-Euler beam. The coordinates of the beam element are shown in Fig.B. 1.

\ V3
PR \Z
3—’ Ul U2
L
g

Fie.B.1 Two-Dimensiona Beam Element
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Axial Motion

The simplest approximation of axial displacement within the element employs the

displacement at the two ends and is given by
Ux,t) =y, (x) u, (t) + y,(x) u,(t)

The shape functions can be derived by considering axial deformation under static |oads
e (arg) <o

which satisfy boundary conditions

u(0,t) = u,(1) uL,t) = u,(t)
such as:
Y, = 1-f ¥, =T ®.1)

Stiffness coefficients k;; and mass coefficients m;; are given by [48]

L

kj= | EAVVd (B.22)

L
my; = J P A WYY, dx
0

Substituting equation (B.l) into (B.2a) and (B.2b) gives the following stiffness and

mass matrices for a uniform e ement
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Axial Motion

The simplest approximation of axial displacement within the element employs the

displacement at the two ends and is given by
Ux,t) = y,(x) u (1) + y,(x) u,(1)

The shape functions can be derived by considering axial deformation under static |oads
5 (AER) =0

which satisfy boundary conditions

u(0,t) = u,(1) uL,t) = u,(t)
such as:
v, =1-7 v, =T ®.1)

Stiffness coefficients k;; and mass coefficients my; are given by [48]

L

kj= |, EAyydx (B.22)
0

L
m;j = J P A Y,y dx
0

Substituting equation (B.l) into (B.2a) and (B.2b) gives the following stiffness and

mass matrices for a uniform element
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1 -1

[Kg=%[1 1J ®:3
21

Mg = B [1 2] &0

Transverse Motion

Let the displacement coordinates for transverse motion be the end displacements and

dopes as
4
V(x.t) = 2 y;(x) vi(1)
i=I

The shape functions can oe derived by considering the equilibrium equation for a beam

loaded only at its ends

92 v
SE2Y - 0

which satisfy boundary conditions

v(0,) = v () V0,0 = v,(1)
VLY = v VLY = v,0)

such as
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1 -17
e] - AE
K3 = 7 [_1 i ] (B.3a)
217
Mg] = fAL [ B.3b
a 6 1 2] ( )

Transverse Motion

Let the displacement coordinates for transverse motion be the end displacements and

slopes as
4
V(x,t) = 2 yi(x) v,(t)
i=I

The shape functions can oe derived by considering the equilibrium equation for a beam

loaded only at its ends

92 Y
2 (E0) - 0

which satisfy boundary conditions

VO, = v, VI(O,t) = v,(1)
VLY = vy VLY = v,0

such as;

A
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vw=1-30)"+2¢)

v,(x) = x- 2L (;‘—J)2 +L (i‘—d)3 (B.4)
v =3®"-2¢)

v = L L )

Stiffness coefficients k;; and mass coefficients my; are given by [48]
L
kij = _[ Ely) ) dx (B.5a)
0
L
0

—
Substituting equatf n (13.4) into (B.5a) and (B.5b) gives the following stiffness and

mass matrices for § Jniform element

L 12 6L dp 4a
EI 4L -6L 2L

Kbl = 15 (B.62)
symm. 412
-

e, _ PAL

[Mb] = 420 (B.6b)

| sytfn, 240 BAY 4Ll

The stiffness and mass matrices of the beam element, which is the superposition of an

axial and a Bernoulli-Euler beam, can be expressed as.
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EA EA
T ° °-T 0o 9
12El  GEl 12El 6El
r v 9 T o
4Bl 6Bl 28I
. L L? L
K] = EA
5 0 0
L
12El _6El
L? L?
4E|
symm. T

140 186 28 B @ '@L]

2 2
M = pAL 4L° 0 13L -3L
420
156 -22L
140 0 412 4

- symm.

B.2 CONSTRUCTION OF MACRO ELEMENTS

The mass (or stiffness) matrix of the ith macro element is formed by a summation of

individual mass (or stiffness) matrices

n, n;
M= D [M°), K], =2 (K%,
j=1 1

The construction of the macro element matrices will be illustrated by using a smple
structure. If there are three individual elements in the ith macro element and each node
has 2 DoFs. as shown in Fig.B.2, then the mass matrix of the ith macro element, which

is a summation of the three élement mass matrices
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1 2 3 4
[~ m;; ym,;, m;; my,

M®],

[Melz =

Ay 5 g 33 3y

3My; 3y Mgy My,

[Me]s =

o LUTRE L VO R VR R LA

can be constructed as:;

1 2 3 4 5 6 7 8
m m
,m,, m, 1My3 1My, 0 0 o o
m,, 1My3 1My, 0 0 0 O
Myt My, My +,m;, 2My; oMy, o o

1My, +oI, 2My3 LU o o

M];

oMy | )My Fally, 5Ty 5Ty,

symm. My tiMyy 340 3 4

355 4Ty,

3y
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1 3 5 7
2 4 6 8
(43} (V3] Q)
[ T | |

Fig.B.2 The ith Macro Element and its Coordinates

B.3 NUMERICAL DATA OF BAY AND GARTEUR STRUCTURES

Elements I Horizontal Vertical Diagonal
L l ;m 5 m ‘1—3—-‘1 m
A 4,00 x 10 m? 600x10°m?> | 3.00x10%m?
7.50 x 10!° Pa
I 7.56 x 10?2 m*
p 2.80 x 103 kg/m®
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APPENDIX C

THE SINGULAR VALUE DECOMPOSITION

The purpose of this appendix is not to present a detailed explanationof the SVD with a full
and rigourous mathematical description, but to give a ssimple introduction with a view to

its applications to the determination of the rank of a matrix and to the solution of a set of

overdetermined linear systems of equations.

C.I SSNGULAR VALUE DECOMPOSITION (SvD)

The SVD is based on the following theorem of linear algebra, whose proof [Ref.49] is

beyond our scope:

Any MxN real matrix [A] whose number of rows M is greater than or equal to its
number of columns N, can be written as the product of an MxM orthonormal matrix

[U], an MxN [C] with positive or zero elements, and the transpose of an NxN

orthonormal matrix [V]. i.e,

[Aln = Ul Ehn [V (C.1)
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where [X] is a real matrix with elements 6 =0; for i =j and o= 0 for i # .

Because [U] and [V] are orthonormal matrices,

[Ul" = Ut [VI* = [V]! (C.2)
and
[UI'[U] = [UI[UT" = [VI'[V] = MM’ = [1] (C3)

The values o; are called the singular values of the matrix [A]. Without loss of generdlity,

the singular values can be ordered in descending order

Thus,

(2] =

Similarly, the SVD of acomplex matrix resultsin the following:

[Alyy = Ul Elan [Vin
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where [V]{ , is the complex conjugate transpose of [V] and [U] and [V] are unitary

matrices, i.e.,
[UI[U] = [UI[UM = 0]
[VIHIV] = [VIIVY = 1]
and

U = (U} [V = [V

The singular values are the non-negative sguare roots of the eigenvalues of the matrix
[AJ[A], if [A] isred, and of [A]JP[A], if [A] is complex. Because [A]T[A] is symmetric
and [A]H[A] is Hermitian, the eigenvalues are aways real and non-negative (49] and,

therefore, singular values are always real and non-negative.

For simplicity, [A] will be assumed to be rea from now on. Usudly, the SVD
computation is performed in two stages: first, a reduction of [A] to a tridiagona form
using the Householder transformation [49] and second, a reduction of the superdiagonal

elements to a negligible size, using the QR algorithm [49], resulting in a diagonal form.
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C.2 RANK OF A MATRIX

In some applications it is necessary to determine the rank of a matrix, particularly to
determine if the matrix is of less than full rank. The rank of [A] is the largest number of
columns (or rows) of [A] which constitute a linearly independent set. An MxN matrix

with M2N is said to be of full rank if its rank equals N, but rank-deficient if its rank is

less than N.

To calculate the rank of a matrix, an agorithm such as Gaussian eimination may be
applied and the rank decided from the final reduced form. In practice, the situation is not
so simple. In the first place, the elements of a matrix are seldom given exactly and, even

if the original matrix is rank-deficient, it is unlikely that its approximation will also be.
Thus, instead of asking if the given matrix is rank-deficient, we must ask if it is nearly
rank-deficient. In the second place, the transformations of, say, Gaussian elimination
may take a matrix which is very nearly deficient in rank and turn it into one which is
clearly of full rank. Finally, it is not aways easy to recognise when even a triangular

matrix, which is the end product of Gaussian elimination, is nearly deficient in rank.

The relationship between the SVD and the rank of a matrix is that the value of the rank is
equal to the number of non-zero singular values. The advantage of using the SVD to
calculate the rank isthat if r rows of an NxN matrix are not totally linearly dependent, we
shall obtain a small value for oy, 1, instead of zero, and we have only to compare this
small value with other singular values. If we establish a criterion for the rejection and
acceptance of small singular values, we shall have ananswer concerning the value of the
rank. This criterion may depend on the accuracy of the expected results and, in practice,

may be difficult to establish. A reasonable solution is to calculate the consecutive ratios of

the singular values, gl,c;—z ,...%. Representing the ratios graphicaly, the first peak
2 3 N

will indicate the value of the rank. For instance, if the rank of amatrix isr, then o, will
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% will be very high compared with %, which indicates the

r+1 T

be very small and theratio

rank of the matrix.

C.3 THE LEAST-SQUARES PROBLEM

Very often, we have to solve least-squares problems. These happen when we have an
over-specified set of equations with relation to the unknowns, i.e.,, we have more
information than we need to solve the problem. Once it has been established that a
coefficient matrix [A] is of full rank, the least-squares solution to an overdetermined set

of linear equations
[Alyn (x)na = (bl
can be obtained from

{x} = [Alg,y (b]

where M > N, and [A]},,,, IS the Moore-Penrose generalised inverse, (TAJTAD AT
The generalised inverse [A]* can easily be computed efficiently by using the SYVD. From

equation (C.1), we obtain
(Al = V] 5w (2] S [UT i (C4)
Substituting equation (C.3) into equation (C.4) leadsto

[A]" = [VI[Z]" [U]*
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where [Z]* is given by

i
Z] = i 0
:

Each element of [X]* can be easily calculated as

N
Y Vik Yk
k=l O,
where v; and uy are the corresponding elements of [V] and [U].
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APPENDIX D

DYNAMIC CHARACTERISTICS OF PUSH ROD

When modal testing is performed using a continuous excitation signal, such as random or
sinusoidal, it is necessary to use an exciter connected via a push rod which should have
high axial stiffness for transmission of axial force but low lateral or bending stiffness to
alow little moment transfer. In order for the push rod not to contaminate test results, the
natural frequencies of the push rod should lie well outside the test frequency range.
Dimensions and material properties of push rods which were used for the experiment in

Chapter 5 are shown in Table D.l.

TableD. 1 Dimensions and Material Properties of Push rods

d L E p
Long push rod 1.5 mm 67.0 mm 2.07 x10!! N/m? | 7850 kg/m?3
Short push rod 1.5 mm 13.0 mm 2.07 x10'! N/m2 | 7850 kg/m?®
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D.l FIRST BENDING MODE

The first bending mode of a push rod can be calculated by considering fixed-fixed

" boundary condition as follows [32]:

1A Ky

f, = —
b 2n m

(D.1)
where m is the mass of the push rod and ky, is bending stiffness of the push rod which is
given by

d4 4
192 El 192E «© _9.42 E}d D.2)

kb =73 =15 e

Substituting equation (D.2) into equation (D.1) leads to

0.883d [E
fo=— / " D.3)

D.l.I LONG PUSH ROD

. _ 0883d [E
b L2 p

_ (0.883) (1.5x103) 2.07x1011
- (67x 10-3)2 7850

1,515 (Hz)
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D.1.2 SHORT PUSH ROD

¢ - _(0.883) (1.5x103) \/ 2.07x101!
b (13x10-3)2 7850

= 40,244 (Hz)

- D.2 AXIAL MODE

In this case, the push rod assembly acts as a spring loaded by the mass of an exciter

armature. Thus,

1 k
f, = — —=2 4
a Zn'\’ m, D.4)

where m, is the mass of the exciter armature and k, is the axial stiffness of the push rod

which is given by

AE D.5)

D.2.2 LONG PUSH ROD

K = (x/4) (1.5x10-3)2(2.07x1011)
8 - (67x10-3)

5.460 x 106 (N/m)
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_ 1 5.460 x 106
a 2n 0.02

2,630 (Hz)

D.2.2 SHORT PUSH ROD

(X/4) (1.5x10-3)2(2.07x1011)
(13x10-3)

k, =

2.815x 107 (N/m)

¢ - __1_,\/ 2.815x107
L o2 0.02

5,917 (Hz)
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APPENDIX E

GENFRF USERS GUIDE

E. OVERVIEW

GENFRF is a FORTRAN program designed to run on an IBM PC-AT or PS2. It can
generate frequency response functions (FRFs) which have various measurement errors
such as:

1) mass loading effects of force transducer and accelerometer,

2) error by shaker/structure interaction;

3) input and output random noise;

4) signal processing error (leakage)

A flowchart of the program is given in Fig.E.l.

Generated FRFs can be directly used as input files of MODENT [37] for modal

anaysis.
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Read element mass and stiffness matn'ccsi

CALL EMASS & ESTIFF

4ssemble to make global mass and stiffness matriceg Eigenvalue so|ytion AL [O]
CALL ELLMKF! & GLOBAL CALL FO2AEF > a 2

Y

Read my , my, ms, noise levels
and frequency range from data file

v

I ntroduce mismodelled regi onel
I CALL EXMK

| [Al, [D)y |

SHAKER ? (1)

Y

Read excitation point and response points
from data file

Y

Mass loading effect of force trasnsducer
CALL MLOADF

‘4

Mass loading effect of accelerometer
CALL MLOADA

&

Fig.E. 1 (3) Flowchart of FRF Generation Program
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Shaker/structure interaction
CALL FRFCAL & INTACT

!

Cdlculate noise-free FRFs
CALL FRFCAL

Store output in
TR**** FRF

!

Calculate auto and cross spectra of signals and noise autospectra
and add noises to signals

!

Choose window function
CALL WINDOW

!

Calculate FRF & coherence

!

Calculate random errors of FRF & coherence

v

Store output in
DB**** FRF

Move to next point

Fig.E. 1 (b) Flowchart of FRF Generation Program
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7

Read response point and excitation points
from data file

v

Mass loading effect of accelerometer
CALL MLOADA

_‘

| Hammer/structure interaction |

Calculate noise-free FRFs Store output in
CALL FRFCAL TR**** FRF

!

and add noisesto signals

Calculate auto and cross spectra of signals and noise autospectra

Y

Choose window function
CALL WINDOW

|
 J

Calculate FRF & coherence

Y

|
Calculate random errors of FRF & coherencci

 J

Store output in
DB**** FRF

N
Move to next point FINISH ?

(ST(:P J

Fig.E.1(c) Flowchart of FRF Generation Program
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E.2 INPUT FILE

To run the program, an input file GENFRF.DAT isS necessary. ItSformat is given in

Table E. 1.
TableE. 1 Format of GENFRF.DAT
Be@wrndi abl e Name Type

3 IFTYPE INT
FRF Type (1 =Receptance, 2=Mobility, 3=Inertance)

5 AMS, FTMS, EXMS REAL
Masses of accelerometer, force transducer, armature (kg)

7 GMM, GNN, NAV REAL,REAL,INT
Input noise level, Output noise level, No of average

9 FST, FED REAL
Starting freq (Hz), Ending freq (Hz)

11 |COH INT
0 = No coherence data, 1 = Coherence data available

13 IEX INT
Global excitation coordinate number

15 IRS;,IRS;....IRS, INT
N Global response coordinate numbers

17 TITLE CHAR*2
First two characters of output file names

19 HEAD CHAR*80

Title for FRFs
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Notes

1) Other records are only used for descriptions of following variables.

2) All datato be read in FORTRANT77 free format using the appropriate variable type

except TITLE (Record 17).

E.3 RUNNING GENFRF

1) When you see C:>, change to subdirectory \NAG\ by typing
CD NAG
2) Run GENFRF by typing
GENFRF
3) After several messages, you will be asked:
IS SHAKER USED? ( YES =0, NO =1)
Type O for shaker excitation (Hammer excitation is not available, if type 1, the
program will be terminated.)

4) After awhile, the computer will give amessage

** CALCULATING FREQUENCY RESPONSE FUNCTIONS **

followed by calculated FRF file names.

E.4 GENFRF OUTPUT FILES

The output files of GENFRF are as follows:

1) Exact modal data ANAL.DAT
2) n (no of measurement coordinates) error-free FRF data files (TRNIN2.FRF) and

n noisy FRF data files (DBNIN2.FRF) where
N 1; Response coordinate (2 digit)
N2; Excitation coordinate (2 digit)
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Data format of these filesis given in Appendix C of MODENT Reference Mar:ual.
3) Combined Response Data file (BEAM.CRD). This data file contains the names of
individual FRF files to be analysed globally. Data format is given in Appendix C of

MODENT Reference Manual.

E.5S MODIFYING PROGRAM

GENFRF program uses one of NAG routines, FO2AEF, for eigenvalue solution which
is stored in subdirectory NAG. If you want to modify the program
1) Change to subdirectory \NAG\, and modify GENFRF.FOR.
2) After editing, type
FL /AH /Opx /FPc genfrf.for /link wims3+wlms4+wlmsS+wlms6+wlms7
for compiling and linking because NAG routines were compiled with the options.
3) Type
GENFRF

to run the modified program.
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E.6 COMPUTER PROGRAM

Crdkkkikiokioiokkkokokkiokkokokkdokkkkokkkokk kb bkl kol b kookkokiokok kb kol kokkokolokk O

C*********#***************#***t*****t*********t****#*#**************C

Cr*kkx *kkkk(
CHxdunk PROGRAM FOR SIMULATING EXPERIMENTAL DATA i
Chxkkk *kdkk(C

onaaddd T T T L e e I S e e,

Cheddkkdiokkkiokkkikkkkkkkkkkkkkkkkkkbkkkkkkkkokiookkkkkkkkiokkokkkkkokk(Q

PROGRAM SIMULATION

C***********************‘#*#*##*************************************C

Ok ok kk k(O
CHkxkx FREE-FREE BEAM STRUCTURE *¥k¥xC
CH*kkx kR

Ok kkikkkokdok ok ok kaok ook ok dkokokokok koo ok Kok ok ok dokkokok ok ok dokdokdokok ok dokdokok ok O

PARAMETER(NEL=20,N=42,M=10,NFP=40 1 ,NF2=801)

Cohkdkdokokdok ok ok ok ok dokkok ok ko koo dok Kok Kok ok ok ok kool kol ok ok ook ok ok dok (O

Cr**** VARIABLES *HAkxC
Crx*xx N ;NO.OF DOF OF SYSTEM ¥¥k¥AC
C**** M ; NO.OF MEASURED MODES *XAAXC
C**** NFP ; NO.OF FREQUENCY POINTS *XAAKC

*kkkk

c***** NF2 ; (NFP-1)*2+1
C*******************************************************************C

DOUBLE PRECISION EVAL,EVEC,DUMM,DUMK,DL,E

DIMENSION DEM(4,4),DEK(4,4)

DIMENSION DL(N).E(N)

DIMENSION DUMM(N,N),DUMK(N,N)

DIMENSION FREQ( 10),COH(NFP)

DIMENSION GFF(NF2),GXX(NF2)

CHARACTER TITLE*2,FLNM*10,EX*2,RSP*2

CHARACTER HEAD*80

COMPLEX CFRF,GXF(NF2)

COMMON /CB 1/EMF(N,N),FKF(N,N)

COMMON /CB2/DMM(N,N)

COMMON /CB3/DM(N,N),DK(N,N)

COMMON /CB4/EVAL(N),EVEC(N,N)

COMMON /CBS/CFRF(NF2) FSM(NF2)
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C*** ASSEMBLE GLOBAL MASS AND STIFFNESS MATRICES

C

20

30
C

WRITE(*,*)
WRITE(*,*)'** ASSEMBLING MASS AND STIFFNESS MATRICES **'
WRITE(*,*)

DO 20 I=1,N
DO 20 J=1,N
DM(L,1)=0.
DK(1,J)=0.
CONTINUE

DO 30K =1,NEL

CALL ELMKF1(DEM,DEK,K)
DO 30 I=1,N

DO 30 J=1,N
DK(1,J)=DK(1,J)+FKF(1,J)
DM(L3)=DM(1,J)+FMF(1,J)
CONTINUE

Cr*** CALCULATE ANALYTICAL NATURAL FREQUENCIES &
C**** MODE SHAPES

C

40
C

C

C

DO 40 I=I,N
DO 40 J=1,N
DUMM(,J)=DM(,J)
DUMK (1,9=DK(l,J)
CONTINUE

IFAIL=0

CALL FO2AEF(DUMK,N,DUMM,N,N.EVAL ,EVEC,N,DL,E,IFAIL)

C**** INTRODUCE MISMODELLED REGIONS

C

C

CALL EXMK

C**** READ INPUT FILE (FRF ISINERTANCE)
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C
OPEN(9,FILE='LEAK2.DAT ,STATUS='OLD")
C
READ(9,*)
READ(9,*)
READ(9,*) IFTYPE
READ(9,*)
READ(9,*) AMS,FTMS EXMS
READ(9,*)
READ(9,*) GMM,GNN,NAV
READ(9,*)
READ(9,*) FST,FED
READ(9,*)
READ(9,*) ICOH
READ(9,*)
READ(9,%) IEX
READ(9,*)
READ(9,*) IRS
READ(9,*)
READ(9,9950) TITLE
READ(9,¥)
READ(9,9960) HEAD
CLOSE(©9)

IF(IEX.LT. 10) THEN
WRITE(EX,9000) IEX
ELSE
WRITE(EX,9 loo) [EX
ENDIF

o

FR=(FED-FST)/(NFP-1)

C
C**** CALCULATE EXACT NATURAL FREQUENCIES & MODE SHAPES

C




Appendix D GENFRF User's Guide 217

DO 70I=1,N

DO 70 FI,N

DUMM(L,J)=DM(1,])

DUMK(L,))=DK(,J)
70 CONTINUE

C
IFAIL=0
C
CALL FO2AEF(DUMK,N,DUMM,N,N,EVAL,EVEC,N,DL E,IFAIL)
C
C*** MASS LOADING EFECTS OF FORCE TRANSDUCER
C
CALL MLOADF(EX,FTMS)
C
C
Cr*** OPEN COMBINED RESPONSE DATA FILE
C
IDUM=0
C
WRI'I'E(*’*)
WRITE(*,*) '*** CALCULATING FRF ***
WRI'I’E(*,*)
C
IF(IRS.LT. 10) THEN
C
WRITE(RSP,9000) IRS
C
ELSE
c
WRITE(RSP,9 100) IRS
C
ENDIF
C
C MASS LOADING EFFECTS OF ACCELEROMETER
C
CALL MLOADA(IRS,AMS)
C

Cr*** CALCULATE NATURAL FREQUENCIES & MODE SHAPES
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C

110
C

C

C

DO 110 I=I,N

DO 110 J=1,N
DUMM(,J)=DMM(,J)
DUMK(LJ)=DK(1,J)
CONTINUE

IFAIL=0

CALL FO2AEF(DUMK,N,DUMM,N,N,EVAL ,EVEC,N,DLE IFAIL)

C+*** SHAKER/STRUCTURE INTERACTION

C

C

OO0

C

CALL FRFCAL(FST,FED,IEX,IEX)
CALL INTACTEXMS)

DEFINE EXCITATION NODE(EN) AND DIRECTION(IED)

IEN=1
IED=2

CALCULATE RESPONSE NODE(IRN) AND DIRECTION(IRD)

IRN=5
IRD=2

C**** CALCULATE NOISE-FREE FRF H(IRS,IEX)

C

C

CALL FRFCAL(FST,FED,IEX,IRS)
FLNM="TR'//RSP//EX// .FRF

OPEN (UNIT=10,FILE=FLNM,STATUS="UNKNOWN")

WRITE(10,9960) HEAD
WRITE(10,*) IFTYPE
WRITE(10,9400) NFP,FST,FR
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WRITE(10,*) 0~
WRITE( 10,*) IEN,IED,IRN,IRD,IDUM
WRITE(10,*) ' 00000
WRITE( 10,*) IEX,IRS

WRITE(10,9500) (CFRF(I*2- 1),I=1,NFP)

FIN=FST

DO 111 J=1,(NFP+9)/10
Do 112 I=1,10
FREQ()=FIN+(I-1)*FR
112 CONTINUE
WRITE(10,9700) (FREQ(I),I=1,10)
FIN=FREQ( 1 O)+FR
111 CONTINUE
C
C**** CALCULATE AU-10 AND CROSS SPECTRA

C
C CALCULATE NOISE-FREE AUTO AND CROSS SPECTRA

C
GPP=1.0

Do 125 I=1,NF2
GFF(1)=FSM(1)*GPP
GXX(I)=(REAL(CFRF(I))**2+AIMAG(CFRF(I))**2)*GFF(I)
GXF(I)=GXX(I)/CFRF(I)

125 CONTINUE

C

C ADD NOISE TO SPECTRA

C
Do 130 I=1,NF2
GFF(I)=GFF(1)+GMM
GXX(I)=GXX(I)+GNN

1 30 CONTINUE

C

C**** LEAKAGE EFFECT

C

Do 140 I=1,NF2
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CFRF(1)=CMPLX(GFF(1),0.)
140  CONTINUE

CALL LEAK(CFRF,FR)

Do 150 I=I,NFP
GFF(I*2-1)=REAL(CFRF(I1*2-1))
150 CONTINUE

DO 160 I=1,NF2
CFRF(I)=CMPLX(GXX(I),0.)
160 CONTINUE

CALL LEAK(CFRF,FR)

DO 170 I=I,NFP
GXX(I*2- 1)=REAL(CFRF(I*2-1))

170  CONTINUE

C
CALL LEAK(GXF,FR)

C

C**** CALCULATE FREQENCY RESPONSE FUNCTION H2

C
DO 180 I=1,NFP
CFRF(I1*2-1)=GXX(I*2-1)/GXF(I*2-1)

180 CONTINUE

C

C**** CALCULATE COHERENCE FUNCTION

C
DO 190 I=I,NFP
COH(I)=CABS(GXF(I*2-1))**2/(GFF(I*2-1)*GXX(I*2-1))
IF(COH(I).GT. 1 .0) COH(D)=1.0

190  CONTINUE

C

C**** CALCULATE RANDOM ERROR OF H2

C
DO 200 1=I,NFP
ERH=SQRT((1.-COH(I))/(COHT)*2. *NAV))




Appendix D GENFRF User’s Guide

221

IR1=987*I*IRN+1
IR2=789*I*IRN+1
RAND1=2.0*(RAN3(IR1)-0.5)
RAND2=2.0*(RAN3(IR2)-0.5)
REH =( 1 .0+ERH*RAND 1)*REAL(CFRF(I*2- 1))
AIMH=( 1.0+ERH*RAND2)*AIMAG(CFRF(I*2- 1))
CFRF(I*2- 1)=CMPLX(REH,AIMH)

200 CONTINUE

C

C#++* CALCULATE RANDOM ERROR OF COHERENCE

C
IFNAV.EQ. 1) THEN

C
Do 210 I=1,NFP
COH()=1.0

210  CONTINUE

C
ELSE

C
Do 220 I=I,NFP

ERG=(SQRT(2.)*(1.-COH(D)))/SQRT(COH(I)*NAV)
IRR=897*I*IRN+1
RAND3=2.0*(RAN3(IRR)-0.5)
COH(I)=( 1 .0+ERG*RAND?3)*COH(I)
220  CONTINUE

C
ENDIF
C
FLNM=TITLE//RSP//EX// FRF
C
OPEN (UNIT=10,FILE=FLNM,STATUS="UNKNOWN")
C
WRITE(10,9960) HEAD
WRITE(10,*) IFTYPE
WRITE(10,9400) NFP,FST,FR
WRITE(10,*) ICOH

WRITE(10,*) IEN,IED,IRN,IRD,IDUM
WRITE(10,*) ' 00000
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310

300

9100
9200
9300
9400
9500
9600
9700
9800

9950
9960

WRITE(10,*) IEX,IRS
WRITE( 10,9500) (CFRF(1*2-1),1=1 ,NFP)
WRITE(10,9600) (COH(I),I=1,NFP)

FIN=FST

DO 300 J=1,(NFP+9)/10

DO 310 I=1,10

FREQ(I)=FIN+(I- 1)*FR
CONTINUE

WRITE(10,9700) (FREQ(I),I=1,10)
FIN=FREQ( 1 O)+FR

CONTINUE

CLOSE( 10)

FORMAT( 1HO,I 1)
FORMAT(I2)
FORMAT(2X,13,F15.2)
FORMAT(F7.1,7X,2G 10.3)
FORMAT(7X,15,2F10.3)
FORMAT(8E10.3)
FORMAT(1X,10F7.3)
FORMAT(1X,10F7.1)
FORMAT(2E15.7)
FORMATY( 1015)

FORMAT( 1X,A2)
FORMAT(A70)

STOP
END




Appendix [E| GENFRF User's Guide 223

C*******************************************************************C

Chxxkk ok dkkok O
CHkxkx SUBROUTINES A
Ok Ao dokk

C**********************t********************************************C

C
C************************#***t*t************************************C
Cresrr SUBROUTINE EXMK ddde

C************************###****************************************C

SUBROUTINE EXMK
PARAMETER(N=42)

DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB 1/FMF(N,N),FKF(N,N)
COMMON /CB3/DM(N,N),DK(N,N)

C
C*** MASS MODIFICATIONS
C
CALL ELMKF1(DEM,DEK,]1)
C
DO 10 I=1,N
DO 10 J=1,N

DM(,))=DM(1,J)+1.0*FMF(1,J)
10 CONTINUE

C

CALL ELMKF1(DEM,DEK,2)
C

DO 20 I=1,N

DO 20 JI,N

DM(L,))=DM(1,J)+1.0*FMF(1,J)
20 CONTINUE

C
Cr*** STIFFNESS MODIFICATIONS
C

CALL ELMKF1(DEM,DEK,11)
C

DO 110 I=1,N

DO 110 XHI,N

C DMK(1,J)=DK(l,J)+ .0*FKF(,J)
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DK(I,))=DK(,J)+1.0*FKF(l,J)
110 CONTINUE

C

CALL ELMKF1(DEM,DEK,12)
C

DO 120 I=1,N

DO 120 J=1,N

C DMK(1,J)=DMK(1,J)+1.0*FKF(,])
DK(I,J)=DK(1,J)+1.0*FKF(,J)
120 CONTINUE

C
RETURN
END
C
C
Ched kb kkkkk koo ko kbbb kb kbbb ok Kok bk ok Kok Kbk O
Ch¥kxx SUBROUTINE INTACT xRRRXC

C*******************************************************************C

SUBROUTINE INTACT(EXMS)
PARAMETER(NF2=801)
COMPLEX CFRF
COMMON /CB5/CFRF(NF2),FSM(NF2)
C
C+*** SHAKER/STRUCTURE INTERACTION
C
C FORCE SPECTRUM MODIFICATION FACTOR
C
C Gff(D=GppM/(I+EXMS*H(D))*(1+EXMS*H*(D))
C
DO 10 I=1,NF2
HMS=REAL(CFRF(I))**2+AIMAG(CFRF(I))**2
FSM(D)=1./(1.+EXMS**2*HMS+2. *EXMS*REAL(CFRF(I)))
10 CONTINUE

RETURN
END

@]
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Cdookok ook kol ook ok ok okdokok okl okl ok ok ok sokok ok skodokokok ok ok dokokok ok ok ok ook ok sk ook (O
ok ddkk (O

CHxxxk SUBROUTINE MLOADF

Crrkkkkkkkkikkkkokkkkkikkkkokkkkklokkkiokkokdkikokk ok kkiokok ok ko kb kokok ok kb O

SUBROUTINE MLOADF(IRS,AMS)

PARAMETER(N=42)
COMMON /CB3/DM(N,N),DK(N,N)
C
C**** MASS LOADING EFFECTS OF FORCE TRANSDUCER
C
DM(RS,IRS) = DM(RS,IRSH+AMS
C
RETURN
END
C
C****************#**************************************************C
CHhdkx SUBROUTINE MLOADA e

C*******************************************************************C

SUBROUTINE MLOADA(IRS,AMS)
PARAMETER(N=42)
COMMON /CB2/DMM(N,N)
COMMON /CB3/DM(N,N),DK(N,N)
DO 10I=1,N
DO 10 J=1,N
DMM(,7)=DM(1,J)

10 CONTINUE

C
Cr*** MASS LOADING EFFECTS OF ACCELEROMETER
C
DMM(IRS,IRS) =DM(RS |IRS+AMS
C
RETURN
END
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Ckdokoksk ootk ok ookl kokokokok ks ook ok ook dolok ok dodokokokokok ok ook ok ok ok ok dok k(O

CHkdx SUBROUTINE FRFCAL O

C*******************************************************************C

SUBROUTINE FRFCAL(FST,FED,IEX,IRS)

PARAMETER(N=42,NF2=801)
DOUBLE PRECISION EVALEVEC
COMPLEX CFRF,DNT
COMMON /CB4/EVAL(N),EVEC(N,N)
COMMON /CB5/CFRF(NF2),FSM(NF2)
C
C**** FRF(INERTANCE) CALCULATION
C
FRSL=(FED-FST)/(NF2- 1)
C
DO 10 IFQ=1,NF2
FREQ=FST+(IFQ- 1)*FRSL
SOMGA=(2.#3.1415927*FREQ)**2
CFRF(IFQ)=(0.,0.)
C
DO 20 IMD=1,N
C
C DEFINE LOSS FACTORS (DAMPING IS PROPORTIONAL)
C
ETA=100/EVAL(IMD)+0.005
C
DRE=SOMGA-EVAI(IMD)
DIM=-ETA*EVAL(IMD)
DNT=CMPLX(DRE,DIM)
CFRF(IFQ)=CFRF(IFQ)+EVEC(IRS,IMD)*EVEC(IEX,IMD)*SOMGA/DNT
C
20 CONTINUE
C
10 CONTINUE
C
IF(CABS(CFRF( 1)).EQ.0.) THEN
C

REC1= (2. *REAL(CFRF(2))- REAL(CFRF(3))) *REAL(CFRF(2))
AIC1=(2.*AIMAG(CFRF(2))-AIMAG(CFRF(3)))*AIMAG(CFRF(2))
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CFRF(1)=CMPLX(REC1,AICI)

C
ENDIF

C
RETURN
END

C

C*****************************##**##********************************C

C**** FUNCTION RAN3
b e
FUNCTION RAN3(IDUM)
IMPLICIT REAL*4(M)
PARAMETER (MBIG=4000000., MSEED=1618033.,MZ=0.,FAC=2.5E-7)
DIMENSION MA(55)

****C

DATA IFF X/
IF(IDUM.LT.0.OR.IFF.EQ.0) THEN

IFF=1
MJ=MSEED-IABS(IDUM)
MJ=MODMJ,MBIG)
MA(55)=MJ

MK-=1

DO 11 I=1,54
I=MOD(21*1,55)
MA()=MK
MK=MJ-MK
IF(MK.LT.MZ) MK=MK+MBIG
MI=MAI)

11 CONTINUE

DO 13 K=1,4

DO 12 I=1,55

MA(T)=MA()-MA(14MOD(+30,55))

IFMA(D).LT.MZ)MA()=MA ()+MBIG
12 CONTINUE




Appendix D GENFRF User’s Guide 228

13 CONTINUE

C
INEXT=0
INEXTP=3 1
IDUM=1
C
ENDIF
C
INEXT=INEXT+1
IF(INEXT.EQ.56) INEXT=1
INEXTP=INEXTP+1
IFINEXTP.EQ.56) INEXTP=1
MIJ=MA(INEXT)-MA(INEXTP)
IF(MJ.LT.MZ) MJ=MJ+MBIG
MA(INEXT)=MJ
RAN3=MJ*FAC
C
RETURN
END
C
C
C*******************************************************************C
Crkikk SUBROUTINE EMASS FRARAC

C*******************************************************************C

SUBROUTINE EMASS(DEM,ICLASS)
DIMENSION DEM(4,4)

C
DENS=7800.

C
IFACLASS .EQ. 1) THEN
EL=0.075
AREA=5.0E-4
GOTO010

C

ELSEIF(ICLASS .EQ. 2) THEN
EL=SQRT(1.93)/6.
AREA=1.25E-4

GOTO 10
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C
ELSEIF(ICLASS .EQ. 3) THEN
EL=0.175
AREA=1.5E4
GOTO 10

C
ENDIF

1 0 CONTINUE
FAC=DENS*AREA*EI /420.

C

C**** UPPER TRIANGULAR ELEMENTS OF ELEMENT MASS MATRIX

C
DEM(1,1)=156.
DEM(1,2)=22.*EL
DEM(1,3)=54.
DEM(1,4)=-13.*EL
DEM(2,2)=4.*EL**2
DEM(2,3)=13.*EL
DEM(2,4)=-3.¥EL**2
DEM(3,3)=156.
DEM(3,4)=-22.*EL
DEM(4,4)=4. *EL**2

DO 151=1,4

DO 15 J=1,4

DEM(,J)=FAC*DEM(1,J)
15 CONTINUE

C
C**** WHOLE MASS MATRIX *##kkkkddddkkxC
C

DO 201=2,4

DO 20 J=I,1-1

DEM(L,J)=DEM(J,])
20 CONTINUE

RETURN
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END
C
ek akok ok ok ko ok ok e ko ok ok ko ok ok ok ok ke e Al akak oo ok ok ok ek Kok ok ok ok ke kb ok Kk sk ok
C
CH¥¥xx SUBROUTINE ESTIFF kkdk(C

Chrsrkkbkkkiokkkkdkkkkikkkbkdkkkbhhhbhhkbkkbkbkkbkbkkbkkkkkkkkkkkkkkkk(

SUBROUTINE ESTIFF(DEK,ICLASS)
DIMENSION DEK(4,4)

E=209.E9
C
IF(ICLASS EQ. 1) THEN
EL=0.075
AMI=0.41667E-8
GO TO 10
C
ELSEIF(ICLASS .EQ. 2) THEN
EL=SQRT( 1.93)/6.
AMI=1.0417E-11
GOTO 10
C
ELSEIF(ICLASS .EQ. 3) THEN
EL=0. 175
AMI=1.25E-11
GOTO 10
C
ENDIF
C
10 CONTINUE
C
FAC2=E*AMI/EL**3
C
C**** S’I‘IFI:NESS MA'TRIX ********C
C

DEK(1,1)=FAC2*12.
DEK(1,2)=FAC2*6.*EL
DEK(1,3)=-DEK(1,1)
DEK(1,4)=DEK(1,2)
DEK(2,2)=FAC2*4 *EL**2
DEK(2,3)=-DEK(1,2)
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END
Lo e e
CHkk SUBROUTINE ESTIFF hiahdid O

C**************************#*******t*****************#tt************c

SUBROUTINE ESTIFF(DEK,ICLASS)
DIMENSION DEK(4,4)

E=209.E9
C
IFACLASS .EQ. 1) THEN
EL=0.075
AMI=0.41667E-8
GOTO 10
C
ELSEIF(ICLASS .EQ. 2) THEN
EL=SQRT( 1.93)/6.
AMI=1.0417E-11
GOTO010
C
ELSEIF(ICLASS .EQ. 3) THEN
EM.175
AMI=1.25E-11
GOTO010
C
ENDIF
C
10 CONTINUE
C
FAC2=E*AMI/EL**3
C
C**** STIFFNESS MATRIX ***¥¥k¥¥(
C

DEK(1,1)=FAC2*12.
DEK(1,2)=FAC2*6.*EL
DEK(1,3)=-DEK(1,1)
DEK(1,4)=DEK(1,2)
DEK(2,2)=FAC2*4 ¥*EL**2
DEK(2,3)=-DEK(1,2)
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DEK(2,4)=DEK(2,2)/2.
DEK(3,3)=DEK( 1,1)
DEK(3,4)=DEK(2,3)
DEK(4,4)=DEK(2,2)

DO 201=24
DO 20 J=l,I-1
DEK(1,J)=DEK({J,I)

20 CONTINUE

C

RETURN
END

C*******************************************************************C

C*****

SUBROUTINE ELMKF1

*kkkk(C

C*******************************************************************C

10

SUBROUTINE ELMKF1(DEM,DEK,K)
PARAMETER(N=42)

DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB 1/FMF(N,N),FKF(N,N)

DO 10 I=1,N
DO 10 J=1,N
FMF(1,J)=0.
FKF(1,9)=0.
CONTINUE

IF(K.GE.l .AND. K.LE.21) THEN

CALL EMASS(DEM,1)
CALL ESTIFF(DEK, 1)

ELSE

WRIT&*,*) "+ ASSEMBLING ERROR !l ***'
STOP

ENDIF




Appendix [E| GENFRF User's Guide 232

20

C

IF(K.GE.1.AND. K.LE.21) THEN

DO 201=1,4
DO 20 J=1,4
FMF((K-1)*2+1,(K-1)*2+J)=DEM(J)
FKF((K- 1)*2+],(K-1)*2+J)=DEK(I.J)
CONTINUE

ELSE

WRITE(*,*) '*** ASSEMBLING ERROR !! ***
STOP

ENDIF

RETURN
END

C*******************************************************************C

C*****

*****C

SUBROUTINE GLOBAL

Cw ook koo koo koo ok ok ok ok ok ok ok k ok ok ok okakok sk kool ok ok ok ok dokkkokokokokok ok (O

20

30
10

OO0

SUBROUTINE GLOBAL(NI,NJ,DEM,DEK)
PARAMETER(N=42)

DIMENSION DEM(4,4),DEK(4,4)
COMMON /CB 1/FMF(N,N),FKF(N,N)

DO 101I=1,2

D020 J=1,2

FMF((NI- 1)*2+4L,(NI- 1)*2+J)=DEM(1,J)
FKF((NI-1)*2+1,(NI-1)*2+J)=DEK(1,J)
CONTINUE

DO 30J=3,4
FMF((NI-1)*2+I,(NJ-2)*2+))=DEM(,J)
FKF((NI-1)*2+1,(NJ-2)*2+J)=DEK(,J)
CONTINUE

CONTINUE
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50

C

DO401=3,4

DO50J=1,2
FMF((NJ-2)*2+1,(NI-1)*2+J)=DEM(1,J)
FKF((NJ-2)*2+I,(NI-1)*2+J)=DEK(I,J)
CONTINUE

DO 60 J=3,4
FMF((NJ-2)*2+1,(NJ-2)*2+J)=DEM(,J)
FKF((NJ-2)*2+I,(NJ-2)*2+J)=DEK(1,J)
CONTINUE

CONTINUE

RETURN
END

C*******************************************************************C

CH¥kkk

SUBROUTINE LEAK

kkkkk(

C*******************************************************************C

2 oW N —

SUBROUTINE LEAK(GXY,FR)
PARAMETER(NF2=801)
COMPLEX GXY(NF2),GD(NF2)
Do 10 I=1,NF2,2

IF(I.LE.5 .OR. I.GE.NF2-5) THEN

GD(M=GXYI)*3./FR

ELSE

GD(I)=2.*GHAN(FR,2.5*FR)*(GXY(I-5)+GXY(I1+5))
+2.*GHAN(FR,1.5*FR)*(GXY (I-3)+GXY(1+3))
+GHAN(FR,FR)*(GXY([I-2)+GXY(1+2))
+2 *GHAN(FR,0.5*FR)*(GXY (I-1)+GXY(I+1))

+GHAN(FR,0.)*GXY(I)

ENDIF

GD(I)=GD(I)*FR/3.




Appendix D GENFRF User's Guide 234

10 CONTINUE

C
Do 20 I=1,NF2
GXY(I)=GD()
2 0 CONTINUE
C
RETURN
END
C
C*******************#*************#*********************************C
Chxxkk FUNCTION GHAN FEHHHC

C*******************************************************************C

FUNCTION GHAN(FR,FX)

C
IF(FX.EQ.0) THEN
C
GHAN=2./(3.*FR)
C
ELSEIF(FX.EQ.FR) THEN
C
GHAN=1./(6.*FR)
C
ELSE
C
CST=FR/3.1415927+*2
T1=2./(3.¥FX**2)
T2=1./6.*(1./(FX+FR)**2+1 /(FX-FR)**2)
T3=1./(FR**2-FX**2)
X=(3.1415927*FX)/FR
GHAN=CST*(T1+T2+T3)*SIN(X)**2
C
ENDIF
C
RETURN
END




Appendix D GENFRF User3 Guide 235

E.7 DATA FILE

FREE-FREE BEAM DATA (PROP. STRUCTURAL DAMPING)
FRF TYPE (INERTANCE=3)
3
MASSES (ACCELEROMETER, FORCE TRANSDUCER& SHAKER)
0.02 0.01 0.02
NOISE SPECTRA LEVELS (INPUT & OUTPUT) AND NO. OF AVERAGE
I.OE-2 1.OE-3 100
STARTING FREQ. AND END FREQ.
0. 800.
COHERENCE FLAG
1
EXCITATION COORDINATE
1
RESPONSE COORDINATES
159 13 17 21 25 29 33 37
41

e
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APPENDIX F

BENDENT METHOD

Even though the Inverse method for SDOF identification of a FRF has some advantages

over the Circle-fit method as discussed in Chapter 5, the Inverse method. has some

drawbacks such that:
1) it is difficult to apply the Line-fit method to complex modes, and

2) the extraction of the resdua effects of other modes is a pre-requsite for an accurate

anayss.

A new SDOF method, which is a modified version of the Inverse Method , has been
developed by Dobson [51]. This method retains many of the advantages of the Inverse

method and can calculate modal parameters of complex modes.

The receptance FRF near resonance can be express as

A
w) = T + R, (F1)
02 - 02 +i 10,2

where A, and R; are complex. The effect of R; can be eliminated by taking the difference

between two measured FRF data.
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Let
'@ = a(0) -a@) and A@) =—— F2)

where Q is areference frequency. Then,

(02-02+in,02) (@2-Q2+in,02)

Alw) = A

=Re (A) +Im (A) (F3)

where Re (A) = mg @? +cg and Im (A) = my@? + ¢

- (('Jr2 -Q2%)-b (N, er)

and mp = | Ar |2
b, (0,2 - Q2) - 2, (N; O
- LA, I?
A = a,+ib;

The slopes of the real and imaginary components of A are linear functions of ©2 such

that:

mp = Ng QZ + dR and (F4)

where the slopes and intercepts are:

ng = - :, 2 (F5a)
_ 2_ 2

dR — ar (olfA, l'){ nl’ (‘)r (FSb)

S (F5¢)
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2 2
-a N, 0 +b o
I A, 12

dI:

(F5d)

This set of equations can be used to extract the modal properties. From equations (F5a)

and (F5¢)
= .0
bl’ - -nR af
-0
where p ng
From equations (F5b) and (F5d)
N, = 9qp
r 1+pq
d;
where q = —4—
q dg

From equations (F5a) and (F5b)
2_ _ -~dr
nR( 1 'P'ﬂ r)

and
_ mrz(pnr -1)
dg(14p?)

therefore b, can be calculated from equation (F6).
For real modes (b, = 0), p = n; = O, therefore,
d
= q =—1
Nr=4q-= dg

'dR

2
[6)) =
r nR

(F6)

F7)

(F8)

(F9)
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The analysisisin two parts.

1) For the selected FRF data range one point is selected as the reference point 2. All
possible values of A(w) are calculated using the reminder of the selected data. The best
straight line is then calculated for each of the real and imaginary parts of equation (F3)
to determine the values of m, and my for that value of 2. The process is repeated using
each of the data points in turn as a reference point, and a series of lots made, showing

the values for Re (A) and Im (A) against 2.

2) The dlopes of the best fit straight lines for each in part 1 are plotted against the
reference frequency 2. The resulting two plots may either be analysed using a straight

line fit over the whole range or over the selected range.
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