CHEM95002: Orbitals in Organic Chemistry- Stereoelectronics

LECTURE 2 Stereoelectronics of Ground States – Conformational Analysis

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format & scope of lecture 2

The conformation of hydrocarbons

- Ethane & alkanes
- Propene & alkenes
 - A^{1,2} and A^{1,3} strain
- 1,3-Dienes & biaryls

The conformation of functional groups

- Aldehydes & ketones
- Esters & lactones
 - · the ester anomeric effect
- Amides
- Acetals
 - · the anomeric effect, Bohlmann IR bands
- X-C-C-Y and R-X-Y-R' systems
 - gauche conformations

Saturated hydrocarbons - ethane

- Ethane prefers to adopt a staggered rather than eclipsed conformation because:
 - 1) The eclipsed conformers are destabilised by steric interactions
 - i.e. by non-bonded, van der Waals repulsions between the atoms concerned
 - 2) The staggered conformers are stabilised by $\sigma \to \sigma^*$ stereoelectronic interactions
 - i.e. in a staggered conformation all the bonds on adjacent carbons are anti periplanar to each other allowing six σ → σ* stabilising interactions

van der Waals repulsions are maximised when eclipsed (shown)

'Cieplak' stereoelectronic stabilisation is maximised when staggered (all six interacting bonds are anti periplanar)

steric destabilisation of eclipsed conformations

stereoelectronic stabilisation of staggered conformations

- For theoretical discussions of the relative importance of these effects see
 - L. Goodman Nature 2001, 411, 539 (<u>DOI</u>) and 565 (<u>DOI</u>)
 - P.R. Schreiner Angew. Chem. Int. Ed. 2002, 41, 3579 (DOI)
 - F.M. Bickelhaupt Angew. Chem. Int. Ed. 2003, 42, 4183 (DOI)
 - F. Weinhold Angew. Chem. Int. Ed. 2003, 42, 4188 (DOI)
- NB. Steric effects dominate for groups larger than hydrogen

Unsaturated hydrocarbons – *propene*

- **Propene** prefers to adopt A^{1,3} eclipsed conformations rather than A^{1,2} eclipsed conformations
 - The barrier to rotation is 8.0 kJ/mol (cf. propane 14.8kJ/mol)

- − The $A^{1,3}$ eclipsed conformation allows for better overlap of the orbitals for stabilising $\sigma_{C-H} \rightarrow \pi^*_{C=C}$ hyperconjugation/ σ -conjugation
 - This better overlap is a consequence of the ~109° angle subtended by the 'lobes' of the $\pi^*_{C=C}$ orbital relative to the C=C axis

NB. Steric effects dominate for groups larger than hydrogen...

Higher alkenes – $A^{1,2}$ vs $A^{1,3}$ strain

- Steric interactions (i.e. van der Waals forces) dominate affairs when groups other than H are involved
 - A^{1,3} strain is the destabilising eclipsing interaction shown below:
 - As C=C double bonds are shorter than C-C single bonds, A^{1,3} strain in the illustrated conformation of 2-pentene is more
 destabilising than the syn-pentane interaction in the illustrated conformation of n-pentane

- A^{1,2} strain is the destabilising eclipsing interaction shown below:
 - As the C-C-C angle at an sp³ carbon (~109°) is smaller than at an sp² carbon (~120°), **A**^{1,2} **strain** in the illustrated conformation of 2-Me-but-1-ene is less destabilising than the eclipsing interaction in the illustrated conformation of *n*-butane

- For a given pair of groups (e.g. Me \leftrightarrow Me, above), $A^{1,3}$ strain is more destabilising than $A^{1,2}$ strain. The lowest energy conformation adopted by complex alkenes is that in which both $A^{1,2}$ & $A^{1,3}$ strains are minimised

Unsaturated hydrocarbons – 1,3-dienes

- 1,3-Dienes prefer to adopt s-trans conformations in which both double bonds are co-planar
 - e.g. butadiene:

- **Co-planarity** of the π bonds allows for optimal overlap of the orbitals for $\pi_{C=C} \to \pi^*_{C=C}$ resonance stabilisation

The s-trans conformation is preferred over the s-cis conformation because it suffers less strain

Unsaturated hydrocarbons - biaryls

Biaryls prefer to adopt non-planar conformations in which the dihedral angle is ~45°

$$R'' = R'' - R' - R' - R'' -$$

- This is a compromise between:
 - Stabilising $\pi_{C=C} \to \pi^*_{C=C}$ resonance when coplanar
 - Destabilising steric interactions between adjacent ortho aromatic substituents when coplanar

 If at least three ortho substituents are large then the co-operative steric interactions restrict C-C bond rotation to such an extent that the two conformers become configurationally stable and, provided the groups are different, can be isolated as enantiomers known as atropisomers

Functional groups – aldehydes & ketones

Alkyl aldehydes & ketones prefer to adopt A^{1,3} eclipsed conformations

- As for allylic systems, $A^{1,3}$ eclipsed conformations allow stabilising $\sigma_{C-H/C} \to \pi^*_{C=O}$ hyperconjugation/ σ -conjugation
 - These interactions are more significant than the corresponding interactions in an allylic system because the $\pi^*_{C=C}$ orbital is a better acceptor (*i.e.* is lower in energy) than a $\pi^*_{C=C}$ orbital
 - These interactions also account for the greater stability of ketones relative to aldehydes (*i.e.* Deslongchamps theory: more interactions for the ketone)

Moreover, A^{1,3} strain is less significant in these compounds relative to allylic compounds as the sp² hybrid lone pairs on the carbonyl oxygen are 'small' relative to any substituent on an alkene

Functional groups - esters

• **Esters** prefer to adopt a **planar** conformation with an **s-cis** conformation about the acyl oxygen single bond:

− **Co-planarity** is stabilised by $n_{Op} \rightarrow \pi^*_{C=O}$ **resonance**

- Because the p-orbital on oxygen is symmetrical resonance does not favour s-cis over s-trans or vice versa
- However, there is a relatively strong enthalpic preference for the s-cis conformer over the s-trans one (ΔH° ~25kJmol⁻¹ cf. ~10kJmol⁻¹ for amides) although the barrier to rotation about the acyl oxygen bond (i.e. interconversion) is relatively low (ΔH# ~50kJmol⁻¹ cf. ~85kJmol⁻¹ for amides)

Functional groups – esters cont.

- There are three factors which favour the s-cis over the s-trans conformer:
 - There is a $n_{\text{Osp2}} \rightarrow \sigma^*_{\text{C-O}}$ anomeric effect which stabilises the **s-cis** form

There is significant 'A^{1,2} strain' in the s-trans form (the sp² hybrid lone pair on the carbonyl oxygen is 'small' relative to a substituent bonded to the acyl carbon atom)

*NB. This strain is often referred to as $A^{1,2}$ -strain despite the fact that the non-carbonyl *oxygen* is NOT sp^3 hybridised

- The s-cis form has a significantly smaller overall dipole moment relative to the s-trans form
 - There is a general preference for conformers with minimum overall dipole (minimum overall charge separation)

Evidence for the ester anomeric effect

Fluorocarbonates prefer to adopt an s-trans conformation:

NB. the cis and trans designations here are relative to the carbonyl group and not strictly according to CIP rules (where F>O in 'priority')

– Here, the σ^* orbital of the C-F bond is a better acceptor than the σ^* orbital of the C-O bond (*i.e.* lower in energy because F is more electronegative than O)

 Hence, in these compounds there is a stronger anomeric stabilisation of the s-trans conformation than of the scis conformation

Functional groups - lactones

• 5- & 6-Membered lactones contain an ester function with an enforced s-trans conformation so anomeric $n_{Osp2} \rightarrow \sigma^*_{C-O}$ stabilisation is not possible

- As a result, lactones have some different properties to corresponding acyclic esters:
 - The sp² hybrid, non-carbonyl oxygen lone pair in a lactone is more basic/nucleophilic than in an acyclic ester because the lone pair is 'more available' for interaction with protons/metal cations etc.
 - Lactones are more susceptible to nucleophilic attack at the carbonyl carbon than acyclic esters because anomeric $n_{Osp2} \rightarrow \sigma^*_{C-O}$ stabilisation results in 'dilution' of the dipole across the carbonyl in acyclic esters; this interaction is absent for lactones (*i.e.* they are more electrophilic)
 - Lactones are more prone to enolisation than acyclic esters [pKa ~22 (lactone) cf. pKa ~25 (acyclic ester)] because for acyclic esters the anomeric effect contributes to the transfer of electron density from the non-carbonyl oxygen to the carbonyl one, rendering it less able to accept electron density during α-deprotonation. In a lactone, the anomeric effect is absent so the carbonyl oxygen is better able to accept electron density from deprotonation. The carbonyl is more like that of a ketone than an ester.

Functional groups - amides

 Amides prefer to adopt a planar conformation with an s-cis conformation about the acyl nitrogen single bond:

- **Co-planarity** is stabilised by $n_{Np} \to \pi^*_{C=O}$ resonance which is stronger than the corresponding $n_{Op} \to \pi^*_{C=O}$ resonance in esters because the nitrogen lone pair is a better donor than the oxygen lone pair
 - This is manifested in the high barrier to rotation about the acyl nitrogen bond (ΔH# ~85kJmol⁻¹, *cf.* ~50kJmol⁻¹ for esters)
- The s-cis conformer is preferred over the s-trans conformer but the enthalpic difference in ground state energy is less pronounced than in the case of esters (ΔH° ~10kJmol⁻¹, cf. ~25kJmol⁻¹ for esters)
- This is because the only significant factor favouring the s-cis conformation over the s-trans is 'A^{1,2} strain' (cf. esters where there is an anomeric effect and for which dipole effects are significant):

The anomeric effect – 6-ring acetals

- 6-ring acetals prefer to adopt chair conformations in which the anomeric oxygen is axial
 - This is in contrast to the situation for cyclohexanes in which the substituent adopts an equatorial position 1) to avoid unfavourable 1,3-diaxial or '1,3-flagpole' interactions, & 2) to minimise gauche interactions:

Two factors favour the α -anomer:

NB. There are 2 of the indicated gauche interactions for isomer **C**: looking along the 'red' bond (as shown) and also looking along the 'blue' bond (not shown)

- An n_{Osp3} → σ^*_{C-X} anomeric effect which stabilises the α-anomer
 - The better the σ*_{C-X} orbital is as an acceptor, the stronger the effect

– The α -anomer has a smaller overall dipole moment than the β-anomer

The generalised anomeric effect & structural evidence

- The anomeric effect in its most general form explains the conformational behaviour of systems containing two heteroatoms bound to a single carbon atom
 - i.e. X-C-Y where X and Y are electronegative groups (e.g. acetals, where X = Y = O below)

• Evidence for the anomeric effect comes from e.g. bond length analysis of fluoro sugars

X-ray bond lengths of fluorosugars...evidence for lengthening (and weakening) of the 'acceptor' C-F bond.

The anomeric effect – alkaloid 'Bohlmann bands'

- Geometrically rigid alkaloids having at least 2 x C-H bonds anti-periplanar to nitrogen lone pairs display characteristic low frequency infra-red stretching frequencies of the C-H bonds
 - − This is because of multiple $n_{Nsp3} \rightarrow \sigma^*_{C-H}$ anomeric interactions which weaken the acceptor (i.e. C-H) bonds
 - These bands (2700-2800 cm⁻¹) only occur when there are at least 2 appropriately orientated C-H bonds. presumably due to the weak nature of the interaction
 - E. Winterfeldt Liebigs Ann. Chem. 1994, I-XXXIV (retrospective on Ferdinand Bohlmann 1921-1991, DOI)
 - For recent use during Terengganensine A synthesis see: J. Zhu Angew. Chem. Int Ed. 2016, 55, 6556 (DOI)

1,2-Disubstituted ethanes - gauche preference

- **X-C-C-Y** containing compounds (where X and Y are electronegative groups) adopt **gauche** rather than **anti** conformations **despite** this conformation having a larger overall dipole
 - Stabilisation accrues from $\sigma \to \sigma^*$ interactions between the best combinations of anti-periplanar donor and acceptor bonds (*the gauche effect*)

- NB. In the case of 1,2-ethanediol an intramolecular H-bond also stabilises the gauche form
- Also, 1,4-hypercoordination has been proposed as an additional factor stabilising *gauche conformations*, particularly when X or Y is a second row element: Inagaki *Org. Lett.* **1999**, *1*, 1145 (DOI)

Peroxides, hydrazines, disulfides - gauche preference

- **X-Y** containing compounds (where X and Y are electronegative groups) also adopt **gauche** rather than anti conformations
 - Stabilisation accrues from $n \to \sigma^*$ (anomeric) interactions between antiperiplanar donor lone pairs on X and Y and acceptor bonds
 - e.g. hydrogen peroxide (H₂O₂) and hydrazine (H₂NNH₂)

- **Disulfides** adopt a **quasi gauche** conformation (dihedral angle $\Theta_{\text{C-S-S-C}}$ of ~90°, cf. ~60° as expected)
 - This is because sulfur is in the second row of the periodic table and the geometry of the sp³ sulfur centres are distorted such that the angle between the lone pairs is >109° and that between the two substituents is <109°. Anti-periplanarity for $2x n_S \rightarrow \sigma^*_{S-C}$ interactions results in the observed conformational geometry

1,2-, 1,3- & 1,4-Diheteroatom arrays - summary

