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Summary

An investigation is made into the effects of detuning upon the
vibrations of a bladed disc. A theoretical analysis is developed in terms
of receptances from which natural frequencies and modal shapes may be
determined. An alternative approximate analysis is proposed which
enables extremely efficient computation of estimates of these natural
frequencies.

By examining the equations of motion of the system, it is possible
to predict two distinct types of vibration mode. An extensive programme
of computation is made for the case of uniform five bladed discs using
both methods of solution, and the results confirm the existence of these
two types of mode. Also, the precise effects of detuning by the intro-
duction of small differences between the blades are established, and it
is found that certain forms of detuning cause a natural frequency splitting
effect in specific modes of vibration.

Consideration of a simplified analytical model leads to the
conclusion that, for certain modes, detuning always causes one or more
blades to experience a higher stress level jchan is attained in a perfectly
tuned system. However, it is also found that the other modes suffer
their highest stress levels in a tuned system, and that for these modes,
detuning can be favourable.

Detuning effects are observed and measured experimentally on a
simple physical model. Good agreement is achieved between measured
and computed data for five bladed dishcs in every case that is examined.
Many of the results obtained in this investigation apply to bladed discs

in general, and they agree qualitatively with other published work.
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CHAPTER 1

| NTRODUCTI ON TO THE RESEARCH

1.1 The nature of the problem

Vibration has always presented a major problemin the
devel opment of turbomachinery by inposing excessive stress levels on
various conponents, causing themto fail. In the introductory lecture
cf a conference* held recently in Canbridge, Dr. D.M. Smth** surveyed
current vibration prcblems i n turbomachinery and in many cases traced
their develepment fromthe early days of steamturbines. He found it
cenvenient t0 di vide such problens into two types = one invol ving
motion of the whole machine, such as mght be brought about by
flexuralvibrations Of a rotor shaft, and the other concerned with the
vibrations of individual conmponents. The great majority of problenms
of this second type are associated with vibrations of the blades and
discs, and it is with these that the present study is concerned.

It is possible in many cases to treat the blades as
cantilevers, either vibrating individually or grouped together in a
ring or cascade in which case they are nechanically coupled by a rigid
disc cr annulus, Such is the case in many axial flow compressors,
where any coupling between one bl ade and another is either through
rigid body notion of the disc, or of an aerodynamc nature. Onission
of any coupling effects which mght arise fromthe flexibility of the
disc, sinplifies considerably analysis of thenotion, and consequently,
aerodynamic effects may be considered in greater detail than woul d
ot herwi se be possible.

* Applied Mechanies Croup Convention (I.Mech.E.) Canbridge, 1966,
* %
Ref erences mey be found in al phabetical order of authors in
Appendi x 2.



However, there are cases in which this sinplification is invalid
because of strong coupling between blades due to the flexibility of the
disc to which they are attached. 1In the earlier days of steam turbines
a nunber of failures occurred which were clearly caused by participation
of the disc in the vibrations. Experinental investigations which were
made at the tine confirmed the inportance of this type of vibration, and
demanded reconsideration of the basis upon which design calculations
were made. Thereafter, discs tended to become stiffer, although
vibration problems of this nature are currently reappearing in gas
turbines. An analysis of the nechanical vibrations of a bladed disc
may only be made in general terms, while techniques for nunerica
application of theory to practical systens have not yet been perfected.

There are several nethods which mght be enployed to elimnate
or reduce the harnful effects of vibration. Forenpst of these is the
devel opnent of design techni ques, numerical methods etc.scthat the
vibratory properties of bladed discs may be accurately predicted, as
also may the sources of excitation. Wth this information it should
bepossi ble to reduce the incidence of resonant conditions. In the
absence of accurate estimates of resonant frequencies, an obvious
remedy is the provision of sources of danping so that the acuteness of
resonance may be eased. Many attenpts have been made to devise such a
solution, but none has yet been perfected. A third possible nethod
m ght be either to 'detune' the system for exanple by introducing
smal | differences between a set of blades, or, alternatively and at
the other extreme, to tune the blades until they are as nearly as
possible identical. Put rather crudely, the argument in faveur of
detuning is that the severity of resonance would be reduced by
avoi ding having a large nunber of identical natural frequencies. The
supporters of tuning put the contrary view that differences between
bl ades would inflict higher stresses on some bl ades (and | ower upon
others), thereby worsening the situation, The research which forms




the subject of this thesis relates to the effects and possible benefits
of detuning

1.2 A sunmary of previously published work

Al'though there is a large amount of published material on
vibration in turbonachinery, very Little discussion is to be found on
the current topic of detuning. Thus it is necessary to survey the
literature for nore general studies of blade and disc vibration, and it
is found that these fall into two categories. Those in the first are
the nore nunerous and are concerned with the cantilever vibration of
bl ades, either alone or connected by a rigid disc or casing; the other
group includes those cases in which blade coupling through a flexible
disc is admtted

Since the introduction of axial flow conpressors, considerable
efforts have been made to determine the vibration characteristics of
cantilevered blades. Shannon (1945) produced a conprehensive review of
experimental and numerical techniques for determning these
characteristics, but the approximte methods then used for calculations
have since been found inadequate. An extensive conputational and
experimental programe of research into nore accurate nethods is being
made by Carnegie, and a nunber of results have already been published
(1959, 1964, 1966). COther workers have also proposed alternative
met hods for conputing the natural frequencies of conplex, twsted
bl ades, but although such work is essential to practical application
of the analyses described in this thesis, it is not relevant to the
probl em of detuning. Aerodynam c aspects of blade vibration have also
been exam ned by Whitehead (1957, 1966) and others, but such studies
generally relate to systems with sinplified vibratory properties,

This approach may be usefully applied to more conplex vibratory systens
(in which the aerodynamc effects are usually ignored) as it serves to
define the likely forms of excitation




O particular interest to the present work are two assessments
of the effects of detuning on a set of blades which are connected by a
disc or casing. Witehead (1964, 1966) has shown that detuning always
has a favourable effect on self excited vibration (flutter), but is
detrinmental to forced vibration resulting from external excitation in
that it causes an increase in the maxinmum stress. A recent unpublished
report by Stratford (1966) considers the effect of detuning on blades
which are attached to, and vibrating in the plane of, a rigid disc
Coupling between the blades in this case is the result of snal
torsional oscillations of the disc as a rigid body. The analysis
indicates that a specific formof detuning in which there is a
sinusoidal variation of blade natural frequency around the disc
together with unfavourable conditions of excitation, can give rise to
large increases in stress levels in conparison with those obtained in
a perfectly tuned system Neither of the studies just mentioned
considers in detail the coupling between the blades which results from
flexibility of the disc

An investigation into the effects of detuning on the vibration
of circular discs is reported in two papers by Tobias and Arnold (1957)
and Tobias (1957). Both papers present a linear theory describing the
effect of inperfections in a disc on its flexural vibrations, and it is
found that for each conbination of = nodal diameters and s nodal
circles, the disc possesses two individual modes of vibration which
have close natural frequencies. The first paper goes on to study the
consequences of this property on the vibration of an inperfect disc
when it is rotating, and examines in detail the 'standing wave'
phenonenon which is experienced in turbines. The results of this study,
together with an extensive experinental progranme, indicate that the
inclusion of inperfections can greatly reduce the severity of the
vibrations associated with standing waves. In the second paper, Tobias
extends the theory to consider vibration at larger anplitudes. In this
case, the equations of motion become non-linear, and their solution




explains certain experimental observations reported in the first paper

In 1955 Arnmstrong presented an analysis of the vibration
properties of a stationary bladed disc using mechanical receptances,
Prior to this, nethods for deternmining natural frequencies were
essentially approximte, and estimates were sometimes in error by as
much as 20%. There had also been a nunber of papers describing
experimental observations of vibration of the bladed disc as a single
conposite conponent, but these reports are only of passing interest to
the present work and reference may be made to Armstrong's thesis for a
nore detailed discussion

Arnstrong's method of solution assumes that nodal shapes of
the bladed disc have a nunber of nodal dianeters and circles in the
sane way as does a disc without any blades. It is possible on this
basis to derive a frequency equation in terns of the receptances of
the disc and the blades. One limtation of this method is the
assunption that all the blades are identical, and as such it cannot
be directly applied to study detuned systens. Arnstrong's anal ytica
work was supplenented by experinents on a systemwth 80 nomnally
identical blades, and also by a series of tests on the same system
under various detuned conditions, \Wen the system was detuned, severa
nodes of vibration were found to 'split' into pairs of nodes with
al nost identical nodal shapes and very close natural frequencies, but
no sinple pattern of behaviour can be detected. The conclusion drawn
by Armstrong from a nunber of response neasurements was that detuning
was always unfavourable in that it resulted in a greater incidence of
high stress levels than was found in the tuned system

Since 1955, this nmethod has been developed to enable its
application to practical systerns, as described by Armstrong, Christie
and Hague (1966). However, no other work on bladed discs has been
publ i shed, and the effects of detuning which were observed 'en passant'
by Armstrong, remain largely unaccounted for




1.3 The scope of the present research

The closing paragraphs of the previous section clearly suggest
a topic for further work, since the precise effects of detuning on a
bl aded disc are largely unknown. The present research is intended to
contribute to a better understanding of bladed disc vibrations, and in
particular to examne in detail the mechanism and consequences of
dct uning

In order to achieve this object, it is necessary first to
devise quicker and nore convenient nethods than exist at present for
calculating natural frequencies and nodal shapes, and then nake a
detailed study of discs with non-identical blades. This is a truly
form dable undertaking for 'real' discs of non constant thickness
carrying tw sted and non-uniform blades. The conplexity of such 'real’
systens entails extra expenditure of thought and time which, in
themsel ves, reduce both the quantity of nunerical data which can be
assenmbled by way of theoretical prediction, and also the tine
available for testing these predictions by experiment. For these
reasons, it was decided at the outset to restrict attention to nodels
whi ch have sinpler properties than real systens (and are therefore
nore anenable to analysis and conputation), but nonethel ess preserve
those features which are believed to be essential to a fuller
understanding of the effects of detuning

To this end, the model which is subsequently considered
incorporates the follow ng sinplifications

1) the disc and bl ades are each of constant cross section;

2) all the blades have zero stagger, so that vibration is
entirely normal to the plane of the disc;

3) the systemis assumed to be stationary andthe effects of
rotation are ignored; and




4) only a small nunmber of blades (5) will be considered, although
subsequent work will deal with multibladed discs,

(Whereas cal cul ations may.be nade for any nunber of blades, a smaller
number enabl es nore cases to be exanmi ned and assists in detecting
patterns of behaviour.)

Any study of vibration in detuned bladed di SCS, whether real
or hypothetical, can be subdivided as follows

1) calculation of normal nodes and natural frequencies in the
absence of danping;

2) calculation of response to forcing wth danping
3) search for pattern of behaviour in respect of detuning;
4) experimental assessment of the theoretical predictions.

Al these aspects are considered later in relation to the sinplified
model . Part (1) involves considerable prelimnary analysis, using
both receptance and matrix methods, and this forms the basis for the
devel opment of conmputer programs for obtaining nunerical results

Part (2) is based upon the results obtained in part (1), but because
somewhat questionable assunptions have to be made concerning the
danpi ng, a conprehensive numerical study is not attenpted. In

part (3), nunerical results for detuned systenms formthe basis for
fornulating enpirical 'laws' of behaviour, although the theoretical
basis for these remains obscure. Nevertheless, it is relevant to note
that there is no significant conflict with experirental evidence, To
this extent, there are good grounds for believing that the theory
which is used here tc discuss a sinplified nmodel will be found tc
apply, with little change in its essentials, to real bladec discs.




CHAPTER2
A GENERAL ANALYSI S OF THE UNDAVPED VI BRATI ON OF A BLADED DI SC

2.1 Introduction

The work reported in this thesis forms part of a study which is
being made of the vibration characteristics of bladed discs. It is
particularly concerned with the manner in which these characteristics are
affected by detuning, such as might arise from the presence of snal
differences between the blades. However, in order to undertake such a
study, it is first necessary to develop a nethod for determning the
natural frequencies, nodal shapes and other properties of a vibrating
bl aded disc. Previous techniques are found to be inadequate for the
present case of non-identical blades, so that it has been necessary to
devise a nore general formof solution. The present chapter is
concerned with this task, and describes in general terms two anal yses
which are suggested as alternative nmethods of obtaining this solution
Both anal yses apply to a system which is conmposed of a circular disc
with a nunber of separate blades attached at points on its rim It is
assumed (for the purpose of this chapter) that data defining the
vibratory properties of the subsystems is available in sone convenient
form and it is in their requirenents in this respect that the two
nmet hods of solution differ

The first analysis, which is based on receptance techniques, is
only useful when the information on the conmponent subsystens is
available as explicit algebraic expressions. The second nethod is based
on normal nmode theory, and it enploys such data in an infinite series
form  The nunerical application of this latter analysis provides an
approxi mate solution by truncating the series at sonme convenient |evel
This is a more practical approach when the required data must be
conputed for conplex non-uniform conponents, although the accuracy of
the resulting apprcximate solution has yet to be investigated,




The displacement of any elenment of the system may be considered
as being conposed of six components, nanely,

(i) translation normal to the plane of the elenent;
(i) translation along the disc radius through the elenent;

(iii) translation in the plane of the disc, normal to the radius
through the elenent;

(iv) rotation about the normal
(v) rotation about a radial line; and

(vi) rotation in a plane containing both the normal and the radius
through the element.

In a general treatment of the flexural vibrations of a bladed disc, one
of these siXx displacements, (ii), usual |y becomes redundant.

Mtion in the other two directions which are in the plane of the disc,
(11i) and (iv), occurs as a result of staggered blades, In the present
work, in which a sinplified systemis studied in detail, only notion
which is normal to the plane of the disc will be considered, and
furthernmore, the torsional modes of vibration of the blades will be
ignored so that the systemis reduced to one in which only two

di spl acenents are relevant, (i) and (vi) above. This systemis
referred to as having 'two degrees of coupling'

As mentioned earlier, the analyses in this chapter are
presented in general terms, and in the interests of brevity, a matrix
notation is used throughout. In the text, the 'displacenent’ of a
point refers to the displacement vector (which is conposed of the
conponents described above), and not to the notion in any one
particular direction (such as the normal displacenment)




10

2.2 Receptances of blades and discs

Before proceeding with the analysis, a definition of the
receptance expressions which are used throughout will be given
Consider first any one of the N blades which are attached to the
disc. This blade will possess certain receptance properties which are
determned by its dinmensions and el astic properties. The genera
receptance for the i* blade, f,(x,y) , relates the displacenent at
any point x (defined by +.a+% , €:8;) and a dynanic |oading at
any other point y (+:a+y , ®:8;). In the present work we shal
be concerned only with displacements of the end of the blade which is
attached to the disc, and which is subsequently referred to as the
‘root'. Thus, the bl ade root receptance fL. () is defined which
relates the root displacement to any |oading applied to the blade. If
the load itself is applied at the root, then it is convenient to wite
the receptance sinply as L. . The order of the receptance matrix &
Is determned by the nunber of degrees of coupling which are adnmtted
to the analysis (see section 2.1). The elenments on the |eading
diagonal are direct receptance terms and are the ratio of displacenent
to load in any one particul ar direction, while the other elements are
cross receptances and these represent the ratios of displacenent in
onc direction tol oadi ng i n anot her.

If we next consider a freely supported disc, we shall define
the general receptance for the disc £ (£4,4) as the relationship
bet ween the di splacenent at a point defined by £ ( +-7, , 8: 6,
and a harnonic |oad applied at another point & (+r +,, 6+ 8,).
Much of the analysis requires only 'edge' receptances in which the two
points (£,4) both lie on the rimof the disc. The followng
notation is adopted in order to sinplify the algebraic expressions
points on the disc which are situated at the rim(i.e. ¥=a ) are
denoted by the suffices 4+ and j , and the edge receptance
between themis witten as £;, A further sinplification is nade
by omtting the second suffix when the positions of the response and
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excitation are identical (i.e. <=4), so that &4, is witten
sinply as «&«£..

It is to be remenbered throughout that each of these
receptance terns is a function of frequency of vibration as well as
the system geonetry. They may be derived from consideration of the
basic equations describing the notion of the systens.

2.3 A receptance anal ysis of the undanped free vibration of a
bl aded disc

Consi der a bladed disc vibrating in a direction normal to its
plane. TFig.2.1 illustrates the systemwhere +» and j are two of
the N stations around the rimof the disc at which the blades are
attached.

The displacement of the disc at station + (Y;) due to the
combined effects of all loads F; at each of the N stations, is
given by

N
Yo - —; L5 E; (2.1)
and there are N of these equations, corresponding to i= 1{(V)N

Next, consider the blade which is attached at station 4,
The corresponding expression for the displacenent of the root is

yio o= i 4 for i=1(1)N (2.2)

The boundary conditions for the whole system are those of conpatibility
and equilibrium at each station, 4, First, since all the blades are
rigidly attached to the disc, we have

Y. = y: for 4= ' (V)N (2.3)
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and secondly, equilibriumis maintained if

F: + 4o = O for 4= V(N (2.4)

The conbination of these four sets of equations leads to a set of
homogeneous |inear equetions in which the variables are the individua
forces and couples at the points of attachnent, and the coefficients
are the elements of the receptance matrices, This set of equations
may be conveniently witten as

Z_ (i(*"s' 5‘) + N,k O for 1 =1 (V) N (2.5)

i

In order that a set of honbgeneous equations may have a non-
trivial solution, the determnant of the coefficients nust vanish,
Because the receptance terms are frequency dependent, this condition
wll be satisfied at particular values of frequency = the so-called
natural frequencies - and these are given by the roots of the
determ nantal equation

AN (w) = O (2.6)

The order of this determmnant is the product of the nunber of blades
and the nunber of degrees of coupling (usually 2 or 3: see
section 2.1).

It may be shown that for a set of homogeneous equations, such
as those in equation (2,5), no unique solution exists for the
variables (F;). However, it is possible to obtain a set of
relative values of these loads, or a formof the nodal shape, at any
particular natural frequency. The equations are reduced to an
I nhonogeneous form by an arbitrary choice of values for a specific
nunber of the variables. For exanple, if the determnantal equation (2.6)
possesses one root at w=w,, We set one variable to unity, F  say.
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This condition and w = wx are substituted into the equation (2.5) and
a set of inhomogeneous |inear equations are formed. A unique solution
is now possible for the ratios Rh/F , Fs /F ,,.. etc, and thus the
pattern of the distribution of forces and couples around the disc is
deduced.

However, if the determ nantal equation possesses M coincident
roots at w = w. , the problemis somewhat nore conplex. It is then
necessary to choose M variables (such as F., Fz,...) and assign
to thema set of suitable values (e.g. 1,0,0,...,0). The relative
val ues of the remaining variables may now be conputed as before. This
process nust be repeated M tines, each tine using a different set of
values for the M fixed variables (e.g. 0,0,1,0,...,0), until the
conplete solution of M linearly independent nodal patterns is
obtained. The general solution at this frequency is any linear
combi nation of these M nodal patterns.

2.4 An anal ysis of undanped forced vibration

It is possible to determne the undanped response of the
bl aded disc to any formof excitation at any frequency other than a
natural frequency.

Suppose that a nunber of external loads P4 are applied
at points -k on the disc (see Fig.2.2) together with a number of
loads ipx acting at points = on the blades. In this case,
equation (2.1) is witten as

\f; = Z_ <44 fj * Z_ X (4,4 Pa 2.7

Yo o= M4 o+ ) D0 op (2.8)
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The boundary conditions of conpatibility and equilibrium may be applied
tothe N stations 4, as before, and this tinme forma set of
I nhonogeneous |inear equations

ZN_(:c;,j- Fj) + ;F; = Z_(__(_L,;(_x) "f") - Z-__(cf(i,é) Pe)
i

ol — r

for i= \(\)N (2.9)

In this case, the condition for a unique solution for £, is that the

determnant of the coefficients shall _not vanish. Providing that the

frequency equation (2.6) is not satisfied (i.e. that the systemis not

vibrating at a natural frequency), then each of the forces and couples

at the stations «+ may be found in terns of externally applied |oads
P, and ibx by solution of equation (2.9).

Wth the solution thus provided as a set of loads on the disc
and bl ades, the response nmay be derived in any convenient form such as
disc or blade anplitudes of vibration, or blade root stress levels etc

2.5 The normal nodes of vibration of blades and discs

An alternative nethod of analysis will now be devel oped which
I's based upon normal node theory and which expresses the vibration of
the bladed disc as a set of equations of notion. For a nunerica
application of this nethod, it is necessary to make a nunber of
sinplifications but the method of solution enploys powerful matrix
techni ques which may be readily programmed for a digital conputer,

Ve consider first a free free blade oscillating freely in
its normal modes of vibration, which are represented by the principa
coordinate vector A, Itis possible to wite down expressions for
the local anplitudes of vibration and for the kinetic and potentia
energy of the systemin ternms of the properties of the normal nodes
and their principal coordinates. In these expressions, the follow ng
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notation is used:

prefix + refers to the i bl ade;

- Is a vector whose elenments are the principal coordinates
““®  for the rigid body motions of the 4 % bl ade;

Is a vector whose elenments are the principal coordinates
a representing the normal nodes of flexural vibration of

the £ % plade:
4 represents geometrical coordinates;

i4hol) and ;4A(£L) are vectors of characteristic functions and
correspond to the principal coordinates (Ao.and .4
respectively;

(w*] is a diagonal matrix of natural frequencies squared;

<@, and .a are rowvectors of characteristic inertial

coefficients of the systemwhen viiirating in its normal
modes.

The displacement at any point in the blade which is specified
by the coordinate A may be witten as

iy(e) = RO ke v A O 4 (2.10)

The kinetic and potential energy of the blade when it is vibrating in
its normal nmodes nmay be witten in ternms of the properties of these
nodes as

2T = .a, ;a2 . ia AT
and
Z;V = L 4 (i w*) ;/1,"

- (2.11)

respectively.
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Ve next treat the disc in the same manner. The notation is
simlar to that used above, except that in this case the principa
coordinates are represented by ¢; the characteristic functions

by # and the typical geonetrical coordinate by E . Natura
frequencies and other properties are the same but |ack the blade
identification prefix.

The equation for the displacement of the disc becones
Y(E) = £(%)9. + $(3)g (2.12)
while the expressions for the kinetic and potential energies are
and (2013)

respectively.

2.6 Equations of nmotion for a bladed disc in matrix form

By using the conpatibility conditions which were enployed in
the receptance analysis, a ret of equations of notion will now be
derived for the bladed disc in terms of the principal coordinates and
the properties of the normal nodes of vibration for the disc and the
bl ades,

First, expressions for the kinetic and potential energies of
the conbined system may be obtained sinply by addition of equations
(2.11) and (2.13) , Thus we have

ZT = ZT:,L + Z_ZA_T

and (2.14)

oV = 2V, ¢ Z_\ZN

For reasons which will become clear later, it is necessary to elimnate
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from the analysis those coordinates which correspond to nodes with zero
natural frequencies (i.e. the rigid body nodes). This is done in two
stages, The first is to use the condition of conpatibility at the

bl ade roots as expressed by the equation

Yty = ;Y (2.15)

in conjunction with (2.10) and (2.12) to give

i./_‘_lo - [;_f.{o)]"[ io(j,) 1,, + f(l) 9 - i-“_}(O) 4./:_!-]

(2. 16)

(where E = Is the position of attachnent of the L bl ade) .
In this way, the coordinates referring to rigid body notions of the
bl ades may be elimnated from any subsequent equations.

The second stage, the elimination of the coordinates ¢, ,
which represent rigid body notions of the disc, is conveniently done
by deriving the equations of notion for these coordinates by the
Lagrangi an nethod, The form of Lagrange's equation applicable to the

systemis

d (9T R ) .

2(5) - (u = 0 (2.17)
where a¢ is any principal coordinate, and if we apply this equation
to 2 = 4, , the equation becones

éw, { 2a, + ii[;{\.(o)l'z[ t,m]’} =
- é}{i2[;{».(d]'z[i,u)][fm]} - Z J_»{ 2[ ik 00)] >

- [J_t.,m][.-::(o)]}

(2.18)
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Thus in subsequent equations, we may substitute for a,, (or 4, ) in
terms of the principal coordinates of the nodes of flexural vibration
and thereby express the energy functions (2.14) in terms of 4 and A

only,

|f Lagrange's equation is applied to these nodified expressions
for = equal in turn to all the flexural coordinates, i.e. to all g
and A, we arrive at a set of equations

Az + Bx = o (2.19)

where A is the inertia mtrix, B is the stiffness matrix and = is
the coordinate vector which contains all g and A .

It is convenient, both analytically and conputationally, to
conbine the symetric inertia and stiffness matrices into a single
"systeml matrix. As is well known, the latter will not itself be
symmetric unl ess the coordinate vector is subjected to the linear
transformation z =_E>"“_x ,  Which serves to define a nodified
coordinate vector z. Assuming harmonic oscillations, so that

x=-cx_, we find that

Ax - 5 Bx
or;, interms of z,
(B"AB™)z: 5 (8B B™ )2 »2
or
- 4
2z = o= (2.20)

where D = B A B>  is the symetrical 'systenl matrix.

elenents are the coefficients in the potential energy terms,, The

I nspection of B shows that it is a diagonal matrix whose

necessity for the elimnation of the coordinates g,and A, iS
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now nade clear, since their potential energy coefficients are zero.
Wth such zero terns in B, the matrix _E_f"’ woul d possess infinite

el enents and render further manipulation inpossible,

2.7 Solution of the equations of notion by matrix manipul ation

In order to obtain a practical solution based on the matrix
anal ysis described in the previous section, it is necessary to make one
basic sinplification, Because both the disc andthe blades are
continuous systems, they possess in theory an infinite number of
normal nodes of vibration. Consequently, the matrices and vectors in
the previous sections are all of infinite order. W shall define the
approximate system as one in which the disc and the blades each have a
finite nunber of normal nodes. Furthermore, we shall choose the
properties of these nodes of the approximate disc (for exanple) to be
identical with those of the same nunber (Q say) of the normal nodes
of the continuous system In practice, it is usually convenient to
choose the first Q nodes when they are arranged in ascending order of
natural frequency. In this case, the approximtion which is made
consists of neglecting the effects of the higher frequency nodes of
vibration. Using this sinplification, we reduce the matrices and
vectors associated with A to a finite order R, and those
associated with the disc nodes ¢4 to order &, Thus, having
elimnated 4., and 4,, the order of the system matrices A,B
and D, and the vectors % and z becones Q&+ NR= M gay. which
may be made of realistic magnitude by a suitable choice of Qand
R .

This done, the solution of equation (2.20) may be effected to
produce M eigenvalues w, and the associated eigenvectors z,, .
These represent estinmates of the natural frequencies (directly from
w,, ), and the nodal shapes (indirectly from=., ) of the original
system  The accuracy of these estimates wll depend upon the
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magni tudes of Q and R.

The nodal shape may be nost conveniently derived from the
ei genvector z,, in the formof the displacement pattern over the
surface of the disc, by using equations (2.12) and (2.18) in
conjunction with the eigenvector itself. Aternatively, the pattern
of loads at the root of each blade may be determned using the root
di spl acenent (as conputed above) together with the root receptance
expression (as described in section 2.,2). These |oads provide
estimates to the exact values which may be found according to the
nmet hod described at the end of section 2.3, The remarks in that
section concerning a nunber of normal nodes with the sanme natural
frequency apply equally in this case.
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CHAPTER 3
SOME PROPERTI ES OF UNI FORM VI BRATI NG BEAMS AND DI SCS

3.1 Introduction

The analyses presented in Chapter 2 are intended to show, in
general terns, two nmethods which can be usefully enployed to study the
behaviour of vibrating bladed discs, Before these nethods may be used
as a basis for conputation, it is necessary to derive expressions for
the receptances, natural frequencies etc, of both the blades and the
disc, In general, this is a fornidable task and is beyond the scope of
the present work. However, it is possible to determne these
properties for the conponents of a uniform system (i.e. a uniformdisc
with uniform bars to represent the blades), and this chapter describes
various ways in which such information nay be obtained

The first part of the chapter is concerned with uniform free
free beans or bars. None of the results nor the analysis in this
section are new, and all the information could have been found in the
rel evant chapters of Bishop and Johnson = 'The Mechanics of Vibration'.
Neverthel ess, it has been thought worthwhile to include a derivation of
these results on the ground that this serves to introduce the procedure
which is adopted for the subsequent treatment of the freely supported
disc, and which is much nmore difficult

Receptances of a uniform disc were first derived by Arnmstrong
in 1955 in the formof an infinite series. Mre recently (and after
the completion of the work in this chapter), Bishop and McLeod
publ i shed considerable information concerning the receptance
expressions for uniformcircular plates with various boundary
conditions. Their expressions corresponding to Arnstrong' s receptances
for a free disc are in a closed form and as such they provide nore
accurate numerical values, However, their results are presented in
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such a general form that application to a specific problem (in this
case to a free disc) presents an extensive al gebraic exercise,, In the
second part of this chapter, these closed formreceptances are derived
from first principles, and the resulting expressions are found to be
very much sinpler than the general forma from Bishop and McLeod. Thus
it is believed that the present analysis is a far nore convenient
approach for such a case, A large nunber of calculations were done to
denonstrate the inaccuracy of the series form receptances when these
series are truncated at various |evels,

3.2 Flexural vibrations of a free free beam

The fundanental equation governing the free motion of a
uniform prismatic beam in the absence of rotary inertia and shear
deflection effects, is

‘64—3 éf_ﬁ bkg _
+ —{é" - O

ﬁ+ ET (3.1)

where y is a displacement coordinate normal to the length of the beam
4 is a displacenent coordinate along the beam
Ao v I, p and E are the sectional area, second nonent of
area, density and Young's nodul us respectively of the beam

The assunption of a harmonic solution to (3.1) in which
3 3 Y (L)e ;wr (302)

leads to a general solution of the form

y = [A cos (AL) + B sim (AL) + C sk (A8) + D sink (AD]™*

(3.3)

where  A*- w‘Aor JET and w is the frequency of vibration,
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The constants A, B, ¢ and D in equation (3.3) are deternined by
four boundary conditions, Current interest is in a free free beam in
whi ch the absence of restraining forces or couples at either end gives
rise to the boundary conditions

L)
1%

where L is the length of the beam \When these conditions are applied
to (3.3), they lead to the conclusion that a non trivial solution only
exists if

2’_3.3 } - L=0o, L
bQS - O 4 (304)

Cos (ML) cosh (AL) — 1 = ¢ (3.5)

The frequency equation (3.5) has an infinite nunber of roots which
correspond to the natural frequencies of the beam  Corresponding to
any such root, A= Xx_ , there is a normal node of vibration whose
shape may be found by substituting A<= A, into any three of the
four equations (3.4) and solving for the ratios B/A |, c/a » DA,
This results in the characteristic function of the 4&™ normal node
which is

(3.6)

where C, is an arbitrary constant representing the anplitude of free
vibration, and o, is the constant  [cosh (AnL) — cos (AuL)]

[smt (Aul) — wnm (Akt)]
W shall now introduce a principal coordinate .4, which describes
notion in the &% normal node such that

Yu(2) = A, Py (2) (3.7)
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It is convenient to normalise the characteristic function so that unit
distortion in the principal coordinate .4, corresponds to a unit

di spl acenent at either end of the beam Fromthis, and equation (3.7),
it follows that

for all 4,

Because many relations in the theory of vibrations are nost
easily derived by Lagrangian methods, it is inportant to assess the
contribution which each node makes to the kinetic and potential energy,
As to the first of these, the contribution from an elenental |ength of
the beamis

ST& = l/Z S’e' Aof) [{1{6&)]1
so that, for the whole beam

2T4 = A4 A (3.8)

A
where Aa.p = Aof]¢:(ﬂ.)u which, on substitution for ¢, from
(3.6), reduces to"

Qe = 'Ap m for all 4

m being the nmass of the beam
Simlarly, the contribution of an element to the potential energy is

SVe = Yo EISL [ Ty/or]”

leading to

2Vy = Ca Sk (3.9)
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L
where €, = er/[gb;m]‘a . Using the same substitution as

before, this reduces to

Ca = Ay Wi (3010)

Cal cul ations

A nunber of solutions to the frequency equation (3.5) were
conputed together with a nunber of other characteristic properties,
Al though this information is available el sewhere, a conputer program
was witten and tested which was to become a subroutine of the fina
program which is discussed in the next chapter, Mst tabulated data
on the characteristics of beam vibration are given to 5 significant
figures, but the calculations which are described throughout this
work are made (and required) to 7 figures,

3.3 End receptances of a free free beamin closed form

In order to derive expressions relating dynanmc |oading and
response at an end of the beam recourse is made to the genera
solution in equation (3.3). Suppose there to be an oscillating |oad

F:Ath applied to the end of the beam (4= 0), then one of the
four boundary conditions (3.4) will be altered so that

{?&J - F
M, = ET (3.11)

while the others remain unchanged, An explicit solution for the end
di spl acement y (o) may now be obtained using these nodified boundary
conditions, and this is
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() = £ aim (AL) cosk (AL)  —  cos (ML) aunts (AL)
! ETN cos (AL) cosh (AL) - |

(3.12)

Also, the slope (?®y/2+) may be found at the same point, and is

(},3 ) F o (AL) ik (AL)
L:0 = -ET- AT tos (AL) eoed (ALY — (3.13)

In the same way, the result of applying an oscillating couple
Ms.'=t to the end of the beam may be deduced. Again, just one of
the four boundary conditions (3.4) is affected so that

{b_‘:.i__M_
2, T eI (3.14)

The resul ting displacenent and slope at the end (4= 0) of the beam
are

- M an (ALY aumh (AL)

(j)lso = E;A:. tos ( AL) cosk (ALY — ] (3.15)
and
oy M cos (AL) dimh (ALY + aom (AL) cosh(AL)
( 31) T OEIA cos CAL) coste (ALY - | (3.16)

The end receptances which we require are defined as the ratios of

di spl acenents to load, both neasured at the root of a blade, which
we take to be the end £ = 0 of the beam These receptances may be
deduced directly from the four preceding equations, and are
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_ F am (AL) cosh (AL) — cos (AL) awmk (AL)
EIN cos (AL) cosh (AL) — |

(3.12)

Al'so, the slope (?y/»+) nmmy be found at the same point, and is

(by ) F don (AL) avmk (AL)
t:0 = CET- AT tos (AL) eoed (AL) — (3.13)

In the same way, the result of applying an oscillating couple
Meiwt to the end of the beam may be deduced. Again, just one of
the four boundary conditions (3.4) is affected so that

{b_‘;-_“i
2 f, T eI (3.14)

The resul ting displacenent and slope at the end (4= 0) of the beam
are

- M an (ALY avmh (AL)

Yo = Tor Tmecrn cw 0o (3.19
and
b'j M cos (AL) amh (ALY + 4 (AL) cosh(AL)
( S;.) - 57\ cos (AL) cosdh (AL) — | (3.16)

The end receptances which we require are defined as the ratios of

di spl acenents to load, both neasured at the root of a blade, which
we take to be the end £ = 0 of the beam These receptances may be
deduced directly from the four preceding equations, and are
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(i) the normal displacement - force receptance

Q. = (A)F, /mw*F, (3.17)

(ii1) the normal displacenent - couple receptance, and the slope -
force receptance (which are identical in conformty with Maxwell's
principle of reciprocity)

A = (AF, /mL w F, (3.18)
and (iii), the slope = couple receptance
A" = (AL)F, / m L F, (3.19)

In these expressions,

Fo, = cos (AL) tosh ( AL) — |

Fi = sow ( AL) cosih (AL) — cos (AL) simi ( AL)

Fo = — sow (AL) suak (AL)

Fy = cos(AL) Simh (AL) + sin(AL) eost (AL) (5 )

The receptance matrix £ for the present case in which there
are just two degrees of coupling (see section 2.2),1is

N = n 0
n' Nt
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3.4 End receptances in a series form = an approxi nation

It is possible to express the end receptances of the previous
section as an infinite series. Approxinmations to these receptances may
then be obtained sinply by truncating the series at sone convenient
level, and it is found in practice that reasonable estimtes to the
exact values are achieved by including a relatively small nunber of
terms. This feature makes the approxinmate forms very convenient for
nunerical application

Wth reference to the principal coordinates and normal nodes
of vibration which were discussed in section 3.2, the receptance for
the 4% node may be witten

0* = 1/ e, (- ) ‘ (3.21)

and further, the receptance between two points on the beam x &y,
may be expressed in terns of such nmodal receptances as

A ey - 2" QW (bx )( bY) (3.22)

k- ] b/‘-h b)th

where X is the displacement (or slope) expression for the point at
whi ch the displacement (or slope) is measured (L= £.);

and Y is the corresponding expression for the point at which the
force (or couple) is applied (2= 2,).

Using the displacenent function which is derived in equation (3.6),
together with its derivative (for the slope), at A =4, =0
the three end receptances of the previous section are derived in a
series formin terms of the properties of the normal nodes of
vibration. These are

QL = O, + Zoo_ [ ¢¢(°)]1/a4e(“kz— w*)

A=
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L J

e a5 [0 8]/ et

£

and

[- -4

el = 0, + Z[qb_‘:(o)]z/ Op (0 —*)
e (3.23)

corresponding to (3.17), (3.18) and (3.19) respectively, where the
three receptances 2, , o, and Jlé'represent the response of
the beamas a rigid body. This notion is accounted for in the closed
form receptance expressions, and arises as a special case in this
series formas it corresponds to the particular solution A = 0 of
the frequency equation (3.5). The corresponding properties may be
found from first principles, and are

Ly = = mwr = e T = A famer

I

N, = =12/ mlT e,

_-r)_c’ = Q/M\Lw"' ;

(3.24)

Cal cul ations

As suggested previously, truncation of these infinite series
can provide useful approximtions to the exact, or closed form
receptances. A nunber of calculations were made to illustrate how
the accuracy of these approximations varies with the number of terns
included in the series. Typical results are shown in the four graphs
in FIG3.1in which the ratio of series formestimate to closed form
receptance is plotted against the nunber of ternms in the series. Each
of the three receptances -2, ' and " is represented, and
curves are shown which relate to four values of the frequency
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paranmeter ( AL ). The results indicate that the approxi mations are
not always highly accurate, but at the sane tine they do provide a
very sinple, and conputationally fast, neans of estimating these
recept ances,

3.5 Flexural vibrations of a freely supported circular disc

The analysis of the elastic vibrations of a uniform circular
disc is basically the sane as that described in section 3,2 for the
free free beam although it is considerably nore conplex. This
analysis is presented in a nunber of works, nost of which are derived
from Prescott's 'Applied Elasticity'.

The basic equation of motion for a circular disc, expressed in
polar (~+,e) coordinates, is

4 . “4 % _ 2 =

V AT+ & e = O ‘ > (3.25)
where ar is the displacement of a typical element normal to the plane
of the disc;

T 3’5:

Pt ;

v - { ., L2 . 2° } '*4‘2“"(’{”/5" - 2{43/3(\4-‘?

P R PV (PR ZER

and & , P E and o are respectively the half thickness, density,
Young' s modul us and Poisson's ratio of the disc

If we now assunme a harmonic solution of the form
Moz W, 0) it (3.26)
equation (3.25) may be rewitten as
(V*+ &*) (V" - &)W = o© (3.27)

and substitution of equation (3.26) leads to the general solution

K
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o0

{ tosmB [ Aw T (89 + B Yualbr) + Cuy Tulbe) 4 Dot Kuoltor)]
A =z
w (4,0) Z ¥ Sim B[ Ep T (80) + F, Y. (be) + G Lo.Cr) » Hukuaw)]} (3.28)

/M.t O

In this equation, A-H. are constants which depend upon boundary
conditions, while J.(er) | Y, _(br),I. (4+) and K, (£ are the
standard notation for various types of Bessel functions of order m

and argument (4+). The boundary conditions which are to be used to
determ ne A, etc. must hold for every integral value of m , so

that subsequent work need only treat the general term of equation (3.28).
However, it is found that m = 0 presents a special case which is nost
conveniently dealt with separately.

For a continuous plate, the displacement and slope, shear force
and bending nonment nust all be finite at the centre, The expression
for displacement (ay is given in (3.28) and the slope may be derived
fromthis equation sinply as (d«/3+), The corresponding expressions
for the shear force and bending monent are

% (2 (o2 (-o) 3 (L& _ 1. 2w
[shear force/unit of circunf erence], (3.29)

and

M= D Vi - (52 (&, L2u)]

~ o e’
[bendi ng nonent/unit of circunf erence] (3.30)

respectively. The substitution of the above mentioned conditions into
the four equations results in the elimnation of four of the constants.
This arises since the terns containing Y. and K, (both of which

tend to infinity as +© tends to 0 ) nust vanish, thus requiring the
coefficients B. , Da ,F. and H. to be zero., Wth this result,
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we may rewite the general solution (3.28) as

AT ({,9) = W, [J—M (fe+) * M I. (Jbr)_] tos (w8-¢) (3.31)
where  cos (wen) = An /Wa = Cu /p W

and W,,,“/.A_,_~ and €, are constants which may be found from further
boundary conditions. In the present case of a freely supported disc,
the absence of restraining forces or couples at the rimgives rise to
two nmore conditions which may be witten as

[Pl = [M]_ = o (3033)

When these conditions are applied to equations (3.29) and (3.30), using
the general solution in (3.31), then we find that a non trivial solution
can exist only if

[b% et (e - [ T, ) T (5« T, ) T 0]

— 20 m (- @) [(w-) T (DT (3) + (e )T, (W T (0]

= 0 (3.34a)

or, for the special caseof m =0, if

V200 1,6) T () - BT W T (e L (wTmI}
- O (3.3413)

Each equation (3.34) has an infinite nunber of roots which define the
natural frequencies of the disc. As in the case of the beam to each
solution b=b. (where s represents the (s+«1)™ root), there
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corresponds a normal node of vibration whose characteristic properties
may be found by substituting b=b.s into equations (3.31) and
(3.33). The characteristic function which defines the shape of the
~, s nmode, is
i
¢Ms ('T; 9) l:\’\/«ws i J_»K ( b«.s 'rl/“) +/:“A«s J'M‘Cb«nsr//“)}j

11

[ Cos (MQ—"’—M)]

= 1’ fwcw” Ces (fw9~—eM)J (3.39)

where W, is an arbitrary constant representing the anplitude of
free vibration, s is a constant which is equal to

{ bs J:,J (b) + (i—c’)m"[bfk'(b) - IKCE)J

P , (3.36)
Fp T ) — (- LB - I.0) ]
and f(r) s the radial characteristic function.
I'f we now introduce a principal coordinate g, . which
describes notion in the ~,s normal nmode such that
Mg ‘(’rz 5) = Y ms fms (r) cos (wb- f?nsj (3.37)

we may then normalise the radial characteristic functions. Using a

simlar treatment to that described in the earlier case for the beam
we shall require that for unit distortion in the principal coordinate
Gus » the mexinum rim anplitude shall be unity. Thus, we find that

- (3.38)

[S——

W = [Ta(bl) v el T (5)

Wth the present boundary conditions, it is not possible to
establish a value for ¢,,, andthis nust consequently renain
arbitrary. From equation (3.37), it is possible to deduce the
physical form of the nodal shapes. The cosine term vani shes at
regular intervals of & and thus gives rise to .~ nodal dianeters
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symetrically disposed about © = €, . The radial characteristic
function £, (+), since it contains Bessel functions, is an
oscillating function which is zero at a nunber of specific values

of +. This results in a nunber (s) of nodal circles.

V¢ shall now derive expressions for the kinetic and potentia
energy of the disc when it is vibrating inits «,s normal node
For an elenment of the disc, the kinetic energy may be witten as

S§Tus = % -2 $r 804 [, (r0)]" (3.39)

so that for the whole disc

2r o
2Tee= 2ok | [ it deas (3.40

e 2
or = Cms Yus (3.41)

wher e
2
= fi] 4

The integral in equation (3.42) may be expressed explicitly using a
result given by McLachlan, as (see APPENDI X 2)
L S Y-
~o

+ s afra (3.43)
bMS ( J;\IM-l - I«. J»-u-a) 7"“‘ (IM."' IA._.IA‘N\

where the argument of each Bessel function is ( b,).

[

/'F[f,“(f) ooréwO—éu)] olr o& (3. 42)

O —F

Mt

* _ _a_'::_s_ 2/ 2 2
A PR R A EASEE

For the corresponding potential energy expression, use is nade
of the relationship between the inertia and stiffness coefficients of a
normal node, in order to avoid further lengthy algebraic nanipulation
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If c.s s the stiffness coefficient, and a., the inertia
coefficient for the w s node, then these two are related by the
natural frequency (w.;) such that

CMS = a’M{ stl (3. 44)

The potential energy of the disc, when vibrating in its s,s norm
nmode, is then sinply

2V pe = Can Ci/,:, 2 Qay W 7,:_‘ (3.45)

Characteristic properties were conputed for each of a large
number of normal nodes. FIG 3.2 shows a table of three of the nore
important quantities; dimensionless natural frequency ( bus),
inertia coefficient (a,*) and slope at the rim( & [ %, (fuste)] ) -

=0

3.6 Edge receptances of a free disc in closed form

Ve shal | now derive receptance expressions which relate the
di spl acenent (w) of the rimof the disc to excitation which is
applied to the rim A suitable form for this excitation is one which
varies sinusoidally around the disc (e.g. L=L, eosaB.e™F) since
any other loading configuration my be achieved by the |inear
superposition of a nunber of such expressions.

Consider first the effect of applying a circunferential shear
force, P =P, cos a0, it . In this case, the boundary conditions
are

[P}m\: Poasmb [MJ,_ = 0O (3. 46)

A

(onitting the 2™f term for convenience), where the expressions for

Pand M may be found in equations (3.29) and (3.30). Using the
general form of the displacenent function (wr (+6)) which is given




in equation (3.31), application of the conditions in (3.46) results in

the solution (which is derived in APPENDI X 3)

* N, (+)
w_ (+,8) - M

PM [& T M.Q

e

Dan
where

D

A T

[ b4 + M;("*‘—' '>(l_r)‘- ][ I‘“" J:\«ﬂ + IM«-« TM-‘ ]

- 2514‘\- (- "‘)[(’“") Im_‘ TM-] + (me) I'm-c TA«WI ]

and X
N. ) = Y {_(g, b)) T, +(Q-b%) Tond I (br/a)

-LRew) 1, ~ (ast) 1,,.] Tu (54-/*)}
(omtting the argunent of the Bessel functions when it is b).
The di spl acenent at the rim

i S.

k3

in which we are particularly interested,
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(3.47)

N
T (0.)9) = —C:L- — P, ctos »B
D ~
= W_ s n® (3.48)
where
Npo= (-o) [T, T, + T Tl = 40T, T,
The radial slope (ow/3+) at the rimof the disc is also of
interest, and this may be derived from equation (3.48) as
Ouw _ & N
(*or),., = 3 3 Puwsn®
= W, cos »© (3.49)
wher e ;
)
N, = ‘k[ Zar NM("’)]ha

Mr; (I_' 0’) [IM—\ J‘»wrl*- In! TM—' 1

- bl[ I‘V\-'\ :r"“—l + IMf\ J—»\u-\]
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If we next consider a bending moment M = M, cos w8 2™* to be applied

to the rimof the disc, then the boundary conditions become

[PJ - 0 ;[M] = M. cos w0 (3.50)

T=a = o

VWen these conditions are applied to equations (3.29) and (3.30), the
di splacenent at the rimof the disc is found (in APPENDI X 3) to be

I
w,_ (a,8) = -—i‘l —'\1’1—" M_wsmnB = X, cos 86 (3.51)
> D.

The corresponding expression for the slope at the rimof the disc is

(aw/B")f._& } %—% M, s %0 = X cosmb (3.52)
where
N N*(")] -a
or

NS e w (- [T, s T
—bm [T - T LT+ 1. ]

The foregoing expressions for displacenent and slope hold for
any integral value of = except zero. Wen » =0, it is found that
the expressions for N, , M. , N." and D. all vanish. However,
non zero values for the corresponding functions N, etc. may be
determned, either by repeating the analysis for this special case, or
by a limting process. The forner is quite straightforward and results
in the follow ng expressions:
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D, = B{BILT +LT] -2(-o) L7}
No = (-0)[1,7, +1,7,] -2b1, 7,
No' = b*[1,7,-7,1.]
No = 2b°71,7
No@) = { (=) [ I,7,(be/a) t T, T, (br/a)]
—b[Io T (br/a) + ToIo(bf/A)]} (3053)

W shall nor introduce and define the disc edge receptances
whi ch give the displacenent and slope at a point a, 8- caused by a
| oading of the formL,_ cos 4«6 2®* applied to the rimof the disc,
The receptance relating the normal displacement «s, (a8 ) = W, cos w6
and a circunferential shear force of P, cos~8 is defined as

O( (’“—) — —_— —_ _E'-— -
= = 3 (3054)

The normal displacenent - circunferential couple, and the slope -
circunferential shear force receptances are identical, and are

w X a N

’(«) s At An

ol - — 2 — L
P. M.~ © D. (3.55)

Finally, the slope = circunferential couple receptance is

{ 1

IS _>S_;“ ___L _ri':‘_
o = M. = 5 Do (3.56)

It may be seen fromthis analysis that when the loading is
symretrical about © =0, then so is the resulting displacenent,, W
may extend this result to conclude that the constant €, is zero
relative to the origin of the excitation, for all m.
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3.7 Edge receptances in a series form

VW shall now show that the edge receptances which were
introduced in the previous section may also be represented by an
infinite series. This analysis is summarised from that of Arnstrong.

Let there be a normal force P applied at the rim such that
P=- Py cos 48. 2. V¥ may deternine the response in the », s
normal node by considering the generalised force in that node (Q.g)
which results from P, W shall also make use of the result in the
previous section that for this type of loading, €.s 1is always O .

The total generalised force in the m,s node due to P is
2r

G [ ro Gl om0

o

This integral has three possible solutions, viz.

Qus = O A # m
Qus = "P.,k : Jk—=-M-¢ o
Qg = 27Pp . Ak=m =0 (3.58)

The magnitude of the principal coordinate 4 ..o 1S given by
|
Hms = s { Qae (W0, —w‘)} (3.59)

so that the displacenent at the rimresulting from vibration in the
a,s normal node, is

2] P, cosmB m=0
., (0,0) = [ ) a (o~ > O (3. 60)
= W COSMQ

Mg
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Simlarly,

an expression may be derived for the slope at the rim and
this is found to be

(?ﬁ’."“) _ }21 [ % (s, m P

. os m ©
07 /ria l Qs (003 — w?) (3.61)
= Was cos m8
If we define the edge receptances for the w,s node as
W
ol o e (3.62)
|
and ,
()(J (ms) - WM‘
P (3.63)
then the so-called 'closed form receptances o™ and o'
my be witten as
it 2] « Y
(m) (ws)  _ — -
X = Z“ - I| Z O pg(nis — &%) (3.64)
sto S=o
and
[~ -4
1) 1 (ms)
= oL
< 2 (3.65)
S: o

If the load at the rimis a couple M=M_ cs0.6“* then a
simlar treatnment to that described above results in the followng
receptance expressions:
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i1

OC,(MS) [ 2-] v La/bffmx(r)]r:a.

&, (Lons — w>)

and

OL” (ms)

{ZJ W[%ffms(f)J-:x

| o, (s = o) (3. 66)

As in the case of the free free beam there are two rigid body,
or zero frequency, nodes of vibration. These are in fact included in
the range m,s = 0 - oo, but their characteristic properties are
best conmputed separately from those for the flexural nodes. The first
zero frequency node corresponds to m =0, S =0, and represents
translation of the disc as a rigid body. The second node occurs when
w =1, s =0, and constitutes rotation of the disc about a
diameter. By considering the disc as a rigid body, it is possible to
wite down the properties of these two nodes. W find

for the first case, and
\
o= 0 ews AMa [fL@T T (g

for the second

Cal cul ations

A nunber of calculations were made in order to study the
accuracy of the truncated series form for the disc receptances. A
| arge nunber of cases were necessary before a general pattern could be
seen, and typical results are shown in FIG 3.3 where the estimate to
the exact receptance is plotted against the number of terns included
in the series.
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The general conclusion to be drawn from these results is that

the series form of disc receptance only provides a good approxination
to the exact value when a large nunber of ternms are included.

3.8 Point receptances

It was mentioned in section 3.6 that the edge receptances
whi ch were derived there could be used to provide receptances for any

formof loading at the rim In this section, the case of a point |oad

applied at some position 4 ( /~a, 6-6;)wll be studied in detail

since it is this type of load which is considered in the general
anal ysis (Chapter 2).

Consider a distribution of shear force around the rimwhich is
of the formF (9);

F (=aP) shear force/unit angle

A
f {—n<(9-ei)<—e
F (o) F(@)-0,) .. (e-e)< x
Total force
2
)(6 F(e) = } , —€ <(9-OJ')<€
’ + o {2f€} = Fo . point Load
-n -¢ 0 +e . (O-Gj)

If we represent this load by a Fourier series, then we my wite

00
F(e) = "Ypd, + ) d, wst(6-8)) (3.69)
L=n
wher e -
— __2_ —-Q' = Zfé
A, = 2 jF(e) tos £(6 - 6;) b =k (3.70)
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The liniting case as € tends to 0 is a point load Fo,and in
this case

F, 1 = _o.
F(e) Pont _n:{ 2 + LZ__l Cos £(8 GJ)} (3.71)

LoAD

Now, the displacenent of the rimof the disc due to a point
| oad excitation, may be expressed in terns of the edge receptances as

o (VF, Z"i o F, eas m(0-9;)
+

w(a, @) = o n (3.72)

Mme
W shall now define the point receptances which relate the
di spl acenent and slope at a point «(+-a,86=6;) onthe rimof the

disc to a point force or couple applied at j (+~a ., ©=6;). These
are

oo
A U BN PR ¢ () Y

OCA'JJ = v { /7_"<_ + ; o CoS$ ""(94. J) ] (3'73)
! - , ( '(o) < '(«) . K

OC;,,J' - 7;{ /LOL + Z_‘ O<’ CoS M(e-\—eJ)} (3074)
0 I { L, (o) TR,
.- = — oL + K cos M(a"'—‘ 9)}

o rl Z— ’ (3.75)

respectively.

Cal cul ations

As in previous cases where an infinite series is truncated for
practical reasons, it is necessary to check that convergence of the
series is satisfactory, and that the truncation level which is proposed
Is suitable. A series of calculations was made in the present case in
an attenpt to establish a suitable rule for determning the nunber of
terns required in the series in each of (3.73), (3.74) and (3.75) above.
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The results (exanples of which are shown in FIG3.4) indicated that a
suitable fornula relating the nunber of ternms to the frequency (b)
at which the receptances are required would be R =b +15 | and this
is used for all subsequent receptance calculations

It may be noted that in this case, there is no exact or closed
form expression with which to conpare the series, nor is it envisaged
that one may be obtained as it requires the summation of conplicated
Bessel functions of all integral orders fromO to oo,
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CHAPTER4

A NUMERI CAL STUDY OF A UNIFORM BLADED DI SC

4.0 Sunnarx

The results of Chapters 2 and 3 will now be used to obtain
solutions to the vibration problem of a sinplified bladed disc. This
consists of a uniform circular disc which has a nunber of uniform
rectangul ar bars attached at points on the rimto represent the blades.
A receptance determinant is derived for this systemand its properties
are discussed prior to an extensive conputational programme. An
approxi mate system matrix is then formed, and the estimates of natura
frequencies and nodal shapes which its eigenvalues and eigenvectors
provide are conpared with those obtained by the 'exact' nethod
Applications of both nethods are discussed. Finally the principa
characteristics of the nodes of vibration which enmerge from the
nunerical study are sunmarised

4.1 Application of the receptance nmethod of solution to a uniform
nodel of a bladed disc

V¢ shall now apply the analysis presented in Chapter 2 to the
uni form nmodel whose conponent parts were discussed in the previous

chapter. It wll be convenient to refer only to those sections of the
general analysis which are specifically relevant, and not to repeat
each step in full. Since only straight blades are considered in this

study, it was decided that the third degree of coupling = the

tangential slope (section 2.1) = should be onmtted as being of secondary
importance. Thus, it is only the normal displacement and radial slope
whi ch have to be matched at each blade - disc fixing point. This is
conpatible with Armstrong's approach and is expected to provide good
approxi mations for non-tw sted blades. However, should it be necessary
to consider the torsional nodes of vibration of the blades, then this
third form of coupling must be included
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The blade and disc receptance expressions which are used
throughout this analysis were all derived and discussed in the previous
chapter, and the symbols which were used for them there are retained
Only the so-called closed form receptances will be used

Wth reference to FIG2.1 and the analysis of section 2.3, we
may express the nornal displacenent and radial slope of the point 4 on
the rimof the disc in terms of the disc receptance ternms and the forces
(F} ) normal to the disc and couples (C;) about tangents to the rim
These are

N
aadh ) Z, (Lo Frr &y €)
J:

A e "o
w; ) (eaf Fpow i €)) (4.1)
respectively. Simlarly, the displacenent and slope at the root of the

i% blade expressed in terms of the force (f.) and couple ( <)
acting at the sanme point are

A

Yo = AL foo+ L e

:ﬁ/ = _Q_" f—J + dL; c. (4.2)

If the displacements and slopes of both disc and blade are equated at

each of the N fixing points, then a set of 2N |inear equations are

formed. These consist of a set of N similar pairs, and the genera

form of each pair is

N
(a(,;,/‘ F; + o(iv‘,C/‘) + . F o+ _.O-_;’C" = O

i

N
D (ijFe&iig) e iR s alcs -

- 4.3
o (4.3)
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The condition that these equations shall have a non trivial solution
(i.e. not all F& € zero) is derived fromthe determ nant of the
coefficients of the equations (4.3),A. Thegeneral formof this
determ nant is given in FIG.4.2 and since every elenent init is a
frequency dependent receptance term A itself is a function of
frequency and it is the values of this parameter which cause it to
vani sh that provide the required solutions to (4.3). These val ues

are known as the natural frequencies of the system and they represent
the frequencies at which undanped free vibration is possible.

To each such solution there corresponds a nodal shape, or set

of relative values of the variables F;, C al though a unique

J (o
solution for F} and C; does not exist. These nodal shapes may be
found by substitution of the natural frequencies into equations (4.3),
removing one of the variables ( F say), and solving the resulting

set of (2N -1) inhonogeneous equations for F;/F, , ¢ / F etc

4.2 Properties of the receptance determ nant

Before proceeding with a nunerical treatnment of this
determnant, it is useful to examne the formwhich it takes,, Owing
to the circular symetry of the system a disc receptance expression
which relates point (4) wth (<+p) is identical to one relating
(+«) with (<+N-p)., Furthernore, this receptance is independent of
the actual value of 4 and is purely a function of the separation of
the two points, which is p., Thus

K liep & X &, isn-p = Xp for all « (4.4)

and it is this feature which is largely responsible for the interesting
properties of the determnant. A second observation concerning the
determinant A\ is that it may be seen to be conposed of four quarters,
each of which follows the same pattern, Using the result in equation
(4.4) above, the receptance determnant for a symetrical five bladed
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disc has been witten out in full (FIG.4.3), and with the four simlar
quarters indicated a rather curious symretry is now evident

Even with such a small nunmber of blades as five, it is not
practical to expand this determnant, but it is possible to show that
it has sone interesting properties. Asa further sinplification which
is justified by the result, we shall consider the situation which woul d
result fromrestricting the analysis to include just one degree of
coupling. The receptance determinant for this case would be in fact

one quarter of A, and this reduced deterninant is
a, a, a, a, a,
a, a, &, a, Q.
A a = a, a, a, a, a. (4.5)
a, o, a, a, a,
a, a, a, o, a,

which, because of its symetry, is a special type of circulant. As
such, it may be factorised and expanded to the form given by Aitken

3
Aa = 4 Bt Gwjt ael +aaw’ + “v“.f‘} (4.6)

where «j is the j % conplex root of (1)"* . o sinplification,
this product reduces to a sinpler formin which there are only three
different factors;

2

A, = [0 200 20 ][ags @(wee) + au(wewt)]x

2
[a.°+a|(w’,w‘)+ a"‘(w*w‘)] (4‘7)
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and this in turn beconmes

T
AL = [@-o+ 2a,+ 20.,_][ CL.,‘— a.’—a: -a,a, - a,ar 30.,4.}

(4.8)
The three receptance terms, &,,4, and &, are all frequency
dependent so that we may wite
A, (b) = A (b)A, (B (4.9)

in terns of the dinensionless frequency paraneter .b .

Now, the roots of A. may be found by determining the roots of both
A, and A,, and since the latter is a perfect square it my never
be negative so that any roots it mght possess will consist of
coincident pairs. The significance of this is denmonstrated in FIG.4.4
whi ch shows what mght be a typical section of a plot of A, against
b . The first of the two roots shown is the result of A, vanishing
and is known as a 'single' root, while the second one (or coincident
pair) occurs because A, =0, and this is termed a 'double' root.

Cearly, these double roots exist directly as a result of the
circular symretry of the disc and the uniformty of the set of blades.
Further, it would appear that this result will hold for a disc with
any nunber of equally spaced identical blades.

If now the system has its symmetry disturbed (i.e. is detuned)
by varying the blades, then the diagonal terms of A, will no |onger
all be identical. This necessarily destroys the circulant properties
of the determnant but still leaves it symetrical, It is reasonable
to assume that the detuned system determinant will no |onger
necessarily exhibit double roots as two solutions at the sane
frequency, but as a pair of solutions with close natural frequencies,

Using this sinplified nodel, two types of solution are
predi cted; those corresponding to single roots and those associated
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with double roots. It is also postulated that a natural frequency
splitting phenomenon mght be associated with detuning

If nmore than one degree of coupling between the disc and
blades is admtted to the analysis, then the algebraic problem greatly
increases in conplexity while the physical systemis virtually
unchanged. The corresponding determnant for two degrees of coupling
was shown in TFIG.4.3, and whilst it is clearly not a circulant, a
symmetry due to the circular properties of the systemis still in
evidence. It would seem reasonable to assume that the broad
conclusions drawn for the sinpler case above may be applied to this
refinement of the same system

4.3 Natural frequency solutions using the receptance nethod

Based upon the analysis in section 4.1 together with the
conputational experience reported in Chapter 3, a conputer program
was witten to determne the natural frequencies of the uniform bladed
disc. This it does sinply by evaluating the frequency determninant of
an N b laded disc of the type described above, assuming the two
degrees of coupling, and the routines which were devel oped earlier for
the calculation of the closed form disc receptance expressions
(Chapter 3) now form the heart of this program

Some apprehension was felt concerning the possible behaviour
of the determnant in frequency regions near the natural frequencies
of the disc alone. At these frequencies, each of the receptance terns
which formthe determnant is infinite, and whereas the value of the
determnant itself would not necessarily be infinite, its evaluation
mght present a formdable conputational problem As it was not
possible to estimate the extent to which such ill conditioning m ght
affect the calculations, steps were taken tc ensure <«hat these
difficulties were avoided

The programwas used to calculate the natural frequencies of a
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nunber of different systems. Initially, a one bladed disc (of acadenic
interest only!) was treated as the results could be checked quite
easily by hand calculations. Then, the general program was tested with
a three bladed disc and a programme of conputing for the five bl aded
discs of interest was drawn up and carried out

In the case of a tuned system the pattern of the deterni nant
frequency relationship which had been predicted (section 4.2) was found
to be accurate. Sections of a graph in which A is plotted against
the frequency paraneter (b) are shown in FIG4.5 and fromthese the
natural frequencies may be found. Using this nethod, the first dozen
or so natural frequencies were conputed to 5 significant figures,
al though not very efficiently owing to the failure of conventional root
finding techniques to locate the double roots. A nunmber of disc and
bl ade sets with various geonetrical ratios were treated in this way,
and some of the results are presented graphically in FIG.4.6 where the
natural frequencies of a five bladed disc are plotted for bl ades of
varying length but constant width

Next, the effect of detuning the system was investigated by
making the blades slightly different one from another. This produced
the result that was tentatively suggested in the previous section
Wiere the tuned system had a double root at one frequency, for the
detuned systemthere was a pair of close natural frequencies. Single
roots were largely unaffected. The system whose determnant produced
the double root shown in FIG4.5 was subjected to this type of
detuning, and the corresponding section of the determ nant - frequency
plot is reproduced in FIG4.7. The frequency splitting phenomenon
illustrated in this graph, is found to be a characteristic of every
double root, and a detailed study of its mechanism may be found in
Chapter 5

There is one special case which has passed, so far, unnentioned
From consideration of the physical system it may be seen that it is
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possible for an Nbladed disc to vibrate in a node with N noda
diameters so disposed that the blades are all situated at nodal points
and thus cannot participate in the notion. The natural frequencies and
other characteristics of such nodes of vibration of the bladed disc will
be identical to those of the disc node of the sane shape. To each such
mode, there will correspond a conjugate node in which the blades will be
situated at antinodes of a node whose shape is simlar, but not
identical, to that of the pure disc node. These latter conjugate nodes
appear as single roots to the determinant solution, but the former pure
disc vibration nodes are not detected by this solution since they
constitute a trivial case in which ﬁ , Ci = 0.

The different types of solution and their corresponding nodes
are discussed in the last section of this chapter

4.4 Calculation of npdal shapes

Each root of the frequency determinant corresponds to a node
of vibration of the bladed disc. There are two properties of each of
these nodes which are defined by this solution, one being the natura
frequency and the other the nodal shape. The latter is found as a set
of relative values for the forces and couples (F;, C;) and is
conveni ently expressed 45 FiiFoe voe Fut Gt Cuuue it C}.

From such a set of ratios, it is possible to derive other forms of the
nmodal shape, such as the pattern of nodal |ines which was used to
describe the nmodes of a circular disc. However, it is the origina
version of nodal shape which is the nore convenient form for
qualitative measurenments and conparison

The method by which these nodal shapes are conputed is
basically quite straightforward, although difficulties do arise when
there is nore than one solution at a particular frequency, such as the
doubl e roots of the tuned system If there is a single root of the
determ nant at frequency w, , then the nodal shape corresponding to
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that natural frequency is determined as follows. The equations
represented by equation (4.3) may be written out with each receptance
term completely defined by the value of w,. A unique solution for
the variables FJ CJ- does not exist because the equations (4.3) are
homogeneous, but a set of relative values may be found. By selecting
one of these variables ( C, say) and setting it to unity, it is
removed from the equations as a variable and replaced as a constant
term. In this way, a set of 2N-I inhomogeneous equations are formed
from which a solution for f /¢s, Fa/Cs, ... etc. may be obtained,
and appears as a set of ratios {F,:F,:...FN:C,:CL...:I} .

If there is a double root at frequency w,, it is necessary
to find two such sets of ratios which are linearly independent. The
modal shape of free vibration at this frequency is then defined as
any linear combination of these two modal shapes. In this case, it is
necessary to fix two variables and slightly modify the procedure, but
the results for these cases are so arbitrary that they are not very
useful and in fact are not used in the subsequent sections.

Calculations have been made for a five bladed disc for a
number of modes in which there is a unique root to the determinant.
These include the single roots of the tuned systems, and all roots of
the detuned versions. Consider first the single modes of the tuned
model. In every case, the modal shape is found to exhibit complete
circular uniformity and is always of the form {x:x:x:x:x:l=l=l-‘l=)}
so that each blade experiences the same loading. When the sys tern is
detuned by varying (for example) the blade lengths about a mean value,
then a similar variation in blade loading about the average value is
found.

When examining the shapes of modes corresponding to double
roots, it is convenient to confine the examples to detuned cases in
order to simplify the computational procedure. Calculations were made
for the mode shapes of the double mode whose pair of natural frequencies
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is illustrated in FSG 4.7, and the results are tabulated in FIG.4.8.
Al'though there seens to be little significance in these actual figures,
it may be shown that the distribution of both force ( ﬁ) and coupl e
( Cj) around the disc correspond to a c¢es (2e+@) distribution for
the first node, and a sin(26+¢) distribution for the second
(where © is the angular position of the blades), The detailed study
in Chapter 6 exanmines the full significance of these observations, and
relates themto the specific form of detuning of which they are the
result.

By considering the conmbined effect of five forces and couples
(F, ¢) acting at the rimof the disc, it is possible to conpute the
normal displacement of any part of the disc using the genera
receptance expressions « (+,6) in Chapter 3. These cal cul ations
lead directly to defining the patterns of nodal |ines which constitute
an alternative expression of nodal shape. However, the nunerica
procedure is somewhat |engthy and the results merely of passing
interest, so that few calculations have been done. As an illustration
of the technique, the nodal patterns which correspond to the pair of
modes described above are given in FIG.4.9.

From both presentations of the nodal shapes of this pair of
nodes, it is clear that not only are their natural frequencies al nost
identical, but also their nodal shapes are identical in every aspect
other than their angular orientation in the disc

Chapter 6 deals with the properties of the nmodal shapes of
detuned systens in much greater detail, and it is sufficient at this
stage to have described the manner in which they may be found
together with one or two exanples.
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4.5 Application of the matrix nmethod of solution to a uniform nodel

Havi ng established that the receptance determ nant sol ution
provides a sonmewhat inefficient neans of conputing natural frequencies,
we shall now investigate the potential of the alternative approxi mate
solution. This expresses the nmotion of the systemin a matrix form
which readily lends itself to nunmerical application on a digita
conputer. However, we have yet to establish whether the estimtes of
natural frequency which the approxinmate nethod yields are sufficiently
accurate to be useful

The salient points of the analysis in section 2.6 will now be
expressed in terms of the properties of the uniform nodel which, in
turn, were derived in Chapter 3. Considering first the blades, which
are represented by rectangular beanms, the displacement functions of the
i* plade (equation 2.12) may be witten as

s
54(1«) = Ag +(L;:'_L)*j1_k + Z & @*(‘L)‘/t‘ (4.10)
S
! !
HORE Y T MRy
J oy + (4.11)
where y‘.u) and _y;'(x) are the displacenent and slope of the
beam
yi Is the coordinate along the length of the beam with
an origin at the root;
L. is the length of the beam

AT and ;Ae are the principal coordinates representing
rigid body translation and rotation;
iha is the principal coordinate for the 4™ flexural node;
{®B,l4) is the characteristic function of that node, and
<D () is its derivative with respect to A ;
S represents the nunber of flexural nodes which are
admtted to the approximation.
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The potential and kinetic energy may be expressed in terms of the same
properties as

S
2V = g Z_m;w;m; (4.12)
S
N 2
T = g A /JM.L(‘:" Mo + / Mm; ile
2. Pl )ik 4; (4.13)

Turning now to the disc, we find that a simlar treatnent is |ess
straightforward in this case. The normal displacenent function for a
single flexural node was derived in equation (3.37) and is

AT oes ("", 9) = Ys )('M-:('r) Cos (’“-9 - ew:) (4.14)
wher e 4~ and e are the geonetrical coordinates;
a is the radius of the disc;

Gms is the principal coordinate for the ~,s node which
has « nodal dianeters andsnodal circles;
Fwe(+) is the radial characteristic function of that node
and is derived in equation (3,40), and
cos (n0- €w) is the angular characteristic function.

In this equation there are two unknown parameters, @a.s and €ns ,
and it is found that a nore convenient way of expressing the equation
is obtained by introducing a pair of principal coordinates, Gas
and Pws » SO that

0 (50) = fuel{ s corn® ¢ b sinns ] (4.1

The double suffix «,s which identifies the flexural nodes may be
replaced by the single suffix 4 which is chosen for convenience

so that j4-/,2,3... etc. corresponds to the nodes arranged in
ascending order of their natural frequency. Thus:
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J 6; n; s/
i 5.39%29¢6% 2 (o)
2 €. 47414 | o) ]
3 /]2.52070 3 0
4 20.45769 ) {
ETC.

On the inclusion of the rigid body modes of vibration (discussed at
the end of section 3.6), the final formof the expressions for the
normal displacenent and slope of the disc is obtained:

w5 (1.8) = G+ T{%, w0+ pin®]
X
+.Zfi("){%‘°”i9 ¢ pi siwn® |
i

e}
! - \'w ~’ N '
wr'(r8) = f% ws® + b, s 9} + %fJ(*){*J“‘*JG " pi s “39} (4.16)

wher e 400 Is the principal coordinate representing rigid
body translation
Yo and pi.. are the principal coordinates for rigid
body rotation about perpendicular dianeters
and Q I's the nunber of flexural nodes of vibration
considered in the approximation

The potential and kinetic energy of the vibrating disc, in terns of
these coordinates, is

&
2V, = ) e (g v pp) (4.7
]:l
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and
2Ty = M#alo: + Z-Mda'l(q/tno + bl:)
R
+Z_ a; (4; + ?J'l)
J=!

The equivalent energy expressions for the bladed disc are sinply the

(4.18)

suns of the respective energy terns of each of the constituent parts
of the system  Thus

N

2V = 2V« P 2.V

[

2T - 2T, + > 2.T

4= 1

(4.19)

where both expressions are functions of all the principal coordinates
P, 4 and A, including those representing the rigid body nodes
of vibration. As explained earlier, the zero-natural-frequency
property of these latter nodes necessitates the elimnation of their
coordinates from the equations of motion. In order to elimnate
¢Ar and iAg fromthe kinetic energy term }V , tw equations
may be derived by equating the displacement and slope of the root of
the 4% Dblade to the sane quantities for the point on the rim of
the disc at which it is attached. Thus

y; (o) = ar (a, 6:)

y!(o)= ' (a 8:) (4.20)

and from these equations ,-4, and <Agx may be found in terms of A,
and all ,b and ¢ . The three disc coordinates ¢,, , %, and

P may be elimnated by the application of Lagrange's equation to
the energy expressions (4.19) for each coordinate in turn, The
al gebraic manipul ation of the three resulting equations of notion my

be found in APPENDI X 4.1 where ¢, , 4, and p,, are expressed
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in terms of coordinates representing only flexural nodes of vibration

The energy expressions (4.19) may now be witten in terns of
the coordinates of flexural nodes only, and further application of the
Lagrangi an technique to the nodified equation (4.19) for each of these
coordinates in turn leads to the set of equations of notion of the
approxi mate system These provide the required system matrix whose
ei genval ues and eigenvectors may be conputed by one of a nunber of
standard methods. The general forms of the equations of notion are
derived in APPENDI X 4.2 for reference

4.6 Eigenvalue estimates of natural frequency

A series of calculations was done on Titan in order to find
the accuracy of the eigenvalue estimtes of natural frequency which
resulted from various degrees of approximation, as defined by the
paraneters & and S . Al'l the results which are described in this
section relate to five bladed discs. A detailed study was made on the
particular nodel in which the five identical blades had a length
equal to 1/3 of the diameter of the disc, and the results fromthis
study were found to be typical of those for other configurations
Natural frequencies conputed according to the 'exact' receptance
method (section 4.3) provided a standard of conparison

The first step in each calculation was the formation of the
system matrix (or order PP, where P = 2@ +Ns, and N = 5),
after the fashion described in sections 2.7 and 4.5. The eigenval ues
and eigenvectors for this matrix were then found by a library routine
which is based on the well known Jacobi process described in
W/l kinson (1965). Fromthis solution, the natural frequencies and
nodal shapes were determined from the relationships given in Chapter 2.

Results pertaining to the natural frequencies are displayed in
FIG 4.10 for various conbinations of & and §. The eigenval ue
estimates are invariably on the high side and tend to the exact values
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as & and S increase. However, even when @ = 16 and S =5,
the estimates are in error by as much as 20% in sonme cases, which
points to the need for caution when applying the nethod*. On the
other hand, the present matrix nethod yields natural frequencies very
nuch nore quickly than does the receptance nethod. Experience has
shown that the two methods may be usefully combined, the one rapidly
providing estimates which make the root-finding procedure in the other
nuch nore efficient. The apparently random variation from node to
mode in the accuracy of the results (see FIG.4.10) is discussed |ater
in the present section

A second series of calculations was designed to assess the
accuracy of the eigenvalue nethod in estimating the magnitude of the
natural frequency splits which occur in the doubl e nodes of detuned
systems. Results shown in FIG.4.11 show that these estimates are
acceptable in that they are of the right order of magnitude

FIG 4.12 shows the results of further conputations which
illustrate the effect of variation in blade length on the natura
frequencies of a tuned five bladed disc. The eigenval ue method was
used wth & = 16 and S= 5, and the disc thickness, blade width
and disc dianeter were kept constant in the ratio 1:2:48. Because
the range of blade length extends to zero (so including a disc wthout
any blades) it is possible to identify each node of a bladed disc
with the unbladed disc node from which it is generated. This is a
convenient way of identifying nodes when there are only a small number
of blades and the conposite system does not, in consequence, possess
such geonetrically sinple nodal shapes as an unbladed disc

*In any one particular case, both the matrix and receptance nethods
yield identical results if, instead of using the closed form receptances,
we use the series formtruncated at the same values of Q and S .
Thus this result also indicates the need for caution when using series
form receptances,
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There appears to be some connection between the results shown
in FIG4.12 and the variation in accuracy of eigenvalue estimates which
was mentioned earlier. Wiile it would be difficult to establish a
numerical relationship, it may be noted that those nodes in which the
ei genval ues provided the poorest natural frequency estimates
correspond to the lines in FIG.4.,12 whose slope (at the appropriate
point on the abscissa) is greatest, In fact there would seemto be a
qualitative connection between the slope of the frequency curves in
that graph and the accuracy of the natural frequency estimates provided
by the matrix nmethod of solution. However, as it seens unlikely that a
nmore convenient formof this method will be found, the matter will be
pursued no further

4.7 Eigenvector estinmates of nodal shape

In the same way that the matrix method supplies approximations
to the natural frequencies of a bladed disc, it also provides estimtes
of the nodal shapes. The determnant solution for nodal shapes
consists of a distribution of blade |oad around the rim of the disc
from which the displacement shape, or nodal lines, of the surface of
the disc may be deduced. In the matrix solution, the eigenvectors
whi ch are conputed sinultaneously with the eigenvalues lead directly
to this displacement shape. Fromthis, the more convenient form of a
bl ade load distribution may be found

The normal displacement of the disc was derived in equation
(4.16) and is

ar(+,8) = Yoo + ’r(ﬂl.,“sa + bu Sin ©)

[}
+ZJLJ("){% s w0 + p; s n,-g} (4.21)
j:.l
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This may also be witten

aw(,0) = Flr,0) g (4.22)

in which ¢ is a vector containing all the flexural principa
coordinates p, ¢ and A (but not those of rigid body notion,

4., etc.); and F is a matrix of coefficients which include not
only the terns such as {j&@? Cos n; O } above, but also those
resulting from the elimnation of the three coordinates g,,, g4,
and P « The formwhich F takes is shown in APPENDIX 4.1,

Each eigenvalue (or natural frequency w, ) of the system
matri x has an associ ated eigenvector, 4. Thedisplacement shape
of the node corresponding to this natural frequency is sinply

ar (F,8) = f (+, 6) Y v (4023)

and by substituting various values of -+ and & in the matrix F |
the relative displacement at the corresponding points may be found
Sol ution of the equation

,w‘x("",Q) = O

produces the patterns of nodal lines which are a famliar description
of nodal shapes. Furthernore, by finding the relative values of the
normal displacement and slope at the points on the rim at which the
bl ades are attached, and using the series form receptance expressions
for the blades, it is possible to obtain the distribution of blade

| oad around the disc

However, both these processes are cumbersone in numerica
execution and the few results which are described here denonstrate
that the matrix method of solution has no advantage either in speed
or accuracy over the determnant solution in the evaluation of noda
shapes. This is the reverse of the situation described in the
previous section for natural frequency calculations
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A nunber of calculations were perfornmed for a five bladed disc
and were analysed in a simlar manner to the eigenvalues. Ownng to the
amount of time required to perform these calculations, it was not
convenient to study many different nodes of vibration, and we shall in
fact confine our discussion to the results for one double and one single
node. The results relating to a double node were froma detuned system
and those for a single node froma tuned system The graphs in FIG.4.13
show how the five individual blade |oads vary with the values of &
and S, and unlike the results of the previous section we find them
to be alnost conpletely independent of either parameter. One surprising
result apparent in the graph for the single node is the fact that the
bl ade |oad estimtes appear to worsen as the approximtion is inproved
Wil st the determ nant solutions corresponding to these results are
marked on these graphs, there is a better form of conparison for the
doubl e node which is shown in FIG.4.14. In these two graphs the blade
| oads are plotted as a histogram against the angular positions of the
bl ades around the disc, From these discrete values, it is possible to
deduce a sinple cosine distribution, and this is shown al ongside the
correspondi ng curve deduced from the determnant calculations so that
the two may be conpared. For the first case, good agreenent is
observed between the two methods of solution (the anplitude of each
curve is arbitrary and nust not be considered in the conparison), but
the second set of results is somewhat confusing. Certainly both
solutions indicate a simlar cosine variation of blade [oad around
the rim but the approximte solution has a mean value which differs
considerably from zero, the value which it should take

No explanation for this discrepancy, nor for the seemngly
iIl-conditioned single node case was immediately forthcom ng, and
since this nethod of solution has no advantages over the exact
solution, a nore detailed investigation was not nade

However, it is as well to bear in mnd that the determ nant
solution is not possible unless the roots of the determnant are known,
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and it is only with the assistance provided by the eigenval ue
estimates that these roots may be readily found

4.8 Vibration characteristics of bladed discs

The results reported in this chapter may be summarised quite
briefly as characteristics of the flexural vibrations of bladed discs
in general, The two methods of solution which were used both
denonstrated the existence of two distinct types of flexural vibration
mode, These are called ‘single’ and 'double* nodes after the form
taken by the corresponding solution to the equations of notion

There are two aspects in which single and double nodes are
fundamental ly different, and these are both concerned with detuning
The first of these is a property of the natural frequencies. A single
nmode has just one natural frequency associated with it, although the
actual value of this frequency may vary slightly as the nature and
magni tude of detuning varies, However, there are always two natura
frequenci es associated with each double nmode, These are very close in
a detuned system and identical in a tuned system as shown by the
exi stence of equal eigenvalues of the system matrix and double roots
of the frequency equation found by the receptance nethod, The
phenonmenon of 'frequency splitting' is a consequence of detuning, and
cannot under any circunmstances occur in a single node

The second difference concerns the modal shapes, It is a
property of a single node that in a tuned system each bl ade experiences
the same |oading, or that the nodal shape is circunferentially
symmetrical, Detuning causes this symetry to be slightly disturbed
but the individual variation of blade load is small conpared to the
mean, or tuned system value, The nodal shapes corresponding to a
doubl e node are essentially the sane in both tuned and detuned systens,
In any one case, the distribution of blade load follows a cosine
variation around the rim and consequently has a nmean value of zero
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exactly the reverse of that for a single node

Single nmodes include all those bladed disc nmodes which are
associated with the symetric disc nodes (i.e. those with no noda
dianeters) as seen in FIG.4.12, and al so those special cases with the
sane number of nodal diameters as there are blades (or any multiple
thereof). These were described as 'conjugate’ nodes earlier in the
text, but as they are found to exhibit all the properties of single
nodes, they may be classified as such, Al other nodes fall into the
category of double nodes
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CHAPTERS
DETUNING A FI VE BLADED DI SC - (|) NATURAL FREQUENCI ES

5.1 Introduction

Cal cul ations described in the previous chapter show that when
the symetry of a tuned bladed disc systemis slightly disturbed
certain of the normal medes of vibration split into a pair of nmodes
with sinmlar characteristics and very close natural frequencies, The
asynmetry was introduced in that case by varying the sizes of the
bl ades so that they were no |onger identical (as had previously been
the case), Simlar results would also be obtained by disturbing the
circular symretry of the disc itself, or the angular positions of
otherwise identical blades. Detuning may thus be defined generally as
the process of making small variations to a basically symretrica
system andthis work will seek to investigate the specific effects of
detuning on the properties of a vibrating bladed disc. Because the
preci se mechani sm seemed uninportant, it was decided that for the
purpose of all subsequent conputation, the system would be detuned by
varying the blade lengths only, keeping all other dinensions constant,

The general formof detuning will be represented by a
distribution of blade length around the disc so that the length of any
one blade is defined by the equation

L(6) = L.{1 + ofe)} (5.
wher e ji(ev is the detuning function, and is within the
range -1 < £(8) < +I
6 represents the degree of detuning, and deternines upper

and lower limts of blade I|ength;
Lo isthe length of each blade in the tuned system
and 6 is the angular position of a blade.
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Subsequent sections in this chapter deal with the effect of using a
variety of fornms for the detuning function f—(e), and in particular
with the frequency splitting which then occurs.

Basically, there are two problenms associated with the frequency
splitting phenomenon which nust be solved. The first is concerned with
the mechanism of such splitting, and the second with the consequences,
A physical explanation of this phenomenon has not been found. However,
by considering the effect of adding small detuning masses to the rim of
a uniformcircular disc, it is possible to predict a natural frequency
split and to estimate its magnitude, This analysis is given in
APPENDI X 5, andthe results are discussed in relation to their possible
extension to include bladed discs. Gven that certain nodes of
vibration do split on detuning, we wsh to establish a relationship
between the type of detuning (f(e)), the degree of detuning (o)
and the magnitude of the resulting splits in each node. The present
chapter is concerned with this problem only, while in the next chapter
a study is made of the properties of a pair of nodes with close natura
frequenci es.

In order to tackle the problem nunerically, a large nunber of
calculations nust be performed. It may be seen from the previous
chapter that the matrix or eigenvalue approximation to the natura
frequency solution is an ideal tool for this investigation. In such
an application, this nethod scores heavily over the alternative
receptance determnant nethod by virtue of its speed and convenience
of use. A five bladed disc with dinensions in the ratic8 A = 0.3,
and W, /Za = ,04167 was selected for this study. For all
calculations, 16 disc nodes (@) and 5 nodes per blade (S) are
considered in the approximation; reference may be nade to the previous
chapter concerning the accuracy attained with this set of data, The
natural frequencies of the tuned version of the chosen nodel are found
on FIG4.12 at the point corresponding to A =.3, and this particular
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case is of special interest because the natural frequencies of nodes 3
and 4 (corresponding to the 3/0 and I/l nodes of the unbladed disc)
are extrenely close together. Their separation is of the same order of
magni tude as the splitting phenonenon which is under investigation.
This makes possible a study of the effects of interference between one
pair of nodes and another.

Finally, we note that when it is required to derive a general
formof a function, in this case the detuning function f(e), there
are two principal nethods which may be enployed. One is to forma
pol ynom al such that
fee)y= ) an 6" (5.2)

(-]

and the other is to assune a Fourier series,

}Z(g) = Z {aMcos 8 4+ bmmwe} (5.3)

A= o

Because of the circular nature of the system this latter formis the
obvi ous choice, and the present chapter is devoted to developing this
| dea.

It has been found convenient throughout to identify each node
of the bladed disc with the shape of the unbladed disc nmode from which
it has degenerated. This systemis illustrated in FIG4.12.

5.2 A systématic anMlsis of detuning

Wen a study of the effects of detuning was first considered,
it was decided to make a statistical analysis of randonmy detuned
systems. This work was |argely conpleted, but the results led to the
belief that a systematic study could illustrate much nmore clearly the
patterns of behaviour of a bladed disc subjected to detuning.
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The blade length equation which was used for random detuning
was sinply

L = Lo{l+°"<;} (5.4)

where K. could take any value at random within the range -lg k <1,
Now, it is possible to derive a function of the type shown in equation
(5.3) which has the sane values at the five points ©;= 2rs/5 |
for « = 1(1)5, as the corresponding random nunbers K;. As there
are only five variables, the function needs only five terns and may be

witten either as

$(8) =2, + 0,056 + a,sun b + a0526 + a, 20 (5.5)
or, in a nore convenient form as

f(8) = b, + b cos(6+P) + b cos2(6+Y) (5. 6)

The five constants, &, to @, in the first case and b,,b,, b, ,&
and ¥ in the second, may be found by solving the set of five Iinear
equations which are formed by equating fi(Q) and K; for each
value of 4. Thus, any five blade |engths may be represented by
(5.6), and this equation is the general formof f(e) for the case
of a five bladed disc

W shall now study the effect of each of the three terms in
equation (5.6) individually. The first of these is a constant term
b, , and provides an alnost trivial case in that it serves only to
| engt hen (or shorten) each blade by the sane amount. This does not
disturb the circular symmetry of the system and thus will not cause
splitting in the double nodes, although it will raise (or lower) the
natural frequency of each node. Calculations were nade to assess the
magni tude of this effect and the results are shown as a set of curves
in FIG5.1. For each of a nunber of nodes, the detuned natura
frequency is plotted against the total extension or contraction of the
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bl ades. The straight |ines which result correspond to the slopes of
the respective curves in FIG.4.12 at the point N = 0.3.

Next consider a detuning function of the type

f(8) = b eos(6+ P)
A set of calculations was carried out for a variety of values of
(b, ) and ¢, and the results may be summarised as follows:
(i) the natural frequencies of single nodes are unaffected by this
formof detuning; (ii) the value of ¢ has no effect whatsoever on
any of the natural frequencies, and (iii) certain of the double nodes
exhibit a splitting of their natural frequencies which is symetrical
about the tuned system value, while others do not. The results are
shown graphically in FIG.5.3 where natural frequency is plotted
agai nst the component of cost® detuning, ( ob,). Wth the
exception of nodes 3 and 4 (I/l and 3/0), which present a special
case by virtue of their proximty, it is found that all those nodes
which do exhibit a split are associated with unbladed disc nodes
possessing (54 +2) nodal dianeters (s is any integer). Aso all
nmodes which show no splitting are associated with disc nmodes which
have (55 #1) nodal dianeters. This indicates that each double node
of the five bladed disc belongs to one of two categories, depending
on the shape of the unbladed disc node from which it degenerates.
The existence of two distinct groups is also evident in the general
form of the detuning function for the five bladed disc (5.6), where it
is necessary and sufficient to include terns of cos 16 and cos 26
types only. The reason for this may be illustrated by reference to
the diagrans in FIG.5.2. The first of these, FIG.5.2a, shows how a
detuning function of cs16 results in the same set of blades as
does a function of ces 4-e , or, generally, cos (5'j- +1)6 . The
second di agram shows the identity of the cos 28 detuning function
with all others included in the general term cos (55 #2)©. Mdes
and detuning expressions of these two types are referred to as
belonging to either the 'cesi®' or 'ecos28' fanmly.
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The other type of basic detuning function,

]/-(9) = 6, CoSZ(Q*KP)
produces a simlar set of results. Once again, no change is observed
in the natural frequencies of the single nodes; nor does the value of

 affect the natural frequencies of any node. In this case however,
it is the nodes of the co5 /6@ fanmily which do split, while those of
the cos 28 fanmily do not, The conputed results are shown in

FIG.5.4 al ongside those fromthe previous case. Both sets of results
are combined and presented graphically in FIG.5.5 where the degree of
splitting in each node is plotted against the conponent of the

rel evant cosine term( ob, .., ).

In this graph, the results for the 1/1 and 3/0 nodes are
omtted since they do not conformto the regular pattern. It is clear
from FIGs.5.3 and 5.4 that some formof interference is present
between these two nodes, and further calculations for a slightly
nodi fied system (one in which A was .275 instead of .3 and the
natural frequencies of these two nodes are not so close) show the
expect ed behavi our (F16S.5.3a and 5.4a).

The general conclusion which mght be drawn from these results
s that detuning of the ces 16 type does not produce any splitting
in those nodes which belong to the ces (& famly, whereas it does
cause the nodes of the other famly to split. A reciprocal
relationship holds for ces 26  detuning.

One further enpirical relationship has been observed. For
any particular bladed disc, there are just two paranmeters for each
mode of vibration which define the behaviour of that node under any
detuned conditions. The first of these we shall call the 'frequency
factor', & . and is the sl ope of the appropriate line in FIG.5.1.
It is a measure of the rate at which the natural frequency of the
tuned system varies with blade length. The second paraneter is termed
the "split factor', & , and this is a neasure of the degree by
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which splitting occurs, as indicated by the slope of the corresponding
line in FIG.5.5, From the table of values which has been drawn up for
the systemcurrently under investigation, it appears that, apart from
a difference in sign, these two parameters have substantially the sane
val ue.

e | PRECT | ST
P
2/0 . 474 . 477
2/1 . 824 . 806
6/0 .6lo . 602
3/1 .350 . 348
1/2 .330 .33

In order to denonstrate the application of the above results
to a general exanple, one of the randomy detuned cases of the
statistical analysis was taken, The five random nunbers K
specifying the individual blade lengths were analysed to determne the
const ants b.,b, ,b,,® and ¥ in the Fourier series of
equation (5.6). Using the values of P and QL in the above tabl e,
the natural frequencies of each of the double nodes were deduced by
superposition of the relationships described above,, These
frequencies were then conpared with the values which were conputed
directly fromthe sane blade and disc data. Details of this exanple,
which is just one of several treated in the sane way, are tabulated in
FIG.5.6 where the extrenely close agreenment between 'deduced and
"computed" natural frequencies is clear.
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5.3 Calcul ations nade using the receptance nethod

Havi ng established a nunber of relationships between bl ade
variations and their effects on the natural frequencies by using the
approximate matrix solution, it was decided that they should be
verified by test cases conputed according to the nmore precise
receptance determnant nethod. This would confirm that the
rel ationships are not peculiar to the approximte solution, and also
furnish nore accurate values for the frequency and split factors,
defined in the previous section

In order to provide values for conparison with later
experimental work, the blade length ratio (A) was taken as 0.275
(rather than 0.3), and calculations were made for the same nodel as
before. The results of these calculations confirm those of the
earlier analysis, and as an illustration, a portion of the determ nant
- frequency plot is shown in FIG.5.7. These curves are drawn in the
region of the natural frequency of the fundanental node (2/0), and
correspond to (i) the tuned system (ii) the detuned system when
$(8) = s © and o = 0.01; and (iii) a second detuned systemin
which f(6) = cos5 26 and o = 0.01. Curves (i) and (iii) are
i ndi stingui shable from one another, while curve (ii) dermonstrates a
definite split of natural frequency which is symetrical about the
tuned system value. Furthernore, it was found that a detuning function
of cos (6 +¢) produced exactly the same curve for any arbitrarily
chosen val ue of ¢n This was also a result of the earlier analysis.

As had been the case earlier, it was found that for |arger
degrees of detuning (of the order of o = ,02), a detuning function
of the cos 16 type would in fact produce a small degree of split in
nodes of the «<os /8 fanmily, but once again the order of magnitude of
this split in such a mode is insignificant when conpared to that due
to cos 28 detuning. This would seem to confirm the suspicion that
there is a second order, or nonlinear, effect causing these smal
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splits, rather than these being the result of conputational errors

Finally, a set of calculations were undertaken in order to
obtain nore accurate values for the frequency and split factors
( §i§ and EI} ) which were defined in section 5.2. Based on these
calculations, a table of values for these parameters was drawn up and
I's shown bel ow

FREQUENCY SPLI T
MODE FACTOR FACTOR
b o

2/0 - 475 . 478
| /1 - 1.405 1-443
3/0 - .79 672
2/1 — .572 . 564
4 /0 — .034 . 035
6/0 - .382 .37/
/2 — . 473 .48/

For the system used in these calculations, the natural frequencies of
the 1/1 and 3/0 nodes were not as close as had been the case for
the earlier study,, However, they were sufficiently close to produce
slight interference one with the other, and it is thought that the
proximty of their natural frequencies is responsible for the larger
di screpancies which are found between éiD and EI’ for these
particular nodes. The figures relating to the other five nodes show
the same degree of simlarity as those conputed by the matrix nethod,
so that it is not possible to attribute the differences found there
to the approximate nature of the solution. However, it is difficult
to be sure whether or not the discrepancies found between the two
constants Qb and QZ’, being as small as they are, are due to rounding
errors in conputation. It nust be renmenbered that each of these
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factors is found from the difference of two alnost identical
frequencies, and is of the order of 4% of the magnitude of either
frequency, The order of magnitude of the discrepancies with which we
are concerned is in turn just 1% of this difference, and thus only a
very smal| fraction of the original values,, Athough all the
conputation is done with seven significant figures, it is doubtful
whether all the disc receptance terns attain this degree of accuracy.
Thus it is felt that computational errors of the same order of

magni tude as the discrepancies observed between @ and g_J are quite
possi bl e.

In this chapter, we have established that for a five bl aded
disc there are just two types of node; the cos/® and cos 26
famlies. Fromthe results it is possible to deduce two alternative
general rules of detuned behaviour, One is that the nodes of the
cos »& family are split by any detuning function except one which
belongs to the cos m8 fanily. The alternative rule is that nodes
of the cos m6 fanily are only split by detuning functions belonging
to the cos 20 fanmily. In the case of the five bladed disc these
two rules amount to the same result, but it is the latter which is
supported by the theoretical predictions in APPENDI X 5, Test
calculations for a seven bladed disc, in which there are three such
famlies, substantiate this prediction,
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CHAPTER 6

DETUNING A FI VE BLADED DI SC - (I1) MODAL SHAPES AND
VI BRATI ON LEVELS

6.1 | ntroduction

The previous chapter was concerned solely with the natura
frequencies of detuned systems, and did not describe the corresponding
shapes of the nodes of vibration. In this chapter, a study is nade of
these nodal shapes, along nuch the sanme lines as that for natura
frequencies, and the practical significance of the results is discussed
Al'l the nunerical exanples upon which this chapter is based result from
calculations which were made using the receptance method of solution,
The relative nmerits of the two nethods for obtaining nodal shapes were
discussed in Chapter 4, and it was found that it is the receptance
met hod which provides the nore efficient and accurate neans of
conputing this information,

Each nodal shape, as conputed by this receptance nmethod, is in
the formof a set of values for the forces and couples which act at
the root of each blade. It was considered necessary to devise a nore
concise form for the presentation of this information, and a nunber
of possibilities were examned. One of these = the pattern of noda
lines on the disc = was rejected since it provides very little
quantitative information. The shape of the displacement at the rim
was al so considered to be unsuitable as its specificationis, if
anything, less concise than the original set of blade |oads,

Finally, it was decided to define a nmodal shape function (or, blade
|l oad distribution) which is of a simlar formto that of the detuning
function f (e), and which represents the distribution of either
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bl ade forces or couples around the disc*, The nodal shape function is
witten as

F(8) = A{p + B as(en + p s 208} )

and the five constants Bos Py Bay ¥ and § are determned by the
couples on each of the five blades. The constant Ais an arbitrary
scaling factor, and may be chosen to have any convenient value

It is convenient to study the behaviour of single and double
modes separately, Their characteristics are dissimlar, and so, it is
found, are their reactions to detuning

6.2 Single nobdes

Al'though it is a property of single nodes that they do not
split under any detuned conditions, it appears that their modal shapes
are affected by detuning, and then often to an appreciable extent. The
present section attenpts to establish the precise manner in which the
single nodal shapes of a detuned systemare related to the form and
degree of the detuning arrangenent, In order to achieve this, a
nunerical study was made on four such nodes of the five bladed disc
those selected being associated with the I, 5/0, 0/2 and 0/3
nmodes of the unbladed disc. As before, this classification is used to
identify the bladed disc nodes

First, the shapes of these four nodes were conputed for a tuned
system in order to provide a standard of comparison for subsequent
detuned cases . The result was the same for each node, and the noda

*It is found that in any nodal shape, the pattern of blade root forces
is identical with that of blade root couples. The couple is a nore
useful parameter since the bending stress at the root is directly
proportional to it.
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shape function was found to be sinply
F(e) ={1} (6.2)

where Ais chosen in this case so that the constant termis 1.
This result illustrates clearly the circular uniformty which is a
property of single modes, and which was discussed in Chapter 4,

In order to discover how these nodal shapes are affected by
detuning, it was found convenient yet again to consider individually
the effect of each of the three ternms which constitute the general
det uni ng function f (6), (5.6)., The first of these, a constant
term is clearly a trivial case and has no effect on the nmodal shapes
sinply because it does not upset the circular symetry of the system
However, when a detuning function of the form

£(8) = Db, cos(6+P)

was applied to the system and calculations made for various degrees
of detuning, it was found that the shape of each node followed the
same pattern in which the modal shape was of the form

F(e) = {1 + B es(e+9)} (6.3)

here ; refers to the j™ single node), By plotting a nunber of
results (see FIG.6,1), it was possible to establish a sinple
relationship between ;B and ( eb,), and it is found that for
each node: B, = K, (ob, ). Asimlar result is obtained by
using the third type of detuning function:

£(8) = b s 2(0+¢)
for which nmodal shapes were all of the form

F. () = {1 v P m2(9+80)} (6.4)
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In this case, the coefficients ;P. and (ob, ) are related for
each node by a second constant ;K,. sothat ;RB. = ;k, ( ob;)
(FIG6.2). These results show that for each of the two basic forns of
detuning, there is a linear relationship between the variation in blade
length and the variation in blade |oad around the disc, The
consequences of this effect appear to be considerably nore serious for
the higher frequency nodes,

If we now consider the general formof detuning, represented by
£(8) = b, +b cs(0+p) -t b, cos 2(6+Y)  (6.5)

it is possible to deduce the nodal shapes for this arrangenment by
superposition of the above results. As nentioned above, the constant

b, will have no effect on the nodal shapes, The effect of each of
the two cosine components may be derived from equations (6,3) and
(6.4), so that the nodal shape resulting from any detuning arrangenent
is:

F(8) = {1 +(jkob)eos(046)+ (jkza—bz)(,oSZ(O-c—l,U)}
(6.6)

In this case, asinple linear relationship between blade |ength and

| oad, such as was found for the two sinpler detuning functions, does
not exist. However, since the two constants for any one node, ;k,,
and 4, , have simlar values, the overall effect is nuch the same.
A variation in blade length gives rise to a variation in the blade

| oads about a nean val ue

The practical significance of this result may only be
appreciated by considering the response of a system which is lightly
danped to various forms of excitation. Suppose that a bladed disc is
excited in some given manner at the natural frequency ofa single node,
The response to this excitation mght be conveniently neasured as the
distribution of blade root stresses around the rim of the disc, and
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the presence of light danping is necessary in order to maintain finite
stress levels at the natural frequencies. |If the danping is light, we
may express this form of the response as

R (8) = ,p. F (8 (6.7)

where F} () is the nodal shape, and ;p, represents the nmean
stress level and is directly proportional to the excitation |evel

If we may assune that this given excitation will give rise to
the same nmean stress level (;po ) for various detuned versions of
the same basic system then it is possible to make a direct conparison
between tuned and detuned systems. The conclusion which may be drawn
from such a conparison is that, for a single node, detuning always
causes one or nore blades to experience higher stress levels than they
do in the tuned system under the sane excitation conditions. The
extent of this effect depends upon both the form and the degree of
detuning, but the variation in stress levels (about their nean) is
usual Iy several tinmes that of the blade |engths about their nom na
(tuned system val ue,

It is difficult to ascertain whether this assunption is
justified. It is unlikely to be valid in a case where the position
of excitation (if this is at a point) is close to a node. In this
case, slight variations in the nodal pattern, which will result from
detuning, may cause large variations in the effective excitation

6. 3 Double npdes

The behaviour of double nodes under detuned conditions is
sonewhat nore conplex than that described in the previous section for
single nodes. It was first observed in Chapter 2 that when there are
two or nore coincident roots to the receptance determnant, there is
no unique nmodal shape corresponding to that frequency, This is the
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situation which exists in respect of the double nodes of a tuned system
and for these nodes, the modal shapes or patterns depend upon an
external influence (such as the excitation) for their conplete
specification. However, as soon as the systemis detuned, and no
matter how small the degree of detuning, the pairs of coincident roots
of the frequency determnant are replaced by pairs of very close roots
and corresponding to each of these is a unique nodal shape which is
defined conpletely. Thus, it is only in the linit of detuning (i.e. in
the tuned case) that analytical difficulties arise

As in previous cases, we shall begin by considering the sinple
form of detuning where

f(e) = b cs(o+d) (6.8)

The modes which are studied in the nunerical investigation are those
which are identified with the 2/0, 3/0 and 2/1 nodes of the

unbl aded disc. The other double nodes which lie in this frequency
range, the 1/1 and 6/0 nodes, are omtted since they do not

exhibit the frequency splitting phenomenon under this type of detuning
(see section 5.2).

It is found that the results pertaining to each of these three
nodes follow the same pattern, For each pair of nodes (constituting
a double node), the shape of the one with the |ower natural frequency
my be expressed as

jF(8) = cos 2(B6-"%P) (6.9)
while that for the higher frequency node is

(F.(8) = sm2(6- ") (6010)

A set of results for the 2/0 node, typical of those from which these
expressions were derived, is shown in FIG.6.3. It may be seen in this
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table that the coefficient B, increases with o-b,, but since its
magni tude is always very much less than that of B, , it is onmtted
from the nodal shape functions, (6.9) and (6.10), as being negligible.
Since there is thus only one termin either of these expressions, the
value of its coefficient in each case (B.) is of no consequence,
and is chosen for convenience to be unity.

A simlar study was nmade for the |/l and 6/0 nodes by
using a detuning function which is known to cause themto split.
Cal cul ations made for these two nodes, with

F(8) = b, cos 2(6+¢)

produced a simlar set of results, The two nodal shapes for any
double node in this category are typified by the results tabul ated
in FIG.6.4 for the 6/0 node. The nodal shape functions which are
derived from these results are

iF(8) = s (6+¢) (6. 11)

]

and

jF, (8) sim (6 + W) (6.12)

]

(corresponding to (6.9) and (6.10) respectively), and these denonstrate
the sane properties as those described above for modes of the other
fam|y*

As a general rule, it may be considered that it is the natura
frequency of each node which determines its shape. In the case of a
doubl e node of a detuned system there are two nodes which have al nost
identical natural frequencies so that they possess correspondingly
simlar nodal shapes, The form of the detuning, and in particular the
constant @ or ¥ , provides the specific angular orientation of
each of these two virtually identical nodal patterns. As the degree
of detuning increases, the natural frequencies of the two nodes will
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differ appreciably, and this, in turn, will give rise to differences of
a simlar order of magnitude between the shapes of the corresponding
nodes. It is believed that the nonlinearity which is evident in the
tabul ated results in FIGS.6.3 and 6.4 (in which the coefficient B,
(or P2 ) increases with o) might be attributed to this effect
and this suggestion is further substantiated by the behaviour of the
1/1 and 3/0 nodes, in which the nonlinearity is considerably nore
pronounced than in the other nodes. The natural frequencies of these
two nodes in the tuned version of the system are quite close together,
so that a variation of modal shape with frequency would be nore narked
in their vicinity than elsewhere, Thus, one night expect that any
second order effect which arises from such a variation would be nore
promnent in these two nodes than in the others

The alternative expressions of nodal shape were conputed for
one particular case (for the pair of 2/0 nodes) in order to provide
a conparison between them Fromthe basic formof a set of blade
| oads, the nodal shape was conputed in the formof (i) a blade | oad
distribution;, (ii) the disc rimdisplacement shape and (iii) as a
pattern of nodal |ines on the disc, A further expression was
obtained by computing the blade root displacement distribution,

This was found by considering the displacement of the rim of the

disc at the five points corresponding to the positions of the blades
as five discrete values, and then deducing a function of the sane form
as the modal shape function F (©). The results are presented in
two sets of graphs, The first, FIG.6.5, shows the individual blade

| oads and their deduced distribution, the disc rim displacement shape
and the deduced bl ade root displacenent distribution. The second
sinply shows the nodal patterns: FIG.6.6, In both sets of results
the orthogonality property of the pair of npdes is evident. The
deduced bl ade |oad and bl ade root displacement distributions for each
node consist of simlar ces 26 -type curves and are in phase with
each other. The disc rim displacement, although it exhibits a
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somewhat conpl ex shape, nmay be seen to be basically a cos 26
variation around the disc, and this also is in phase with the two
distribution curves, The results shown in these graphs serve to
illustrate the close simlarity which exists between the various
expressions of nodal shape, and this is a feature which nmay be used
to advantage in the next section

6.4 A sinplified double node

Once again, it is necessary to consider the response of a
bl aded disc to danped forced vibration in order to realise the
practical inplications of the results obtained in the previous
section. It has been found convenient to study the behaviour of
doubl e nodes by considering a sinplified analytical nodel which has
basically sim/lar properties, Using this nodel, the response of a
sinplified system may be determned for a wide range of detuning
arrangements under various danping and excitation conditions
Subject to the limtations of the sinplifications, results obtained
in this way my be related to the real systemto predict the behaviour
of a bladed disc when it is detuned

The basic assunption which is made in the construction of the
model is that the response of a bladed disc double mode may be
considered in isolation fromthe effects of other nodes. Thus the
systemis reduced to one in which there are just two degrees of
freedom  The normal nodes of vibration which correspond to these
two degrees of freedom have properties typical of those of the pair
of modes which constitute the double mode of a bladed disc, These
two nodes are represented by principal coordinates 4, and %. »
and their natural frequencies ( w, and w.) are very close. The
shape of each mode is defined by the rim displacenent shape, and this
I's assunmed to be

wr () = cos n® (6.13)
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for the node with the |ower natural frequency ( w,), and
w, (B) = sin =nb (6.14)

for the higher frequency node. These are typical of a bladed disc
double mode with » nodal 'dianeters', It will be assuned that the
inertia and stiffness coefficients of the two nodes are identical

VW shall now derive expressions for the response of this
system to various fornms of excitation. [t is convenient to consider
first the possible forms which the excitation mght take, In
Chapter 3 it was shown that the only type of loading at the rimof the
disc which could excite a node with » nodal dianeters is one of the
form

P (0) = P,cos mB =** (6.15)

Any configuration of loading at the rim my be represented in a Fourier
series, and generally this will contain a termsuch as that in (6.15).
It is found that a point loading is a typical exanple in that its
Fourier series representation contains a ces »® termfor every
integral value of m , \W shall thus confine our interest to this
type of excitation. For a point load Fo situated at a point © = 0
on the rim the general termin the Fourier series expansion is

F :
P.(8) = = com m(B-q) o™ (6.16)

~m

The total generalised force in the two nodes due to the point |oad
Fo may be deternined (as in section 3.7), and is found to be

Q, = F, cos (M—rL) (6.17)
in the first case, and
QR, = Fsa (M"L) (6018)

in the second,
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Damping may be included in the analysis, and ¢, and c2 will
be used to represent the fraction of critical danping which is present
in each mode. The two equatioms of MOtion corresponding to g, and
4, ™y now be witten as

é,' + 2c,0, g, + ©7q, = Q, /6\,, (6.19)

and
C'i/z b26,0.9, + ©)g, = Gu/a, (6. 20)

where e, is the inertia coefficient of either mde., These
equations nmay be readily solved for g, and g, , and the response
of the systemto excitation at a point © =n My be obtained in
sone suitable form It is convenient to express this response as a
receptance function R (0) which relates the displacenent at any
point on the rimto the point load F, at 6 = 7. This
receptance may be witten generally as

R(©) = [#5(0)g, + wn(e)g,.]/F, (6.21)

where ur, () and «, (®) are the nodal shapes defined in (6.13)
and (6.14) respectively. On substitution for ¢, and g, (which are
found by solving the equations of motion (6.19) and (6.20)), the
response becones

R(8) = W,(y) cos m(e~e) (6.22)
wher e
W, = W e W,* o e = tam ' (W,/W,)
and
\/\/\ ('2) = Ceos (Mz)/ﬁ(-— (w/w )17 4 (w/w)? )
Wo () = st ) [f01 — (/0T + dre (/0.3
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( W, is the maxi num response and 6 the position around the rim at
which it occurs),, It was shown in the previous section that the
variation of blade |oad around the disc corresponded to the rim

di spl acenent shape. Thus it may be considered that W, is
representative of the maxinum blade |oad (and e of its position),
and it will be used subsequently as the significant parameter in
conparing tuned and detuned systems.

Having obtained a measure of the response of the sinplified
system it now remains to investigate the properties of this
solution for a variety of conditions. The three paraneters which
mght be nost usefully varied are (i) the split, or difference
between the two natural frequencies w, and w, ; (i) the
position of the excitation 7 and (iii) the level of the danping

First, we shall study the significance of the position, or
origin of the excitation, For a given split and danmping |evels
(assuming c, =e¢, =cCc ), the anplitude of the response ( W,) was
conputed at frequencies in the region of the natural frequencies, for
di fferent val ues of ne Typical results for a systemwth a split
of .0l and with .01 critical danping are shown in the graph in
FIG.6.7 where the three curves correspond to excitation positions of

R = 0,r/2m,r/wn. Cearly, for the second of these three curves
the maxi mum response attained throughout is lower than for the other
two, illustrating that the maxi mum response of a detuned systemis a
function of the position of the excitation. This function is shown
in FIG6.8 where the maximm response (ﬁh) of systems with
different splits but a constant level of danmping is plotted against
the angular position (n) of the excitation, Each curve in FIG.6.8
shows there to beAan optimum position of n. at w/2m , Wwhere
the reduction in W, is at its greatest, A further graph, FIG.6.9,
shows how this reduction varies with both the split and the |evel of
danping present in the two nodes. The curves represent the maxinum



88

anplitude attained in the response for the optinmm position of
excitation at n =n/2m, Each curve is asynptotic to 0,707
times the worst, or tuned, case, and the speed of convergence to this
value is governed by the split and danping

The conclusion which may be drawn from this study of a
sinplification of the real system is straightforward, Detuning
cannot produce higher levels of response in a double rmode than those
present in the tuned case. The degree of the reduction which is
possi bl e depends on the position of the excitation, the split of the
two natural frequencies (or the degree of detuning), and the |eve
of danping present in the system

It is believed that the sinplified system which has been
studied in this section will represent closely the behaviour of nost
doubl e nodes of a bladed disc, In certain cases where there are a
nunber of nodes all with simlar natural frequencies, the assunptions
may not be justified, However, the results of an experimenta
investigation, which is described in Chapter 8, indicate the
validity of the sinplification,

It has been found that the sinplified analytical nodel, which
has been fornulated in this section based upon a large nunber of
cal culations of an 'exact' analysis, corresponds to that assumed by
Tobias and Arnold (1957) in their discussion on the vibration of
rotating inperfect discs
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CHAPTER 7

THE DESI GN AND DEVELOPMENT OF THE EXPERI MENTAL EQUI PNVENT

7.1 Requirenents of an experinmental node

The basic requirement of an experinental nodel is that it
shoul d represent as closely as possible the system which was studied in
the theoretical analysis. If this requirement is met, a realistic
conparison mght be made between the results of the analysis as
described in the earlier sections and those obtained from an
experimental investigation,

Since this work is primarily concerned with a uniform disc
which is bladed with five uniformrectangular bars, such is the form
that the nodel should take., Furthermore, it was observed at the outset
of the study that the inclusion of blade stagger as a variable paraneter
woul d be an inessential conplication, so that no provision for the
adj ustment of stagger is necessary on the nodel

It is necessary to suspend the disc in such a manner that it is
effectively freely supported in space, This sinply neans that the
natural frequencies of the bladed disc when it is vibrating as a rigid
body on its suspension should be much |ower than those of the
flexural nodes of vibration with which we are concerned,

Detuning is the principal factor of interest in this work, so
that a means of controlling it nust be incorporated which is at the
sane time precise and convenient, In the analytical study, detuning
was both effected and neasured by the variation of the individua
bl ade |engths, and the sane technique may be used experinentally,,

Finally, it was believed that the inclusion of a source of
danpi ng which may be varied up to a level such as is experienced in a
running turbine (of the order of & = 50), would be a desirable
feature, This would serve to ensure that the response in the
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vicinity of a resonant frequency would be restrained to a reasonable
level, Experience shows that on this type of freely supported system
i nherent danping is very low (@> 1000) so that the response at a
natural frequency is extrenely high. In practice this is manifest

by the applied exciting force becomng very small, under which
conditions electronic noise levels render accurate or consistent
measurements very difficult, if not inpossible. Thus, the inclusion
of damping which is heavy enough to overcone this difficulty but
sufficiently light so as not to interfere with the general patterns
of behaviour, is advantageous,

7.2 The design of a node

The first design consideration is clearly that of the five
bl aded disc itself, Several forms which this mght take were
considered before it was finally decided to machine this itemin one
piece, froma sheet of steel, The main advantage of this form of
construction is that it avoids discontinuities of geonetry or
material properties at the blade to disc junctions, and thus provides
what is perhaps the best possible representation of the analytica
nmodel . The actual dinensions of the nodel are of sone inportance in
that it is preferable to arrange for the working frequency range to
lie between 100 cps and 3000 cps. The flexural natura
frequencies of the bladed disc are of course highly dependent upon its
size, and the follow ng dimensions were those eventually chosen

Disc dianmeter = 24"
Disc thickness = {"
Bl ade width = I
Bl ade thickness = "
Blade length = (initially) 8"

(subsequently) 6"

The original nmodel, with 8" blades (L./2a = 1/3), had a
fundamental natural frequency of about 125 cps, and the |ater
version a slightly higher value, Vibration data for the experimenta
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nodel have been conputed, and are discussed in APPENDI X 7,

In order to control the detuning process, it was decided
to vary the effective length of each blade by the addition of shims
with the same cross section as the blades but of various thickness,
toits tip. Awso fixed to the tip of each blade is an aluninium plate
which forns part of the danping arrangenents which are discussed
later. It was decided that the standard blade throughout the detuning
tests should be effectively 6.6" long ( L,/ 2a=.275), and this
should be attained by adding to the tip of the 6" blade the danping
plate and a 'detuning block' (basically a large shinm. The size of
this block is chosen so that the fundamental frequency of a free free
bar, 6" long and with a mass at one end equal to the total nass of
the block and the danping plate, is the same as that for a uniform
free free bar which is 6.6" long. The assenmbly is illustrated in
FIG.7.1la. On detuning, an overall blade length of L, Ct+ ot )
m ght be required, where oo represents the degree of detuning
and « my be any value between -1 and +1. In this case, a
detuni ng block corresponding to the chosen value of ¢ is used
which nakes the effective blade length up to L.() —e) , and
then the number of shime which constitute the increment of blade
length ( {1+ x]e-Ls) are added as shown in FIG.7.1b. A set of
nine shins were nade for each blade in sizes of 1, 2, 4, 8, 16, 32,
64, 128 and 256 units, where one unit is equivalent to a length
i ncrenent of L, /20000, Also for each blade, a set of detuning
bl ocks were made which corresponded to five degrees of detuning
(o =0, .0025, ,005, .01 and .025). For each assenbly, the shins,
bl ock and danping plate are all fixed to the tip of the blade by two
Al'len screws which locate in holes tapped in the end of the blade
The detuning 'kit' for one blade is shown in FIG.7.2, and a typica
assenmbly nmay be seen in the photograph in FIG7.3. For convenience,
two tables were drawn up, one of which provided the total nunber of
units corresponding to any conbination of o and o¢ , While
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the other gave the only conbination of shins which add up to this
total.

Turning now to the danping arrangenents, there are basically
two mechani snms which mght be enployed to produce a viscous danping
effect on the vibrating system One of these, based on the
resistance offered by a highly viscous fluid to the notion of a body
through it, was considered as inpractical owing to the difficulties
whi ch would be involved in varying or controlling the danping |evel
The method which was adopted depends on the fact that a conductor
nmoving in a magnetic field experiences retarding forces proportiona
toits velocity. An alumniumplate is attached to the tip of each
blade so that it nmoves in its own plane as the blade vibrates. An
el ectromagnet is then placed in position with the alumnium plate
situated in the gap between the two poles of the magnet, as
illustrated in FIG.7.3. The magnetic flux in this gap, and hence the
magni tude of the retarding or danping forces which result from eddy
currents induced in the plate, is controlled by the current flow ng
in the winding of the magnet. Pilot tests, which are described in
the next section, showed that an arrangenent of this type was
capabl e of providing danping whose magnitude could be readily varied
up to the required level, in this case to & = 50. A magnet was
designed which is intended for use with a disc and any nunber of
bl ades, and consists of a single winding to which my be added a
nunber of pole pieces (see FIG.7.4). A mmgnetic circuit with a high
flux density air gap may be obtained sinply by the addition of a
pole piece as illustrated in FIG7.4 and in detail in the photograph
of FIG7.3. It is appreciated that there will be edge effects
arising fromthe sinplifications which it was found convenient to
adopt for manufacturing, but these are not expected to inpair
performance, This design has several advantages over the
alternative of a nunber of smaller individual magnets, and these are
increasingly apparent for greater nunbers of blades. [In particular,
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very little effort is required in setting up the magnet ready for a
test, and the anpere-turns associated with each of the individua
magnetic circuits is automatically the same, Also, for a larger
nunber of blades there is a considerable saving in the quantity of
copper which is needed for the magnet windings: for 30 blades,
the individual nagnets would take double the amount required by the
present design, The adopted design may be seen in FIG.7.5.

The final item which required careful attention at the
design stage was the means of suspension of the disc, The necessity
for low natural frequencies of the rigid body vibrations was
nmentioned earlier, and to obtain these, a previous worker (Arnstrong)
suspended his nodel with 'shock-proof' elastic cord. However, this
has the disadvantage that it provides virtually no lateral restraint
(i.e. in the plane of the disc) which in turn would render the
proposed damping arrangenents inpractical, An alternative nethod of
resting the system on rubber blocks was ruled out owng to the high
| evel of danping which would result, A suggestion that sone form of
air cushion mght be enmployed led to the discovery that a partially
inflated automobile inner tube provides an excellent support for the
disc by combining the required low stiffness in a direction norma
to the plane of the disc with a fairly high lateral stiffness, Tests
described in the next section showed the inner tube to be ideal for
this purpose, and experience has since borne out its suitability and
convenience in use, It may be seen in position in FIG.7.5.

7.3 Suspensi on and danpi ng tests

Prior to the acceptance of the suspension and danping
arrangements described above, sinple tests were carried out to
examne their suitability,

The suspension was required to provide a free support for the
disc while at the sane tine introducing no significant energy
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di ssipation. The first set of tests were made to study the effect of
variation of air pressure in the tube on the natural frequencies of
the bladed disc which it supported,, For pressures ranging from 3 cm
to 12 cm of Mercury, a nunber of the natural frequencies were
nmeasured from free vibrations of the disc. The signal froma

pi ezoel ectric strain gauge on the surface of the disc was passed
through a frequency analyser, and on inpact excitation of the disc
each individual conponent of the gauge signal could be isolated and
measured. No variation in these frequencies could be detected with
change of pressure, and as they agreed well with the theoretically
conputed values, it was concluded that the inner tube did not
influence the stiffness of the system to an appreciable extent

A second set of tests was carried out using the sane
technique in order to neasure the level of danping present in each
node, A record was taken of the decaying oscillations of the disc in
each mode of vibration in turn. Analysis of these decay curves showed
that in every case the |evel of danping was |ess than 0.0005 tines
the critical danping for that mode (corresponding to a Q& factor of
greater than 1000). Danping of this low order might very well be
attributed to mechanical losses in the specinmen itself, which again
seens to indicate that the inner tube is not contributing to the
not i on

In order to test the proposed danping arrangenents, it was
necessary to construct a separate rig, This consisted sinply of a
bar of the same dimensions as the bl ades which had one end enbedded
in a large block of steel and an aluminium plate attached to the free
end. A small electromagnet was then placed in position with its two
pole pieces on either side of the plate. By plucking the free end of
the bar, it could be excited to free vibration as a cantilever wth
the attached plate nmoving in its own plane, Depending upon the
strength of the magnetic field in the gap between the poles, the




95

plate, and consequently the bar, would experience a retarding force
proportional to the instantaneous velocity of the plate, The
effective danping offered by this source of energy dissipation was
neasured as before by the analysis of decay curves. A strain gauge
fixed to the 'root' of the bar was used to detect the vibrations, and
phot ographic records of its signal were made for various nagnetizing
currents . Theresults fromthis experiment indicated that viscous
danping was introduced which was substantially proportional to the
magnetizing current, The maxi num current which was considered as
permssible from considerations of heat dissipation in the w nding
was found to correspond to a |level of danping of the sanme order of
magnitude as that required (i.e. 01 critical, or a Q factor

of 50).

7.4 Instrunentation and other equi prent

Experinmental equipnent other than the basic itens described
above falls into three distinct categories. The first of these
concerns the neans of vibration excitation; the second includes al
the equi pnent necessary for the measurement and recording of the
response of the system and the third constitutes the power supply
for the danping nagnet,

In order to excite the bladed disc to vibration, an
el ectromagnetic vibration generator was used and the moving coil of
this unit was rigidly fixed to a point on the rimof the disc by
neans of a sinple clanmp arrangenment, This nethod of attachment was
designed so that the excitation could be applied to any point on the
rim  The receptance transducers were also nounted on the clanp
assenbly, which is shown in FIG.7.6. A Muirhead decade oscillator
was used to supply a signal at the required frequency to a power
anplifier which, in turn, drove the vibrator, The frequency stability
of this signal is veryinportant (for reasons discussed in the next
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section) and an electronic counter was used to neasure its frequency
to an accuracy of 6 significant figures,

The basic requirements of the instrumentation are to neasure
(i) the excitation force applied to the disc and (ii) the response of
the disc, both as the normal displacenment or acceleration at the point
of excitation (the driving point) and also as a distribution of blade
| oading around the rim It was decided that the nmost suitable
transducers for use in each case would be those of a piezoelectric
type, since they are nore sensitive and |ess demanding on ancillary
el ectronics than passive types of transducer. A short description of
pi ezoel ectric charge generating transducers and their use in
vibration work is given in APPENDIX 6. A force gauge and accel eroneter
were used for the accurate measurement of receptance, while barium
titanate Strain gauges were attached to the root of each blade in
order to provide an indication of stress levels , Thesegauges are not
suitable for accurate neasurements of strain, nor may they be
calibrated owng to the variation in their sensitivity both one from
another and with environnental conditions . Theymay, however, be used
to illustrate the distribution of blade stress around the rim of the
disc, and are ideal for conparing the responses of different systens,

Many of the experimental results were recorded by a Solartron
data logger, and as this instrument neasures d.c. levels only, it was
necessary to rectify the a.c. outputs from the transducers .The
circuitry associated with a single strain gauge signal is shown in the
diagramin FIG.7.7, while the corresponding circuit for the receptance
transducers will be discussed in the next section,

Finally, we come to the equipnent used to control the
application of danping, In order to vary the intensity of the
dampi ng, a d.c. power supply was used which was capable of delivering
10 anps at 24 volts., The circuit is shown in FIG,7.8 and consists
of a rheostat for controlling the current level, and a reversing
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switch for demagnetising the magnet while switching off the power.,

7.5 Devel opment of receptance neasuring technique

One of the principal objectives of the experinents is the
observation and neasurement of the natural frequency splits which
result from detuning (see Sections 4.3, 5.2), It was decided that
this could be best acconplished by neasurenment of the response of the
bl aded disc to forced vibration, |In order to neasure a split of the
order of 1%, it is necessary to know each of the two natura
frequencies to within at least 0.,1Z. This in turn requires that
the frequency of any point on the response curve (from which the
natural frequencies are deduced) should be known to within about 0.01%.
The stability of the oscillator signal and the electronic neasurement of
its frequency are both capable of maintaining this degree of accuracy.
However, it is necessary that other aspects of the measurenent
techni que should be examned in detail to ensure that such a level of
accuracy is in fact attainable

If it is assumed that the acceleration and force transducers
are accurate (in their nmeasurement of the quantities they are
experiencing), it is necessary to establish that these quantities are
in fact those that we wish to neasure, Since the transducer and clanp
assenbly is very stiff in a longitudinal direction, it is reasonable
to assume that the displacenent (and acceleration) in that direction
s the same throughout its length. This being so, the acceleration
| evel indicated by the accelerometer is the same as that of the point
on the rimat which the excitation is applied, and at which the
response is required, However, the force level measured by the force
gauge is not the (true) exciting force which is applied to the disc,
on account of the separation of the point of force measurenment and
the disc itself by part of the clanp assenbly, In the vicinity of a
resonance of the bladed disc (which is virtually undanped), the true
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excitation force which is required to sustain a working vibration

| evel is almost zero. INn this situation, the inertia force of the

mass of netal between the points of force measurenent and

application will be several times greater than the applied force

which is to be neasured. The transducer will give a reading which is

a conbination of both the inertia force and the (true) excitation

force, so that neasurements in the regions of greatest interest (i.e.
near natural frequencies) are incorrect, Fortunately, it is possible
to correct the force gauge readings so as to neasure the excitation
force which is required, Suppose the force gauge reading is F, the
accel eroneter reading is X and the angle by which F leads X is
measured as ¢. W shall assume that the inertial load (i.e. the nass
of metal between the points of force measurement and application) nmay be
estimated or neasured, and that its mass is m, ., The true excitation
force which is applied to the disc, P, is obtained sinply by the
vector subtraction of the inertia force m,x fromthe measured force
F , and this, in terms of the nmeasured parameters is

P* - Fl*—(h\,‘)‘()‘-— ZMOQF o P (7.0

O her workers (ref. Schl oss) have proposed an alternative
met hod of making this correction which is both more convenient and
nore accurate . Theanplified outputs fromthe force gauge and
accel eroneter provide signals which are directly proportional to the
physical quantities they are measuring. Now, the vector subtraction
described above may be performed electronically with the aid of
operational anplifiers, simlar to those used as charge anplifiers
(see APPENDI X 6), thus formng a mniature anal ogue conputer. A
fraction of the acceleration signal is subtracted from the force
signal using a circuit which is shown in FIG.7.9, and this fraction
may be chosen to correspond to any particular value of the inertia
load w, .
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To illustrate the inportance of this correction, and the
identity of the two nethods of making it for a given load m,, the
results of a test are shown in FIG.7.10. O the three curves of
receptance plotted against excitation frequency, one illustrates the
uncorrected results (i); a second shows the curve drawn from the
electronically corrected receptance (ii), while the third is the
result of numerical correction according to equation (7.1) (iii).,
Cearly the two nethods of correction provide alnost identica
results, but the former process is nuch nore convenient to use, A
further advantage of this technique is that it provides a neans of
obtaining a good estimate of the mass of the inertial load, mos .

In order to make this estimate, the vibrator and transducer assembly
Is driven without attaching it to the disc, The electronically
corrected force level should be zero since in this case there is no

| oad, and the fraction of the acceleration signal which is subtracted
may be adjusted until the (corrected) force is at a mnimum In
practice, this minimumwll not be exactly zero, but it is usually at

| east two orders of magnitude |ess than the uncorrected force (i.e.
than the inertia force of the mass m, ). A calibration test was
performed to determine this inertial load, and to examne its
variation with frequency of vibration, The results, shown in FIG.7.11,
indicate a fairly consistent relationship between these two parameters
with the inertial mass approximately equal to 0.29 I'b, except near
two frequencies (200 and 800 c¢ps). The deviation from a constant
val ue near these two frequencies indicates that the inertial load is
not sinply a mass, but that it has elastic properties of its own which
result in the behaviour shown on the graph, It is found in practice
that there are two simlar narrow frequency regions in which the
receptance neasurenents by the transducers are inconsistent, The
cause of this is believed to be this flexural behaviour of the clanp
assenmbly and such regions are arranged so as not to interfere with

any neasurements which are required
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El ectronic mass cancellation was enployed in all the tests
which are described in the next chapter,

7.6 Calibration of the danping assenbly

The nmost convenient way of calibrating the danmping assenbly
Is by measuring the level of danping in each nmode of vibration and
relating it to the magnetizing current, The experimental procedure
which is enployed to do this is based on the recording and anal ysis of
decay curves resulting from free vibrations of the system and is now
described in detail,

Before any neasurenments nmay be made, it is necessary to determne
the natural frequencies of the bladed disc, and this my be done either
by calculation or by experiment. The output from a piezoelectric strain
gauge attached to the surface of the disc is fed into a wave anal yser
which is tuned to the natural frequency of the node which is currently
of interest, If the disc is struck, it will vibrate in every nornma
nmode (except any which mght have a node at the point of excitation),
and the decaying oscillations in the selected node will be filtered out
of the conplex strain gauge signal, These oscillations my then be
recorded in the formof a decay curve, such as the one shown in FIG.7.12,
and analysed to provide a neasurement of the level of danping present,
The reproduction also shows the details of this analysis,,

A series of tests was carried out for a nunber of different
nmodes of vibration at each of three different magnetizing currents, From
the results, which are shown in FIG.7.13, a roughly linear relationship
bet ween magnetizing current and danping was found for each node. In
general, the danping resulting froma given current falls off for the
hi gher natural frequency nodes, although it appears that single nodes
are nore effectively danped than double nodes.
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CHAPTER 8

THE EXPERIMENTAL PROGRAMME, PROCEDURE AND RESULTS

8.1 hjectives of the experinental investigation

The experimental investigation was undertaken in order to
provide a check on the calculations and observations which had
resulted from the theoretical analysis. These fall into two
categories, one concerned with a nmethod of natural frequency cal culation
and the other with the behaviour characteristics of detuned systens; and
the experimental programme is simlarly divided

The first objective of the experinents is to provide an estinmate
of the accuracy of the natural frequencies which were conputed by the
receptance determnant nethod. The experinental nodel was designed so
as to represent the analytical model as closely as possible, and
conparison of measured and computed natural frequencies is considered
to be a realistic check on the accuracy of the method of solution

The second and nore inportant series of tests are intended to
confirm both qualitatively and quantitatively, the patterns of
behavi our of detuned systens which were examned in detail in
chapters 5 and 6. These experinents involve observation and
measurement of the frequency splitting which occurs in certain nodes
under detuned conditions. They are also designed to verify that the
two types of cosine detuning do in fact have the effects which are
predicted by the '"theory'. The nodal shapes may also be neasured, and
in certain cases the validity of the proposed 'sinplified double node'
(Section 6.4) may be investigated. An extensive study of nodal shapes
Is less readily made experinentally than by computation owing to the
necessity of making measurements from forced vibration response in the
former case, while the latter is based on a consideration of free
vibrations. It is in this aspect also that both the advantages and the
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limtations of having just five blades become noticeable, Wile there
are only five blade stresses to be measured and recorded, a discrepancy
in a single reading has a nmuch greater effect on the deduced noda

shape than if there were a large number of blades, however, the
subsequent work which is planned for a nultibladed disc should overcone
this difficulty, :

The series of tests which were carried out are listed here and
described in detail later in the chapter, and in the same order

1. Tuned systens: various A *
Series A Natural frequencies » = 0.3333
Series B Natural frequencies » = 0,25
Series C Natural frequencies A= 0,275

2, Detuned systenms: A = 0,275
Series D.Natural frequencies: cosine detuning
Series E. Damped response: singl e nodes
Series F. Damped response: doubl e nodes

8.2 Experinental procedure

The experimental procedure was basically the sanme for every
test described in this chapter, The various parameters, such as
excitation position and frequency, detuning and danping arrangements
etc, were varied fromone test to another according to the requirenents
of the programme outlined above, but in each case the results were
obtained in the form of response curves,

Prior to each test, it was necessary to set up the systemwth
the detuning blocks and shins which were specified for the current
detuni ng arrangenent as described in the previous chapter (7.2).

*)\ Is the 'blade length ratio'; being the ratio of blade length to
disc diameter,
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Having established which node of vibration was currently of interest,
the mass cancellation adjustnent was corrected for the natural frequency
of that node, either by inspection (as described in the calibration
7.5) or direct fromthe calibration curve FIG.7.11. Then, the
vibrator and receptance transducers could be attached to the point on
the rimof the disc which that particular test specified, by means of
the clanp arrangenment which was also described in the previous

chapter, It was found to be convenient to l|ocate accurately the

natural frequency (or frequencies) which were to be neasured during the
test, so that the values of frequency at which readings should be made
in order to produce an acceptable response curve could be nost
efficiently spaced, These natural frequencies could be detected by
inspection of the force and acceleration signals, which were nonitored
on valve voltneters, and noting the value(s) of frequency at which the
ratio of acceleration to force reached a maxinum Wen this had been
done, the specific values of frequency at which the response should be
recorded were selected, the nunber of points ranging from about 20

for a single resonance to 30 or nore for a doubl e-peaked resonance.

Wth the danping magnet switched on at the required current
| evel, the response at each of the excitation frequencies was obtained
and recorded in the follow ng manner. The oscillator signal was set
at the appropriate frequency (its exact value being neasured by the
electronic counter) and the strength of the signal supplied by the
power anplifier to the vibrator was adjusted to provide satisfactory
force and acceleration levels, In the vicinity of a resonance, it was
necessary to maintain a reasonably high level of vibration in order to
make the exciting force signal large enough to be free from electronic
noi se, As the resonant frequency was approached, this became
increasingly difficult, and the nmeasurenents of force at frequencies
very close to this value are subject to considerable errors,, However
only one or two points on the response curve were affected, and these
usual Iy lay outside the bounds of the graph, A simlar situation
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arose near antiresonances where the acceleration fell to a very |ow
level, The maxinum |evel of vibration was determned by the acoustic
noise level in the laboratory near resonant conditions, and by the
power limtations of the equi pment which became evident near anti-

resonances.

As soon as the nonitored transducer signals showed that
transient effects had died away, the outputs fromthe two transducers
and the five strain gauges could be recorded, 1In the mgjority of
cases this was done directly onto punched tape by the data |ogger,
ready for processing. In the few cases when this instrument was not
avail able, these outputs had to be measured individually on the
voltneter, witten down and then punched out onto tape; this procedure
took alnost 100 times as long as when using the data |ogger

Finally the results were processed by conputer to provide
measurements of receptance, blade stress response and relative blade
stress levels around the rim at the various excitation frequencies

8.3 Experinents on tuned systens

The experiments in this category are intended to provide
accurate measurenments of the natural frequencies of three five-bladed
disc sets, In each case, the natural frequencies were first measured
by an inpact technique simlar to that used in the danmping calibration
tests (7.6). The filtered strain gauge signal was conpared with one
of known frequency from an oscillator for each mode in turn, and the
natural frequency deduced by matching the two signals. The resolution
of this method proved to be poor and ineffectual for close natura
frequencies, so the nmeasurenent of the response to forced vibration
was adopted as the nmeans of determining natural frequencies

Series A° Blade length ratio = 0,3333.
The original mdel was machined with five 8" blades and the
response of this system was neasured over a wide range of frequency
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during the devel opment of the receptance neasuring technique (7.5)

The response in the vicinity of each resonant frequency was exam ned
in greater detail so that the natural frequencies could be measured to
within 0,02 eps. The results of these tests are tabulated in F1G.8.1
al ongside the theoretically conputed values, with which they show good
agreenent, OmMng to a lack of precise information concerning the
physical properties of the steel from which the nodel was made (see
APPENDI X 7), it is necessary to quote upper and |ower bounds on the
constant (k) which relates the dinensionless and dinensional forns
of frequency, and this results in the upper and lower limts which are
quoted for the 'theoretical values' in this and subsequent tables,

Series B Blade length ratio = 0.25.

The nodel was then subjected to further machining prior to the
detuning tests and the blade |engths were reduced from8" to 6",
A series of tests was perfornmed, identical to those of Series A in
order to determne the natural frequencies of this nodified system
Results are tabulated in FIG.8.2.

Series C. Blade length ratio = 0, 275.

Wien each Dblade had its danping plate and 0% detuni ng bl ock
added to its tip, the system was an approximation to a bladed disc
with a blade length ratio of 0.275*. The natural frequencies of
this nodel were then nmeasured and conpared with those conputed for a
systemwith A = 0,275 as shown in FI1G.8.3. As night be expected*,
the results do not show such close agreenent as for the two earlier
cases, although the correlation is still very good

The results fromall three series of tests are presented on a
single graph, FIG.8.4, in which the neasured natural frequency is

* . .
The assunption is madethat these conposite blades behave as uniform
bars, 6.6" long, when vibrating at low frequencies. This wll
become |ess valid at higher frequencies,
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plotted against the conputed dinensionless natural frequency for each
mode. |f the analysis is accurate, then the experinental results
should all lie on a straight line, the slope of which is the constant
K and depends upon the elastic and dimensional properties of the
nmodel . However, this constant may only be determned to within about
+ 5%, thus making a direct conparison of the two sets of results
difficult, Two lines corresponding to the upper and |ower bounds on
the constant are shown as broken lines on the graph and all the
experimental points are seen to lie on or between them It is also
clear that these experinental points lie very close to the straight
line which has been drawn through them and this fact serves not only
to illustrate a good agreenment between experimental and conputed
natural frequencies, but also to provide a much better estimate of the
constant K. Using this result, a further table has been prepared
in which the deviation of each experinmental frequency from this
straight line is show: FIG8.5 Finally, the results are shown
superinmposed upon a graph fromone of the earlier sections, FIG.4.6,
which illustrates the variation of natural frequency with blade |ength,

In every case, the results show an exceptional agreenent
between the conputed and neasured natural frequencies, and thus
provide confirmation of the accuracy of the analytical solution

8.4 Detuned systens = 1. Natural frequency nmeasurenents

In performng a series of experiments with the intention of
confirmng the predicted behaviour under detuned conditions, there are
two problems to be overcome. The first of these is to |locate and
measure a natural frequency split in those nodes for which 'theory
predicts such a split will occur with the given detuning. The second
and nore difficult task is that of denonstrating that there is no
split in those nodes which theory again specifies. The difficulty
here is that in selecting a point on the rimof the disc at which to
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apply the excitation, it is quite possible to choose a point which is
on, or very close to, a node of one or other of the pair of nodes
This results in only one node being apparent in the response curve

If a second excitation position is chosen, say 10 to 20 degrees
fromthe first, then a second node may well be detected in the
response, in which case the existence of a split is confirned together
with a neasure of its magnitude, Such a case is illustrated in
FIG.8.7 where the response in the vicinity of the pair of 2/0 nodes
is shown for two positions of excitation. However, this second
position will not necessarily produce a significant change in the
response, such as the case illustrated by the curves in FIG.8.8, In
this case there is in theory no split, but a third and perhaps even
fourth excitation position mght be necessary in order to furnish
sufficient evidence to make this observation conclusive. There is,
however, one feature which indicates whether or not a split is to be
found by further neasurements. Marked on both graphs is the natura
frequency of the tuned system and as the detuning is in both cases
of a cosine nature, theory predicts that any splitting which results
wll be symetrical about this tuned system value. In FIG.8.7, the
curve corresponding to © = §0° indicates a single resonance, but
as this occurs at a frequency which is substantially higher (0.3%
than the tuned system value, it suggests that that particular
excitation position is producing response in just one of a pair of
nodes. Excitation at a different point proves this to be the case

by displaying two natural frequencies symetrically placed about the
tuned system frequency, On the other hand, the curve corresponding
to & = 5° in FIG.8.8 also shows a single resonance but this time
it coincides with the tuned system natural frequency, suggesting no
split, The second excitation position produces an identical response
to the first, substantiating this result. Although this provides a
useful indication, it nust be used with some caution since, if there
is a constant termin the detuning function, then the splits will
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not be synmetrical about the tuned system val ues

Series D Various forms of detuning, A = 0.275

During the course of these tests it was found necessary to
alter the danping plates slightly and this resulted in a shift of
about 1X in each tuned system natural frequency. In the detuning
tests we are concerned only with the difference or split between pairs
of close natural frequencies, and not so nuch with the absolute val ues,
so that the results fromall the tests are included in this section.
In each "test' described below, the natural frequencies and splits of
the first five double nodes were neasured.

Dl. In this series, the first tests used a sinple ces®  detuning
function wth o = ,01, These were followed by ces (6 + 30);

o = ,025, ces (@ + 30); o = ,01 and then by ces (€ + 90);

oo = ,01. The results fromthese tests are tabulated in FIG.8.9

and they illustrate the same pattern of behaviour as that predicted in
the theoretical sections. The nodes which belong to the second famly
(i.e. those which are associated with ( 5,+2) nodal diameter disc
modes) exhibit a split which is dependent upon o= but not on ¢ ,
whi | e the doubl e modes of the other category show no signs of splitting
at all,

D2. The second series of tests used the conplenentary detuning
functions based on ees 2(e+Y), wth a sinlar selection of values
for o and Y . These results are given in the table in FIG 8. 10,
and once again they conformto the behaviour specified in Chapter 5 for
this type of detuning.

D3. Finally, a third set of tests incorporated detuning functions
formed by the sumof two different types of detuning. The first used
a detuning function of ]’ ()=0.2 + cos ( &+ 30) Wwth e =,025.
In addition to the expected splitting which occurred in this case, the
mean natural frequency of each node was |lowered as a result of the
positive constant term ( obg=,005), thus providing an opportunity
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to estimate the frequency factor d@ (defined in Chapter 6), as wel
as the split factor ¢ , for various nodes.

The second test of this type used a combination of both types
of cosine detuning with é{ ws (0 + 30) + cos 2( 8 + 15)} and
o~ = ,025. In this case a split was observed in every double node,

and the results fromthis and the previous test are given in FIG.8.11..

Having satisfactorily established agreement between experinmenta
and predicted patterns of behaviour, the results were then analysed to
provide a quantitative nmeasure of the split and frequency factors of
some of the nodes. These are shown in the table in FIG.8.12 al ongside
val ues which result fromthe conputational study described in Chapter 5.
Wth due consideration to the order of nmagnitude of the quantities
being neasured, it is felt that agreement between the experimental and
conputed val ues of these properties is very good, and that the behaviour
predicted by the analysis is confirmed by the experinents

Throughout the course of these tests, measurenents were made
to check that splitting is a property of double nodes only. In no case
was splitting detected in any single node

8.5 Detuned systems = I1. Danped response

The experimental study next sought to conpare the response of
the system when it was subjected to various detuning arrangenments in
the presence of light danping, Many of the experinental observations
relevant to this section were nmeasured from the strain gauges, and
consequently the results are considerably less accurate than those
concerned with frequency measurenents. As it was found convenient in
the analytical sections to separate the treatments of single and
doubl e nodes, so it was decided to divide the experimental work in
the sane way. In the previous section (8.4), only double rmodes were
of interest and single nodes were hardly mentioned. However, theory
predicts that it is these latter nodes which are adversely affected by
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detuning from a consideration of stress levels, so that a number of
tests were carried out to check this result,

Series Ei  Single nodes

This series of tests was performed to nmeasure the variation
in blade stresses resulting from various forms of detuning in each of
three single nodes, Only the blade stresses at the resonant frequency
were required and in order to overcone the difficulties which are
encountered when taking measurements near these frequencies (Section
8.2), light danping was applied using a magnetizing current of 4 anps
in every case, The position of the excitation was also the same for
every test, so that realistic conparisons could be nade between
systens with various detuning arrangements

The first tests were made on the tuned version in order to
determne the natural frequencies and also to trimthe strain gauge
outputs so that each blade was indicating the same stress |evel
This trimmng was found to be necessary to take account of variation
in gain between channels due to differences in the sensitivity of the
gauges and associated circuitry. Cosine variations were then made on
the blade lengths, much as in the earlier natural frequency tests, and
the response at resonance was nmeasured under the sane excitation and
danping conditions for each detuning arrangement, The collected
results are shown in a table in FIG.8.13 and graphically in FIG.8.14
where the variation in relative stress levels is plotted against the
variation in blade length for (i) ces 10 detuning and (ii) css 28
detuning, These graphs are arranged so as to enable a direct conparison
to be made with the computed values of Chapter 6, which are reproduced
in this instance as the solid |ines,

Al'though on first sight the correlation between the experimenta
points and the theoretical lines is not very good, it is clear that
there is qualitative agreement, Wen it is considered that it would be
necessary to neasure each stress to better than 1% in order to obtain
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‘good" agreenment, the results are thought to provide qualitative
confirmation of the behaviour predicted in Chapter 6.

It was observed in Section 6.2 that a conclusion could be
drawn concerning the effects of detuning on single nodes on the basis
of one assunption viz. that the nean stress or response level for given
excitation and danping conditions would be largely unaffected by
detuning. The experinents also sought to produce evidence of the
validity of this assunption, but difficulty was again encountered in
attaining a sufficiently high degree of accuracy. The results
presented in the table in FIG.8.13 show that although there is a
variation in the nmean stress level fromone test to the next, it does
not appear to conformto any particular pattern, nor are the
variations of any significant magnitude, This would seemto indicate
that the assunmption is justified

Series F:  Double modes

The analytical treatment of the effects of detuning on double
modes (Chapter 6) resulted in the construction of a sinplified node
of this type of mode. If the assunptions and approximations relating
to this nodel can be justified, it provides a sinple method of
exam ning the properties of the double nodes of bladed discs with
arbitrary detuning, This was in fact done in Section 6.4, and the
present series of experinents attenpt to provide the required
justification

It was considered inpracticable to attenpt an extensive
experinental study along the sane lines as that made nunerically wth
the aid of the sinplified model. Instead, it was decided that a
typical bladed disc double node should be studied in detail and that
a direct conparison should be nade between these results and those of
a nunmerical treatment of the sinplified nmodel under the same conditions
of detuning and excitation
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The investigation reported here was conducted on the 2/0 nodes
of the experimental nodel with a detuning function of ces (€ + 30)
and with ¢ = ,01. The response of this system was neasured at four
positions of excitation at each of two |evels of danping. These four
positions were chosen such that one produced a response in just one of
the two nodes, a second produced a simlar level of response in both
nodes, while the third and fourth were situated between these two,
The response is shown as a nunber of graphs, the first two of which
(FIG.8.16) show the driving point receptance plotted against frequency
at each of the two levels of danping, It was noticed in these graphs
that the danping levels appeared to be somewhat |ower than was
suggested fromthe calibration tests . Thereceptance curves
corresponding to 6 = 100° my be used to measure danping by the
"hal f power' nethod since they indicate response in only one node of
vibration, and application of this technique shows the damping to be
approxi mately one half of the calibrated value: a possible explanation
is discussed at the end of this section. The blade stress response is
also plotted, although only for the lighter danping, and appears as a
set of five graphs in FIG.8.18a.

It was shown in Chapter 6 that a relationship existed between
the coefficients in the detuning function f (6) and those in the
nodal shape functions F (8). Wen this relationshipis applied to
this experimental case, the nodal shape functions for the pair of 2/0
modes are defined as ¢es 2( @ - 7.5) for the lower frequency node
and s« 2(6 = 7.5) for the higher frequency node. Results are
shown in the formof nodal patterns in FIG.8.15, and al so indicated
on this diagram are the positions of the four experimental excitation
poi nts which were discussed above. The first of these points was
chosen so that it was situated at a node of the higher frequency node
(thus fixing the conplete nodal pattern), and it may be seen from
FIG.8.15 that the experimental and theoretical position for the noda
lines agree very closely,
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Cal cul ations were nade using the sinplified double node
anal ysis for the above experinmental conditions, For these conditions
the basic theory predicts a split of 0.57 and the nmpbdal shapes given
above, and this information is incorporated in the model. Oher data
such as excitation and danping arrangenments, was drawn from the
experinental conditions.

The results of these calculations are presented as a set of
graphs which may be compared directly with the experimenta
observations. The driving point receptance is plotted in two graphs
on FIG.8.17, and the blade response in a series of five graphs,
FIG.3.18b.,

The general form of the two sets of graphs is remarkably
simlar. The twin peaked response predicted by the sinplified double
mode cal cul ations (FIG.8.17) is reproduced in the experimental curves
(FIG.8.16), and the correlation between the curves relating to the
four specific excitation positions is very good. The only disparity
between these results is in the mninum response which is situated
between the two natural frequencies, as this drops to a sonewhat |ower
value in the experinental graphs. It is thought possible that this
mght be due to a non-linear effect in the danmping assenbly in which
the value of the danping is anplitude-dependent. Such an effect has
not been investigated in detail, but it mght also account for the
di screpancies found between the danping |evels indicated by the
calibration and those measured fromthe response curves. |In order
to elimnate any such effects fromthe present series of tests, each
of the four tests in the two graphs were recorded at approxinately
the same level of vibration

Turning now to the two sets of five graphs (FIG.8.18) showi ng
the response curves for each blade, we find a simlar degree of
correlation between the conputed values and experinental neasurenents
Ovng to the lower order of precision of the recording transducers in
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this case (strain gauges), the experinmental response curves are |ess
wel | defined. however, only second order differences may be found

between the two graphs for each blade

8.6 Summary of experinmental results

The experinental apparatus performed well in general, but
some difficulty was encountered in obtaining accurate measurenments of
bl ade stress levels due, presumably, to variations in the
sensitivities of the strain gauges. The danping arrangenent was not
as effective as had been expected, and considerable variations from
the calibration curve were observed in various forced vibration tests

The natural frequencies nmeasured on a nunber of tuned systems
agreed very closely with the values conputed from the receptance
determnant. The collected results provided a useful estimate of the
constant K , whose value could not be determ ned accurately ow ng
to a lack of precise physical data for the nodel

Ext ensi ve neasurenents of the natural frequency splitting
phenomenon provided confirmation of the patterns of behaviour which
were predicted in Chapter 5. Values of the frequency and split
factors (@ a @ ) of certain nodes were found to agree very well
with those computed for this nodel

Al t hough nmeasurenents of blade stress |evels were considerably
| ess accurate than those of natural frequencies, it was possible to
demonstrate that detuning always has a disadvantageous effect on
single nodes, as was predicted in Chapter 6

Measurement of the response of double mbdes for detuned systens
provides confirmation of the validity of the *sinplified double node'
model . Taking a specific case, good agreement was found between
experinental measurements and cal cul ati ons nade using this nodel. The
conclusion drawn from this section is that detuning cannot produce
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higher stress levels than are experienced in a tuned system under the

same conditions of excitation.
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CHAPTERY9

CONCLUSIONS

9.0 General conclusion

A procedure has been developed for investigating the vibration
properties of a bladed disc which has been detuned in an arbitrary
manner, The techniques have been applied to make a detailed study of
a uniform five bladed disc, and the results from numerical and
experimental tests have agreed in every case. It is concluded that
these methods may be used to make a similar study on any system, and
that some of the results obtained are general and apply to any bladed
disc .

9.1 Vibrations of a tuned bladed disc

A general method for determining the natural frequencies and
modal shapes of a bladed disc has been developed in terms of receptance
expressions. In a detailed investigation which has been made for
uniform five-bladed discs, the natural frequencies of experimental
models were measured and compared with values computed according to
this method . The close agreement which was achieved in every case led
to the conclusion that the assumptions made in the analytical approach
are justified,

Because of the numerical difficulties which would be encountered
in applying this method to practical cases, an approximate method of
solution was devised which is based on matrix techniques and readily
programmed for efficient digital computation. During the course of the
development of this method, a large number of calculations were made to
assess the accuracy of the truncated series form receptances, and also
of natural frequency estimates which result from using them. It was
found that a much greater number of terms are required in order to
obtain good estimates of either receptances or natural frequencies,
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than had been expected,

The receptance analysis from which the natural frequencies were
computed shows there to be two distinct types of solution, or vibration
mode. The first of these, single nodes, are associated with symetrica
vibrations of the bladed disc in which all the blades vibrate in phase
and with the same anplitude. In double nodes the blade anplitudes vary
sinusoidally around the disc, although they are vibrating in phase, and
these nodes are related to those of an unbladed disc in which there are
nodal diameters

9.2 The effects of detuning

Wien a bladed disc is detuned, the two types of node are
affected in different ways. The natural frequency of a single node is
unaffected by small variations of blade length (provided that the mean
length is unchanged), but the symetry of the nodal shape is disturbed
and the blades no longer all have the sane anplitude of vibration
However, such a variation in the blading causes a double mode to split
into a pair of nodes with virtually identical nodal shapes and very
close natural frequencies. The magnitude of this natural frequency
split depends upon the nature and anplitude of the variation of the
blades. In the case of a five-bladed disc, it was found that a cosine
variation of blade Iength produced either the maxi num or m ninum
possible split, according to the frequency of the cosine expression and

the shape of the double mode. It was also found that the behaviour of
each double node could be defined by a single property called the
"split factor'. An extensive experimental investigation on a nunber of

detuned nodels confirmed without exception the patterns of behaviour
predicted by the analytical treatnent

It is of considerable inportance to appreciate the practica
significance of the changes which are brought about by detuning. For
single nodes, a variation in the blades always results in one or nore
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bl ades experiencing higher |oads than others, and it is concluded that
in practice the maxi num bl ade stress level for given conditions wll
al ways be raised by detuning, Results from experinental tests suggest
that this is probably true, but owing to inaccuracies in the stress

measurenments, these results are not conclusive. In a double node
there is apairof simlarly shaped, but orthogonally orientated nodes
whose respective natural frequencies are very close. It has proved

possible to devise a sinplification of a double node by ignoring the
effects of all other nmodes. Using this nodel, it has been shown that
detuning cannot cause an increase in the maxi mum blade stress in this
case above that found in a perfectly tuned system In fact, with
favourable excitation conditions, the maxi num blade stress attained
on resonance may be reduced by as much as 30%, depending on the
extent of detuning and on the danping level. Masurements of the
response of experimental nodels to forced vibration in the presence
of danping and detuning provide good agreenment with cal cul ations made
with the facility of the sinplified double node, which suggests that
this analytical nodel may be used to study the response of a typica
doubl e mode under nore conplex excitation and danping conditions,,

9.3 Application of the results to other systens

Al though a conprehensive study may be nade for any uniform
bl aded disc, many of the results described above aregeneral and apply
equal ly to uniform and non-uniform systens alike. Any bladed disc in
which the disc is flexible and symetric wll possess both single and
doubl e nodes of vibration, This property results from the circular
symmetry of the disc and the regular spacing of the blades
Consequently, all such systems will exhibit frequency splitting when
the blades are detuned. The consequences of this property in a detuned
system are expected to be simlar to those described in detail for a
five-bladed disc, although exceptions wll probably arise when a nunber
of distinct nodes have natural frequencies that are alnost the sane.
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The pattern of behaviour of detuned systens which has been
established in this work is largely in agreement with experimenta
observations made by Arnstrong. In a nunber of tests on detuned nodels
he observed splitting in most of those nodes which, by the present
classification, are double nmodes, while no such behaviour was detected
in any of the single nodes. However, possible patterns of behaviour
were not investigated, nor are the results sufficiently conprehensive
to deduce such a pattern. Measurements of response on the detuned nodel
produced results which were very simlar to those obtained in the
present investigation.

A qualitative conparison nmay be nade between the results of the
present work and those of Witehead and Stratford, described in the
introduction (section 1.2). In a single node, the effect of the
coupling through the flexible disc is that in a tuned system each bl ade
vibrates with the same anplitude. This situation also results from
coupling through the rigid body notions of the disc, such as that
described by Stratford, The effects of detuning on this type of
vibration are found in both studies to be unfavourable, but owing to
the diversity of the basic assunptions in the two approaches a nunerica
conmparison may not be usefully nade

9.4 Linmtations and extension of the work

The most inportant limtation of this work arises because it
has not been possible in the time available to investigate the
properties of a bladed disc which are peculiar to systems with a large
nunber of blades, It is known, for exanple,that a nultibladed disc has
a nunber of (double) nodes whose natural frequencies are all just bel ow
the blade cantilever frequencies, and the behaviour of these nodes under
detuned conditions mght well differ from that described above for
I sol ated double nodes by virtue of the proximty of several natura
frequencies. Any extension of this research nust first exam ne these
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properties of multibladed discs, However, the results of the present
work provide information which is essential to the planning of an
efficient nunerical study of such a system The conputation tine for
a natural frequency solution increases with the cube of the nunber of
bl ades, so that an investigation of the same scale as the one reported
here would not be practicable for large numbers of bl ades

It is felt that the other principal assunmptions, those of
uniformty and zero stagger, do not seriously restrict the generality
of the results. The inclusion of stagger and conponents of non-uniform
cross section would present a considerable nunerical problemin the
derivation of accurate receptance expressions, Wilst an extension of
the work to include such additions is not envisaged in the immediate
future, it mght be extrenely useful to consider in greater detail the
mechani sm of excitation, Such a devel opnent of the theory might be
made possible by analysis ofthe sinple analytical nodel of a double
mode which was devised in this work

An attenpt has been made to include the effects of danping in
both the nunerical and experinental studies. In both cases, some
measure of success was attained, but it is believed that a nore
detailed study is required of the precise form of the danping which is
to be sinulated, The experinmental danping assenbly did not provide a
sufficiently accurate source of danping for this quantity to be
included as a paranmeter in the study, although it did serve to
facilitate accurate and consistent measurements of response at resonant
condi tions,

Finally, the techniques which were used to neasure the effects
of detuning on an experinmental nodel did not permt sufficiently
accurate neasurements to be made of the blade stress levels,, This
limtation could be overcome by the use of nore accurate strain
gauges,
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i,j =1(1)N

upper case refers to the disc

lower case refers to the blades
Y and y are displacement vectors

F and f are load vectors
P is an externally applied load

BLADED DISC SYSTEM

FIG 2.1
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SOME PROPERTIES OF THE NORMAL MODES OF VIBRATION OF A
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SERIES D ' ’ ’

N= 0275 ¢, ob, |0, .01 [ F, .01 -2'. .01 | 0, .025
Mbde N. Fr eq. (i) (i) (ii) (i)
2/0 | (i) 140.25 139. 75 139. 95 139. 05 138.6

(ii) 139.4 140. 6 140.7 139.8 140. 4
0. 6% 0. 5% 0. 5% 1.3%
/1 | (1) 259.6 258.95 | 259.0 254. 9
(ii) 255.0 0% 0% 0% -
3/0 | (i) 380.3 279.88 | 280.03 | 277.2
(ii) 278.0 281.65 | 281.55 | 279.85 _
0. 6% 0. 5% 0. 9%
2/1 | (i) 467.7 466. 7 466.25 | 463.05
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0. 5% 0. 6% 0. 3%
6/0 | (i) 733.7 _ _ - —
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T
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= . w
A= 0.275 ¥, oby| 0, .01 7, .01 |f5 .01
Mode N. Fr eq. (i) (i) (i)
2/0 (i) 140,25 140.1 140. 2 139. 4
(ii) 139.4
0% 0% 0%
1/1 (i) 259.6 257. 15 257. 13 252. 8
(i1) 255.0 260. 50 260. 35 256. 4
1.3% 1.2% 1. 4%
3/0 (i) 280.3 280. 23 277. 48
(ii) 278.0 _
(074 0%
2/1 (1) 467. 7 463. 6
(ii) 463.9 P .
0%
6/0 (i) 733.7 732.0 732.5
(ii) 750.5 735.5 735.0 _
0.5% 0.4%

DETUNED NATURAL FREQUENCIES -(II)COS 26 DETUNING

FIG

8.10




Test No. E3,1 E3,2
Mode
0.2, .025, %, 0, 0|0, .0125, 0, .0125, C
2/0 139. 4 131. 05 139. 05
139. 95 139. 90
1. 4% 0. 6%
1/1 255. 0 252.6
~ 257.1
1. 7%
3/0 278.0 278.0
~ 279.1
0. 4%
2/1 463.9 460. 40 463. 1
465. 15 465. 2
1.1% 0. 5%
6/0 750. 5 749.7
755. 6
~
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RELATI VE STRESS MEAN STRESS
1 2 3 4 5 RESPONSE
TEST 1 .2 .2 .2 .2 .2 .51
TEST 2 204 | .199 | .187 | .205 | .206 .43
TEST 3 .209 | .186 | .177 | .208 | .219 .46
TEST 4 199 | .207 | .197 | .195 | .203 .50
*TEST 1 .2 .2 .2 .2 .2 2.6
TEST 2 198 | .206 | .206 | .200 | .190 2.7
TEST 3 197 | .213 | .210 | .198 | .182 2.7
TEST 4 202 | .206 | .202 | .204 | .189 2.8
*TEST 1 ) .2 .2 .2 .2 .072
TEST 2 199 | .199 | .218 | .199 | .186 .071
TEST 3 193 | .225 | .225 |.197 | .161 .075
TEST 4 233 | .189 | .189 | .233 | .155 .071
*TEST 1 £(0) = 0 ;5 0 =0
TEST 2 £(6) = e¢n® . 0 a 01
TEST 3 f(e) = ws® . o = 025
TEST 4 f(8) - wi20 ; T = ,025

RESPONSE MEASUREMENTS ON S| NGLE MODES

FIG 8.13
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APPENDI X 1
NOTATI ON

The following list refers to those synmbols which are used
frequently throughout the text. Qher notation is often adopted

locally, but this is clearly defined in the text

Nunbers in brackets

refer to the appropriate chapters

radius of the disc

inertia coefficient of a vibration node defined by ;
constant, cross sectional area (3)

di mensionl ess frequency paraneter

di nensionl ess natural frequency of the m,snpde
coefficients in detuning function

constant (3)

reaction douple on the < # plade (2)
inertia coefficient of the j * node (3)
reaction couple on the disc (2)

constants (3)

Young' s nodul us, constant

reaction force on the 4 % blade (2)

detuning function

characteristic function of the a,s node
constant (3)

reaction force on the disc (2)

nmodal shape function

constant (3)

hal f thickness of the disc and bl ades
constant (3)

Bessel functions (3)

| ength coordinate along a bl ade
length of a blade

length of blades in a tuned system
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bl ade | ength equation

mass of the<™ bl ade

bending nonent in a plate

mass of disc

nunber of nodal diameters

nunmber of blades on a disc

principal coordinates

external |y applied force on a blade (2)
external ly applied force on the disc (2)

order of the approxinmate system matrix ( 2@+ NS)
number of disc nodes in the approxi mate system
radial coordinate

nunber of nodal circles

number of nodes per blade in approxi mate system
tinme coordinate

ki netic energy

potential energy

normal displacement of disc

normal displacenent of blade

disc receptance terns

coefficients in nodal shape function

constants in nodal shape function

receptance detern nant

angul ar coordinate

blade length ratio (L /2a) (4 et seq)

di mensionl ess frequency paraneter in blade frequency
density eq.(3)
Poi sson's ratio

degree of detuning (5 et seq)

constants in detuning function

frequency factor (5)
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QP split factor (5)

W frequency of vibration

wj natural frequency of the ;% mode
0,0 0" plade receptance terms
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APPEND| X 2
| NERTI A COEFFI CI ENTS FOR THE NORVAL MODES OF A DI SC

The equation for the inertia coefficient of the m s node,
given in (3.42), is

2Zr a

(2] Ma > o

Apg = )j‘} - /J'I-_]LM(#) cos M(Q-ew)] o ol@ EM>0:‘(A2“1)
. )

The integration over © nmay be made directly, and upon substitution
for #Fas (+) from(3,35), equation (A2.1) may be rewitten as

s <[22 [ Wl [T ) o Ty )] e w2

We shall now introduce the dinensionless inertia coefficient,
arx =a.,, /My, and rewite (A2.2) in general terns, so that

avy = jf] W, > fq[fn(ylm * ous L (3} ] : (42.3)
o rz:—r/a.) .

McLachlan gives three results which enable this integral to be
evaluated explicitly. In the present notation, these are

/'7£IM(q1>~.)J‘A7 - Hlor- g 5]

[? T (pbus) I (b, ) an = Z‘l‘%{ Jolo = T, I, }

{

j Pl bd]ay = ${ - T Lo}

(]

(A2.4)
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Thus,
+ 2 WM: 2 2
a/MS = § ' ‘( ‘Z— { TM - J-M—I J-'\sqd + 'A;_':: (IMIM-l - IM J‘M—l )
(A2.5)

¢ o (10~ T Ten) |

where all Bessel functions are of argument (b,).
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APPENDI X 3
CLOSED FORM RECEPTANCE EXPRESS| ONS

A3.1 General

Note: In this appendix we shall wite J, (4e) = 7. etc.,
and %> r{ J. (e )} =T (br) etc.

The general displacenent function, equation (3.31), nay be
witten as

i, (+,8) = U, cos m6 + V, su uB (A3.1)

wher e
U« - A,“ :r« (be) + C« IM (,ﬁ,,,—)

V. = Eo T ) + G, Tu (k) (43.2)

VW shall also use the expressions for shear force and bending nmonment in
the disc which were given in equations (3.29) and (3.30), but it nust be
noticed that the units of these expressions are shear force and bending
noment per unit circunference. It is convenient for later work to deal
in terms of force etc. per unit angle and thus appropriate corrections
will be nade to the expressions for shear force and bending noment.

Substitution of (3.31) into (3.29) gives

P1
‘LD-—;M = X, wsmB + Y, sinmb (A3.3)

(and P is now force per unit angle), where

X = [Awy. + cos. ] 42

( A3 .

Y. = [En¥. + G5 ] b/24

4)
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wher e

o
"

A - (R-P b’) J—M- + (Q+— b;) J-M’|

1 )

% = - (R-B)I_, - (a- b%) | S
R

mlm-)1-¢) 5 QR = m(mt )=o) (A3.5)

Next, on substitution of (3.31) into (3.30), we find that

o (M]
3R 7 Wb e Zsand (3. 6)
D a
wher e
W, = [Acyge s Cupalblam
2 ( (A3.7)
~ = Em Do+ G«PM] b /2
I?M = (2‘ b") J—M—l + (Q— b”) J‘Ma-v
Fﬁv = (R-P b&) IM_' — (Q‘F b;) IM+| ("‘3 8)

A3.2 Normal displacement = edge shear force

In this case, the boundary conditions (given in equation (3.46))
are

[PL__&= Poesn® ; [M_ - 0 (A3.9)

so that, from (A3.6), (A3.7) and (A3.8), we find that

W,.=7_=0 also X, =Y, =0 m#n (£3.10)
Because the shear force boundary condition;

XM tes mB + YM St mB = — PMchG/ Da (A3.11)
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must hold for all & , it follows that
Y. = ° _ (A3.12)
X, = — P./Da
The equation for the displacement at any point + , 6 is thus
mo (v, 8) = [ALT (&) + C., 1, (r)] cox .0 (A3.13)

We may solve two of the boundary conditions, (A3.10) and (A3.13) above,
for A, and (., since

Am Nae + Ci Pae = 0 (A3.14)
A Ya  Ca 8w = 2
) a t A A 5 b
Thus, the displacement becomes,
JPRRIE LN E AP TRE %) R
D b [Pu x« - rl« gns]
e N (A3.15)
5 . [wenm®
where
N, ) = — —'l; T ) (Re ) L., - (Q+bt) 1., ]
+ t L. ) (R- )T, +(@=b T, ]
DM = [ b4 PO (M"_‘ )(|_ o'-)‘][ ‘I"“’| T‘““ +Im, \TM_,J
(A3.16)

= 2b'm (1~o) [(4\-1) Lo Ty + (e )L«. Jaer ]
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A3.3 Normal displacement « edge couple

The boundary conditions for this case are given in (5.50) as

[P).. -0 ; (M] - M. w0 (A3.17)

Iz a

Substitution of the first of these into (A3.3) gives

X =Y -o0 (A3.18)
and into (A3.6), results in
W, osmnB + Z,  sam® = M_(tes 8 / Da
W= 2Zu=0 | m#an (A3.19)

The requirement that this equation shall hold for all € is that 'Z is
identically zero, and that

WM = MM /5 [ (A3“20)

In order to eliminate A,,, and C. from the displacement equation

(A3 .13), two equations may be derived from (A3 . 18) and (A3.20) such
that

A“ X“ + CM_ g“ = O
2 Ma Q.
Avn v+ CuPu = TF (A3.21)

Thus, the displacement at the rim may be written as
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A3.3 Normal displacement = edge couple

The boundary conditions for this case are given in (5.50) as

[P). -0, [M]_ .M. emno (A3.17)
Substitution of the first of these into (A3.3) gives
XM - Y“ = 0 (A3, 18)
and into (A3.6), results in
W. tsm8 + Z, s5tam® = M _ o508 / Da
We= 20, mta (A3.19)

The requirement that this equation shall hold for all € is that 'Z is
identically zero, and that

WM = MM /5 [ (A3°20)

In order to eliminate A, and C. from the displacement equation

(A3.13), two equations may be derived from (A3 . 18) and (A3.20) such
that

ALY, + C, S“ = O
Av + CuPu = 7T (A3.21)

Thus, the displacement at the rim may be written as




where

N

!
A

=

mr (l —_ 5') [ I«_, :T«-n + IM-u J-«-u ]
- b" [I«-u ‘Tn\—c * IMH J:‘H-\]
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(A3.22)

(A3.23)
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APPENDIX 4
EQUATIONS OF MOTION IN MATRIX FORM

A4.1 Rigid body modes of vibration

If Lagrange3 equation is applied to each of the three rigid
Foo ' Yo @Nd b, in turn, then we have,

body coordinates

for q,,
M‘- @Oo
N \ ‘ 'y
+ % {/m‘- [N:,; + 7‘;S‘- -—; (:4)4 4 d)—t)‘};;][ a“%é/ + )\; bs‘-/u ]
.y oo (X
— . s ) (A4.1)
o + %“i[‘)‘;‘{ +Z;w-n A ][—}\; bsya. ]} = 0
FER Wn
for g, :
| .
%Maag,
N { [ s
? L o M8 o 2 G i ) ]2 %3
+ e AL g;‘( LM l¢4¢)‘hk]( /3(,4,'0)*)\4 /3("‘[).,)}
s
N _‘_ " R " : . (A402)
4=1 + wA _.A‘S“ + ) A —A; ¥ .
soal-nite « 2wk -n %5, ]
and a similar expression corresponding to b, (A4.3)
where
Wy o= ,w'(d) 94') N Se = a.{a/af ["""("',9).]}4—“,9.9;
M, = bL..dL A RS54 7\4' < L_4' /2.&

i¢*= [i¢-& (1)]0'-0 ) ,'W.k= £L<[a/u[:¢-# (l)]}c_._o

By substituting for 4, and s; from equation (4.16)) the three
equations (A4 .1),(A4.2) and (A4.3) may be expressed as
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R & AR T RE-1% [ff—, M) -0
M;’ = (A4.4)

where R is a 3x3 matrix and ¢;,S; and ;V, are 3x1 column

vectors. Introducing Mim g [ Mg and 4= A["/a,.[fl—(f)]] rea
we find, after some manipulation, that

r -
R | + 42/».. , ‘Z/!.'(H'k)ma" , “‘Z/..‘(H)‘.')%ei

‘Z/A;(m;) w0 Zr+‘_z/“j(,”‘.)‘.h‘.j wo, JZ/..ji(m\;)‘,b.‘_x} Con B; 12 0;

"Z/A" OeA)sm o , g,.,-iﬁ».-ﬂh:} w8 b Z’ +4Z./u"§(|+Ai)“%M.}&;L°j

;/u; (1+2:;) a0 w; 0s

Z/u i(h—);)(l*)\;,;) + %)ﬁ‘%} tomn8; wb,

Z/“«'i('* A0+ h.',,-) + 13)\;3‘-}(. 0 s d;

\_/* = _/".' (ué* -0-.'\‘).&)

S Z/lu (1 Mﬁ) U 0 -—/“.f(lq;)m‘ . U*%X;);%}mé;

Z/; {(M:)(u—x:;,-) + -;-A;}J'} Sam 00/ Cro B;

T Ma f(HA.‘) '.d{k +(1+ %)\:);‘PJ 3. B}

S ex leng:) 5 Lot el sos nt: oc @
2 pif (1xte2g) INigif ey aior |

(A4.5)
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If (as always proves to be the case) the three rigid body modes
are represented in another equation of motion by a matrix product

X [,g:']] , Where X is arow vector, then they may be eliminated
T | eabe

by writing (from (A4.4))

W a
1 BRI LR
Ao "

_Z{%(’_‘_E-';Y*); ’:a}

Thus we may use this result to express the displacement w (+,90),

(A4.6)

(4.16), in terms of the coordinates of the flexural modes only. If we
write

[}

wirg) = (1, Tems, EWOJ[‘“::} . Z [% [4i(r) aom;8]

opre 3 + hj [fJ (+) &.'.MJ'G] }
(A4.7)

then X =[ 1, % 0 , Tau6] so that (A4.7) becomes

wr(r8) = Flr0) 4
where
e | {fi@wmmit-xrig} | g [
{£® e wo - 2875} { b ]
[ = x&%va } finsl

(A4.8)
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A4.2 Flexural modes of vibration

I n constructing the inertia and stiffness matrices (and
subsequently the system matrix, ), there are three general cases
to consider, namely, the equations of motion corresponding to
(i) 4. , (i) p and (iii) 4. (say). The equation for

4, is found by letting ,%(7’1735‘)%3%")- 0:

(o) gy + (at)q"'c

N

g
A | AV ) N VR S I | R TR TE YR
e 4 J

iz + é[’)\;;‘- *'*i_i‘ygz ;/:* ][—m»«,ﬂg, Ai,4] }
= O (A4.9)

ON substitution for <r; and s; (from (4.16)), and for the rigid
body coordinates (from (A4.6)), this equation becomes

atwlzq% + ag q_‘

N g
- Z Z {i/:x[/u; muﬁ;{;%{)\;},u} o:%(u-gx;,,)} + E:E";\_/—k]

Lz kel

xR

+ % { ‘;,J- [Z { Cosm,B, Coom; B {(|+)\:§,)(I+h;ﬂ) o-i)\;*ﬁ ?j} - %TR-'S-_j ]

=t +p [%'f‘ cou M, 0, Sann 39;{(|+ 7\37.)("" }\i}i) "'i')\i‘]l.ﬁi} - %TE-|§J ]}

= O (A4,.10)

Similarly the equation for P, may be written as
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a.l_ l«Jb" Pl + a, ﬁ:
N §
— Z { 41:'“ [/“ ““‘oi i;¢*(|*,\;?‘) + ;Wﬁ(l+§A;zl)} + il.TE-"'!*]}
dat e
xR
+ { 9, [ iZ}l.'Su'.,M‘ 6; c“uie;{(lrh;},)(l*-?\:,;)+Jg'7\at}¢3;} - S-ITR.'C‘J' ]
= *b; [‘Z/.‘ Sen 2, O S w; B; {(u,.z;zl)(m.}‘.)*-; A;‘Z‘&-f - 5;5_:? }}
- 0 (Ad.11)

Finally, if we apply Lagrange's equation to (A the corresponding
equation of notion becomes

2 [

ePm 2t Qn o P T 224 2P

g
"'Z l’{m[/‘i g;d’m(;@t *;‘4’.0.) +4¢M(i¢-k +!§1‘/’¢)}J
+=1

[}

+Z {é;,-[—a«»yetw{‘qb..m,,,-) PUNCS SWHLERAL S |
P bt mlitnlon) st Ot - o5 ]

N S
+Z Z e [~ VIR, Va ]

4z Renr

(
O

(A 12)




APPENDI X 5
A MECHANI SM OF NATURAL FREQUENCY SPLI TTI NG

In an attenpt to predict a possible mechanism of natural
frequency splitting, it is convenient to consider the sinple system
of a disc without any blades. The results may then be extended in
principle to the nore conplex arrangenent of a bladed disc.

Consider the disc to be vibrating inits normal node with m
nodal diameters and S nodal circles,which we shall identify as the
% mode. This vibration may be expressed in terms of two principal
coordinates, 4 and PF;, Whose properties are as follows:

Ap,

J = a_,,. = Q- ; Gﬁl.g. C%..: CI‘ 3 whz 60’/. = Q)J ;

v

Ppy = Ji(r) 2os (w0+%) 5 Do = filr) s (w64 )

As in previous work we shall choose fj (a)=1, and it ghould be
noted that « may be chosen as any convenient value. The potential
and kinetic energy expressions for this notion are

2Vi= & (kT - 97)
and

2T, = & (/;/'1 * q’:) = “;M“ (7t 4) (A5.1)

respectively.

Now suppose that a distribution of mass is added to the rim of
the disc such that M =M, et m6 where M, << M, , the disc
mass. It wll be supposed that the addition of this mass will only
affect the vibration of the disc slightly, in that it will only alter
the kinetic energy term and not contribute to the potential energy.

The normal velocity of the rimof the disc, and hence of the added mass,
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is given by the equation

ar o= potw (m0e) + G S (w0 (45.2)

so that the Kkinetic energy of the added mass may be written as
2r

2T, - /Mo s me[a.s*(meu) b+ W‘(MGM)%] a8 (A5.3)

There are two possible values for this expression. If m #2a, then
T, is zero, indicating that the added mass has no effect whatsoever on
the vibration of the disc. If, however, m =2« , then we find that

2T, = 3M,r e 2< [ B — 47 | (45.4)

In this case the natural frequencies of the modified $; and ¢,; modes
will no longer be identical. If we consider the p; mode first, we have

! </
w#_ = (AS 05)
4 a; + iM,rerK

In this expression, we may choose o to be any convenient value but as
yet have no criterion upon which to base such a choice. However,
Rayleigh3 principle provides such a criterion, in that any value which
is chosen will result in a value for ‘*’5./" which is either greater than
or equal to the exact value. Since in this analysis we assume that the
solution is exact in every respect other than the value of «, then
it follows that that value which makes w,/'- a minimum, yields the
exact natural frequency. Thus,

! <

Wy. =
*J av " iMbn— (A506)

and having established the value of «, we may determine the modified
natural frequency w,‘f as
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Wg, = —(]—— (A5.7)

The relationship between wq,/.' and wy;' may be examined as fol | ous.
Since M, << Mg , we shall assune that a/ ;L— M) r2 and t hat

Ly = Wy, Thus

M, rc;
N )" = i o Mer A5.8
(w%.) (w,,d) = ar i Py ( )
and
wa ! 1 Moﬂ'
T 7 Za, (45.9)
so that we may define the '"split' as
Wy — Wy’ M,
(A_\J - Md' Zaj*
and introduce a 'split factor' which is
(wy' — wp))/ w;
C o aF (A5.10)
Mo / Mol- )

and consequently a property of the % node.

The result of this sinple analysis is the denmonstration that a
mode with s« nodal diameters will only be split by a detuning function
whi ch takes the formeces (2«6 ), in which case the magnitude of the
natural frequency split is dependent upon the anplitude of the detuning
function and the properties of the disc node. The nodes of vibration of
a bladed disc are essentially simlar to those of the unbladed disc, and
the same result is expected to hold in principle when applied to bladed
di scs.

N e




It has been found that an analysis by Zenneck (1899), al so
based on Rayleigh's principle, predicts the same type of behaviour
for an inperfect disc.
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APPENDIX 6
PIEZOELECTRIC TRANSDUCERS

Piezoelectric transducers were chosen for force and acceleration
measurements on account of their high sensitivity and fundamentally
simple (although sometimes costly) demands on ancillary electronic
equipment. These transducers have been developed to overcome the
considerable temperature sensitivity which was an early inherent
disadvantage, and accurate and reliable devices are now available for
the measurement of most dynamic properties. The advantage of their
high sensitivity lies in the fact that less power need be supplied to
the vibrating system (than for an equivalent passive type of pickup) in
order to obtain a signal leve 1 which is readily measurable, and thus
they tend to be relatively free of electrical noise problems. This
fact, in the present work at least, means that the acoustic noise
level is not the nuisance that it might have been had larger
amplitudes of vibration been required.

The piezoelectric transducer is essentially a charge-generating
capacitive source (see FIG.A6.1), in which a charge is generated
proportional to the physical quantity being measured. In order to

open circuit
e =gq/cp voltage

T Gt e — S — —

FIG.A6.1 EQUIVALENT CIRCUIT OF A PIEZOELECTRIC TRANSDUCER

measure this charge, two alternative systems are available. The more
common of these requires a voltage amplifier whose input impedance is
of the order of 100 Megohms in order that the lower frequency limit
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of the system be at a reasonable level. The low frequency response of
such transducers is critically dependent upon the measuring equipment,
and the high figure quoted for an amplifier input impedance is
absolutely necessary. From FIG.A6.1, it may be seen that the open
circuit voltage (e) of the transducer is given by the ratio of the
charge (¢,) to the source capacitance (C,). The next diagram
(F1G.A6.2) shows a transducer in a typical voltage amplifier system,

lI' _____ - '! f— T Taaw G -:
© =
| ' | R
| — - P o |
at——— ——— lRA - CA ar
I 4 Cr | Cx |
| - : ‘
I__ [} r Y
TRANSDUCER CABLE VOLTAGE AMPLIFIER

Ve Gq/(Cor Cu vCL)
FI1G.A6.2 VOLTAGE AMPLIFIER MEASURING SYSTEM

and it may be seen that the voltage amplifier measures the voltage across
its input, which has now been reduced from e by the addition of the
external capacitance of the cable, and still further by any input
capacitance that the amplifier itself might possess. Clearly then, the
sensitivity of the transducer will be highly dependent upon the external
circuitry imposed between it and the amplifier, and although cathode
follower units could be employed, they really only serve as an

additional unknown quantity, rather than solve the difficulties.

In spite of such drawbacks, the voltage amplifier system may be
used to measure charge. However, there exists another technique which
seems basically more sound and appropriate for the purpose, and this
employs the use of a so-called charge amplifier. This is essentially
an amplifier with a very high gain and a feedback capacitance, and
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its (simplified) method of operation is as follows (see FIG.A6.3).

.
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FIG.A6.3  CHARGE AWPLIFIER MEASURING SYSTEM

Suppose the voltage at the output of the amplifier is v, then,
since the amplifier gain is extremely high, the voltage across the
input of the amplifier is effectively zero. This has two consequences;
first that no current flows in the circuit indicating an input
impedance of the amplifier of infinite order, and second that the
voltage ~ is thus the voltage across the feedback capacitor, and
furthermore, this voltage is numerically equal to the ratio of the
generated charge to the feedback capacitance: v =4, /c¥ . The
main advantage of this type of amplifier over the voltage amplifier
described above, lies in the independence of the overall sensitivity
to the externally applied electrical loads in the form of cable
capacitance: a value of 15,000 pF for the external capacitance C 4
(equivalent to one mile of cable) decreases the sensitivity by a mere
1 per cent, whereas the same value in the previous system would make
readings impossible. One refinement which is often found on
commercial models is the addition, to the amplifier just described, of

a voltage amplifier with a gain of about 50. A fraction of the

e
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charge amplifier output is fed into this second amplifier and the output
from that is measured. An accurately calibrated potentiometer is used
to determine the fraction taken, and this fraction may be chosen so
that the resulting voltmeter readings are scaled directly in Ib. or ¢ ,
thi s refinement being in the nature of a luxury rather than a necessity.

Finally, another important aspect, as yet unmentioned, is that
concerning the relative phase of the measured signal to that of the
original physical quantity. In the voltage amplifier system, the
signal is subject to phase changes of varying magnitudes, depending
upon the frequency and more evident at the lower frequencies. In this
case, it is imperative that both the force and the acceleration signals
undergo identical electronic transformations if their relative phase
is to be meaningful. The charge amplifier system, with its independence
of external loading (which is the chief cause of these changes), is less
prone to such difficulties.
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APPENDI X 7
COVPUTATI ON OF VI BRATI ON DATA FOR TEE EXPERI MENTAL MODELS

In order to deduce natural frequencies for the nodels used in
the experinmental study from the dinensionless quantities conputed by
the receptance method, it is necessary to establish a value for the
constant K in the equation

w=(kb)ews K - _'_J_Z_E_%»____
2r 3ra." (l—o"')

The dinensions of the nodels are known accurately, but the elastic
constants of the material from which they are made may not be deternined
with the same precision. The steel from which the five bladed disc was
machi ned had been hot rolled, and a metal | urgical exam nation of a
specimen indicated that it contained a |arge amount of inpurities and
was highly anisotropic. As a result, the value of Young's nodulus (and
probably the density) would vary throughout the nodel. Thus it was
decided that rather than attenpt to neasure these properties, typica
val ues would be assumed and tol erances accepted on the resulting value
of K. Results in Chapter 8 indicate that this is a convenient
approach, and that a nore accurate value may be deduced from the

experimental observations
The dinensions of the nodels are as foll ows:

disc dianeter = 24"

di sc thickness 1/2"
bl ade wi dth = "
bl ade thickness 1/2"
bl ade |ength = 6-8"
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and the elastic properties are assumed to be:

Young's nodulus = 30x10° psi  +3%
density = 0,283 | b/i n3 +37%
Poisson's ratio = 0.287% +1%

These figures provide upper and lower limts on K which are:

K-Mw = 321
K max = 35.4 (cps/unit of &)

* . .
In conformty wth Armstrong.
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