
intelligent Digital Systems Lab

Deploying Deep Neural Networks in the 
Embedded Space

Dept. of Electrical and Electronic Engineering

Dr. Christos-Savvas Bouganis

2nd Workshop on Reconfigurable Computing for 
Machine Learning (RCML)

30 August 2018

intelligent Digital Systems Lab

www.imperial.ac.uk/idsl



intelligent Digital Systems Lab

Stylianos I. Venieris
Machine Learning

Alexandros Kouris
Machine Learning,
Robotics

Konstantinos Boikos
Computer Vision,
SLAM

Christos-Savvas Bouganis
iDSL Lab Director
Imperial College London

Manolis Vasileiadis
Computer Vision

Mudhar Bin Rabieah
Machine Learning

Nur Ahmadi
Brain-Machine Interface

The team



intelligent Digital Systems Lab
DNNs in the Embedded Space – Variability in Performance Requirements

High-Throughput Applications Low-Latency ApplicationsMultiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

3



intelligent Digital Systems Lab

Power constraints
• Absolute power consumption
• Performance-per-Watt

Our approach: Couple the design of the ML algorithm with the design of the 
computational platform to improve performance and enable the deployment of 

AI systems

High-Throughput Applications

Low-Latency Applications

Multiobjective Applications

?

surveillance

Smart homes/cities

Aerial Monitoring

Scene Understanding

Autonomous Driving

DNNs in the Embedded Space – Variability in Performance Requirements

4



intelligent Digital Systems Lab

GPUs – Tegra K1, X1 and X2
DSPs – Qualcomm Hexagon, 

Apple Neural Engine, …

Conventional Embedded Platforms for Neural Networks

FPGAs
• Custom datapath
• Custom memory subsystem
• Programmable interconnections
• Reconfigurability

✓ High throughput
✗ Low latency
✗ Low power

✓ High throughput
✓ Low latency
✓ Low power Challenge: Huge design space

Our Approach: Automated toolflows

FPGA

Look-Up 
Tables

Flip Flops

DSP Blocks

On-chip 
RAM

External Memory 
(DRAM)

5
✓ Tools ✗ Tools



intelligent Digital Systems Lab
Research Areas / Challenges

Mapping Automation

Multiple CNN Mapping

Time-constrained Inference

Privacy-aware Deep Learning

6



intelligent Digital Systems Lab

Challenge #1: 
Mapping 
Automation



intelligent Digital Systems Lab
Challenge #1: Mapping Automation

Deep Learning Developers

Little knowledge about FPGAs
Ease of deployment
“Good” designs

Challenges:
• High-dimensional design space
• Diverse application-level needs
• Utilise the FPGA resources
• Design automation

Would like to:
– Target FPGAs
– Optimise for 

high performance

8



intelligent Digital Systems Lab

Network Description FPGA Target Platform 
Specifications

Automated Design 
Space Exploration

Network Hardware 
Mapping

Supplied by 
Deep Learning Expert

Performance 
Requirements

fpgaConvNet

Challenge #1: Automated CNN-to-FPGA Toolflow

SDFG : allows principled design 
space exploration



fpgaConvNet – Design Space Exploration and Optimisation

• Synchronous Dataflow Modelling

− Capture hardware mappings as matrices

− Transformations as algebraic operations

− Analytical performance model

− Cast design space exploration 
as a mathematical optimisation problem

Design 1

Design 2

Hardware Stages Interconnections

duce the feature maps matrix, Fmap, and the data matrix,
P , and form the work matrix, W as shown below.

W = Fmap � P

To find the initiation interval of each block, it su�ces to
divide W by �, element by element.

II = W ↵ �
where II is the initiation interval matrix. Each element
of II gives the number of cycles required by each hardware
block along the pipeline to consume its workload. The block
with the longest initiation interval determines the initiation
interval of the whole SDFG and can be found as the maxi-
mum element of II, denoted by II

max. The execution time
for a batch of B inputs can be estimated by Eq. (4).

t(B,�) =
1

clock rate

· (D + II

max · (B � 1)) (4)

where D is the maximum between the size of the input, e.g.
the size of an image, and the pipeline depth of the SDFG.
In the case where graph partitioning with reconfiguration
is introduced and the SDFG is partitioned into subgraphs
that are executed sequentially after FPGA reconfiguration,
the overall execution time can be estimated by summing the
execution times of all the subgraphs. For this case, we ex-
tend the notation of Eq. (4) with ti to denote the execution
time of the ith partition. Between consecutive subgraphs,
the overhead for the ith reconfiguration, ti,reconfig., has to
be included. Eq. (5) gives the total execution time for NP

partitions.

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) +
NP�1X

i=1

ti,reconfig. (5)

where �i is the topology matrix of the ith partition. By
assuming full reconfiguration of the FPGA, ti,reconfig. can
be considered constant for all i. In this case, Eq. (5) can be
simplified as:

ttotal(B,NP ,�) =
NPX

i=1

ti(B,�i) + (NP � 1) · treconfig. (6)

Eq. (6) shows that the reconfiguration overhead is indepen-
dent of the batch size, B. Therefore, by either increasing
the batch size or the size of the inputs, the first term dom-
inates the execution time and the cost of reconfiguration is
amortised. In practice, the upper bound of B is limited by
the capacity, Cmem, of the o↵-chip memory and we cap its
maximum value to this bound.

For low-latency applications, weights reloading is utilised
in place of graph partitioning with reconfiguration. In this
case, we have a single �ref matrix representing the de-
rived reference design and di↵erent workloads for each of
the NP subgraphs which are scheduled sequentially. When-
ever the data have to enter the ith subgraph, the overhead,
ti,weights, of the transfer of the subgraph’s weights from the
o↵-chip memory has to be included and is calculated using
the amount of subgraph’s weights and the memory band-
width. Eq. (7) gives the overall execution time in the case
of a low-latency design with weights reloading.

ttotal(M,NP ,�ref ) =
NPX

i=1

ti(M,�ref ) +
NPX

i=1

ti,weights (7)

Finally, the throughput of an implementation of a particu-
lar ConvNet in GOp/s which requires WConvNet GOp/input
can be estimated as in Eq. (8) and its latency in s/input as
in Eq. (9).

Algorithm 1 Workload Alignment for Weights Reloading
Inputs:

1: Dimensions (M ⇥N) of the reference �ref

2: Index i of the subgraph to be aligned

3: Workload matrix W i 2 RK⇥L

4: Shift vector si 2 ZL
with the alignment shifts for each column

5: Identity matrices Ir
N⇥N and Il

M⇥M

6: Lower shift matrices Sr
N⇥N and Sl

M⇥M

Steps:

1: W aligned
=

h
W i

0(M�K)⇥L
,0M⇥(N�L)

i

2: for all col in the i

th
subgraph that need alignment do

3: - - - Align along the pipeline, (right shift) - - -

4: - Form right alignment matrix Ar 2 RN⇥N
-

5: Ar
=


Ir
1:col�1,S

r
col:col+si

col

, Ir
col+si

col
+1:N

�

6: - Update the overall right alignment matrix -

7: Ar
o = Ar ·Ar · ... ·Ar

| {z }
si
col

8: W aligned
= W aligned ·Ar>

o
9: - - - Align the interconnections (down shift) - - -

10: - Form left alignment matrix Al 2 RM⇥M
-

11: Al
=


Il
1:col�2,S

l
col�1:col+si

col
�1

, Il
col+si

col
:M

�

12: - Update the overall left alignment matrix -

13: Al
o = Al ·Al · ... ·Al

| {z }
si
col

14: W aligned

col:col+si
col

= Al
o ·W aligned

col:col+si
col

15: end for

Note: The subscript start:end denotes a range of columns.

T (B,NP ,�) =
WConvNet

ttotal(B,NP ,�)/B
(8)

L(B = 1, NP ,�) = ttotal(1, NP ,�) (9)

5.5 Workload Alignment
In the weights reloading transformation, when a subgraph

is mapped to the reference architecture, the execution of
its layers is scheduled on the instantiated building blocks.
For a reference design and a subgraph with N and L build-
ing blocks respectively, we have a topology matrix �ref 2
RM⇥N and a workload matrix W i 2 RK⇥L for the ith

subgraph, where K  M and L  N . In order to calcu-
late the execution time ti(B,�ref ) of the ith subgraph on
the reference architecture, the columns of W i have to be
aligned so that they map on the correct column of �ref .
To achieve this, a new matrix W aligned 2 RM⇥N is con-
structed which contains the rows and columns of W i with
the correct alignment. After W aligned has been created,
the ith initiation interval matrix can be computed correctly
as IIi = W aligned ↵ �ref and used for the calculation of
ti(B,�ref ) as described in Section 5.4.
Our adoption of the SDF paradigm enables us to express

the workload alignment algebraically as described by algo-
rithm (1). In this way, the weights reloading transformation
can be applied analytically and is smoothly integrated with
the rest of the defined transformations over the SDFG.

5.6 Optimisation
The developed optimiser of our framework aims to deter-

mine a design point that optimises the performance metric
of interest for the target application given a ConvNet work-
load and the available resources. In this context, we pose
two combinatorial optimisation problems, aiming for high-

10



intelligent Digital Systems Lab
Meeting the performance requirements



intelligent Digital Systems Lab

0 50 100 150 200 250

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)

TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)

• Latency-driven scenario à batch size of 1
• Up to 6.65× speedup with an average of 3.95×

(3.43× geo. mean)

0 50 100 150 200 250

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s)

TensorRT - GPU TX1 FP16 @ 76.8 MHz (GOp/s)

• Throughput-driven scenario à favourable batch size
• Up to 5.53× speedup with an average of 3.32×

(3.07× geo. mean)

fpgaConvNet vs Embedded GPU (GOp/s) for the same absolute power constraints (5W)

Comparison with Embedded GPUs: Same absolute power constraints (5W)

12



intelligent Digital Systems Lab

0 10 20 30 40 50 60

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s/W)

TensorRT - GPU TX1 FP16 @ 998 MHz (GOp/s/W)

• Latency-driven scenario à batch size of 1
• Average of 1.70× (1.36× geo. mean) in GOp/s/W

fpgaConvNet vs Embedded GPU (GOp/s/W)

• Throughput-driven scenario à favourable batch size
• Average of 1.17× (1.12× geo. mean) in GOp/s/W

0 10 20 30 40 50 60

AlexNet

VGG16

GoogLeNet

ResNet-152

DenseNet

fpgaConvNet - FPGA ZC706 FXP16 @ 125 MHz (GOp/s/W)

TensorRT - GPU TX1 FP16 @ 998 MHz (GOp/s/W)

Comparison with Embedded GPUs: Performance-per-Watt



intelligent Digital Systems Lab

Other approachesToolflows for Mapping CNNs on FPGAs: A Survey and Future Directions 0:3

Table 1. CNN-to-FPGA Toolflows

Tool�ow Name Interface Year

fpgaConvNet [86][87][88][85] Ca�e & Torch May 2016
DeepBurning [90] Ca�e June 2016
Angel-Eye [68][23][24] Ca�e July 2016
ALAMO [58][56][57][55][59] Ca�e August 2016
H�����2 [1][2] Ca�e September 2016
D��W����� [75][76] Ca�e October 2016
Ca�eine [98] Ca�e November 2016
AutoCodeGen [54] Proprietary Input Format December 2016
F��� [84][19] Theano February 2017
FP-DNN [22] TensorFlow May 2017
Snow�ake [21][10] Torch May 2017
SysArrayAccel [91] C Program June 2017
FFTCodeGen [100][97][96][95] Proprietary Input Format December 2017

2 CNN-TO-FPGA TOOLFLOW CHARACTERISTICS
In this section, existing tool�ows are analysedwith respect to their applicability, designmethodology
and performance. The applicability to an end user is investigated based on the supported neural
network models, the input interface and the portability. The design methodology is examined based
on the hardware architecture, the design space exploration approach and the arithmetic precision
choices. Finally, the performance is analysed based on the reported results of each tool�ow.

2.1 Supported Neural Network Models
The application scope of a framework determines the range and type of applications it can target.
The majority of the existing tool�ows limit their focus on the automated mapping of CNN inference,
with F��� focusing on the more speci�c �eld of Binarised Neural Networks (BNNs) [37]. The most
common types of layers in a CNN are the convolutional (CONV), nonlinear (NONLIN), pooling
(POOL) and fully-connected (FC) layers [47]. All existing frameworks support these layers, with
ALAMO, DeepBurning, D��W����� and AutoCodeGen also supporting Local Response Normali-
sation (NORM) layers [46]. Moreover, fpgaConvNet, ALAMO and Snow�ake focus mostly on the
feature extractor part of CNNs, including CONV, NONLIN and POOL layers, and o�er unoptimised
support for FC layers by casting them as CONV layers with 1⇥1 kernels. With respect to compound,
irregular CNN building blocks, residual blocks [33] are supported by fpgaConvNet, ALAMO and
Snow�ake, Inception modules [83][82] by fpgaConvNet and Snow�ake and dense blocks [36] by
fpgaConvNet. H�����2 requires all the weights to be stored on-chip and therefore the supported
model size is constrained by the storage resources of the target device. Currently, DeepBurning
and FP-DNN demonstrate the widest range of supported applications by also supporting Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks [34].

2.2 Interface
2.2.1 Input. The input interface of an FPGA framework plays a decisive role in its ease-of-use

and accessibility to CNN developers. Ca�e constitutes the most widely supported front end with
support from seven of the FPGA frameworks, including fpgaConvNet, DeepBurning, Angel-Eye,
ALAMO, H�����2, D��W����� and Ca�eine, due to its structured, protobuf-based11 syntax, the
vast availability of pretrained models12 and the large user community. fpgaConvNet and Snow�ake
also provide back ends to Torch and FP-DNN has selected TensorFlow as its front end. With Theano
being the �rst framework to support BNNs, F��� supports Theano-de�ned BNNs as its input.
11https://developers.google.com/protocol-bu�ers/ 12http://ca�e.berkeleyvision.org/model_zoo.html

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.

0:24 S. I. Venieris, A. Kouris and C. S. Bouganis

Supported
NN Models

FPGA
Portability

Optimisation
Objective

Arithmetic
Precision

Performance
Density

fpgaConvNet

SysArrayAccel

Angel-Eye

ALAMO

DnnWeaver

Caffeine

FINN

FP-DNN

DeepBurning

HADDOC2

AutoCodeGen

Snowflake

FFTCodeGen

Architecture
Streaming
Single-Engine

Device Family
Intel
Xilinx

Fig. 7. Overview of toolflow characteristics

Snow�ake’s design principle places programmability and high utilisation of the computational
resources at the forefront. In this respect, both Snow�ake’s architecture and compiler are tailored
to removing ine�ciencies and extracting close to peak performance from the allocated resources.
Overall, Snow�ake favours programmability over hardware specialisation, by employing a �xed
hardware design and customising with respect to the target model only at the compiler level.
Finally, FFTCodeGen addresses CNN acceleration from both an algorithmic and an architec-

tural level. In contrast to the rest of the tool�ows, convolutions are performed in the frequency
domain with a signi�cantly lower computational complexity. Moreover, the free parameters of the
algorithm and the architecture enable the generated compute engine to sustain high throughput
across convolutional layers of di�erent sizes and fully exploit the computational complexity gains.
Furthermore, the use of the powerful, server-grade CPU of the target Intel HARP platform allevi-
ates the complexities of mapping the memory-bounded fully-connected layers to hardware and
further contributes to FFTCodeGen’s throughput gains, making it suitable for throughput-driven
cloud-based applications.

2.9 Other Related Work
Apart from the presented tool�ows, several FPGA-based designs for CNNs have been proposed
by the FPGA community. These include highly optimised, hand-tuned accelerators for particular
CNN-FPGA pairs in RTL [18][16][49], HLS [6][44] and mixed RTL-HLS [101], together with designs
that focus on optimising the external memory bandwidth utilisation [5][77]. A number of existing
works lie close to the presented CNN-to-FPGA tool�ows, but lack essential components that would
form a complete automated �ow. These include [61][81][62][15], with [61][81][62] focusing on the
design space exploration task and [15] presenting an FPGA back end to Ca�e, for the execution of
3 ⇥ 3 convolutional layers by means of the Winograd transform.

ACM Computing Surveys, Vol. 0, No. 0, Article 0. Publication date: March 2018.

Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis, "Toolflows for Mapping 
Convolutional Neural Networks on FPGAs: A Survey and Future Directions", ACM Computing Surveys, 2018



intelligent Digital Systems Lab

Challenge #2: 
Multi-CNN Systems



intelligent Digital Systems Lab
Challenge #2: Multi-CNN Systems – Autonomous Drones

Camera

Object Detection Semantic 
Segmentation Navigation Monitoring Domain Task

Se
t o

f C
NN

s

FPGA GPU DSPTa
rg

et
 

Pl
at

fo
rm

Mapping?

16



intelligent Digital Systems Lab
Challenge #2: Multi-DNN System

Challenges:
• Resource allocation among CNNs
• Design automation
• Models with different performance 

constraints, e.g. required throughput and 
latency

• Competing for the same pool of 
resources

• High-dimensional design space

Set of CNNs
Target Platform 
Specifications

Per-CNN 
Performance 
Requirements

Supplied by 
Deep Learning Expert

Optimised
Mapping

F-CNNx



Proposed Design Space Exploration Method

Target set of CNNs



Conv Layer Pool Layer Conv Layer Pool Layer Conv Layer

Conv Layer Pool Layer

CNN1

CNN2

Conv Layer Pool Layer Conv Layer Pool Layer

CNNn

Off-Chip Memory

FPGA Architecture

Memory-unaware 
scheduling

Memory-aware 
scheduling

Full platform available 
bandwidth for each CNN engine



Comparison with Embedded GPUs

20

• Latency-driven scenario à batch size of 1

• Up to 19.09× speedup with an average of 
6.85× (geo. mean)

0 5 10 15 20

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1 at 5W

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W) (5W)

• Latency-driven scenario à batch size of 1

• Up to 9.61× speedup with an average of 
2.76× (geo. mean)

0 5 10 15 20 25 30

ZFNet

PilotNet

SceneLabelCNN

VGG-16

Performance-per-Watt: f-CNNx vs. TX1

f-CNNx (ZC706) (GOp/s/W) GPU TX1 (GOp/s/W)



intelligent Digital Systems Lab

Challenge #3: 
Time-constrained 
Inference



intelligent Digital Systems Lab
Challenge #3: Time-constrained Inference

CNN LSTM

Camera/Sensor Decision/Action

Processing

Target

Current approaches

Time 

M
et

ric
 o

f I
nt

er
es

t 
(A

pp
lic

at
io

n-
Sp

ec
ifi

c)
 

22



intelligent Digital Systems Lab
Challenge #3: Time-constrained Inference

• Approximate LSTMs
− Iterative refinement using SVD + Pruning.
− Parametrized with respect to:

• Number of iterations
• Level of pruning

• Parametrized hardware architecture, 
tailored for approximate LSTMs

• Co-optimise given a user-defined time budget

23



intelligent Digital Systems Lab
Impact on LSTM-based Image Captioning 

Input Image

24



intelligent Digital Systems Lab
Impact on LSTM-based Image Captioning 

Input Image

25



intelligent Digital Systems Lab

Challenge #4: 
Privacy-aware 
Deep Learning



intelligent Digital Systems Lab
Challenge #4: Privacy-restricted Optimisation

Aim: Design an optimised HW system (performance and accuracy)

Given:
• A High-Level CNN Description (i.e. Caffe)
• A target FPGA platform
• Training Data
• Testing Data
• Target metric (top1/top-5 accuracy, …)

è quantisation with retraining step

privacy, availability

Limited quantisation opportunities

27



intelligent Digital Systems Lab
Challenge #4: Privacy-aware Deep Learning

28



intelligent Digital Systems Lab

High-Level System ArchitectureCascade CNN :

• Pushing quantization bellow limits of acceptable accuracy to gain performance (high throughput)

• Evaluation of Quality of Prediction to identify and correct error introduced by quantization

Confidence 
Evaluation Unit:
Identify 
misclassified cases

High-Precision Unit: 
Correct detected 
misclassified samples, 
to restore accuracy

Low-Precision Unit: 
Degraded accuracy 
classification with high 
performance

x

…
x

x +

+
+

x

…
x

x +

+
+

HPULPU CEU

Memory

PASS

FAIL

num of PEs

M
AC

Cs
-p

er
-P

E x

…
x

x +

+
+

29



ResultsCascade CNN :

Fig. 7: Classification accuracy and measured performance as
a function of wordlength on Zynq ZC706.

AlexNet and VGG-16, CascadeCNN yields a wordlength of
4 bits for the LPU. The selected 4-bit quantisation scheme
introduces a 14.38% and 18.65% degradation in classification
accuracy compared to a 16-bit precision respectively (Fig. 7).
It should be noted that (similarly to what has been reported
in [20]) negligible accuracy variability is observed in the
range between 16-bit and 8-bit wordlength implementations,
provided by the employed quantisation methodology. As the
resulting architectures for higher-precision units in the range
of 16 bits demonstrate degraded performance due to increased
LUTMACC requirements and lower achieved clock frequen-
cies, an 8-bit implementation is selected to act as a baseline for
CascadeCNN’s error. The CEU parameters are tuned on the
evaluation dataset to generate systems that introduce a wide
range of classification errors, compared to the 8-bit baseline.

Using the roofline performance analysis discussed in
Sec. III-E, the design points achieving the highest perfor-
mance across the layers of both AlexNet and VGG-16, for
a wide range of wordlengths are extracted. The accuracy of
the developed roofline model is evaluated by comparing the
predicted to the real, measured performance for various points
across the design space, demonstrating an average error of
6.8% (geo. mean). Fig. 7 shows the measured performance on
the ZC706 board and the achieved accuracy across multiple
wordlengths. The 4-bit LPU architectures achieve a throughput
improvement of 2.14⇥ for VGG-16 and 2.08⇥ for AlexNet
compared to the faithful, zero-error 8-bit architecture1 and
a speed-up of 4.88⇥ for VGG-16 and 4.45⇥ for AlexNet
compared to the 16-bit counterpart, which is the most widely
used precision by existing FPGA accelerators [8] [19].

C. End-to-End Cascade Performance

To evaluate the performance gains of CascadeCNN, we
compare the generated two-stage system for different error
tolerance values with a baseline single-stage architecture.
CascadeCNN’s fine granularity of CEU search space enables it
to fully exploit the performance-accuracy trade-off supporting
arbitrary classification accuracy, in contrast with the coarser
precision-accuracy trade-off that forms the only tunable pa-
rameter of the straight-forward quantisation approach adopted

1AlexNet, 4-bit: [DSPs:100%, LUTs:80.6%, BRAM:5.16%]
AlexNet, 8-bit: [DSPs:100%, LUTs:83.1%, BRAM:4.34%]
VGG-16, 4-bit: [DSPs:100%, LUTs:81.4%, BRAM:4.88%]
VGG-16, 8-bit: [DSPs:100%, LUTs:82.9%, BRAM:5.76%]

Fig. 8: CascadeCNN Speed-up as a function of error tolerance.

by the baseline. To address this incompatibility of design
points across the accuracy dimension, each CascadeCNN
instance is compared with a basline HPU that is optimised
for a precision that achieves the same or better accuracy as
the cascade system (ranging from 5 to 8-bit wordlengths). For
the cascade architecture, the overall measured processing time
for a batch of inputs includes LPU’s and CEU’s latency for
the whole batch, HPU’s latency for the re-classified samples
and the FPGA’s reconfiguration time.

The achieved throughput gain is depicted in Fig. 8 across
a wide range of error thresholds on ZC706 and ZCU102
boards. When zero or extremely small error tolerance (below
0.25%) is required by the user, the CEU adopts a strict
evaluation policy that results in an excessively high percentage
of rejected samples forwarded to the HPU for re-processing.
This introduces significant computational load that results
in a slow-down of the overall cascade architecture. In such
cases, where the baseline architecture outperforms the two-
stage design, CascadeCNN generates an optimised single-
stage architecture, that meets the required error tolerance. For
intermediate error levels in both target platforms, the proposed
cascade system outperforms the baseline by up to 48% for
AlexNet and 55% for VGG-16, for the same resource budget
and accuracy. Finally, in the case of high error tolerance (over
5%), the speed-up becomes less significant as the gap in
wordlength between the LPU and the baseline design closes.

The above results demonstrate a persistent benefit on
throughput across the two target devices, which comes with the
scalable performance obtained by the highly parametrisable
architecture. Moreover, although resource-rich devices, such
as ZCU102, are burdened by larger reconfiguration cost,
CascadeCNN’s DSE alleviates that cost by taking advantage
of the increased off-chip memory capacity of these devices
and employing larger batch sizes, that allow more rare recon-
figurations and hence higher amortisation of their cost.

The proposed toolflow can also employ other existing
CNN accelerator architectures as a basis for its LPU and
HPU components, with variable performance gains. The CEU
component is executed together with the softmax layer on the
CPU, with their aggregate processing time being 4⇥ faster
than the FPGA-side computations. With the FPGA and the
CPU acting as a processing pipeline across the batches of
inputs, the latency of the CPU side is hidden and the system’s
overall performance is determined by the FPGA computations.



intelligent Digital Systems Lab
Summary

Research topics

Mapping Automation

Multiple CNN Mapping

Time-constrained Inference

Privacy-aware Deep Learning

www.imperial.ac.uk/idsl

A. Kouris and C-S Bouganis, "Learning to Fly by MySelf: A Self-Supervised 
CNN-based Approach for Autonomous Navigation", IROS, 2018



intelligent Digital Systems Lab
Publications www.imperial.ac.uk/idsl

Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the performance limits of quantisation. In
SysML.

Alexandros Kouris, Stylianos I. Venieris, and Christos-Savvas Bouganis. 2018. CascadeCNN: Pushing the Performance Limits of Quantisation in
Convolutional Neural Networks. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL).

C. Kyrkou, G. Plastiras, T. Theocharides, S. I. Venieris, and C. S. Bouganis. 2018. DroNet: Efficient Convolutional Neural Network Detector for Real-
Time UAV Applications. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 967–972.

Michalis Rizakis, Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Approximate FPGA-based LSTMs under Computation
Time Constraints. In Applied Reconfigurable Computing - 14th International Symposium, ARC 2018, Santorini, Greece, May 2 - 4, 2018, 3–15.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2016. fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs. In
2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 40–47.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: A Toolflow for Mapping Diverse Convolutional Neural Networks on
Embedded FPGAs. In NIPS 2017 Workshop on Machine Learning on the Phone and other Consumer Devices.

Stylianos I. Venieris and Christos-Savvas Bouganis. 2017. fpgaConvNet: Automated Mapping of Convolutional Neural Networks on FPGAs
(Abstract Only). In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 291–292.

S. I. Venieris and C. S. Bouganis. 2017. Latency-Driven Design for FPGA-based Convolutional Neural Networks. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).

S. I. Venieris and C. S. Bouganis. 2018. f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on FPGAs. In 2018 28th
International Conference on Field Programmable Logic and Applications (FPL).

Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Convolutional Neural Networks on FPGAs: A 
Survey and Future Directions. In ACM Computing Surveys 51, 3, Article 56 (June 2018), 39 pages.


