CHEM60001: An Introduction to Reaction Stereoelectronics

LECTURE 7 Problem Class Answers

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Question 1 (parts i & ii)

Ley dispiroketal formation – the product forms as a single diastereomer as the result of its formation being under thermodynamic control. The product observed is stabilised by four anomeric effects ($n_O \rightarrow \sigma_{CO}$).

HO OH + CSA (cat.), toluene,
$$\frac{110^{\circ}\text{C}}{[73\%]}$$
 OR OR OR donor n_{Osp3} acceptor $\sigma^*_{\text{C-O}}$ acceptor $\sigma^*_{\text{C-O}}$ $\frac{4 \text{ anomeric}}{\text{interactions}}$ $\frac{3 \text{ anomeric}}{\text{interactions}}$ $\frac{2 \text{ anomeric}}{\text{interactions}}$

Question 2 (parts I & ii)

Grob fragmentation

'initiation' $RB(OH)_2$ -> $RB(OH)_3^{\Theta}$ σ_{C-B} becomes σ_{C-B}^{Θ} (better donor, higher energy)

Interacting orbitals:

- 1) n_O -> p_{vac on B} (OH- attacks boronic acid)
- 2) $3x n_O -> \sigma^*_{C-B}$
- 3) $\sigma_{\text{C-B}}$ -> $\sigma^*_{\text{C-C}}$ (C-B bond cleavage, C=C bond formation, & C-C bond cleavage)
- 4) σ C-C -> σ *C-O (C=C bond formation and C-O bond cleavage)

- i.e. the sigma conjugation that stabilises the more substituted alkene products is also important in the transition state(s) for this rearrangemnt

Question 3 (parts i &ii)

This reaction was reported by R.B. Woodward as part of his classic synthesis of prostaglandin $F2\alpha$ [Woodward J. Am. Chem. Soc. 1973, 95, 6853 (DOI)].

Mechanism & stereochemistry: Tiffaneau-Demyanov semi-pinacol rearrangement?

Interacting orbitals:

NB. bold bonds are all anti-periplanar with respect to each other

- 1) $n_{\rm O}$ -> $\sigma^*_{\rm C-C}$ (oxygen lone pair interacts with C-C anti-bond forming C=O bond)
- 2) σ_{C-C} -> σ^*_{C-N} (suprafacial C-C bond migration, & C-N bond cleavage)

Question 3 cont.

OR...Grob fragmentation-aldol reaction? Mechanism & stereochemistry:

Interacting orbitals:

NB. bold bonds are all anti-periplanar with respect to each other

1)
$$n_{\rm O} -> \sigma^*_{\rm C-C}$$
 (oxygen lone pair interacts with C-C anti-bond forming C=O bond)

2) $\sigma_{\rm C-C} -> \sigma^*_{\rm C-N}$ (C-C bond cleavage & C=C bond formation)

- NB. Prof Henry Rzepa has performed some density functional calculations and at the B3LYP/6-31G(d) level and the Tiffeneau-Demjanov pathway is lower in energy by ~ 5.6 kcal/mol: see:
- http://www.ch.ic.ac.uk/local/organic/tutorial/synoptic/q2a.html