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Convolutional Neural Network - Trends
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A Deep Learning Software Ecosystem
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CNN Deployment Flow
* FPGA platform resources
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CNNs: An opportunity for tool-flows for Reconfigurable Hardware

In the last few years, significant progress in generic FPGA HLS tools
* Vivado HLS, Intel OpenCL, MaxCompiler, LegUp, etc.

» Generate designs based on the mapping and scheduling of low-level primitive
operations - Large design space.

* Low-level entry point

CNN workloads are highly structured

 Layers with pre-defined types and parametrisation

Opportunity for domain-specific frameworks for CNNs
» Generate optimised architectures
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Name Input description Year Publication
fpgaConvNet Caffe & Torch May 2016 FCCM 2016
DeepBurning Caffe June 2016 DAC 2016
Angel-Eye Proprietary July 2016 FPGA 2016
ALAMO Proprietary August 2016 FPL 2016
DnnWeaver Caffe October 2016 MICRO 2016
Caffeine Caffe November 2016 ICCAD 2016
FINN Theano February 2017 FPGA 2017
FP-DNN TensorFlow May 2017 FCCM 2017
SysArrayAccel C June 2017 DAC 2017
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» Key aspects for consideration

Neural Network Support
Front-End Support
Design Portability
Hardware Architectures
Design Space Exploration
Precision support
Objective function

nis

Evaluating Tool-Flows
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Precision Portability
Design Space Hardware

Exploration Architecture
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 Mainstream models include

 CNNs

« Recurrent Neural Networks (RNNSs)
 Binarised Neural Networks (BNNSs)
» Ternary Neural Networks

* DeepBurning and FP-DNN
* RNNs
« LSTMs

« Residual connections in CNNs (FP-
DNN)
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Supported Front-Ends
« Critical for reaching a wide user base Supported front-ends
: 50
« Two options
* Integration with existing frameworks v
30

* FpgaConvNet, DeepBurning, DNNWeaver
Caffeine 20

* Proprietary front-ends
» SysArrayAccel, Angle-Eye, CNN RTL

10

Percentage of toolflows (%)

m Caffe m TensorFlow ®m Torch
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Design Portability

Def.: The degree to which a tool-flow can target:

1. devices by multiple vendors and families
2. different setups (SoCs, host-FPGA servers, stand-alone FPGAS).

Supported FPGA Supported setup
vendors 60
80 50
60 40
30
40
20 0 | Highest portability: |
: DnnWeaver '
O O L
Percentage of toolflows (%) Percentage of toolflows (%)
m Xilinx mIntel mSoC mStandalone mHost + FPGA
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Two types of architectures
1. Streaming architectures

2. Single computation engine
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Characteristics:
» Coarse pipeline of hardware stages
» One hardware stage per layer
 fpgaConvNet, DeepBurning, FINN p—

Advantages:

+ Customisation

T—

+ Concurrent execution of layers

ﬂnwu'l
+ Flexible allocation of resources per layer, viemory RN -
tailored to the target network Inp I Eg%e Classifcation Output
HOST
Disadvantages:
—  Flexibility

— New bitsream for each CNN - long
compilation times
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Characteristics: FPGA
* Processing element-based design / - \
» Fixed architecture, time-shared between layers
» Control via microinstructions
* Angel-Eye, ALAMO, DnnWeaver, Caffeine,
FP-DNN, SysArrayAccel

Advantages:

+  Flexibility

+  One bistream can target many CNNs

DisadvantageS' HOST Intermediate layer I/Os

—  Customisation —

—  High performance variability across CNNs [ cpﬂ_l— ok e B

— Inefficiencies due to processor-like control o
mechanisms A wowms
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Each toolflow defines an architectural design space
» Parameter Space:
» Which trade-offs and alternative designs can be explored?

» Exploration Method
» How it the design space traversed?
» Which objectives are optimised?

Observations

* Toolflows with streaming architectures define a finer-grained space.

» Structure of the pipeline
» Allocation of resources among hardware stages
+ Single computation engine toolflows focus on:
» Scaling of the computation engine with HW resources
» CNN-to-microinstructions mapping

Christos Bouganis
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Toolflow Formulation Solver Objectives

fpgaConvNet Mathematical optimisation s.t. Global Optimiser Throughput, latency
the rsc budget (Simulated or multiobjective
Annealing) criteria
DnnWeaver -/l- Heuristic Throughput
Caffeine Roofline model Enumeration Throughput
SysArrayAccel Mathematical optimisation s.t. Pruning + Throughput
the rsc budget Enumeration
FINN Rule-based: rate-balancing Heuristic Throughput, latency
FP-DNN Rule-based: bandwidth-matching  Heuristic Throughput
ALAMO Heuristic Throughput, latency
DeepBurning Rule-based: rate-balancing Heuristic Throughput, latency

Angel-Eye Rule-based Heuristic Throughput, latency
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Arithmetic Precision

Full precision:
FP32

Binary/Ternary
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Uniform precision

« fpgaConvNet
 FP-DNN
« SysArrayAccel

Dynamic fixed-point

« Angel-Eye

* DeepBurning

Variable precision

ALAMO
DnnWeaver

Binary

FINN
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Performance (Quality of Result)

Achieved QoR is the most critical factor.

QoR can be evaluated with respect to two factors:
1) Comparison of QoR between toolflows for the same CNN-FPGA pair,
2) Comparison with hand-tuned accelerator for the same CNN-FPGA pair.

Fair comparisons: Each toolflow to target the same CNN-FPGA pair.

However, the majority of existing toolflows are not open-sourced, or provide
limited support.
* DnnWeaver targeting Zyng XC7Z020 (limited support, open sourced)
* FINN targeting Xilinx PYNQ-Z1 board (specific BNNs)
* Angel-Eye used internally by DeePhi.
 fpgaConvNet (webpage with up-to-date benchmarking results)
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RTL-based designs tend to o
outperform their HLS counterparts. gl Architecture Device Family

----- Streaming —m— Intel
Finer-grained DSE tends to offer an Sngle-Engine | | ——Xiinx
advantage in terms of obtained
performance.

Single computation engines tend to
reach higher performance for CNNs
with a uniform structure.

Comparable or even better
performance than hand-tuned
designs

Peg‘z:;\:;ce s n FPGA Portability
e == =fpgaConvNet
e===SysArray Accel
Angel-Eye
CNN RTL Compliler
DNN WEAVER

——

Caffeine
=== FINN
—8—FP-DNN

= == Deep Burning

Optimisation

Precisi
recision Objective
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THE FUTURE OF CNN-TO-FPGA TOOLFLOWS
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Objectives of a CNN-to-FPGA Toolflow

Objective 1. Targeting next-generation CNN models.

Trends:
1) Increased depth.
» 8-layer AlexNet (2012) - 152-layer ResNet-152 (2016), 161-layer DenseNet-161 (2017)
2) Increased workload.
» 20x in GOps/input from AlexNet (2012) to VGG-16 (2014)
3) Novel compound components.

» Inception module (GoogLeNet), residual block (ResNet), dense block (DenseNet),
residual Inception block (Inception-v4).

Challenge
* Irregular layer connectivity challenges the automation of mapping to hardware.
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Objectives of a CNN-to-FPGA Toolflow

Objective 1. Targeting next-generation CNN models.
Support for Recurrent Neural Networks (RNNs):
* TPU paper by Google — around 95% of NN workloads are RNNSs.

Challenge
* RNNs are memory-bounded and require different design approach to CNNs.
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Objectives of a CNN-to-FPGA Toolflow

Objective 2. Support for compressed and sparse CNNs

Numerous schemes exploit redundancy in the model to reduce inference
time.
» Low-rank approximations, pruning, sparsification, quantisation.
» ASIC accelerators have introduced designs for such networks (e.g. zero-skipping
compute units, bit-serial arithmetic, etc.)
Challenge

* Methods such as pruning can break the uniformity of computation and memory
accesses.

Christos Bouganis
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Objectives of a CNN-to-FPGA Toolflow

Objective 3. FPGA-based CNN training

GPUs are the current standard for CNN training.

* Next-generation FPGAs demonstrate promising performance and power efficiency
(Stratix 10, UltraScale).

» Recent advances in low-precision NN training offers space for customisation and
variable-precision arithmetic that suits FPGAs.

« Slightly explored by the F-CNN framework.

Challenge
* Demonstrate gains of FPGAs over GPUs for CNN training.

Christos Bouganis
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Objectives of a CNN-to-FPGA Toolflow

Objective 4. Hardware-Network co-design

End-to-end toolchain, from dataset and application to network and hardware

design.
» Expose hardware performance and power consumption to the training phase, co-
optimise the CNN model and the hardware under a holistic view.

Challenge
» Long-term objective for the community towards the efficient hardware execution of high-
performing neural networks.
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...soon published in ACM Computing Surveys

Christos Bouganis

Toolflows for Mapping Convolutional Neural Networks on FPGAs:
A Survey

STYLIANOS I. VENIERIS, ALEXANDROS KOURIS AND CHRISTOS-SAVVAS BOUGANIS,
Imperial College London

In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance
in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several
software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context,
reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated
in the existing CNN ecosystem to provide a tunable balance between performance, power consumption and
programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a
comparative study of their key characteristics which include the supported applications, architectural choices,
design space exploration methods and achieved performance. Moreover, major challenges and objectives
introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, an evaluation
methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA
toolflows.
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