CHEM60001: Advanced Chemistry Topics 1 – Pericyclic Reactions

LECTURE 5
Cycloaddition Reactions

Alan C. Spivey a.c.spivey@imperial.ac.uk

Imperial College London

Format & scope of lecture 5

- Cycloaddition reactions
 - Diels-Alder reaction
 - Rates
 - Regioselectivity
 - Stereoselectivity the endo 'rule'
 - 1,3-Dipolar cycloadditions
 - Ozonolysis
 - · Azomethine ylides
 - · Nitrones in synthesis

Key further reading:

- BOOK: Clayden, Greeves & Warren, Organic Chemistry, 2nd Ed.,
 - <u>Chapter 34</u> pericyclic reactions 1 cycloadditions
- WEB: Pericyclic Reactions https://www.stereoelectronics.org/webPR/PR home.html
 - <u>Chapter 2</u> The $[4\pi+2\pi]$ cycloaddition (Diels-Alder reaction)

The Diels-Alder reaction

Nobel Prize 1950 – The [4+2] cycloaddition reaction:

Otto Diels (1876-1954)

Kurt Alder (1902-1958)

The Diels-Alder reaction - summary

Overall synthetic characteristics - summary:

- Reaction rates: dependent on the HOMO-LUMO energy gap
 - Therefore varies as a function of reaction partner electronics
 - 'Normal' electron demand: accelerated by having an EDG on the diene & an EWG on the dienophile (cf. A vs. B vs. C/D)
 - 'Inverse' electron demand: accelerated by having an EWG on the diene & an EDG on the dienophile
- Reaction regioselectivity: dependent on the coefficients (=sizes) of the HOMO & LUMO reacting orbitals
 - can usually be anticipated by considering the 'polarisation' of the reaction partners
 - ortho and para products tend to predominate (cf. Ei vs Eii)
 - rate & selectivity often increased by catalysis
- Reaction stereoselectivity: dependent on secondary orbital interactions
 - endo products formed preferentially for normal electron demand reactions (i.e. involving EWG π-conjugated alkene dienophiles) (see: F)

The Diels-Alder reaction – rate of reaction

Reaction rates:

- Reactivity is controlled by the relative energies of the FMOs
- The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
 - the closer the two interacting orbitals are in energy the faster the reaction rate (cf. Klopman-Salem equation, lecture 1)
 - consequently, 2 important types can be identified:

EWG (Z-substituents) lower HOMO & LUMO energies

– Recall from Lecture 1:

-

EDG (X-substituents) raise HOMO & LUMO energies conjugating systems (C-substituents) raise HOMO & lower LUMO

- Catalysis of 'normal' electron demand Diels-Alder reactions is generally by 'LUMO-lowering' catalysis':
 - i.e., interaction of catalyst with a carbonyl conjugated to an alkene in the dienophile

The Diels-Alder reaction - regioselectivity

Regioselectivity – the simple but approximate method using polarities

- The regioselectivity of Diels-Alder reactions is controlled by the relative sizes of the coefficients on the reactioncontrolling HOMO and LUMO orbitals.
- For most synthetically useful D-A reactions, the outcome can also be predicted/rationalised by considering the resonance-based <u>polarities</u> of the two partners, e.g.

- However, sometimes simple consideration of polarities (predicted using resonance principles) does NOT give the correct prediction.
- These 'exceptions' are generally reactions with large HOMO-LUMO energy differences (*i.e.* ones with slow rates/low yields), *e.g.*

The Diels-Alder reaction - regioselectivity

Regioselectivity – the less intuitive but reliable method using FMO orbital coefficients

- If we calculate (or can estimate) the *relative sizes of the coefficients on the reaction-controlling HOMO* and LUMO orbitals then we can predict regiselectivities reliably.
- We are looking to match large-large and small-small coefficients.
- Z = EWG (e.g. CO₂Me), X = EDG (e.g. OMe), C = conjugating group (vinyl, phenyl)

The Diels-Alder reaction – regioselectyivity

Regioselectivity – the less intuitive but most reliable method using FMO orbital coefficients

- We can now re-analyse the three Diels-Alder reactions we examined previously using the polarity approach.
- Recall for the 2 cases for which polarity analysis worked:

...and for the case where polarity analysis failed:

• ...the FMO orbital coefficient method correctly predicts the regiochemical outcome.

Diels-Alder regioselectivity – dienophile polarity

- Estimating orbital coefficients:
 - How does an EWG substituent on a dienophile change orbital coefficients?
 - Consider *acrolein* as an average of allyl cation and butadiene:

Diels-Alder regioselectivity – diene polarity

- Estimating orbital coefficients:
 - How does an EDG substituent on a <u>diene</u> change orbital coefficients?
 - consider 1-methoxybutadiene as an average of butadiene and a pentadienyl anion:

HOMO of diene has a large orbital coefficient at the end of the diene.

The Diels-Alder reaction - stereoselectivity

■ The *endo*-product is generally the major with dienophiles containing π -conjugation (*e.g.* a Z substituent)

Secondary orbital overlap is a simple explanation for the kinetic preference for the endo-adduct

Reversibility (as in D-A reactions with furan) can lead to the thermodynamically preferred exo adduct

endo-kinetic exo-thermodynamic

The Diels-Alder reaction - stereoselectivity

Drawing and working out stereochemistry for Diels-Alder reactions

The 1,3-Dipolar cycloaddition reaction

"In 2000 I was the Dean at LMU and was moderating the Festkolloquium on the occasion of Rolf's 80th birthday. Looking in the audience with distinguished guests, I commented that we have an Olah reagent, a Wittig-Horner reaction, a Hünig base, a Schlosser base, and so on. I do not remember all the other prominent chemists who were in the audience. And then I asked the question, "Has anybody heard of a Huisgen reagent or Huisgen reaction?" and gave the answer, "It is due to your perfectionism that nobody knows about such a reaction, dear Professor Huisgen, because from the beginning you have created the term "1,3-Dipolar Cycloaddition." I then continued that this term is misleading anyway, because most "1,3-dipoles" do not really have 1,3-dipolar character and suggested to speak about "Huisgen reactions" instead. Unsuccessful: The term "1,3-Dipolar Cycloaddition" is so firmly established and "Huisgen reaction" will not be able to replace it." Herbert Mayr

Rolf Huigsen (1920-2020)

IMAGE: https://onlinelibrary.wiley.com/doi/full/10.1002/ange.202003034

1,3-Dipolar cycloaddition reactions - summary

Overall synthetic characteristics - summary:

- 1,3-Dipolar cycloadditions are 6 electron $[\pi_{4s} + \pi_{2s}]$ concerted pericyclic reactions:
 - sometimes referred to as [3+2]-cycloadditions this refers to the number of ATOMS (not electrons)

There are 2 main classes of dipoles used in 1,3-dipolar cycloadditions:

TRIGONAL 1,3-DIPOLES

notes

- 3 atom/ 4π electron species
- central atom ≠ C
- always have formal charges
- charges @ 1,2- NOT 1,3-positions
- <u>linear</u> are: sp-sp-sp²
- trigonal are sp²-sp²-sp²
- no correlation between reactivity & geometry
- retrosynthetic 'signature' is ≥2 adjacent heteroatoms in the ring

- Most multiple bonds can act as dipolarophiles:
 - BUT normally a C=C bond...

$$C=C$$
 $C\equiv C$ $C=O$ $C\equiv N$ $C\equiv N$

1,3-Dipolar cycloaddition reactions – rates of reaction

Reaction rates:

- Reactivity is controlled by <u>relative energies</u> of FMOs
- The key interaction is between the HOMO of one reactant and the LUMO of the other reactant
 - the closer the two interacting orbitals are in energy the faster the reaction rate
 - consequently, 2 important types can be identified:

Regiochemistry:

- Controlled by the coefficients of the FMOs, but like for the Diels-Alder reaction, can be approximated by examining the
 polarity of the components
- However, sterics can override e.g.:

isoxazoles

1,3-Dipolar cycloaddition reactions — 1,3-dipoles

■ sp²-hybridized central atom

sp-hybridized central atom

$$R = N$$

$$\bigcirc \oplus \\ N = N = \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$$

nitrile ylids

nitrile oxides

diazoalkanes

nitrile imines

alkyl azides

nitrous oxide

1,3-Dipolar cycloaddition: ozonolysis

1,3-Dipolar cycloaddition: azomethine ylid formation 18

W-H approach

FMO approach

1,3-Dipolar cycloadditions in synthesis - nitrones

■ Nitrones are readily formed between aldehydes and substituted hydroxylamines

Fuchs J. Am. Chem. Soc. 2006, 128, 12656 [DOI]